
Chapter 11
The EXPAND Procedure

Chapter Table of Contents

OVERVIEW . 539

GETTING STARTED . 541
Converting to Higher Frequency Series. 541
Aggregating to Lower Frequency Series . 541
Combining Time Series with Different Frequencies 542
Interpolating Missing Values . 542
Requesting Different Interpolation Methods 543
Using the ID Statement . 543
Specifying Observation Characteristics . 544
Converting Observation Characteristics. 545
Creating New Variables . 545
Transforming Series . 545

SYNTAX . 547
Functional Summary . 547
PROC EXPAND Statement . 548
BY Statement . 549
CONVERT Statement 550
ID Statement . 551

DETAILS . 552
Frequency Conversion . 552
Identifying Observations .. 553
Range of Output Observations . 554
Extrapolation . 554
The OBSERVED= Option . 555
Conversion Methods 557
Transformation Operations . 559
OUT= Data Set . 567
OUTEST= Data Set. 568

EXAMPLES . 570
Example 11.1 Combining Monthly and Quarterly Data 570
Example 11.2 Interpolating Irregular Observations 572
Example 11.3 Using Transformations . 575

537

Part 2. General Information

REFERENCES . 576

SAS OnlineDoc: Version 8
538

Chapter 11
The EXPAND Procedure

Overview

The EXPAND procedure converts time series from one sampling interval or fre-
quency to another and interpolates missing values in time series. A wide array of
data transformation is also supported. Using PROC EXPAND, you can collapse time
series data from higher frequency intervals to lower frequency intervals, or expand
data from lower frequency intervals to higher frequency intervals. For example, quar-
terly estimates can be interpolated from an annual series, or quarterly values can be
aggregated to produce an annual series.

Time series frequency conversion is useful when you need to combine series with
different sampling intervals into a single data set. For example, if you need as input
to a monthly model a series that is only available quarterly, you might use PROC
EXPAND to interpolate the needed monthly values.

You can also interpolate missing values in time series, either without changing series
frequency or in conjunction with expanding or collapsing the series.

You can convert between any combination of input and output frequencies that can be
specified by SAS time interval names. (See Chapter 3, “Date Intervals, Formats, and
Functions,”, for a complete description of SAS interval names.) When the “from”
and “to” intervals are specified, PROC EXPAND automatically accounts for calendar
effects such as the differing number of days in each month and leap years.

The EXPAND procedure also handles conversions of frequencies that cannot be de-
fined by standard interval names. Using the FACTOR= option, you can interpolate
any number of output observations for each group of a specified number of input
observations. For example, if you specify the option FACTOR=(13:2), 13 equally
spaced output observations are interpolated from each pair of input observations.

You can also convert aperiodic series, observed at arbitrary points in time, into peri-
odic estimates. For example, a series of randomly timed quality control spot-check
results might be interpolated to form estimates of monthly average defect rates.

The EXPAND procedure can also change the observation characteristics of time se-
ries. Time series observations can measure beginning-of-period values, end-of-period
values, midpoint values, or period averages or totals. PROC EXPAND can convert
between these cases. You can construct estimates of interval averages from end-of-
period values of a variable, estimate beginning-of-period or midpoint values from
interval averages, or compute averages from interval totals, and so forth.

By default, the EXPAND procedure fits cubic spline curves to the nonmissing values
of variables to form continuous-time approximations of the input series. Output se-
ries are then generated from the spline approximations. Several alternate conversion

539

Part 2. General Information

methods are described in the section “Conversion Methods” on page 557. You can
also interpolate estimates of the rate of change of time series by differentiating the
interpolating spline curve.

Various transformations can be applied to the input series prior to interpolation and to
the interpolated output series. For example, the interpolation process can be modified
by transforming the input series, interpolating the transformed series, and applying
the inverse of the input transformation to the output series. PROC EXPAND can also
be used to apply transformations to time series without interpolation or frequency
conversion.

The results of the EXPAND procedure are stored in a SAS data set. No printed output
is produced.

SAS OnlineDoc: Version 8
540

Chapter 11. Getting Started

Getting Started

Converting to Higher Frequency Series

To create higher frequency estimates, specify the input and output intervals with the
FROM= and TO= options, and list the variables to be converted in a CONVERT
statement. For example, suppose variables X, Y, and Z in the data set ANNUAL are
annual time series, and you want monthly estimates. You can interpolate monthly
estimates by using the following statements:

proc expand data=annual out=monthly from=year to=month;
convert x y z;

run;

Note that interpolating values of a time series does not add any real information to
the data as the interpolation process is not the same process that generated the other
(nonmissing) values in the series. While time series interpolation can sometimes be
useful, great care is needed in analyzing time series containing interpolated values.

Aggregating to Lower Frequency Series

PROC EXPAND provides two ways to convert from a higher frequency to a lower
frequency. When a curve fitting method is used, converting to a lower frequency is
no different than converting to a higher frequency–you just specify the desired output
frequency with the TO= option. This provides for interpolation of missing values
and allows conversion from non-nested intervals, such as converting from weekly to
monthly values.

Alternatively, you can specify simple aggregation or selection without interpolation
of missing values. This might be useful, for example, if you wanted to add up monthly
values to produce annual totals but wanted the annual output data set to contain values
only for complete years.

To perform simple aggregation, use the METHOD=AGGREGATE option in the
CONVERT statement. For example, the following statements aggregate monthly
values to yearly values:

proc expand data=monthly out=annual from=month to=year;
convert x y z / method=aggregate;
convert a b c / observed=total method=aggregate;
id date;

run;

Note that the AGGREGATE method can be used only if the input intervals are
nested within the output intervals, as when converting from daily to monthly or from
monthly to yearly frequency.

541
SAS OnlineDoc: Version 8

Part 2. General Information

Combining Time Series with Different Frequencies

One important use of PROC EXPAND is to combine time series measured at different
sampling frequencies. For example, suppose you have data on monthly money stocks
(M1), quarterly gross domestic product (GDP), and weekly interest rates (INTER-
EST), and you want to perform an analysis of a model that uses all these variables.
To perform the analysis, you first need to convert the series to a common frequency
and combine the variables into one data set.

The following statements illustrate this process for the three data sets QUARTER,
MONTHLY, and WEEKLY. The data sets QUARTER and WEEKLY are converted to
monthly frequency using two PROC EXPAND steps, and the three data sets are then
merged using a DATA step MERGE statement to produce the data set COMBINED.

proc expand data=quarter out=temp1 from=qtr to=month;
id date;
convert gdp / observed=total;

run;

proc expand data=weekly out=temp2 from=week to=month;
id date;
convert interest / observed=average;

run;

data combined;
merge monthly temp1 temp2;
by date;

run;

See Chapter 2, “Working with Time Series Data,”, for further discussion of time
series periodicity, time series dating, and time series interpolation.

Interpolating Missing Values

To interpolate missing values in time series without converting the observation fre-
quency, leave off the TO= option. For example, the following statements interpolate
any missing values in the time series in the data set ANNUAL.

proc expand data=annual out=new from=year;
id date;
convert x y z;
convert a b c / observed=total;

run;

To interpolate missing values in variables observed at specific points in time, omit
both the FROM= and TO= options and use the ID statement to supply time values for
the observations. The observations do not need to be periodic or form regular time
series, but the data set must be sorted by the ID variable. For example, the following
statements interpolate any missing values in the numeric variables in the data set A.

SAS OnlineDoc: Version 8
542

Chapter 11. Getting Started

proc expand data=a out=b;
id date;

run;

If the observations are equally spaced in time, and all the series are observed as
beginning-of-period values, only the input and output data sets need to be specified.
For example, the following statements interpolate any missing values in the numeric
variables in the data set A, assuming that the observations are at equally spaced points
in time.

proc expand data=a out=b;
run;

Refer to the section “Missing Values” on page 564 for further information.

Requesting Different Interpolation Methods

By default, a cubic spline curve is fit to the input series, and the output is computed
from this interpolating curve. Other interpolation methods can be specified with the
METHOD= option on the CONVERT statement. The section “Conversion Methods”
on page 557 explains the available methods.

For example, the following statements convert annual series to monthly series using
linear interpolation instead of cubic spline interpolation.

proc expand data=annual out=monthly from=year to=month;
id date;
convert x y z / method=join;

run;

Using the ID Statement

An ID statement is normally used with PROC EXPAND to specify a SAS date or
datetime variable to identify the time of each input observation. An ID variable allows
PROC EXPAND to do the following:

� identify the observations in the output data set

� determine the time span between observations and detect gaps in the input se-
ries caused by omitted observations

� account for calendar effects such as the number of days in each month and leap
years

If you do not specify an ID variable with SAS date or datetime values, PROC EX-
PAND makes default assumptions that may not be what you want. See the section
“ID Statement” for details.

543
SAS OnlineDoc: Version 8

Part 2. General Information

Specifying Observation Characteristics

It is important to distinguish between variables that are measured at points in time
and variables that represent totals or averages over an interval. Point-in-time values
are often calledstocksor levels. Variables that represent totals or averages over an
interval are often calledflowsor rates.

For example, the annual series “U.S. Gross Domestic Product” represents the total
value of production over the year and also the yearly average rate of production in
dollars per year. However, a monthly variableinventorymay represent the cost of a
stock of goods as of the end of the month.

When the data represent periodic totals or averages, the process of interpolation to a
higher frequency is sometimes calleddistribution, and the total values of the larger
intervals are said to bedistributedto the smaller intervals. The process of interpolat-
ing periodic total or average values to lower frequency estimates is sometimes called
aggregation.

By default, PROC EXPAND assumes that all time series represent beginning-of-
period point-in-time values. If a series does not measure beginning of period point-in-
time values, interpolation of the data values using this assumption is not appropriate,
and you should specify the correct observation characteristics of the series. The ob-
servation characteristics of series are specified with the OBSERVED= option on the
CONVERT statement.

For example, suppose that the data set ANNUAL contains variables A, B, and C that
measure yearly totals, while the variables X, Y, and Z measure first-of-year values.
The following statements estimate the contribution of each month to the annual totals
in A, B, and C, and interpolate first-of-month estimates of X, Y, and Z.

proc expand data=annual out=monthly from=year to=month;
id date;
convert x y z;
convert a b c / observed=total;

run;

The EXPAND procedure supports five different observation characteristics. The OB-
SERVED= option values for these five observation characteristics are:

BEGINNING beginning-of-period values

MIDDLE period midpoint values

END end-of-period values

TOTAL period totals

AVERAGE period averages

The interpolation of each series is adjusted appropriately for its observation charac-
teristics. When OBSERVED=TOTAL or AVERAGE is specified, the interpolating

SAS OnlineDoc: Version 8
544

Chapter 11. Getting Started

curve is fit to the data values so that the area under the curve within each input in-
terval equals the value of the series. For OBSERVED=MIDDLE or END, the curve
is fit through the data points, with the time position of each data value placed at the
specified offset from the start of the interval.

See the section “The OBSERVED= Option” on page 549 for details.

Converting Observation Characteristics

The EXPAND procedure can be used to interpolate values for output series with dif-
ferent observation characteristics than the input series. To change observation char-
acteristics, specify two values in the OBSERVED= option. The first value specifies
the observation characteristics of the input series; the second value specifies the ob-
servation characteristics of the output series.

For example, the following statements convert the period total variable A in the data
set ANNUAL to yearly midpoint estimates. This example does not change the series
frequency, and the other variables in the data set are copied to the output data set
unchanged.

proc expand data=annual out=new from=year;
id date;
convert a / observed=(total,middle);

run;

Creating New Variables

You can use the CONVERT statement to name a new variable to contain the results
of the conversion. Using this feature, you can create several different versions of a
series in a single PROC EXPAND step. Specify the new name after the input variable
name and an equal sign:

convert variable=newname ... ;

For example, suppose you are converting quarterly data to monthly and you want
both first-of-month and midmonth estimates for a beginning-of-period variable X.
The following statements perform this task:

proc expand data=a out=b from=qtr to=month;
id date;
convert x=x_begin / observed=beginning;
convert x=x_mid / observed=(beginning,middle);

run;

Transforming Series

The interpolation methods used by PROC EXPAND assume that there are no restric-
tions on the range of values that series can have. This assumption can sometimes
cause problems if the series must be within a certain range.

545
SAS OnlineDoc: Version 8

Part 2. General Information

For example, suppose you are converting monthly sales figures to weekly estimates.
Sales estimates should never be less than zero, but since the spline curve ignores
this restriction some interpolated values may be negative. One way to deal with this
problem is to transform the input series before fitting the interpolating spline and then
reverse transform the output series.

You can apply various transformations to the input series using the TRANS-
FORMIN= option on the CONVERT statement. (The TRANSFORMIN= option can
be abbreviated as TRANSFORM= or TIN=.) You can apply transformations to the
output series using the TRANSFORMOUT= option. (The TRANSFORMOUT= op-
tion can be abbreviated as TOUT=.)

For example, you might use a logarithmic transformation of the input sales series
and exponentiate the interpolated output series. The following statements fit a spline
curve to the log of SALES and then exponentiate the output series.

proc expand data=a out=b from=month to=week;
id date;
convert sales / observed=total

transformin=(log) transformout=(exp);
run;

As another example, suppose you are interpolating missing values in a series of mar-
ket share estimates. Market shares must be between 0% and 100%, but applying a
spline interpolation to the raw series can produce estimates outside of this range.

The following statements use the logistic transformation to transform proportions in
the range 0 to 1 to values in the range�1 to +1. The TIN= option first divides
the market shares by 100 to rescale percent values to proportions and then applies the
LOGIT function. The TOUT= option applies the inverse logistic function ILOGIT to
the interpolated values to convert back to proportions and then multiplies by 100 to
rescale back to percentages.

proc expand data=a out=b;
id date;
convert mshare / tin=(/ 100 logit) tout=(ilogit * 100);

run;

You can also use the TRANSFORM= (or TRANSFORMOUT=) option as a con-
venient way to do calculations normally performed with the SAS DATA step.
For example, the following statements add the lead of X to the data set A. The
METHOD=NONE option is used to suppress interpolation.

proc expand data=a method=none;
id date;
convert x=xlead / transform=(lead);

run;

Any number of operations can be listed in the TRANSFORMIN= and TRANSFOR-
MOUT= options. See Table 11.1 for a list of the operations supported.

SAS OnlineDoc: Version 8
546

Chapter 11. Syntax

Syntax

The EXPAND procedure uses the following statements:

PROC EXPAND options ;
BY variables ;
CONVERT variables / options ;
ID variable ;

Functional Summary

The statements and options controlling the EXPAND procedure are summarized in
the following table.

Description Statement Option

Statements
specify BY-group processing BY
specify conversion options CONVERT
specify the ID variable ID

Data Set Options
specify the input data set PROC EXPAND DATA=
specify the output data set PROC EXPAND OUT=
write interpolating functions to a data set PROC EXPAND OUTEST=
extrapolate values before or after input series PROC EXPAND EXTRAPOLATE

Input and Output Frequencies
specify input frequency PROC EXPAND FROM=
specify output frequency PROC EXPAND TO=
specify frequency conversion factor PROC EXPAND FACTOR=
control the alignment of SAS Date values PROC EXPAND ALIGN=

Interpolation Control Options
specify interpolation method PROC EXPAND,

CONVERT
METHOD=

specify observation characteristics CONVERT OBSERVED=
specify transformations of the input series CONVERT TRANSIN=
specify transformations of the output series CONVERT TRANSOUT=

547
SAS OnlineDoc: Version 8

Part 2. General Information

PROC EXPAND Statement

PROC EXPAND options;

The following options can be used with the PROC EXPAND statement.

Data Set Options
DATA=SAS-data-set

names the input data set. If the DATA= option is omitted, the most recently created
SAS data set is used.

OUT=SAS-data-set
names the output data set containing the result time series. If OUT= is not specified,
the data set is named using the DATAn convention. See the section “OUT= Data Set”
on page 567 for details.

OUTEST=SAS-data-set
names an output data set containing the coefficients of the spline curves fit to the
input series. If the OUTEST= option is not specified, the spline coefficients are not
output. See the section “OUTEST= Data Set” on page 568 for details.

Options That Define Input and Output Frequencies
FACTOR=n
FACTOR=(n:m)
FACTOR=(n,m)

specifies the number of output observations to be created from the input observa-
tions. FACTOR=(n:m) specifies thatn output observations are to be produced for
each group ofm input observations. FACTOR=n is the same as FACTOR=(n:1).

The FACTOR= option cannot be used if the TO= option is used. The default value
is FACTOR=(1:1). For more information, see the “Frequency Conversion” section
(page 552).

FROM=interval
specifies the time interval between observations in the input data set. Examples of
FROM= values are YEAR, QTR, MONTH, DAY, and HOUR. See Chapter 3, “Date
Intervals, Formats, and Functions,” for a complete description and examples of inter-
val specification.

TO=interval
specifies the time interval between observations in the output data set. By default, the
TO= interval is generated from the combination of the FROM= and the FACTOR=
values or is set to be the same as the FROM= value if FACTOR= is not specified.
See Chapter 3, “Date Intervals, Formats, and Functions,” for a description of interval
specifications.

ALIGN=option
controls the alignment of SAS dates used to identify output observations.
The ALIGN= option allows the following values: BEGINNING|BEG|B, MID-
DLE|MID|M, and ENDING|END|E. BEGINNING is the default.

SAS OnlineDoc: Version 8
548

Chapter 11. Syntax

Options to Control the Interpolation
METHOD=option
METHOD=SPLINE(constraint [, constraint])

specifies the method used to convert the data series. The methods supported are
SPLINE, JOIN, STEP, AGGREGATE, and NONE. The METHOD= option speci-
fied on the PROC EXPAND statement can be overridden for particular series by the
METHOD= option on the CONVERT statement. The default is METHOD=SPLINE.
The constraintspecifications for METHOD=SPLINE can have the values NOTA-
KNOT (the default), NATURAL, SLOPE=value, and/or CURVATURE=value. See
the “Conversion Methods” section on page 557 for more information about these
methods.

OBSERVED=value
OBSERVED=(from-value, to-value)

indicates the observation characteristics of the input time series and of the output
series. Specifying the OBSERVED= option on the PROC EXPAND statement sets
the default OBSERVED= value for subsequent CONVERT statements. See the sec-
tions “CONVERT Statement” and “The OBSERVED= Option” later in this chapter
for details. The default is OBSERVED=BEGINNING.

EXTRAPOLATE
specifies that missing values at the beginning or end of input series be replaced with
values produced by a linear extrapolation of the interpolating curve fit to the input
series. See the section “Extrapolation” later in this chapter for details.

By default, PROC EXPAND avoids extrapolating values beyond the first or last input
value for a series and only interpolates values within the range of the nonmissing
input values. Note that the extrapolated values are often not very accurate, and for
the SPLINE method the EXTRAPOLATE option results may be very unreasonable.
The EXTRAPOLATE option is not normally used.

BY Statement

BY variables;

A BY statement can be used with PROC EXPAND to obtain separate analyses on
observations in groups defined by the BY variables. The input data set must be sorted
by the BY variables and be sorted by the ID variable within each BY group.

Use a BY statement when you want to interpolate or convert time series within lev-
els of a cross-sectional variable. For example, suppose you have a data set STATE
containing annual estimates of average disposable personal income per capita (DPI)
by state and you want quarterly estimates by state. These statements convert the DPI
series within each state:

proc sort data=state;
by state date;

run;

549
SAS OnlineDoc: Version 8

Part 2. General Information

proc expand data=state out=stateqtr from=year to=qtr;
convert dpi;
by state;
id date;

run;

CONVERT Statement

CONVERT variable=newname ... / options;

The CONVERT statement lists the variables to be processed. Only numeric variables
can be processed.

For each of the variables listed, a new variable name can be specified after an equal
sign to name the variable in the output data set that contains the converted values. If
a name for the output series is not given, the variable in the output data set has the
same name as the input variable.

Any number of CONVERT statements can be used. If no CONVERT statement is
used, all the numeric variables in the input data set except those appearing in the BY
and ID statements are processed.

The following options can be used with the CONVERT statement.

METHOD=option
METHOD=SPLINE(constraint [, constraint])

specifies the method used to convert the data series. The methods supported are
SPLINE, JOIN, STEP, AGGREGATE, and NONE. The METHOD= option speci-
fied on the PROC EXPAND statement can be overridden for particular series by the
METHOD= option on the CONVERT statement. The default is METHOD=SPLINE.
The constraintspecifications for METHOD=SPLINE can have the values NOTA-
KNOT (the default), NATURAL, SLOPE=value, and/or CURVATURE=value. See
the “Conversion Methods” section on page 557 for more information about these
methods.

OBSERVED=value
OBSERVED=(from-value, to-value)

indicates the observation characteristics of the input time series and of the output
series. The values supported are TOTAL, AVERAGE, BEGINNING, MIDDLE, and
END. In addition, DERIVATIVE can be specified as theto-valuewhen the SPLINE
method is used. See the section “The OBSERVED= Option” later in this chapter for
details.

The default is the value specified for the OBSERVED= option on the PROC EX-
PAND statement, if any, or else the default value is OBSERVED=BEGINNING.

TRANSFORMIN=(operation ...)
specifies a list of transformations to be applied to the input series before the interpo-
lating function is fit. The operations are applied in the order listed. See the section
“Transformation Operations” later in this chapter for the operations that can be spec-

SAS OnlineDoc: Version 8
550

Chapter 11. Syntax

ified. The TRANSFORMIN= option can be abbreviated as TRANSIN=, TIN=, or
TRANSFORM=.

TRANSFORMOUT=(operation ...)
specifies a list of transformations to be applied to the output series. The operations
are applied in the order listed. See the section “Transformation Operations” later in
this chapter for the operations that can be specified. The TRANSFORMOUT= option
can be abbreviated as TRANSOUT=, or TOUT=.

ID Statement

ID variable;

The ID statement names a numeric variable that identifies observations in the input
and output data sets. The ID variable’s values are assumed to be SAS date or datetime
values.

The input data must form time series. This means that the observations in the input
data set must be sorted by the ID variable (within the BY variables, if any). Moreover,
there should be no duplicate observations, and no two observations should have ID
values within the same time interval as defined by the FROM= option.

If the ID statement is omitted, SAS date or datetime values are generated to label the
input observations. These ID values are generated by assuming that the input data
set starts at a SAS date value of 0, that is, 1 January 1960. This default starting date
is then incremented for each observation by the FROM= interval (using the INTNX
function). If the FROM= option is not specified, the ID values are generated as the
observation count minus 1. When the ID statement is not used, an ID variable is
added to the output data set named either DATE or DATETIME, depending on the
value specified in the TO= option. If neither the TO= option nor the FROM= option
is given, the ID variable in the output data set is named TIME.

551
SAS OnlineDoc: Version 8

Part 2. General Information

Details

Frequency Conversion

Frequency conversion is controlled by the FROM=, TO=, and FACTOR= options.
The possible combinations of these options are explained in the following:

None Used
If FROM=, TO=, and FACTOR= are not specified, no frequency conversion is done.
The data are processed to interpolate any missing values and perform any specified
transformations. Each input observation produces one output observation.

FACTOR=(n:m)
FACTOR=(n:m) specifies thatn output observations are produced for each group of
m input observations. The fractionm/n is reduced first: thus FACTOR=(10:6) is
equivalent to FACTOR=(5:3). Note that ifm/n=1, the result is the same as the case
given previously under “None Used”.

FROM=interval
The FROM= option used alone establishes the frequency and interval widths of the
input observations. Missing values are interpolated, and any specified transforma-
tions are performed, but no frequency conversion is done.

TO=interval
When the TO= option is used without the FROM= option, output observations with
the TO= frequency are generated over the range of input ID values. The first output
observation is for the TO= interval containing the ID value of the first input observa-
tion; the last output observation is for the TO= interval containing the ID value of the
last input observation. The input observations are not assumed to form regular time
series and may represent aperiodic points in time. An ID variable is required to give
the date or datetime of the input observations.

FROM=interval TO=interval
When both the FROM= and TO= options are used, the input observations have the
frequency given by the FROM= interval, and the output observations have the fre-
quency given by the TO= interval.

FROM=interval FACTOR=(n:m)
When both the FROM= and FACTOR= options are used, a TO= interval is in-
ferred from the combination of the FROM=interval and the FACTOR=(n:m) values
specified. For example, FROM=YEAR FACTOR=4 is the same as FROM=YEAR
TO=QTR. Also, FROM=YEAR FACTOR=(3:2) is the same as FROM=YEAR used
with TO=MONTH8. Once the implied TO= interval is determined, this combination
operates the same as if FROM= and TO= had been specified. If no valid TO= interval
can be constructed from the combination of the FROM= and FACTOR= options, an
error is produced.

TO=interval FACTOR=(n:m)
The combination of the TO= option and the FACTOR= option is not allowed and
produces an error.

SAS OnlineDoc: Version 8
552

Chapter 11. Details

ALIGN= option
Controls the alignment of SAS dates used to identify output observations.
The ALIGN= option allows the following values: BEGINNING|BEG|B, MID-
DLE|MID|M, and ENDING|END|E. BEGINNING is the default.

Converting to a Lower Frequency
When converting to a lower frequency, the results are either exact or approximate,
depending on whether or not the input intervals nest within the output intervals and
depending on the need to interpolate missing values within the series. If the TO=
interval is nested within the FROM= interval (as when converting monthly to yearly),
and if there are no missing input values or partial periods, the results are exact.

When values are missing or the FROM= intervals are not nested within the TO= inter-
vals (as when aggregating weekly to monthly), the results depend on an interpolation.
The METHOD=AGGREGATE option always produces exact results, never an inter-
polation. However, this method cannot be used unless the FROM= interval is nested
within the TO= interval.

Identifying Observations

The variable specified in the ID statement is used to identify the observations. Usu-
ally, SAS date or datetime values are used for this variable. PROC EXPAND uses the
ID variable to do the following:

� identify the time interval of the input values

� validate the input data set observations

� compute the ID values for the observations in the output data set

Identifying the Input Time Intervals
When the FROM= option is specified, observations are understood to refer to the
whole time interval and not to a single time point. The ID values are interpreted as
identifying the FROM= time interval containing the value. In addition, the widths
of these input intervals are used by the OBSERVED= cases TOTAL, AVERAGE,
MIDDLE, and END.

For example, if FROM=MONTH is specified, then each observation is for the whole
calendar month containing the ID value for the observation, and the width of the
time interval covered by the observation is the number of days in that month. There-
fore, if FROM=MONTH, the ID value ’31MAR92’D is equivalent to the ID value
’1MAR92’D–both of these ID values identify the same interval, March of 1992.

Widths of Input Time Intervals
When the FROM= option is not specified, the ID variable values are usually inter-
preted as referring to points in time. However, if an OBSERVED= option is speci-
fied that assumes the observations refer to whole intervals and also requires interval
widths, then, in the absence of the FROM= specification, interval widths are assumed
to be the time span between ID values. For the last observation, the interval width
is assumed to be the same as for the next to last observation. (If neither the FROM=
option nor the ID statement are specified, interval widths are assumed to be 1.0.) A
note is printed in the SAS log warning that this assumption is made.

553
SAS OnlineDoc: Version 8

Part 2. General Information

Validating the Input Data Set Observations
The ID variable is used to verify that successive observations read from the input
data set correspond to sequential FROM= intervals. When the FROM= option is not
used, PROC EXPAND verifies that the ID values are nonmissing and in ascending
order. An error message is produced and the observation is ignored when an invalid
ID value is found in the input data set.

ID values for Observations in the Output Data Set
The time unit used for the ID variable in the output data set is controlled by the
interval value specified by the TO= option. If you specify a date interval for the TO=
value, the ID variable values in the output data set are SAS date values. If you specify
a datetime interval for the TO= value, the ID variable values in the output data set are
SAS datetime values.

Range of Output Observations

If no frequency conversion is done, the range of output observations is the same as in
the input data set.

When frequency conversion is done, the observations in the output data set range from
the earliest start of any result series to the latest end of any result series. Observations
at the beginning or end of the input range for which all result values are missing are
not written to the OUT= data set.

When the EXTRAPOLATE option is not used, the range of the nonmissing output
results for each series is as follows. The first result value is for the TO= interval that
contains the ID value of the start of the FROM= interval containing the ID value of
the first nonmissing input observation for the series. The last result value is for the
TO= interval that contains the end of the FROM= interval containing the ID value of
the last nonmissing input observation for the series.

When the EXTRAPOLATE option is used, result values for all series are computed
for the full time range covered by the input data set.

Extrapolation

The spline functions fit by the EXPAND procedure are very good at approximating
continuous curves within the time range of the input data but poor at extrapolating
beyond the range of the data. The accuracy of the results produced by PROC EX-
PAND may be somewhat less at the ends of the output series than at time periods for
which there are several input values at both earlier and later times. The curves fit by
PROC EXPAND should not be used for forecasting.

PROC EXPAND normally avoids extrapolation of values beyond the time range of
the nonmissing input data for a series, unless the EXTRAPOLATE option is used.
However, if the start or end of the input series does not correspond to the start or end
of an output interval, some output values may depend in part on an extrapolation.

For example, if FROM=YEAR, TO=WEEK, and OBSERVED=BEGINNING, the
first observation output for a series is for the week of 1 January of the first nonmissing
input year. If 1 January of that year is not a Sunday, the beginning of this week falls

SAS OnlineDoc: Version 8
554

Chapter 11. Details

before the date of the first input value, and therefore a beginning-of-period output
value for this week is extrapolated.

This extrapolation is made only to the extent needed to complete the terminal output
intervals that overlap the endpoints of the input series and is limited to no more than
the width of one FROM= interval or one TO= interval, whichever is less. This re-
striction of the extrapolation to complete terminal output intervals is applied to each
series separately, and it takes into account the OBSERVED= option for the input and
output series.

When the EXTRAPOLATE option is used, the normal restriction on extrapolation is
overridden. Output values are computed for the full time range covered by the input
data set.

For the SPLINE method, extrapolation is performed by a linear projection of the trend
of the cubic spline curve fit to the input data, not by extrapolation of the first and last
cubic segments.

The OBSERVED= Option

The values of the CONVERT statement OBSERVED= option are as follows:

BEGINNING indicates that the data are beginning-of-period values. OB-
SERVED=BEGINNING is the default.

MIDDLE indicates that the data are period midpoint values.

ENDING indicates that the data represent end-of-period values.

TOTAL indicates that the data values represent period totals for the time
interval corresponding to the observation.

AVERAGE indicates that the data values represent period averages.

DERIVATIVE requests that the output series be the derivatives of the cubic spline
curve fit to the input data by the SPLINE method.

If only one value is specified in the OBSERVED= option, that value applies to both
the input and the output series. For example, OBSERVED=TOTAL is the same as
OBSERVED=(TOTAL,TOTAL), which indicates both that the input values represent
totals over the time intervals corresponding to the input observations and that the
converted output values also represent period totals. The value DERIVATIVE can be
used only as the second OBSERVED= option value, and it can be used only when
METHOD=SPLINE is specified or is the default method.

Since the TOTAL, AVERAGE, MIDDLE, and END cases require that the width of
each input interval be known, both the FROM= option and an ID statement are nor-
mally required if one of these observation characteristics is specified for any series.
However, if the FROM= option is not specified, each input interval is assumed to
extend from the ID value for the observation to the ID value of the next observation,
and the width of the interval for the last observation is assumed to be the same as the
width for the next to last observation.

555
SAS OnlineDoc: Version 8

Part 2. General Information

Scale of OBSERVED=AVERAGE Values
The average values are assumed to be expressed in the time units defined by the
FROM= or TO= option. That is, the product of the average value for an inter-
val and the width of the interval is assumed to equal the total value for the inter-
val. For purposes of interpolation, OBSERVED=AVERAGE values are first con-
verted to OBSERVED=TOTAL values using this assumption, and then the interpo-
lated totals are converted back to averages by dividing by the widths of the output
intervals. For example, suppose the options FROM=MONTH, TO=HOUR, and OB-
SERVED=AVERAGE are specified.

Since FROM=MONTH in this example, each input value is assumed to represent an
average rate per day such that the product of the value and the number of days in the
month is equal to the total for the month. The input values are assumed to represent
a per-day rate because FROM=MONTH implies SAS date ID values that measure
time in days, and therefore the widths of MONTH intervals are measured in days. If
FROM=DTMONTH is used instead, the values are assumed to represent a per-second
rate, because the widths of DTMONTH intervals are measured in seconds.

Since TO=HOUR in this example, the output values are scaled as an average rate
per second such that the product of each output value and the number of seconds in
an hour (3600) is equal to the interpolated hourly total. A per-second rate is used
because TO=HOUR implies SAS datetime ID values that measure time in seconds,
and therefore the widths of HOUR intervals are measured in seconds.

Note that the scale assumed for OBSERVED=AVERAGE data is important only
when converting between AVERAGE and another OBSERVED= option, or when
converting between SAS date and SAS datetime ID values. When both the input
and the output series are AVERAGE values, and the units for the ID values are not
changed, the scale assumed does not matter.

For example, suppose you are converting a series gross domestic product (GDP) from
quarterly to monthly. The GDP values are quarterly averages measured at annual
rates. If you want the interpolated monthly values to also be measured at annual rates,
then the option OBSERVED=AVERAGE works fine. Since there is no change of
scale involved in this problem, it makes no difference that PROC EXPAND assumes
daily rates instead of annual rates.

However, suppose you want to convert GDP from quarterly to monthly and also con-
vert from annual rates to monthly rates, so that the result is total gross domestic prod-
uct for the month. Using the option OBSERVED=(AVERAGE,TOTAL) would fail,
because PROC EXPAND assumes the average is scaled to daily, not annual, rates.

One solution is to rescale to quarterly totals and treat the data as totals. You could use
the options TRANSFORMIN=(/ 4) OBSERVED=TOTAL. Alternatively, you could
treat the data as averages but first convert to daily rates. In this case you would use
the options TRANSFORMIN=(/ 365.25) OBSERVED=AVERAGE.

Results of the OBSERVED=DERIVATIVE Option
If the first value of the OBSERVED= option is BEGINNING, TOTAL, or AVER-
AGE, the result is the derivative of the spline curve evaluated at first-of-period
ID values for the output observation. For OBSERVED=(MIDDLE,DERIVATIVE),

SAS OnlineDoc: Version 8
556

Chapter 11. Details

the derivative of the function is evaluated at output interval midpoints. For OB-
SERVED=(END,DERIVATIVE), the derivative is evaluated at end-of-period ID val-
ues.

Conversion Methods

The SPLINE Method
The SPLINE method fits a cubic spline curve to the input values. A cubic spline is
a segmented function consisting of third-degree (cubic) polynomial functions joined
together so that the whole curve and its first and second derivatives are continuous.

For point-in-time input data, the spline curve is constrained to pass through the given
data points. For interval total or average data, the definite integrals of the spline over
the input intervals are constrained to equal the given interval totals.

For boundary constraints, thenot-a-knotcondition is used by default. This means that
the first two spline pieces are constrained to be part of the same cubic curve, as are the
last two pieces. Thus the spline used by PROC EXPAND by default is not the same
as the commonly used natural spline, which uses zero second-derivative endpoint
constraints. While DeBoor (1981) recommends thenot-a-knotconstraint for cubic
spline interpolation, using this constraint can sometimes produce anomalous results
at the ends of the interpolated series. PROC EXPAND provides options to specify
other endpoint constraints for spline curves.

To specify endpoint constraints, use the following form of the METHOD= option.

METHOD=SPLINE(constraint [, constraint])
The first constraint specification applies to the lower endpoint, and the second con-
straint specification applies to the upper endpoint. If only one constraint is specified,
it applies to both the lower and upper endpoints.

Theconstraintspecifications can have the following values:

NOTANOT
specifies the not-a-knot constraint. This is the default.

NATURAL
specifies thenatural splineconstraint. The second derivative of the spline curve is
constrained to be zero at the endpoint.

SLOPE= value
specifies the first derivative of the spline curve at the endpoint.

CURVATURE= value
specifies the second derivative of the spline curve at the endpoint. Specifying CUR-
VATURE=0 is equivalent to specifying the NATURAL option.

For example, to specify natural spline interpolation, use the following option in the
CONVERT or PROC EXPAND statement:

method=spline(natural)

557
SAS OnlineDoc: Version 8

Part 2. General Information

For OBSERVED=BEGINNING, MIDDLE, and END series, the spline knots are
placed at the beginning, middle, and end of each input interval, respectively. For
total or averaged series, the spline knots are set at the start of the first interval, at the
end of the last interval, and at the interval midpoints, except that there are no knots
for the first two and last two midpoints.

Once the cubic spline curve is fit to the data, the spline is extended by adding linear
segments at the beginning and end. These linear segments are used for extrapolating
values beyond the range of the input data.

For point-in-time output series, the spline function is evaluated at the appropriate
points. For interval total or average output series, the spline function is integrated
over the output intervals.

The JOIN Method
The JOIN method fits a continuous curve to the data by connecting successive straight
line segments. (This produces a linear spline.) For point-in-time data, the JOIN
method connects successive nonmissing input values with straight lines. For interval
total or average data, interval midpoints are used as the break points, and ordinates
are chosen so that the integrals of the piecewise linear curve agree with the input
totals.

For point-in-time output series, the JOIN function is evaluated at the appropriate
points. For interval total or average output series, the JOIN function is integrated
over the output intervals.

The STEP Method
The STEP method fits a discontinuous piecewise constant curve. For point-in-time
input data, the resulting step function is equal to the most recent input value. For
interval total or average data, the step function is equal to the average value for the
interval.

For point-in-time output series, the step function is evaluated at the appropriate
points. For interval total or average output series, the step function is integrated over
the output intervals.

The AGGREGATE Method
The AGGREGATE method performs simple aggregation of time series without inter-
polation of missing values.

If the input data are totals or averages, the results are the sums or averages, respec-
tively, of the input values for observations corresponding to the output observations.
That is, if either TOTAL or AVERAGE is specified for the OBSERVED= option, the
METHOD=AGGREGATE result is the sum or mean of the input values correspond-
ing to the output observation. For example, suppose METHOD=AGGREGATE,
FROM=MONTH, and TO=YEAR. For OBSERVED=TOTAL series, the result for
each output year is the sum of the input values over the months of that year. If any
input value is missing, the corresponding sum or mean is also a missing value.

If the input data are point-in-time values, the result value of each output ob-
servation equals the input value for a selected input observation determined by
the OBSERVED= attribute. For example, suppose METHOD=AGGREGATE,

SAS OnlineDoc: Version 8
558

Chapter 11. Details

FROM=MONTH, and TO=YEAR. For OBSERVED=BEGINNING series, January
observations are selected as the annual values. For OBSERVED=MIDDLE series,
July observations are selected as the annual values. For OBSERVED=END series,
December observations are selected as the annual values. If the selected value is
missing, the output annual value is missing.

The AGGREGATE method can be used only when the FROM= intervals are nested
within the TO= intervals. For example, you can use METHOD=AGGREGATE when
FROM=MONTH and TO=QTR because months are nested within quarters. You
cannot use METHOD=AGGREGATE when FROM=WEEK and TO=QTR because
weeks are not nested within quarters.

In addition, the AGGREGATE method cannot convert between point-in-time data
and interval total or average data. Conversions between TOTAL and AVERAGE data
are allowed, but conversions between BEGINNING, MIDDLE, and END are not.

Missing input values produce missing result values for METHOD=AGGREGATE.
However, gaps in the sequence of input observations are not allowed. For example, if
FROM=MONTH, you may have a missing value for a variable in an observation for
a given February. But if an observation for January is followed by an observation for
March, there is a gap in the data, and METHOD=AGGREGATE cannot be used.

When the AGGREGATE method is used, there is no interpolating curve, and there-
fore the EXTRAPOLATE option is not allowed.

METHOD=NONE
The option METHOD=NONE specifies that no interpolation be performed. This
option is normally used in conjunction with the TRANSFORMIN= or TRANSFOR-
MOUT= option.

When METHOD=NONE is specified, there is no difference between the TRANS-
FORMIN= and TRANSFORMOUT= options; if both are specified, the TRANS-
FORMIN= operations are performed first, followed by the TRANSFORMOUT= op-
erations. TRANSFORM= can be used as an abbreviation for TRANSFORMIN=.

METHOD=NONE cannot be used when frequency conversion is specified.

Transformation Operations

The operations that can be used in the TRANSFORMIN= and TRANSFORMOUT=
options are shown in Table 11.1. Operations are applied to each value of the series.
Each value of the series is replaced by the result of the operation.

In Table 11.1,xt or x represents the value of the series at a particular time periodt
before the transformation is applied,yt represents the value of the result series, and
N represents the total number of observations.

The notation [n] indicates that the argumentn is optional; the default is 1. The nota-
tion window is used as the argument for the moving statistics operators, and it indi-
cates that you can specify either an integer number of periodsn or a list ofn weights
in parentheses. The notations indicates the length of seasonality, and it is a required
argument.

559
SAS OnlineDoc: Version 8

Part 2. General Information

Table 11.1. Transformation Operations

Syntax Result
+ number adds the specifiednumber: x+ number

- number subtracts the specifiednumber: x� number

* number multiplies by the specifiednumber: x � number

& number divides by the specifiednumber: x&number

ABS absolute value:jxj
[]
CD–I s

classical decomposition irregular component

CD–Ss classical decomposition seasonal component
CD–SA s classical decomposition seasonally adjusted series
CD–TC s classical decomposition trend-cycle component
CDA–I s classical decomposition (additive) irregular component
CDA–Ss classical decomposition (additive) seasonal component
CDA–SA s classical decomposition (additive) seasonally adjusted series
CEIL smallest integer greater than or equal tox: ceil(x)
CMOVAVE window centered moving average
CMOVCSSwindow centered moving corrected sum of squares
CMOVMAX n centered moving maximum
CMOVMED n centered moving median
CMOVMIN n centered moving minimum
CMOVRANGEn centered moving range
CMOVSTDwindow centered moving standard deviation
CMOVSUM n centered moving sum
CMOVUSSwindow centered moving uncorrected sum of squares
CMOVVAR window centered moving variance
CUAVE [n] cumulative average
CUCSS [n] cumulative corrected sum of squares
CUMAX [n] cumulative maximum
CUMED [n] cumulative median
CUMIN [n] cumulative minimum
CURANGE [n] cumulative range
CUSTD [n] cumulative standard deviation
CUSUM [n] moving sum
CUUSS [n] cumulative uncorrected sum of squares
CUVAR [n] cumulative variance
DIF [n] lag n difference:xt � xt�n

EWMA number exponentially weighted moving average ofx with
smoothing weightnumber, where0 < number < 1:
yt = number xt + (1� number)yt�1.
This operation is also called simple exponential smoothing.

EXP exponential function:exp(x)
FLOOR largest integer less than or equal tox: oor(x)

ILOGIT inverse logistic function: exp(x)
1+exp(x)

LAG [n] value of the seriesn periods earlier:xt�n

SAS OnlineDoc: Version 8
560

Chapter 11. Details

Table 11.1. (continued)

Syntax Result
LEAD [n] value of the seriesn periods later:xt+n

LOG natural logarithm:log(x)
LOGIT logistic function:log(x

1�x)

MAX number maximum ofx andnumber: max(x; number)

MIN number minimum ofx andnumber: min(x; number)

> number missing value ifx <= number, elsex
>= number missing value ifx < number, elsex
= number missing value ifx 6= number, elsex
^= number missing value ifx = number, elsex
< number missing value ifx >= number, elsex
<= number missing value ifx > number, elsex
MOVAVE n moving average ofn neighboring values:

1
n

Pn�1
j=0 xt�j

MOVAVE(w1 : : : wn) weighted moving average of neighboring values:
(
Pn

j=1wjxt�j+1)=(
Pn

j=1wj)

MOVAVE window backward moving average
MOVCSSwindow backward moving corrected sum of squares
MOVMAX n backward moving maximum
MOVMED n backward moving median
MOVMIN n backward moving minimum
MOVRANGE n backward moving range
MOVSTD window backward moving standard deviation
MOVSUM n backward moving sum
MOVUSSwindow backward moving uncorrected sum of squares
MOVVAR window backward moving variance
MISSONLY <MEAN> indicates that the following moving time window

statistic operator should replace only missing values with the
moving statistic and should leave nonmissing values unchanged.
If the option MEAN is specified, then missing values are
replaced by the overall mean of the series.

NEG changes the sign:�x
NOMISS indicates that the following moving time window

statistic operator should not allow missing values.
RECIPROCAL reciprocal:1=x
REVERSE reverse the series:x

N�t

SETMISSnumber replaces missing values in the series with the number specified.
SIGN -1, 0, or 1 asx is < 0, equals 0, or > 0 respectively
SQRT square root:

p
x

SQUARE square:x2

SUM cumulative sum:
Pt

j=1 xj
SUM n cumulative sum ofn-period lags:

xt + xt�n + xt�2n + : : :

TRIM n setsxt to missing a value ift�n or t�N � n+ 1.
TRIMLEFT n setsxt to missing a value ift�n.

561
SAS OnlineDoc: Version 8

Part 2. General Information

Table 11.1. (continued)

Syntax Result
TRIMRIGHT n setsxt to missing a value ift�N � n+ 1.

Moving Time Window Operators
Some operators compute statistics for a set of values within a moving time window;
these are calledmoving time window operators. There are backward and centered
versions of these operators.

The centered moving time window operators are CMOVAVE, CMOVCSS, CMOV-
MAX, CMOVMED, CMOVMIN, CMOVRANGE, CMOVSTD, CMOVSUM,
CMOVUSS, and CMOVVAR. These operators compute statistics of then values
xi for observationst� (n� 1)=2 � i � t+ (n� 1)=2.

The backward moving time window operators are MOVAVE, MOVCSS, MOVMAX,
MOVMED, MOVMIN, MOVRANGE, MOVSTD, MOVSUM, MOVUSS, and
MOVVAR. These operators compute statistics of then valuesxt; xt�1; : : :; xt�n+1.

All the moving time window operators accept an argumentn specifying the num-
ber of periods to include in the time window. For example, the following statement
computes a five-period backward moving average of X.

convert x=y / transformout=(movave 5);

In this example, the final result isyt = (xt + xt�1 + xt�2 + xt�3 + xt�4)=5.

The following statement computes a five-period centered moving average of X.

convert x=y / transformout=(cmovave 5);

In this example, the final result isyt = (xt�2 + xt�1 + xt + xt+1 + xt+2=5.

If the window with a centered moving time window operator is not an odd number,
one more lagged value than lead value is included in the time window. For example,
the result of the CMOVAVE 4 operator isyt = (xt�2 + xt�1 + xt + xt+1)=4.

You can compute a forward moving time window operation by combining a back-
ward moving time window operator with the REVERSE operator. For example, the
following statement computes a five-period forward moving average of X.

convert x=y / transformout=(reverse movave 5 reverse);

In this example, the final result isyt = (xt + xt+1 + xt+2 + xt+3 + xt+4)=5.

Some of the moving time window operators enable you to specify a list of weight val-
ues to compute weighted statistics. These are CMOVAVE, CMOVCSS, CMOVSTD,
CMOVUSS, CMOVVAR, MOVAVE, MOVCSS, MOVSTD, MOVUSS, and MOV-
VAR.

SAS OnlineDoc: Version 8
562

Chapter 11. Details

To specify a weighted moving time window operator, enter the weight values in
parentheses after the operator name. The window widthn is equal to the number
of weights that you specify; do not specifyn.

For example, the following statement computes a weighted five-period centered mov-
ing average of X.

convert x=y / transformout=(cmovave(.1 .2 .4 .2 .1));

In this example, the final result isyt = :1xt�2 + :2xt�1 + :4xt + :2xt+1 + :1xt+2.

The weight values must be greater than zero. If the weights do not sum to 1, the
weights specified are divided by their sum to produce the weights used to compute
the statistic.

At the beginning of the series, and at the end of the series for the centered operators, a
complete time window is not available. The computation of the moving time window
operators is adjusted for these boundary conditions as follows.

For backward moving window operators, the width of the time window is shortened
at the beginning of the series. For example, the results of the MOVSUM 3 operator
are

y1 = x1

y2 = x1 + x2

y3 = x1 + x2 + x3

y4 = x2 + x3 + x4

y5 = x3 + x4 + x5

� � �

For centered moving window operators, the width of the time window is shortened at
the beginning and the end of the series due to unavailable observations. For example,
the results of the CMOVSUM 5 operator are

y1 = x1 + x2 + x3

y2 = x1 + x2 + x3 + x4

y3 = x1 + x2 + x3 + x4 + x5

y4 = x2 + x3 + x4 + x5 + x6

� � �
y
N�2

= x
N�4

+ x
N�3

+ x
N�2

+ x
N�1

+ x
N

y
N�1

= x
N�3

+ x
N�2

+ x
N�1

+ x
N

y
N

= x
N�2

+ x
N�1

+ x
N

563
SAS OnlineDoc: Version 8

Part 2. General Information

For weighted moving time window operators, the weights for the unavailable or un-
used observations are ignored and the remaining weights renormalized to sum to 1.

Cumulative Statistics Operators
Some operators compute cumulative statistics for a set of current and previous values
of the series. The cumulative statistics operators are CUAVE, CUCSS, CUMAX,
CUMED, CUMIN, CURANGE, CUSTD, CUSUM, CUUSS, and CUVAR. These
operators compute statistics of the valuesxt; xt�n; xt�2n; : : :; xt�in for t� in > 0.

By default, the cumulative statistics operators compute the statistics from all previous
values of the series, so thatyt is based on the set of valuesx1; x2; : : :; xt. For example,
the following statement computesyt as the cumulative sum of nonmissingxi values
for i�t.

convert x=y / transformout=(cusum);

You can also specify a lag increment argumentn for the cumulative statistics oper-
ators. In this case, the statistic is computed from the current and everynth previous
value. For example, the following statement computesyt as the cumulative sum of
nonmissingxi values for oddi whent is odd and for eveni whent is even.

convert x=y / transformout=(cusum 2);

The results of this example are

y1 = x1

y2 = x2

y3 = x1 + x3

y4 = x2 + x4

y5 = x1 + x3 + x5

y6 = x2 + x4 + x6

� � �

Missing Values
You can truncate the length of the result series by using the TRIM, TRIMLEFT, and
TRIMRIGHT operators to set values to missing at the beginning or end of the series.

You can use these functions to trim the results of moving time window operators so
that the result series contains only values computed from a full width time window.
For example, the following statements compute a centered five-period moving aver-
age of X, and they set to missing values at the ends of the series that are averages of
fewer than five values.

convert x=y / transformout=(movave 5 trim 2);

Normally, the moving time window and cumulative statistics operators ignore miss-
ing values and compute their results for the nonmissing values. When preceded by

SAS OnlineDoc: Version 8
564

Chapter 11. Details

the NOMISS operator, these functions produce a missing result if any value within
the time window is missing.

The NOMISS operator does not perform any calculations, but serves to modify the
operation of the moving time window operator that follows it. The NOMISS operator
has no effect unless it is followed by a moving time window operator.

For example, the following statement computes a five-period moving average of the
variable X but produces a missing value when any of the five values are missing.

convert x=y / transformout=(nomiss movave 5);

The following statement computes the cumulative sum of the variable X but produces
a missing value for all periods after the first missing X value.

convert x=y / transformout=(nomiss cusum);

Similar to the NOMISS operator, the MISSONLY operator does not perform any
calculations (unless followed by the MEAN option), but it serves to modify the op-
eration of the moving time window operator that follows it. When preceded by the
MISSONLY operator, these moving time window operators replace any missing val-
ues with the moving statistic and leave nonmissing values unchanged.

For example, the following statement replaces any missing values of the variable X
with an exponentially weighted moving average of the past values of X and leaves
nonmissing values unchanged. The missing values are then interpolated using an
exponentially weighted moving average or simple exponential smoothing.

convert x=y / transformout=(missonly ewma 0.3);

For example, the following statement replaces any missing values of the variable X
with the overall mean of X.

convert x=y / transformout=(missonly mean);

You can use the SETMISS operator to replace missing values with a specified number.
For example, the following statement replaces any missing values of the variable X
with the number 8.77.

convert x=y / transformout=(setmiss 8.77);

Classical Decomposition Operators
If yt is a seasonal time series withs observations per season,classical decomposition
methods “break down” a time series into four components: trend, cycle, seasonal, and
irregular components. The trend and cycle components are often combined to form
the trend-cycle component. There are two forms of decomposition: multiplicative
and additive.

565
SAS OnlineDoc: Version 8

Part 2. General Information

yt = TCtStIt

yt = TCt + St + It

where

TCt is the trend-cycle component.

St is the seasonal component or seasonal factors that are periodic with
period s and with mean one (multiplicative) or zero (additive).

It is the irregular or random component that is assumed to have mean
one (multiplicative) or zero (additive).

The CD–TC operator computes the trend-cycle component for both the multiplicative
and additive models. Whens is odd, this operator computes ans-period centered
moving average as follows:

TCt =

bs=2cX
k=�bs=2c

yt+k=s

In the cases = 5, the CD–TC s operator is equivalent to the following CMOVAVE
operator:

convert x=tc / transformout=(cmovave 5 trim 2);

Whens is even, the CD–TCsoperator computes the average of two adjacents-period
centered moving averages as follows:

TCt =

bs=2c�1X
k=�bs=2c

(yt+k + yt+1+k)=2s

In the cases = 12, the CD–TC s operator is equivalent to the following CMOVAVE
operator:

convert x=tc / transformout=(cmovave 12 movave 2 trim 6);

The CD–S and CDA–S operators compute the seasonal components for the multi-
plicative and additive models, respectively. First, the trend-cycle component is com-
puted as shown previously. Second, the seasonal-irregular component is computed
by SIt = yt=TCt for the multiplicative model and bySIt = yt � TCt for the addi-
tive model. The seasonal component is obtained by averaging the seasonal-irregular
component for each season.

Sk+js =
X

t=k mod s

SIt
n=s

SAS OnlineDoc: Version 8
566

Chapter 11. Details

where0�j�n=s and1�k�s. The seasonal components are normalized to sum to
one (multiplicative) or zero (additive).

The CD–I and CDA–I operators compute the irregular component for the multiplica-
tive and additive models respectively. First, the seasonal component is computed as
shown previously. Next, the irregular component is determined from the seasonal-
irregular and seasonal components as appropriate.

It = SIt=St

It = SIt � St

The CD–SA and CDA–SA operators compute the seasonally adjusted time series
for the multiplicative and additive models, respectively. After decomposition, the
original time series can be seasonally adjusted as appropriate.

~yt = yt=St = TCtIt

~yt = yt � St = TCt + It

The following statements compute all the multiplicative classical decomposition
components for the variable X fors=12.

convert x=tc / transformout=(cd_tc 12);
convert x=s / transformout=(cd_s 12);
convert x=i / transformout=(cd_i 12);
convert x=sa / transformout=(cd_sa 12);

The following statements compute all the additive classical decomposition compo-
nents for the variable X fors=4.

convert x=tc / transformout=(cd_tc 4);
convert x=s / transformout=(cda_s 4);
convert x=i / transformout=(cda_i 4);
convert x=sa / transformout=(cda_sa 4);

OUT= Data Set

The OUT= output data set contains the following variables:

� the BY variables, if any

� an ID variable that identifies the time period for each output observation

567
SAS OnlineDoc: Version 8

Part 2. General Information

� the result variables

� if no frequency conversion is performed (so that there is one output observation
corresponding to each input observation), all the other variables in the input
data set are copied to the output data set

The ID variable in the output data set is named as follows:

� If an ID statement is used, the new ID variable has the same name as the vari-
able used in the ID statement.

� If no ID statement is used, but the FROM= option is used, then the name of
the ID variable is either DATE or DATETIME, depending on whether the TO=
option indicates SAS date or SAS datetime values.

� If neither an ID statement nor the TO= option is used, the ID variable is named
TIME.

OUTEST= Data Set

The OUTEST= data set contains the coefficients of the spline curves fit to the input
series. The OUTEST= data set is of interest if you want to verify the interpolating
curve PROC EXPAND uses, or if you want to use this function in another context,
(for example, in a SAS/IML program).

The OUTEST= data set contains the following variables:

� the BY variables, if any

� VARNAME, a character variable containing the name of the input variable to
which the coefficients apply

� METHOD, a character variable containing the value of the METHOD= option
used to fit the series

� OBSERVED, a character variable containing the first letter of the OB-
SERVED= option name for the input series

� the ID variable that contains the lower breakpoint (or “knot”) of the spline seg-
ment to which the coefficients apply. The ID variable has the same name as
the variable used in the ID statement. If an ID statement is not used, but the
FROM= option is used, then the name of the ID variable is DATE or DATE-
TIME, depending on whether the FROM= option indicates SAS date or SAS
datetime values. If neither an ID statement nor the FROM= option is used, the
ID variable is named TIME.

� CONSTANT, the constant coefficient for the spline segment

� LINEAR, the linear coefficient for the spline segment

� QUAD, the quadratic coefficient for the spline segment

� CUBIC, the cubic coefficient for the spline segment

SAS OnlineDoc: Version 8
568

Chapter 11. Details

For each BY group, the OUTEST= data set contains observations for each polyno-
mial segment of the spline curve fit to each input series. To obtain the observations
defining the spline curve used for a series, select the observations where the value of
VARNAME equals the name of the series.

The observations for a series in the OUTEST= data set encode the spline function fit
to the series as follows. Letai; bi; ci; anddi be the values of the variables CUBIC,
QUAD, LINEAR, and CONSTANT, respectively, for theith observation for the se-
ries. Letxi be the value of the ID variable for theith observation for the series. Letn
be the number of observations in the OUTEST= data set for the series. The value of
the spline function evaluated at a pointx is

f(x) = ai(x� xi)
3 + bi(x� xi)

2 + ci(x� xi) + di

where the segment numberi is selected as follows:

i =

(i such thatxi � x < xi+1, 1 � i < n
1 if x < x1
n if x � xn

In other words, ifx is between the first and last ID values (x1�x < xn), use the
observation from the OUTEST= data set with the largest ID value less than or equal
to x. If x is less than the first ID valuex1, theni = 1. If x is greater than or equal to
the last ID value (x�xn), theni = n.

For METHOD=JOIN, the curve is a linear spline, and the values of CUBIC and
QUAD are 0. For METHOD=STEP, the curve is a constant spline, and the values of
CUBIC, QUAD, and LINEAR are 0. For METHOD=AGGREGATE, no coefficients
are output.

569
SAS OnlineDoc: Version 8

Part 2. General Information

Examples

Example 11.1. Combining Monthly and Quarterly Data

This example combines monthly and quarterly data sets by interpolating monthly
values for the quarterly series. The series are extracted from two small sample data
sets stored in the SASHELP library. These data sets were contributed by Citicorp
Data Base services and contain selected U.S. macro economic series.

The quarterly series gross domestic product (GDP) and implicit price deflator (GD)
are extracted from SASHELP.CITIQTR. The monthly series industrial production
index (IP) and unemployment rate (LHUR) are extracted from SASHELP.CITIMON.
Only observations for the years 1990 and 1991 are selected. PROC EXPAND is then
used to interpolate monthly estimates for the quarterly series, and the interpolated
series are merged with the monthly data.

The following statements extract and print the quarterly data, shown in Output 11.1.1.

data qtrly;
set sashelp.citiqtr;
where date >= ’1jan1990’d &

date < ’1jan1992’d ;
keep date gdp gd;

run;

title "Quarterly Data";
proc print data=qtrly;
run;

Output 11.1.1. Quarterly Data Set

Quarterly Data

Obs DATE GD GDP

1 1990:1 111.100 5422.40
2 1990:2 112.300 5504.70
3 1990:3 113.600 5570.50
4 1990:4 114.500 5557.50
5 1991:1 115.900 5589.00
6 1991:2 116.800 5652.60
7 1991:3 117.400 5709.20
8 1991:4 . 5736.60

The following statements extract and print the monthly data, shown in Output 11.1.2.

data monthly;
set sashelp.citimon;
where date >= ’1jan1990’d &

date < ’1jan1992’d ;
keep date ip lhur;

run;

SAS OnlineDoc: Version 8
570

Chapter 11. Examples

title "Monthly Data";
proc print data=monthly;
run;

Output 11.1.2. Monthly Data Set

Monthly Data

Obs DATE IP LHUR

1 JAN1990 107.500 5.30000
2 FEB1990 108.500 5.30000
3 MAR1990 108.900 5.20000
4 APR1990 108.800 5.40000
5 MAY1990 109.400 5.30000
6 JUN1990 110.100 5.20000
7 JUL1990 110.400 5.40000
8 AUG1990 110.500 5.60000
9 SEP1990 110.600 5.70000

10 OCT1990 109.900 5.80000
11 NOV1990 108.300 6.00000
12 DEC1990 107.200 6.10000
13 JAN1991 106.600 6.20000
14 FEB1991 105.700 6.50000
15 MAR1991 105.000 6.70000
16 APR1991 105.500 6.60000
17 MAY1991 106.400 6.80000
18 JUN1991 107.300 6.90000
19 JUL1991 108.100 6.80000
20 AUG1991 108.000 6.80000
21 SEP1991 108.400 6.80000
22 OCT1991 108.200 6.90000
23 NOV1991 108.000 6.90000
24 DEC1991 107.800 7.10000

The following statements interpolate monthly estimates for the quarterly series and
merge the interpolated series with the monthly data. The resulting combined data set
is then printed, as shown in Output 11.1.3.

proc expand data=qtrly out=temp from=qtr to=month;
convert gdp gd / observed=average;
id date;

run;

data combined;
merge monthly temp;
by date;

run;

title "Combined Data Set";
proc print data=combined;
run;

571
SAS OnlineDoc: Version 8

Part 2. General Information

Output 11.1.3. Combined Data Set

Combined Data Set

Obs DATE IP LHUR GDP GD

1 JAN1990 107.500 5.30000 5409.69 110.879
2 FEB1990 108.500 5.30000 5417.67 111.048
3 MAR1990 108.900 5.20000 5439.39 111.367
4 APR1990 108.800 5.40000 5470.58 111.802
5 MAY1990 109.400 5.30000 5505.35 112.297
6 JUN1990 110.100 5.20000 5538.14 112.801
7 JUL1990 110.400 5.40000 5563.38 113.264
8 AUG1990 110.500 5.60000 5575.69 113.641
9 SEP1990 110.600 5.70000 5572.49 113.905

10 OCT1990 109.900 5.80000 5561.64 114.139
11 NOV1990 108.300 6.00000 5553.83 114.451
12 DEC1990 107.200 6.10000 5556.92 114.909
13 JAN1991 106.600 6.20000 5570.06 115.452
14 FEB1991 105.700 6.50000 5588.18 115.937
15 MAR1991 105.000 6.70000 5608.68 116.314
16 APR1991 105.500 6.60000 5630.81 116.600
17 MAY1991 106.400 6.80000 5652.92 116.812
18 JUN1991 107.300 6.90000 5674.06 116.988
19 JUL1991 108.100 6.80000 5693.43 117.164
20 AUG1991 108.000 6.80000 5710.54 117.380
21 SEP1991 108.400 6.80000 5724.11 117.665
22 OCT1991 108.200 6.90000 5733.65 .
23 NOV1991 108.000 6.90000 5738.46 .
24 DEC1991 107.800 7.10000 5737.75 .

Example 11.2. Interpolating Irregular Observations

This example shows the interpolation of a series of values measured at irregular points
in time. The data are hypothetical. Assume that a series of randomly timed qual-
ity control inspections are made and defect rates for a process are measured. The
problem is to produce two reports: estimates of monthly average defect rates for the
months within the period covered by the samples, and a plot of the interpolated defect
rate curve over time.

The following statements read and print the input data, as shown in Output 11.2.1.

data samples;
input date : date9. defects @@;
label defects = "Defects per 1000 units";
format date date9.;

datalines;
13jan1992 55 27jan1992 73 19feb1992 84 8mar1992 69
27mar1992 66 5apr1992 77 29apr1992 63 11may1992 81
25may1992 89 7jun1992 94 23jun1992 105 11jul1992 97
15aug1992 112 29aug1992 89 10sep1992 77 27sep1992 82
;

title "Sampled Defect Rates";
proc print data=samples;
run;

SAS OnlineDoc: Version 8
572

Chapter 11. Examples

Output 11.2.1. Measured Defect Rates

Sampled Defect Rates

Obs date defects

1 13JAN1992 55
2 27JAN1992 73
3 19FEB1992 84
4 08MAR1992 69
5 27MAR1992 66
6 05APR1992 77
7 29APR1992 63
8 11MAY1992 81
9 25MAY1992 89

10 07JUN1992 94
11 23JUN1992 105
12 11JUL1992 97
13 15AUG1992 112
14 29AUG1992 89
15 10SEP1992 77
16 27SEP1992 82

To compute the monthly estimates, use PROC EXPAND with the TO=MONTH op-
tion and specify OBSERVED=(BEGINNING,AVERAGE). The following statements
interpolate the monthly estimates.

proc expand data=samples out=monthly to=month;
id date;
convert defects / observed=(beginning,average);

run;

title "Estimated Monthly Average Defect Rates";
proc print data=monthly;
run;

The results are printed in Output 11.2.2.

Output 11.2.2. Monthly Average Estimates

Estimated Monthly Average Defect Rates

Obs date defects

1 JAN1992 59.323
2 FEB1992 82.000
3 MAR1992 66.909
4 APR1992 70.205
5 MAY1992 82.762
6 JUN1992 99.701
7 JUL1992 101.564
8 AUG1992 105.491
9 SEP1992 79.206

To produce the plot, first use PROC EXPAND with TO=DAY to interpolate a full set
of daily values, naming the interpolated series INTERPOL. Then merge this data set
with the samples so you can plot both the measured and the interpolated values on
the same graph. PROC GPLOT is used to plot the curve. The actual sample points

573
SAS OnlineDoc: Version 8

Part 2. General Information

are plotted with asterisks. The following statements interpolate and plot the defects
rate curve.

proc expand data=samples out=daily to=day;
id date;
convert defects = interpol;

run;

data daily;
merge daily samples;
by date;

run;

title "Plot of Interpolated Defect Rate Curve";
proc gplot data=daily;

axis2 label=(a=-90 r=90);
symbol1 v=none i=join;
symbol2 v=star i=none;
plot interpol * date = 1 defects * date = 2 /

vaxis=axis2 overlay;
run;
quit;

The plot is shown in Output 11.2.3.

Output 11.2.3. Interpolated Defects Rate Curve

SAS OnlineDoc: Version 8
574

Chapter 11. Examples

Example 11.3. Using Transformations

This example shows the use of PROC EXPAND to perform various transformations
of time series. The following statements read in monthly values for a variable X.

data test;
input year qtr x;
date = yyq(year, qtr);
format date yyqc.;

datalines;
1989 3 5238
1989 4 5289
1990 1 5375
1990 2 5443
1990 3 5514
1990 4 5527
1991 1 5557
1991 2 5615
;

The following statements use PROC EXPAND to compute lags and leads and a 3-
period moving average of the X series.

proc expand data=test out=out method=none;
id date;
convert x = x_lag2 / transform=(lag 2);
convert x = x_lag1 / transform=(lag 1);
convert x;
convert x = x_lead1 / transform=(lead 1);
convert x = x_lead2 / transform=(lead 2);
convert x = x_movave / transform=(movave 3);

run;

title "Transformed Series";
proc print data=out;
run;

Because there are no missing values to interpolate and no frequency conversion, the
METHOD=NONE option is used to prevent PROC EXPAND from performing un-
necessary computations. Because no frequency conversion is done, all variables in
the input data set are copied to the output data set. The CONVERT X; statement is
included to control the position of X in the output data set. This statement can be
omitted, in which case X is copied to the output data set following the new variables
computed by PROC EXPAND.

The results are shown in Output 11.3.1.

575
SAS OnlineDoc: Version 8

Part 2. General Information

Output 11.3.1. Output Data Set with Transformed Variables

Transformed Series

Obs date x_lag2 x_lag1 x x_lead1 x_lead2 x_movave year qtr

1 1989:3 . . 5238 5289 5375 5238.00 1989 3
2 1989:4 . 5238 5289 5375 5443 5263.50 1989 4
3 1990:1 5238 5289 5375 5443 5514 5300.67 1990 1
4 1990:2 5289 5375 5443 5514 5527 5369.00 1990 2
5 1990:3 5375 5443 5514 5527 5557 5444.00 1990 3
6 1990:4 5443 5514 5527 5557 5615 5494.67 1990 4
7 1991:1 5514 5527 5557 5615 . 5532.67 1991 1
8 1991:2 5527 5557 5615 . . 5566.33 1991 2

References

DeBoor, Carl (1981),A Practical Guide to Splines, New York: Springer-Verlag.

Levenbach, H. and Cleary, J.P. (1984),The Modern Forecaster, Belmont, CA: Life-
time Learning Publications (a division of Wadsworth, Inc.), 129-133.

Makridakis, S. and Wheelwright, S.C. (1978),Interactive Forecasting: Univariate
and Multivariate Methods, Second Edition, San Francisco: Holden-Day, 198-
201.

Wheelwright, S.C. and Makridakis, S. (1973),Forecasting Methods for Management,
Third Edition, New York: Whiley-Interscience, 123-133.

SAS OnlineDoc: Version 8
576

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ETS User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1546 pp.

SAS/ETS User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–489–6
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

