
1

C H A P T E R

1
DB2 under OS/390 Chapter, First
Edition

Introduction 2
SAS/ACCESS LIBNAME STATEMENT 2

SAS/ACCESS Data Set Options: DB2 Specifics 8

SAS System Options and Settings for DB2 12

Setting Your DB2 Subsystem Identifier 14

Capturing DB2 Return Codes Using SYSDBRC 14
ACCESS Procedure: DB2 Specifics 15

ACCESS Procedure Statements for DB2 15

DB2 Restriction on Connections 16

Examples: Creating Access Descriptors and View Descriptors 17

DBLOAD Procedure: DB2 Specifics 18

DBLOAD Procedure Statements for DB2 18
SQL Procedure Pass-Through Facility: DB2 Specifics 20

Arguments to Connect to DB2 20

The DB2UTIL Procedure 22

DB2UTIL Statements and Options 22

MAPTO Statement 23
RESET Statement 23

SQL Statement 24

UPDATE Statement 24

WHERE Statement 24

ERRLIMIT Statement 24
EXIT Statement 24

Modifying DB2 Data 24

Inserting Data 24

Updating Data 25

Deleting Data 25

DB2UTIL Example 25
DB2 Naming Conventions 26

DB2 Data Types 26

String Data 26

Numeric Data 27

Dates, Times, and Timestamps 27
DB2 NULLs and DB2 Default Values 28

LIBNAME Statement Data Conversions 29

ACCESS Procedure Data Conversions 29

DBLOAD Procedure Data Conversions 30

Maximizing DB2 Performance 31
Making the Most of Your Connections 32

Information for the Database Administrator 34

How the DB2 Engine Works 34



2 Introduction 4 Chapter 1

How and When Connections Are Made 34
Connections Using the Distributed Data Facility 35

Connections Using the Distributed Relational Database Architecture (DRDA) 35

Recoverable Resource Management Services Attachment Facility (RRSAF) 36

Accessing the DB2 System Catalogs 36

Introduction
This chapter introduces SAS System users to Database 2 (DB2), IBM’s relational

database management system for OS/390. It accompanies and should be used with
SAS/ACCESS Software for Relational Databases: Reference (order # 57204).*

This chapter describes the SAS/ACCESS LIBNAME and data set options that are
specific to DB2. It then focuses on the terms, basic concepts, and options that help you
use the SAS/ACCESS interface to DB2. Next, it describes the DB2-specific options and
statements that you use in the ACCESS and DBLOAD procedures and in the SQL
procedure’s CONNECT statement. The statements include those that are necessary to
accommodate IBM’s addition of DRDA support for DB2. Also documented in this
chapter is a Version 5 procedure, DB2UTIL, which enables you to make modifications to
a DB2 table using a SAS data set. Finally, there are some tips for improving your
performance and some DB2–specific information for the database administrator.
For general information about database management systems, including information
for the database administrator about how the SAS/ACCESS interfaces work, refer to
Appendix 2, "DBMS Overview and Information for the Database Administrator" .

SAS/ACCESS LIBNAME STATEMENT
This section describes the LIBNAME statement and its options that are specific to

DB2. The LIBNAME statement and options that can be used in most databases are fully
described in SAS/ACCESS Software for Relational Databases: Reference. This section
also describes the connection options for DB2 and any DB2–specific LIBNAME options.

SAS/ACCESS LIBNAME Statement: DB2 Specifics

Associates a SAS libref with a DBMS database, schema, server, or group of tables and views.

Valid: Anywhere

Syntax
LIBNAME libref SAS/ACCESS-engine-name SAS/ACCESS-engine-connection-options

< SAS/ACCESS-LIBNAME-options>;

Arguments

* Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.
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libref
is any 8–character SAS name that serves as an alias to associate the SAS System
with a database, schema, server, or group of tables and views.

SAS/ACCESS-engine-name
is a SAS/ACCESS engine name for your DBMS, in this case, DB2. SAS/ACCESS
engines are implemented differently in different operating environments. The engine
name is required.

SAS/ACCESS-engine-connection-options
are options that you specify in order to connect to a particular database; these
options are different for each database. If the SAS/ACCESS engine connection
options contain characters that are not allowed in SAS names, enclose the values of
the options in quotation marks. On some DBMSs, if you specify the appropriate
system options or environment variables for your database, you can often omit the
SAS/ACCESS engine connection options.

SAS/ACCESS-LIBNAME-options
are options that apply to the objects in a DBMS, such as its tables or indexes. For
example, the READ_LOCK_TYPE= option enables you to set a table lock on an
operation. Support for many of these options is DBMS-specific.

Some SAS/ACCESS LIBNAME options can also be specified as SAS/ACCESS
engine data set options. When you specify an option in the LIBNAME statement, it
applies to objects and data that are referenced by the libref. A SAS/ACCESS data set
option applies only to the data set on which it is specified. If a like-named option is
specified in both the SAS/ACCESS engine LIBNAME statement and after a data set
name (which references a DBMS table or view), the SAS System uses the value that
is specified after the data set name.

For more information, refer to Chapter 4, "SAS/ACCESS Data Set Options" .

Details The LIBNAME statement associates a libref with a SAS/ACCESS engine in
order to access tables or views in a database management system (DBMS). The
SAS/ACCESS engine enables you to connect to a particular DBMS and, therefore, to
specify a DBMS table or view name in a two-level SAS name.

For example, in MYLIB.EMPLOYEES_Q2, MYLIB is a SAS libref that points to a
particular group of DBMS objects, and EMPLOYEES_Q2 is a DBMS table name. When
you specify MYLIB.EMPLOYEES_Q2 in a DATA step or procedure, you dynamically
access the DBMS table. Beginning in Version 7, the SAS/ACCESS LIBNAME supports
reading, updating, creating, and deleting DBMS tables.

To disassociate or clear a libref from a DBMS, use a LIBNAME statement and
specify the libref (for example, MYDBLIB) and the CLEAR option as follows:

libname mydblib CLEAR;

Clearing the libref causes the database engine to disconnect from the database,
closing any open plans and releasing any resources that are associated with that
connection.

See for more information about options that you can use in the LIBNAME statement.

SAS/ACCESS Engine Connection Options The SAS/ACCESS engine connection options
for DB2 are as follows:

SSID= on page 3
SERVER= on page 4

SSID=DB2–subsystem-id
specifies the DB2 subsystem ID to connect to at connection time.

SSID= is optional. If you omit it, SAS connects to the DB2 subsystem that was
specified in the SAS system option, DB2SSID=. For more information, see “Setting
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Your DB2 Subsystem Identifier” on page 14. The DB2-subsystem-id is limited to
four characters.

SERVER=DRDA server
specifies the DRDA server that you want to connect to. SERVER= enables you to
access DRDA resources stored at remote locations. Check with your system
administrator for system names. You can only connect to one server per
LIBNAME statement.

SERVER= is optional. If you omit it, you access tables from your local DB2
database unless you have specified a value for the LOCATION= option. There is
no default value for this option.

Note: Refer to the OS/390 installation instructions for information about
configuring SAS to use the SERVER= option. 4

DB2 Restriction on Connections The DB2 engine restricts the maximum concurrent
open cursors to 32 for a given connection. Note that if you are working with a DB2 table
that accesses other tables, you could be opening more cursors than you are aware of.

Beginning in Version 7, there is no limit to the number of connections that you can
have to DB2. The DB2 engine uses the Call Attachment Facility (CAF) or the
Recoverable Resource Manager Sercvice Attachment Facility (RRSAF) to make an
explicit connection to the local DB2 subsystem. The DB2 engine creates one connection
to DB2 from the main SAS task. For each subsequent connection to the CAF or RRSAF,
the DB2 engine attaches a separate OS/390 subtask.

SAS/ACCESS LIBNAME Options The SAS/ACCESS interface to DB2 supports all of the
SAS/ACCESS LIBNAME options listed in Chapter 3, "SAS/ACCESS LIBNAME
Statement" , except for DBINDEX=, DBPROMPT=, and DBMAX_TEXT=. In addition to
the supported options, the following LIBNAME options are used only in the interface to
DB2 or have DB2–specific aspects to them:

AUTHID= on page 4
CONNECTION= on page 5
IN= on page 5
LOCATION= on page 6
PRESERVE_COL_NAMES= on page 6
PRESERVE_TAB_NAMES= on page 6
READ_LOCK_TYPE= on page 6
SPOOL= on page 7
UPDATE_LOCK_TYPE= on page 7

This section describes the LIBNAME statement and its options that are specific to
DB2. The LIBNAME statement and options that can be used in most databases are
fully described in “SAS/ACCESS Software for Relational Databases." This section
describes the connection options for DB2 and any DB2-specific LIBNAME options.

AUTHID=authid
enables you to qualify your DB2 table names with an authorization ID, user ID, or
group ID.

When you specify the AUTHID= option, every table that is referenced by the
libref is qualified as authid.tablename before any SQL code is passed to DB2. If
you do not specify a value for AUTHID=, the table name is not qualified before it
is passed to DB2. Once DB2 receives the table name, it automatically qualifies it
with your OS/390 user ID. You can override the LIBNAME AUTHID= option by
using the AUTHID= data set option.

AUTHID= is limited to 8 characters. This option is not validated until you
access a table.
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CONNECTION= SHAREDREAD | GLOBALREAD | UNIQUE | SHARED |
GLOBAL

enables you to share one connection for reading, updating, and outputting to tables.
In addition to the SHAREDREAD, GLOBALREAD, and UNIQUE values, which

are described in , you can also specify SHARED or GLOBAL for CONNECTION=
in the SAS/ACCESS interface to DB2. The SHARED value allows you to share one
connection for tables referenced by the given libref. The GLOBAL value allows you
to share a connection for tables referenced by all librefs for which
CONNECTION=GLOBAL is specified.

Use this option with caution. If the connections that are shared are for reading
and updating, there is a good possibility that the read cursors will have to be
resynchronized if a commit or rollback is performed by the update or output
connections. If the cursors are resynchronized, there is no guarantee that the new
solution table will match the original solution table that was being read.

You can use CONNECTION=SHARED to eliminate the deadlock that can occur
when you create and load a DB2 table from an existing DB2 table that resides in
the same database or tablespace. This only happens in certain output processing
situations and is the only recommended use for the CONNECTION=SHARED
option.

In the following example, DB2DATA.NEW is created in the database TEST.
Because the table DB2DATA.OLD exists in the same database, the option
CONNECTION=SHARED allows the DB2 engine to share the connection for both
reading the old table and for creating and loading the new table.

libname db2data db2 connection=shared;
data db2data.new (in = ’database test’);
set db2data.old;

run;

In the following example, you have two different librefs that share one
connection.

libname db2lib db2 connection=global;
libname db2data db2 connection=global;
data db2lib.new(in=’database test’);

set db2data.old;
run;

If you did not use the CONNECTION= option in the above examples, you would
deadlock in DB2 and get the following error:

ERROR: Error attempting to CREATE a DBMS table.
ERROR: DB2 execute error DSNT408I SQLCODE = --911,
ERROR: THE CURRENT UNIT OF WORK HAS BEEN ROLLED

BACK DUE TO DEADLOCK.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS LIBNAME
Statement" .

IN=’database-name.tablespace-name’| ’DATABASE database-name’
enables you to specify the database and tablespace in which you want to create a
new table. The IN= option is relevant only when you are creating a new table. If
you omit this option, the DB2 default is to create the table in the default database,
implicitly creating a simple tablespace.

’database.tablespace’ specifies the names of the database and tablespace.
Enclose the entire specification in single quotes.

’DATABASE database-name’ specifies only the database name. Enclose the
entire specification in single quotes.
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LOCATION=location
enables you to further qualify exactly where a table resides.

In the DB2 engine, the location is converted to the first level of a three-level
table name: LOCATION.AUTHID.TABLE. The connection to the remote DB2
subsystem is done implicitly by DB2’s Distributed Data Facility (DDF) when DB2
receives a three-level table name in an SQL statement.

LOCATION= is optional. If you omit it, SAS accesses the data from the local
DB2 database unless you have specified a value for the SERVER= option. This
option is not validated until you access a DB2 table. If you specify LOCATION=,
you must also specify the AUTHID= option.

PRESERVE_COL_NAMES=YES|NO
preserves spaces, special characters, and case in DB2 column names.

The default value for PRESERVE_COL_NAMES= under DB2 is NO because
DB2 converts table and column names to uppercase by default. However, DB2 is a
case-sensitive DBMS. To preserve the case of the column names that you send to
DB2, use quotation marks around the column names.

PRESERVE_NAMES= is a combination alias for both
PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES=. If you set
PRESERVE_NAMES=YES, it is equivalent to setting both of these options to YES.

For a full description of PRESERVE_COL_NAMES=, refer to Chapter 3, "SAS/
ACCESS LIBNAME Statement" .

PRESERVE_TAB_NAMES=YES|NO
preserves spaces, special characters, and case in DB2 table names.

The default value for PRESERVE_TAB_NAMES= under DB2 is NO because
DB2 converts table and column names to uppercase by default. However, DB2 is a
case-sensitive DBMS. To preserve the case of the table names that you send to
DB2, use quotation marks around the table names.

PRESERVE_NAMES= is a combination alias for both
PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES=. If you set
PRESERVE_NAMES=YES, it is equivalent to setting both of these options to YES.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement" .

READ_LOCK_TYPE=TABLE
specifies that a SHARED table lock is set on a DB2 table during a READ operation.

READ_LOCK_TYPE= is useful if you want to lock out concurrent changes in
order to access an entire table as it is at that particular moment. You can also use
it to prevent timeouts from contention with other application processes that are
reading the same table.

The default behavior is to allow DB2 to handle the locking process. Consult
your DBA to determine what the locking process is for your installation of DB2.

If you set READ_LOCK_TYPE=TABLE, then you must also set the
CONNECTION= option to UNIQUE, which means that there is a separate
physical connection for each table that is opened in your SAS application. You
cannot share a connection when a DB2 table is locked. If you do not set the
CONNECTION= option to UNIQUE, the SAS step fails.

If you set READ_LOCK_TYPE=TABLE, you might also want to evaluate
whether or not you want to change the SPOOL= option from its default value of
YES. If the table is locked and its data cannot be changed during the read
transaction, you may not need to create a utility spool file.

Note: Use READ_LOCK_TYPE= with caution because it locks all the tables in
a nonsegmented table space, even if they are not the table that is specifically
locked. The locks are held until a commit point or until the connection is freed. All
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other application processes are locked out of the non-segmented table space for the
duration of the lock. 4

For a full description of this option, refer to Chapter 3, "SAS/ACCESS LIBNAME
Statement" .

SPOOL=YES|NO
specifies whether SAS creates a utility spool file during read operations that
require two passes through the table and that are performed with the specified
libref.

The default value is SPOOL=YES. For a full description of this option, refer to
Chapter 3, "SAS/ACCESS LIBNAME Statement" .

UPDATE_LOCK_TYPE = TABLE
specifies that an exclusive table lock is set on a DB2 table during an UPDATE
operation.

If you are updating a large part of a table, you can improve your performance
by using UPDATE_LOCK_TYPE= to lock the entire table and prevent other
application processes from having concurrent access to it. This is more efficient
than locking each page as it is updated and then unlocking it when the changes
are committed. You can also use UPDATE_LOCK_TYPE= to prevent timeouts
from contention with other application processes that are updating the same table.

The default behavior is to allow DB2 to handle the locking process. Consult
your DBA to determine what the locking process is for your installation of DB2.

If you set UPDATE_LOCK_TYPE=TABLE, then you must also set the
CONNECTION= option to UNIQUE, which means that there is a separate
physical connection for each table that is opened in your SAS application. You
cannot share a connection when a DB2 table is locked. If you do not set the
CONNECTION= option to UNIQUE, the SAS step fails.

If you set UPDATE_LOCK_TYPE=TABLE, you might also want to evaluate
whether or not you want to change the SPOOL= option from its default value of
YES. If the table is locked and its data cannot be changed during the update
transaction, you might not need to create a utility spool file.

Note: Use UPDATE_LOCK_TYPE= with caution because it locks all the tables
in a nonsegmented table space, even if they are not the table that is specifically
locked. The locks are held until a commit point or until the connection is freed. All
other application processes are locked out of the non-segmented table space for the
duration of the lock. 4

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement" .

Specifying a LIBNAME Statement to Access DB2 Data

In this example, the libref MYLIB uses the DB2 engine to connect to the DB2
database that is specified by the SSID= option with a connection to the remote server,
testserver. The SAS/ACCESS engine connection options are SSID= and SERVER=.

libname mylib db2 ssid=db2
authid=testuser server=testserver;

proc print data=mylib.staff;
where state=’CA’;

run;
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SAS/ACCESS Data Set Options: DB2 Specifics

This section describes options that can be applied to SAS data sets that access data in
DB2 tables and views. In some cases, the option is fully described in Chapter 4, "SAS/
ACCESS Data Set Options", except for some DB2-specific detail, such as a default value.
In other cases, the entire option is DB2 specific, so it is fully described in this chapter.

When specified in a DATA step or SAS procedure, the following data set options can
be used on a SAS data set that accesses data in a DBMS object, such as a table or view.
A data set option applies only to the SAS data set, or DBMS object, on which it is
specified.

The SAS/ACCESS interface to DB2 supports all of the SAS/ACCESS data set options
listed in Chapter 4, "SAS/ACCESS Data Set Options" , except for DBINDEX=,
DBPROMPT=, DBMAX_TEXT=, and SASDATEFMT=. In addition to the supported
options, the following data set options are used only in the interface to DB2 or have
DB2–specific aspects to them:

AUTHID= on page 8

DBNULL= on page 9

DBTYPE= on page 9

IN= on page 9

LOCATION= on page 10

READ_LOCK_TYPE= on page 10

UPDATE_LOCK_TYPE= on page 11

Note: The DBINDEX= data set option is not supported in the SAS/ACCESS
interface to DB2. 4

AUTHID=

Enables you to qualify the specified table with an authorization ID, user ID, or group ID.

Default value: None

Syntax

AUTHID=authorization ID

Details
If you specify a value for the AUTHID= option, the table name is qualified as

authid.tablename before any SQL code is passed to DB2. If AUTHID= is not specified,
the table name is not qualified before it is passed to DB2, and DB2 uses your OS/390
user ID as the qualifier. If you specify AUTHID= in a SAS/SHARE LIBNAME, the ID
of the active server is the default ID.

AUTHID= is limited to 8 characters. It can also be specified with the SCHEMA alias.
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DBNULL=

Indicates whether or not NULL is a valid value for the specified variables or columns when SAS
creates a table and outputs data to DB2 tables.

Default value: NO

Syntax
DBNULL= (variable-name–1=YES | NO <...> variable-name–n=YES | NO)

Details
For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set

Options" .

DBTYPE=

Specifies whether or not to override the default DB2 data type(s) when SAS creates a table and
outputs data to DB2 tables.

Default value: None

Syntax
DBTYPE= (variable-name–1=DBMS-type <...> <variable-name-n=DBMS-type>)

Details
By default, SAS numeric variables are assigned to FLOAT column types and

character variables are assigned to VARCHAR column types. Use the DBTYPE= option
to override these data type defaults. For a full description of this option, refer to
Chapter 4, "SAS/ACCESS Data Set Options" .

IN=

Enables you to specify the database or tablespace in which you want to create a new table.

Default value: Default database or tablespace

Syntax
IN=’database-name.tablespace-name’|’DATABASE database-name’
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database-name.tablespace-name
specifies the names of the database and tablespace, which are separated by a period.

’DATABASE database-name’
specifies only the database name. In this case, you specify the word DATABASE, then
a space and the database name. Enclose the entire specification in single quotes.

Details The IN= option is relevant only when you are creating a new table. If you
omit this option, the default is to create the table in the default database or tablespace.

LOCATION=

Enables you to further qualify exactly where a table resides.

Default value: None

Syntax
LOCATION=location

Details
The location name maps to the location in the SYSIBM.SYSLOCATIONS catalog in

the communication database.
In the DB2 engine, the location is converted to the first level of a three-level table

name: LOCATION.AUTHID.TABLE. The connection to the remote DB2 subsystem is
done implicitly by DB2 when DB2 receives a three-level name in an SQL statement.

If you specify LCOATION=, you must also specify the AUTHID= option.

READ_LOCK_TYPE=

Specifies whether or not a table lock is set on a DB2 table during a READ operation.

Default value: None

Syntax
READ_LOCK_TYPE= TABLE

Details
READ_LOCK_TYPE= is useful if you want to lock out concurrent changes in order to

access an entire table as it is at that particular moment. You can also use it to prevent
timeouts from contention with other application processes that are reading the same
table.
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DB2 locking is handled internally. No explicit locking is done. Consult your DBA to
determine what the locking process is for your installation of DB2.

If you set READ_LOCK_TYPE=TABLE, then you must also set the CONNECTION=
option to UNIQUE, which means that there is a separate physical connection for each
table that is opened in your SAS application. You cannot share a connection when a
DB2 table is locked. If you do not set the CONNECTION= option to UNIQUE, the SAS
step fails.

If you set READ_LOCK_TYPE=TABLE, you might also want to evaluate whether or
not you change the SPOOL= option from its default value of YES. If the table is locked
and its data cannot be changed during the read transaction, you may not need to create
a utility spool file.

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

See Also
UPDATE_LOCK_TYPE=

UPDATE_LOCK_TYPE=

Specifies whether or not a table lock is set on a DB2 table during an UPDATE operation.

Default value: None

Syntax
UPDATE_LOCK_TYPE= TABLE

Details
If you are updating a large part of a table, you can improve your performance by

using UPDATE_LOCK_TYPE= to lock the entire table and prevent other application
processes from having concurrent access to it. This is more efficient than locking each
page as it is updated and unlocking it when the changes are committed. You can also
use UPDATE_LOCK_TYPE= to prevent timeouts from contention with other
application processes that are updating the same table.

DB2 locking is handled internally. Consult your DBA to determine what the locking
process is for your installation of DB2.

If you set UPDATE_LOCK_TYPE=TABLE, then you must also set the
CONNECTION= option to UNIQUE, which means that there is a separate physical
connection for each table that is opened in your SAS application. You cannot share a
connection when a DB2 table is locked. If you do not set the CONNECTION= option to
UNIQUE, the SAS step fails.

If you set UPDATE_LOCK_TYPE=TABLE, you might also want to evaluate whether
or not you want to change the SPOOL= option from its default value of YES. If the
table is locked and its data cannot be changed during the update transaction, you might
not need to create a utility spool file.

Note: Use UPDATE_LOCK_TYPE= with caution because it locks all the tables in a
nonsegmented table space, even if they are not the table that is specifically locked. The
locks are held until a commit point or until the connection is freed. All other application
processes are locked out of the non-segmented table space for the duration of the lock. 4
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For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options" .

See Also
READ_LOCK_TYPE=

SAS System Options and Settings for DB2

You can use the following SAS system options when you invoke a SAS session that
accesses DB2:

DB2DBUG
is used to debug SAS code. When you submit a SAS statement that accesses DB2
data, DB2DBUG displays any DB2 SQL queries (generated by SAS) that are
processed by DB2. The queries are written to the SAS log.

For example, if you submit a PROC PRINT statement that references a DB2
table, the DB2 SQL query is displayed in the SAS log. The SAS/ACCESS engine
for DB2 generates the DB2 SQL query, as shown in Display 1.1 on page 12.

libname mylib db2 ssid=db2;

proc print data=mylib.staff;
run;

proc sql;
select * from mylib.staff

order by idnum;
quit;

Display 1.1 DB2DBUG Display of DB2 SQL Queries

DB2 statements that appear in the SAS log are prepared and described in order
to determine whether the DB2 table exists and can be accessed.
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DB2DECPT=decpoint-value
specifies the setting of the DB2 DECPOINT option. The decpoint-value argument
can be a . (period) or a , (comma). The default is a . (period).

DB2DECPT= is valid as part of the configuration file when you invoke the SAS
System.

DB2IN=’database-name.tablespace-name’ | ’DATABASE database-name’
enables you to specify the database and tablespace in which you want to create a
new table. The IN= option is relevant only when you are creating a new table. If
you omit this option, the default is to create the table in the default database and
tablespace.

database.tablespace specifies the names of the database and tablespace.
’DATABASE database-name’ specifies only the database name. Enclose the

entire specification in single quotes.
You can override the DB2IN= system option with the IN= libname or data set

option.

DB2PLAN=plan-name
specifies the name of the plan that is used when connecting (or binding) SAS to
DB2. SAS provides and supports this plan, which can be adapted for each user’s
site. The value for DB2PLAN= can be changed at any time during a SAS session,
so that different plans can be used for different SAS steps. However, if you use
more than one plan during a single SAS session, you must understand how and
when the SAS/ACCESS engine for DB2 makes the connections. If one plan is in
effect and you specify a new plan, the new plan does not affect the existing DB2
connections.

For details about how connections are managed by the SAS/ACCESS engine for
DB2, see “Information for the Database Administrator” on page 34 and
“Maximizing DB2 Performance” on page 31.

DB2RRS | NODB2RRS
specifies the attachment facility to be used for this SAS session when connecting to
DB2. This option is an invocation only option.

Specify NODB2RRS, the default, to use the Call Attachment Facility (CAF).
Specify DB2RRS to use the Recoverable Resource Manager Services Attachment
Facility (RRSAF). For details about using RRSAF, see “Recoverable Resource
Management Services Attachment Facility (RRSAF)” on page 36.

DB2SSID=subsystem-name
specifies the DB2 subsystem name. The subsystem-name argument is one to four
characters that consist of letters, numbers, or national characters (#, $, or @); the
first character must be a letter. The default value is DB2.

DB2SSID= is valid in the OPTIONS statement, as part of the configuration file,
and when you invoke the SAS System.

You can override the DB2SSID= system option with the SSID= LIBNAME
option.

DB2UPD=Y | N
specifies whether the user has privileges through the SAS/ACCESS interface to
update DB2 tables. This option applies only to the user’s updating privileges
through the interface and not necessarily to the user’s privileges while using DB2
directly. Altering the setting of DB2UPD= has no effect on your DBMS privileges,
which have been set with the GRANT statement. The default is Y (Yes).

DB2UPD= is valid in the OPTIONS statement, as part of the configuration file,
and when you invoke the SAS System.
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Setting Your DB2 Subsystem Identifier
To connect to DB2, a valid DB2 subsystem name must be specified in one of the

following ways:
� the DB2SSID= system option. This value is used by the SAS/ACCESS interface if

no DB2 subsystem is specified. Refer to “SAS System Options and Settings for
DB2” on page 12 for more information.

� the SSID= option in the PROC ACCESS statement.
� the SSID= statement of PROC DBLOAD.
� the SSID= option in the PROC SQL CONNECT statement, which is part of the

Pass-Through facility.
� the SSID= option in the LIBNAME statement

If a site does not specify a valid DB2 subsystem when accessing DB2, the following
message is generated:

ERROR: Cannot connect to DB2 subsystem XXXX,
rc=12, reason code = 00F30006. Refer
to the Call Attachment Facility documentation
for an explanation.

where XXXX is the name of the subsystem to which SAS tried to connect. To find the
correct value for your DB2 subsystem ID, contact your database administrator.

Capturing DB2 Return Codes Using SYSDBRC
Use the automatic macro variable SYSDBRC to capture DB2 return codes when

using the DB2 engine. The macro variable is set to the last DB2 return code that was
encountered only when execution takes place through the SAS/ACCESS interface to the
DB2 engine. If you reference SYSDBRC before engine processing takes place, you
receive this message:

WARNING: Apparent symbolic reference SYSDBRC
not resolved.

Use SYSDBRC for conditional post-processing. Below is an example of how to abend
a job. The table DB2TEST is dropped from DB2 after the view descriptor is created,
resulting in a -204 code.

data test;
x=1;y=2;
proc dbload dbms=db2 data=test; table=db2test;

in ’database test’;
load;run;

proc access dbms=db2;
create work.temp.access;
table=user1.db2test;
create work.temp.view;
select all;
run;
proc sql;
execute(drop table db2test)by db2;
quit;
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proc print data=temp;
run;

data _null_;
if "&sysdbrc" not in (’0’,’100’) then
do;

put ’The DB2 Return Code is: ’ "&sysdbrc";
abort abend;

end;
run;

Because the abend prevents the log from being captured, the SAS log can be
captured by using the SAS system option ALTLOG. Refer to the SAS Companion for the
OS/390 Environment for information on ALTLOG.

ACCESS Procedure: DB2 Specifics
Chapter 9, "ACCESS Procedure Reference" describes the generic options and

procedure statements that enable you to create access descriptors, view descriptors, and
SAS data files from DBMS data. The following section describes the DBMS-specific
statements that you use in the SAS/ACCESS interface to DB2.

ACCESS Procedure Statements for DB2
To create an access descriptor, you use the DBMS=DB2 option and the TABLE=

database-description statements in the PROC ACCESS step. This database-description
statement supplies the DBMS name to the SAS System. The TABLE= statement must
immediately follow the CREATE statement. The CREATE statement specifies the
access descriptor to be created.

Database-description statements are required only when you create access
descriptors. Because DB2 information is stored in an access descriptor, you do not need
to repeat this information when you create view descriptors.

Note: Unlike some other SAS/ACCESS interface products, the SAS/ACCESS
interface to DB2 does not use the following procedure statements: USER=,
PASSWORD=, and DATABASE=. 4

The SAS/ACCESS interface to DB2 uses the following procedure statements in
interactive line, noninteractive, or batch mode.

PROC ACCESS <access-descriptor-options|view-descriptor-options>;
CREATE libref.member-name. ACCESS|VIEW;
UPDATE libref.member-name. ACCESS|VIEW;
SSID=DB2-subsystem-id;
SERVER=DB2-database-system|DRDA-database-system;
LOCATION=location;
TABLE=<authorization-id.>table-name;
ASSIGN <=> YES|NO|Y|N;
DROP <’>column-identifier-1<’><…<’>column-identifier-n<’>>;
FORMAT<’>column-identifier-1<’><=>SAS-format-name-1

<…<’>column-identifier-n<’><=>SAS-format-name-n>;
QUIT ;
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RENAME<’>column-identifier-1<’><=>SAS-variable-name-1
<…<’>column-identifier-n<’><=>SAS-variable-name-n;>

RESETALL|<’>column-identifier-1< ’><…<’>column-identifier-n<’>>;
SELECTALL|<’>column-identifier-1<’><…<’>column-identifier-n<’>>;
SUBSETselection-criteria;
UNIQUE <=> YES|NO|Y|N;
LIST ALL | VIEW|<’>column-identifier <’>;

RUN ;

SERVER= DRDA-database-system;
enables direct access to DRDA resources (such as SQL/DS tables) from the
SAS/ACCESS interface to DB2. SERVER= is an optional statement.

Enter a DRDA database system name assigned by your system administrator to
make the connection to the desired database. Check with your system
administrator for valid system names. You can connect with only one server at a
time.

SSID=DB2-subsystem-id;
specifies the DB2 subsystem ID to use for the access descriptor. The
DB2-subsystem-id is limited to four characters. Refer to “Setting Your DB2
Subsystem Identifier” on page 14 for more information on setting SSID=.

The SSID= statement is optional. If you omit it, the SAS System connects to the
DB2 subsystem that is specified by the SAS system option DB2SSID=. If your site
has not set DB2SSID=, the SSID= statement is required.

Consult your DBA to determine when the DRDA resources are set up properly.
Refer to “Connections Using the Distributed Relational Database Architecture
(DRDA)” on page 35 for more information.

LOCATION=location;
enables you to further qualify exactly where a table resides.

In the DB2 engine, the location is converted to the first level of a three-level
table name: LOCATION.AUTHID.TABLE. The connection to the remote DB2
subsystem is done implicitly by DB2 when DB2 receives a three-level table name
in an SQL statement.

LOCATION= is optional. If you omit it, SAS accesses the data from the local
DB2 database.

TABLE= <authorization-id.>table-name;
identifies the DB2 table or DB2 view that you want to use to create an access
descriptor. The table-name is limited to 18 characters. The TABLE= statement is
required.

The authorization-id is a user ID or group ID that is associated with the DB2
table. The authorization ID is limited to eight characters. If you omit the
authorization ID, DB2 uses your TSO (or OS/390) user ID. In batch mode, however,
you must specify an authorization ID, otherwise an error message is generated.

DB2 Restriction on Connections
The DB2 interface engine restricts the maximum concurrent open cursors to 32 when

working from a single connection. Note that if you are working with a SAS view that
accesses other views, you could be opening more cursors than you are aware of.

Beginning in Version 7, there is no limit to the number of connections that you can
have to DB2. The DB2 interface engine uses the Call Attachment Facility (CAF) or
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Recoverable Resource Manager Service Attachment Facility (RRSAF) to make an
explicit connection to the local DB2 subsystem. For each connection to the CAF, the
DB2 interface engine attaches a separate OS/390 subtask. Note that if you establish too
many separate connections, you can adversely affect your performance.

Examples: Creating Access Descriptors and View Descriptors
The following example creates an access descriptor and a view descriptor that are

based on DB2 data.

options linesize=80;
libname adlib ’SAS-data-library’;
libname vlib ’SAS-data-library’;

proc access dbms=db2;

/* create access descriptor */
create adlib.customr.access;
table=testid.customers;
ssid=db2;
assign=yes;
rename customer = custnum;
format firstorder date7.;
list all;

/* create vlib.usacust view */
create vlib.usacust.view;
select customer state zipcode name

firstorder;
subset where customer like ’1%’;

run;

The next example uses the SERVER= statement to access the SQL/DS table
TESTID.ORDERS from a remote location. Access and view descriptors are then
created, based on the table.

libname adlib ’SAS-data-library’;
libname vlib ’SAS-data-library’;

proc access dbms=db2;
create adlib.customr.access;
table=testid.orders;
server=testserver;
assign=yes;
list all;

create vlib.allord.view;
select ordernum stocknum shipto dateorderd;

subset where stocknum = 1279;
run;
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DBLOAD Procedure: DB2 Specifics
Chapter 10, "DBLOAD Procedure Reference" describes the generic options and

procedure statements that enable you to create a DBMS table and to insert data in it.
The following section describes the DBMS-specific statements that you use in the
SAS/ACCESS interface to DB2.

DBLOAD Procedure Statements for DB2
To create and load a DB2 table, the SAS/ACCESS interface to DB2 uses the following

statements in interactive line, noninteractive, or batch mode.

Note: Unlike some other SAS/ACCESS interface products, the SAS/ACCESS
interface to DB2 does not use the following procedure statements: USER= and
PASSWORD=. 4

PROC DBLOAD DBMS=DB2 <DATA=<libref.> SAS-data-set> <APPEND>;
INdatabase.tablespace |’DATABASE database’;

SSID=DB2-subsystem-id;
SERVER=DB2-database-system|DRDA-database-system;
TABLE=<authorization-id.>table-name;

ACCDESC=<libref.>access-descriptor;
COMMIT=commit-frequency;
DELETEvariable-identifier-1 <…variable-identifier-n>;

ERRLIMIT=error-limit;
LABEL;
LIMIT=load-limit;

NULLS variable-identifier-1= Y|N|D <…variable-identifier-n= Y|N|D>;
QUIT;
RENAMEvariable-identifier-1=<’> column-name-1 <’>

<…variable-identifier-n= <’>column-name-n <’>>;

RESET ALL|variable-identifier-1<…variable-identifier-n>;
SQL DB2 SQL-statement;
TYPE variable-identifier-1 = ’column-type-1’

<…variable-identifier-n = ’column-type-n’ >;
WHERE SAS-where-expression;

LIST <ALL|COLUMN|variable-identifier>;
LOAD;

RUN;

IN database.tablespace|’DATABASE database’;
specifies the nasme of the database or the table space in which you want to store
the new DB2 table. A table space can contain multiple tables. The database and
tablespace arguments are each limited to 18 characters. The IN statement must
immediately follow the PROC DBLOAD statement.

database.tablespace
specifies the names of the database and the table space, which are separated
by a period.
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’DATABASE database ’
specifies only the database name. In this case, you specify the word
DATABASE, then a space and the database name. Enclose the entire
specification in single quotes.

NULLS variable-identifier-1 =Y|N|D < . . . variable-identifier-n =Y|N|D >;
enables you to specify whether the DB2 columns that are associated with the listed
SAS variables allow NULL values. By default, all columns accept NULL values.
Refer to Chapter 10, "DBLOAD Procedure Reference" for more information.

The NULLS statement accepts any one of these three values:

Y specifies that the column accepts NULL values. This is the
default.

N specifies that the column does not accept NULL values.

D specifies that the column is defined as NOT NULL WITH
DEFAULT.

Refer to “DB2 NULLs and DB2 Default Values” on page 28 for DB2-specific
information on NULL values.

SSID=DB2-subsystem-id;
specifies the DB2 subsystem ID to use for the access descriptor. The
DB2-subsystem-id is limited to four characters. Refer to “Setting Your DB2
Subsystem Identifier” on page 14 for more information on setting SSID= or contact
your DBA.

The SSID= statement is optional. If you omit it, the SAS System connects to the
default DB2 subsystem that is specified by the SAS system option DB2SSID=. If
your site has not set DB2SSID=, the SSID= statement is required.

SERVER=DRDA-database-system;
enables direct access to DRDA resources (such as SQL/DS tables) from the
SAS/ACCESS interface to DB2. SERVER= is an optional statement.

Enter a DRDA database system name that is assigned by your system
administrator to make the connection to the desired database system. Check with
your system administrator for valid database system names. You can connect with
only one server at a time.

TABLE= <authorization-id.>table-name;
identifies the DB2 table that you want to use to create. The table-name is limited
to 18 characters. A DB2 table by this name cannot already exist, unless you are
using the APPEND option on the PROC DBLOAD statement. The TABLE=
statement is required.

The authorization-id is a user ID or group ID that is associated with the DB2
table. The authorization ID is limited to eight characters. If you omit the
authorization ID, DB2 uses your TSO (or OS/390) user ID except in batch mode; in
batch mode, you must specify an authorization ID.

The following example creates a new DB2 table, TESTID.INVOICE, from the
DLIB.INVOICE data file. The AMTBILLED column and the 5th column in the table
(AMOUNTINUS) are renamed. You must be granted the appropriate privileges in order
to create new DB2 tables.

libname adlib ’SAS-data-library’;
libname dlib ’SAS-data-library’;

proc dbload dbms=db2 data=dlib.invoice;
ssid=db2;
table=testid.invoice;



20 SQL Procedure Pass-Through Facility: DB2 Specifics 4 Chapter 1

accdesc=adlib.invoice;
rename amtbilled = amountbilled

5 = amountindollars;
nulls invoicenum=n amtbilled=n;
load;

run;

Suppose that you just created a SAS data set, WORK.SCHEDULE, which includes
the names and work hours of your employees. You can use the SERVER= command to
create the DB2 table TESTID.SCHEDULE and load it with the schedule data on the
DRDA resource, TESTSERVER, as shown in the next example.

libname adlib ’SAS-data-library’;

proc dbload dbms=db2 data=work.schedule;
in sample;
server=testserver;
accdesc=adlib.schedule;
table=testid.schedule;
list all;
load;

run;

SQL Procedure Pass-Through Facility: DB2 Specifics

Chapter 6, "SQL Procedure’s Interaction with SAS/ACCESS Software" describes the
generic PROC SQL statements that you use to connect to and disconnect from a DBMS,
to send DBMS-specific statements to the DBMS, and to retrieve DBMS data for your
SAS programs. The following section describes the DBMS-specific arguments that you
use in the CONNECT statement“Arguments to Connect to DB2” on page 20.

Arguments to Connect to DB2

The CONNECT statement is optional when you are connecting to DB2. DB2 has two
database-connection-arguments that you can specify in this statement. CONNECT can
also be used to connect to multiple DB2 systems.

CONNECT TO DB2 <AS alias> <(SSID=DB2-subsystem-id>
<SERVER=DRDA-database-system)>;

SSID=DB2-subsystem-id
specifies the DB2 subsystem ID that you want to connect to. The ID is limited to
four characters.

The SSID= argument is optional. If you omit it, the SAS System connects to the
default DB2 subsystem that is specified by the SAS system option DB2SSID=. If
your site has not set DB2SSID=, the SSID= argument is required.

Refer to “Setting Your DB2 Subsystem Identifier” on page 14 for information on
setting your subsystem ID or contact your DBA.
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SERVER=DRDA-database-system
enables direct access to DRDA resources (such as SQL/DS tables) from the
SAS/ACCESS interface to DB2. SERVER= is an optional statement.

Enter a DRDA database system name that is assigned by your system
administrator to make the connection to the desired database system. Check with
your system administrator for valid database system names. You can connect with
only one system at a time.

The following example connects to DB2 and sends it two EXECUTE statements to
process:

proc sql;
connect to db2 (ssid=db2);
execute (create view testid.whotookorders as

select ordernum, takenby, firstname,
lastname, phone

from testid.orders, testid.employees
where testid.orders.takenby=

testid.employees.empid)
by db2;

execute (grant select on testid.whotookorders
to testuser) by db2;

disconnect from db2;
quit;

The following example omits the optional CONNECT statement, uses the default
setting for SSID=, and performs a query shown in italics on the TESTID.CUSTOMERS
table:

proc sql;
select *

from connection to db2
(select * from testid.customers

where customer like ’1%’);
disconnect from db2;

quit;

The next example creates the PROC SQL view VLIB.STOCKORD that is based on the
table TESTID.ORDERS. The table TESTID.ORDERS is an SQL/DS table that is
accessed through DRDA.

libname vlib ’SAS-data-library’

proc sql;
connect to db2 (server=testserver);
create view vlib.stockord as

select * from connection to
db2(select ordernum, stocknum,

shipto, dateorderd
from testid.orders);

disconnect from db2;
quit;
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The DB2UTIL Procedure
You can use the DB2UTIL procedure to insert, update, or delete rows in a DB2 table

using data from a SAS data set. You can choose one of two methods of processing:
creating an SQL output file or executing directly. PROC DB2UTIL runs interactively,
noninteractively, or in batch mode.

Note: The DB2UTIL procedure is supported in order to provide compatibility with
Version 5 of the SAS/ACCESS interface to DB2. It will not be added to other
SAS/ACCESS DBMS interfaces, nor will the enhancement of this procedure for future
releases of SAS/ACCESS be guaranteed. It is recommended that new applications be
written by using the new LIBNAME features. 4

The DB2UTIL procedure uses the data in an input SAS data set, along with your
mapping specifications, to generate SQL statements that modify the DB2 table. The
DB2UTIL procedure can perform the following:

DELETE deletes rows from the DB2 table according to the search condition
that you specify.

INSERT builds rows for the DB2 table from the SAS observations, according
to the map that you specify, and inserts the rows.

UPDATE sets new column values in your DB2 table by using the SAS variable
values that are indicated in your map.

When you execute the DB2UTIL procedure, you specify an input SAS data set, an
output DB2 table, and how to modify the data. To generate data, you must also supply
instructions for mapping the input SAS variable values to the appropriate DB2 columns.

In each execution, the procedure can generate and execute SQL statements to
perform one type of modification only. However, you can also supply your own SQL
statements (except the SQL SELECT statement) to perform various modifications
against your DB2 tables, and the procedure will execute them.

Refer to “Modifying DB2 Data” on page 24 for more information on the types of
modifications that are available and how they are used. Refer to “DB2UTIL Example”
on page 25 for an example of using DB2UTIL.

DB2UTIL Statements and Options
The PROC DB2UTIL statement invokes the DB2UTIL procedure. The following

statements are used with PROC DB2UTIL:

PROC DB2UTIL <options>;
MAPTO SAS-name-1=DB2-name-1 <…SAS-name-n=DB2-name-n>;
RESETALL|SAS-name| COLS;
SQL SQL-statement;
UPDATE;
WHERE SQL-WHERE-clause;
ERRLIMIT=error-limit;
EXIT;

Options:

DATA=SAS-data-set | <libref.>SAS-data-set
specifies the name of the SAS data set that contains the data with which you want
to update the DB2 table. DATA= is required unless you specify an SQL file with
the SQLIN= option.
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TABLE=DB2-tablename
specifies the name of the DB2 table that you want to update. TABLE= is required
unless you specify an SQL file with the SQLIN= option.

FUNCTION= D | I | U | DELETE | INSERT | UPDATE
specifies the type of modification to perform on the DB2 table by using the SAS
data set as input. Refer to “Modifying DB2 Data” on page 24 for a detailed
description of this option. FUNCTION= is required unless you specify an SQL file
with the SQLIN= option.

You can also specify these options with PROC DB2UTIL:

COMMIT=number
specifies the maximum number of SQL statements to execute before issuing an
SQL COMMIT statement to establish a syncpoint. The default is 3.

ERROR=fileref |fileref.member
specifies an external file where error information is logged. When DB2 issues an
error return code, the procedure writes all relevant information, including the SQL
statement that is involved, to this external file. If you omit the ERROR=
statement, the procedure writes the error information to the SAS log.

LIMIT=number
specifies the maximum number of SQL statements to issue in an execution of the
procedure. The default value is 5000. If you specify LIMIT=0, no limit is set. The
procedure processes the entire data set regardless of its size.

SQLIN=fileref | fileref.member
specifies an intermediate SQL output file that is created by a prior execution of
PROC DB2UTIL by using the SQLOUT= option. The file that is specified by
SQLIN= contains SQL statements to update a DB2 table. If you specify an SQLIN=
file, then the procedure reads the SQL statements and executes them in line mode.
When you specify an SQLIN= file, DATA=, TABLE=, and SQLOUT= are ignored.

SQLOUT=fileref | fileref.member
specifies an external file where the generated SQL statements are to be written.
This file is either an OS/390 sequential data set or a member of an OS/390
partitioned data set. Use this option to update or delete data.

When you specify the SQLOUT= option, the procedure edits your specifications,
generates the SQL statements to perform the update, and writes them to the
external file for later execution. When they are input to the later run for
execution, the procedure passes them to DB2.

SSID=subsystem-name
specifies the name of the DB2 subsystem that you want to access. If you omit
DB2SSID=, the subsystem name defaults to DB2.

MAPTO Statement
MAPTO SAS-name-1=DB2-name-1<... SAS-name-n=DB2-name-n>;

The MAPTO statement maps the SAS variable name to the DB2 column name. You
can specify as many values in one MAPTO statement as you want.

RESET Statement
RESET ALL | SAS-name | COLS;

Use the RESET statement to erase the editing that was done to SAS variables or
DB2 columns. The RESET statement can perform one or more of the following actions:
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ALL resets all previously entered map and column names to the
procedure’s default values.

SAS-name resets the map entry for that SAS variable.

COLS resets the altered column values.

SQL Statement
SQL SQL-statement;

The SQL statement specifies an SQL statement that you want the procedure to
execute dynamically. The procedure rejects SQL SELECT statements.

UPDATE Statement
UPDATE;

The UPDATE statement causes the table to be updated by using the mapping
specifications that you supply. If you do not specify an input or an output mapping data
set or an SQL output file, the table is updated by default.

If you have specified an output mapping data set in the SQLOUT=option, PROC
DB2UTIL creates the mapping data set and ends the procedure. However, if you specify
UPDATE, the procedure creates the mapping data set and updates the DB2 table.

WHERE Statement
WHERE SQL-WHERE-clause;

The WHERE statement specifies the SQL WHERE clause that you want to use in the
update of the DB2 table. This statement is combined with the SQL statement
generated from your mapping specifications. Any SAS variable names in the WHERE
clause are substituted at that time. For example:

where db2col = %sasvar;

ERRLIMIT Statement
ERRLIMIT=error-limit;

The ERRLIMIT statement specifies the number of DB2 errors that are permitted
before the procedure terminates.

EXIT Statement
EXIT;

The EXIT statement exits from the procedure without further processing. NO output
data is written, and no SQL statements are issued.

Modifying DB2 Data
The DB2UTIL procedure generates SQL statements by using data from an input SAS

data set. However, the SAS data set plays a different role for each type of modification
that is available through PROC DB2UTIL. The following sections show how you use
each type and how each type uses the SAS data set to make a change in the DB2 table.

Inserting Data
INSERT enables you to insert observations from a SAS data set into a DB2 table as

rows in the table. To use the INSERT function, name the SAS data set that contains
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the data you want to insert and the DB2 table to which you want to add information in
the PROC DB2UTIL statement. You can then use the MAPTO statement to map values
from SAS variables to columns in the DB2 table. If you do not want to insert the values
for all the variables in the SAS data set into the DB2 table, map only the variables that
you want to insert.

Updating Data
UPDATE enables you to change the values in DB2 table columns by replacing them

with values from a SAS data set. You can change a column value to another value for
every row in the table, or you can change column values only when certain criteria are
met. For example, you can change the value of the DB2 column NUM to 10 for every
row in the table. You can also change the value of the DB2 column NUM to the value in
the SAS variable NUMBER, providing that the value of the DB2 column NAME and
the SAS data set variable NAME match.

You specify the name of the SAS data set and the DB2 table to be updated when you
execute PROC DB2UTIL. You can specify that only certain variables be updated by
naming only those variables in your mapping specifications.

You can use the WHERE clause to specify that only the rows on the DB2 table that
meet certain criteria are updated. For example, you can use the WHERE clause to
specify that only the rows with a certain range of values be updated, or you can specify
that rows will be updated when a certain column value in the row matches a certain
SAS variable value in the SAS data set. In this case, you could have a SAS data set
with several observations in it. For each observation in the data set, the DB2UTIL
procedure updates the values for all rows in the DB2 table that have a matching value.
Then the procedure goes on to the next observation in the SAS data set and continues
to update values in DB2 columns in rows that meet the comparison criteria.

Deleting Data
DELETE enables you to remove rows from a DB2 table when a certain condition is

met. You can delete rows from the table when a DB2 column value in the table matches
a SAS variable value in the SAS data set. Name the DB2 table from which you want to
delete rows and the SAS data set that contains the target deletion values in the PROC
DB2UTIL statement. Then use the WHERE statement to specify the DB2 column name
and the SAS variable whose values must match before the deletion is performed.

If you want to delete values that are based on criteria other than values in SAS data
variables (for example, deleting every row with a department number of 600), then you
can use an SQL DELETE statement in an SQL statement.

DB2UTIL Example
The following example uses DB2UTIL’s UPDATE function to update a list of

telephone extensions from a SAS data set. The master list of extensions is in the DB2
table TESTID.EMPLOYEES and will be updated from SAS data set TRANS. First you
must create the SAS data set:

options db2dbug;

data trans;
empno=321783;ext=’3999’;
output;
empno=320001;ext=’4321’;
output;
empno=212916;ext=’1300’;
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output;
run;

Next, specify the data set in PROC DB2UTIL.

proc db2util data=trans table=testid.employees function=u;
mapto ext=phone;
where empid=%empno;
update; run;

The row that includes EMPID=320001 was not found in the TESTID.EMPLOYEES
table and therefore was not updated. The warning that appears in the SAS log can be
ignored.

DB2 Naming Conventions
DB2 objects that can be named include tables, views, columns, and indexes. Use the

following DB2 naming conventions:
� A name must start with a letter. If the name is in quotes, it can start with and

contain any character. Depending on how your string delimiter is set, quoted
strings can contain quotes such as "O’Malley".

� The following objects can have names from 1 to 18 characters long: a column,
cursor, index, table, view, alias, synonym, collection ID, statement name, or
correlation name.

The following objects can have names from 1 to 8 characters long: authorization
ID, referential constraint, database, table space, storage group, package, or plan.

A location name can be 1 to 16 characters long.
� A name can contain the letters A through Z, the digits 0 through 9, and national

characters (#, $, or @).
� A name is not case-sensitive. For example, CUSTOMER is the same as customer.

However, if the name of the object is in quotes, it is case-sensitive.
� The name cannot be a DB2 reserved word.
� A name cannot be the same as another DB2 object. For example, each column

name within the same table must be unique.

DB2 Data Types
Every column in a table has a name and a data type. DB2 data types fall into three

categories: types for string data; types for numeric data; and types for dates, times, and
timestamps. The categories, followed by the data types within each category, are listed
in the following sections. The SAS/ACCESS interface to DB2 handles all DB2 data
types. This section describes how the DB2 engine treats each of these data types.

String Data
The DB2 string data types are listed here.

CHAR(n)
specifies a fixed-length column of length n for character string data. The
maximum for n is 254.
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VARCHAR(n)
specifies a varying-length column for character string data. n specifies the
maximum length of the string. If n is greater than 254, the column is a long string
column. DB2 imposes some restrictions on referencing long string columns.

LONG VARCHAR
specifies a varying-length column for character string data. DB2 determines the
maximum length of this column. A column defined as LONG VARCHAR is always
a long string column and, therefore, subject to referencing restrictions.

GRAPHIC(n), VARGRAPHIC(n), LONG VARGRAPHIC
specifies graphic strings and is comparable to the types for character strings.
However, n specifies the number of double-byte characters, so the maximum value
for n is 127. If n is greater than 127, the column is a long string column and is
subject to referencing restrictions.

Numeric Data
The DB2 numeric data types are listed here.

SMALLINT
specifies a small integer. Values in a column of this type can range from −32,768
through +32,767.

INTEGER | INT
specifies a large integer. Values in a column of this type can range from
−2,147,483,648 through +2,147,483,647.

REAL | FLOAT(n)
specifies a single-precision, floating-point number. If n is omitted or if n is greater
than 21, the column is double-precision. Values in a column of this type can range
from approximately –7.2E+75 through 7.2E+75.

FLOAT(n) | DOUBLE PRECISION | FLOAT | DOUBLE
specifies a double-precision, floating-point number. n can range from 22 through
53. If n is omitted, 53 is the default. Values in a column of this type can range
from approximately –7.2E+75 through 7.2E+75.

DECIMAL(p,s) | DEC(p,s)
specifies a packed-decimal number. p is the total number of digits (precision) and s
is the number of digits to the right of the decimal point (scale). The maximum
precision is 31 digits. The range of s is 0 ≤ s ≤ p.

If s is omitted, 0 is assigned and p may also be omitted. Omitting both s and p
results in the default DEC(5,0). The maximum range of p is 1 −1031 to 1031 −1.

Even though the DB2 numeric columns have these distinct data types, the DB2
engine accesses, inserts, and loads all numerics as FLOATs.

Dates, Times, and Timestamps
DB2 date and time data types are similar to SAS date and time values in that they

are stored internally as numeric values and are displayed in a site-chosen format. The
DB2 data types for dates, times, and timestamps are listed here. Note that columns of
these data types may contain data values that are out of range for the SAS System,
which handles dates from 1582 A.D. through 20,000 A.D.
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DATE
specifies date values in the format YYYY-MM-DD. For example, January 25, 1989,
is input as 1989-01-25. Values in a column of this type can range from 0001-01-01
through 9999-12-31.

TIME
specifies time values in the format HH.MM.SS. For example, 2:25 p.m. is input as
14.25.00. Values in a column of this type can range from 00.00.00 through 24.00.00.

TIMESTAMP
combines a date and time and adds a microsecond to make a seven-part value of
the format YYYY-MM-DD-HH.MM.SS.MMMMMM. For example, a timestamp for
precisely 2:25 p.m. on January 25, 1989, is 1989-01-25-14.25.00.000000. Values in
a column of this type can range from 0001-01-01-00.00.00.000000 through
9999-12-31-24.00.00.000000.

DB2 NULLs and DB2 Default Values
DB2 has a special value that is called NULL. This value means an absence of

information. It is analogous to the SAS System’s missing value.
Columns can be defined so that they do not allow NULL data. NOT NULL would

indicate, for example, that DB2 does not allow a row to be added to the
TESTID.CUSTOMERS table unless there’s a value for CUSTOMER.

Columns can also be defined as NOT NULL WITH DEFAULT. The following table
lists the default values assigned by DB2 to columns that are defined as NOT NULL
WITH DEFAULT. An example of such a column is STATE in TESTID.CUSTOMERS. If
a column is omitted from a view descriptor, default values are assigned to the column.
However, if a column is specified in a view descriptor and it has no values, no default
values are assigned.

Table 1.1 Default Values Assigned by DB2 for columns defined as NOT NULL
WITH DEFAULT

DB2 Column Type DB2 Default*

CHAR(n) | GRAPHIC(n) blanks, unless the NULLCHARVAL=
option is specified

VARCHAR | LONG VARCHAR | VARGRAPHIC |
LONG VARGRAPHIC

empty string

SMALLINT | INT | FLOAT | DECIMAL | REAL 0

DATE current date, derived from the system
clock

TIME current time, derived from the system
clock

TIMESTAMP current timestamp, derived from the
system clock

* The default values that are listed in this table pertain to values that are assigned by DB2.

Knowing whether a DB2 column allows NULL values or whether DB2 supplies a
default value can assist you in writing selection criteria and in entering values to
update a table. Unless a column is defined as NOT NULL or NOT NULL WITH
DEFAULT, the column allows NULL values.
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LIBNAME Statement Data Conversions
The following table shows the default SAS System variable formats that the DB2

engine assigns to DB2 data types during input operations.

Table 1.2 LIBNAME Statement: Default SAS Formats for DB2 Data Types

DB2 Column Type Default SAS Format

CHAR(n) $n. (n<=254)

VARCHAR(n) $n.

$255. (n>255)

LONG VARCHAR $n.

GRAPHIC(n), VARGRAPHIC(n), LONG
VARGRAPHIC

$n.( n<=127)

$127. (n>127)

INTEGER m.n

SMALLINT m.n

DECIMAL(m,n) m.n

FLOAT none

NUMERIC(m,n) m.n

DATE DATE9.

TIME TIME8.

DATETIME DATETIME30.6

The following table shows the default DB2 data types that are assigned to SAS
variable formats during output operations.

Table 1.3 LIBNAME Statement: Default DB2 Data Types for SAS Variable Formats

SAS Variable Format DB2 Data Type

$w., $CHARw., $VARYINGw., $HEXw. CHARACTER

any date format DATE

any time format TIME

any datetime format TIMESTAMP

all other numeric formats FLOAT

ACCESS Procedure Data Conversions
The following table shows the default SAS System variable formats that the

ACCESS procedure assigns to DB2 data types.
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Table 1.4 ACCESS Procedure: Default SAS Formats for DB2 Data Types

DB2 Column Type Default SAS Format

CHAR(n) $n. (n<=199)

VARCHAR(n) $n.

$200. (n>200)

LONG VARCHAR $n.

GRAPHIC(n), VARGRAPHIC(n), LONG
VARGRAPHIC

$n.( n<=127)

$127. (n>127)

INTEGER 11.0

SMALLINT 6.0

DECIMAL(m,n) m+2.s

for example, DEC(6,4) = 8.4

REAL E12.6

DOUBLE PRECISION E12.6

FLOAT(n) E12.6

FLOAT E12.6

NUMERIC(m,n) m.n

DATE DATE7.

TIME TIME8.

DATETIME DATETIME30.6

Note: You can use the YEARCUTOFF= option to make your DATE7. dates comply
with Year 2000 standards. For more information about this SAS system option, see
SAS Language Reference: Dictionary. 4

DBLOAD Procedure Data Conversions

The following table shows the default DB2 data types that the DBLOAD procedure
assigns to SAS variable formats.

Table 1.5 DBLOAD Procedure: Default DB2 Data Types for SAS Variable Formats

SAS Variable Format DB2 Data Type

$w., $CHARw., $VARYINGw., $HEXw. CHARACTER

any date format DATE

any time format TIME
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SAS Variable Format DB2 Data Type

any datetime format TIMESTAMP

all other numeric formats FLOAT

Maximizing DB2 Performance
Among the factors that affect DB2 performance are the size of the table that is being

accessed and the form of the SQL SELECT statement. If the table that is being
accessed is larger than 10,000 rows (or 1,000 pages), you should evaluate all SAS
programs that access the table directly. When you evaluate the programs, consider the
following questions:

� Does the program need all of the columns that the SELECT statement retrieves?

� Do the WHERE clause criteria retrieve only those rows that are needed for
subsequent analysis?

� Is the data going to be used by more than one procedure in one SAS session? If so,
consider extracting the data into a SAS data file for SAS procedures to use instead
of allowing the data to be accessed directly by each procedure.

� Do the rows need to be in a particular order? If so, can an indexed column be used
to order them? If there is no index column, is DB2 doing the sort?

� Do the WHERE clause criteria allow DB2 to use the available indexes efficiently?

� What kind of locks does DB2 need to acquire?

� Are the joins being passed to DB2?

� Can your DB2 system use parallel processing to access the data more quickly?

DB2 has a Resource Limit Facility to limit the execution time of dynamic SQL
statements. If the time limit is exceeded, the dynamic statement is terminated and the
SQL code -905 is returned. The following list describes several situations in which the
RLF could stop a user from consuming large quantities of CPU time:

� An extensive join of DB2 tables with the SAS System SQL procedure.

� An extensive search by the FSEDIT, FSVIEW, or FSBROWSE procedures or an
SCL application.

� Any extensive extraction of data from DB2.

� An extensive select.

� An extensive load into a DB2 table. In this case, you can break up the load by
lowering the commit frequency.

There are several things that you can do in your SAS application to make the DB2
engine perform better:

� Set the SAS system option DB2DBUG. This option prints the dynamic SQL that is
generated by the DB2 engine and all other SQL that is executed by the DB2
engine to the SAS log. You can then verify that all WHERE clauses, PROC SQL
joins, and ORDER BY clauses are being passed to DB2. This option is for
debugging purposes and should not be set once the SAS application is used in
production. The NODB2DBUG option deactivates this behavior.

� Verify that all SAS procedures and DATA step code that read DB2 data share
connections where possible. You can do this by using one libref to reference all of
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the SAS applications that read DB2 data and by accepting the default value of
SHAREDREAD for the CONNECTION= option.

� If your DB2 subsystem supports parallel processing, you can assign a value to the
CURRENT DEGREE special register. Setting this register may enable your SQL
query to use parallel operations. You can set the special register by using the
LIBNAME options DBCONINIT= or DBLIBINIT= with the SET statement as
shown in the following example:

libname mydb2 db2 dbconinit="SET CURRENT DEGREE=’ANY’";

� Use the view descriptor WHERE clause or the DBCONDITION= option to pass
WHERE clauses to DB2. You can also use these methods to pass sort operations to
DB2 with the ORDER BY clause instead of performing a sort within SAS.

� If you are using a SAS application or an SCL application that reads the DB2 data
twice, let the DB2 engine spool the DB2 data. This happens by default because the
default value for the SPOOL= option is YES.

The spool file is read both when the application rereads the DB2 data and when
the application scrolls forward or backward through the data. If you do not use
spooling, and you need to scroll backward through the DB2 table, the DB2 engine
must start reading from the beginning of the data and read down to the row that
you want to scroll back to.

� Use the SQL procedure to pass joins to DB2 instead of using the MATCH MERGE
capability (that is, merging with a BY statement) of the DATA step.

� Use the DBKEY= option when you are doing SAS processing that involves the
KEY= option. When you use the DBKEY= option, the DB2 engine generates a
WHERE clause that uses parameter markers. During the execution of the
application, the values for the key are substituted into the parameter markers in
the WHERE clause.

If you don’t use the DBKEY= option, a new WHERE clause is generated for
every key value. The SQL query with the new WHERE clause must be optimized
in the DB2 PREPARE process every time the key value changes. The SQL query
that uses the WHERE clause with parameter markers is optimized, or
PREPAREd, only once.

� Consider using stored procedures when they can improve performance in client/
server applications by reducing network traffic. You can execute a stored
procedure by using the DBCONINIT= or DBLIBINIT= LIBNAME options.

Making the Most of Your Connections
Beginning in Version 7, the DB2 engine supports more than one connection to DB2

per SAS session. This is an improvement over Version 6 in a number of ways, especially
in a server environment. One advantage is being able to segregate tasks that fetch rows
from a cursor from tasks that must issue commits. This eliminates having to
resynchronize the cursor, prepare the statement, and fetch rows until you are
positioned back on the row you were on. This separation also allows tasks that must
issue commits to eliminate locking contention to do so sooner, since they are not delayed
until after cursors are closed to prevent having to resynchronize. In general, tables
opened for input fetch from cursors and do not issue commits, while update opens may,
and output opens do, issue commits.

You can control how the DB2 engine uses connections by using the CONNECTION=
option on the LIBNAME statement. At one extreme is CONNECTION=UNIQUE, which
causes each table access, whether it is for input, update, or output, to create and use its
own connection. Conversely, CONNECTION=SHARED means that only one connection
is made, and that input, update, and output accesses all share that connection.
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The default value for the CONNECTION= option is CONNECTION=SHAREDREAD,
which means that tables opened for input share one connection, while update and
output opens get their own connections. CONNECTION=SHAREDREAD allows the
best separation between tasks that fetch from cursors and tasks that must issue
commits, eliminating the resynchronizing of cursors.

The values GLOBAL and GLOBALREAD perform similarly to SHARED and
SHAREDREAD. The difference is that you can share the given connection across any of
the librefs that you specify as GLOBAL or GLOBALREAD.

Although the default value of CONNECTION= SHAREDREAD is optimal, there are
times when another value might be better. If you must use multiple librefs, you might
want to set them each as GLOBALREAD. This way, you will have one connection for all
of your input opens, regardless of which libref you use, as opposed to one connection per
libref for input opens. In a single-user environment (as opposed to a server session),
you might know that you will not have multiple opens occurring at the same time. In
this case, you might want to use SHARED (or GLOBAL for multiple librefs). This
eliminates the overhead of creating separate connections for input, update, and output
transactions, while having only one open at a time eliminates the problem of having to
resynchronize input cursors if a commit occurs.

Another reason for using SHARED or GLOBAL is the case of opening a table for
output while opening another table within the same database for input. This can result
in a -911 deadlock situation unless both opens occur in the same connection.

As explained in “Information for the Database Administrator” on page 34, the first
connection to DB2 is made from the main SAS task. Subsequent connections are made
from corresponding subtasks, which the DB2 engine attaches; DB2 allows only one
connection per task. Due to the system overhead of intertask communication, the
connection established from the main SAS task is a faster connection in terms of CPU
time. Since this is true, if you are reading or writing large numbers of rows, you will
have better performance (less CPU time) if you use the first connection for these
operations. If you are only reading rows, SHAREDREAD or GLOBALREAD can share
the first connection. However, if you are both reading and writing rows (input and
output opens), you can use CONNECTION=UNIQUE to make each open use the first
connection. UNIQUE causes each open to have its own connection. If you only have one
open at a time, and some are input while others are output (for large amounts of data),
the performance benefit of using the main SAS task connection far outweighs the
overhead of establishing a new connection for each open.

One other type of connection that the DB2 engine uses, and which is not user
controllable, is the utility connection. This connection is used to access the system
catalog, issues commits to release locks, and is a separate connection. Utility
procedures such as DATASETS and CONTENTS can cause this connection to be
created, although other actions necessitate it as well. There is one connection of this
type per libref, but it is not created until it is needed. If you have critical steps which
must use the main SAS task connection for performance reasons, refrain from using the
DEFER=YES option on the LIBNAME statement. It is possible that the utility
connection can be established from that task, causing the connection you use for your
opens to be from a slower subtask.

In summary, there is not one value for the CONNECTION= option which works best
in all possible situations. You might need to try different values and arrange your SAS
programs in different ways to obtain the best performance possible.

For additional information about

� DB2–specific LIBNAME options, refer to “SAS/ACCESS LIBNAME Options” on
page 4.

� SAS system options, refer to “SAS System Options and Settings for DB2” on page
12
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� SAS/ACCESS LIBNAME options, refer to Chapter 3, "SAS/ACCESS LIBNAME
Statement" .

� SAS/ACCESS data set options, refer to Chapter 4, "SAS/ACCESS Data Set
Options" .

Information for the Database Administrator
This section includes information about how the DB2 engine works, how SAS

connects to DB2, and how the DB2 engine accesses DB2 system catalogs.

How the DB2 Engine Works
The DB2 engine uses the Call Attachment Facility (CAF) or the Recoverable

Resource Management Services Attachment Facility (RRSAF) as the Application
Programming Interface (API) in order to communicate to the local DB2. Both
attachment facilities enable programs to connect to and use DB2 for SQL statements, or
commands. The DB2 engine uses the attachment facilities to establish and control its
connections to the local DB2 subsystem. DB2 allows only one connection for each task
control block (TCB), or task. The SAS System and SAS executives run under one TCB,
or task.

The design of the new, dynamic DB2 LIBNAME engine gives SAS users the ability to
connect to DB2 more than once. Because the CAF and RRSAF allow only one
connection per TCB, the DB2 engine attaches a subtask for each subsequent connection
that is initiated. The DB2 engine uses the ATTACH, DETACH, POST, and WAIT
assembler macros to create and communicate with the subtasks. The DB2 engine does
not limit the number of connections/subtasks that a single SAS user can initiate.
Display 1.2 on page 34 illustrates how the DB2 engine works.

Display 1.2 Design of the DB2 LIBNAME Engine
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How and When Connections Are Made
The DB2 engine always makes an explicit connection to the local DB2 subsystem

(SSID). When a connection executes successfully, a thread to DB2 is established. For
each thread’s or task’s connection, DB2 establishes authorization identifiers (AUTHIDs).
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The DB2 engine determines when to make a connection to DB2 based on the type of
open mode that the SAS application requests for the DB2 tables. There are three
distinct types of open modes that a SAS application can request: read, update, and
output. The default behavior for the DB2 engine is to share the connection for all open
modes of read for each DB2 LIBNAME statement. For every update and output open
mode, the DB2 engine acquires a separate connection to DB2 for that open instance.
The default connection behavior can be changed by using the CONNECTION=
LIBNAME option.

Several SAS applications require the DB2 engine to query the DB2 system catalogs.
When this type of query is required, the DB2 engine acquires a separate connection to
DB2 in order to avoid contention with other applications that are accessing the DB2
system catalogs. Refer to “Accessing the DB2 System Catalogs” on page 36 for more
information about accessing system catalogs.

Connections Using the Distributed Data Facility

Distributed Data Facility (DDF) is an optional product that allows OS/390 DB2
applications to access data on other 0S/390 DB2 subsystems. The DB2 engine supports
DDF. To connect to a DDF remote server or location, the DB2 engine must use
system-directed access. System-directed access allows one OS/390 DB2 subsystem to
execute SQL statements on another OS/390 DB2 subsytem. System-directed access uses
a DB2-only private protocol. The DB2 engine cannot explicitly request a connection, but
instead, it performs an implicit connection when a distributed request is initiated by
the SAS application. To initiate an implicit connection, the SAS option LOCATION=
must be specified. When the LOCATION= option is specified, the three-level table name
(location.authid.table) is used in the SQL statement that is generated by the DB2
engine. When the SQL statement that contains the three-level table name is executed,
an implicit connection is made to the remote DB2 subsystem. The primary
authorization ID of the initiating process must be authorized to connect to the remote
location. The DB2 engine always first connects locally, then DB2 connects implicitly to
a remote subsystem based that is on the location.

Connections Using the Distributed Relational Database Architecture (DRDA)

Distributed Relational Database Architecture (DRDA) is a set of protocols that
enables a user to access distributed data. This enables the DB2 engine to access
multiple remote tables at various locations. The tables can be distributed among
multiple platforms, and both like and unlike platforms can communicate with one
another. In a DRDA environment, DB2 acts as the client and/or the server. The SAS
application must use the client DB2 to communicate to the server.

To connect to a DRDA remote server or location, the DB2 engine uses an explicit
connection. To establish an explicit connection, the DB2 engine first connects to the
local DB2 subsystem via the attachment facility (CAF or RRSAF). Then the DB2 engine
issues an SQL CONNECT statement to connect from the local DB2 subsystem to the
remote DRDA server prior to accessing data. The CONNECT statement is passed to the
remote location after the connection is made. To initiate a connection to a DRDA
remote server, you must specify the SERVER= LIBNAME option. More than one
connection to a remote location is allowed, although only one connection can be active at
any one time. To connect to more than one remote DRDA location, the SAS application
must use one LIBNAME statement with the SERVER= option for each remote location.
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Recoverable Resource Management Services Attachment Facility (RRSAF)
By default, the SAS/ACCESS engine for DB2 uses the Call Attachment Facility

(CAF) to make its connections to DB2.* By setting the SAS system option DB2RRS, the
DB2 engine instead uses the Recoverable Resource Manager Services Attachment
Facility (RRSAF). Only one attachment facility can be used at a time, so the DB2RRS
or NODB2RRS system option can only be specified when a SAS session is invoked.
RRSAF is a new feature in DB2 Version 5, Release 1, and the support for it by the DB2
engine is new for Version 8 of SAS software.

The RRSAF is intended to be used by SAS servers, such as the ones used by SAS/
SHARE software. RRSAF supports the ability to associate an OS/390 authorization
identifier with each connection at sign on. This authorization identifier is not the same
as the authorization ID that is specified in the AUTHID= data set option or SAS/
ACCESS LIBNAME option. DB2 uses the RRSAF-supported authorization identifier to
validate a given connection’s authorization to use both DB2 and system resources, when
those connections are made using the System Authorization Facility and other security
products like RACF. Basically, this authorization identifier will be the userid with
which you are are logged onto OS/390.

Beginning in Version 7, SAS supports multiple CAF connections for a SAS session.
Thus, for a SAS server, each client can have their own connections to DB2; that is,
multiple clients no longer have to share one connection. Because CAF does not support
signon, however, each connection that the SAS server makes to DB2 has the OS/390
authorization identifier of the server, and not the authorization identifier of the client
for which the connection is made.

With RRSAF, the SAS server makes the connections for each client and the
connections have the client’s OS/390 authorization identifier associated them. This is
only true for clients that were authenticated by the SAS server, which occurred when
the client specified a userid and password. Servers authenticate their clients when the
clients provide their userids and passwords. Generally, this is the default way that
servers are run. If a client connects to a SAS server without providing his userid and
password, then the identifier associated with his connections will be that of the server—
just like when using CAF—and not the identifier of the client.

Other than specifying DB2RRS at SAS startup, there is nothing else that needs to be
done. The DB2 engine automatically signs on each connection that it makes to DB2 with
either the identifier of the authenticated client or the identifier of the SAS server for
non-authenticated clients. The authenticated clients have the same authorities to DB2
as they have when they run their own SAS session from their own ID and access DB2.

Accessing the DB2 System Catalogs
For various types of SAS procedures, the DB2 engine must access the DB2 system

catalogs for information. This information is limited to a list of all the tables for a
specific authorization identifier. There are several factors that determine what SQL
query is generated to get information from the system catalogs.

� If the LIBNAME statement that references DB2 includes the AUTHID= option, or
if AUTHID= was entered as a data set option, the following SQL code is generated:

SELECT NAME FROM SYSIBM.SYSTABLES
WHERE (CREATOR = ’authid’);

� If no AUTHID= option was entered, the following SQL code is generated:

* Henceforth, the SAS/ACCESS engine for DB2 will be referred to as the “DB2 engine” for brevity.
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SELECT NAME FROM SYSIBM.SYSTABLES
WHERE (CREATOR = "OS/390--userid");

The SAS procedures or applications that request the list of DB2 tables includes, but is
not limited to, PROC DATASETS and PROC CONTENTS, or any application that needs
a member list. If the SAS user does not have the necessary authorization to read the
DB2 system catalogs, the procedure or application will fail.

Because querying the DB2 system catalogs can cause some locking contentions, the
DB2 engine will initiate a separate connection for the query to the DB2 system
catalogs. Once the query has completed a COMMIT WORK is executed.

For additional information about
� DB2–specific LIBNAME options, refer to “SAS/ACCESS LIBNAME Options” on

page 4.
� DB2–specific data set options, refer to “SAS/ACCESS Data Set Options: DB2

Specifics” on page 8
� SAS/ACCESS LIBNAME options, refer to Chapter 3, "SAS/ACCESS LIBNAME

Statement" .
� SAS/ACCESS data set options, refer to Chapter 4, "SAS/ACCESS Data Set

Options" .
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