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Chapter 14
The MODEL Procedure

Overview

The MODEL procedure analyzes models in which the relationships among the vari-
ables comprise a system of one or more nonlinear equations. Primary uses of the
MODEL procedure are estimation, simulation, and forecasting of nonlinear simulta-
neous equation models.

PROC MODEL features include

� SAS programming statements to define simultaneous systems of nonlinear
equations

� tools to analyze the structure of the simultaneous equation system

� ARIMA, PDL, and other dynamic modeling capabilities

� tools to specify and estimate the error covariance structure

� tools to estimate and solve ordinary differential equations

� the following methods for parameter estimation:

– Ordinary Least Squares (OLS)

– Two-Stage Least Squares (2SLS)

– Seemingly Unrelated Regression (SUR) and iterative SUR (ITSUR)

– Three-Stage Least Squares (3SLS) and iterative 3SLS (IT3SLS)

– Generalized Method of Moments (GMM)

– Full Information Maximum Likelihood (FIML)

� simulation and forecasting capabilities

� Monte Carlo simulation

� goal seeking solutions

A system of equations can be nonlinear in the parameters, nonlinear in the observed
variables, or nonlinear in both the parameters and the variables.Nonlinear in the
parameters means that the mathematical relationship between the variables and pa-
rameters is not required to have a linear form. (A linear model is a special case of a
nonlinear model.) A general nonlinear system of equations can be written as

q1 (y1;t; y2;t; : : :; yg;t; x1;t; x2;t; : : :; xm;t; �1; �2; : : :; �p) = �1;t
q2 (y1;t; y2;t; : : :; yg;t; x1;t; x2;t; : : :; xm;t; �1; �2; : : :; �p) = �2;t
...
qg (y1;t; y2;t; : : :; yg;t; x1;t; x2;t; : : :; xm;t; �1; �2; : : :; �p) = �g;t
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Part 2. General Information

whereyi;t is an endogenous variable,xi;t is an exogenous variable,�i is a parameter,
and�i is the unknown error. The subscriptt represents time or some index to the data.
In econometrics literature, the observed variables are eitherendogenous(dependent)
variables orexogenous(independent) variables. This system can be written more
succinctly in vector form as

q(yt;xt; �) = �t

This system of equations is ingeneral formbecause the error term is by itself on
one side of the equality. Systems can also be written innormalized formby placing
the endogenous variable on one side of the equality, with each equation defining
a predicted value for a unique endogenous variable. A normalized form equation
system can be written in vector notation as

yt = f(yt;xt; �) + �t:

PROC MODEL handles equations written in both forms.

Econometric models often explain the current values of the endogenous variables as
functions of past values of exogenous and endogenous variables. These past values
are referred to aslaggedvalues, and the variablext�i is called lagi of the variable
xt. Using lagged variables, you can create adynamic, or time dependent, model. In
the preceding model systems, the lagged exogenous and endogenous variables are
included as part of the exogenous variables.

If the data are time series, so thatt indexes time (see Chapter 2, “Working with Time
Series Data,” for more information on time series), it is possible that�t depends on
�t�i or, more generally, the�t’s are not identically and independently distributed. If
the errors of a model system are autocorrelated, the standard error of the estimates of
the parameters of the system will be inflated.

Sometimes the�i’s are not identically distributed because the variance of� is not
constant. This is known asheteroscedasticity. Heteroscedasticity in an estimated
model can also inflate the standard error of the estimates of the parameters. Using a
weighted estimation can sometimes eliminate this problem. Alternately, a variance
model such as GARCH or EGARCH can be estimated to correct for heteroscedas-
ticity. If the proper weighting scheme and the form of the error model is difficult
to determine, generalized methods of moments (GMM) estimation can be used to
determine parameter estimates that are asymptotically more efficient than the OLS
parameter estimates.

Other problems may also arise when estimating systems of equations. Consider the
system of equations:

y1;t = �1 + (�2 + �3�
t
4)
�1 + �5y2;t + �1;t

y2;t = �6 + (�7 + �8�
t
9)
�1 + �10y1;t + �2;t

which is nonlinear in its parameters and cannot be estimated with linear regression.
This system of equations represents a rudimentary predator-prey process withy1 as
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Chapter 14. Overview

the prey andy2 as the predator (the second term in both equations is a logistics curve).
The two equations must be estimated simultaneously because of the cross dependency
of y’s. Nonlinear ordinary least-squares estimation of these equations will produce
biased and inconsistent parameter estimates. This is calledsimultaneous equation
bias.

One method to remove simultaneous equation bias, in the linear case, is to replace the
endogenous variables on the right-hand side of the equations with predicted values
that are uncorrelated with the error terms. These predicted values can be obtained
through a preliminary, or "first stage,"instrumental variable regression. Instrumental
variables, which are uncorrelated with the error term, are used as regressors to model
the predicted values. The parameter estimates are obtained by a second regression
using the predicted values of the regressors. This process is calledtwo-stage least
squares.

In the nonlinear case, nonlinear ordinary least-squares estimation is performed itera-
tively using a linearization of the model with respect to the parameters. The instru-
mental solution to simultaneous equation bias in the nonlinear case is the same as
the linear case except the linearization of the model with respect to the parameters is
predicted by the instrumental regression. Nonlinear two-stage least squares is one of
several instrumental variables methods available in the MODEL procedure to handle
simultaneous equation bias.

When you have a system of several regression equations, the random errors of the
equations can be correlated. In this case, the large-sample efficiency of the estimation
can be improved by using a joint generalized least-squares method that takes the
cross-equation correlations into account. If the equations are not simultaneous (no
dependent regressors), thenseemingly unrelated regression(SUR) can be used. The
SUR method requires an estimate of the cross-equation error covariance matrix,�.
The usual approach is to first fit the equations using OLS, compute an estimate�̂ from
the OLS residuals, and then perform the SUR estimation based on�̂. The MODEL
procedure estimates� by default, or you can supply your own estimate of�.

If the equation system is simultaneous, you can combine the 2SLS and SUR methods
to take into account both simultaneous equation bias and cross-equation correlation
of the errors. This is calledthree-stage least squaresor 3SLS.

A different approach to the simultaneous equation bias problem is the full information
maximum likelihood, or FIML, estimation method. FIML does not require instru-
mental variables, but it assumes that the equation errors have a multivariate normal
distribution. 2SLS and 3SLS estimation do not assume a particular distribution for
the errors.

Once a nonlinear model has been estimated, it can be used to obtain forecasts. If
the model is linear in the variables you want to forecast, a simple linear solve can
generate the forecasts. If the system is nonlinear, an iterative procedure must be used.
The preceding example system is linear in its endogenous variables. The MODEL
procedure’s SOLVE statement is used to forecast nonlinear models.

One of the main purposes of creating models is to obtain an understanding of the
relationship among the variables. There are usually only a few variables in a model
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Part 2. General Information

you can control (for example, the amount of money spent on advertising). Often you
want to determine how to change the variables under your control to obtain some
target goal. This process is calledgoal seeking. PROC MODEL allows you to solve
for any subset of the variables in a system of equations given values for the remaining
variables.

The nonlinearity of a model creates two problems with the forecasts: the forecast
errors are not normally distributed with zero mean, and no formula exits to calculate
the forecast confidence intervals. PROC MODEL provides Monte Carlo techniques,
which, when used with the covariance of the parameters and error covariance matrix,
can produce approximate error bounds on the forecasts.
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Getting Started

This section introduces the MODEL procedure and shows how to use PROC MODEL
for several kinds of nonlinear regression analysis and nonlinear systems simulation
problems.

Nonlinear Regression Analysis

One of the most important uses of PROC MODEL is to estimate unknown parameters
in a nonlinear model. A simple nonlinear model has the form:

y = f(x; �) + �

wherex is a vector of exogenous variables. To estimate unknown parameters using
PROC MODEL, do the following:

1. Use the DATA= option in a PROC MODEL statement to specify the input SAS
data set containingy andx, the observed values of the variables.

2. Write the equation for the model using SAS programming statements, includ-
ing all parameters and arithmetic operators but leaving off the unobserved error
component,�.

3. Use a FIT statement to fit the model equation to the input data to determine the
unknown parameters,�.

An Example
The SASHELP library contains the data set CITIMON, which contains the variable
LHUR, the monthly unemployment figures, and the variable IP, the monthly industrial
production index. You suspect that the unemployment rates are inversely proportional
to the industrial production index. Assume that these variables are related by the
following nonlinear equation:

lhur =
1

a � ip + b
+ c + �

In this equationa, b, andc are unknown coefficients and� is an unobserved random
error.

The following statements illustrate how to use PROC MODEL to estimate values for
a, b, andc from the data in SASHELP.CITIMON.

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;

run;

Notice that the model equation is written as a SAS assignment statement. The vari-
able LHUR is assumed to be the dependent variable because it is named in the FIT
statement and is on the left-hand side of the assignment.
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PROC MODEL determines that LHUR and IP are observed variables because they
are in the input data set. A, B, and C are treated as unknown parameters to be esti-
mated from the data because they are not in the input data set. If the data set contained
a variable named A, B, or C, you would need to explicitly declare the parameters with
a PARMS statement.

In response to the FIT statement, PROC MODEL estimates values for A, B, and C
using nonlinear least squares and prints the results. The first part of the output is a
"Model Summary" table, shown in Figure 14.1.

The MODEL Procedure

Model Summary

Model Variables 1
Parameters 3
Equations 1
Number of Statements 1

Model Variables LHUR
Parameters a b c

Equations LHUR

Figure 14.1. Model Summary Report

This table details the size of the model, including the number of programming state-
ments defining the model, and lists the dependent variables (LHUR in this case), the
unknown parameters (A, B, and C), and the model equations. In this case the equation
is named for the dependent variable, LHUR.

PROC MODEL then prints a summary of the estimation problem, as shown in Figure
14.2.

The MODEL Procedure

The Equation to Estimate is

LHUR = F(a, b, c(1))

Figure 14.2. Estimation Problem Report

The notation used in the summary of the estimation problem indicates that LHUR is
a function of A, B, and C, which are to be estimated by fitting the function to the
data. If the partial derivative of the equation with respect to a parameter is a simple
variable or constant, the derivative is shown in parentheses after the parameter name.
In this case, the derivative with respect to the intercept C is 1. The derivatives with
respect to A and B are complex expressions and so are not shown.

Next, PROC MODEL prints an estimation summary as shown in Figure 14.3.
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The MODEL Procedure
OLS Estimation Summary

Data Set Options

DATA= SASHELP.CITIMON

Minimization Summary

Parameters Estimated 3
Method Gauss
Iterations 10

Final Convergence Criteria

R 0.000737
PPC(b) 0.003943
RPC(b) 0.00968
Object 4.784E-6
Trace(S) 0.533325
Objective Value 0.522214

Observations Processed

Read 145
Solved 145
Used 144
Missing 1

Figure 14.3. Estimation Summary Report

The estimation summary provides information on the iterative process used to com-
pute the estimates. The heading "OLS Estimation Summary" indicates that the non-
linear ordinary least-squares (OLS) estimation method is used. This table indicates
that all 3 parameters were estimated successfully using 144 nonmissing observations
from the data set SASHELP.CITIMON. Calculating the estimates required 10 iter-
ations of the GAUSS method. Various measures of how well the iterative process
converged are also shown. For example, the "RPC(B)" value 0.00968 means that on
the final iteration the largest relative change in any estimate was for parameter B,
which changed by .968 percent. See the section "Convergence Criteria" later in this
chapter for details.

PROC MODEL then prints the estimation results. The first part of this table is the
summary of residual errors, shown in Figure 14.4.

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE R-Square R-Sq

LHUR 3 141 75.1989 0.5333 0.7472 0.7436

Figure 14.4. Summary of Residual Errors Report
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This table lists the sum of squared errors (SSE), the mean square error (MSE), the
root mean square error (Root MSE), and the R2 and adjusted R2 statistics. The R2

value of .7472 means that the estimated model explains approximately 75 percent
more of the variability in LHUR than a mean model explains.

Following the summary of residual errors is the parameter estimates table, shown in
Figure 14.5.

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

a 0.009046 0.00343 2.63 0.0094
b -0.57059 0.2617 -2.18 0.0309
c 3.337151 0.7297 4.57 <.0001

Figure 14.5. Parameter Estimates

Because the model is nonlinear, the standard error of the estimate, the t value, and its
significance level are only approximate. These values are computed using asymptotic
formulas that are correct for large sample sizes but only approximately correct for
smaller samples. Thus, you should use caution in interpreting these statistics for
nonlinear models, especially for small sample sizes. For linear models, these results
are exact and are the same as standard linear regression.

The last part of the output produced by the FIT statement is shown in Figure 14.6.

The MODEL Procedure

Number of Observations Statistics for System

Used 144 Objective 0.5222
Missing 1 Objective*N 75.1989

Figure 14.6. System Summary Statistics

This table lists the objective value for the estimation of the nonlinear system, which
is a weighted system mean square error. This statistic can be used for testing cross-
equation restrictions in multi-equation regression problems. See the section "Restric-
tions and Bounds on Parameters" for details. Since there is only a single equation in
this case, the objective value is the same as the residual MSE for LHUR except that
the objective value does not include a degrees of freedom correction. This can be
seen in the fact that "Objective*N" equals the residual SSE, 75.1989. N is 144, the
number of observations used.

Convergence and Starting Values
Computing parameter estimates for nonlinear equations requires an iterative process.
Starting with an initial guess for the parameter values, PROC MODEL tries different
parameter values until the objective function of the estimation method is minimized.
(The objective function of the estimation method is sometimes called thefitting func-
tion.) This process does not always succeed, and whether it does succeed depends
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greatly on the starting values used. By default, PROC MODEL uses the starting value
.0001 for all parameters.

Consequently, in order to use PROC MODEL to achieve convergence of parameter
estimates, you need to know two things: how to recognize convergence failure by
interpreting diagnostic output, and how to specify reasonable starting values. The
MODEL procedure includes alternate iterative techniques and grid search capabilities
to aid in finding estimates. See the section "Troubleshooting Convergence Problems"
for more details.

Nonlinear Systems Regression

If a model has more than one endogenous variable, several facts need to be consid-
ered in the choice of an estimation method. If the model has endogenous regressors,
then an instrumental variables method such as 2SLS or 3SLS can be used to avoid
simultaneous equation bias. Instrumental variables must be provided to use these
methods. A discussion of possible choices for instrumental variables is provided in
the "Choice of Instruments" section in this chapter.

The following is an example of the use of 2SLS and the INSTRUMENTS statement:

proc model data=test2 ;
exogenous x1 x2;
parms a1 a2 b2 2.5 c2 55 d1;

y1 = a1 * y2 + b2 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / 2sls;
instruments b2 c2 _exog_;

run;

The estimation method selected is added after the slash (/) on the FIT statement. The
INSTRUMENTS statement follows the FIT statement and in this case selects all the
exogenous variables as instruments with the–EXOG– keyword. The parameters B2
and C2 on the instruments list request that the derivatives with respect to B2 and C2
be additional instruments.

Full information maximum likelihood (FIML) can also be used to avoid simultane-
ous equation bias. FIML is computationally more expensive than an instrumental
variables method and assumes that the errors are normally distributed. On the other
hand, FIML does not require the specification of instruments. FIML is selected with
the FIML option on the FIT statement.
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Part 2. General Information

The preceding example is estimated with FIML using the following statements:

proc model data=test2 ;
exogenous x1 x2;
parms a1 a2 b2 2.5 c2 55 d1;

y1 = a1 * y2 + b2 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / fiml;
run;

General Form Models

The single equation example shown in the preceding section was written in normal-
ized form and specified as an assignment of the regression function to the dependent
variable LHUR. However, sometimes it is impossible or inconvenient to write a non-
linear model in normalized form.

To write a general form equation, give the equation a name with the prefix "EQ." .
This EQ.-prefixed variable represents the equation error. Write the equation as an
assignment to this variable.

For example, suppose you have the following nonlinear model relating the variables
x andy:

� = a+ b ln(cy + dx)

Naming this equation ‘one’, you can fit this model with the following statements:

proc model data=xydata;
eq.one = a + b * log( c * y + d * x );
fit one;

run;

The use of the EQ. prefix tells PROC MODEL that the variable is an error term and
that it should not expect actual values for the variable ONE in the input data set.

Demand and Supply Models
General form specifications are often useful when you have several equations for the
same dependent variable. This is common in demand and supply models, where both
the demand equation and the supply equation are written as predictions for quantity
as functions of price.

For example, consider the following demand and supply system:

(demand) quantity = �1 + �2 price + �3 income + �1

(supply) quantity = �1 + �2 price + �2
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Assume thequantityof interest is the amount of energy consumed in the U.S.; the
price is the price of gasoline, and theincomevariable is the consumer debt. When
the market is at equilibrium, these equations determine the market price and the equi-
librium quantity. These equations are written in general form as

�1 = quantity � (�1 + �2 price+ �3 income)

�2 = quantity � (�1 + �2 price)

Note that the endogenous variablesquantityandprice depend on two error terms so
that OLS should not be used. The following example uses three-stage least-squares
estimation.

Data for this model is obtained from the SASHELP.CITIMON data set.

title1 ’Supply-Demand Model using General-form Equations’;
proc model data=sashelp.citimon;

endogenous eegp eec;
exogenous exvus cciutc;
parameters a1 a2 a3 b1 b2 ;
label eegp = ’Gasoline Retail Price’

eec = ’Energy Consumption’
cciutc = ’Consumer Debt’;

/* -------- Supply equation ------------- */
eq.supply = eec - (a1 + a2 * eegp + a3 * cciutc);

/* -------- Demand equation ------------- */
eq.demand = eec - (b1 + b2 * eegp );

/* -------- Instrumental variables -------*/
lageegp = lag(eegp); lag2eegp=lag2(eegp);

/* -------- Estimate parameters --------- */
fit supply demand / n3sls fsrsq;
instruments _EXOG_ lageegp lag2eegp;

run;

The FIT statement specifies the two equations to estimate and the method of estima-
tion, N3SLS. Note that ‘3SLS’ is an alias for N3SLS. The option FSRSQ is selected
to get a report of the first stage R2 to determine the acceptability of the selected in-
struments.

Since three-stage least squares is an instrumental variables method, instruments are
specified with the INSTRUMENTS statement. The instruments selected are all the
exogenous variables, selected with the–EXOG– option, and two lags of the variable
EEGP, LAGEEGP and LAG2EEGP.

The data set CITIMON has four observations that generate missing values because
values for either EEGP, EEC, or CCIUTC are missing. This is revealed in the "Obser-
vations Processed" output shown in Figure 14.7. Missing values are also generated
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when the equations cannot be computed for a given observation. Missing observa-
tions are not used in the estimation.

Supply-Demand Model using General-form Equations

The MODEL Procedure
3SLS Estimation Summary

Observations Processed

Read 145
Solved 143
First 3
Last 145
Used 139
Missing 4
Lagged 2

Figure 14.7. Supply-Demand Observations Processed

The lags used to create the instruments also reduce the number of observations used.
In this case, the first 2 observations were used to fill the lags of EEGP.

The data set has a total of 145 observations, of which 4 generated missing values
and 2 were used to fill lags, which left 139 observations for the estimation. In the
estimation summary, in Figure 14.8, the total degrees of freedom for the model and
error is 139.

Supply-Demand Model using General-form Equations

The MODEL Procedure

Nonlinear 3SLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

supply 3 136 39.5791 0.2910 0.5395
demand 2 137 43.2677 0.3158 0.5620

Nonlinear 3SLS Parameter Estimates

1st
Approx Approx Stage

Parameter Estimate Std Err t Value Pr > |t| R-Square

a1 6.82196 0.3788 18.01 <.0001 1.0000
a2 -0.00614 0.00303 -2.02 0.0450 0.9617
a3 9E-7 3.165E-7 2.84 0.0051 1.0000
b1 7.30952 0.3799 19.24 <.0001 1.0000
b2 -0.00853 0.00328 -2.60 0.0103 0.9617

Figure 14.8. Supply-Demand Parameter Estimates

One disadvantage of specifying equations in general form is that there are no actual
values associated with the equation, so the R2 statistic cannot be computed.
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Solving Simultaneous Nonlinear Equation Systems

You can use a SOLVE statement to solve the nonlinear equation system for some
variables when the values of other variables are given.

Consider the demand and supply model shown in the preceding example. The fol-
lowing statement computes equilibrium price (EEGP) and quantity (EEC) values for
given observed cost (CCIUTC) values and stores them in the output data set EQUI-
LIB.

title1 ’Supply-Demand Model using General-form Equations’;
proc model data=sashelp.citimon;

endogenous eegp eec;
exogenous exvus cciutc;
parameters a1 a2 a3 b1 b2 ;
label eegp = ’Gasoline Retail Price’

eec = ’Energy Consumption’
cciutc = ’Consumer Debt’;

/* -------- Supply equation ------------- */
eq.supply = eec - (a1 + a2 * eegp + a3 * cciutc);

/* -------- Demand equation ------------- */
eq.demand = eec - (b1 + b2 * eegp );

/* -------- Instrumental variables -------*/
lageegp = lag(eegp); lag2eegp=lag2(eegp);

/* -------- Estimate parameters --------- */
instruments _EXOG_ lageegp lag2eegp;
fit supply demand / n3sls ;
solve eegp eec / out=equilib;

run;

As a second example, suppose you want to compute points of intersection between the
square root function and hyperbolas of the forma+ b=x. That is, solve the system:

(square root) y =
p
x

(hyperbola) y = a+
b

x

The following statements read parameters for several hyperbolas in the input data set
TEST and solve the nonlinear equations. The SOLVEPRINT option on the SOLVE
statement prints the solution values. The ID statement is used to include the values
of A and B in the output of the SOLVEPRINT option.
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data test;
input a b @@;
datalines;
0 1 1 1 1 2

;

proc model data=test;
eq.sqrt = sqrt(x) - y;
eq.hyperbola = a + b / x - y;
solve x y / solveprint;
id a b;

run;

The printed output produced by this example consists of a model summary report,
a listing of the solution values for each observation, and a solution summary report.
The model summary for this example is shown in Figure 14.9.

Supply-Demand Model using General-form Equations

The MODEL Procedure

Model Summary

Model Variables 2
ID Variables 2
Equations 2
Number of Statements 2

Model Variables x y
Equations sqrt hyperbola

Figure 14.9. Model Summary Report

The output produced by the SOLVEPRINT option is shown in Figure 14.10.
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The MODEL Procedure
Simultaneous Simulation

Observation 1 a 0 b 1.0000 eq.hyperbola 0.000000
Iterations 17 CC 0.000000

Solution Values

x y

1.000000 1.000000

Observation 2 a 1.0000 b 1.0000 eq.hyperbola 0.000000
Iterations 5 CC 0.000000

Solution Values

x y

2.147899 1.465571

Observation 3 a 1.0000 b 2.0000 eq.hyperbola 0.000000
Iterations 4 CC 0.000000

Solution Values

x y

2.875130 1.695621

Figure 14.10. Solution Values for Each Observation

For each observation, a heading line is printed that lists the values of the ID vari-
ables for the observation and information on the iterative process used to compute
the solution. Following the heading line for the observation, the solution values are
printed.

The heading line shows the solution method used (Newton’s method by default),
the number of iterations required, and the convergence measure, labeled CC=. This
convergence measure indicates the maximum error by which solution values fail to
satisfy the equations. When this error is small enough (as determined by the CON-
VERGE= option), the iterations terminate. The equation with the largest error is
indicated in parentheses. For example, for observation 3 the HYPERBOLA equation
has an error of4:42�10�13 while the error of the SQRT equation is even smaller.

The last part of the SOLVE statement output is the solution summary report shown
in Figure 14.11. This report summarizes the iteration history and the model solved.
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The MODEL Procedure
Simultaneous Simulation

Data Set Options

DATA= TEST

Solution Summary

Variables Solved 2
Implicit Equations 2
Solution Method NEWTON
CONVERGE= 1E-8
Maximum CC 9.176E-9
Maximum Iterations 17
Total Iterations 26
Average Iterations 8.666667

Observations Processed

Read 3
Solved 3

Variables Solved For x y
Equations Solved sqrt hyperbola

Figure 14.11. Solution Summary Report

Monte Carlo Simulation

The RANDOM= option is used to request Monte Carlo (or stochastic) simulation to
generate confidence intervals for a forecast. The confidence intervals are implied by
the model’s relationship to the the implicit random error term� and the parameters.

The Monte Carlo simulation generates a random set of additive error values, one for
each observation and each equation, and computes one set of perturbations of the
parameters. These new parameters, along with the additive error terms, are then used
to compute a new forecast that satisfies this new simultaneous system. Then a new
set of additive error values and parameter perturbations is computed, and the process
is repeated the requested number of times.

Consider the following exchange rate model for the U.S. dollar with the German mark
and the Japanese yen:

rate–jp = a1 + b1im–jp+ c1di–jp;

rate–wg = a2 + b2im–wg + c1di–wg;

whererate–jp andrate–wgare the exchange rate of the Japanese yen and the German
mark versus the U.S. dollar respectively;im–jp andim–wgare the imports from Japan
and Germany in 1984 dollars respectively; anddi–jp anddi–wg are the differences
in inflation rate of Japan and the U.S., and Germany and the U.S. respectively. The
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Monte Carlo capabilities of the MODEL procedure are used to generate error bounds
on a forecast using this model.

proc model data=exchange;
endo im_jp im_wg;
exo di_jp di_wg;
parms a1 a2 b1 b2 c1 c2;
label rate_jp = ’Exchange Rate of Yen/$’

rate_wg = ’Exchange Rate of Gm/$’
im_jp = ’Imports to US from Japan in 1984 $’
im_wg = ’Imports to US from WG in 1984 $’
di_jp = ’Difference in Inflation Rates US-JP’
di_wg = ’Difference in Inflation Rates US-WG’;

rate_jp = a1 + b1*im_jp + c1*di_jp;
rate_wg = a2 + b2*im_wg + c2*di_wg;

/* Fit the EXCHANGE data */
fit rate_jp rate_wg / sur outest=xch_est outcov outs=s;

/* Solve using the WHATIF data set */
solve rate_jp rate_wg / data=whatif estdata=xch_est sdata=s

random=100 seed=123 out=monte forecast;
id yr;
range yr=1986;

run;

Data for the EXCHANGE data set was obtained from the Department of Commerce
and the yearly "Economic Report of the President."

First, the parameters are estimated using SUR selected by the SUR option on the FIT
statement. The OUTEST= option is used to create the XCH–EST data set which
contains the estimates of the parameters. The OUTCOV option adds the covariance
matrix of the parameters to the XCH–EST data set. The OUTS= option is used to
save the covariance of the equation error in the data set S.

Next, Monte Carlo simulation is requested using the RANDOM= option on the
SOLVE statement. The data set WHATIF, shown below, is used to drive the fore-
casts. The ESTDATA= option reads in the XCH–EST data set which contains the
parameter estimates and covariance matrix. Because the parameter covariance ma-
trix is included, perturbations of the parameters are performed. The SDATA= option
causes the Monte Carlo simulation to use the equation error covariance in the S data
set to perturb the equation errors. The SEED= option selects the number 123 as seed
value for the random number generator. The output of the Monte Carlo simulation is
written to the data set MONTE selected by the OUT= option.

/* data for simulation */
data whatif;

input yr rate_jp rate_wg imn_jp imn_wg emp_us emp_jp
emp_wg prod_us prod_jp prod_wg cpi_us cpi_jp cpi_wg;

label cpi_us = ’US CPI 1982-1984 = 100’
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cpi_jp = ’JP CPI 1982-1984 = 100’
cpi_wg = ’WG CPI 1982-1984 = 100’;

im_jp = imn_jp/cpi_us;
im_wg = imn_wg/cpi_us;
ius = 100*(cpi_us-(lag(cpi_us)))/(lag(cpi_us));
ijp = 100*(cpi_jp-(lag(cpi_jp)))/(lag(cpi_jp));
iwg = 100*(cpi_wg-(lag(cpi_wg)))/(lag(cpi_wg));
di_jp = ius - ijp;
di_wg = ius - iwg;

datalines;
1980 226.63 1.8175 30714 11693 103.3 101.3 100.4 101.7

125.4 109.8 .824 .909 .868
1981 220.63 2.2631 35000 11000 102.8 102.2 97.9 104.6

126.3 112.8 .909 .954 .922
1982 249.06 2.4280 40000 12000 95.8 101.4 95.0 107.1

146.8 113.3 .965 .980 .970
1983 237.55 2.5539 45000 13100 94.4 103.4 91.1 111.6

152.8 116.8 .996 .999 1.003
1984 237.45 2.8454 50000 14300 99.0 105.8 90.4 118.5

152.2 124.7 1.039 1.021 1.027
1985 238.47 2.9419 55000 15600 98.1 107.6 91.3 124.2

161.1 128.5 1.076 1.042 1.048
1986 . . 60000 17000 96.8 107.3 92.7 128.8

163.8 130.7 1.096 1.049 1.047
1987 . . 65000 18500 97.1 106.1 92.8 132.0

176.5 129.9 1.136 1.050 1.049
1988 . . 70000 20000 99.6 108.8 92.7 136.2

190.0 135.9 1.183 1.057 1.063
;

To generate a confidence interval plot for the forecast, use PROC UNIVARIATE to
generate percentile bounds and use PROC GPLOT to plot the graph. The following
SAS statements produce the graph in Figure 14.12.

proc sort data=monte;
by yr;

run;

proc univariate data=monte noprint;
by yr;
var rate_jp rate_wg;
output out=bounds mean=mean p5=p5 p95=p95;

run;

title "Monte Carlo Generated Confidence
Intervals on a Forecast";

proc gplot data=bounds;
plot mean*yr p5*yr p95*yr /overlay;
symbol1 i=join value=triangle;
symbol2 i=join value=square l=4;
symbol3 i=join value=square l=4;

run;
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Figure 14.12. Monte Carlo Confidence Interval Plot

Syntax

The following statements can be used with the MODEL procedure:

PROC MODEL options;
ABORT ;
ARRAY arrayname variables : : : ;
ATTRIB variable-list attribute-list [variable-list attribute-list];
BOUNDS bound1, bound2 : : : ;
BY variables;
CALL name [( expression [, expression : : : ] ) ] ;
CONTROL variable [ value ] : : : ;
DELETE ;
DO [variable = expression [ TO expression ] [ BY expression ]

[, expression TO expression ] [ BY expression ] : : : ]
[ WHILE expression ] [ UNTIL expression ] ;

END ;
DROP variable : : : ;
ENDOGENOUS variable [ initial values ] : : : ;
ESTIMATE item [ , item : : : ] [ ,/ options ] ;
EXOGENOUS variable [ initial values ] : : : ;
FIT equations [ PARMS=(parameter values : : : ) ]

START=(parameter values : : : )
[ DROP=(parameters)] [ / options ];

FORMAT variables [ format ] [ DEFAULT = default-format ];
GOTO statement–label ;
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ID variables;
IF expression ;
IF expression THEN programming–statement ;

ELSE programming–statement ;
variable = expression ;
variable + expression ;
INCLUDE model files : : : ;
INSTRUMENTS [ instruments ] [–EXOG– ]

[EXCLUDE=(parameters) ] [/ options ] ;
KEEP variable : : : ;
LABEL variable =’label’ : : : ;
LENGTH variables [$ ] length : : : [DEFAULT=length ];
LINK statement–label ;
OUTVARS variable : : : ;
PARAMETERS variable [ value ] variable [ value ] : : : ;
PUT print–item : : : [ @ ] [ @@ ] ;
RANGE variable [ = first ] [TO last ];
RENAME old-name =new-name : : : [ old-name=new-name ];
RESET options;
RESTRICT restriction1 [ , restriction2 : : : ] ;
RETAIN variables values [ variables values: : :] ;
RETURN ;
SOLVE variables [SATISFY=(equations) ] [/ options ] ;
SUBSTR( variable, index, length ) = expression ;
SELECT [ ( expression ) ] ;

OTHERWISE programming–statement ;
STOP ;
TEST [ "name" ] test1 [, test2 : : : ] [,/ options ] ;
VAR variable [ initial values ] : : : ;
WEIGHT variable;
WHEN ( expression ) programming–statement ;

Functional Summary

The statements and options in the MODEL procedure are summarized in the follow-
ing table.

Description Statement Option

Data Set Options
specify the input data set for the variables FIT, SOLVE DATA=
specify the input data set for parameters FIT, SOLVE ESTDATA=
specify the method for handling missing
values

FIT MISSING=

specify the input data set for parameters MODEL PARMSDATA=
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Description Statement Option

specify the output data set for residual, pre-
dicted, or actual values

FIT OUT=

specify the output data set for solution mode
results

SOLVE OUT=

write the actual values to OUT= data set FIT OUTACTUAL
select all output options FIT OUTALL
write the covariance matrix of the estimates FIT OUTCOV
write the parameter estimates to a data set FIT OUTEST=
write the parameter estimates to a data set MODEL OUTPARMS=
write the observations used to start the lags SOLVE OUTLAGS
write the predicted values to the OUT= data
set

FIT OUTPREDICT

write the residual values to the OUT= data set FIT OUTRESID
write the covariance matrix of the equation er-
rors to a data set

FIT OUTS=

write theS matrix used in the objective func-
tion definition to a data set

FIT OUTSUSED=

write the estimate of the variance matrix of the
moment generating function

FIT OUTV=

read the covariance matrix of the equation
errors

FIT, SOLVE SDATA=

read the covariance matrix for GMM and
ITGMM

FIT VDATA=

specify the name of the time variable FIT, SOLVE,
MODEL

TIME=

select the estimation type to read FIT, SOLVE TYPE=

General ESTIMATE Statement Options
specify the name of the data set in which the
estimate of the functions of the parameters are
to be written

ESTIMATE OUTEST=

write the covariance matrix of the functions of
the parameters to the OUTEST= data set

ESTIMATE OUTCOV

print the covariance matrix of the functions of
the parameters

ESTIMATE COVB

print the correlation matrix of the functions of
the parameters

ESTIMATE CORRB

Printing Options for FIT Tasks
print the modified Breusch-Pagan test for
heteroscedasticity

FIT BREUSCH

print collinearity diagnostics FIT COLLIN
print the correlation matrices FIT CORR
print the correlation matrix of the parameters FIT CORRB
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Description Statement Option

print the correlation matrix of the residuals FIT CORRS
print the covariance matrices FIT COV
print the covariance matrix of the parameters FIT COVB
print the covariance matrix of the residuals FIT COVS
print Durbin-Watsond statistics FIT DW
print first-stage R2 statistics FIT FSRSQ
print Godfrey’s tests for autocorrelated residu-
als for each equation

FIT GODFREY

print tests of normality of the model residuals FIT NORMAL
specify all the printing options FIT PRINTALL
print White’s test for heteroscedasticity FIT WHITE

Options to Control FIT Iteration Output
print the inverse of the crossproducts Jacobian
matrix

FIT I

print a summary iteration listing FIT ITPRINT
print a detailed iteration listing FIT ITDETAILS
print the crossproduct Jacobian matrix FIT XPX
specify all the iteration printing-control
options

FIT ITALL

Options to Control the Minimization
Process
specify the convergence criteria FIT CONVERGE=
select the Hessian approximation used for
FIML

FIT HESSIAN=

specifies the local truncation error bound for
the integration

FIT, SOLVE,
MODEL

LTEBOUND=

specify the maximum number of iterations
allowed

FIT MAXITER=

specify the maximum number of subiterations
allowed

FIT MAXSUBITER=

select the iterative minimization method to use FIT METHOD=
specifies the smallest allowed time step to be
used in the integration

FIT, SOLVE,
MODEL

MINTIMESTEP=

modify the iterations for estimation methods
that iterate theSmatrix or theV matrix

FIT NESTIT

specify the smallest pivot value MODEL, FIT,
SOLVE

SINGULAR

specify the number of minimization iterations
to perform at each grid point

FIT STARTITER=

specify a weight variable WEIGHT
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Description Statement Option

Options to Read and Write Model Files
read a model from one or more input model
files

INCLUDE MODEL=

suppress the default output of the model file MODEL, RESET NOSTORE
specify the name of an output model file MODEL, RESET OUTMODEL=
delete the current model RESET PURGE

Options to List or Analyze the Struc-
ture of the Model
print a dependency structure of a model MODEL BLOCK
print a graph of the dependency structure of a
model

MODEL GRAPH

print the model program and variable lists MODEL LIST
print the derivative tables and compiled model
program code

MODEL LISTCODE

print a dependency list MODEL LISTDEP
print a table of derivatives MODEL LISTDER
print a cross-reference of the variables MODEL XREF

General Printing Control Options
expand parts of the printed output FIT, SOLVE DETAILS
print a message for each statement as it is
executed

FIT, SOLVE FLOW

select the maximum number of execution er-
rors that can be printed

FIT, SOLVE MAXERRORS=

select the number of decimal places shown in
the printed output

FIT, SOLVE NDEC=

suppress the normal printed output FIT, SOLVE NOPRINT
specify all the noniteration printing options FIT, SOLVE PRINTALL
print the result of each operation as it is
executed

FIT, SOLVE TRACE

request a comprehensive memory usage
summary

FIT, SOLVE,
MODEL, RESET

MEMORYUSE

turns off the NOPRINT option RESET PRINT

Statements that Declare Variables
associate a name with a list of variables and
constants

ARRAY

declare a variable to have a fixed value CONTROL
declare a variable to be a dependent or endoge-
nous variable

ENDOGENOUS

declare a variable to be an independent or ex-
ogenous variable

EXOGENOUS

specify identifying variables ID
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Description Statement Option

assign a label to a variable LABEL
select additional variables to be output OUTVARS
declare a variable to be a parameter PARAMETERS
force a variable to hold its value from a previ-
ous observation

RETAIN

declare a model variable VAR
declare an instrumental variable INSTRUMENTS
omit the default intercept term in the instru-
ments list

INSTRUMENTS NOINT

General FIT Statement Options
omit parameters from the estimation FIT DROP=
associate avariable with an initial value as a
parameter or a constant

FIT INITIAL=

bypass OLS to get initial parameter estimates
for GMM, ITGMM, or FIML

FIT NOOLS

bypass 2SLS to get initial parameter estimates
for GMM, ITGMM, or FIML

FIT NO2SLS

specify the parameters to estimate FIT PARMS=
request confidence intervals on estimated
parameters

FIT PRL=

select a grid search FIT START=

Options to Control the Estimation
Method Used
specify nonlinear ordinary least squares FIT OLS
specify iterated nonlinear ordinary least
squares

FIT ITOLS

specify seemingly unrelated regression FIT SUR
specify iterated seemingly unrelated
regression

FIT ITSUR

specify two-stage least squares FIT 2SLS
specify iterated two-stage least squares FIT IT2SLS
specify three-stage least squares FIT 3SLS
specify iterated three-stage least squares FIT IT3SLS
specify full information maximum likelihood FIT FIML
select the variance-covariance estimator used
for FIML

FIT COVBEST=

specify generalized method of moments FIT GMM
specify the kernel for GMM and ITGMM FIT KERNEL=
specify iterated generalized method of
moments

FIT ITGMM

specify the denominator for computing vari-
ances and covariances

FIT VARDEF=
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Description Statement Option

Solution Mode Options
select a subset of the model equations SOLVE SATISFY=
solve only for missing variables SOLVE FORECAST
solve for all solution variables SOLVE SIMULATE

Solution Mode Options: Lag
Processing
use solved values in the lag functions SOLVE DYNAMIC
use actual values in the lag functions SOLVE STATIC
produce successive forecasts to a fixed forecast
horizon

SOLVE NAHEAD=

select the observation to start dynamic
solutions

SOLVE START=

Solution Mode Options: Numerical
Methods
specify the maximum number of iterations
allowed

SOLVE MAXITER=

specify the maximum number of subiterations
allowed

SOLVE MAXSUBITER=

specify the convergence criteria SOLVE CONVERGE=
compute a simultaneous solution using a
Jacobi-like iteration

SOLVE JACOBI

compute a simultaneous solution using a
Gauss-Seidel-like iteration

SOLVE SEIDEL

compute a simultaneous solution using New-
ton’s method

SOLVE NEWTON

compute a nonsimultaneous solution SOLVE SINGLE

Monte Carlo Simulation Options
specify psuedo or quasi-random number
generator

SOLVE QUASI=

repeat the solution multiple times SOLVE RANDOM=
initialize the pseudo-random number
generator

SOLVE SEED=

Solution Mode Printing Options
print between data points integration values
for the DERT. variables and the auxiliary
variables

FIT, SOLVE,
MODEL

INTGPRINT

print the solution approximation and equation
errors

SOLVE ITPRINT
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Description Statement Option

print the solution values and residuals at each
observation

SOLVE SOLVEPRINT

print various summary statistics SOLVE STATS
print tables of Theil inequality coefficients SOLVE THEIL
specify all printing control options SOLVE PRINTALL

General TEST Statement Options
specify that a Wald test be computed TEST WALD
specify that a Lagrange multiplier test be
computed

TEST LM

specify that a likelihood ratio test be computed TEST LR
requests all three types of tests TEST ALL
specify the name of an output SAS data set that
contains the test results

TEST OUT=

Miscellaneous Statements
specify the range of observations to be used RANGE
subset the data set withbyvariables BY

PROC MODEL Statement

PROC MODEL options;

The following options can be specified in the PROC MODEL statement. All of the
nonassignment options (the options that do not accept a value after an equal sign) can
have NO prefixed to the option name in the RESET statement to turn the option off.
The default case is not explicitly indicated in the discussion that follows. Thus, for
example, the option DETAILS is documented in the following, but NODETAILS is
not documented since it is the default. Also, the NOSTORE option is documented
because STORE is the default.

Data Set Options
DATA= SAS-data-set

names the input data set. Variables in the model program are looked up in the DATA=
data set and, if found, their attributes (type, length, label, format) are set to be the
same as those in the input data set (if not previously defined otherwise). The values
for the variables in the program are read from the input data set when the model is
estimated or simulated by FIT and SOLVE statements.
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OUTPARMS= SAS-data-set
writes the parameter estimates to a SAS data set. See "Output Data Sets" for details.

PARMSDATA= SAS-data-set
names the SAS data set that contains the parameter estimates. See "Input Data Sets"
for details.

Options to Read and Write Model Files
MODEL= model-name
MODEL= (model-list)

reads the model from one or more input model files created by previous PROC
MODEL executions. Model files are written by the OUTMODEL= option.

NOSTORE
suppresses the default output of the model file. This option is only applicable when
FIT or SOLVE statements are not used, the MODEL= option is not used, and when a
model is specified.

OUTMODEL= model-name
specifies the name of an output model file to which the model is to be written. Model
files are stored as members of a SAS catalog, with the type MODEL.

V5MODEL= model-name
reads model files written by Version 5 of SAS/ETS software.

Options to List or Analyze the Structure of the Model
These options produce reports on the structure of the model or list the programming
statements defining the models. These options are automatically reset (turned off)
after the reports are printed. To turn these options back on after a RUN statement has
been entered, use the RESET statement or specify the options on a FIT or SOLVE
statement.

BLOCK
prints an analysis of the structure of the model given by the assignments to model
variables appearing in the model program. This analysis includes a classification of
model variables into endogenous (dependent) and exogenous (independent) groups
based on the presence of the variable on the left-hand side of an assignment state-
ment. The endogenous variables are grouped into simultaneously determined blocks.
The dependency structure of the simultaneous blocks and exogenous variables is also
printed. The BLOCK option cannot analyze dependencies implied by general form
equations.

GRAPH
prints the graph of the dependency structure of the model. The GRAPH option also
invokes the BLOCK option and produces a graphical display of the information listed
by the BLOCK option.

LIST
prints the model program and variable lists, including the statements added by PROC
MODEL and macros.
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LISTALL
selects the LIST, LISTDEP, LISTDER, and LISTCODE options.

LISTCODE
prints the derivative tables and compiled model program code. LISTCODE is a de-
bugging feature and is not normally needed.

LISTDEP
prints a report that lists for each variable in the model program the variables that
depend on it and that it depends on. These lists are given separately for current-period
values and for lagged values of the variables.

The information displayed is the same as that used to construct the BLOCK report but
differs in that the information is listed for all variables (including parameters, control
variables, and program variables), not just the model variables. Classification into
endogenous and exogenous groups and analysis of simultaneous structure is not done
by the LISTDEP report.

LISTDER
prints a table of derivatives for FIT and SOLVE tasks. (The LISTDER option is
only applicable for the default NEWTON method for SOLVE tasks.) The derivatives
table shows each nonzero derivative computed for the problem. The derivative listed
can be a constant, a variable in the model program, or a special derivative variable
created to hold the result of the derivative expression. This option is turned on by the
LISTCODE and PRINTALL options.

XREF
prints a cross-reference of the variables in the model program showing where each
variable was referenced or given a value. The XREF option is normally used in
conjunction with the LIST option. A more detailed description is given in the "Diag-
nostics and Debugging" section.

General Printing Control Options
DETAILS

specifies the detailed printout. Parts of the printed output are expanded when the
DETAILS option is specified.

FLOW
prints a message for each statement in the model program as it is executed. This
debugging option is needed very rarely and produces voluminous output.

MAXERRORS= n
specifies the maximum number of execution errors that can be printed. The default is
MAXERRORS=50.

NDEC= n
specifies the precision of the format that PROC MODEL uses when printing various
numbers. The default is NDEC=3, which means that PROC MODEL attempts to
print values using the D format but ensures that at least three significant digits are
shown. If the NDEC= value is greater than nine, the BEST. format is used. The
smallest value allowed is NDEC=2.
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The NDEC= option affects the format of most, but not all, of the floating point num-
bers that PROC MODEL can print. For some values (such as parameter estimates), a
precision limit one or two digits greater than the NDEC= value is used. This option
does not apply to the precision of the variables in the output data set.

NOPRINT
suppresses the normal printed output but does not suppress error listings. Using any
other print option turns the NOPRINT option off. The PRINT option can be used
with the RESET statement to turn off NOPRINT.

PRINTALL
turns on all the printing-control options. The options set by PRINTALL are DE-
TAILS; the model information options LIST, LISTDEP, LISTDER, XREF, BLOCK,
and GRAPH; the FIT task printing options FSRSQ, COVB, CORRB, COVS,
CORRS, DW, and COLLIN; and the SOLVE task printing options STATS, THEIL,
SOLVEPRINT, and ITPRINT.

TRACE
prints the result of each operation in each statement in the model program as it is
executed, in addition to the information printed by the FLOW option. This debugging
option is needed very rarely and produces voluminous output.

MEMORYUSE
prints a report of the memory required for the various parts of the analysis.

FIT Task Options
The following options are used in the FIT statement (parameter estimation) and
can also be used in the PROC MODEL statement: COLLIN, CONVERGE=,
CORR, CORRB, CORRS, COVB, COVBEST=, COVS, DW, FIML, FSRSQ,
GMM, HESSIAN=, I, INTGPRINT, ITALL, ITDETAILS, ITGMM, ITPRINT,
ITOLS, ITSUR, IT2SLS, IT3SLS, KERNEL=, LTEBOUND=, MAXITER=, MAX-
SUBITER=, METHOD=, MINTIMESTEP=, NESTIT, N2SLS, N3SLS, OLS, OUT-
PREDICT, OUTRESID, OUTACTUAL, OUTLAGS, OUTERRORS, OUTALL,
OUTCOV, SINGULAR=, STARTITER=, SUR, TIME=, VARDEF, and XPX. See
"FIT Statement Syntax" later in this chapter for a description of these options.

When used in the PROC MODEL or RESET statement, these are default options for
subsequent FIT statements. For example, the statement

proc model n2sls ... ;

makes two-stage least squares the default parameter estimation method for FIT state-
ments that do not specify an estimation method.

SOLVE Task Options
The following options used in the SOLVE statement can also be used in the
PROC MODEL statement: CONVERGE=, DYNAMIC, FORECAST, INTG-
PRINT, ITPRINT, JACOBI, LTEBOUND=, MAXITER=, MAXSUBITER=,
MINTIMESTEP=, NAHEAD=, NEWTON, OUTPREDICT, OUTRESID, OUTAC-
TUAL, OUTLAGS, OUTERRORS, OUTALL, SEED=, SEIDEL, SIMULATE, SIN-
GLE, SINGULAR=, SOLVEPRINT, START=, STATIC, STATS, THEIL, TIME=,
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and TYPE=. See "SOLVE Statement Syntax" later in this chapter for a description
of these options.

When used in the PROC MODEL or RESET statement, these options provide default
values for subsequent SOLVE statements.

BOUNDS Statement

BOUNDS bound1 [, bound2 ... ] ;

The BOUNDS statement imposes simple boundary constraints on the parameter es-
timates. BOUNDS statement constraints refer to the parameters estimated by the
associated FIT statement (that is, to either the preceding FIT statement or, in the ab-
sence of a preceding FIT statement, to the following FIT statement). You can specify
any number of BOUNDS statements.

Eachboundis composed of parameters and constants and inequality operators:

item operator item [ operator item [ operator item : : : ] ]

Eachitem is a constant, the name of an estimated parameter, or a list of parameter
names. Eachoperatoris ’<’, ’>’, ’<=’, or ’>=’.

You can use both the BOUNDS statement and the RESTRICT statement to impose
boundary constraints; however, the BOUNDS statement provides a simpler syntax
for specifying these kinds of constraints. See "The RESTRICT Statement" for infor-
mation on the computational details of estimation with inequality restrictions.

Lagrange multipliers are reported for all the active boundary constraints. In the
printed output and in the OUTEST= data set, the Lagrange multiplier estimates are
identified with the names BOUND1, BOUND2, and so forth. The probability of the
Lagrange multipliers are computed using a beta distribution (LaMotte 1994). To give
the constraints more descriptive names, use the RESTRICT statement instead of the
BOUNDS statement.

The following BOUNDS statement constrains the estimates of the parameters A and
B and the ten parameters P1 through P10 to be between zero and one. This example
illustrates the use of parameter lists to specify boundary constraints.

bounds 0 < a b p1-p10 < 1;

The following is an example of the use of the BOUNDS statement:

title ’Holzman Function (1969), Himmelblau No. 21, N=3’;
data zero;

do i = 1 to 99;
output;

end;
run;
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proc model data=zero ;
parms x1= 100 x2= 12.5 x3= 3;
bounds .1 <= x1 <= 100,

0 <= x2 <= 25.6,
0 <= x3 <= 5;

t = 2 / 3;
u = 25 + (-50 * log(0.01 * i )) ** t;
v = (u - x2) ** x3;
w = exp(-v / x1);
eq.foo = -.01 * i + w;

fit foo / method=marquardt;
run;

Holzman Function (1969), Himmelblau No. 21, N=3

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

x1 49.99999 0 . .
x2 25 0 . .
x3 1.5 0 . .

Number of Observations Statistics for System

Used 99 Objective 5.455E-18
Missing 0 Objective*N 5.4E-16

Figure 14.13. Output from Bounded Estimation

BY Statement

BY variables;

A BY statement is used with the FIT statement to obtain separate estimates for ob-
servations in groups defined by the BY variables. Note that if an output model file is
written, using the OUTMODEL= option, the parameter values stored are those from
the last BY group processed. To save parameter estimates for each BY group, use the
OUTEST= option in the FIT statement.

A BY statement is used with the SOLVE statement to obtain solutions for observa-
tions in groups defined by the BY variables. The BY statement only applies to the
DATA= data set.

BY group processing is done separately for the FIT and the SOLVE tasks. It is not
possible to use the BY statement to estimate and solve a model for each instance of
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a BY variable. If BY group processing is done for the FIT and the SOLVE tasks, the
parameters obtained from the last BY group processed by the FIT statement are used
by the SOLVE statement for all of the BY groups.

CONTROL Statement

CONTROL variable [ value ] ... ;

The CONTROL statement declares control variables and specifies their values. A
control variable is like a parameter except that it has a fixed value and is not estimated
from the data. You can use control variables for constants in model equations that
you may want to change in different solution cases. You can use control variables to
vary the program logic. Unlike the retained variables, these values are fixed across
iterations.

ENDOGENOUS Statement

ENDOGENOUS variable [ initial-values ] ... ;

The ENDOGENOUS statement declares model variables and identifies them as en-
dogenous. You can declare model variables with an ENDOGENOUS statement in-
stead of with a VAR statement to help document the model or to indicate the default
solution variables. The variables declared endogenous are solved when a SOLVE
statement does not indicate which variables to solve. Valid abbreviations for the EN-
DOGENOUS statement are ENDOG and ENDO.

The ENDOGENOUS statement optionally provides initial values for lagged depen-
dent variables. See "Lag Logic" in the "Functions Across Time" section for more
information.

ESTIMATE Statement

ESTIMATE item [ , item ... ] [ ,/ options ] ;

The ESTIMATE statement computes estimates of functions of the parameters.

The ESTIMATE statement refers to the parameters estimated by the associated FIT
statement (that is, to either the preceding FIT statement or, in the absence of a pre-
ceding FIT statement, to the following FIT statement). You can use any number of
ESTIMATE statements.

If you specify options on the ESTIMATE statement, a comma is required before the
"/" character separating the test expressions from the options, since the "/" character
can also be used within test expressions to indicate division. Eachitem is written as
an optional name followed by an expression,
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[ "name" ] expression

where"name"is a string used to identify the estimate in the printed output and in the
OUTEST= data set.

Expressions can be composed of parameter names, arithmetic operators, functions,
and constants. Comparison operators (such as "=" or "<") and logical operators (such
as “&”) cannot be used in ESTIMATE statement expressions. Parameters named in
ESTIMATE expressions must be among the parameters estimated by the associated
FIT statement.

You can use the following options in the ESTIMATE statement:

OUTEST=
specifies the name of the data set in which the estimate of the functions of the param-
eters are to be written. The format for this data set is identical to the OUTEST= data
set for the FIT statement.

If you specify anamein the ESTIMATE statement, that name is used as the parameter
name for the estimate in the OUTEST= data set. If nonameis provided and the
expression is just a symbol, the symbol name is used; otherwise, the string "–Estimate
#" is used, where "#" is the variable number in the OUTEST= data set.

OUTCOV
writes the covariance matrix of the functions of the parameters to the OUTEST= data
set in addition to the parameter estimates.

COVB
prints the covariance matrix of the functions of the parameters.

CORRB
prints the correlation matrix of the functions of the parameters.

The following is an example of the use of the ESTIMATE statement in a segmented
model:

data a;
input y x @@;
datalines;
.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7
.78 8 .70 9 .74 10 .77 11 .78 12 .74 13 .80 13
.80 15 .78 16
;

title ’Segmented Model -- Quadratic with Plateau’;
proc model data=a;

x0 = -.5 * b / c;

if x < x0 then y = a + b*x + c*x*x;
else y = a + b*x0 + c*x0*x0;

fit y start=( a .45 b .5 c -.0025 );
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estimate ’Join point’ x0 ,
’plateau’ a + b*x0 + c*x0**2 ;

run;

Segmented Model -- Quadratic with Plateau

The MODEL Procedure

Nonlinear OLS Estimates

Approx Approx
Term Estimate Std Err t Value Pr > |t| Label

Join point 12.7504 1.2785 9.97 <.0001 x0
plateau 0.777516 0.0123 63.10 <.0001 a + b*x0 + c*x0**2

Figure 14.14. ESTIMATE Statement Output

EXOGENOUS Statement

EXOGENOUS variable [initial-values] ... ;

The EXOGENOUS statement declares model variables and identifies them as exoge-
nous. You can declare model variables with an EXOGENOUS statement instead of
with a VAR statement to help document the model or to indicate the default instru-
mental variables. The variables declared exogenous are used as instruments when
an instrumental variables estimation method is requested (such as N2SLS or N3SLS)
and an INSTRUMENTS statement is not used. Valid abbreviations for the EXOGE-
NOUS statement are EXOG and EXO.

The EXOGENOUS statement optionally provides initial values for lagged exogenous
variables. See "Lag Logic" in the "Functions Across Time" section for more infor-
mation.

FIT Statement

FIT [ equations ] [ PARMS=( parameter [values] ... ) ]
[ START=( parameter values ... ) ]
[ DROP=( parameter ... ) ]
[ INITIAL= ( variable = [ parameter | constant ] ... )
[ / options ] ;

The FIT statement estimates model parameters by fitting the model equations to input
data and optionally selects the equations to be fit. If the list of equations is omitted,
all model equations containing parameters are fit.

The following options can be used in the FIT statement.

SAS OnlineDoc: Version 8
708



Chapter 14. Syntax

DROP= ( parameters ... )
specifies that the named parameters not be estimated. All the parameters in the equa-
tions fit are estimated except those listed in the DROP= option. The dropped param-
eters retain their previous values and are not changed by the estimation.

INITIAL= ( variable = [parameter | constant ] ... )
associates avariablewith an initial value as aparameteror aconstant.

NOOLS
NO2SLS

specifies bipassing OLS or 2SLS to get initial parameter estimates for GMM, IT-
GMM, or FIML. This is important for certian models that are poorly defined in OLS
or 2SLS or if good initial parameter values are already provided. Note that for GMM,
the V matrix is created using the initial values specified and this may not be consis-
tently estimated.

PARMS= ( parameters [values] ... )
selects a subset of the parameters for estimation. When the PARMS= option is
used, only the named parameters are estimated. Any parameters not specified in
the PARMS= list retain their previous values and are not changed by the estimation.

PRL= WALD | LR | BOTH
requests confidence intervals on estimated parameters. By default the PRL option
produces 95% likelihood ratio confidence limits. The coverage of the confidence
interval is controlled by the ALPHA= option in the FIT statement.

START= ( parameter values ... )
supplies starting values for the parameter estimates. If the START= option specifies
more than one starting value for one or more parameters, a grid search is performed
over all combinations of the values, and the best combination is used to start the
iterations. For more information, see the STARTITER= option.

Options to Control the Estimation Method Used
COVBEST=GLS | CROSS | FDA

specifies the variance-covariance estimator used for FIML. COVBEST=GLS selects
the generalized least-squares estimator. COVBEST=CROSS selects the crossprod-
ucts estimator. COVBEST=FDA selects the inverse of the finite difference approxi-
mation to the Hessian. The default is COVBEST=CROSS.

FIML
specifies full information maximum likelihood estimation.

GMM
specifies generalized method of moments estimation.

ITGMM
specifies iterated generalized method of moments estimation.

ITOLS
specifies iterated ordinary least-squares estimation. This is the same as OLS unless
there are cross-equation parameter restrictions.
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ITSUR
specifies iterated seemingly unrelated regression estimation

IT2SLS
specifies iterated two-stage least-squares estimation. This is the same as 2SLS unless
there are cross-equation parameter restrictions.

IT3SLS
specifies iterated three-stage least-squares estimation.

KERNEL=(PARZEN | BART | QS, [c], [e] )
KERNEL=PARZEN | BART | QS

specifies the kernel to be used for GMM and ITGMM. PARZEN selects the Parzen
kernel, BART selects the Bartlett kernel, and QS selects the Quadratic Spectral ker-
nel. e � 0 andc � 0 are used to compute the bandwidth parameter. The default is
KERNEL=(PARZEN, 1, 0.2). See the "Estimation Methods" section for more details.

N2SLS | 2SLS
specifies nonlinear two-stage least-squares estimation. This is the default when an
INSTRUMENTS statement is used.

N3SLS | 3SLS
specifies nonlinear three-stage least-squares estimation.

OLS
specifies ordinary least-squares estimation. This is the default when no INSTRU-
MENTS statement is used.

SUR
specifies seemingly unrelated regression estimation.

VARDEF=N | WGT | DF | WDF
specifies the denominator to be used in computing variances and covariances.
VARDEF=N specifies that the number of nonmissing observations be used.
VARDEF=WGT specifies that the sum of the weights be used. VARDEF=DF
specifies that the number of nonmissing observations minus the model degrees
of freedom (number of parameters) be used. VARDEF=WDF specifies that the
sum of the weights minus the model degrees of freedom be used. The default is
VARDEF=DF. VARDEF=N is used for FIML estimation.

Data Set Options
DATA= SAS-data-set

specifies the input data set. Values for the variables in the program are read from
this data set. If the DATA= option is not specified on the FIT statement, the data set
specified by the DATA= option on the PROC MODEL statement is used.

ESTDATA= SAS-data-set
specifies a data set whose first observation provides initial values for some or all of
the parameters.
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MISSING= PAIRWISE | DELETE
The option MISSING=PAIRWISE specifies that missing values are tracked on an
equation-by-equation basis. The MISSING=DELETE option specifies that the entire
observation is omitted from the analysis when any equation has a missing predicted
or actual value for the equation. The default is MISSING=DELETE.

OUT= SAS-data-set
names the SAS data set to contain the residuals, predicted values, or actual values
from each estimation. Only the residuals are output by default.

OUTACTUAL
writes the actual values of the endogenous variables of the estimation to the OUT=
data set. This option is applicable only if the OUT= option is specified.

OUTALL
selects the OUTACTUAL, OUTERRORS, OUTLAGS, OUTPREDICT, and OUT-
RESID options.

OUTCOV
COVOUT

writes the covariance matrix of the estimates to the OUTEST= data set in addition to
the parameter estimates. The OUTCOV option is applicable only if the OUTEST=
option is also specified.

OUTEST= SAS-data-set
names the SAS data set to contain the parameter estimates and optionally the covari-
ance of the estimates.

OUTLAGS
writes the observations used to start the lags to the OUT= data set. This option is
applicable only if the OUT= option is specified.

OUTPREDICT
writes the predicted values to the OUT= data set. This option is applicable only if
OUT= is specified.

OUTRESID
writes the residual values computed from the parameter estimates to the OUT= data
set. The OUTRESID option is the default if neither OUTPREDICT nor OUTAC-
TUAL is specified. This option is applicable only if the OUT= option is specified.

OUTS= SAS-data-set
names the SAS data set to contain the estimated covariance matrix of the equation
errors. This is the covariance of the residuals computed from the parameter estimates.

OUTSUSED= SAS-data-set
names the SAS data set to contain the S matrix used in the objective function defini-
tion. The OUTSUSED= data set is the same as the OUTS= data set for the methods
that iterate the S matrix.

OUTV= SAS-data-set
names the SAS data set to contain the estimate of the variance matrix for GMM and
ITGMM.
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SDATA= SAS-data-set
specifies a data set that provides the covariance matrix of the equation errors. The
matrix read from the SDATA= data set is used for the equation covariance matrix (S
matrix) in the estimation. (The SDATA= S matrix is used to provide only the initial
estimate ofS for the methods that iterate the S matrix.)

TIME= name
specifies the name of the time variable. This variable must be in the data set.

TYPE= name
specifies the estimation type to read from the SDATA= and ESTDATA= data sets.
The name specified in the TYPE= option is compared to the–TYPE– variable in the
ESTDATA= and SDATA= data sets to select observations to use in constructing the
covariance matrices. When the TYPE= option is omitted, the last estimation type in
the data set is used. Valid values are the estimation methods used in PROC MODEL.

VDATA= SAS-data-set
specifies a data set containing a variance matrix for GMM and ITGMM estimation.

Printing Options for FIT Tasks
BREUSCH= ( variable-list )

specifies the modified Breusch-Pagan test, wherevariable-list is a list of variables
used to model the error variance.

COLLIN
prints collinearity diagnostics for the Jacobian crossproducts matrix (XPX) after the
parameters have converged. Collinearity diagnostics are also automatically printed if
the estimation fails to converge.

CORR
prints the correlation matrices of the residuals and parameters. Using CORR is the
same as using both CORRB and CORRS.

CORRB
prints the correlation matrix of the parameter estimates.

CORRS
prints the correlation matrix of the residuals.

COV
prints the covariance matrices of the residuals and parameters. Specifying COV is
the same as specifying both COVB and COVS.

COVB
prints the covariance matrix of the parameter estimates.

COVS
prints the covariance matrix of the residuals.

DW
prints Durbin-Watsond statistics, which measure autocorrelation of the residuals.
When the residual series is interrupted by missing observations, the Durbin-Watson
statistic calculated isdprimesym as suggested by Savin and White (1978). This is the
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usual Durbin-Watson computed by ignoring the gaps. Savin and White show that it
has the same null distribution as the DW with no gaps in the series and can be used to
test for autocorrelation using the standard tables. The Durbin-Watson statistic is not
valid for models containing lagged endogenous variables.

FSRSQ
prints the first-stage R2 statistics for instrumental estimation methods. These R2s
measure the proportion of the variance retained when the Jacobian columns associ-
ated with the parameters are projected through the instruments space.

GODFREY
GODFREY= n

performs Godfrey’s tests for autocorrelated residuals for each equation, wheren is
the maximum autoregressive order, and specifies that Godfrey’s tests be computed
for lags 1 throughn. The default number of lags is one.

NORMAL
performs tests of normality of the model residuals.

PRINTALL
specifies the printing options COLLIN, CORRB, CORRS, COVB, COVS, DETAILS,
DW, and FSRSQ.

WHITE
specifies White’s test.

Options to control iteration output
Details of the output produced are discussed in the section "Iteration History".

I
prints the inverse of the crossproducts Jacobian matrix at each iteration.

ITALL
specifies all iteration printing-control options (I, ITDETAILS, ITPRINT, and XPX).
ITALL also prints the crossproducts matrix (labeled CROSS), the parameter change
vector, and the estimate of the cross-equation covariance of residuals matrix at each
iteration.

ITDETAILS
prints a detailed iteration listing. This includes the ITPRINT information and addi-
tional statistics.

ITPRINT
prints the parameter estimates, objective function value, and convergence criteria at
each iteration.

XPX
prints the crossproducts Jacobian matrix at each iteration.
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Options to Control the Minimization Process
The following options may be helpful when you experience a convergence problem:

CONVERGE= value1
CONVERGE= (value1, value2)

specifies the convergence criteria. The convergence measure must be less thanvalue1
before convergence is assumed.value2is the convergence criterion for theS andV
matrices forS andV iterated methods.value2defaults tovalue1. See "The Conver-
gence Criteria" for details. The default value is CONVERGE=.001.

HESSIAN= CROSS | GLS | FDA
specifies the Hessian approximation used for FIML. HESSIAN=CROSS selects the
crossproducts approximation to the Hessian, HESSIAN=GLS selects the generalized
least-squares approximation to the Hessian, and HESSIAN=FDA selects the finite
difference approximation to the Hessian. HESSIAN=GLS is the default.

LTEBOUND= n
specifies the local truncation error bound for the integration. This option is ignored if
no ODE’s are specified.

MAXITER= n
specifies the maximum number of iterations allowed. The default is MAXITER=100.

MAXSUBITER= n
specifies the maximum number of subiterations allowed for an iteration. For the
GAUSS method, the MAXSUBITER= option limits the number of step halvings.
For the MARQUARDT method, the MAXSUBITER= option limits the number of
times� can be increased. The default is MAXSUBITER=30. See "Minimization
Methods" for details.

METHOD= GAUSS | MARQUARDT
specifies the iterative minimization method to use. METHOD=GAUSS specifies
the Gauss-Newton method, and METHOD=MARQUARDT specifies the Marquardt-
Levenberg method. The default is METHOD=GAUSS. See "Minimization Methods"
for details.

MINTIMESTEP= n
specifies the smallest allowed time step to be used in the integration. This option is
ignored if no ODE’s are specified.

NESTIT
changes the way the iterations are performed for estimation methods that iterate the
estimate of the equation covariance (S matrix). The NESTIT option is relevant only
for the methods that iterate the estimate of the covariance matrix (ITGMM, ITOLS,
ITSUR, IT2SLS, IT3SLS). See "Details on the Covariance of Equation Errors" for an
explanation of NESTIT.

SINGULAR= value
specifies the smallest pivot value allowed. The default 1.0E-12.

SAS OnlineDoc: Version 8
714



Chapter 14. Syntax

STARTITER= n
specifies the number of minimization iterations to perform at each grid point. The
default is STARTITER=0, which implies that no minimization is performed at the
grid points. See "Using the STARTITER option" for more details.

Other Options
Other options that can be used on the FIT statement include the following that list and
analyze the model: BLOCK, GRAPH, LIST, LISTCODE, LISTDEP, LISTDER, and
XREF. The following printing control options are also available: DETAILS, FLOW,
INTGPRINT, MAXERRORS=, NOPRINT, PRINTALL, and TRACE. For complete
descriptions of these options, see the discussion of the PROC MODEL statement
options earlier in this chapter.

ID Statement

ID variables;

The ID statement specifies variables to identify observations in error messages or
other listings and in the OUT= data set. The ID variables are normally SAS date or
datetime variables. If more than one ID variable is used, the first variable is used to
identify the observations; the remaining variables are added to the OUT= data set.

INCLUDE Statement

INCLUDE model-names ... ;

The INCLUDE statement reads model files and inserts their contents into the current
model. However, instead of replacing the current model as the RESET MODEL=
option does, the contents of included model files are inserted into the model program
at the position that the INCLUDE statement appears.

INSTRUMENTS Statement

The INSTRUMENTS statement specifies the instrumental variables to be used in the
N2SLS, N3SLS, IT2SLS, IT3SLS, GMM, and ITGMM estimation methods. There
are two forms of the INSTRUMENTS statement:

INSTRUMENTS variables [ –EXOG– ] ;
INSTRUMENTS [instruments] [ –EXOG– ]

[ EXCLUDE=( parameters ) ] [ / options ] ;
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The first form of the INSTRUMENTS statement is used only before a FIT statement
and defines the default instruments list. The items specified as instruments can be
variables or the special keyword–EXOG–. –EXOG– indicates that all the model
variables declared EXOGENOUS are to be added to the instruments list.

The second form of the INSTRUMENTS statement is used only after the FIT state-
ment and before the next RUN statement. The items specified as instruments for
the second form can be variables, names of parameters to be estimated, or the special
keyword–EXOG–. If you specify the name of a parameter in the instruments list, the
partial derivatives of the equations with respect to the parameter (that is, the columns
of the Jacobian matrix associated with the parameter) are used as instruments. The
parameter itself is not used as an instrument. These partial derivatives should not
depend on any of the parameters to be estimated. Only the names of parameters to be
estimated can be specified.

EXCLUDE= (parameters)
specifies that the derivatives of the equations with respect to all of the parameters to be
estimated, except the parameters listed in the EXCLUDE list, be used as instruments,
in addition to the other instruments specified. If you use the EXCLUDE= option,
you should be sure that the derivatives with respect to the non-excluded parameters
in the estimation are independent of the endogenous variables and not functions of
the parameters estimated.

The following option is specified on the INSTRUMENTS statement following a slash
(/):

NOINTERCEPT
NOINT

excludes the constant of 1.0 (intercept) from the instruments list. An intercept is
always included as an instrument unless NOINTERCEPT is specified.

When a FIT statement specifies an instrumental variables estimation method and no
INSTRUMENTS statement accompanies the FIT statement, the default instruments
are used. If no default instruments list has been specified, all the model variables
declared EXOGENOUS are used as instruments.

See "Choice of Instruments" for more details.

LABEL Statement

LABEL variable=’label’ ... ;

The LABEL statement specifies a label of up to 255 characters for parameters and
other variables used in the model program. Labels are used to identify parts of the
printout of FIT and SOLVE tasks. The labels will be displayed in the output if the
LINESIZE= option is large enough.
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OUTVARS Statement

OUTVARS variables;

The OUTVARS statement specifies additional variables defined in the model program
to be output to the OUT= data sets. The OUTVARS statement is not needed unless
the variables to be added to the output data set are not referred to by the model, or
unless you wish to include parameters or other special variables in the OUT= data set.
The OUTVARS statement includes additional variables, whereas the KEEP statement
excludes variables.

PARAMETERS Statement

PARAMETERS variable [value] [variable [value]] ... ;

The PARAMETERS statement declares the parameters of a model and optionally sets
their values. Valid abbreviations are PARMS and PARM.

Each parameter has a single value associated with it, which is the same for all ob-
servations. Lagging is not relevant for parameters. If a value is not specified in the
PARMS statement (or by the PARMS= option of a FIT statement), the value defaults
to 0.0001 for FIT tasks and to a missing value for SOLVE tasks.

RANGE Statement

RANGE variable [= first] [TO last ];

The RANGE statement specifies the range of observations to be read from the DATA=
data set. For FIT tasks, the RANGE statement controls the period of fit for the esti-
mation. For SOLVE tasks, the RANGE statement controls the simulation period or
forecast horizon.

The RANGE variable must be a numeric variable in the DATA= data set that identifies
the observations, and the data set must be sorted by the RANGE variable. The first
observation in the range is identified byfirst, and the last observation is identified by
last.

PROC MODEL uses the firstl observations prior tofirst to initialize the lags, where
l is the maximum number of lags needed to evaluate any of the equations to be fit or
solved, or the maximum number of lags needed to compute any of the instruments
when an instrumental variables estimation method is used. There should be at least
l observations in the data set beforefirst. If last is not specified, all the nonmissing
observations starting withfirst are used.

If first is omitted, the firstl observations are used to initialize the lags, and the rest of
the data, untillast, is used. If a RANGE statement is used but bothfirst andlast are
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omitted, the RANGE statement variable is used to report the range of observations
processed.

The RANGE variable should be nonmissing for all observations. Observations con-
taining missing RANGE values are deleted.

The following are examples of RANGE statements:

range year = 1971 to 1988; /* yearly data */
range date = ’1feb73’d to ’1nov82’d; /* monthly data */
range time = 60.5; /* time in years */
range year to 1977; /* use all years through 1977 */
range date; /* use values of date to report period-of-fit */

RESET Statement

RESET options;

All of the options of the PROC MODEL statement can be reset by the RESET state-
ment. In addition, the RESET statement supports one additional option:

PURGE
deletes the current model so that a new model can be defined.

When the MODEL= option is used in the RESET statement, the current model is
deleted before the new model is read.

RESTRICT Statement

RESTRICT restriction1 [, restriction2 ... ] ;

The RESTRICT statement is used to impose linear and nonlinear restrictions on the
parameter estimates.

RESTRICT statements refer to the parameters estimated by the associated FIT state-
ment (that is, to either the preceding FIT statement or, in the absence of a preceding
FIT statement, to the following FIT statement). You can specify any number of RE-
STRICT statements.

Eachrestriction is written as an optional name, followed by an expression, followed
by an equality operator (=) or an inequality operator (<, >, <=, >=), followed by a
second expression:

["name"] expression operator expression

The optional"name" is a string used to identify the restriction in the printed output
and in the OUTEST= data set. Theoperatorcan be =, <, >, <= , or >=. The operator
and second expression are optional, as in the TEST statement (=0).
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Restriction expressions can be composed of parameter names, arithmetic operators,
functions, and constants. Comparison operators (such as "=" or "<") and logical oper-
ators (such as “&”) cannot be used in RESTRICT statement expressions. Parameters
named in restriction expressions must be among the parameters estimated by the as-
sociated FIT statement. Expressions can refer to variables defined in the program.

The restriction expressions can be linear or nonlinear functions of the parameters.

The following is an example of the use of the RESTRICT statement:

proc model data=one;
endogenous y1 y2;
exogenous x1 x2;
parms a b c;
restrict b*(b+c) <= a;

eq.one = -y1/c + a/x2 + b * x1**2 + c * x2**2;
eq.two = -y2 * y1 + b * x2**2 - c/(2 * x1);

fit one two / fiml;
run;

SOLVE Statement

SOLVE [variables] [SATISFY= equations] [INITIAL= (variable=[parameter]]
[/options];

The SOLVE statement specifies that the model be simulated or forecast for input data
values and, optionally, selects the variables to be solved. If the list of variables is
omitted, all of the model variables declared ENDOGENOUS are solved. If no model
variables are declared ENDOGENOUS, then all model variables are solved.

The following specification can be used in the SOLVE statement:

SATISFY= equation
SATISFY= ( equations )

specifies a subset of the model equations that the solution values are to satisfy. If
the SATISFY= option is not used, the solution is computed to satisfy all the model
equations. Note that the number of equations must equal the number of variables
solved.

Data Set Options
DATA= SAS-data-set

names the input data set. The model is solved for each observation read from the
DATA= data set. If the DATA= option is not specified on the SOLVE statement, the
data set specified by the DATA= option on the PROC MODEL statement is used.

ESTDATA= SAS-data-set
names a data set whose first observation provides values for some or all of the pa-
rameters and whose additional observations (if any) give the covariance matrix of the
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parameter estimates. The covariance matrix read from the ESTDATA= data set is
used to generate multivariate normal pseudo-random shocks to the model parameters
when the RANDOM= option requests Monte Carlo simulation.

OUT= SAS-data-set
outputs the predicted (solution) values, residual values, actual values, or equation
errors from the solution to a data set. Only the solution values are output by default.

OUTACTUAL
outputs the actual values of the solved variables read from the input data set to the
OUT= data set. This option is applicable only if the OUT= option is specified.

OUTALL
specifies the OUTACTUAL, OUTERRORS, OUTLAGS, OUTPREDICT, and OUT-
RESID options

OUTERRORS
writes the equation errors to the OUT= data set. These values are normally very close
to zero when a simultaneous solution is computed; they can be used to double-check
the accuracy of the solution process. It is applicable only if the OUT= option is
specified.

OUTLAGS
writes the observations used to start the lags to the OUT= data set. This option is
applicable only if the OUT= option is specified.

OUTPREDICT
writes the solution values to the OUT= data set. This option is relevant only if the
OUT= option is specified. The OUTPREDICT option is the default unless one of the
other output options is used.

OUTRESID
writes the residual values computed as the difference of the solution values and the
values for the solution variables read from the input data set to the OUT= data set.
This option is applicable only if the OUT= option is specified.

PARMSDATA= SAS-data-set
specifies a data set that contains the parameter estimates. See the "Input Data Sets"
section for more details.

SDATA= SAS-data-set
specifies a data set that provides the covariance matrix of the equation errors. The
covariance matrix read from the SDATA= data set is used to generate multivariate
normal pseudo-random shocks to the equations when the RANDOM= option requests
Monte Carlo simulation.

TYPE= name
specifies the estimation type. The name specified in the TYPE= option is compared to
the–TYPE– variable in the ESTDATA= and SDATA= data sets to select observations
to use in constructing the covariance matrices. When TYPE= is omitted, the last
estimation type in the data set is used.
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Solution Mode Options: Lag Processing
DYNAMIC

specifies a dynamic solution. In the dynamic solution mode, solved values are used
by the lagging functions. DYNAMIC is the default.

NAHEAD= n
specifies a simulation ofn-period-ahead dynamic forecasting. The NAHEAD= option
is used to simulate the process of using the model to produce successive forecasts to
a fixed forecast horizon, with each forecast using the historical data available at the
time the forecast is made.

Note that NAHEAD=1 produces a static (one-step-ahead) solution. NAHEAD=2 pro-
duces a solution using one-step-ahead solutions for the first lag (LAG1 functions re-
turn static predicted values) and actual values for longer lags. NAHEAD=3 produces
a solution using NAHEAD=2 solutions for the first lags, NAHEAD=1 solutions for
the second lags, and actual values for longer lags. In general, NAHEAD=n solutions
use NAHEAD=n-1 solutions for LAG1, NAHEAD=n-2 solutions for LAG2, and so
forth.

START= s
specifies static solutions until thesth observation and then changes to dynamic solu-
tions. If the START=soption is specified, the first observation in the range in which
LAGn delivers solved predicted values iss+n, while LAGn returns actual values for
earlier observations.

STATIC
specifies a static solution. In static solution mode, actual values of the solved vari-
ables from the input data set are used by the lagging functions.

Solution Mode Options: Use of Available Data
FORECAST

specifies that the actual value of a solved variable is used as the solution value (in-
stead of the predicted value from the model equations) whenever nonmissing data are
available in the input data set. That is, in FORECAST mode, PROC MODEL solves
only for those variables that are missing in the input data set.

SIMULATE
specifies that PROC MODEL always solves for all solution variables as a function of
the input values of the other variables, even when actual data for some of the solution
variables are available in the input data set. SIMULATE is the default.

Solution Mode Options: Numerical Solution Method
JACOBI

computes a simultaneous solution using a Jacobi iteration.

NEWTON
computes a simultaneous solution using Newton’s method. When the NEWTON
option is selected, the analytic derivatives of the equation errors with respect to the
solution variables are computed and memory-efficient sparse matrix techniques are
used for factoring the Jacobian matrix.
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The NEWTON option can be used to solve both normalized-form and general-form
equations and can compute goal-seeking solutions. NEWTON is the default.

SEIDEL
computes a simultaneous solution using a Gauss-Seidel method.

SINGLE
ONEPASS

specifies a single-equation (nonsimultaneous) solution. The model is executed once
to compute predicted values for the variables from the actual values of the other
endogenous variables. The SINGLE option can only be used for normalized-form
equations and cannot be used for goal-seeking solutions.

For more information on these options, see the "Solution Modes" section later in this
chapter.

Monte Carlo Simulation Options
QUASI= NONE|SOBOL|FAURE

specifies a psuedo or quasi-random number generator. Two Quasi-random
number generators supported by the MODEL procedure, the Sobol sequence
(QUASI=SOBOL) and the Faure sequence (QUASI=FAURE). The default is
QUASI=NONE which is the psuedo random number generator.

RANDOM= n
repeats the solutionn times for each BY group, with different random perturbations
of the equation errors if the SDATA= option is used; with different random perturba-
tions of the parameters if the ESTDATA= option is used and the ESTDATA= data set
contains a parameter covariance matrix; and with different values returned from the
random-number generator functions, if any are used in the model program. If RAN-
DOM=0, the random-number generator functions always return zero. See "Monte
Carlo Simulation" for details. The default is RANDOM=0.

SEED= n
specifies an integer to use as the seed in generating pseudo-random numbers to shock
the parameters and equations when the ESTDATA= or the SDATA= options are spec-
ified. If n is negative or zero, the time of day from the computer’s clock is used as
the seed. The SEED= option is only relevant if the RANDOM= option is used. The
default is SEED=0.

Options for Controlling the Numerical Solution Process
The following options are useful when you have difficulty converging to the simulta-
neous solution.

CONVERGE= value
specifies the convergence criterion for the simultaneous solution. Convergence of the
solution is judged by comparing the CONVERGE= value to the maximum over the
equations of

j�ij
jyij+ 1E � 6
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if it is computable, otherwise

j�ij

where�i represents the equation error andyi represents the solution variable cor-
responding to theith equation for normalized-form equations. The default is
CONVERGE=1E-8.

MAXITER= n
specifies the maximum number of iterations allowed for computing the simultaneous
solution for any observation. The default is MAXITER=50.

INITIAL= (variable= [parameter])
specifies starting values for the parameters

MAXSUBITER= n
specifies the maximum number of damping subiterations that are performed in solv-
ing a nonlinear system when using the NEWTON solution method. Damping is dis-
abled by setting MAXSUBITER=0. The default is MAXSUBITER=10.

Printing Options
INTGPRINT

prints between data points integration values for the DERT. variables and the auxiliary
variables. If you specify the DETAILS option, the integrated derivative variables are
printed as well.

ITPRINT
prints the solution approximation and equation errors at each iteration for each obser-
vation. This option can produce voluminous output.

PRINTALL
specifies the printing control options DETAILS, ITPRINT, SOLVEPRINT, STATS,
and THEIL.

SOLVEPRINT
prints the solution values and residuals at each observation

STATS
prints various summary statistics for the solution values

THEIL
prints tables of Theil inequality coefficients and Theil relative change forecast error
measures for the solution values. See "Summary Statistics" in the "Details" section
for more information.

Other Options
Other options that can be used on the SOLVE statement include the following that list
and analyze the model: BLOCK, GRAPH, LIST, LISTCODE, LISTDEP, LISTDER,
and XREF. The LTEBOUND= and MINTIMESTEP= options can be used to control
the integration process. The following printing-control options are also available:
DETAILS, FLOW, MAXERRORS=, NOPRINT, and TRACE. For complete descrip-
tions of these options, see the PROC MODEL and FIT statement options described
earlier in this chapter.
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TEST Statement

TEST ["name"] test1 [, test2 ... ] [,/ options ] ;

The TEST statement performs tests of nonlinear hypotheses on the model parameters.

The TEST statement applies to the parameters estimated by the associated FIT state-
ment (that is, either the preceding FIT statement or, in the absence of a preceding
FIT statement, the following FIT statement). You can specify any number of TEST
statements.

If you specify options on the TEST statement, a comma is required before the "/"
character separating the test expressions from the options, because the "/" character
can also be used within test expressions to indicate division.

Each test is written as an expression optionally followed by an equal sign (=) and a
second expression:

[expression] [= expression ]

Test expressions can be composed of parameter names, arithmetic operators, func-
tions, and constants. Comparison operators (such as "=") and logical operators (such
as “&”) cannot be used in TEST statement expressions. Parameters named in test ex-
pressions must be among the parameters estimated by the associated FIT statement.

If you specify only one expression in a test, that expression is tested against zero. For
example, the following two TEST statements are equivalent:

test a + b;

test a + b = 0;

When you specify multiple tests on the same TEST statement, a joint test is per-
formed. For example, the following TEST statement tests the joint hypothesis that
both A and B are equal to zero.

test a, b;

To perform separate tests rather than a joint test, use separate TEST statements. For
example, the following TEST statements test the two separate hypotheses that A is
equal to zero and that B is equal to zero.

test a;
test b;

You can use the following options in the TEST statement.
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WALD
specifies that a Wald test be computed. WALD is the default.

LM
RAO
LAGRANGE

specifies that a Lagrange multiplier test be computed.

LR
LIKE

specifies that a likelihood ratio test be computed.

ALL
requests all three types of tests.

OUT=
specifies the name of an output SAS data set that contains the test results. The for-
mat of the OUT= data set produced by the TEST statement is similar to that of the
OUTEST= data set produced by the FIT statement.

VAR Statement

VAR variables [initial–values] ... ;

The VAR statement declares model variables and optionally provides initial values
for the variables’ lags. See the "Lag Logic" section for more information.

WEIGHT Statement

WEIGHT variable;

The WEIGHT statement specifies a variable to supply weighting values to use for
each observation in estimating parameters.

If the weight of an observation is nonpositive, that observation is not used for the
estimation.variablemust be a numeric variable in the input data set.

An alternative weighting method is to use an assignment statement to give values to
the special variable–WEIGHT–. The–WEIGHT– variable must not depend on the
parameters being estimated. If both weighting specifications are given, the weights
are multiplied together.
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Estimation Details

Estimation Methods

Consider the general nonlinear model:

�t = q(yt ;xt ; �)
zt = Z(xt)

whereq2Rg is a real vector valued function, ofyt2Rg, xt2Rl, �2Rp, g is the number
of equations,l is the number of exogenous variables (lagged endogenous variables are
considered exogenous here),p is the number of parameters andt ranges from 1 ton.
zt2Rk is a vector of instruments.�t is an unobservable disturbance vector with the
following properties:

E(�t) = 0

E(�t�
0

t) = �

All of the methods implemented in PROC MODEL aim to minimize anobjective
function. The following table summarizes the objective functions defining the esti-
mators and the corresponding estimator of the covariance of the parameter estimates
for each method.

Table 14.1. Summary of PROC MODEL Estimation Methods

Method Instruments Objective Function Covariance of�
OLS no r0r=n (X0(diag(S)�1
I)X)�1

ITOLS no r0(diag(S)�1
I)r=n (X0(diag(S)�1
I)X)�1

SUR no r0(S�1OLS
I)r=n (X0(S�1
I)X)�1

ITSUR no r0(S�1
I)r=n (X0(S�1
I)X)�1

N2SLS yes r0(I
W)r=n (X0(diag(S)�1
W)X)�1

IT2SLS yes r0(diag(S)�1
W)r=n (X0(diag(S)�1
W)X)�1

N3SLS yes r0(S�1N2SLS
W)r=n (X0(S�1
W)X)�1

IT3SLS yes r0(S�1
W)r=n (X0(S�1
W)X)�1

GMM yes [nmn(�)]
0V̂�1

N2SLS[nmn(�)]=n [(YX)0V̂�1(YX)]�1

ITGMM yes [nmn(�)]
0V̂�1[nmn(�)]=n [(YX)0V̂�1(YX)]�1

FIML no constant+ n
2 ln(det(S)) [Ẑ0(S�1
I)Ẑ]�1

�Pn
1 lnj(Jt)j

The column labeled "Instruments" identifies the estimation methods that require in-
struments. The variables used in this table and the remainder of this chapter are
defined as follows:

n = is the number of nonmissing observations.

g = is the number of equations.

k = is the number of instrumental variables.
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r =

2
664
r1
r2
...
rg

3
775 is theng � 1 vector of residuals for theg equations stacked together.

ri =

2
664
qi(y1 ;x1 ; �)
qi(y2 ;x2 ; �)

...
qi(yn ;xn ; �)

3
775 is then� 1 column vector of residuals for theith equation.

S is a g � g matrix that estimates�, the covariances of the errors
across equations (referred to as theS matrix).

X is anng � p matrix of partial derivatives of the residual with re-
spect to the parameters.

W is ann� n matrix,Z(Z0Z)�1Z0.

Z is ann� k matrix of instruments.

Y is agk � ng matrix of instruments.Y = Ig
Z0.
Ẑ Ẑ = (Ẑ1; Ẑ2; : : :; Ẑp) is anng�p matrix. Ẑi is a ng�1 column

vector obtained from stacking the columns of

U
1

n

nX
t=1

�
@q(yt ;xt ; �)

0

@yt

��1 @2q(yt ;xt ; �)0
@yt@�i

�Qi

U is ann�g matrix of residual errors.U = �1; �2; : : :; �n
0

Q is then�g matrixq(y1 ;x1 ; �);q(y2 ;x2 ; �); : : :;q(yn ; n; �.

Qi is ann�g matrix @Q
@�i

.

I is ann� n identity matrix.

Jt is @q(yt ;xt ;�)

@y
0

t

which is ag � g Jacobian matrix.

mn is first moment of the crossproductq(yt;xt; �)
zt.
mn = 1

n

Pn
t=1 q(yt ;xt ; �)
zt

zt is ak column vector of instruments for observationt. z0t is also the
tth row of Z.

V̂ is the gk � gk matrix representing the variance of the moment
functions.

k is the number of instrumental variables used.

constant is the constantng2 (1 + ln(2�)).


 is the notation for a Kronecker product.

All vectors are column vectors unless otherwise noted. Other estimates of the covari-
ance matrix for FIML are also available.

Dependent Regressors and Two-Stage Least Squares
Ordinary regression analysis is based on several assumptions. A key assumption is
that the independent variables are in fact statistically independent of the unobserved
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error component of the model. If this assumption is not true–if the regressor varies
systematically with the error–then ordinary regression produces inconsistent results.
The parameter estimates arebiased.

Regressors might fail to be independent variables because they are dependent vari-
ables in a larger simultaneous system. For this reason, the problem of dependent
regressors is often calledsimultaneous equation bias. For example, consider the fol-
lowing two-equation system.

y1 = a1 + b1y2 + c1x1 + �1

y2 = a2 + b2y1 + c2x2 + �2

In the first equation, y2 is a dependent, orendogenous, variable. As shown by the
second equation, y2 is a function of y1, which by the first equation is a function of
�1, and therefore y2 depends on�1. Likewise, y1 depends on�2 and is a dependent
regressor in the second equation. This is an example of asimultaneous equation
system; y1 and y2 are a function of all the variables in the system.

Using the ordinary least squares (OLS) estimation method to estimate these equations
produces biased estimates. One solution to this problem is to replace y1 and y2 on the
right-hand side of the equations with predicted values, thus changing the regression
problem to the following:

y1 = a1 + b1ŷ2 + c1x1 + �1

y2 = a2 + b2ŷ1 + c2x2 + �2

This method requires estimating the predicted valuesŷ1 andŷ2 through a preliminary,
or "first stage,"instrumental regression. An instrumental regression is a regression
of the dependent regressors on a set ofinstrumental variables, which can be any
independent variables useful for predicting the dependent regressors. In this example,
the equations are linear and the exogenous variables for the whole system are known.
Thus, the best choice for instruments (of the variables in the model) are the variables
x1 and x2.

This method is known astwo-stage least squaresor 2SLS, or more generally as the
instrumental variables method. The 2SLS method for linear models is discussed in
Pindyck (1981, p. 191-192). For nonlinear models this situation is more complex,
but the idea is the same. In nonlinear 2SLS, the derivatives of the model with respect
to the parameters are replaced with predicted values. See the section "Choice of
Instruments" for further discussion of the use of instrumental variables in nonlinear
regression.

To perform nonlinear 2SLS estimation with PROC MODEL, specify the instrumen-
tal variables with an INSTRUMENTS statement and specify the 2SLS or N2SLS
option on the FIT statement. The following statements show how to estimate the first
equation in the preceding example with PROC MODEL.
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proc model data=in;
y1 = a1 + b1 * y2 + c1 * x1;
fit y1 / 2sls;
instruments x1 x2;

run;

The 2SLS or instrumental variables estimator can be computed using a first-stage
regression on the instrumental variables as described previously. However, PROC
MODEL actually uses the equivalent but computationally more appropriate technique
of projecting the regression problem into the linear space defined by the instruments.
Thus PROC MODEL does not produce any "first stage" results when you use 2SLS.
If you specify the FSRSQ option on the FIT statement, PROC MODEL prints "first-
stage R2" statistic for each parameter estimate.

Formally, the�̂ that minimizes

Ŝn =
1

n

 
nX

t=1

(q(yt ;xt ; �)
zt)
!0 nX

t=1

I
ztz0t
!�1 nX

t=1

(q(yt ;xt ; �)
zt)
!

is the N2SLS estimator of the parameters. The estimate of� at the final iteration
is used in the covariance of the parameters given in Table 14.1. Refer to Amemiya
(1985, p. 250) for details on the properties of nonlinear two-stage least squares.

Seemingly Unrelated Regression
If the regression equations are not simultaneous, so there are no dependent regressors,
seemingly unrelated regression(SUR) can be used to estimate systems of equations
with correlated random errors. The large-sample efficiency of an estimation can be
improved if these cross-equation correlations are taken into account. SUR is also
known asjoint generalized least squaresor Zellner regression. Formally, the�̂ that
minimizes

Ŝn =
1

n

nX
t=1

q(yt ;xt ; �)
0�̂�1q(yt ;xt ; �)

is the SUR estimator of the parameters.

The SUR method requires an estimate of the cross-equation covariance matrix,�.
PROC MODEL first performs an OLS estimation, computes an estimate,�̂, from the
OLS residuals, and then performs the SUR estimation based on�̂. The OLS results
are not printed unless you specify the OLS option in addition to the SUR option.

You can specify thê� to use for SUR by storing the matrix in a SAS data set and
naming that data set in the SDATA= option. You can also feed the�̂ computed from
the SUR residuals back into the SUR estimation process by specifying the ITSUR
option. You can print the estimated covariance matrix�̂ using the COVS option on
the FIT statement.

The SUR method requires estimation of the� matrix, and this increases the sampling
variability of the estimator for small sample sizes. The efficiency gain SUR has over
OLS is a large sample property, and you must have a reasonable amount of data to

729
SAS OnlineDoc: Version 8



Part 2. General Information

realize this gain. For a more detailed discussion of SUR, refer to Pindyck (1981, p.
331-333).

Three-Stage Least-Squares Estimation
If the equation system is simultaneous, you can combine the 2SLS and SUR methods
to take into account both dependent regressors and cross-equation correlation of the
errors. This is calledthree-stage least squares(3SLS).

Formally, the�̂ that minimizes

Ŝn =
1

n

 
nX

t=1

(q(yt ;xt ; �)
zt)
!0  

nX
t=1

(�̂
ztz0t)
!�1 nX

t=1

(q(yt ;xt ; �)
zt)
!

is the 3SLS estimator of the parameters. For more details on 3SLS, refer to Gallant
(1987, p. 435).

Residuals from the 2SLS method are used to estimate the�matrix required for 3SLS.
The results of the preliminary 2SLS step are not printed unless the 2SLS option is also
specified.

To use the three-stage least-squares method, specify an INSTRUMENTS statement
and use the 3SLS or N3SLS option on either the PROC MODEL statement or a FIT
statement.

Generalized Method of Moments - GMM
For systems of equations with heteroscedastic errors, generalized method of moments
(GMM) can be used to obtain efficient estimates of the parameters. See the "Het-
eroscedasticity" section for alternatives to GMM.

Consider the nonlinear model

�t = q(yt ;xt ; �)
zt = Z(xt)

wherezt is a vector of instruments and�t is an unobservable disturbance vector that
can be serially correlated and nonstationary.

In general, the following orthogonality condition is desired:

E(�t
zt) = 0

which states that the expected crossproducts of the unobservable disturbances,�t , and
functions of the observable variables are set to 0. The first moment of the crossprod-
ucts is

mn =
1

n

nX
t=1

m(yt ;xt ; �)

m(yt ;xt ; �) = q(yt ;xt ; �)
zt

wherem(yt ;xt ; �)2Rgk.
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The case wheregk > p is considered here, wherep is the number of parameters.

Estimate the true parameter vector�0 by the value of̂� that minimizes

S(�; V ) = [nmn(�)]
0V �1[nmn(�)]=n

where

V = Cov
�
[nmn(�

0)]; [nmn(�
0)]0
�

The parameter vector that minimizes this objective function is the GMM estimator.
GMM estimation is requested on the FIT statement with the GMM option.

The variance of the moment functions,V , can be expressed as

V = E

 
nX

t=1

�t
zt
! 

nX
s=1

�s
zs
!0

=

nX
t=1

nX
s=1

E
�
(�t
zt)(�s
zs)0

�
= nS0n

whereS0n is estimated as

Ŝn =
1

n

nX
t=1

nX
s=1

(q(yt ;xt ; �)
zt)(q(ys ;xs ; �)
zs)0

Note thatŜn is agk�gk matrix. Because Var(Ŝn) will not decrease with increasing
n we consider estimators ofS0n of the form:

Ŝn(l(n)) =

n�1X
�=�n+1

w

�
�

l(n)

�
DŜn;�D

Ŝn;� =

8<
:

nP
t=1+�

[q(yt;xt; �
#)
zt][q(yt�� ;xt�� ; �#)
zt�� ]0 � � 0

(Ŝn;�� )
0 � < 0

where l(n) is a scalar function that computes the bandwidth parameter,w(�) is a
scalar valued kernel, and the diagonal matrixD is used for a small sample degrees
of freedom correction (Gallant 1987). The initial�# used for the estimation of̂Sn is
obtained from a 2SLS estimation of the system. The degrees of freedom correction
is handled by the VARDEF= option as for theSmatrix estimation.

The following kernels are supported by PROC MODEL. They are listed with their
default bandwidth functions.
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Bartlett: KERNEL=BART

w(x) =

�
1� jxj jxj <= 1
0 otherwise

l(n) =
1

2
n1=3

Parzen: KERNEL=PARZEN

w(x) =

8<
:
1� 6jxj2 + 6jxj3 0 <= jxj <= 1

2
2(1 � jxj)3 1

2 <= jxj <= 1
0 otherwise

l(n) = n1=5

Quadratic Spectral: KERNEL=QS

w(x) =
25

12�2x2

�
sin(6�x=5)

6�x=5
� cos(6�x=5)

�

l(n) =
1

2
n1=5

-l(m)

Quadratic Spectral

1

-l(m) l(m)

Parzen

1

l(m)-l(m)

Bartlett

1

l(m)

Figure 14.15. Kernels for Smoothing

Details of the properties of these and other kernels are given in Andrews (1991).
Kernels are selected with the KERNEL= option; KERNEL=PARZEN is the default.
The general form of the KERNEL= option is

KERNEL=( PARZEN | QS | BART, c, e )
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where thee � 0 andc � 0 are used to compute the bandwidth parameter as

l(n) = cne

The bias of the standard error estimates increases for large bandwidth parameters.
A warning message is produced for bandwidth parameters greater thann

1

3 . For a
discussion of the computation of the optimall(n), refer to Andrews (1991).

The "Newey-West" kernel (Newey (1987)) corresponds to the Bartlett kernel with
bandwith parameterl(n) = L+ 1. That is, if the "lag length" for the Newey-West
kernel isL then the corresponding Model procedure syntax is KERNEL=( bart, L+1,
0).

Andrews (1992) has shown that using prewhitening in combination with GMM can
improve confidence interval coverage and reduce over rejection oft-statistics at the
cost of inflating the variance and MSE of the estimator. Prewhitening can be per-
formed using the %AR macros.

For the special case that the errors are not serially correlated, that is

E(et
zt)(es
zs) = 0 t6=s

the estimate forS0n reduces to

Ŝn =
1

n

nX
t=1

[q(yt ;xt ; �)
zt][q(yt ;xt ; �)
zt]0

The option KERNEL=(kernel,0,) is used to select this type of estimation when using
GMM.

Testing Over-Identifying Restrictions
Let r be the number of unique instruments times the number of equations. The value
r represents the number of orthogonality conditions imposed by the GMM method.
Under the assumptions of the GMM method,r � p linearly independent combina-
tions of the orthogonality should be close to zero. The GMM estimates are computed
by setting these combinations to zero. Whenr exceeds the number of parameters to
be estimated, the OBJECTIVE*N, reported at the end of the estimation, is an asymp-
toticly valid statistic to test the null hypothesis that the over-identifying restrictions
of the model are valid. The OBJECTIVE*N is distributed as a chi-square withr � p
degrees of freedom (Hansen 1982, p. 1049).

Iterated Generalized Method of Moments - ITGMM
Iterated generalized method of moments is similar to the iterated versions of 2SLS,
SUR, and 3SLS. The variance matrix for GMM estimation is re-estimatedg at each
iteration with the parameters determined by the GMM estimation. The iteration ter-
minates when the variance matrix for the equation errors change less than the CON-
VERGE= value. Iterated generalized method of moments is selected by the ITGMM
option on the FIT statement. For some indication of the small sample properties of
ITGMM, refer to Ferson (1993).
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Full Information Maximum Likelihood Estimation - FIML
A different approach to the simultaneous equation bias problem is the full information
maximum likelihood (FIML) estimation method (Amemiya 1977).

Compared to the instrumental variables methods (2SLS and 3SLS), the FIML method
has these advantages and disadvantages:

� FIML does not require instrumental variables.

� FIML requires that the model include the full equation system, with as many
equations as there are endogenous variables. With 2SLS or 3SLS you can
estimate some of the equations without specifying the complete system.

� FIML assumes that the equations errors have a multivariate normal distribution.
If the errors are not normally distributed, the FIML method may produce poor
results. 2SLS and 3SLS do not assume a specific distribution for the errors.

� The FIML method is computationally expensive.

The full information maximum likelihood estimators of� and� are the�̂ and�̂ that
minimize the negative log likelihood function:

ln(�; �) =
ng
2 ln(2�) �

nX
t=1

ln

�����@q(yt ;xt ; �)@y
0

t

����
�
+
n

2
ln (j�(�)j)

+
1

2
tr

 
�(�)�1

nX
t=1

q(yt ;xt ; �)q
0(yt ;xt ; �)

!

The option FIML requests full information maximum likelihood estimation. If the
errors are distributed normally, FIML produces efficient estimators of the parameters.
If instrumental variables are not provided the starting values for the estimation are
obtained from a SUR estimation. If instrumental variables are provided, then the
starting values are obtained from a 3SLS estimation. The negative log likelihood
value and the l2 norm of the gradient of the negative log likelihood function are shown
in the estimation summary.

FIML Details
To compute the minimum ofln(�; �), this function isconcentratedusing the relation

�(�) =
1

n

nX
t=1

q(yt ;xt ; �)q
0(yt ;xt ; �)

This results in the concentrated negative log likelihood function:

ln(�) =
ng

2
(1 + ln(2�)) �

nX
t=1

ln

���� @@y0tq(yt ;xt ; �)
����+ n

2
lnj�(�j)

The gradient of the negative log likelihood function is

@

@�i
ln(�) =

nX
t=1

ri(t)
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ri(t) = �tr
 �

@q(yt ;xt ; �)

@y
0

t

��1 @2q(yt ;xt ; �)
@y

0

t@�i

!

+
1

2
tr

�
�(�)�1

@�(�)

@�i�
I ��(�)�1q(yt ;xt ; �)q(yt ;xt ; �)

0
��

+ q(yt ;xt ; �
0)�(�)�1

@q(yt ;xt ; �)

@�i

where

@�(�)

@�i
=

2

n

nX
t=1

q(yt ;xt ; �)
@q(yt ;xt ; �)

0

@�i

The estimator of the variance-covariance of�̂ (COVB) for FIML can be selected with
the COVBEST= option with the following arguments:

CROSS selects the crossproducts estimator of the covariance matrix (de-
fault) (Gallant 1987, p. 473):

C =

 
1

n

nX
t=1

r(t)r0(t)

!�1

wherer(t) = [r1(t);r2(t); : : :;rp(t)]
0

GLS selects the generalized least-squares estimator of the covariance
matrix. This is computed as (Dagenais 1978)

C = [Ẑ 0(�(�)�1
I)Ẑ]�1

whereẐ = (Ẑ1; Ẑ2; : : :; Ẑp) is ng � p and eachẐi column vector
is obtained from stacking the columns of

U
1

n

nX
t=1

�
@q(yt ;xt ; �)

0

@y

��1 @2q(yt ;xt ; �)0
@y

0

n@�i
�Qi

U is ann� g matrix of residuals andqi is ann� g matrix @Q
@�i

.

FDA selects the inverse of concentrated likelihood Hessian as an estima-
tor of the covariance matrix. The Hessian is computed numerically,
so for a large problem this is computationally expensive.

The HESSIAN= option controls which approximation to the Hessian is used in the
minimization procedure. Alternate approximations are used to improve convergence
and execution time. The choices are as follows.
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CROSS The crossproducts approximation is used.

GLS The generalized least-squares approximation is used (default).

FDA The Hessian is computed numerically by finite differences.

HESSIAN=GLS has better convergence properties in general, but COVBEST=CROSS
produces the most pessimistic standard error bounds. When the HESSIAN= option
is used, the default estimator of the variance-covariance of�̂ is the inverse of the
Hessian selected.

Properties of the Estimates
All of the methods are consistent. Small sample properties may not be good for
nonlinear models. The tests and standard errors reported are based on the convergence
of the distribution of the estimates to a normal distribution in large samples.

These nonlinear estimation methods reduce to the corresponding linear systems re-
gression methods if the model is linear. If this is the case, PROC MODEL produces
the same estimates as PROC SYSLIN.

Except for GMM, the estimation methods assume that the equation errors for each
observation are identically and independently distributed with a 0 mean vector and
positive definite covariance matrix� consistently estimated byS. For FIML, the er-
rors need to be normally distributed. There are no other assumptions concerning the
distribution of the errors for the other estimation methods.

The consistency of the parameter estimates relies on the assumption that theSmatrix
is a consistent estimate of�. These standard error estimates are asymptotically valid,
but for nonlinear models they may not be reliable for small samples.

TheS matrix used for the calculation of the covariance of the parameter estimates is
the best estimate available for the estimation method selected. ForS-iterated methods
this is the most recent estimation of�. For OLS and 2SLS, an estimate of theS
matrix is computed from OLS or 2SLS residuals and used for the calculation of the
covariance matrix. For a complete list of theS matrix used for the calculation of the
covariance of the parameter estimates, see Table 14.1.

Missing Values
An observation is excluded from the estimation if any variable used for FIT tasks is
missing, if the weight for the observation is not greater than 0 when weights are used,
or if a DELETE statement is executed by the model program. Variables used for FIT
tasks include the equation errors for each equation, the instruments, if any, and the
derivatives of the equation errors with respect to the parameters estimated. Note that
variables can become missing as a result of computational errors or calculations with
missing values.

The number of usable observations can change when different parameter values are
used; some parameter values can be invalid and cause execution errors for some ob-
servations. PROC MODEL keeps track of the number of usable and missing observa-
tions at each pass through the data, and if the number of missing observations counted
during a pass exceeds the number that was obtained using the previous parameter
vector, the pass is terminated and the new parameter vector is considered infeasible.
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PROC MODEL never takes a step that produces more missing observations than the
current estimate does.

The values used to compute the Durbin-Watson, R2, and other statistics of fit are
from the observations used in calculating the objective function and do not include
any observation for which any needed variable was missing (residuals, derivatives,
and instruments).

Details on the Covariance of Equation Errors
There are severalS matrices that can be involved in the various estimation methods
and in forming the estimate of the covariance of parameter estimates. TheseS ma-
trices are estimates of�, the true covariance of the equation errors. Apart from the
choice of instrumental or noninstrumental methods, many of the methods provided
by PROC MODEL differ in the way the variousSmatrices are formed and used.

All of the estimation methods result in a final estimate of�, which is included in the
output if the COVS option is specified. The finalS matrix of each method provides
the initial Smatrix for any subsequent estimation.

This estimate of the covariance of equation errors is defined as

S = D(R0R)D

whereR = (r1; : : : ; rg) is composed of the equation residuals computed from the
current parameter estimates in ann� g matrix andD is a diagonal matrix that de-
pends on the VARDEF= option.

For VARDEF=N, the diagonal elements ofD are1=
p
n, wheren is the number of

nonmissing observations. For VARDEF=WGT,n is replaced with the sum of the
weights. For VARDEF=WDF,n is replaced with the sum of the weights minus the
model degrees of freedom. For the default VARDEF=DF, theith diagonal element
of D is 1=

p
n� dfi, wheredfi is the degrees of freedom (number of parameters) for

the ith equation. Binkley and Nelson (1984) show the importance of using a degrees-
of-freedom correction in estimating�. Their results indicate that the DF method
produces more accurate confidence intervals for N3SLS parameter estimates in the
linear case than the alternative approach they tested. VARDEF=N is always used for
the computation of the FIML estimates.

For the fixedS methods, the OUTSUSED= option writes theS matrix used in the
estimation to a data set. ThisS matrix is either the estimate of the covariance of
equation errors matrix from the preceding estimation, or a prior� estimate read in
from a data set when the SDATA= option is specified. For the diagonalS methods,
all of the off-diagonal elements of theS matrix are set to 0 for the estimation of the
parameters and for the OUTSUSED= data set, but the output data set produced by
the OUTS= option will contain the off-diagonal elements. For the OLS and N2SLS
methods, there is no previous estimate of the covariance of equation errors matrix,
and the option OUTSUSED= will save an identity matrix unless a prior� estimate
is supplied by the SDATA= option. For FIML the OUTSUSED= data set contains
theSmatrix computed with VARDEF=N. The OUTS= data set contains theSmatrix
computed with the selected VARDEF= option.
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If the COVS option is used, the method is notS-iterated, andS is not an identity, the
OUTSUSED= matrix is included in the printed output.

For the methods that iterate the covariance of equation errors matrix, theS matrix
is iteratively re-estimated from the residuals produced by the current parameter es-
timates. ThisS matrix estimate iteratively replaces the previous estimate until both
the parameter estimates and the estimate of the covariance of equation errors matrix
converge. The final OUTS= matrix and OUTSUSED= matrix are thus identical for
theS-iterated methods.

Nested Iterations
By default, forS-iterated methods, theS matrix is held constant until the parameters
converge once. Then theS matrix is re-estimated. One iteration of the parameter
estimation algorithm is performed, and theSmatrix is again re-estimated. This latter
process is repeated until convergence of both the parameters and theS matrix. Since
the objective of the minimization depends on theS matrix, this has the effect of
chasing a moving target.

When the NESTIT option is specified, iterations are performed to convergence for
the structural parameters with a fixedSmatrix. TheSmatrix is then re-estimated, the
parameter iterations are repeated to convergence, and so on until both the parameters
and theSmatrix converge. This has the effect of fixing the objective function for the
inner parameter iterations. It is more reliable, but usually more expensive, to nest the
iterations.

R2

For unrestricted linear models with an intercept successfully estimated by OLS, R2 is
always between 0 and 1. However, nonlinear models do not necessarily encompass
the dependent mean as a special case and can produce negative R2 statistics. Negative
R2’s can also be produced even for linear models when an estimation method other
than OLS is used and no intercept term is in the model.

R2 is defined for normalized equations as

R2 = 1� SSE

SSA� �y2 � n

where SSA is the sum of the squares of the actualy’s and�y are the actual means. R2

cannot be computed for models in general form because of the need for an actual Y.

Minimization Methods

PROC MODEL currently supports two methods for minimizing the objective func-
tion. These methods are described in the following sections.

GAUSS
The Gauss-Newton parameter-change vector for a system withg equations,n non-
missing observations, andp unknown parameters is

� = (X0X)�1X0r
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where� is the change vector,X is the stackedng � p Jacobian matrix of partial
derivatives of the residuals with respect to the parameters, andr is anng � 1vector
of the stacked residuals. The components ofX andr are weighted by theS�1 matrix.
When instrumental methods are used,X and r are the projections of the Jacobian
matrix and residuals vector in the instruments space and not the Jacobian and resid-
uals themselves. In the preceding formula,S and W are suppressed. If instrumental
variables are used, then the change vector becomes:

� = (X0(S�1
W)X)�1X0(S�1
W)r

This vector is computed at the end of each iteration. The objective function is then
computed at the changed parameter values at the start of the next iteration. If the
objective function is not improved by the change, the� vector is reduced by one-half
and the objective function is re-evaluated. The change vector will be halved up to
MAXSUBITER= times until the objective function is improved.

For FIML theX0Xmatrix is substituted with one of three choices for approximations
to the Hessian. See the "FIML Estimation" section in this chapter.

MARQUARDT
The Marquardt-Levenberg parameter change vector is

� = (X0X+ �diag(X0X))�1X0r

where� is the change vector, andX and r are the same as for the Gauss-Newton
method, described in the preceding section. Before the iterations start,� is set to
a small value (1E-6). At each iteration, the objective function is evaluated at the
parameters changed by�. If the objective function is not improved,� is increased to
10� and the step is tried again.� can be increased up to MAXSUBITER= times to a
maximum of 1E15 (whichever comes first) until the objective function is improved.
For the start of the next iteration,� is reduced to max(�/10,1E-10).

Convergence Criteria

There are a number of measures that could be used as convergence or stopping cri-
teria. PROC MODEL computes five convergence measures labeled R, S, PPC, RPC,
and OBJECT.

When an estimation technique that iterates estimates of� is used (that is, IT3SLS),
two convergence criteria are used. The termination values can be specified with the
CONVERGE=(p,s) option on the FIT statement. If the second value,s, is not spec-
ified, it defaults top. The criterion labeled S (given in the following) controls the
convergence of theS matrix. When S is less thans, theS matrix has converged. The
criterion labeled R is compared to thep value to test convergence of the parameters.

The R convergence measure cannot be computed accurately in the special case of
singular residuals (when all the residuals are close to 0) or in the case of a 0 objective
value. When either the trace of theS matrix computed from the current residuals
(trace(S)) or the objective value is less than the value of the SINGULAR= option,
convergence is assumed.
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The various convergence measures are explained in the following:

R is the primary convergence measure for the parameters. It mea-
sures the degree to which the residuals are orthogonal to the Jaco-
bian columns, and it approaches 0 as the gradient of the objective
function becomes small. R is defined as the square root of

(r0(S�1
W )X(X 0(S�1
W )X)�1X 0(S�1
W )r)

(r0(S�1
W )r)

whereX is the Jacobian matrix andr is the residuals vector. R
is similar to the relative offset orthogonality convergence criterion
proposed by Bates and Watts (1981).

In the univariate case, the R measure has several equivalent inter-
pretations:

� the cosine of the angle between the residuals vector and the
column space of the Jacobian matrix. When this cosine is
0, the residuals are orthogonal to the partial derivatives of
the predicted values with respect to the parameters, and the
gradient of the objective function is 0.

� the square root of the R2 for the current linear pseudo-model
in the residuals.

� a norm of the gradient of the objective function, where the
norming matrix is proportional to the current estimate of the
covariance of the parameter estimates. Thus, using R, con-
vergence is judged when the gradient becomes small in this
norm.

� the prospective relative change in the objective function value
expected from the next GAUSS step, assuming that the cur-
rent linearization of the model is a good local approximation.

In the multivariate case, R is somewhat more complicated but is de-
signed to go to 0 as the gradient of the objective becomes small and
can still be given the previous interpretations for the aggregation of
the equations weighted byS�1.

PPC is the prospective parameter change measure. PPC measures
the maximum relative change in the parameters implied by the
parameter-change vector computed for the next iteration. At the
kth iteration, PPC is the maximum over the parameters

j�k+1i � �ki j
j�jki + 1:0e�6

where�ki is the current value of theith parameter and�k+1i is the
prospective value of this parameter after adding the change vector
computed for the next iteration. The parameter with the maximum
prospective relative change is printed with the value of PPC, unless
the PPC is nearly 0.
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RPC is the retrospective parameter change measure. RPC measures the
maximum relative change in the parameters from the previous iter-
ation. At thekth iteration, RPC is the maximum overi of

j�ki � �k�1i j
j�k�1i + 1:0e�6j

where�ki is the current value of theith parameter and�k�1i is the
previous value of this parameter. The name of the parameter with
the maximum retrospective relative change is printed with the value
of RPC, unless the RPC is nearly 0.

OBJECT measures the relative change in the objective function value be-
tween iterations:

j(Ok �Ok�1j
jOk�1 + 1:0e�6j

whereOk�1 is the value of the objective function (Ok) from the
previous iteration.

S measures the relative change in theS matrix. S is computed as the
maximum overi, j of

jSk
ij � Sk�1

ij j
jSk�1

ij + 1:0e�6j

whereSk�1 is the previousS matrix. The S measure is relevant
only for estimation methods that iterate theS matrix.

An example of the convergence criteria output is as follows:

The MODEL Procedure
IT3SLS Estimation Summary

Minimization Summary

Parameters Estimated 5
Method Gauss
Iterations 35

Final Convergence Criteria

R 0.000883
PPC(d1) 0.000644
RPC(d1) 0.000815
Object 0.00004
Trace(S) 3599.982
Objective Value 0.435683
S 0.000052

Figure 14.16. Convergence Criteria Output
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This output indicates the total number of iterations required by the Gauss minimiza-
tion for all theSmatrices was 35. The "Trace(S)" is the trace (the sum of the diagonal
elements) of theS matrix computed from the current residuals. This row is labeled
MSE if there is only one equation.

Troubleshooting Convergence Problems

As with any nonlinear estimation routine, there is no guarantee that the estimation
will be successful for a given model and data. If the equations are linear with respect
to the parameters, the parameter estimates always converge in one iteration. The
methods that iterate theS matrix must iterate further for theS matrix to converge.
Nonlinear models may not necessarily converge.

Convergence can be expected only with fully identified parameters, adequate data,
and starting values sufficiently close to solution estimates.

Convergence and the rate of convergence may depend primarily on the choice of
starting values for the estimates. This does not mean that a great deal of effort should
be invested in choosing starting values. First, try the default values. If the estimation
fails with these starting values, examine the model and data and re-run the estimation
using reasonable starting values. It is usually not necessary that the starting values be
very good, just that they not be very bad; choose values that seem plausible for the
model and data.

An Example of Requiring Starting Values
Suppose you want to regress a variable Y on a variable X assuming that the variables
are related by the following nonlinear equation:

y = a+ bxc + �

In this equation, Y is linearly related to a power transformation of X. The unknown
parameters area, b, andc. � is an unobserved random error. Some simulated data was
generated using the following SAS statements. In this simulation,a = 10, b = 2, and
the use of the SQRT function corresponds toc = :5.

data test;
do i = 1 to 20;

x = 5 * ranuni(1234);
y = 10 + 2 * sqrt(x) + .5 * rannor(2345);
output;
end;

run;

The following statements specify the model and give descriptive labels to the model
parameters. Then the FIT statement attempts to estimatea, b, andc using the default
starting value .0001.

proc model data=test;
y = a + b * x ** c;
label a = "Intercept"

SAS OnlineDoc: Version 8
742



Chapter 14. Estimation Details

b = "Coefficient of Transformed X"
c = "Power Transformation Parameter";

fit y;
run;

PROC MODEL prints model summary and estimation problem summary reports and
then prints the output shown in Figure 14.17.

The MODEL Procedure
OLS Estimation

NOTE: The iteration limit is exceeded for OLS.

ERROR: The parameter estimates failed to converge for OLS after
100 iterations using CONVERGE=0.001 as the convergence criteria.

The MODEL Procedure
OLS Estimation

N
Iteration N Obs R Objective Subit a b c

OLS 100 20 0.9627 3.9678 2 137.3844 -126.536 -0.00213

Gauss Method Parameter Change Vector

a b c

-69367.57 69366.51 -1.16
NOTE: The parameter estimation is abandoned. Check your model and data. If the

model is correct and the input data are appropriate, try rerunning the
parameter estimation using different starting values for the parameter
estimates.

PROC MODEL continues as if the parameter estimates had converged.

Figure 14.17. Diagnostics for Convergence Failure

By using the default starting values, PROC MODEL was unable to take even the first
step in iterating to the solution. The change in the parameters that the Gauss-Newton
method computes is very extreme and makes the objective values worse instead of
better. Even when this step is shortened by a factor of a million, the objective function
is still worse, and PROC MODEL is unable to estimate the model parameters.

The problem is caused by the starting value of C. Using the default starting value
C=.0001, the first iteration attempts to compute better values of A and B by what is,
in effect, a linear regression of Y on the 10,000th root of X, which is almost the same
as the constant 1. Thus the matrix that is inverted to compute the changes is nearly
singular and affects the accuracy of the computed parameter changes.

This is also illustrated by the next part of the output, which displays collinearity
diagnostics for the crossproducts matrix of the partial derivatives with respect to the
parameters, shown in Figure 14.18.
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The MODEL Procedure
OLS Estimation

Collinearity Diagnostics

Condition -----Proportion of Variation----
Number Eigenvalue Numbe r a b c

1 2.376793 1.0000 0.0000 0.0000 0.0000
2 0.623207 1.9529 0.0000 0.0000 0.0000
3 1.684616E-12 1187805 1.0000 1.0000 1.0000

Figure 14.18. Collinearity Diagnostics

This output shows that the matrix is singular and that the partials of A, B, and C
with respect to the residual are collinear at the point(0:0001; 0:0001; 0:0001) in the
parameter space. See the section "Linear Dependencies" for a full explanation of the
collinearity diagnostics.

The MODEL procedure next prints the note shown in Figure 14.19, which suggests
that you try different starting values.

The MODEL Procedure
OLS Estimation

NOTE: The parameter estimation is abandoned. Check your model and data. If the
model is correct and the input data are appropriate, try rerunning the
parameter estimation using different starting values for the parameter
estimates.

PROC MODEL continues as if the parameter estimates had converged.

Figure 14.19. Estimation Failure Note

PROC MODEL then produces the usual printout of results for the nonconverged pa-
rameter values. The estimation summary is shown in Figure 14.20. The heading
includes the reminder "(Not Converged)."
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The MODEL Procedure
OLS Estimation

Collinearity Diagnostics

Condition -----Proportion of Variation----
Number Eigenvalue Numbe r a b c

1 2.376793 1.0000 0.0000 0.0000 0.0000
2 0.623207 1.9529 0.0000 0.0000 0.0000
3 1.684616E-12 1187805 1.0000 1.0000 1.0000

The MODEL Procedure
OLS Estimation Summary (Not Converged)

Minimization Summary

Parameters Estimated 3
Method Gauss
Iterations 100
Subiterations 239
Average Subiterations 2.39

Final Convergence Criteria

R 0.962666
PPC(b) 548.1977
RPC(b) 540.4224
Object 2.633E-6
Trace(S) 4.667947
Objective Value 3.967755

Observations Processed

Read 20
Solved 20

Figure 14.20. Nonconverged Estimation Summary

The nonconverged estimation results are shown in Figure 14.21.
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The MODEL Procedure

Nonlinear OLS Summary of Residual Errors
(Not Converged)

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

y 3 17 79.3551 4.6679 2.1605 -1.6812 -1.9966

Nonlinear OLS Parameter Estimates (Not Converged)

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

a 137.3844 263342 0.00 0.9996 Intercept
b -126.536 263342 -0.00 0.9996 Coefficient of

Transformed X
c -0.00213 4.4371 -0.00 0.9996 Power Transformation

Parameter

Figure 14.21. Nonconverged Results

Note that theR2 statistic is negative. AnR2 < 0 results when the residual mean square
error for the model is larger than the variance of the dependent variable. Negative
R2 statistics may be produced when either the parameter estimates fail to converge
correctly, as in this case, or when the correctly estimated model fits the data very
poorly.

Controlling Starting Values
To fit the preceding model you must specify a better starting value for C. Avoid start-
ing values of C that are either very large or close to 0. For starting values of A and
B, you can either specify values, use the default, or have PROC MODEL fit starting
values for them conditional on the starting value for C.

Starting values are specified with the START= option of the FIT statement or on a
PARMS statement. For example, the following statements estimate the model param-
eters using the starting values A=.0001, B=.0001, and C=5.

proc model data=test;
y = a + b * x ** c;
label a = "Intercept"

b = "Coefficient of Transformed X"
c = "Power Transformation Parameter";

fit y start=(c=5);
run;

Using these starting values, the estimates converge in 16 iterations. The results are
shown in Figure 14.22. Note that since the START= option explicitly declares pa-
rameters, the parameter C is placed first in the table.
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The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

y 3 17 5.7359 0.3374 0.5809 0.8062 0.7834

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

c 0.327079 0.2892 1.13 0.2738 Power Transformation
Parameter

a 8.384311 3.3775 2.48 0.0238 Intercept
b 3.505391 3.4858 1.01 0.3287 Coefficient of

Transformed X

Figure 14.22. Converged Results

Using the STARTITER Option
PROC MODEL can compute starting values for some parameters conditional on start-
ing values you specify for the other parameters. You supply starting values for some
parameters and specify the STARTITER option on the FIT statement.

For example, the following statements set C to 1 and compute starting values for A
and B by estimating these parameters conditional on the fixed value of C. With C=1
this is equivalent to computing A and B by linear regression on X. A PARMS state-
ment is used to declare the parameters in alphabetical order. The ITPRINT option is
used to print the parameter values at each iteration.

proc model data=test;
parms a b c;
y = a + b * x ** c;
label a = "Intercept"

b = "Coefficient of Transformed X"
c = "Power Transformation Parameter";

fit y start=(c=1) / startiter itprint;
run;

With better starting values, the estimates converge in only 5 iterations. Counting the 2
iterations required to compute the starting values for A and B, this is 5 fewer than the
12 iterations required without the STARTITER option. The iteration history listing is
shown in Figure 14.23.
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The MODEL Procedure
OLS Estimation

N
Iteration N Obs R Objective Subit a b c

GRID 0 20 0.9970 161.9 0 0.00010 0.00010 5.00000
GRID 1 20 0.0000 0.9675 0 12.29508 0.00108 5.00000

N
Iteration N Obs R Objective Subit a b c

OLS 0 20 0.6551 0.9675 0 12.29508 0.00108 5.00000
OLS 1 20 0.6882 0.9558 4 12.26426 0.00201 4.44013
OLS 2 20 0.6960 0.9490 4 12.25554 0.00251 4.28262
OLS 3 20 0.7058 0.9428 2 12.24487 0.00323 4.09977
OLS 4 20 0.7177 0.9380 2 12.23186 0.00430 3.89040
OLS 5 20 0.7317 0.9354 2 12.21610 0.00592 3.65450
OLS 6 20 0.7376 0.9289 3 12.20663 0.00715 3.52417
OLS 7 20 0.7445 0.9223 2 12.19502 0.00887 3.37407
OLS 8 20 0.7524 0.9162 2 12.18085 0.01130 3.20393
OLS 9 20 0.7613 0.9106 2 12.16366 0.01477 3.01460
OLS 10 20 0.7705 0.9058 2 12.14298 0.01975 2.80839
OLS 11 20 0.7797 0.9015 2 12.11827 0.02690 2.58933
OLS 12 20 0.7880 0.8971 2 12.08900 0.03712 2.36306
OLS 13 20 0.7947 0.8916 2 12.05460 0.05152 2.13650
OLS 14 20 0.7993 0.8835 2 12.01449 0.07139 1.91695
OLS 15 20 0.8015 0.8717 2 11.96803 0.09808 1.71101
OLS 16 20 0.8013 0.8551 2 11.91459 0.13284 1.52361
OLS 17 20 0.7987 0.8335 2 11.85359 0.17666 1.35745
OLS 18 20 0.8026 0.8311 1 11.71551 0.28373 1.06872
OLS 19 20 0.7945 0.7935 2 11.57666 0.40366 0.89662
OLS 20 20 0.7872 0.7607 1 11.29346 0.65999 0.67059
OLS 21 20 0.7632 0.6885 1 10.81372 1.11483 0.48842
OLS 22 20 0.6976 0.5587 0 9.54889 2.34556 0.30461
OLS 23 20 0.0108 0.2868 0 8.44333 3.44826 0.33232
OLS 24 20 0.0008 0.2868 0 8.39438 3.49500 0.32790

NOTE: At OLS Iteration 24 CONVERGE=0.001 Criteria Met.

Figure 14.23. ITPRINT Listing

The results produced in this case are almost the same as the results shown in Figure
14.22, except that the PARMS statement causes the Parameter Estimates table to be
ordered A, B, C instead of C, A, B. They are not exactly the same because the different
starting values caused the iterations to converge at a slightly different place. This
effect is controlled by changing the convergence criterion with the CONVERGE=
option.

By default, the STARTITER option performs one iteration to find starting values for
the parameters not given values. In this case the model is linear in A and B, so only
one iteration is needed. If A or B were nonlinear, you could specify more than one
"starting values" iteration by specifying a number for the STARTITER= option.

Finding Starting Values by Grid Search
PROC MODEL can try various combinations of parameter values and use the com-
bination producing the smallest objective function value as starting values. (For OLS
the objective function is the residual mean square.) This is known as a preliminary
grid search. You can combine the STARTITER option with a grid search.
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For example, the following statements try 5 different starting values for C: 10, 5, 2.5,
-2.5, -5. For each value of C, values for A and B are estimated. The combination of
A, B, and C values producing the smallest residual mean square is then used to start
the iterative process.

proc model data=test;
parms a b c;
y = a + b * x ** c;
label a = "Intercept"

b = "Coefficient of Transformed X"
c = "Power Transformation Parameter";

fit y start=(c=10 5 2.5 -2.5 -5) / startiter itprint;
run;

The iteration history listing is shown in Figure 14.24. Using the best starting values
found by the grid search, the OLS estimation only requires 2 iterations. However,
since the grid search required 10 iterations, the total iterations in this case is 12.

The MODEL Procedure
OLS Estimation

N
Iteration N Obs R Objective Subit a b c

GRID 0 20 1.0000 26815.5 0 0.00010 0.00010 10.00000
GRID 1 20 0.0000 1.2193 0 12.51792 0.00000 10.00000
GRID 0 20 0.6012 1.5151 0 12.51792 0.00000 5.00000
GRID 1 20 0.0000 0.9675 0 12.29508 0.00108 5.00000
GRID 0 20 0.7804 1.6091 0 12.29508 0.00108 2.50000
GRID 1 20 0.0000 0.6290 0 11.87327 0.06372 2.50000
GRID 0 20 0.8779 4.1604 0 11.87327 0.06372 -2.50000
GRID 1 20 0.0000 0.9542 0 12.92455 -0.04700 -2.50000
GRID 0 20 0.9998 2776.1 0 12.92455 -0.04700 -5.00000
GRID 1 20 0.0000 1.0450 0 12.86129 -0.00060 -5.00000

N
Iteration N Obs R Objective Subit a b c

OLS 0 20 0.6685 0.6290 0 11.87327 0.06372 2.50000
OLS 1 20 0.6649 0.5871 3 11.79268 0.10083 2.11710
OLS 2 20 0.6713 0.5740 2 11.71445 0.14901 1.81658
OLS 3 20 0.6726 0.5621 2 11.63772 0.20595 1.58705
OLS 4 20 0.6678 0.5471 2 11.56098 0.26987 1.40903
OLS 5 20 0.6587 0.5295 2 11.48317 0.33953 1.26760
OLS 6 20 0.6605 0.5235 1 11.32436 0.48846 1.03784
OLS 7 20 0.6434 0.4997 2 11.18704 0.62475 0.90793
OLS 8 20 0.6294 0.4805 1 10.93520 0.87965 0.73319
OLS 9 20 0.6031 0.4530 1 10.55670 1.26879 0.57385
OLS 10 20 0.6052 0.4526 0 9.62442 2.23114 0.36146
OLS 11 20 0.1652 0.2948 0 8.56683 3.31774 0.32417
OLS 12 20 0.0008 0.2868 0 8.38015 3.50974 0.32664

NOTE: At OLS Iteration 12 CONVERGE=0.001 Criteria Met.

Figure 14.24. ITPRINT Listing

Because no initial values for A or B were provided in the PARAMETERS statement
or were read in with a PARMSDATA= or ESTDATA= option, A and B were given the
default value of 0.0001 for the first iteration. At the second grid point, C=5, the values
of A and B obtained from the previous iterations are used for the initial iteration. If
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initial values are provided for parameters, the parameters start at those initial values
at each grid point.

Guessing Starting Values from the Logic of the Model
Example 14.1 of the logistic growth curve model of the U.S. population illustrates
the need for reasonable starting values. This model can be written

pop =
a

1 + exp(b� c(t� 1790))

wheret is time in years. The model is estimated using decennial census data of the
U.S. population in millions. If this simple but highly nonlinear model is estimated
using the default starting values, the estimation fails to converge.

To find reasonable starting values, first consider the meaning ofa andc. Taking the
limit as time increases,a is the limiting or maximum possible population. So, as a
starting value fora, several times the most recent population known can be used, for
example, one billion (1000 million).

Dividing the time derivative by the function to find the growth rate and taking the
limit as t moves into the past, you can determine thatc is the initial growth rate. You
can examine the data and compute an estimate of the growth rate for the first few
decades, or you can pick a number that sounds like a plausible population growth
rate figure, such as 2%.

To find a starting value forb, let t equal the base year used, 1790, which causes
c to drop out of the formula for that year, and then solve for the value ofb that
is consistent with the known population in 1790 and with the starting value ofa.
This yieldsb = ln(a=3:9 � 1) or about 5.5, wherea is 1000 and 3.9 is roughly the
population for 1790 given in the data. The estimates converge using these starting
values.

Convergence Problems
When estimating nonlinear models, you may encounter some of the following con-
vergence problems.

Unable to Improve
The optimization algorithm may be unable to find a step that improves the objective
function. If this happens in the Gauss-Newton method, the step size is halved to
find a change vector for which the objective improves. In the Marquardt method,�
will be increased to find a change vector for which the objective improves. If, after
MAXSUBITER= step-size halvings or increases in�, the change vector still does not
produce a better objective value, the iterations are stopped and an error message is
printed.

Failure of the algorithm to improve the objective value can be caused by a CON-
VERGE= value that is too small. Look at the convergence measures reported at the
point of failure. If the estimates appear to be approximately converged, you can ac-
cept the NOT CONVERGED results reported, or you can try re-running the FIT task
with a larger CONVERGE= value.
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If the procedure fails to converge because it is unable to find a change vector that
improves the objective value, check your model and data to ensure that all param-
eters are identified and data values are reasonably scaled. Then, re-run the model
with different starting values. Also, consider using the Marquardt method if Gauss-
Newton fails; the Gauss-Newton method can get into trouble if the Jacobian matrix is
nearly singular or ill-conditioned. Keep in mind that a nonlinear model may be well-
identified and well-conditioned for parameter values close to the solution values but
unidentified or numerically ill-conditioned for other parameter values. The choice of
starting values can make a big difference.

Nonconvergence
The estimates may diverge into areas where the program overflows or the estimates
may go into areas where function values are illegal or too badly scaled for accurate
calculation. The estimation may also take steps that are too small or that make only
marginal improvement in the objective function and, thus, fail to converge within the
iteration limit.

When the estimates fail to converge, collinearity diagnostics for the Jacobian
crossproducts matrix are printed if there are 20 or fewer parameters estimated. See
"Linear Dependencies" later in this section for an explanation of these diagnostics.

Inadequate Convergence Criterion
If convergence is obtained, the resulting estimates will only approximate a minimum
point of the objective function. The statistical validity of the results is based on the
exact minimization of the objective function, and for nonlinear models the quality of
the results depends on the accuracy of the approximation of the minimum. This is
controlled by the convergence criterion used.

There are many nonlinear functions for which the objective function is quite flat in a
large region around the minimum point so that many quite different parameter vectors
may satisfy a weak convergence criterion. By using different starting values, differ-
ent convergence criteria, or different minimization methods, you can produce very
different estimates for such models.

You can guard against this by running the estimation with different starting values and
different convergence criteria and checking that the estimates produced are essentially
the same. If they are not, use a smaller CONVERGE= value.

Local Minimum
You may have converged to a local minimum rather than a global one. This problem
is difficult to detect because the procedure will appear to have succeeded. You can
guard against this by running the estimation with different starting values or with a
different minimization technique. The START= option can be used to automatically
perform a grid search to aid in the search for a global minimum.

Discontinuities
The computational methods assume that the model is a continuous and smooth func-
tion of the parameters. If this is not the case, the methods may not work.

If the model equations or their derivatives contain discontinuities, the estimation will
usually succeed, provided that the final parameter estimates lie in a continuous inter-
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val and that the iterations do not produce parameter values at points of discontinuity
or parameter values that try to cross asymptotes.

One common case of discontinuities causing estimation failure is that of an asymp-
totic discontinuity between the final estimates and the initial values. For example,
consider the following model, which is basically linear but is written with one pa-
rameter in reciprocal form:

y = a + b * x1 + x2 / c;

By placing the parameter C in the denominator, a singularity is introduced into the
parameter space at C=0. This is not necessarily a problem, but if the correct estimate
of C is negative while the starting value is positive (or vice versa), the asymptotic
discontinuity at 0 will lie between the estimate and the starting value. This means
that the iterations have to pass through the singularity to get to the correct estimates.
The situation is shown in Figure 14.25.

1/C

Starting 

C

estimate

Correct

value

Figure 14.25. Asymptotic Discontinuity

Because of the incorrect sign of the starting value, the C estimate goes off towards
positive infinity in a vain effort to get past the asymptote and onto the correct arm of
the hyperbola. As the computer is required to work with ever closer approximations
to infinity, the numerical calculations break down and an "objective function was
not improved" convergence failure message is printed. At this point, the iterations
terminate with an extremely large positive value for C. When the sign of the starting
value for C is changed, the estimates converge quickly to the correct values.

Linear Dependencies
In some cases, the Jacobian matrix may not be of full rank; parameters may not be
fully identified for the current parameter values with the current data. When linear de-
pendencies occur among the derivatives of the model, some parameters appear with
a standard error of 0 and with the word BIASED printed in place of thet statistic.
When this happens, collinearity diagnostics for the Jacobian crossproducts matrix
are printed if the DETAILS option is specified and there are twenty or fewer param-
eters estimated. Collinearity diagnostics are also printed out automatically when a
minimization method fails, or when the COLLIN option is specified.

SAS OnlineDoc: Version 8
752



Chapter 14. Estimation Details

For each parameter, the proportion of the variance of the estimate accounted for by
eachprincipal componentis printed. The principal components are constructed from
the eigenvalues and eigenvectors of the correlation matrix (scaled covariance matrix).
When collinearity exists, a principal component is associated with proportion of the
variance of more than one parameter. The numbers reported are proportions so they
will remain between 0 and 1. If two or more parameters have large proportion values
associated with the same principle component, then two problems can occur: the
computation of the parameter estimates are slow or nonconvergent; and the parameter
estimates have inflated variances (Belsley 1980, p. 105-117).

For example, the following cubic model is fit to a quadratic data set:

proc model data=test3;
exogenous x1 ;
parms b1 a1 c1 ;
y1 = a1 * x1 + b1 * x1 * x1 + c1 * x1 * x1 *x1;
fit y1/ collin ;

run;

The collinearity diagnostics are shown in Figure 14.26.

The MODEL Procedure

Collinearity Diagnostics

Condition -----Proportion of Variation----
Number Eigenvalue Number b1 a1 c1

1 2.942920 1.0000 0.0001 0.0004 0.0002
2 0.056638 7.2084 0.0001 0.0357 0.0148
3 0.000442 81.5801 0.9999 0.9639 0.9850

Figure 14.26. Collinearity Diagnostics

Notice that the proportions associated with the smallest eigenvalue are almost 1. For
this model, removing any of the parameters will decrease the variances of the remain-
ing parameters.

In many models the collinearity might not be clear cut. Collinearity is not neces-
sarily something you remove. A model may need to be reformulated to remove the
redundant parameterization or the limitations on the estimatability of the model can
be accepted.

Collinearity diagnostics are also useful when an estimation does not converge. The
diagnostics provide insight into the numerical problems and can suggest which pa-
rameters need better starting values. These diagnostics are based on the approach of
Belsley, Kuh, and Welsch (1980).
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Iteration History

The options ITPRINT, ITDETAILS, XPX, I, and ITALL specify a detailed listing of
each iteration of the minimization process.

ITPRINT Option
The ITPRINT information is selected whenever any iteration information is re-
quested.

The following information is displayed for each iteration:

N the number of usable observations

Objective the corrected objective function value

Trace(S) the trace of theS matrix

subit the number of subiterations required to find a� or a damping factor
that reduces the objective function

R the R convergence measure

The estimates for the parameters at each iteration are also printed.

ITDETAILS Option
The additional values printed for the ITDETAILS option are:

Theta is the angle in degrees between�, the parameter change vector,
and the negative gradient of the objective function.

Phi is the directional derivative of the objective function in the� di-
rection scaled by the objective function.

Stepsize is the value of the damping factor used to reduce� if the Gauss-
Newton method is used.

Lambda is the value of� if the Marquardt method is used.

Rank(XPX) If the projected Jacobian crossproducts matrix is singular, the rank
of theX0X matrix is output.

The definitions of PPC and R are explained in the section "Convergence Criteria."
When the values of PPC are large, the parameter associated with the criteria is dis-
played in parentheses after the value.

XPX and I Options
The XPX and the I options select the printing of the augmentedX0X matrix and
the augmentedX0X matrix after asweepoperation (Goodnight 1979) has been per-
formed on it. An example of the output from the following statements is shown in
Figure 14.27.

proc model data=test2 ;
y1 = a1 * x2 * x2 - exp( d1*x1);
y2 = a2 * x1 * x1 + b2 * exp( d2*x2);
fit y1 y2 / XPX I ;

run;
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The MODEL Procedure
OLS Estimation

Cross Products for System At OLS Iteration 0

a1 d1 a2 b2 d2 Residual

a1 1839468 -33818.35 0.0 0.00 0.000000 3879959
d1 -33818 1276.45 0.0 0.00 0.000000 -76928
a2 0 0.00 42925.0 1275.15 0.154739 470686
b2 0 0.00 1275.2 50.01 0.003867 16055
d2 0 0.00 0.2 0.00 0.000064 2
Residual 3879959 -76928.14 470686.3 16055.07 2.329718 24576144

XPX Inverse for System At OLS Iteration 0

a1 d1 a2 b2 d2 Residual

a1 0.000001 0.000028 0.000000 0.0000 0.00 2
d1 0.000028 0.001527 0.000000 0.0000 0.00 -9
a2 0.000000 0.000000 0.000097 -0.0025 -0.08 6
b2 0.000000 0.000000 -0.002455 0.0825 0.95 172
d2 0.000000 0.000000 -0.084915 0.9476 15746.71 11931
Residual 1.952150 -8.546875 5.823969 171.6234 11930.89 10819902

Figure 14.27. XPX and I Options Output

The first matrix, labeled "Cross Products," for OLS estimation is

�
X0X X0r

r0X r0r

�

The column labeled "Residual" in the output is the vectorX0r, which is the gradient
of the objective function. The diagonal scalar valuer0r is the objective function
uncorrected for degrees of freedom. The second matrix, labeled "XPX Inverse," is
created through a sweep operation on the augmentedX0X matrix to get:

�
(X0X)�1 (X0X)�1X0r

(X0r)0(X0X)�1 r0r� (X0r)0(X0X)�1X0r

�

Note that the residual column is the change vector used to update the parameter esti-
mates at each iteration. The corner scalar element is used to compute the R conver-
gence criteria.

ITALL Option
The ITALL option, in addition to causing the output of all of the preceding options,
outputs theS matrix, the inverse of theS matrix, the CROSS matrix, and the swept
CROSS matrix. An example of a portion of the CROSS matrix for the preceding
example is shown in Figure 14.28.
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The MODEL Procedure
OLS Estimation

Crossproducts Matrix At OLS Iteration 0

1 @PRED.y1/@a1 @PRED.y1/@d1 @PRED.y2/@a2

1 50.00 6409 -239.16 1275.0
@PRED.y1/@a1 6409.08 1839468 -33818.35 187766.1
@PRED.y1/@d1 -239.16 -33818 1276.45 -7253.0
@PRED.y2/@a2 1275.00 187766 -7253.00 42925.0
@PRED.y2/@b2 50.00 6410 -239.19 1275.2
@PRED.y2/@d2 0.00 1 -0.03 0.2
RESID.y1 14699.97 3879959 -76928.14 420582.9
RESID.y2 16052.76 4065028 -85083.68 470686.3

Crossproducts Matrix At OLS Iteration 0

@PRED.y2/@b2 @PRED.y2/@d2 RESID.y1 RESID.y2

1 50.00 0.003803 14700 16053
@PRED.y1/@a1 6409.88 0.813934 3879959 4065028
@PRED.y1/@d1 -239.19 -0.026177 -76928 -85084
@PRED.y2/@a2 1275.15 0.154739 420583 470686
@PRED.y2/@b2 50.01 0.003867 14702 16055
@PRED.y2/@d2 0.00 0.000064 2 2
RESID.y1 14701.77 1.820356 11827102 12234106
RESID.y2 16055.07 2.329718 12234106 12749042

Figure 14.28. ITALL Option Cross-Products Matrix Output

Computer Resource Requirements

If you are estimating large systems, you need to be aware of how PROC MODEL
uses computer resources such as memory and the CPU so they can be used most
efficiently.

Saving Time with Large Data Sets
If your input data set has many observations, the FIT statement does a large number
of model program executions. A pass through the data is made at least once for each
iteration and the model program is executed once for each observation in each pass.
If you refine the starting estimates by using a smaller data set, the final estimation
with the full data set may require fewer iterations.

For example, you could use

proc model;
/* Model goes here */
fit / data=a(obs=25);
fit / data=a;

where OBS=25 selects the first 25 observations in A. The second FIT statement pro-
duces the final estimates using the full data set and starting values from the first run.

Fitting the Model in Sections to Save Space and Time
If you have a very large model (with several hundred parameters, for example), the
procedure uses considerable space and time. You may be able to save resources by
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breaking the estimation process into several steps and estimating the parameters in
subsets.

You can use the FIT statement to select for estimation only the parameters for selected
equations. Do not break the estimation into too many small steps; the total computer
time required is minimized by compromising between the number of FIT statements
that are executed and the size of the crossproducts matrices that must be processed.

When the parameters are estimated for selected equations, the entire model program
must be executed even though only a part of the model program may be needed to
compute the residuals for the equations selected for estimation. If the model itself
can be broken into sections for estimation (and later combined for simulation and
forecasting), then more resources can be saved.

For example, to estimate the following four equation model in two steps, you could
use

proc model data=a outmodel=part1;
parms a0-a2 b0-b2 c0-c3 d0-d3;
y1 = a0 + a1*y2 + a2*x1;
y2 = b0 + b1*y1 + b2*x2;
y3 = c0 + c1*y1 + c2*y4 + c3*x3;
y4 = d0 + d1*y1 + d2*y3 + d3*x4;
fit y1 y2;
fit y3 y4;
fit y1 y2 y3 y4;

run;

You should try estimating the model in pieces to save time only if there are more than
14 parameters; the preceding example takes more time, not less, and the difference in
memory required is trivial.

Memory Requirements for Parameter Estimation
PROC MODEL is a large program, and it requires much memory. Memory is also
required for the SAS System, various data areas, the model program and associated
tables and data vectors, and a few crossproducts matrices. For most models, the
memory required for PROC MODEL itself is much larger than that required for the
model program, and the memory required for the model program is larger than that
required for the crossproducts matrices.

The number of bytes needed for two crossproducts matrices, fourS matrices, and
three parameter covariance matrices is

8� (2 + k +m+ g)2 + 16� g2 + 12� (p+ 1)2

plus lower-order terms.m is the number of unique nonzero derivatives of each resid-
ual with respect to each parameter,g is the number of equations,k is the number of
instruments, andp is the number of parameters. This formula is for the memory re-
quired for 3SLS. If you are using OLS, a reasonable estimate of the memory required
for large problems (greater than 100 parameters) is to divide the value obtained from
the formula in half.
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Consider the following model program.

proc model data=test2 details;
exogenous x1 x2;
parms b1 100 a1 a2 b2 2.5 c2 55;
y1 = a1 * y2 + b1 * x1 * x1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2;
fit y1 y2 / n3sls;
inst b1 b2 c2 x1 ;

run;

The DETAILS option prints the storage requirements information shown in Figure
14.29.

The MODEL Procedure

Storage Requirements for this Problem

Order of XPX Matrix 6
Order of S Matrix 2
Order of Cross Matrix 13
Total Nonzero Derivatives 5
Distinct Variable Derivatives 5
Size of Cross matrix 728

Figure 14.29. Storage Requirements Information

The matrixX0X augmented by the residual vector is called the XPX matrix in the
output, and it has the sizem+ 1. The order of theS matrix, 2 for this example, is
the value ofg. The CROSS matrix is made up of thek unique instruments, a constant
column representing the intercept terms, followed by them unique Jacobian vari-
ables plus a constant column representing the parameters with constant derivatives,
followed by theg residuals.

The size of two CROSS matrices in bytes is

8� (2 + k +m+ g)2 + 2 + k +m+ g

Note that the CROSS matrix is symmetric, so only the diagonal and the upper trian-
gular part of the matrix is stored. For examples of the CROSS and XPX matrices see
"Iteration History" in this section.

The MEMORYUSE Option
The MEMORYUSE option on the FIT, SOLVE, MODEL, or RESET statement may
be used to request a comprehensive memory usage summary.

Figure 14.30 shows an example of the output produced by the MEMORYUSE option.
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The MODEL Procedure

Memory Usage Summary (in bytes)

Symbols 5368
Strings 1057
Lists 1472
Arrays 84
Statements 704
Opcodes 800
Parsing 640
Executable 220
Block option 0
Cross reference 0
Flow analysis 1024
Derivatives 9406
Data vector 240
Cross matrix 728
X’X matrix 392
S matrix 96
GMM memory 0
Jacobian 0
Work vectors 692
Overhead 1906
----------------------- --------------
Total 24829

Figure 14.30. MEMORYUSE Option Output for SOLVE Task

Definitions of the memory components follows:

symbols memory used to store information about variables in the model
strings memory used to store the variable names and labels
lists space used to hold lists of variables
arrays memory used by ARRAY statements
statements memory used for the list of programming statements in the model
opcodes memory used to store the code compiled to evaluate the

expression in the model program
parsing memory used in parsing the SAS statements
executable the compiled model program size (not correct yet)
block option memory used by the BLOCK option
cross ref. memory used by the XREF option
flow analysis memory used to compute the interdependencies of the variables
derivatives memory used to compute and store the analytical derivatives
data vector memory used for the program data vector
cross matrix memory used for one or more copies of the Cross matrix
X0X matrix memory used for one or more copies of theX0X matrix
S matrix memory used for the covariance matrix
GMM memory additional memory used for the GMM and ITGMM methods
Jacobian memory used for the Jacobian matrix for SOLVE and FIML
work vectors memory used for miscellaneous work vectors
overhead other miscellaneous memory
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Testing for Normality

The NORMAL option on the FIT statement performs multivariate and univariate tests
of normality.

The three multivariate tests provided are Mardia’s skewness test and kurtosis test
(Mardia 1980) and the Henze-ZirklerTn;� test (Henze and Zirkler 1990). The two
univariate tests provided are the Shapiro-Wilk W test and the Kolmogorov-Smirnov
test. (For details on the univariate tests, refer to "Tests for Normality" in "The UNI-
VARIATE Procedure" chapter in theSAS Procedures Guide.) The null hypothesis for
all these tests is that the residuals are normally distributed.

For a random sampleX1; : : :;Xn, Xi2Rd, whered is the dimension ofXi andn is
the number of observations, a measure of multivariate skewness is

b1;d =
1

n2

nX
i=1

nX
j=1

[(Xi � �)0S�1(Xj � �)]3

whereS is the sample covariance matrix ofX. For weighted regression, bothS and
(Xi � �) are computed using the weights supplied by the WEIGHT statement or the

–WEIGHT– variable.

Mardia showed that under the null hypothesisn
6 b1;d is asymptotically distributed as

�2(d(d + 1)(d+ 2)=6) .

A measure of multivariate kurtosis is given by

b2;d =
1

n

nX
i=1

[(Xi � �)
0

S�1(Xi � �)]2

Mardia showed that under the null hypothesisb2;dis asymptotically normally dis-
tributed with meand(d+ 2) and variance8d(d+ 2)=n.

The Henze-Zirkler test is based on a nonnegative functionalD(:; :)that measures the
distance between two distribution functions and has the property that

D(Nd(0; Id);Q) = 0

if and only if

Q = Nd(0; Id)

whereNd(�;�d) is ad-dimensional normal distribution.

The distance measureD(:; :) can be written as

D�(P;Q) =

Z
Rd

jP̂ (t)� Q̂(t)j2'�(t)dt
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whereP̂ (t) andQ̂(t) are the Fourier transforms of P and Q, and'�(t) is a weight or
a kernel function. The density of the normal distributionNd(0; �

2Id) is used as'�(t)

'�(t) = (2��2)
�d
2 exp(

�jtj2
2�2

); t 2 Rd

wherejtj = (t
0

t)0:5.

The parameter� depends onn as

�d(n) =
1p
2
(
2d+ 1

4
)1=(d+4)n1=(d+4)

The test statistic computed is calledT�(d) and is approximately distributed as a log
normal. The log normal distribution is used to compute the null hypothesis probabil-
ity.

T�(d) =
1
n2

nX
j=1

nX
k=1

exp(��2

2
jYj � Ykj2)

� 2(1 + �2)�d=2
1

n

nX
j=1

exp(� �2

2(1 + �2)
jYjj2) + (1 + 2�2)�d=2

where

jYj � Ykj2 = (Xj �Xk)
0S�1(Xj �Xk)

jYj j2 = (Xj � �X)0S�1(Xj � �X)

Monte Carlo simulations suggest thatT�(d) has good power against distributions
with heavy tails.

The Shapiro-Wilk W test is computed only when the number of observations (n) is
less than2000.

The following is an example of the output produced by the NORMAL option.

The MODEL Procedure

Normality Test
Equation Test Statistic Value Prob

y1 Shapiro-Wilk W 0.37 <.0001
y2 Shapiro-Wilk W 0.84 <.0001
System Mardia Skewness 286.4 <.0001

Mardia Kurtosis 31.28 <.0001
Henze-Zirkler T 7.09 <.0001

Figure 14.31. Normality Test Output
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Heteroscedasticity

One of the key assumptions of regression is that the variance of the errors is con-
stant across observations. If the errors have constant variance, the errors are called
homoscedastic. Typically, residuals are plotted to assess this assumption. Standard
estimation methods are inefficient when the errors areheteroscedasticor have non-
constant variance.

Heteroscedasticity Tests
The MODEL procedure now provides two tests for heteroscedasticity of the errors:
White’s test and the modified Breusch-Pagan test.

Both White’s test and the Breusch-Pagan are based on the residuals of the fitted
model. For systems of equations, these tests are computed separately for the residuals
of each equation.

The residuals of an estimation are used to investigate the heteroscedasticity of the
true disturbances.

The WHITE option tests the null hypothesis

H0 : �
2
i = �2 for all i

White’s test is general because it makes no assumptions about the form of the het-
eroscedasticity (White 1980). Because of its generality, White’s test may identify
specification errors other than heteroscedasticity (Thursby 1982). Thus White’s test
may be significant when the errors are homoscedastic but the model is misspecified
in other ways.

White’s test is equivalent to obtaining the error sum of squares for the regression of
the squared residuals on a constant and all the unique variables inJ
J, where the
matrix J is composed of the partial derivatives of the equation residual with respect
to the estimated parameters.

Note that White’s test in the MODEL procedure is different than White’s test in the
REG procedure requested by the SPEC option. The SPEC option produces the test
from Theorem 2 on page 823 of White (1980). The WHITE option, on the other
hand, produces the statistic from Corollary 1 on page 825 of White (1980).

The modified Breusch-Pagan test assumes that the error variance varies with a set of
regressors, which are listed in the BREUSCH= option.

Define the matrixZ to be composed of the values of the variables listed in the
BREUSCH= option, such thatzi;j is the value of thejth variable in the BREUSCH=
option for theith observation. The null hypothesis of the Breusch-Pagan test is

H0 : �
2
i = �2(�0 + �

0

zi)

where�2i is the error variance for theith observation, and�0 and� are regression
coefficients.
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The test statistic for the Breusch-Pagan test is

bp =
1

v
(u� �ui)

0

Z(Z
0

Z)�1Z
0

(u� �ui)

whereu = (e21; e
2
2; : : :; e

2
n), i is an� 1 vector of ones, and

v =
1

n

nX
i=1

(e2i �
e
0

e

n
)2

This is a modified version of the Breusch-Pagan test, which is less sensitive to the
assumption of normality than the original test (Greene 1993, p. 395).

The statements in the following example produce the output in Figure 14.32:

proc model data=schools;
parms const inc inc2;

exp = const + inc * income + inc2 * income * income;
incsq = income * income;

fit exp / white breusch=(1 income incsq);
run;

The MODEL Procedure

Heteroscedasticity Test
Equation Test Statistic DF Pr > ChiSq Variables

exp White’s Test 21.16 4 0.0003 Cross of all vars
Breusch-Pagan 15.83 2 0.0004 1, income, incsq

Figure 14.32. Output for Heteroscedasticity Tests

Correcting for Heteroscedasticity
There are two methods for improving the efficiency of the parameter estimation in
the presence of heteroscedastic errors. If the error variance relationships are known,
weighted regression can be used or an error model can be estimated. For details on
error model estimation see section “Error Covariance Stucture Specification”. If the
error variance relationship is unknown, GMM estimation can be used.

Weighted Regression
The WEIGHT statement can be used to correct for the heteroscedasticity. Consider
the following model, which has a heteroscedastic error term:

yt = 250(e�0:2t � e�0:8t) +
p
(9=t)�t

The data for this model is generated with the following SAS statements.
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data test;
do t=1 to 25;

y = 250 * (exp( -0.2 * t ) - exp( -0.8 * t )) +
sqrt( 9 / t ) * rannor(1);

output;
end;

run;

If this model is estimated with OLS,

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
fit y;

run;

the estimates shown in Figure 14.33 are obtained for the parameters.

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

b1 0.200977 0.00101 198.60 <.0001
b2 0.826236 0.00853 96.82 <.0001

Figure 14.33. Unweighted OLS Estimates

If both sides of the model equation are multiplied by
p
t, the model will have a

homoscedastic error term. This multiplication or weighting is done through the
WEIGHT statement. The WEIGHT statement variable operates on the squared resid-
uals as

�
0

t�t = weight � q0tqt

so that the WEIGHT statement variable represents the square of the model multi-
plier. The following PROC MODEL statements corrects the heteroscedasticity with
a WEIGHT statement

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
fit y;
weight t;

run;

Note that the WEIGHT statement follows the FIT statement. The weighted estimates
are shown in Figure 14.34.
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The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

b1 0.200503 0.000844 237.53 <.0001
b2 0.816701 0.0139 58.71 <.0001

Figure 14.34. Weighted OLS Estimates

The weighted OLS estimates are identical to the output produced by the following
PROC MODEL example:

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
_weight_ = t;
fit y;

run;

If the WEIGHT statement is used in conjunction with the–WEIGHT– variable, the
two values are multiplied together to obtain the weight used.

The WEIGHT statement and the–WEIGHT– variable operate on all the residuals
in a system of equations. If a subset of the equations needs to be weighted, the
residuals for each equation can be modified through the RESID. variable for each
equation. The following example demonstrates the use of the RESID. variable to
make a homoscedastic error term:

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
resid.y = resid.y * sqrt(t);
fit y;

run;

These statements produce estimates of the parameters and standard errors that are
identical to the weighted OLS estimates. The reassignment of the RESID.Y variable
must be done after Y is assigned, otherwise it would have no effect. Also, note that
the residual (RESID.Y) is multiplied by

p
t. Here the multiplier is acting on the

residual before it is squared.

GMM Estimation
If the form of the heteroscedasticity is unknown, generalized method of moments
estimation (GMM) can be used. The following PROC MODEL statements use GMM
to estimate the example model used in the preceding section:

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
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fit y / gmm;
instruments b1 b2;

run;

GMM is an instrumental method, so instrument variables must be provided.

GMM estimation generates estimates for the parameters shown in Figure 14.35.

The MODEL Procedure

Nonlinear GMM Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

b1 0.200487 0.000807 248.38 <.0001
b2 0.822148 0.0142 57.95 <.0001

Figure 14.35. GMM Estimation for Heteroscedasticity

Transformation of Error Terms

In PROC MODEL you can control the form of the error term. By default the error
term is assumed to be additive. This section demonstrates how to specify nonadditive
error terms and discusses the effects of these transformations.

Models with Nonadditive Errors
The estimation methods used by PROC MODEL assume that the error terms of the
equations are independently and identically distributed with zero means and finite
variances. Furthermore, the methods assume that the RESID.nameequation variable
for normalized form equations or the EQ.nameequation variable for general form
equations contains an estimate of the error term of the true stochastic model whose
parameters are being estimated. Details on RESID.name and EQ.nameequation
variables are in the section "Model Translations."

To illustrate these points, consider the common loglinear model

y = �x� (1)

lny = a+ bln(x) (2)

wherea=log(�) and b=�. Equation (2) is called thelog form of the equation in
contrast to equation (1), which is called thelevel formof the equation. Using the
SYSLIN procedure, you can estimate equation (2) by specifying

proc syslin data=in;
model logy=logx;

run;

where LOGY and LOGX are the logs of Y and X computed in a preceding DATA
step. The resulting values for INTERCEPT and LOGX correspond toa and b in
equation (2).
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Using the MODEL procedure, you can try to estimate the parameters in the level
form (and avoid the DATA step) by specifying

proc model data=in;
parms alpha beta;
y = alpha * x ** beta;
fit y;

run;

where ALPHA and BETA are the parameters in equation (1).

Unfortunately, at least one of the preceding is wrong; an ambiguity results because
equations (1) and (2) contain no explicit error term. The SYSLIN and MODEL pro-
cedures both deal with additive errors; the residual used (the estimate of the error
term in the equation) is the difference between the predicted and actual values (of
LOGY for PROC SYSLIN and of Y for PROC MODEL in this example). If you
perform the regressions discussed previously, PROC SYSLIN estimates equation (3)
while PROC MODEL estimates equation (4).

lny = a+ bln(x) + � (3)

y = �x� + � (4)

These are different statistical models. Equation (3) is the log form of equation (5)

y = �x�� (5)

where�=e�. Equation (4), on the other hand, cannot be linearized because the error
term� (different from�) is additive in the level form.

You must decide whether your model is equation (4) or (5). If the model is equation
(4), you should use PROC MODEL. If you linearize equation (1) without considering
the error term and apply SYSLIN to MODEL LOGY=LOGX, the results will be
wrong. On the other hand, if your model is equation (5) (in practice it usually is),
and you want to use PROC MODEL to estimate the parameters in thelevelform, you
must do something to account for the multiplicative error.

PROC MODEL estimates parameters by minimizing an objective function. The ob-
jective function is computed using either the RESID.-prefixed equation variable or
the EQ.-prefixed equation variable. You must make sure that these prefixed equation
variables are assigned an appropriate error term. If the model has additive errors that
satisfy the assumptions, nothing needs to be done. In the case of equation (5), the
error is nonadditive and the equation is in normalized form, so you must alter the
value of RESID.Y.

The following assigns a valid estimate of� to RESID.Y:

y = alpha * x ** beta;
resid.y = actual.y / pred.y;

However,�=e� and, therefore,� cannot have a mean of zero and you cannot con-
sistently estimate� and� by minimizing the sum of squares of an estimate of�.
Instead, you use� = ln�.
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proc model data=in;
parms alpha beta;
y = alpha * x ** beta;
resid.y = log( actual.y / pred.y );
fit y;

run;

If the model was expressed in general form, this transformation becomes

proc model data=in;
parms alpha beta;
EQ.trans = log( y / (alpha * x ** beta));
fit trans;

run;

Both examples produce estimates of� and � of the level form that match the
estimates ofa and b of the log form. That is, ALPHA=exp(INTERCEPT) and
BETA=LOGX, where INTERCEPT and LOGX are the PROC SYSLIN parameter
estimates from the MODEL LOGY=LOGX. The standard error reported for ALPHA
is different from that for the INTERCEPT in the log form.

The preceding example is not intended to suggest that loglinear models should be
estimated in level form but, rather, to make the following points:

� Nonlinear transformations of equations involve the error term of the equation,
and this should be taken into account when transforming models.

� The RESID.-prefixed and the EQ.-prefixed equation variables for models es-
timated by the MODEL procedure must represent additive errors with zero
means.

� You can use assignments to RESID.-prefixed and EQ.-prefixed equation vari-
ables to transform error terms.

� Some models do not have additive errors or zero means, and many such mod-
els can be estimated using the MODEL procedure. The preceding approach
applies not only to multiplicative models but to any model that can be manipu-
lated to isolate the error term.

Predicted Values of Transformed Models
Nonadditive or transformed errors affect the distribution of the predicted values, as
well as the estimates. For the preceding loglinear example, the MODEL procedure
produces consistent parameter estimates. However, the predicted values for Y com-
puted by PROC MODEL are not unbiased estimates of the expected values of Y,
although they do estimate the conditional median Y values.

In general, the predicted values produced for a model with nonadditive errors are not
unbiased estimates of the conditional means of the endogenous value. If the model
can be transformed to a model with additive errors by using amonotonictransforma-
tion, the predicted values estimate the conditional medians of the endogenous vari-
able.
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For transformed models in which the biasing factor is known, you can use program-
ming statements to correct for the bias in the predicted values as estimates of the
endogenous means. In the preceding loglinear case, the predicted values will be bi-
ased by the factor exp(�2/2). You can produce approximately unbiased predicted
values in this case by writing the model as

proc model data=in;
parms alpha beta;
y=alpha * x ** beta;
resid.y = log( actual.y / pred.y );

fit y;
run;

Refer to Miller (1984) for a discussion of bias factors for predicted values of trans-
formed models.

Note that models with transformed errors are not appropriate for Monte Carlo simu-
lation using the SDATA= option. PROC MODEL computes the OUTS= matrix from
the transformed RESID.-prefixed equation variables, while it uses the SDATA= ma-
trix to generate multivariate normal errors, which are added to the predicted values.
This method of computing errors is inconsistent when the equation variables have
been transformed.

Error Covariance Structure Specification

One of the key assumptions of regression is that the variance of the errors is constant
across observations. Correcting for heteroscedasticity improves the efficiency of the
estimates.

Consider the following general form for models:

q(yt;xt; �) = "t

"t = Ht � �t

Ht =

2
6664
p
ht;1 0 : : : 0

0
p
ht;2 : : : 0

. . .
0 0 : : :

p
ht;g

3
7775

ht = g(yt;xt; �)

where�t � N(0;�).

For models that are homoscedastic,

ht = 1

If you had a model which was heteroscedastic with known form you can improve the
efficiency of the estimates by performing a weighted regression. The weight variable,
using this notation, would be1=

p
ht.
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If the errors for a model are heteroscedastic and the functional form of the variance
is known, the model for the variance can now be estimated along with the regression
function.

To specify a functional form for the variance, assign the function to an H.var variable
wherevar is the equation variable. For example, if you wanted to estimate the scale
parameter for the variance of a simple regression model

y = a � x+ b

you can specify

proc model data=s;
y = a * x + b;
h.y = sigma**2;

fit y;

Consider the same model with the following functional form for the variance:

ht = �2 � x2��

This would be written as

proc model data=s;
y = a * x + b;
h.y = sigma**2 * x**(2*alpha);

fit y;

There are three ways to model the variance in the MODEL procedure; Feasable gen-
eralized least squares; Generalized method of moments; and Full information maxi-
mum likelihood.

Feasable GLS
A simple approach to estimating a variance function is to estimate the mean param-
eters� using some auxilary method, such as OLS, and then use the residuals of that
estimation to estimate the parameters� of the variance function. This scheme is
calledfeasable GLS. It is posible to use the residuals from an auxilary method for the
purpose of estimating� because in many cases the residuals consistently estimate the
error terms.

This scheme can be done by hand by performing OLS estimation ofq(yt;xt; �),
the mean function, then by regressing the residuals squared onht, and finally by
re-estimating the the mean function using a weight of1=

p
ht.

For all estimation methods except GMM and FIML, using the H.var syntax specifies
that feasable GLS will be used in the estimation. For feasable GLS the mean function
is estimated by the usual method. The variance function is then estimated using
pseudolikelihood (PL) function of the generated residuals. The objective function for
the PL estimation is
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pn(�; �) =
nX

i=1

 
(yi � f(xi; �̂))

2

�2h(zi; �)
+ log[�2h(zi; �)]

!

Once the variance function has been estimated the mean function is re-estimated us-
ing the variance function as weights. If an S-iterated method is selected, this process
is repeated until convergence (iterated feasable GLS).

Note, feasable GLS will not yield consistent estimates when one of the following is
true:

� The variance is unbounded.

� There is too much serial dependence in the errors (the dependence does not
fade with time).

� A combination of serial dependence and lag dependent variables.

The first two cases are unusual but the third is much more common. Whether iter-
ated feasable GLS avoids consistency problems with the last case is an unanswered
research question. For more information see (Davidson and MacKinnon 1993) pages
298-301 or (Gallant 1987) pages 124-125 and (Amemiya 1985) pages 202-203.

One limitation is that parameters can not be shared between the mean equation and
the variance equation. This implies that certian GARCH models, cross equation re-
strictions of parameters, or testing of combinations of parameters in the mean and
variance component are not allowed.

Generalized Method of Moments
In GMM, normally the first moment of the mean function is used in the objective
function.

q(yt;xt; �) = �t

E(�t) = 0

To add the second moment conditions to the estimation, add the equation

E("t � "t � ht) = 0

to the model. For example if you wanted to estimate� for linear example above, you
can write

proc model data=s;
y = a * x + b;
eq.two = resid.y**2 - sigma**2;

fit y two/ gmm;
instruments x;
run;
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This is a popular way to estimate a continuous-time interest rate processes (see (Chan,
et al 1992)). The H.var syntax will automatically generate this system of equations.

To further take advantage of the information obtained about the variance, the moment
equations can be modified to

E("t=
p
ht) = 0

E("t � "t � ht) = 0

For the above example, this can be written as

proc model data=s;
y = a * x + b;
eq.two = resid.y**2 - sigma**2;
resid.y = resid.y / sigma;

fit y two/ gmm;
instruments x;
run;

Note that, if the error model is misspecified in this form of the GMM model, the
parameter estimates may be inconsistent.

Full Information Maximum Likelihood
For FIML estimation of variance functions, the concentrated likelihood below is used
as the objective function. That is, the mean function will be coupled with the variance
function and the system will be solved simultaneously.

ln(�) =
ng

2
(1 + ln(2�)) �

nX
t=1

ln

�����@q(yt;xt; �)@yt

����
�

+
1

2

nX
t=1

gX
i=1

�
ln(ht;i) + qi(yt;xt; �)

2=ht;i
�

whereg is the number of equations in the system.

The HESSIAN=GLS option is not available for FIML estimation involving variance
functions. The matrix used when HESSIAN=CROSS is specified is a cross products
matrix which has been enhanced by the dual quasi-newton approximation.

Examples
You can specify a GARCH(1,1) model as follows:

proc model data=modloc.usd_jpy;

/* Mean model --------*/
jpyret = intercept ;

/* Variance model ----------------*/
h.jpyret = arch0 + arch1 * zlag( resid.jpyret * resid.jpyret )

+ garch1 * zlag(h.jpyret) ;
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bounds arch0 arch1 garch1 >= 0;

fit jpyret/method=marquardt fiml;
run;

Note that the BOUNDS statement was used to ensure that the parameters were posi-
tive, a requirement for GARCH models.

EGARCH models are used because there is no restrictions on the parameters. You
can specify a EGARCH(1,1) model as follows:

proc model data=sasuser.usd_dem ;

/* Mean model ----------*/
demret = intercept ;

/* Variance model ----------------*/
if ( _OBS_ =1 ) then

h.demret = exp( earch0/ (1. - egarch1) );
else

h.demret = exp( earch0 + earch1 * zlag( g)
+ egarch1 * log(zlag(h.demret)));

g = theta * nresid.demret + abs( nresid.demret ) - sqrt(2/3.1415);

/* Fit and save the model */
fit demret/method=marquardt fiml maxiter=100
run;

Ordinary Differential Equations

Ordinary differential equations (ODEs) are also calledinitial value problemsbecause
a time zero value for each first-order differential equation is needed. The following
is an example of a first-order system of ODEs:

y0 = �0:1y + 2:5z2

z0 = �z
y0 = 0
z0 = 1

Note that you must provide an initial value for each ODE.

As a reminder, anyn-order differential equation can be modeled as a system of first-
order differential equations. For example, consider the differential equation

y
00

= by
0

+ cy
y0 = 0
y
0

0 = 1

which can be written as the system of differential equations

y
0

= z
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z
0

= by
0

+ cy
y0 = 0
z0 = 1

This differential system can be simulated as follows:

data t;
time=0; output;
time=1; output;
time=2; output;

run;

proc model data=t ;
dependent y 0 z 1;
parm b -2 c -4;

/* Solve y’’=b y’ + c y --------------*/

dert.y = z;
dert.z = b * dert.y + c * y;

solve y z / dynamic solveprint;
run;

The preceding statements produce the following output. These statements produce
additional output, which is not shown.

The MODEL Procedure
Simultaneous Simulation

Observation 1 Missing 2 CC -1.000000
Iterations 0

Solution Values

y z

0.000000 1.000000

Observation 2 Iterations 0 CC 0.000000 ERROR.y 0.000000

Solution Values

y z

0.2096398 -.2687053

Observation 3 Iterations 0 CC 9.464802 ERROR.y -0.234405

Solution Values

y z

-.0247649 -.1035929
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The differential variables are distinguished by the derivative with respect to time
(DERT.) prefix. Once you define the DERT. variable, you can use it on the right-hand
side of another equation. The differential equations must be expressed in normal
form; implicit differential equations are not allowed, and other terms on the left-hand
side are not allowed.

The TIME variable is theimplied with respect tovariable for all DERT. variables.
The TIME variable is also the only variable that must be in the input data set.

You can provide initial values for the differential equations in the data set, in the
declaration statement (as in the previous example), or in statements in the code. Using
the previous example, you can specify the initial values as

proc model data=t ;
dependent y z ;
parm b -2 c -4;

/* Solve y’’=b y’ + c y --------------*/
if ( time=0 ) then

do;
y=0;
z=1;

end;
else

do;
dert.y = z;
dert.z = b * dert.y + c * y;

end;
end;
solve y z / dynamic solveprint;

run;

If you do not provide an initial value, 0 is used.

DYNAMIC and STATIC Simulation
Note that, in the previous example, the DYNAMIC option was specified in the
SOLVE statement. The DYNAMIC and STATIC options work the same for differen-
tial equations as they do for dynamic systems. In the differential equation case, the
DYNAMIC option makes the initial value needed at each observation the computed
value from the previous iteration. For a static simulation, the data set must contain
values for the integrated variables. For example, if DERT.Y and DERT.Z are the dif-
ferential variables, you must include Y and Z in the input data set in order to do a
static simulation of the model.

If the simulation is dynamic, the initial values for the differential equations are ob-
tained from the data set, if they are available. If the variable is not in the data set, you
can specify the initial value in a declaration statement. If you do not specify an initial
value, the value of 0.0 is used.
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A dynamic solution is obtained by solving one initial value problem for all the data.
A graph of a simple dynamic simulation is shown in Figure 14.36. If the time variable
for the current observation is less than the time variable for the previous observation,
the integration is restarted from this point. This allows for multiple samples in one
data file.

Figure 14.36. Dynamic Solution
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In a static solution, n-1 initial value problems are solved using the first n-1 data values
as initial values. The equations are integrated using theith data value as an initial
value to the i+1 data value. Figure 14.37 displays a static simulation of noisy data
from a simple differential equation. The static solution does not propagate errors in
initial values as the dynamic solution does.

Figure 14.37. Static Solution
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For estimation, the DYNAMIC and STATIC options in the FIT statement perform
the same functions as they do in the SOLVE statement. Components of differential
systems that have missing values or are not in the data set are simulated dynamically.
For example, often in multiple compartment kinetic models, only one compartment
is monitored. The differential equations describing the unmonitored compartments
are simulated dynamically.

For estimation, it is important to have accurate initial values for ODEs that are not in
the data set. If an accurate initial value is not known, the initial value can be made
an unknown parameter and estimated. This allows for errors in the initial values but
increases the number of parameters to estimate by the number of equations.

Estimation of Differential Equations
Consider the kinetic model for the accumulation of mercury (Hg) in mosquito fish
(Matis, Miller, and Allen 1991, p. 177). The model for this process is the one-
compartment constant infusion model shown in Figure 14.38.

Ku
Fish

Ke

Figure 14.38. One-Compartment Constant Infusion Model

The differential equation that models this process is

dconc

dt
= ku � keconc

conc0 = 0

The analytical solution to the model is

conc = (ku=ke)(1 � exp(�ket))

The data for the model are

data fish;
input day conc;
datalines;

0.0 0.0
1.0 0.15
2.0 0.2
3.0 0.26
4.0 0.32
6.0 0.33
;
run;
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To fit this model in differential form, use the following statements:

proc model data=fish;
parm ku ke;

dert.conc = ku - ke * conc;

fit conc / time=day;
run;

The results from this estimation are shown in Figure 14.39.

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

ku 0.180159 0.0312 5.78 0.0044
ke 0.524661 0.1181 4.44 0.0113

Figure 14.39. Static Estimation Results for Fish Model

To perform a dynamic estimation of the differential equation, add the DYNAMIC
option to the FIT statement.

proc model data=fish;
parm ku .3 ke .3;

dert.conc = ku - ke * conc;

fit conc / time = day dynamic;
run;

The equation DERT.CONC is integrated fromconc(0) = 0. The results from this
estimation are shown in Figure 14.40.

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

ku 0.167109 0.0170 9.84 0.0006
ke 0.469033 0.0731 6.42 0.0030

Figure 14.40. Dynamic Estimation Results for Fish Model

To perform a dynamic estimation of the differential equation and estimate the initial
value, use the following statements:

proc model data=fish;
parm ku .3 ke .3 conc0 0;
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dert.conc = ku - ke * conc;

fit conc initial=(conc = conc0) / time = day dynamic;
run;

The INITIAL= option in the FIT statement is used to associate the initial value of a
differential equation with a parameter. The results from this estimation are shown in
Figure 14.41.

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

ku 0.164408 0.0230 7.14 0.0057
ke 0.45949 0.0943 4.87 0.0165
conc0 0.003798 0.0174 0.22 0.8414

Figure 14.41. Dynamic Estimation with Initial Value for Fish Model

Finally, to estimate the fish model using the analytical solution, use the following
statements:

proc model data=fish;
parm ku .3 ke .3;

conc = (ku/ ke)*( 1 -exp(-ke * day));

fit conc;
run;

The results from this estimation are shown in Figure 14.42.

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

ku 0.167109 0.0170 9.84 0.0006
ke 0.469033 0.0731 6.42 0.0030

Figure 14.42. Analytical Estimation Results for Fish Model

A comparison of the results among the four estimations reveals that the two dynamic
estimations and the analytical estimation give nearly identical results (identical to the
default precision). The two dynamic estimations are identical because the estimated
initial value (0.00013071) is very close to the initial value used in the first dynamic
estimation (0). Note also that the static model did not require an initial guess for the
parameter values. Static estimation, in general, is more forgiving of bad initial values.

The form of the estimation that is preferred depends mostly on the model and data.
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If a very accurate initial value is known, then a dynamic estimation makes sense.
If, additionally, the model can be written analytically, then the analytical estimation
is computationally simpler. If only an approximate initial value is known and not
modeled as an unknown parameter, the static estimation is less sensitive to errors in
the initial value.

The form of the error in the model is also an important factor in choosing the form
of the estimation. If the error term is additive and independent of previous error, then
the dynamic mode is appropriate. If, on the other hand, the errors are cumulative, a
static estimation is more appropriate. See the section "Monte Carlo Simulation" for
an example.

Auxiliary Equations
Auxiliary equations can be used with differential equations. These are equations that
need to be satisfied with the differential equations at each point between each data
value. They are automatically added to the system, so you do not need to specify
them in the SOLVE or FIT statement.

Consider the following example.

The Michaelis-Menten Equations describe the kinetics of an enzyme-catalyzed reac-
tion. The enzyme is E, and S is called thesubstrate. The enzyme first reacts with
the substrate to form the enzyme-substrate complex ES, which then breaks down in a
second step to form enzyme and products P.

The reaction rates are described by the following system of differential equations:

d[ES ]

dt
= k1([E ]� [ES ])[S ]� k2[ES ]� k3[ES ]

d[S ]

dt
= �k1([E ]� [ES ])[S ] + k2[ES ]

[E ] = [E ]tot � [ES ]

The first equation describes the rate of formation of ES from E + S. The rate of
formation of ES from E + P is very small and can be ignored. The enzyme is in
either the complexed or the uncomplexed form. So if the total ([E ]tot) concentration
of enzyme and the amount bound to the substrate is known,[E ] can be obtained by
conservation.

In this example, the conservation equation is an auxiliary equation and is coupled
with the differential equations for integration.

Time Variable
You must provide a time variable in the data set. The name of the time variable
defaults to TIME. You can use other variables as the time variable by specifying the
TIME= option in the FIT or SOLVE statement. The time intervals need not be evenly
spaced. If the time variable for the current observation is less than the time variable
for the previous observation, the integration is restarted.
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Differential Equations and Goal Seeking
Consider the following differential equation

y
0

= a�x

and the data set

data t2;
y=0; time=0; output;
y=2; time=1; output;
y=3; time=2; output;

run;

The problem is to find values for X that satisfy the differential equation and the data in
the data set. Problems of this kind are sometimes referred to asgoal seeking problems
because they require you to search for values of X that will satisfy the goal of Y.

This problem is solved with the following statements:

proc model data=t2 ;
dependent x 0;
independent y;
parm a 5;
dert.y = a * x;
solve x / out=foo;

run;

proc print data=foo; run;

The output from the PROC PRINT statement is shown in Figure 14.43.

Obs _TYPE_ _MODE_ _ERRORS_ x y time

1 PREDICT SIMULATE 0 0.00000 0.00000 0
2 PREDICT SIMULATE 0 0.80000 2.00000 1
3 PREDICT SIMULATE 0 -0.40000 3.00000 2

Figure 14.43. Dynamic Solution

Note that an initial value of 0 is provided for the X variable because it is undetermined
at TIME = 0.

In the preceding goal seeking example, X is treated as a linear function between each
set of data points (see Figure 14.44).
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To T

X

X
f

f

o

Figure 14.44. Form of X Used for Integration in Goal Seeking

If you integratey
0

= ax manually, you have

x(t) =
tf � t

tf � t0
x0 +

�T0
tf � t0

xf

y =

Z tf

to

ax(t)dt

= a
1

tf � t0
(t(tfx0 � t0xf ) +

1

2
t2(xf � x0))jtft0

For observation 2, this reduces to

y =
1

2
a�xf

2 = 2:5�xf

Sox = 0:8 for this observation.

Goal seeking for the TIME variable is not allowed.
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Restrictions and Bounds on Parameters

Using the BOUNDS and RESTRICT statements, PROC MODEL can compute opti-
mal estimates subject to equality or inequality constraints on the parameter estimates.

Equality restrictions can be written as a vector function

h(�) = 0

Inequality restrictions are either active or inactive. When an inequality restriction is
active, it is treated as an equality restriction. All inactive inequality restrictions can
be written as a vector function

F (�) � 0

Strict inequalities, such as(f(�) > 0), are transformed into inequalities asf(�) �
(1� �)� � � 0, where the tolerance� is controlled by the EPSILON= option on the
FIT statement and defaults to10�8. The ith inequality restriction becomes active if
Fi < 0 and remains active until its lagrange multiplier becomes negative. Lagrange
multipliers are computed for all the nonredundant equality restrictions and all the
active inequality restrictions.

For the following, assume the vectorh(�) contains all the current active restrictions.
The constraint matrix A is

A(�̂) =
@h(�̂)

@�̂

The covariance matrix for the restricted parameter estimates is computed as

Z(Z 0HZ)�1Z 0

where H is Hessian or approximation to the Hessian of the objective function
((X 0(diag(S)�1
I)X) for OLS), and Z is the last(np� nc) columns of Q. Q is from
an LQ factorization of the constraint matrix,nc is the number of active constraints,
andnp is the number of parameters. Refer to Gill, Murray, and Wright (1981) for
more details on LQ factorization. The covariance column in Table 14.1 summarizes
the Hessian approximation used for each estimation method.

The covariance matrix for the Lagrange multipliers is computed as

(AH�1A0)�1

The p-value reported for a restriction is computed from a beta distribution rather
than at-distribution because the numerator and the denominator of thet-ratio for an
estimated Lagrange multiplier are not independent.
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The Lagrange multipliers for the active restrictions are printed with the parameter
estimates. The Lagrange multiplier estimates are computed using the relationship

A
0

� = g

where the dimension of the constraint matrixA is the number of constraints by the
number of parameters,� is the vector of Lagrange multipliers, andg is the gradient
of the objective function at the final estimates.

The final gradient includes the effects of the estimated S matrix. For example, for
OLS the final gradient would be:

g = X 0(diag(S)�1
I)r

wherer is the residual vector. Note that when nonlinear restrictions are imposed, the
convergence measure R may have values greater than one for some iterations.

Tests on Parameters

In general, the hypothesis tested can be written as

H0 : h(�) = 0

whereh(�) is a vector valued function of the parameters� given by ther expressions
specified on the TEST statement.

Let V̂ be the estimate of the covariance matrix of�̂. Let �̂ be the unconstrained
estimate of� and~� be the constrained estimate of� such thath(~�) = 0. Let

A(�) = @h(�)=@� j�̂

Let r be the dimension ofh(�) and n be the number of observations. Using this
notation, the test statistics for the three kinds of tests are computed as follows.

The Wald test statistic is defined as

W = h
0

(�̂)
8:A(�̂)V̂ A0

(�̂)
9;�1

h(�̂)

The Wald test is not invariant to reparameterization of the model (Gregory 1985,
Gallant 1987, p. 219). For more information on the theoretical properties of the Wald
test see Phillips and Park 1988.

The Lagrange multiplier test statistic is

R = �
0

A(~�) ~V �1A
0

(~�)�
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where� is the vector of Lagrange multipliers from the computation of the restricted
estimate~�.

The Lagrange multiplier test statistic is equivalent to Rao’s efficient score test statis-
tic:

R = (@L(~�)=@�)
0 ~V �1(@L(~�)=@�)

whereL is the log likelihood function for the estimation method used. For OLS and
SUR the Lagrange multiplier test statistic is computed as:

R = [(@Ŝ(~�)=@�)
0 ~V �1(@Ŝ(~�)=@�)]=Ŝ(~�)

whereŜ(~�) is the corresponding objective function value at the constrained estimate.

The likelihood ratio test statistic is

T = 2
�
L(~�)� L(�̂)

�

where~� represents the constrained estimate of� andL is the concentrated log likeli-
hood value.

For OLS and SUR, the likelihood ratio test statistic is computed as:

T = 0:5 � df � (n� nparms)� (Ŝ(~�)� Ŝ(�̂))=Ŝ(�̂)

wheredf is the difference in degrees of freedom for the full and restricted models,
andnparms is the number of parameters in the full system.

The Likelihood ratio test is not appropriate for models with nonstationary serially
correlated errors (Gallant 1987, p. 139). The likelihood ratio test should not be used
for dynamic systems, for systems with lagged dependent variables, or with the FIML
estimation method unless certain conditions are met (see Gallant 1987, p. 479).

For each kind of test, under the null hypothesis the test statistic is asymptotically dis-
tributed as a�2 random variable withr degrees of freedom, wherer is the number of
expressions on the TEST statement. Thep-values reported for the tests are computed
from the�2(r) distribution and are only asymptotically valid.

Monte Carlo simulations suggest that the asymptotic distribution of the Wald test
is a poorer approximation to its small sample distribution than the other two tests.
However, the Wald test has the least computational cost, since it does not require
computation of the constrained estimate~�.

The following is an example of using the TEST statement to perform a likelihood
ratio test for a compound hypothesis.

test a*exp(-k) = 1-k, d = 0 ,/ lr;
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It is important to keep in mind that although individualt tests for each parameter are
printed by default into the parameter estimates table, they are only asymptotically
valid for nonlinear models. You should be cautious in drawing any inferences from
theset tests for small samples.

Hausman Specification Test

Hausman’s specification test, orm-statistic, can be used to test hypotheses in terms
of bias or inconsistency of an estimator. This test was also proposed by Wu (1973).
Hausman’sm-statistic is as follows.

Given two estimators,̂�0 and�̂1, where under the null hypothesis both estimators are
consistent but onlŷ�0 is asymptotically efficient and under the alternative hypothesis
only �̂1 is consistent, them-statistic is

m = q̂0(V̂1 � V̂0)
�q̂

whereV̂1 andV̂0 represent consistent estimates of the asymptotic covariance matri-
ces of�̂1 and�̂0, and

q = �̂1 � �̂0

Them-statistic is then distributed�2 with k degrees of freedom, wherek is the rank of
the matrix(V̂1 � V̂0). A generalized inverse is used, as recommended by Hausman
(1982).

In the MODEL procedure, Hausman’sm-statistic can be used to determine if it is
necessary to use an instrumental variables method rather than a more efficient OLS
estimation. Hausman’sm-statistic can also be used to compare 2SLS with 3SLS for a
class of estimators for which 3SLS is asymptotically efficient (similarly for OLS and
SUR).

Hausman’sm-statistic can also be used, in principle, to test the null hypothesis of
normality when comparing 3SLS to FIML. Because of the poor performance of this
form of the test, it is not offered in the MODEL procedure. Refer to R.C. Fair (1984,
pp. 246-247) for a discussion of why Hausman’s test fails for common econometric
models.

To perform a Hausman’s specification test, specify the HAUSMAN option in the
FIT statement. The selected estimation methods are compared using Hausman’sm-
statistic.

In the following example, OLS, SUR, 2SLS, 3SLS, and FIML are used to estimate a
model, and Hausman’s test is requested.

proc model data=one out=fiml2;
endogenous y1 y2;

y1 = py2 * y2 + px1 * x1 + interc;
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y2 = py1* y1 + pz1 * z1 + d2;

fit y1 y2 / ols sur 2sls 3sls fiml hausman;
instruments x1 z1;

run;

The output specified by the HAUSMAN option produces the following results.

The MODEL Procedure

Hausman’s Specification Test Results
Comparing To DF Statistic Pr > ChiSq

OLS SUR 6 32.47 <.0001
OLS 2SLS 6 13.86 0.0313
OLS 3SLS 6 -0.07 .
2SLS 3SLS 6 0.00 1.0000

Figure 14.45. Hausman’s Specification Test Results

Figure 14.45 indicates that 2SLS, a system estimation method, is preferred over OLS.
The model needs an IV estimator but not a full error covariance matrix. Note that the
FIML estimation results are not compared.

Chow Tests

The Chow test is used to test for break points or structural changes in a model. The
problem is posed as a partitioning of the data into two parts of sizen1 andn2. The
null hypothesis to be tested is

Ho : �1 = �2 = �

where�1 is estimated using the first part of the data and�2 is estimated using the
second part.

The test is performed as follows (refer to Davidson and MacKinnon 1993, p. 380).

1. Thep parameters of the model are estimated.

2. A second linear regression is performed on the residuals,û, from the nonlinear
estimation in step one.

û = X̂ b+ residuals

whereX̂ is Jacobian columns that are evaluated at the parameter estimates.
If the estimation is an instrumental variables estimation with matrix of instru-
ments W, then the following regression is performed:

û = PW �X̂ b+ residuals

wherePW � is the projection matrix.
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3. The restricted SSE (RSSE) from this regression is obtained. An SSE for each
subsample is then obtained using the same linear regression.

4. TheF statistic is then

f =
(RSSE � SSE1 � SSE 2)=p

(SSE 1 + SSE 2)=(n� 2p)

This test hasp andn� 2p degrees of freedom.

Chow’s test is not applicable ifmin(n1; n2) < p, since one of the two subsamples
does not contain enough data to estimate�. In this instance, thepredictive Chow test
can be used. The predictive Chow test is defined as

f =
(RSSE � SSE 1)�(n1 � p)

SSE1�n2

wheren1 > p. This test can be derived from the Chow test by noting that the
SSE 2 = 0 whenn2 <= p and by adjusting the degrees of freedom appropriately.

You can select the Chow test and the predictive Chow test by specifying the
CHOW=arg and the PCHOW=arg options in the FIT statement, wherearg is either
the number of observations in the first sample or a parenthesized list of first sample
sizes. If the sizes for the second or the first group are less than the number of parame-
ters, then a PCHOW test is automatically used. These tests statistics are not produced
for GMM and FIML estimations.

The following is an example of the use of the Chow test.

data exp;
x=0;
do time=1 to 100;

if time=50 then x=1;
y = 35 * exp( 0.01 * time ) + rannor( 123 ) + x * 5;
output;

end;
run;

proc model data=exp;
parm zo 35 b;

dert.z = b * z;
y=z;

fit y init=(z=zo) / chow =(40 50 60) pchow=90;
run;

The data set introduced an artificial structural change into the model (the structural
change effects the intercept parameter). The output from the requested Chow tests
are shown in Figure 14.46.
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The MODEL Procedure

Structural Change Test

Break
Test Point Num DF Den DF F Value Pr > F

Chow 40 2 96 12.95 <.0001
Chow 50 2 96 101.37 <.0001
Chow 60 2 96 26.43 <.0001
Predictive Chow 90 11 87 1.86 0.0566

Figure 14.46. Chow’s Test Results

Profile Likelihood Confidence Intervals

Wald-based and likelihood ratio-based confidence intervals are available in the
MODEL procedure for computing a confidence interval on an estimated parameter.
A confidence interval on a parameter� can be constructed by inverting a Wald-based
or a likelihood ratio-based test.

The approximate100(1 � �) % Wald confidence interval for a parameter� is

�̂�z1��=2�̂

wherezp is the100pth percentile of the standard normal distribution,�̂ is the maxi-
mum likelihood estimate of�, and�̂ is the standard error estimate of�̂.

A likelihood ratio-based confidence interval is derived from the�2 distribution of the
generalized likelihood ratio test. The approximate1� � confidence interval for a
parameter� is

� : 2[l(�̂)� l(�)]�q1;1�� = 2l�

whereq1;1�� is the(1� �) quantile of the�2 with one degree of freedom, andl(�)
is the log likelihood as a function of one parameter. The endpoints of a confidence
interval are the zeros of the functionl(�)� l�. Computing a likelihood ratio-based
confidence interval is an iterative process. This process must be performed twice for
each parameter, so the computational cost is considerable. Using a modified form of
the algorithm recommended by Venzon and Moolgavkar (1988), you can determine
that the cost of each endpoint computation is approximately the cost of estimating the
original system.

To request confidence intervals on estimated parameters, specify the following option
in the FIT statement:

PRL= WALD | LR | BOTH
By default the PRL option produces 95% likelihood ratio confidence limits. The
coverage of the confidence interval is controlled by the ALPHA= option in the FIT
statement.

The following is an example of the use of the confidence interval options.
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data exp;
do time = 1 to 20;

y = 35 * exp( 0.01 * time ) + 5*rannor( 123 );
output;
end;

run;

proc model data=exp;
parm zo 35 b;

dert.z = b * z;
y=z;

fit y init=(z=zo) / prl=both;
test zo = 40.475437 ,/lr;

run;

The output from the requested confidence intervals and the TEST statement are
shown in Figure 14.47

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

zo 36.58933 1.9471 18.79 <.0001
b 0.006497 0.00464 1.40 0.1780

Test Results

Test Type Statistic Pr > ChiSq Label

Test0 L.R. 3.81 0.0509 zo = 40.475437

Parameter Wald
95% Confidence Intervals

Parameter Value Lower Upper

zo 36.5893 32.7730 40.4056
b 0.00650 -0.00259 0.0156

Parameter Likelihood Ratio
95% Confidence Intervals

Parameter Value Lower Upper

zo 36.5893 32.8381 40.4921
b 0.00650 -0.00264 0.0157

Figure 14.47. Confidence Interval Estimation

Note that the likelihood ratio test reported the probability thatzo = 40:47543 is
5% but zo = 40:47543 is the upper bound of a 95% confidence interval. To un-
derstand this conundrum, note that the TEST statement is using the likelihood ra-
tio statistic to test the null hypothesisH0 : zo = 40:47543 with the alternate that
Ha : zo 6=40:47543. The upper confidence interval can be viewed as a test with the
null hypothesisH0 : zo <= 40:47543.
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Choice of Instruments

Several of the estimation methods supported by PROC MODEL are instrumental
variables methods. There is no standard method for choosing instruments for nonlin-
ear regression. Few econometric textbooks discuss the selection of instruments for
nonlinear models. Refer to Bowden, R.J. and Turkington, D.A. (1984, p. 180-182)
for more information.

The purpose of the instrumental projection is to purge the regressors of their corre-
lation with the residual. For nonlinear systems, the regressors are the partials of the
residuals with respect to the parameters.

Possible instrumental variables include

� any variable in the model that is independent of the errors

� lags of variables in the system

� derivatives with respect to the parameters, if the derivatives are independent of
the errors

� low degree polynomials in the exogenous variables

� variables from the data set or functions of variables from the data set.

Selected instruments must not

� depend on any variable endogenous with respect to the equations estimated

� depend on any of the parameters estimated

� be lags of endogenous variables if there is serial correlation of the errors.

If the preceding rules are satisfied and there are enough observations to support the
number of instruments used, the results should be consistent and the efficiency loss
held to a minimum.

You need at least as many instruments as the maximum number of parameters in
any equation, or some of the parameters cannot be estimated. Note thatnumber of
instrumentsmeans linearly independent instruments. If you add an instrument that is
a linear combination of other instruments, it has no effect and does not increase the
effective number of instruments.

You can, however, use too many instruments. In order to get the benefit of instru-
mental variables, you must have more observations than instruments. Thus, there is
a trade-off; the instrumental variables technique completely eliminates the simulta-
neous equation bias only in large samples. In finite samples, the larger the excess
of observations over instruments, the more the bias is reduced. Adding more instru-
ments may improve the efficiency, but after some point efficiency declines as the
excess of observations over instruments becomes smaller and the bias grows.

The instruments used in an estimation are printed out at the beginning of the estima-
tion. For example, the following statements produce the instruments list shown in
Figure 14.48.

791
SAS OnlineDoc: Version 8



Part 2. General Information

proc model data=test2;
exogenous x1 x2;
parms b1 a1 a2 b2 2.5 c2 55;
y1 = a1 * y2 + b1 * exp(x1);
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2;
fit y1 y2 / n2sls;
inst b1 b2 c2 x1 ;

run;

The MODEL Procedure

The 2 Equations to Estimate

y1 = F(b1, a1(y2))
y2 = F(a2(y1), b2, c2)

Instruments 1 x1 @y1/@b1 @y2/@b2 @y2/@c2

Figure 14.48. Instruments Used Message

This states that an intercept term, the exogenous variable X1, and the partial deriva-
tives of the equations with respect to B1, B2, and C2, were used as instruments for
the estimation.

Examples
Suppose that Y1 and Y2 are endogenous variables, that X1 and X2 are exogenous
variables, and that A, B, C, D, E, F, and G are parameters. Consider the following
model:

y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1 y2;
instruments exclude=(c g);

The INSTRUMENTS statement produces X1, X2, LAG(Y1), and an intercept as
instruments.

In order to estimate the Y1 equation by itself, it is necessary to include X2 explicitly
in the instruments since F, in this case, is not included in the estimation

y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1;
instruments x2 exclude=(c);

This produces the same instruments as before. You can list the parameter associated
with the lagged variable as an instrument instead of using the EXCLUDE= option.
Thus, the following is equivalent to the previous example:

y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1;
instruments x1 x2 d;
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For an example of declaring instruments when estimating a model involving identi-
ties, consider Klein’s Model I

proc model data=klien;
endogenous c p w i x wsum k y;
exogenous wp g t year;
parms c0-c3 i0-i3 w0-w3;
a: c = c0 + c1 * p + c2 * lag(p) + c3 * wsum;
b: i = i0 + i1 * p + i2 * lag(p) + i3 * lag(k);
c: w = w0 + w1 * x + w2 * lag(x) + w3 * year;
x = c + i + g;
y = c + i + g-t;
p = x-w-t;
k = lag(k) + i;
wsum = w + wp;

The three equations to estimate are identified by the labels A, B, and C. The param-
eters associated with the predetermined terms are C2, I2, I3, W2, and W3 (and the
intercepts, which are automatically added to the instruments). In addition, the system
includes five identities that contain the predetermined variables G, T, LAG(K), and
WP. Thus, the INSTRUMENTS statement can be written as

lagk = lag(k);
instruments c2 i2 i3 w2 w3 g t wp lagk;

where LAGK is a program variable used to hold LAG(K). However, this is more com-
plicated than it needs to be. Except for LAG(K), all the predetermined terms in the
identities are exogenous variables, and LAG(K) is already included as the coefficient
of I3. There are also more parameters for predetermined terms than for endogenous
terms, so you might prefer to use the EXCLUDE= option. Thus, you can specify the
same instruments list with the simpler statement

instruments _exog_ exclude=(c1 c3 i1 w1);

To illustrate the use of polynomial terms as instrumental variables, consider the fol-
lowing model:

y1 = a + b * exp( c * x1 ) + d * log( x2 ) + e * exp( f * y2 );

The parameters are A, B, C, D, E, and F, and the right-hand-side variables are X1, X2,
and Y2. Assume that X1 and X2 are exogenous (independent of the error), while Y2
is endogenous. The equation for Y2 is not specified, but assume that it includes the
variables X1, X3, and Y1, with X3 exogenous, so the exogenous variables of the full
system are X1, X2, and X3. Using as instruments quadratic terms in the exogenous
variables, the model is specified to PROC MODEL as follows.
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proc model;
parms a b c d e f;
y1 = a + b * exp( c * x1 ) + d * log( x2 ) + e * exp( f * y2 );
instruments inst1-inst9;
inst1 = x1; inst2 = x2; inst3 = x3;
inst4 = x1 * x1; inst5 = x1 * x2; inst6 = x1 * x3;
inst7 = x2 * x2; inst8 = x2 * x3; inst9 = x3 * x3;
fit y1 / 2sls;

run;

It is not clear what degree polynomial should be used. There is no way to know how
good the approximation is for any degree chosen, although the first-stageR2s may
help the assessment.

First-Stage R2s
When the FSRSQ option is used on the FIT statement, the MODEL procedure prints a
column of first-stageR2 (FSRSQ) statistics along with the parameter estimates. The
FSRSQ measures the fraction of the variation of the derivative column associated
with the parameter that remains after projection through the instruments.

Ideally, the FSRSQ should be very close to 1.00 for exogenous derivatives. If the
FSRSQ is small for an endogenous derivative, it is unclear whether this reflects a poor
choice of instruments or a large influence of the errors in the endogenous right-hand-
side variables. When the FSRSQ for one or more parameters is small, the standard
errors of the parameter estimates are likely to be large.

Note that you can make all the FSRSQs larger (or 1.00) by including more instru-
ments, because of the disadvantage discussed previously. The FSRSQ statistics re-
ported are unadjustedR2s and do not include a degrees-of-freedom correction.

Autoregressive Moving Average Error Processes

Autoregressive moving average error processes (ARMA errors) and other models
involving lags of error terms can be estimated using FIT statements and simulated or
forecast using SOLVE statements. ARMA models for the error process are often used
for models with autocorrelated residuals. The %AR macro can be used to specify
models with autoregressive error processes. The %MA macro can be used to specify
models with moving average error processes.

Autoregressive Errors
A model with first-order autoregressive errors, AR(1), has the form

yt = f(xt; �) + �t

�t = ��t�1 + �t

while an AR(2) error process has the form

�t = �1�t�1 + �2�t�2 + �t

SAS OnlineDoc: Version 8
794



Chapter 14. Estimation Details

and so forth for higher-order processes. Note that the�t’s are independent and iden-
tically distributed and have an expected value of 0.

An example of a model with an AR(2) component is

y = �+ �x1 + �t

�t = �1�t�1 + �2�t�2 + �t

You would write this model as follows:

proc model data=in;
parms a b p1 p2;
y = a + b * x1 + p1 * zlag1(y - (a + b * x1)) +

p2 * zlag2(y - (a + b * x1));
fit y;

run;

or equivalently using the %AR macro as

proc model data=in;
parms a b;
y = a + b * x1;
%ar( y, 2 );
fit y;

run;

Moving Average Models
A model with first-order moving average errors, MA(1), has the form

yt = f(xt) + �t

�t = �t � �1�t�1

where�t is identically and independently distributed with mean zero. An MA(2) error
process has the form

�t = �t � �1�t�1 � �2�t�2

and so forth for higher-order processes.

For example, you can write a simple linear regression model with MA(2) moving
average errors as

proc model data=inma2;
parms a b ma1 ma2;
y = a + b * x + ma1 * zlag1( resid.y ) +

ma2 * zlag2( resid.y );
fit;

run;

where MA1 and MA2 are the moving average parameters.
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Note that RESID.Y is automatically defined by PROC MODEL as

pred.y = a + b * x + ma1 * zlag1( resid.y ) +
ma2 * zlag2( resid.y );

resid.y = actual.y - pred.y;

Note that RESID.Y is�t.

The ZLAG function must be used for MA models to truncate the recursion of the lags.
This ensures that the lagged errors start at zero in the lag-priming phase and do not
propagate missing values when lag-priming period variables are missing, and ensures
that the future errors are zero rather than missing during simulation or forecasting.
For details on the lag functions, see the section "Lag Logic."

This model written using the %MA macro is

proc model data=inma2;
parms a b;
y = a + b * x;
%ma(y, 2);
fit;

run;

General Form for ARMA Models
The general ARMA(p,q) process has the following form

�t = �1�t�1 + : : :+ �p�t�p + �t � �1�t�1 � : : :� �q�t�q

An ARMA(p,q) model can be specified as follows

yhat = ... compute structural predicted value here ... ;
yarma = ar1 * zlag1( y - yhat ) + ... /* ar part */

+ ar(p) * zlag(p)( y - yhat )
+ ma1 * zlag1( resid.y ) + ... /* ma part */

+ ma(q) * zlag(q)( resid.y );
y = yhat + yarma;

where ARi and MAj represent the autoregressive and moving average parameters for
the various lags. You can use any names you want for these variables, and there are
many equivalent ways that the specification could be written.

Vector ARMA processes can also be estimated with PROC MODEL. For example,
a two-variable AR(1) process for the errors of the two endogenous variables Y1 and
Y2 can be specified as follows

y1hat = ... compute structural predicted value here ... ;

y1 = y1hat + ar1_1 * zlag1( y1 - y1hat ) /* ar part y1,y1 */
+ ar1_2 * zlag1( y2 - y2hat ); /* ar part y1,y2 */

y21hat = ... compute structural predicted value here ... ;
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y2 = y2hat + ar2_2 * zlag1( y2 - y2hat ) /* ar part y2,y2 */
+ ar2_1 * zlag1( y1 - y1hat ); /* ar part y2,y1 */

Convergence Problems with ARMA Models
ARMA models can be difficult to estimate. If the parameter estimates are not within
the appropriate range, a moving average model’s residual terms will grow exponen-
tially. The calculated residuals for later observations can be very large or can over-
flow. This can happen either because improper starting values were used or because
the iterations moved away from reasonable values.

Care should be used in choosing starting values for ARMA parameters. Starting val-
ues of .001 for ARMA parameters usually work if the model fits the data well and the
problem is well-conditioned. Note that an MA model can often be approximated by
a high order AR model, and vice versa. This may result in high collinearity in mixed
ARMA models, which in turn can cause serious ill-conditioning in the calculations
and instability of the parameter estimates.

If you have convergence problems while estimating a model with ARMA error pro-
cesses, try to estimate in steps. First, use a FIT statement to estimate only the struc-
tural parameters with the ARMA parameters held to zero (or to reasonable prior esti-
mates if available). Next, use another FIT statement to estimate the ARMA parame-
ters only, using the structural parameter values from the first run. Since the values of
the structural parameters are likely to be close to their final estimates, the ARMA pa-
rameter estimates may now converge. Finally, use another FIT statement to produce
simultaneous estimates of all the parameters. Since the initial values of the parame-
ters are now likely to be quite close to their final joint estimates, the estimates should
converge quickly if the model is appropriate for the data.

AR Initial Conditions
The initial lags of the error terms of AR(p) models can be modeled in different ways.
The autoregressive error startup methods supported by SAS/ETS procedures are the
following:

CLS conditional least squares (ARIMA and MODEL procedures)

ULS unconditional least squares (AUTOREG, ARIMA, and MODEL
procedures)

ML maximum likelihood (AUTOREG, ARIMA, and MODEL proce-
dures)

YW Yule-Walker (AUTOREG procedure only)

HL Hildreth-Lu, which deletes the firstp observations (MODEL pro-
cedure only)

See Chapter 8, for an explanation and discussion of the merits of various AR(p)
startup methods.

The CLS, ULS, ML, and HL initializations can be performed by PROC MODEL.
For AR(1) errors, these initializations can be produced as shown in Table 14.2. These
methods are equivalent in large samples.
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Table 14.2. Initializations Performed by PROC MODEL: AR(1) ERRORS

Method Formula
conditional least Y=YHAT+AR1*ZLAG1(Y-YHAT);
squares
unconditional least Y=YHAT+AR1*ZLAG1(Y-YHAT);
squares IF –OBS–=1 THEN

RESID.Y=SQRT(1-AR1**2)*RESID.Y;
maximum likelihood Y=YHAT+AR1*ZLAG1(Y-YHAT);

W=(1-AR1**2)**(-1/(2* –NUSED–));
IF –OBS–=1 THEN W=W*SQRT(1-AR1**2);
RESID.Y=W*RESID.Y;

Hildreth-Lu Y=YHAT+AR1*LAG1(Y-YHAT);

MA Initial Conditions
The initial lags of the error terms of MA(q) models can also be modeled in different
ways. The following moving average error startup paradigms are supported by the
ARIMA and MODEL procedures:

ULS unconditional least squares

CLS conditional least squares

ML maximum likelihood

The conditional least-squares method of estimating moving average error terms is
not optimal because it ignores the startup problem. This reduces the efficiency of
the estimates, although they remain unbiased. The initial lagged residuals, extend-
ing before the start of the data, are assumed to be 0, their unconditional expected
value. This introduces a difference between these residuals and the generalized least-
squares residuals for the moving average covariance, which, unlike the autoregressive
model, persists through the data set. Usually this difference converges quickly to 0,
but for nearly noninvertible moving average processes the convergence is quite slow.
To minimize this problem, you should have plenty of data, and the moving average
parameter estimates should be well within the invertible range.

This problem can be corrected at the expense of writing a more complex program.
Unconditional least-squares estimates for the MA(1) process can be produced by
specifying the model as follows:

yhat = ... compute structural predicted value here ... ;
if _obs_ = 1 then do;

h = sqrt( 1 + ma1 ** 2 );
y = yhat;
resid.y = ( y - yhat ) / h;
end;

else do;
g = ma1 / zlag1( h );
h = sqrt( 1 + ma1 ** 2 - g ** 2 );
y = yhat + g * zlag1( resid.y );
resid.y = ( ( y - yhat) - g * zlag1( resid.y ) ) / h;
end;
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Moving-average errors can be difficult to estimate. You should consider using an
AR(p) approximation to the moving average process. A moving average process can
usually be well-approximated by an autoregressive process if the data have not been
smoothed or differenced.

The %AR Macro
The SAS macro %AR generates programming statements for PROC MODEL for
autoregressive models. The %AR macro is part of SAS/ETS software and no special
options need to be set to use the macro. The autoregressive process can be applied to
the structural equation errors or to the endogenous series themselves.

The %AR macro can be used for

� univariate autoregression

� unrestricted vector autoregression

� restricted vector autoregression.

Univariate Autoregression
To model the error term of an equation as an autoregressive process, use the following
statement after the equation:

%ar( varname, nlags )

For example, suppose that Y is a linear function of X1 and X2, and an AR(2) error.
You would write this model as follows:

proc model data=in;
parms a b c;
y = a + b * x1 + c * x2;
%ar( y, 2 )
fit y / list;

run;

The calls to %AR must comeafter all of the equations that the process applies to.

The proceding macro invocation, %AR(y,2), produces the statements shown in the
LIST output in Figure 14.49.

The MODEL Procedure

Listing of Compiled Program Code
Stmt Line:Col Statement as Parsed

1 5738:50 PRED.y = a + b * x1 + c * x2;
1 5738:50 RESID.y = PRED.y - ACTUAL.y;
1 5738:50 ERROR.y = PRED.y - y;
2 7987:23 _PRED__y = PRED.y;
3 8003:15 #OLD_PRED.y = PRED.y + y_l1

* ZLAG1( y - _PRED__y ) + y_l2
* ZLAG2( y - _PRED__y );

3 8003:15 PRED.y = #OLD_PRED.y;
3 8003:15 RESID.y = PRED.y - ACTUAL.y;
3 8003:15 ERROR.y = PRED.y - y;

Figure 14.49. LIST Option Output for an AR(2) Model
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The–PRED–– prefixed variables are temporary program variables used so that the
lags of the residuals are the correct residuals and not the ones redefined by this equa-
tion. Note that this is equivalent to the statements explicitly written in the "General
Form for ARMA Models" earlier in this section.

You can also restrict the autoregressive parameters to zero at selected lags. For ex-
ample, if you wanted autoregressive parameters at lags 1, 12, and 13, you can use the
following statements:

proc model data=in;
parms a b c;
y = a + b * x1 + c * x2;
%ar( y, 13, , 1 12 13 )
fit y / list;

run;

These statements generate the output shown in Figure 14.50.

The MODEL Procedure

Listing of Compiled Program Code
Stmt Line:Col Statement as Parsed

1 8182:50 PRED.y = a + b * x1 + c * x2;
1 8182:50 RESID.y = PRED.y - ACTUAL.y;
1 8182:50 ERROR.y = PRED.y - y;
2 8631:23 _PRED__y = PRED.y;
3 8647:15 #OLD_PRED.y = PRED.y + y_l1 * ZLAG1( y -

_PRED__y ) + y_l12 * ZLAG12( y -
_PRED__y ) + y_l13 * ZLAG13(
y - _PRED__y );

3 8647:15 PRED.y = #OLD_PRED.y;
3 8647:15 RESID.y = PRED.y - ACTUAL.y;
3 8647:15 ERROR.y = PRED.y - y;

Figure 14.50. LIST Option Output for an AR Model with Lags at 1, 12, and 13

There are variations on the conditional least-squares method, depending on whether
observations at the start of the series are used to "warm up" the AR process. By
default, the %AR conditional least-squares method uses all the observations and as-
sumes zeros for the initial lags of autoregressive terms. By using the M= option,
you can request that %AR use the unconditional least-squares (ULS) or maximum-
likelihood (ML) method instead. For example,

proc model data=in;
y = a + b * x1 + c * x2;
%ar( y, 2, m=uls )
fit y;

run;

Discussions of these methods is provided in the "AR Initial Conditions" earlier in this
section.
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By using the M=CLSn option, you can request that the firstn observations be used to
compute estimates of the initial autoregressive lags. In this case, the analysis starts
with observationn+1. For example:

proc model data=in;
y = a + b * x1 + c * x2;
%ar( y, 2, m=cls2 )
fit y;

run;

You can use the %AR macro to apply an autoregressive model to the endogenous
variable, instead of to the error term, by using the TYPE=V option. For example, if
you want to add the five past lags of Y to the equation in the previous example, you
could use %AR to generate the parameters and lags using the following statements:

proc model data=in;
parms a b c;
y = a + b * x1 + c * x2;
%ar( y, 5, type=v )
fit y / list;

run;

The preceding statements generate the output shown in Figure 14.51.

The MODEL Procedure

Listing of Compiled Program Code
Stmt Line:Col Statement as Parsed

1 8892:50 PRED.y = a + b * x1 + c * x2;
1 8892:50 RESID.y = PRED.y - ACTUAL.y;
1 8892:50 ERROR.y = PRED.y - y;
2 9301:15 #OLD_PRED.y = PRED.y + y_l1 * ZLAG1( y )

+ y_l2 * ZLAG2( y ) + y_l3 * ZLAG3( y )
+ y_l4 * ZLAG4( y ) + y_l5 * ZLAG5( y );

2 9301:15 PRED.y = #OLD_PRED.y;
2 9301:15 RESID.y = PRED.y - ACTUAL.y;
2 9301:15 ERROR.y = PRED.y - y;

Figure 14.51. LIST Option Output for an AR model of Y

This model predicts Y as a linear combination of X1, X2, an intercept, and the values
of Y in the most recent five periods.

Unrestricted Vector Autoregression
To model the error terms of a set of equations as a vector autoregressive process, use
the following form of the %AR macro after the equations:

%ar( process_name, nlags, variable_list )

The process–namevalue is any name that you supply for %AR to use in making
names for the autoregressive parameters. You can use the %AR macro to model
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several different AR processes for different sets of equations by using different pro-
cess names for each set. The process name ensures that the variable names used are
unique. Use a shortprocess–namevalue for the process if parameter estimates are to
be written to an output data set. The %AR macro tries to construct parameter names
less than or equal to eight characters, but this is limited by the length ofname, which
is used as a prefix for the AR parameter names.

Thevariable–list value is the list of endogenous variables for the equations.

For example, suppose that errors for equations Y1, Y2, and Y3 are generated by a
second-order vector autoregressive process. You can use the following statements:

proc model data=in;
y1 = ... equation for y1 ...;
y2 = ... equation for y2 ...;
y3 = ... equation for y3 ...;
%ar( name, 2, y1 y2 y3 )
fit y1 y2 y3;

run;

which generates the following for Y1 and similar code for Y2 and Y3:

y1 = pred.y1 + name1_1_1*zlag1(y1-name_y1) +
name1_1_2*zlag1(y2-name_y2) +
name1_1_3*zlag1(y3-name_y3) +
name2_1_1*zlag2(y1-name_y1) +
name2_1_2*zlag2(y2-name_y2) +
name2_1_3*zlag2(y3-name_y3) ;

Only the conditional least-squares (M=CLS or M=CLSn) method can be used for
vector processes.

You can also use the same form with restrictions that the coefficient matrix be 0 at
selected lags. For example, the statements

proc model data=in;
y1 = ... equation for y1 ...;
y2 = ... equation for y2 ...;
y3 = ... equation for y3 ...;
%ar( name, 3, y1 y2 y3, 1 3 )
fit y1 y2 y3;

apply a third-order vector process to the equation errors with all the coefficients at
lag 2 restricted to 0 and with the coefficients at lags 1 and 3 unrestricted.

You can model the three series Y1-Y3 as a vector autoregressive process in the vari-
ables instead of in the errors by using the TYPE=V option. If you want to model Y1-
Y3 as a function of past values of Y1-Y3 and some exogenous variables or constants,
you can use %AR to generate the statements for the lag terms. Write an equation for
each variable for the nonautoregressive part of the model, and then call %AR with
the TYPE=V option. For example,
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proc model data=in;
parms a1-a3 b1-b3;
y1 = a1 + b1 * x;
y2 = a2 + b2 * x;
y3 = a3 + b3 * x;
%ar( name, 2, y1 y2 y3, type=v )
fit y1 y2 y3;

run;

The nonautoregressive part of the model can be a function of exogenous variables, or
it may be intercept parameters. If there are no exogenous components to the vector
autoregression model, including no intercepts, then assign zero to each of the vari-
ables. There must be an assignment to each of the variables before %AR is called.

proc model data=in;
y1=0;
y2=0;
y3=0;
%ar( name, 2, y1 y2 y3, type=v )
fit y1 y2 y3;

This example models the vector Y=(Y1 Y2 Y3)0 as a linear function only of its value
in the previous two periods and a white noise error vector. The model has 18=(3� 3
+ 3� 3) parameters.

Syntax of the %AR Macro
There are two cases of the syntax of the %AR macro. The first has the general form

%AR (name, nlag [,endolist[,laglist]] [,M=method] [,TYPE=V])
where

name specifies a prefix for %AR to use in constructing names of variables
needed to define the AR process. If theendolistis not specified, the
endogenous list defaults toname, which must be the name of the
equation to which the AR error process is to be applied. Thename
value cannot exceed eight characters.

nlag is the order of the AR process.

endolist specifies the list of equations to which the AR process is to be
applied. If more than one name is given, an unrestricted vector
process is created with the structural residuals of all the equations
included as regressors in each of the equations. If not specified,
endolistdefaults toname.

laglist specifies the list of lags at which the AR terms are to be added. The
coefficients of the terms at lags not listed are set to 0. All of the
listed lags must be less than or equal tonlag, and there must be no
duplicates. If not specified, thelaglist defaults to all lags 1 through
nlag.
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M=method specifies the estimation method to implement. Valid values of M=
are CLS (conditional least-squares estimates), ULS (unconditional
least-squares estimates), and ML (maximum-likelihood estimates).
M=CLS is the default. Only M=CLS is allowed when more than
one equation is specified. The ULS and ML methods are not sup-
ported for vector AR models by %AR.

TYPE=V specifies that the AR process is to be applied to the endogenous
variables themselves instead of to the structural residuals of the
equations.

Restricted Vector Autoregression
You can control which parameters are included in the process, restricting those pa-
rameters that you do not include to 0. First, use %AR with the DEFER option to
declare the variable list and define the dimension of the process. Then, use additional
%AR calls to generate terms for selected equations with selected variables at selected
lags. For example,

proc model data=d;
y1 = ... equation for y1 ...;
y2 = ... equation for y2 ...;
y3 = ... equation for y3 ...;
%ar( name, 2, y1 y2 y3, defer )
%ar( name, y1, y1 y2 )
%ar( name, y2 y3, , 1 )
fit y1 y2 y3;

run;

The error equations produced are

y1 = pred.y1 + name1_1_1*zlag1(y1-name_y1) +
name1_1_2*zlag1(y2-name_y2) + name2_1_1*zlag2(y1-name_y1) +
name2_1_2*zlag2(y2-name_y2) ;

y2 = pred.y2 + name1_2_1*zlag1(y1-name_y1) +
name1_2_2*zlag1(y2-name_y2) + name1_2_3*zlag1(y3-name_y3) ;

y3 = pred.y3 + name1_3_1*zlag1(y1-name_y1) +
name1_3_2*zlag1(y2-name_y2) + name1_3_3*zlag1(y3-name_y3) ;

This model states that the errors for Y1 depend on the errors of both Y1 and Y2 (but
not Y3) at both lags 1 and 2, and that the errors for Y2 and Y3 depend on the previous
errors for all three variables, but only at lag 1.

%AR Macro Syntax for Restricted Vector AR
An alternative use of %AR is allowed to impose restrictions on a vector AR process
by calling %AR several times to specify different AR terms and lags for different
equations.

The first call has the general form

%AR( name, nlag, endolist, DEFER )
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where

name specifies a prefix for %AR to use in constructing names of variables
needed to define the vector AR process.

nlag specifies the order of the AR process.

endolist specifies the list of equations to which the AR process is to be
applied.

DEFER specifies that %AR is not to generate the AR process but is to wait
for further information specified in later %AR calls for the same
namevalue.

The subsequent calls have the general form

%AR( name, eqlist, varlist, laglist,TYPE= )

where

name is the same as in the first call.

eqlist specifies the list of equations to which the specifications in this
%AR call are to be applied. Only names specified in theendolist
value of the first call for thenamevalue can appear in the list of
equations ineqlist.

varlist specifies the list of equations whose lagged structural residuals are
to be included as regressors in the equations ineqlist. Only names
in the endolistof the first call for thenamevalue can appear in
varlist. If not specified,varlist defaults toendolist.

laglist specifies the list of lags at which the AR terms are to be added. The
coefficients of the terms at lags not listed are set to 0. All of the
listed lags must be less than or equal to the value ofnlag, and there
must be no duplicates. If not specified,laglist defaults to all lags 1
throughnlag.

The %MA Macro
The SAS macro %MA generates programming statements for PROC MODEL for
moving average models. The %MA macro is part of SAS/ETS software and no spe-
cial options are needed to use the macro. The moving average error process can be
applied to the structural equation errors. The syntax of the %MA macro is the same
as the %AR macro except there is no TYPE= argument.

When you are using the %MA and %AR macros combined, the %MA macro must
follow the %AR macro. The following SAS/IML statements produce an ARMA(1,
(1 3)) error process and save it in the data set MADAT2.

/* use IML module to simulate a MA process */
proc iml;

phi={1 .2};
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theta={ 1 .3 0 .5};
y=armasim(phi, theta, 0,.1, 200,32565);
create madat2 from y[colname=’y’];
append;

quit;

The following PROC MODEL statements are used to estimate the parameters of this
model using maximum likelihood error structure:

title1 ’Maximum Likelihood ARMA(1, (1 3))’;
proc model data=madat2;

y=0;
%ar(y,1,, M=ml)
%ma(y,3,,1 3, M=ml) /* %MA always after %AR */
fit y;

run;

The estimates of the parameters produced by this run are shown in Figure 14.52.

Maximum Likelihood ARMA(1, (1 3))

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

y 3 197 2.6383 0.0134 0.1157 -0.0067 -0.0169
RESID.y 197 1.9957 0.0101 0.1007

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

y_l1 -0.10067 0.1187 -0.85 0.3973 AR(y) y lag1
parameter

y_m1 -0.1934 0.0939 -2.06 0.0408 MA(y) y lag1
parameter

y_m3 -0.59384 0.0601 -9.88 <.0001 MA(y) y lag3
parameter

Figure 14.52. Estimates from an ARMA(1, (1 3)) Process

Syntax of the %MA Macro
There are two cases of the syntax for the %MA macro. The first has the general form

%MA ( name, nlag [,endolist[,laglist]] [,M=method] )

where

name specifies a prefix for %MA to use in constructing names of vari-
ables needed to define the MA process and is the defaultendolist.

nlag is the order of the MA process.
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endolist specifies the equations to which the MA process is to be applied. If
more than one name is given, CLS estimation is used for the vector
process.

laglist specifies the lags at which the MA terms are to be added. All of the
listed lags must be less than or equal tonlag, and there must be no
duplicates. If not specified, thelaglist defaults to all lags 1 through
nlag.

M=method specifies the estimation method to implement. Valid values of M=
are CLS (conditional least-squares estimates), ULS (unconditional
least-squares estimates), and ML (maximum-likelihood estimates).
M=CLS is the default. Only M=CLS is allowed when more than
one equation is specified on theendolist.

%MA Macro Syntax for Restricted Vector Moving Average
An alternative use of %MA is allowed to impose restrictions on a vector MA process
by calling %MA several times to specify different MA terms and lags for different
equations.

The first call has the general form

%MA( name, nlag, endolist, DEFER )

where

name specifies a prefix for %MA to use in constructing names of vari-
ables needed to define the vector MA process.

nlag specifies the order of the MA process.

endolist specifies the list of equations to which the MA process is to be
applied.

DEFER specifies that %MA is not to generate the MA process but is to wait
for further information specified in later %MA calls for the same
namevalue.

The subsequent calls have the general form

%MA( name, eqlist, varlist, laglist )

where

name is the same as in the first call.

eqlist specifies the list of equations to which the specifications in this
%MA call are to be applied.

varlist specifies the list of equations whose lagged structural residuals are
to be included as regressors in the equations ineqlist.

laglist specifies the list of lags at which the MA terms are to be added.
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Distributed Lag Models and the %PDL Macro

In the following example, the variabley is modeled as a linear function ofx, the first
lag ofx, the second lag ofx, and so forth:

yt = a+ b0xt + b1xt�1 + b2xt�2 + b3xt�3 + : : :+ bnxt�l

Models of this sort can introduce a great many parameters for the lags, and there may
not be enough data to compute accurate independent estimates for them all. Often, the
number of parameters is reduced by assuming that the lag coefficients follow some
pattern. One common assumption is that the lag coefficients follow a polynomial in
the lag length

bi =
dX

j=0

�j(i)
j

whered is the degree of the polynomial used. Models of this kind are calledAlmon
lag models, polynomial distributed lag models, or PDLsfor short. For example, Fig-
ure 14.53 shows the lag distribution that can be modeled with a low order polynomial.
Endpoint restrictions can be imposed on a PDL to require that the lag coefficients be
0 at the 0th lag, or at the final lag, or at both.

Weight

1 2 3 4 5 6 7

Lag

Lag

Figure 14.53. Polynomial Distributed Lags

For linear single-equation models, SAS/ETS software includes the PDLREG proce-
dure for estimating PDL models. See Chapter 15, “The PDLREG Procedure,” for a
more detailed discussion of polynomial distributed lags and an explanation of end-
point restrictions.
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Polynomial and other distributed lag models can be estimated and simulated or fore-
cast with PROC MODEL. For polynomial distributed lags, the %PDL macro can
generate the needed programming statements automatically.

The %PDL Macro
The SAS macro %PDL generates the programming statements to compute the lag
coefficients of polynomial distributed lag models and to apply them to the lags of
variables or expressions.

To use the %PDL macro in a model program, you first call it to declare the lag distri-
bution; later, you call it again to apply the PDL to a variable or expression. The first
call generates a PARMS statement for the polynomial parameters and assignment
statements to compute the lag coefficients. The second call generates an expression
that applies the lag coefficients to the lags of the specified variable or expression. A
PDL can be declared only once, but it can be used any number of times (that is, the
second call can be repeated).

The initial declaratory call has the general form

%PDL( pdlname, nlags, degree, R=code, OUTEST=dataset)

wherepdlnameis a name (up to eight characters) that you give to identify the PDL,
nlagsis the lag length, anddegreeis the degree of the polynomial for the distribution.
The R=codeis optional for endpoint restrictions. The value ofcodecan be FIRST
(for upper), LAST (for lower), or BOTH (for both upper and lower endpoints). See
chapter pdlreg, "The PDLREG Procedure," for a discussion of endpoint restrictions.
The option OUTEST=datasetcreates a data set containing the estimates of the pa-
rameters and their covariance matrix.

The later calls to apply the PDL have the general form

%PDL( pdlname, expression )

wherepdlnameis the name of the PDL andexpressionis the variable or expression
to which the PDL is to be applied. Thepdlnamegiven must be the same as the name
used to declare the PDL.

The following statements produce the output in Figure 14.54:

proc model data=in list;
parms int pz;
%pdl(xpdl,5,2);
y = int + pz * z + %pdl(xpdl,x);
%ar(y,2,M=ULS);
id i;

fit y / out=model1 outresid converge=1e-6;
run;
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The MODEL Procedure

Nonlinear OLS Estimates

Approx Approx
Term Estimate Std Err t Value Pr > |t| Label

XPDL_L0 1.568788 0.0992 15.81 <.0001 PDL(XPDL,5,2)
coefficient for lag0

XPDL_L1 0.564917 0.0348 16.24 <.0001 PDL(XPDL,5,2)
coefficient for lag1

XPDL_L2 -0.05063 0.0629 -0.80 0.4442 PDL(XPDL,5,2)
coefficient for lag2

XPDL_L3 -0.27785 0.0549 -5.06 0.0010 PDL(XPDL,5,2)
coefficient for lag3

XPDL_L4 -0.11675 0.0390 -2.99 0.0173 PDL(XPDL,5,2)
coefficient for lag4

XPDL_L5 0.43267 0.1445 2.99 0.0172 PDL(XPDL,5,2)
coefficient for lag5

Figure 14.54. %PDL Macro ESTIMATE Statement Output

This second example models two variables, Y1 and Y2, and uses two PDLs:

proc model data=in;
parms int1 int2;
%pdl( logxpdl, 5, 3 )
%pdl( zpdl, 6, 4 )
y1 = int1 + %pdl( logxpdl, log(x) ) + %pdl( zpdl, z );
y2 = int2 + %pdl( zpdl, z );
fit y1 y2;

run;

A (5,3) PDL of the log of X is used in the equation for Y1. A (6,4) PDL of Z
is used in the equations for both Y1 and Y2. Since the same ZPDL is used in both
equations, the lag coefficients for Z are the same for the Y1 and Y2 equations, and the
polynomial parameters for ZPDL are shared by the two equations. See Example 14.5
for a complete example and comparison with PDLREG.

Input Data Sets

DATA= Input Data Set
For FIT tasks, the DATA= option specifies which input data set to use in estimating
parameters. Variables in the model program are looked up in the DATA= data set
and, if found, their attributes (type, length, label, and format) are set to be the same
as those in the DATA= data set (if not defined otherwise within PROC MODEL), and
values for the variables in the program are read from the data set.

ESTDATA= Input Data Set
The ESTDATA= option specifies an input data set that contains an observation giv-
ing values for some or all of the model parameters. The data set can also contain
observations giving the rows of a covariance matrix for the parameters.

Parameter values read from the ESTDATA= data set provide initial starting values for
parameters estimated. Observations providing covariance values, if any are present
in the ESTDATA= data set, are ignored.
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The ESTDATA= data set is usually created by the OUTEST= option in a previous
FIT statement. You can also create an ESTDATA= data set with a SAS DATA step
program. The data set must contain a numeric variable for each parameter to be given
a value or covariance column. The name of the variable in the ESTDATA= data set
must match the name of the parameter in the model. Parameters with names longer
than eight characters cannot be set from an ESTDATA= data set. The data set must
also contain a character variable–NAME– of length 8.–NAME– has a blank value
for the observation that gives values to the parameters.–NAME– contains the name
of a parameter for observations defining rows of the covariance matrix.

More than one set of parameter estimates and covariances can be stored in the EST-
DATA= data set if the observations for the different estimates are identified by the
variable–TYPE–. –TYPE– must be a character variable of length 8. The TYPE=
option is used to select for input the part of the ESTDATA= data set for which the

–TYPE– value matches the value of the TYPE= option.

The following SAS statements generate the ESTDATA= data set shown in Figure
14.55. The second FIT statement uses the TYPE= option to select the estimates from
the GMM estimation as starting values for the FIML estimation.

/* Generate test data */
data gmm2;

do t=1 to 50;
x1 = sqrt(t) ;
x2 = rannor(10) * 10;
y1 = -.002 * x2 * x2 - .05 / x2 - 0.001 * x1 * x1;
y2 = 0.002* y1 + 2 * x2 * x2 + 50 / x2 + 5 * rannor(1);
y1 = y1 + 5 * rannor(1);
z1 = 1; z2 = x1 * x1; z3 = x2 * x2; z4 = 1.0/x2;
output;

end;
run;

proc model data=gmm2 ;
exogenous x1 x2;
parms a1 a2 b1 2.5 b2 c2 55 d1;
inst b1 b2 c2 x1 x2;
y1 = a1 * y2 + b1 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / 3sls gmm kernel=(qs,1,0.2) outest=gmmest;

fit y1 y2 / fiml type=gmm estdata=gmmest;
run;

proc print data=gmmest;
run;
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_
S _

_ _ T N
N T A U
A Y T S

O M P U E
b E E S D a a b b c d
s _ _ _ _ 1 2 1 2 2 1

1 3SLS 0 Converged 50 -.002229607 -1.25002 0.025827 1.99609 49.8119 -0.44533
2 GMM 0 Converged 50 -.002013073 -1.53882 0.014908 1.99419 49.8035 -0.64933

Figure 14.55. ESTDATA= Data Set

MISSING= PAIRWISE | DELETE
When missing values are encountered for any one of the equations in a system of
equations, the default action is to drop that observation for all of the equations. The
new MISSING=PAIRWISE option on the FIT statement provides a different method
of handling missing values that avoids losing data for nonmissing equations for the
observation. This is especially useful for SUR estimation on equations with unequal
numbers of observations.

The option MISSING=PAIRWISE specifies that missing values are tracked on an
equation-by-equation basis. The MISSING=DELETE option specifies that the entire
observation is omitted from the analysis when any equation has a missing predicted
or actual value for the equation. The default is MISSING=DELETE.

When you specify the MISSING=PAIRWISE option, the S matrix is computed as

S = D(R0R)D

where D is a diagonal matrix that depends on the VARDEF= option, the matrixR is
(r1; : : : ; rg), andri is the vector of residuals for theith equation withrij replaced
with zero whenrij is missing.

For MISSING=PAIRWISE, the calculation of the diagonal elementdi;i of D is based
onni, the number of nonmissing observations for theith equation, instead of onn or,
for VARDEF=WGT or WDF, on the sum of the weights for the nonmissing observa-
tions for theith equation instead of on the sum of the weights for all observations.
Refer to the description of the VARDEF= option for the definition ofD.

The degrees of freedom correction for a shared parameter is computed using the
average number of observations used in its estimation.

The MISSING=PAIRWISE option is not valid for the GMM and FIML estimation
methods.

For the instrumental variables estimation methods (2SLS, 3SLS), when an instrument
is missing for an observation, that observation is dropped for all equations, regardless
of the MISSING= option.
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PARMSDATA= Input Data Set
The option PARMSDATA= reads values for all parameters whose names match the
names of variables in the PARMSDATA= data set. Values for any or all of the param-
eters in the model can be reset using the PARMSDATA= option. The PARMSDATA=
option goes on the PROC MODEL statement, and the data set is read before any FIT
or SOLVE statements are executed.

Together, the OUTPARMS= and PARMSDATA= options allow you to change part
of a model and recompile the new model program without the need to reestimate
equations that were not changed.

Suppose you have a large model with parameters estimated and you now want to
replace one equation, Y, with a new specification. Although the model program must
be recompiled with the new equation, you don’t need to reestimate all the equations,
just the one that changed.

Using the OUTPARMS= and PARMSDATA= options, you could do the following:

proc model model=oldmod outparms=temp; run;
proc model outmodel=newmod parmsdata=temp data=in;

... include new model definition with changed y eq. here ...
fit y;

run;

The model file NEWMOD will then contain the new model and its estimated param-
eters plus the old models with their original parameter values.

SDATA= Input Data Set
The SDATA= option allows a cross-equation covariance matrix to be input from a
data set. TheS matrix read from the SDATA= data set, specified in the FIT state-
ment, is used to define the objective function for the OLS, N2SLS, SUR, and N3SLS
estimation methods and is used as the initialS for the methods that iterate theS ma-
trix.

Most often, the SDATA= data set has been created by the OUTS= or OUTSUSED=
option on a previous FIT statement. The OUTS= and OUTSUSED= data sets from
a FIT statement can be read back in by a FIT statement in the same PROC MODEL
step.

You can create an input SDATA= data set using the DATA step. PROC MODEL
expects to find a character variable–NAME– in the SDATA= data set as well as
variables for the equations in the estimation or solution. For each observation with
a –NAME– value matching the name of an equation, PROC MODEL fills the cor-
responding row of theS matrix with the values of the names of equations found in
the data set. If a row or column is omitted from the data set, a 1 is placed on the
diagonal for the row or column. Missing values are ignored, and since theS matrix
is symmetric, you can include only a triangular part of theS matrix in the SDATA=
data set with the omitted part indicated by missing values. If the SDATA= data set
contains multiple observations with the same–NAME–, the last values supplied for
the–NAME– are used. The structure of the expected data set is further described in
the "OUTS=Data Set" section.
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Use the TYPE= option on the PROC MODEL or FIT statement to specify the type of
estimation method used to produce theSmatrix you want to input.

The following SAS statements are used to generate anS matrix from a GMM and a
3SLS estimation and to store that estimate in the data set GMMS:

proc model data=gmm2 ;
exogenous x1 x2;
parms a1 a2 b1 2.5 b2 c2 55 d1;
inst b1 b2 c2 x1 x2;
y1 = a1 * y2 + b1 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / 3sls gmm kernel=(qs,1,0.2) outest=gmmest outs=gmms;
run;

The data set GMMS is shown in Figure 14.56.

Obs _NAME_ _TYPE_ _NUSED_ y1 y2

1 y1 3SLS 50 27.1032 38.1599
2 y2 3SLS 50 38.1599 74.6253
3 y1 GMM 50 27.4205 46.4028
4 y2 GMM 50 46.4028 99.4656

Figure 14.56. SDATA= Data Set

VDATA= Input data set
The VDATA= option allows a variance matrix for GMM estimation to be input from a
data set. When the VDATA= option is used on the PROC MODEL or FIT statement,
the matrix that is input is used to define the objective function and is used as the initial
V for the methods that iterate the V matrix.

Normally the VDATA= matrix is created from the OUTV= option on a previous FIT
statement. Alternately an input VDATA= data set can be created using the DATA
step. Each row and column of the V matrix is associated with an equation and an
instrument. The position of each element in the V matrix can then be indicated by
an equation name and an instrument name for the row of the element and an equa-
tion name and an instrument name for the column. Each observation in the VDATA=
data set is an element in the V matrix. The row and column of the element are in-
dicated by four variables EQ–ROW, INST–ROW, EQ–COL, and INST–COL which
contain the equation name or instrument name. The variable name for an element is
VALUE. Missing values are set to 0. Because the variance matrix is symmetric, only
a triangular part of the matrix needs to be input.

The following SAS statements are used to generate aV matrix estimation from GMM
and to store that estimate in the data set GMMV:

proc model data=gmm2 ;
exogenous x1 x2;
parms a1 a2 b2 b1 2.5 c2 55 d1;
inst b1 b2 c2 x1 x2;
y1 = a1 * y2 + b1 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;
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fit y1 y2 / gmm outv=gmmv;
run;

The data set GMM2 was generated by the example in the preceding ESTDATA=
section. TheV matrix stored in GMMV is selected for use in an additional GMM
estimation by the following FIT statement:

fit y1 y2 / gmm vdata=gmmv;
run;

proc print data=gmmv(obs=15);
run;

A partial listing of the GMMV data set is shown in Figure 14.57. There are a total of
78 observations in this data set. TheV matrix is 12 by 12 for this example.

Obs _TYPE_ EQ_ROW EQ_COL INST_ROW INST_COL VALUE

1 GMM Y1 Y1 1 1 1509.59
2 GMM Y1 Y1 X1 1 8257.41
3 GMM Y1 Y1 X1 X1 47956.08
4 GMM Y1 Y1 X2 1 7136.27
5 GMM Y1 Y1 X2 X1 44494.70
6 GMM Y1 Y1 X2 X2 153135.59
7 GMM Y1 Y1 @PRED.Y1/@B1 1 47957.10
8 GMM Y1 Y1 @PRED.Y1/@B1 X1 289178.68
9 GMM Y1 Y1 @PRED.Y1/@B1 X2 275074.36

10 GMM Y1 Y1 @PRED.Y1/@B1 @PRED.Y1/@B1 1789176.56
11 GMM Y1 Y1 @PRED.Y2/@B2 1 152885.91
12 GMM Y1 Y1 @PRED.Y2/@B2 X1 816886.49
13 GMM Y1 Y1 @PRED.Y2/@B2 X2 1121114.96
14 GMM Y1 Y1 @PRED.Y2/@B2 @PRED.Y1/@B1 4576643.57
15 GMM Y1 Y1 @PRED.Y2/@B2 @PRED.Y2/@B2 28818318.24

Figure 14.57. The First 15 Observations in the VDATA= Data Set

Output Data Sets

OUT= Data Set
For normalized form equations, the OUT= data set specified on the FIT statement
contains residuals, actuals, and predicted values of the dependent variables computed
from the parameter estimates. For general form equations, actual values of the en-
dogenous variables are copied for the residual and predicted values.

The variables in the data set are as follows:

� BY variables

� RANGE variable

� ID variables

� –ESTYPE–, a character variable of length 8 identifying the estimation method:
OLS, SUR, N2SLS, N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, IT-
GMM, or FIML
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� –TYPE–, a character variable of length 8 identifying the type of observation:
RESIDUAL, PREDICT, or ACTUAL

� –WEIGHT–, the weight of the observation in the estimation. The–WEIGHT–
value is 0 if the observation was not used. It is equal to the product of the

–WEIGHT– model program variable and the variable named in the WEIGHT
statement, if any, or 1 if weights were not used.

� the WEIGHT statement variable if used

� the model variables. The dependent variables for the normalized-form equa-
tions in the estimation contain residuals, actuals, or predicted values, depending
on the–TYPE– variable, whereas the model variables that are not associated
with estimated equations always contain actual values from the input data set.

� any other variables named in the OUTVARS statement. These can be program
variables computed by the model program, CONTROL variables, parameters,
or special variables in the model program.

The following SAS statements are used to generate and print an OUT= data set:

proc model data=gmm2;
exogenous x1 x2;
parms a1 a2 b2 b1 2.5 c2 55 d1;
inst b1 b2 c2 x1 x2;
y1 = a1 * y2 + b1 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / 3sls gmm out=resid outall ;
run;

proc print data=resid(obs=20);
run;

The data set GMM2 was generated by the example in the preceding ESTDATA=
section above. A partial listing of the RESID data set is shown in Figure 14.58.
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Obs _ESTYPE_ _TYPE_ _WEIGHT_ x1 x2 y1 y2

1 3SLS ACTUAL 1 1.00000 -1.7339 -3.05812 -23.071
2 3SLS PREDICT 1 1.00000 -1.7339 -0.36806 -19.351
3 3SLS RESIDUAL 1 1.00000 -1.7339 -2.69006 -3.720
4 3SLS ACTUAL 1 1.41421 -5.3046 0.59405 43.866
5 3SLS PREDICT 1 1.41421 -5.3046 -0.49148 45.588
6 3SLS RESIDUAL 1 1.41421 -5.3046 1.08553 -1.722
7 3SLS ACTUAL 1 1.73205 -5.2826 3.17651 51.563
8 3SLS PREDICT 1 1.73205 -5.2826 -0.48281 41.857
9 3SLS RESIDUAL 1 1.73205 -5.2826 3.65933 9.707

10 3SLS ACTUAL 1 2.00000 -0.6878 3.66208 -70.011
11 3SLS PREDICT 1 2.00000 -0.6878 -0.18592 -76.502
12 3SLS RESIDUAL 1 2.00000 -0.6878 3.84800 6.491
13 3SLS ACTUAL 1 2.23607 -7.0797 0.29210 99.177
14 3SLS PREDICT 1 2.23607 -7.0797 -0.53732 92.201
15 3SLS RESIDUAL 1 2.23607 -7.0797 0.82942 6.976
16 3SLS ACTUAL 1 2.44949 14.5284 1.86898 423.634
17 3SLS PREDICT 1 2.44949 14.5284 -1.23490 421.969
18 3SLS RESIDUAL 1 2.44949 14.5284 3.10388 1.665
19 3SLS ACTUAL 1 2.64575 -0.6968 -1.03003 -72.214
20 3SLS PREDICT 1 2.64575 -0.6968 -0.10353 -69.680

Figure 14.58. The OUT= Data Set

OUTEST= Data Set
The OUTEST= data set contains parameter estimates and, if requested, estimates of
the covariance of the parameter estimates.

The variables in the data set are as follows:

� BY variables

� –NAME–, a character variable of length 8, blank for observations containing
parameter estimates or a parameter name for observations containing covari-
ances

� –TYPE–, a character variable of length 8 identifying the estimation method:
OLS, SUR, N2SLS, N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, IT-
GMM, or FIML

� the parameters estimated.

If the COVOUT option is specified, an additional observation is written for each row
of the estimate of the covariance matrix of parameter estimates, with the–NAME–
values containing the parameter names for the rows. Parameter names longer than
eight characters are truncated.

OUTPARMS= Data Set
The option OUTPARMS= writes all the parameter estimates to an output data set.
This output data set contains one observation and is similar to the OUTEST= data set,
but it contains all the parameters, is not associated with any FIT task, and contains no
covariances. The OUTPARMS= option is used on the PROC MODEL statement, and
the data set is written at the end, after any FIT or SOLVE steps have been performed.

817
SAS OnlineDoc: Version 8



Part 2. General Information

OUTS= Data Set
The OUTS= SAS data set contains the estimate of the covariance matrix of the resid-
uals across equations. This matrix is formed from the residuals that are computed
using the parameter estimates.

The variables in the OUTS= data set are as follows:

� BY variables

� –NAME–, a character variable containing the name of the equation

� –TYPE–, a character variable of length 8 identifying the estimation method:
OLS, SUR, N2SLS, N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, IT-
GMM, or FIML

� variables with the names of the equations in the estimation.

Each observation contains a row of the covariance matrix. The data set is suitable for
use with the SDATA= option on a subsequent FIT or SOLVE statement. (See "Tests
on Parameters" in this chapter for an example of the SDATA= option.)

OUTSUSED= Data Set
The OUTSUSED= SAS data set contains the covariance matrix of the residuals across
equations that is used to define the objective function. The form of the OUTSUSED=
data set is the same as that for the OUTS= data set.

Note that OUTSUSED= is the same as OUTS= for the estimation methods that it-
erate theS matrix (ITOLS, IT2SLS, ITSUR, and IT3SLS). If the SDATA= option is
specified in the FIT statement, OUTSUSED= is the same as the SDATA= matrix read
in for the methods that do not iterate theSmatrix (OLS, SUR, N2SLS, and N3SLS).

OUTV= Data Set
The OUTV= data set contains the estimate of the variance matrix, V. This matrix
is formed from the instruments and the residuals that are computed using the pa-
rameter estimates obtained from the initial 2SLS estimation when GMM estimation
is selected. If an estimation method other than GMM or ITGMM is requested and
OUTV= is specified, a V matrix is created using computed estimates. In the case
that a VDATA= data set is used, this becomes the OUTV= data set. For ITGMM, the
OUTV= data set is the matrix formed from the instruments and the residuals com-
puted using the final parameter estimates.
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ODS Table Names

PROC MODEL assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 6, “Using the Output Delivery System.”

Table 14.3. ODS Tables Produced in PROC MODEL

ODS Table Name Description Option

ODS Tables Created by the FIT Statement

AugGMMCovariance Cross products matrix GMM
ChowTest Structural change test CHOW=
CollinDiagnostics Collinearity Diagnostics
ConfInterval Profile likelihood Confidence Intervals PRL=
ConvCrit Convergence criteria for estimation default
ConvergenceStatus Convergence status default
CorrB Correlations of parameters COVB/CORRB
CorrResiduals Correlations of residuals CORRS/COVS
CovB Covariance of parameters COVB/CORRB
CovResiduals Covariance of residuals CORRS/COVS
Crossproducts Cross products matrix ITALL/ITPRINT
DatasetOptions Data sets used default
DetResidCov Determinant of the Residuals DETAILS
DWTest Durbin Watson Test DW=
Equations Listing of equations to estimate default
EstSummaryMiss Model Summary Statistics for PAIRWISE MISSING=
EstSummaryStats Objective, Objective * N default
GMMCovariance Cross products matrix GMM
Godfrey Godfrey’s Serial Correlation Test GF=
HausmanTest Hausman’s test table HAUSMAN
HeteroTest Heteroscedasticity test tables BREUSCH/PAGEN
InvXPXMat X’X inverse for System I
IterInfo Iteration printing ITALL/ITPRINT
LagLength Model lag length default
MinSummary Number of parameters, estimation kind default
MissingValues Missing values generated by the program default
ModSummary Listing of all categorized variables default
ModVars Listing of Model variables and parameters default
NormalityTest Normality test table NORMAL
ObsSummary Identifies observations with errors default
ObsUsed Observations read, used, and missing. default
ParameterEstimates Parameter Estimates default
ParmChange Parameter Change Vector
ResidSummary Summary of the SSE, MSE for the equations default
SizeInfo Storage Requirement for estimation DETAILS
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Table 14.3. (continued)

ODS Table Name Description Option
TermEstimates Nonlinear OLS and ITOLS Estimates OLS/ITOLS
TestResults Test statement table
WgtVar The name of the weight variable
XPXMat X’X for System XPX

ODS Tables Created by the SOLVE Statement

DatasetOptions Data sets used default
DescriptiveStatistics Descriptive Statistics STATS
FitStatistics Fit statistics for simulation STATS
LagLength Model lag length default
ModSummary Listing of all categorized variables default
ObsSummary Simulation trace output SOLVEPRINT
ObsUsed Observations read, used, and missing. default
SimulationSummary Number of variables solved for default
SolutionVarList Solution Variable Lists default
TheilRelStats Theil Relative Change Error Statistics THEIL
TheilStats Theil Forecast Error Statistics THEIL

ODS Tables Created by the FIT and SOLVE Statements

AdjacencyMatrix Adjacency Graph GRAPH
BlockAnalysis Block analysis BLOCK
BlockStructure Block structure BLOCK
CodeDependency Variable cross reference LISTDEP
CodeList Listing of programs statements LISTCODE
CrossReference Cross Reference Listing For Program
DepStructure Dependency Structure of the System BLOCK
DerList Derivative variables LISTDER
FirstDerivatives First derivative table LISTDER
InterIntg Integration Iteration Output INTGPRINT
MemUsage Memory usage statistics MEMORYUSE
ParmReadIn Parameter estimates read in ESTDATA=
ProgList Listing of Compiled Program Code
RangeInfo RANGE statement specification
SortAdjacencyMatrix Sorted adjacency Graph GRAPH
TransitiveClosure Transitive closure Graph GRAPH
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Simulation Details

Thesolutiongiven the vectork, of the following nonlinear system of equations is the
vectoru which satisfies this equation:

q(u;k; �) = 0

A simulationis a set of solutionsut for a specific sequence of vectorskt.

Model simulation can be performed to

� check how well the model predicts the actual values over the historical period

� investigate the sensitivity of the solution to changes in the input values or pa-
rameters

� examine the dynamic characteristics of the model

� check the stability of the simultaneous solution

� estimate the statistical distribution of the predicted values of the nonlinear
model using Monte Carlo methods

By combining the various solution modes with different input data sets, model sim-
ulation can answer many different questions about the model. This section presents
details of model simulation and solution.

Solution Modes

The following solution modes are commonly used:

� Dynamic simultaneous forecastmode is used for forecasting with the model.
Collect the historical data on the model variables, the future assumptions of
the exogenous variables, and any prior information on the future endogenous
values, and combine them in a SAS data set. Use the FORECAST option on
the SOLVE statement.

� Dynamic simultaneous simulationmode is often calledex-post simulation, his-
torical simulation, or ex-post forecasting. Use the DYNAMIC option. This
mode is the default.

� Static simultaneous simulationmode can be used to examine the within-period
performance of the model without the complications of previous period errors.
Use the STATIC option.

� NAHEAD=n dynamic simultaneous simulationmode can be used to see how
well n-period-ahead forecasting would have performed over the historical pe-
riod. Use the NAHEAD=n option.

The different solution modes are explained in detail in the following sections.

Dynamic and Static Simulations
In model simulation, either solved values or actual values from the data set can be
used to supply lagged values of an endogenous variable. Adynamicsolution refers
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to a solution obtained by using only solved values for the lagged values. Dynamic
mode is used both for forecasting and for simulating the dynamic properties of the
model.

A staticsolution refers to a solution obtained by using the actual values when avail-
able for the lagged endogenous values. Static mode is used to simulate the behavior
of the model without the complication of previous period errors. Dynamic simulation
is the default.

If you wish to use static values for lags only for the firstn observations, and dynamic
values thereafter, specify the START=n option. For example, if you want a dynamic
simulation to start after observation twenty-four, specify START=24 on the SOLVE
statement. If the model being simulated had a value lagged for four time periods, then
this value would start using dynamic values when the simulation reached observation
number 28.

n-Period-Ahead Forecasting
Suppose you want to regularly forecast 12 months ahead and produce a new forecast
each month as more data becomes available.n-period-ahead forecasting allows you
to test how well you would have done over time had you been using your model to
forecast 1 year ahead.

To see how well a model predictsn time periods in the future, perform ann-period-
ahead forecast on real data and compare the forecast values with the actual values.

n-period-ahead forecasting refers to using dynamic values for the lagged endogenous
variables only for lags1 throughn-1. For example, 1-period-ahead forecasting, spec-
ified by the NAHEAD=1 option on the SOLVE statement, is the same as if a static
solution had been requested. Specifying NAHEAD=2 produces a solution that uses
dynamic values for lag one and static, actual, values for longer lags.

The following example is a 2-year-ahead dynamic simulation. The output is shown
in Figure 14.59.

data yearly;
input year x1 x2 x3 y1 y2 y3;
datalines;

84 4 9 0 7 4 5
85 5 6 1 1 27 4
86 3 8 2 5 8 2
87 2 10 3 0 10 10
88 4 7 6 20 60 40
89 5 4 8 40 40 40
90 3 2 10 50 60 60
91 2 5 11 40 50 60
;
run;

proc model data=yearly outmodel=foo;
endogenous y1 y2 y3;
exogenous x1 x2 x3;

y1 = 2 + 3*x1 - 2*x2 + 4*x3;
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y2 = 4 + lag2( y3 ) + 2*y1 + x1;
y3 = lag3( y1 ) + y2 - x2;

solve y1 y2 y3 / nahead=2 out=c;
run;

proc print data=c;run;

The MODEL Procedure
Dynamic Simultaneous 2-Periods-Ahead Forecasting Simulation

Data Set Options

DATA= YEARLY
OUT= C

Solution Summary

Variables Solved 3
Simulation Lag Length 3
Solution Method NEWTON
CONVERGE= 1E-8
Maximum CC 0
Maximum Iterations 1
Total Iterations 8
Average Iterations 1

Observations Processed

Read 20
Lagged 12
Solved 8
First 5
Last 8

Variables Solved For y1 y2 y3

Figure 14.59. NAHEAD Summary Report

Obs _TYPE_ _MODE_ _LAG_ _ERRORS_ y1 y2 y3 x1 x2 x3

1 PREDICT SIMULATE 0 0 0 10 7 2 10 3
2 PREDICT SIMULATE 1 0 24 58 52 4 7 6
3 PREDICT SIMULATE 1 0 41 101 102 5 4 8
4 PREDICT SIMULATE 1 0 47 141 139 3 2 10
5 PREDICT SIMULATE 1 0 42 130 145 2 5 11

Figure 14.60. C Data Set

The proceding 2-year-ahead simulation can be emulated without using the NA-
HEAD= option by the following PROC MODEL statements:

proc model data=test model=foo;
range year = 87 to 88;
solve y1 y2 y3 / dynamic solveprint;

run;
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range year = 88 to 89;
solve y1 y2 y3 / dynamic solveprint;

run;

range year = 89 to 90;
solve y1 y2 y3 / dynamic solveprint;

run;

range year = 90 to 91;
solve y1 y2 y3 / dynamic solveprint;

The totals shown under "Observations Processed" in Figure 14.59 are equal to the
sum of the four individual runs.

Simulation and Forecasting
You can perform a simulation of your model or use the model to produce forecasts.
Simulationrefers to the determination of the endogenous or dependent variables as
a function of the input values of the other variables, even when actual data for some
of the solution variables are available in the input data set. The simulation mode is
useful for verifying the fit of the model parameters. Simulation is selected by the
SIMULATE option on the SOLVE statement. Simulation mode is the default.

In forecast mode, PROC MODEL solves only for those endogenous variables that
are missing in the data set. The actual value of an endogenous variable is used as
the solution value whenever nonmissing data for it are available in the input data set.
Forecasting is selected by the FORECAST option on the SOLVE statement.

For example, an econometric forecasting model can contain an equation to predict
future tax rates, but tax rates are usually set in advance by law. Thus, for the first year
or so of the forecast, the predicted tax rate should really be exogenous. Or, you may
want to use a prior forecast of a certain variable from a short-run forecasting model
to provide the predicted values for the earlier periods of a longer-range forecast of a
long-run model. A common situation in forecasting is when historical data needed
to fill the initial lags of a dynamic model are available for some of the variables but
have not yet been obtained for others. In this case, the forecast must start in the past
to supply the missing initial lags. Clearly, you should use the actual data that are
available for the lags. In all the preceding cases, the forecast should be produced by
running the model in the FORECAST mode; simulating the model over the future
periods would not be appropriate.

Monte Carlo Simulation
The accuracy of the forecasts produced by PROC MODEL depends on four sources
of error (Pindyck 1981, 405-406):

� The system of equations contains an implicit random error term�

g(y;x; �̂) = �

wherey, x, g, �̂, and� are vector valued.

� The estimated values of the parameters,�̂, are themselves random variables.
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� The exogenous variables may have been forecast themselves and therefore may
contain errors.

� The system of equations may be incorrectly specified; the model only approx-
imates the process modeled.

The RANDOM= option is used to request Monte Carlo (or stochastic) simulations to
generate confidence intervals for errors arising from the first two sources. The Monte
Carlo simulations can be performed with�, �, or both vectors represented as random
variables. The SEED= option is used to control the random number generator for the
simulations. SEED=0 forces the random number generator to use the system clock
as its seed value.

In Monte Carlo simulations, repeated simulations are performed on the model for
random perturbations of the parameters and the additive error term. The random
perturbations follow a multivariate normal distribution with expected value of 0 and
covariance described by a covariance matrix of the parameter estimates in the case of
�, or a covariance matrix of the equation residuals for the case of�. PROC MODEL
can generate both covariance matrices or you can provide them.

The ESTDATA= option specifies a data set containing an estimate of the covariance
matrix of the parameter estimates to use for computing perturbations of the parame-
ters. The ESTDATA= data set is usually created by the FIT statement with the OUT-
EST= and OUTCOV options. When the ESTDATA= option is specified, the matrix
read from the ESTDATA= data set is used to compute vectors of random shocks or
perturbations for the parameters. These random perturbations are computed at the
start of each repetition of the solution and added to the parameter values. The per-
turbed parameters are fixed throughout the solution range. If the covariance matrix
of the parameter estimates is not provided, the parameters are not perturbed.

The SDATA= option specifies a data set containing the covariance matrix of the resid-
uals to use for computing perturbations of the equations. The SDATA= data set is
usually created by the FIT statement with the OUTS= option. When SDATA= is spec-
ified, the matrix read from the SDATA= data set is used to compute vectors of random
shocks or perturbations for the equations. These random perturbations are computed
at each observation. The simultaneous solution satisfies the model equations plus the
random shocks. That is, the solution is not a perturbation of a simultaneous solution
of the structural equations; rather, it is a simultaneous solution of the stochastic equa-
tions using the simulated errors. If the SDATA= option is not specified, the random
shocks are not used.

The different random solutions are identified by the–REP– variable in the OUT=
data set. An unperturbed solution with–REP–=0 is also computed when the RAN-
DOM= option is used. RANDOM=n producesn+1 solution observations for each
input observation in the solution range. If the RANDOM= option is not specified,
the SDATA= and ESTDATA= options are ignored, and no Monte Carlo simulation is
performed.

PROC MODEL does not have an automatic way of modeling the exogenous variables
as random variables for Monte Carlo simulation. If the exogenous variables have been
forecast, the error bounds for these variables should be included in the error bounds
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generated for the endogenous variables. If the models for the exogenous variables
are included in PROC MODEL, then the error bounds created from a Monte Carlo
simulation will contain the uncertainty due to the exogenous variables.

Alternatively, if the distribution of the exogenous variables is known, the built-in ran-
dom number generator functions can be used to perturb these variables appropriately
for the Monte Carlo simulation. For example, if you knew the forecast of an exoge-
nous variable, X, had a standard error of 5.2 and the error was normally distributed,
then the following statements could be used to generate random values for X:

x_new = x + 5.2 * rannor(456);

During a Monte Carlo simulation the random number generator functions produce
one value at each observation. It is important to use a different seed value for all the
random number generator functions in the model program; otherwise, the perturba-
tions will be correlated. For the unperturbed solution,–REP–=0, the random number
generator functions return 0.

PROC UNIVARIATE can be used to create confidence intervals for the simulation
(see the Monte Carlo simulation example in the "Getting Started" section).

Quasi-Random Number Generators
Traditionally high discrepancy psuedo-random number generators are used to gener-
ate innovations in Monte Carlo simulations. Loosely translated, a high discrepancy
psuedo-random number generator is one in which there is very little correlation be-
tween the current number generated and the past numbers generated. This property is
ideal if indeed independance of the innovations is required. If, on the other hand, the
efficient spanning of a multi-dimensional space is desired, a low discrepancy, quasi-
random number generator can be used. A quasi-random number generator produces
numbers which have no random component.

A simple one-dimensional quasi-random sequence is the van der Corput sequence.
Given a prime number r (r � 2 ) any integer has a unique representation in terms
of base r. A number in the interval [0,1) can be created by inverting the represention
base power by base power. For example, consider r=3 and n=1. 1 in base 3 is

110 = 1 � 30 = 13

When the powers of 3 are inverted,

�(1) =
1

3

Also 11 in base 3 is

1110 = 1 � 32 + 2 � 30 = 1023

When the powers of 3 are inverted,

�(11) =
1

9
+ 2 � 1

3
=

7

9
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The first 10 numbers in this squence�(1) : : : �(10) are provided below

0;
1

3
;
2

3
;
1

9
;
4

9
;
7

9
;
2

9
;
5

9
;
8

9
;
1

27

As the sequence proceeds it fills in the gaps in a uniform fashion.

Several authors have expanded this idea to many dimensions. Two versions supported
by the MODEL procedure are the Sobol sequence (QUASI=SOBOL) and the Faure
sequence (QUASI=FAURE). The Sobol sequence is based on binary numbers an is
generally computationaly faster than the Faure sequence. The Faure sequence uses
the dimensionality of the problem to determine the number base to use to generate
the sequence. The Faure sequence has better distributional properties than the Sobol
sequence for dimensions greater than 8.

As an example of the difference between a pseudo random number and a quasi ran-
dom number consider simulating a bivariate normal with 100 draws.

Figure 14.61. A Bivariate Normal using 100 pseudo random draws
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Figure 14.62. A Bivariate Normal using 100 Faure random draws

Solution Mode Output
The following SAS statements dynamically forecast the solution to a nonlinear equa-
tion:

proc model data=sashelp.citimon;
parameters a 0.010708 b -0.478849 c 0.929304;
lhur = 1/(a * ip) + b + c * lag(lhur);
solve lhur / out=sim forecast dynamic;

run;

The first page of output produced by the SOLVE step is shown in Figure 14.63. This
is the summary description of the model. The error message states that the simulation
was aborted at observation 144 because of missing input values.
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The MODEL Procedure

Model Summary

Model Variables 1
Parameters 3
Equations 1
Number of Statements 1
Program Lag Length 1

Model Variables LHUR
Parameters a(0.010708) b(-0.478849) c(0.929304)

Equations LHUR

The MODEL Procedure
Dynamic Single-Equation Forecast

ERROR: Solution values are missing because of missing input values for
observation 144 at NEWTON iteration 0.

NOTE: Additional information on the values of the variables at this
observation, which may be helpful in determining the cause of the failure
of the solution process, is printed below.

Iteration Errors - Missing.
NOTE: Simulation aborted.

Figure 14.63. Solve Step Summary Output

The second page of output, shown in Figure 14.64, gives more information on the
failed observation.

The MODEL Procedure
Dynamic Single-Equation Forecast

ERROR: Solution values are missing because of missing input values for
observation 144 at NEWTON iteration 0.

NOTE: Additional information on the values of the variables at this
observation, which may be helpful in determining the cause of the failure
of the solution process, is printed below.

Observation 144 Iteration 0 CC -1.000000
Missing 1

Iteration Errors - Missing.

--- Listing of Program Data Vector ---
_N_: 144 ACTUAL.LHUR: . ERROR.LHUR: .
IP: . LHUR: 7.10000 PRED.LHUR: .
RESID.LHUR: . a: 0.01071 b: -0.47885
c: 0.92930

NOTE: Simulation aborted.

Figure 14.64. Solve Step Error Message

From the program data vector you can see the variable IP is missing for observation
144. LHUR could not be computed so the simulation aborted.

The solution summary table is shown in Figure 14.65.

829
SAS OnlineDoc: Version 8



Part 2. General Information

The MODEL Procedure
Dynamic Single-Equation Forecast

Data Set Options

DATA= SASHELP.CITIMON
OUT= SIM

Solution Summary

Variables Solved 1
Forecast Lag Length 1
Solution Method NEWTON
CONVERGE= 1E-8
Maximum CC 0
Maximum Iterations 1
Total Iterations 143
Average Iterations 1

Observations Processed

Read 145
Lagged 1
Solved 143
First 2
Last 145
Failed 1

Variables Solved For LHUR

Figure 14.65. Solution Summary Report

This solution summary table includes the names of the input data set and the output
data set followed by a description of the model. The table also indicates the solution
method defaulted to Newton’s method. The remaining output is defined as follows.
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Maximum CC is the maximum convergence value accepted by the Newton
procedure. This number is always less than the value
for "CONVERGE=."

Maximum Iterations is the maximum number of Newton iterations performed
at each observation and each replication of Monte
Carlo simulations.

Total Iterations is the sum of the number of iterations required for each
observation and each Monte Carlo simulation.

Average Iterations is the average number of Newton iterations required to
solve the system at each step.

Solved is the number of observations used times the number of
random replications selected plus one, for Monte Carlo
simulations. The one additional simulation is the original
unperturbed solution. For simulations not involving Monte
Carlo, this number is the number of observations used.

Summary Statistics
The STATS and THEIL options are used to select goodness of fit statistics. Ac-
tual values must be provided in the input data set for these statistics to be printed.
When the RANDOM= option is specified, the statistics do not include the unper-
turbed (–REP–=0) solution.

STATS Option Output
If the STATS and THEIL options are added to the model in the previous section

proc model data=sashelp.citimon;
parameters a 0.010708 b -0.478849 c 0.929304;
lhur= 1/(a * ip) + b + c * lag(lhur) ;
solve lhur / out=sim dynamic stats theil;
range date to ’01nov91’d;

run;

the STATS output in Figure 14.66 and the THEIL output in Figure 14.67 are gener-
ated.
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The MODEL Procedure
Dynamic Single-Equation Simulation

Solution Range DATE = FEB1980 To NOV1991

Descriptive Statistics

Actual Predicted
Variable N Obs N Mean Std Dev Mean Std Dev

LHUR 142 142 7.0887 1.4509 7.2473 1.1465

Statistics of fit

Mean Mean % Mean Abs Mean Abs RMS RMS %
Variable N Error Error Error % Error Error Error

LHUR 142 0.1585 3.5289 0.6937 10.0001 0.7854 11.2452

Statistics of fit

Variable R-Square Label

LHUR 0.7049 UNEMPLOYMENT RATE:
ALL WORKERS,
16 YEARS

Figure 14.66. STATS Output

The number of observations (Nobs), the number of observations with both predicted
and actual values nonmissing (N), and the mean and standard deviation of the actual
and predicted values of the determined variables are printed first. The next set of
columns in the output are defined as follows.
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Mean Error 1
N

PN
j=1 (ŷj � yj)

Mean % Error 100
N

PN
j=1 (ŷj � yj)=yj

Mean Abs Error 1
N

PN
j=1 jŷj � yjj

Mean Abs % Error 100
N

PN
j=1 j(ŷj � yj)=yj j

RMS Error
q

1
N

PN
j=1 (ŷj � yj)2

RMS % Error 100
q

1
N

PN
j=1 ((ŷj � yj)=yj)2

R-square 1� SSE=CSSA

SSE
PN

j=1 (ŷj � yj)
2

SSA
PN

j=1 (yj)
2

CSSA SSA�
�PN

j=1 yj

�2
ŷ predicted value

y actual value

When the RANDOM= option is specified, the statistics do not include the unper-
turbed (–REP–=0) solution.

THEIL Option Output
The THEIL option specifies that Theil forecast error statistics be computed for the
actual and predicted values and for the relative changes from lagged values. Mathe-
matically, the quantities are

ŷc = (ŷ � lag(y))=lag(y)

yc = (y � lag(y))=lag(y)

whereŷc is the relative change for the predicted value andyc is the relative change
for the actual value.
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The MODEL Procedure
Dynamic Single-Equation Simulation

Solution Range DATE = FEB1980 To NOV1991

Theil Forecast Error Statistics

MSE Decomposition Proportions
Corr Bias Reg Dist Var Covar

Variable N MSE (R) (UM) (UR) (UD) (US) (UC)

LHUR 142.0 0.6168 0.85 0.04 0.01 0.95 0.15 0.81

Theil Forecast Error Statistics

Inequality Coef
Variable U1 U Label

LHUR 0.1086 0.0539 UNEMPLOYMENT RATE:
ALL WORKERS,
16 YEARS

Theil Relative Change Forecast Error Statistics

Relative Change MSE Decomposition Proportions
Corr Bias Reg Dist Var Covar

Variable N MSE (R) (UM) (UR) (UD) (US) (UC)

LHUR 142.0 0.0126 -0.08 0.09 0.85 0.06 0.43 0.47

Theil Relative Change Forecast Error Statistics

Inequality Coef
Variable U1 U Label

LHUR 4.1226 0.8348 UNEMPLOYMENT RATE:
ALL WORKERS,
16 YEARS

Figure 14.67. THEIL Output

The columns have the following meaning:

Corr (R) is the correlation coefficient,�, between the actual and predicted
values.

� =
cov(y; ŷ)

�a�p

where�p and�a are the standard deviations of the predicted and
actual values.

Bias (UM) is an indication of systematic error and measures the extent to
which the average values of the actual and predicted deviate from
each other.

(E(y)� E(ŷ))2

1
N

PN
t=1 (yt � ŷt)2
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Reg (UR) is defined as(�p � � � �a)2=MSE . Consider the regression

y = �+ �ŷ

If �̂ = 1, UR will equal zero.

Dist (UD) is defined as(1� �2)�a�a=MSE and represents the variance of
the residuals obtained by regressingyc on ŷc.

Var (US) is the variance proportion. US indicates the ability of the model to
replicate the degree of variability in the endogenous variable.

US =
(�p � �a)

2

MSE

Covar (UC) represents the remaining error after deviations from average values
and average variabilities have been accounted for.

UC =
2(1 � �)�p�a

MSE

U1 is a statistic measuring the accuracy of a forecast.

U1 =
MSEq

1
N

PN
t=1 (yt)

2

U is the Theil’s inequality coefficient defined as follows:

U =
MSEq

1
N

PN
t=1 (yt)

2 +
q

1
N

PN
t=1 (ŷt)

2

MSE is the mean square error

MSE =
1

N

NX
t=1

(ŷc� yc)2

More information on these statistics can be found in the references Maddala (1977,
344–347) and Pindyck and Rubinfeld (1981, 364–365).

Goal Seeking: Solving for Right-Hand-Side Variables

The process of computing input values needed to produce target results is often called
goal seeking. To compute a goal-seeking solution, use a SOLVE statement that lists
the variables you want to solve for and provide a data set containing values for the
remaining variables.

Consider the following demand model for packaged rice

quantity demanded = �1 + �2price
2=3 + �3income
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whereprice is the price of the package andincomeis disposable personal income.
The only variable the company has control over is the price it charges for rice. This
model is estimated using the following simulated data and PROC MODEL state-
ments:

data demand;
do t=1 to 40;

price = (rannor(10) +5) * 10;
income = 8000 * t ** (1/8);
demand = 7200 - 1054 * price ** (2/3) +

7 * income + 100 * rannor(1);
output;

end;
run;

data goal;
demand = 85000;
income = 12686;

run;

The goal is to find the price the company would have to charge to meet a sales target
of 85,000 units. To do this, a data set is created with a DEMAND variable set to
85000 and with an INCOME variable set to 12686, the last income value.

proc model data=demand ;
demand = a1 - a2 * price ** (2/3) + a3 * income;
fit demand / outest=demest;

run;

The desired price is then determined using the following PROC MODEL statement:

solve price / estdata=demest data=goal solveprint;
run;

The SOLVEPRINT option prints the solution values, number of iterations, and final
residuals at each observation. The SOLVEPRINT output from this solve is shown in
Figure 14.68.

The MODEL Procedure
Single-Equation Simulation

Observation 1 Iterations 6 CC 0.000000 ERROR.demand 0.000000

Solution Values

price

33.59016

Figure 14.68. Goal Seeking, SOLVEPRINT Output

The output indicates that it took 6 Newton iterations to determine the PRICE of
33.5902, which makes the DEMAND value within 16E-11 of the goal of 85,000
units.
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Consider a more ambitious goal of 100,000 units. The output shown in Figure 14.69
indicates that the sales target of 100,000 units is not attainable according to this
model.

The MODEL Procedure
Single-Equation Simulation

NOTE: 3 parameter estimates were read from the ESTDATA=DEMEST data set.

The MODEL Procedure
Single-Equation Simulation

ERROR: Could not reduce norm of residuals in 10 subiterations.

ERROR: The solution failed because 1 equations are missing or have extreme
values for observation 1 at NEWTON iteration 1.

NOTE: Additional information on the values of the variables at this
observation, which may be helpful in determining the cause of the failure
of the solution process, is printed below.

Observation 1 Iteration 1 CC -1.000000
Missing 1

Iteration Errors - Missing.

Observation 1 Iteration 1 CC -1.000000
Missing 1

ERROR: 2 execution errors for this observation
NOTE: Check for missing input data or uninitialized lags.

(Note that the LAG and DIF functions return missing values for the
initial lag starting observations. This is a change from the 1982 and earlier
versions of SAS/ETS which returned zero for uninitialized lags.)
NOTE: Simulation aborted.

Figure 14.69. Goal Seeking, Convergence Failure

The program data vector indicates that even with PRICE nearly 0 (4.462312E-22) the
demand is still 4,164 less than the goal. You may need to reformulate your model or
collect more data to more accurately reflect the market response.

Numerical Solution Methods

If the SINGLE option is not used, PROC MODEL computes values that simultane-
ously satisfy the model equations for the variables named in the SOLVE statement.
PROC MODEL provides three iterative methods, Newton, Jacobi, and Seidel, for
computing a simultaneous solution of the system of nonlinear equations.

Single-Equation Solution
For normalized-form equation systems, the solution can either simultaneously satisfy
all the equations or can be computed for each equation separately, using the actual
values of the solution variables in the current period to compute each predicted value.
By default, PROC MODEL computes a simultaneous solution. The SINGLE option
on the SOLVE statement selects single-equation solutions.

Single-equation simulations are often made to produce residuals (which estimate the
random terms of the stochastic equations) rather than the predicted values themselves.
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If the input data and range are the same as that used for parameter estimation, a static
single-equation simulation will reproduce the residuals of the estimation.

Newton’s Method
The NEWTON option on the SOLVE statement requests Newton’s method to simul-
taneously solve the equations for each observation. Newton’s method is the default
solution method. Newton’s method is an iterative scheme that uses the derivatives of
the equations with respect to the solution variables,J, to compute a change vector as

�yi = J�1q(yi;x; �)

PROC MODEL builds and solvesJ using efficient sparse matrix techniques. The
solution variablesyi at theith iteration are then updated as

yi+1 = yi + d��yi

d is a damping factor between 0 and 1 chosen iteratively so that

kq(yi+1;x; �)k < kq(yi;x; �)k

The number of subiterations allowed for finding a suitabled is controlled by the
MAXSUBITER= option. The number of iterations of Newton’s method allowed for
each observation is controlled by MAXITER= option. Refer to Ortega and Rheinbolt
(1970) for more details.

Jacobi Method
The JACOBI option on the SOLVE statement selects a matrix-free alternative to New-
ton’s method. This method is the traditional nonlinear Jacobi method found in the lit-
erature. The Jacobi method as implemented in PROC MODEL substitutes predicted
values for the endogenous variables and iterates until a fixed point is reached. Then
necessary derivatives are computed only for the diagonal elements of the jacobian,J.

If the normalized-form equation is

y = f(y;x; �)

the Jacobi iteration has the form

yi+1 = f(yi;x; �)

Seidel Method
The Seidel method is an order-dependent alternative to the Jacobi method. The Seidel
method is selected by the SEIDEL option on the SOLVE statement and is applicable
only to normalized-form equations. The Seidel method is like the Jacobi method ex-
cept that in the Seidel method the model is further edited to substitute the predicted
values into the solution variables immediately after they are computed. Seidel thus
differs from the other methods in that the values of the solution variables are not
fixed within an iteration. With the other methods, the order of the equations in the
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model program makes no difference, but the Seidel method may work much differ-
ently when the equations are specified in a different sequence. Note that this fixed
point method is the traditional nonlinear Seidel method found in the literature.

The iteration has the form

yi+1j = f(ŷi;x; �)

whereyi+1j is thejth equation variable at theith iteration and

ŷi = (yi+11 ; yi+12 ; yi+13 ; : : :; yi+1j�1; y
i
j ; y

i
j+1; : : :; y

i
g)
0

If the model is recursive, and if the equations are in recursive order, the Seidel method
will converge at once. If the model is block-recursive, the Seidel method may con-
verge faster if the equations are grouped by block and the blocks are placed in block-
recursive order. The BLOCK option can be used to determine the block-recursive
form.

Comparison of Methods
Newton’s method is the default and should work better than the others for most small-
to medium-sized models. The Seidel method is always faster than the Jacobi for
recursive models with equations in recursive order. For very large models and some
highly nonlinear smaller models, the Jacobi or Seidel methods can sometimes be
faster. Newton’s method uses more memory than the Jacobi or Seidel methods.

Both the Newton’s method and the Jacobi method are order-invariant in the sense that
the order in which equations are specified in the model program has no effect on the
operation of the iterative solution process. In order-invariant methods, the values of
the solution variables are fixed for the entire execution of the model program. Assign-
ments to model variables are automatically changed to assignments to corresponding
equation variables. Only after the model program has completed execution are the
results used to compute the new solution values for the next iteration.

Troubleshooting Problems
In solving a simultaneous nonlinear dynamic model you may encounter some of the
following problems.

Missing Values
For SOLVE tasks, there can be no missing parameter values. If there are missing
right-hand-side variables, this will result in a missing left-hand-side variable for that
observation.

Unstable Solutions
A solution may exist but be unstable. An unstable system can cause the Jacobi and
Seidel methods to diverge.

Explosive Dynamic Systems
A model may have well-behaved solutions at each observation but be dynamically
unstable. The solution may oscillate wildly or grow rapidly with time.
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Propagation of Errors
During the solution process, solution variables can take on values that cause computa-
tional errors. For example, a solution variable that appears in a LOG function may be
positive at the solution but may be given a negative value during one of the iterations.
When computational errors occur, missing values are generated and propagated, and
the solution process may collapse.

Convergence Problems
The following items can cause convergence problems:

� illegal function values ( that is
p�1 )

� local minima in the model equation

� no solution exists

� multiple solutions exist

� initial values too far from the solution

� the CONVERGE= value too small.

When PROC MODEL fails to find a solution to the system, the current iteration infor-
mation and the program data vector are printed. The simulation halts if actual values
are not available for the simulation to proceed. Consider the following program:

data test1;
do t=1 to 50;

x1 = sqrt(t) ;
y = .;
output;

end;

proc model data=test1;
exogenous x1 ;
control a1 -1 b1 -29 c1 -4 ;
y = a1 * sqrt(y) + b1 * x1 * x1 + c1 * lag(x1);
solve y / out=sim forecast dynamic ;

run;

which produces the output shown in Figure 14.70.
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The MODEL Procedure
Dynamic Single-Equation Forecast

ERROR: Could not reduce norm of residuals in 10 subiterations.

ERROR: The solution failed because 1 equations are missing or have extreme
values for observation 1 at NEWTON iteration 1.

NOTE: Additional information on the values of the variables at this
observation, which may be helpful in determining the cause of the failure
of the solution process, is printed below.

Observation 1 Iteration 1 CC -1.000000
Missing 1

Iteration Errors - Missing.

--- Listing of Program Data Vector ---
_N_: 12 ACTUAL.x1: 1.41421 ACTUAL.y: .
ERROR.y: . PRED.y: . RESID.y: .
a1: -1 b1: -29 c1: -4
x1: 1.41421 y: -0.00109
@PRED.y/@y: . @ERROR.y/@y: .

Observation 1 Iteration 1 CC -1.000000
Missing 1

ERROR: 1 execution errors for this observation
NOTE: Check for missing input data or uninitialized lags.

(Note that the LAG and DIF functions return missing values for the
initial lag starting observations. This is a change from the 1982 and earlier
versions of SAS/ETS which returned zero for uninitialized lags.)
NOTE: Simulation aborted.

Figure 14.70. SOLVE Convergence Problems

At the first observation the following equation is attempted to be solved:

y = �py � 62

There is no solution to this problem. The iterative solution process got as close as it
could to making Y negative while still being able to evaluate the model. This problem
can be avoided in this case by altering the equation.

In other models, the problem of missing values can be avoided by either altering the
data set to provide better starting values for the solution variables or by altering the
equations.

You should be aware that, in general, a nonlinear system can have any number of
solutions, and the solution found may not be the one that you want. When multiple
solutions exist, the solution that is found is usually determined by the starting values
for the iterations. If the value from the input data set for a solution variable is missing,
the starting value for it is taken from the solution of the last period (if nonmissing) or
else the solution estimate is started at 0.
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Iteration Output
The iteration output, produced by the ITPRINT option, is useful in determining the
cause of a convergence problem. The ITPRINT option forces the printing of the
solution approximation and equation errors at each iteration for each observation.
A portion of the ITPRINT output from the following statement is shown in Figure
14.71.

proc model data=test1;
exogenous x1 ;
control a1 -1 b1 -29 c1 -4 ;
y = a1 * sqrt(abs(y)) + b1 * x1 * x1 + c1 * lag(x1);
solve y / out=sim forecast dynamic itprint;

run;

For each iteration, the equation with the largest error is listed in parentheses after the
Newton convergence criteria measure. From this output you can determine which
equation or equations in the system are not converging well.
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The MODEL Procedure
Dynamic Single-Equation Forecast

Observation 1 Iteration 0 CC 613961.39 ERROR.y -62.01010

Predicted Values

y

0.0001000

Iteration Errors

y

-62.01010

Observation 1 Iteration 1 CC 50.902771 ERROR.y -61.88684

Predicted Values

y

-1.215784

Iteration Errors

y

-61.88684

Observation 1 Iteration 2 CC 0.364806 ERROR.y 41.752112

Predicted Values

y

-114.4503

Iteration Errors

y

41.75211

Figure 14.71. SOLVE, ITPRINT Output

Numerical Integration

The differential equation system is numerically integrated to obtain a solution for the
derivative variables at each data point. The integration is performed by evaluating the
provided model at multiple points between each data point. The integration method
used is a variable order, variable step-size backward difference scheme; for more de-
tailed information, refer to Aiken (1985) and Byrne (1975). The step size or time step
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is chosen to satisfy alocal truncation errorrequirement. The termtruncation error
comes from the fact that the integration scheme uses a truncated series expansion
of the integrated function to do the integration. Because the series is truncated, the
integration scheme is within the truncation error of the true value.

To further improve the accuracy of the integration, the total integration time is broken
up into small intervals (time steps or step sizes), and the integration scheme is applied
to those intervals. The integration at each time step uses the values computed at the
previous time step so that the truncation error tends to accumulate. It is usually not
possible to estimate the global error with much precision. The best that can be done
is to monitor and to control the local truncation error, which is the truncation error
committed at each time step relative to

d = max
0�t�T

(ky(t)k1; 1)

wherey(t) is the integrated variable. Furthermore, they(t)s are dynamically scaled
to within two orders of magnitude one to keep the error monitoring well behaved.

The local truncation error requirement defaults to1:0E � 9. You can specify the
LTEBOUND= option to modify that requirement. The LTEBOUND= option is a rel-
ative measure of accuracy, so a value smaller than1:0E � 10 is usually not practical.
A larger bound increases the speed of the simulation and estimation but decreases
the accuracy of the results. If the LTEBOUND= option is set too small, the integra-
tor is not able to take time steps small enough to satisfy the local truncation error
requirement and still have enough machine precision to compute the results. Since
the integrations are scaled to within1:0E � 2 of one, the simulated values should be
correct to at least seven decimal places.

There is a default minimum time step of1:0E � 14. This minimum time step is
controlled by the MINTIMESTEP= option and the machine epsilon. If the minimum
time step is smaller than the machine epsilon times the final time value, the minimum
time step is increased automatically.

For the points between each observation in the data set, the values for nonintegrated
variables in the data set are obtained from a linear interpolation from the two closest
points. Lagged variables can be used with integrations, but their values are discrete
and are not interpolated between points. Lagging, therefore, can then be used to input
step functions into the integration.

The derivatives necessary for estimation (the gradient with respect to the parameters)
and goal seeking (the Jacobian) are computed by numerically integrating analytical
derivatives. The accuracy of the derivatives is controlled by the same integration
techniques mentioned previously.
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Limitations

There are limitations to the types of differential equations that can be solved or es-
timated. One type is an explosive differential equation (finite escape velocity) for
which the following differential equation is an example:

y
0

= a�y; a > 0

If this differential equation is integrated too far in time,y exceeds the maximum value
allowed on the computer, and the integration terminates.

Likewise, differential systems that are singular cannot be solved or estimated in gen-
eral. For example, consider the following differential system:

x
0

= �y0 + 2x+ 4y + exp(t)

y
0

= �x0 + y + exp(4�t)

This system has an analytical solution, but an accurate numerical solution is very
difficult to obtain. The reason is thaty

0

andx
0

cannot be isolated on the left-hand
side of the equation. If the equation is modified slightly to

x
0

= �y0 + 2x+ 4y + exp(t)

y
0

= x
0

+ y + exp(4t)

the system is nonsingular, but the integration process could still fail or be extremely
slow. If the MODEL procedure encounters either system, a warning message is is-
sued.

This system can be rewritten as the following recursive system,

x
0

= 0:5y + 0:5exp(4t) + x+ 1:5y � 0:5exp(t)

y
0

= x
0

+ y + exp(4t)

which can be estimated and simulated successfully with the MODEL procedure.

Petzold (1982) mentions a class of differential algebraic equations that, when inte-
grated numerically, could produce incorrect or misleading results. An example of
such a system mentioned in Petzold (1982) is

y
0

2(t) = y1(t) + g1(t)

0 = y2(t) + g2(t)
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The analytical solution to this system depends ong and its derivatives at the current
time only and not on its initial value or past history. You should avoid systems of this
and other similar forms mentioned in Petzold (1982).

SOLVE Data Sets

SDATA= Input Data Set
The SDATA= option reads a cross-equation covariance matrix from a data set. The
covariance matrix read from the SDATA= data set specified on the SOLVE statement
is used to generate random equation errors when the RANDOM= option specifies
Monte Carlo simulation.

Typically, the SDATA= data set is created by the OUTS= on a previous FIT statement.
(The OUTS= data set from a FIT statement can be read back in by a SOLVE statement
in the same PROC MODEL step.)

You can create an input SDATA= data set using the DATA step. PROC MODEL
expects to find a character variable–NAME– in the SDATA= data set as well as
variables for the equations in the estimation or solution. For each observation with
a –NAME– value matching the name of an equation, PROC MODEL fills the cor-
responding row of the S matrix with the values of the names of equations found in
the data set. If a row or column is omitted from the data set, an identity matrix row
or column is assumed. Missing values are ignored. Since the S matrix is symmetric,
you can include only a triangular part of the S matrix in the SDATA= data set with
the omitted part indicated by missing values. If the SDATA= data set contains multi-
ple observations with the same–NAME–, the last values supplied for the–NAME–
variable are used. The "OUTS= Data Set" section contains more details on the format
of this data set.

Use the TYPE= option to specify the type of estimation method used to produce the
S matrix you want to input.

ESTDATA= Input Data Set
The ESTDATA= option specifies an input data set that contains an observation with
values for some or all of the model parameters. It can also contain observations with
the rows of a covariance matrix for the parameters.

When the ESTDATA= option is used, parameter values are set from the first obser-
vation. If the RANDOM= option is used and the ESTDATA= data set contains a
covariance matrix, the covariance matrix of the parameter estimates is read and used
to generate pseudo-random shocks to the model parameters for Monte Carlo simu-
lation. These random perturbations have a multivariate normal distribution with the
covariance matrix read from the ESTDATA= data set.

The ESTDATA= data set is usually created by the OUTEST= option in a FIT state-
ment. The OUTEST= data set contains the parameter estimates produced by the FIT
statement and also contains the estimated covariance of the parameter estimates if the
OUTCOV option is used. This OUTEST= data set can be read in by the ESTDATA=
option in a SOLVE statement.
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You can also create an ESTDATA= data set with a SAS DATA step program. The
data set must contain a numeric variable for each parameter to be given a value or
covariance column. The name of the variable in the ESTDATA= data set must match
the name of the parameter in the model. Parameters with names longer than eight
characters cannot be set from an ESTDATA= data set. The data set must also contain
a character variable–NAME– of length eight.–NAME– has a blank value for the
observation that gives values to the parameters.–NAME– contains the name of a
parameter for observations defining rows of the covariance matrix.

More than one set of parameter estimates and covariances can be stored in the EST-
DATA= data set if the observations for the different estimates are identified by the
variable–TYPE–. –TYPE– must be a character variable of length eight. The TYPE=
option is used to select for input the part of the ESTDATA= data set for which the
value of the–TYPE– variable matches the value of the TYPE= option.

OUT= Data Set
The OUT= data set contains solution values, residual values, and actual values of the
solution variables.

The OUT= data set contains the following variables:

� BY variables

� RANGE variable

� ID variables

� –TYPE–, a character variable of length eight identifying the type of obser-
vation. The–TYPE– variable can be PREDICT, RESIDUAL, ACTUAL, or
ERROR.

� –MODE–, a character variable of length eight identifying the solution mode.

–MODE– takes the value FORECAST or SIMULATE.

� if lags are used, a numeric variable,–LAG–, containing the number of dy-
namic lags that contribute to the solution. The value of–LAG– is always zero
for STATIC mode solutions.–LAG– is set to a missing value for lag-starting
observations.

� –REP–, a numeric variable containing the replication number, if the RAN-
DOM= option is used. For example, if RANDOM=10, each input observation
results in eleven output observations with–REP– values 0 through 10. The
observations with–REP–=0 are from the unperturbed solution. (The random-
number generator functions are suppressed, and the parameter and endogenous
perturbations are zero when–REP–=0.)

� –ERRORS–, a numeric variable containing the number of errors that occurred
during the execution of the program for the last iteration for the observation. If
the solution failed to converge, this is counted as one error, and the–ERRORS–
variable is made negative.
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� solution and other variables. The solution variables contain solution
or predicted values for–TYPE–=PREDICT observations, residuals for

–TYPE–=RESIDUAL observations, or actual values for–TYPE–=ACTUAL
observations. The other model variables, and any other variables read from the
input data set, are always actual values from the input data set.

� any other variables named in the OUTVARS statement. These can be program
variables computed by the model program, CONTROL variables, parameters,
or special variables in the model program. Compound variable names longer
than eight characters are truncated in the OUT= data set.

By default only the predicted values are written to the OUT= data set. The OUT-
RESID, OUTACTUAL, and OUTERROR options are used to add the residual, actual,
and ERROR. values to the data set.

For examples of the OUT= data set, see Example 14.6 at the end of this chapter.

DATA= Input Data Set
The input data set should contain all of the exogenous variables and should supply
nonmissing values for them for each period to be solved.

Solution variables can be supplied in the input data set and are used as follows:

� to supply initial lags. For example, if the lag length of the model is three, three
observations are read in to feed the lags before any solutions are computed.

� to evaluate the goodness of fit. Goodness-of-fit measures are computed based
on the difference between the solved values and the actual values supplied from
the data set.

� to supply starting values for the iterative solution. If the value from the input
data set for a solution variable is missing, the starting value for it is taken from
the solution of the last period (if nonmissing) or else the solution estimate is
started at zero.

� For STATIC mode solutions, actual values from the data set are used by the
lagging functions for the solution variables.

� for FORECAST mode solutions, actual values from the data set are used as the
solution values when nonmissing.
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Programming Language Overview

Variables in the Model Program

Variable names are alphanumeric but must start with a letter. The length of a variable
name is limited to thirty-two characters for non-SAS data set variables

PROC MODEL uses several classes of variables, and different variable classes are
treated differently. Variable class is controlled bydeclaration statements. These are
the VAR, ENDOGENOUS, and EXOGENOUS statements for model variables, the
PARAMETERS statement for parameters, and the CONTROL statement for control
class variables. These declaration statements have several valid abbreviations. Var-
ious internal variablesare also made available to the model program to allow com-
munication between the model program and the procedure. RANGE, ID, and BY
variables are also available to the model program. Those variables not declared as
any of the preceding classes areprogram variables.

Some classes of variables can be lagged; that is, their value at each observation is
remembered, and previous values can be referred to by the lagging functions. Other
classes have only a single value and are not affected by lagging functions. For ex-
ample, parameters have only one value and are not affected by lagging functions;
therefore, if P is a parameter, DIFn(P) is always 0, and LAGn(P) is always the same
as P for all values ofn.

The different variable classes and their roles in the model are described in the follow-
ing.

Model Variables
Model variables are declared by VAR, ENDOGENOUS, or EXOGENOUS state-
ments, or by FIT and SOLVE statements. The model variables are the variables that
the model is intended to explain or predict.

PROC MODEL allows you to use expressions on the left-hand side of the equal sign
to define model equations. For example, a log linear model for Y can now be written
as

log( y ) = a + b * x;

Previously, only a variable name was allowed on the left-hand side of the equal sign.

The text on the left hand side of the equation serves as the equation name used to
identify the equation in printed output, in the OUT= data sets, and in FIT or SOLVE
statements. To refer to equations specified using left-hand side expressions (on the
FIT statement, for example), place the left-hand side expression in quotes. For exam-
ple, the following statements fit a log linear model to the dependent variable Y:

proc model data=in;
log( y ) = a + b * x;
fit "log(y)";

run;
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The estimation and simulation is performed by transforming the models into general
form equations. No actual or predicted value is available for general form equations
so noR2 or adjustedR2 will be computed.

Equation Variables
An equation variable is one of several special variables used by PROC MODEL to
control the evaluation of model equations. An equation variable name consists of one
of the prefixes EQ, RESID, ERROR, PRED, or ACTUAL, followed by a period and
the name of a model equation.

Equation variable names can appear on parts of the PROC MODEL printed output,
and they can be used in the model program. For example, RESID-prefixed vari-
ables can be used in LAG functions to define equations with moving-average error
terms. See the "Autoregressive Moving-Average Error Processes" section earlier in
this chapter for details.

The meaning of these prefixes is detailed in the "Equation Translations" section.

Parameters
Parameters are variables that have the same value for each observation. Parameters
can be given values or can be estimated by fitting the model to data. During the
SOLVE stage, parameters are treated as constants. If no estimation is performed, the
SOLVE stage uses the initial value provided in either the ESTDATA= data set, the
MODEL= file, or on the PARAMETER statement, as the value of the parameter.

The PARAMETERS statement declares the parameters of the model. Parameters are
not lagged, and they cannot be changed by the model program.

Control Variables
Control variables supply constant values to the model program that can be used to
control the model in various ways. The CONTROL statement declares control vari-
ables and specifies their values. A control variable is like a parameter except that it
has a fixed value and is not estimated from the data.

Control variables are not reinitialized before each pass through the data and can thus
be used to retain values between passes. You can use control variables to vary the
program logic. Control variables are not affected by lagging functions.

For example, if you have two versions of an equation for a variable Y, you could put
both versions in the model and, using a CONTROL statement to select one of them,
produce two different solutions to explore the effect the choice of equation has on the
model:

select (case);
when (1) y = ...first version of equation... ;
when (2) y = ...second version of equation... ;

end;
control case 1;
solve / out=case1;

run;
control case 2;
solve / out=case2;

run;
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RANGE, ID, and BY Variables
The RANGE statement controls the range of observations in the input data set that is
processed by PROC MODEL. The ID statement lists variables in the input data set
that are used to identify observations on the printout and in the output data set. The
BY statement can be used to make PROC MODEL perform a separate analysis for
each BY group. The variable in the RANGE statement, the ID variables, and the BY
variables are available for the model program to examine, but their values should not
be changed by the program. The BY variables are not affected by lagging functions.

BY Processing Improvements
Prior to version 6.11, the BY processing in the SOLVE statement was performed
only for the DATA= data set. The last values in the ESTDATA= and SDATA= data
sets were used regardless of the existence of BY variables in those two data sets.
This constraint is now removed. If the BY variables are identical in the DATA=
data set and the ESTDATA= data set, then the two data sets are syncronized and the
simulations are performed using the data and parameters for each BY group. This
holds for BY variables in the SDATA= data set as well. If, at some point, the BY
variables don’t match, BY processing is abandoned in either the ESTDATA= data set
or the SDATA= data set, whichever has the missing BY value. If the DATA= data set
does not contain BY variables and the ESTDATA= data set or the SDATA= data set
does, then BY processing is performed for the ESTDATA= data set and the SDATA=
data set by reusing the data in the DATA= data set for each BY group.

Internal Variables
You can use several internal variables in the model program to communicate with the
procedure. For example, if you wanted PROC MODEL to list the values of all the
variables when more than 10 iterations are performed and the procedure is past the
20th observation, you can write

if _obs_ > 20 then if _iter_ > 10 then _list_ = 1;

Internal variables are not affected by lagging functions, and they cannot be changed
by the model program except as noted. The following internal variables are available.
The variables are all numeric except where noted.

–ERRORS– a flag that is set to 0 at the start of program execution and is set to a
nonzero value whenever an error occurs. The program can also set
the–ERRORS– variable.

–ITER– the iteration number. For FIT tasks, the value of–ITER– is nega-
tive for preliminary grid-search passes. The iterative phase of the
estimation starts with iteration 0. After the estimates have con-
verged, a final pass is made to collect statistics with–ITER– set to
a missing value. Note that at least one pass, and perhaps several
subiteration passes as well, is made for each iteration. For SOLVE
tasks,–ITER– counts the iterations used to compute the simulta-
neous solution of the system.

–LAG– the number of dynamic lags that contribute to the solution at the
current observation.–LAG– is always 0 for FIT tasks and for
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STATIC solutions. –LAG– is set to a missing value during the
lag starting phase.

–LIST– list flag that is set to 0 at the start of program execution. The pro-
gram can set–LIST– to a nonzero value to request a listing of the
values of all the variables in the program after the program has
finished executing.

–METHOD– is the solution method in use for SOLVE tasks.–METHOD– is set
to a blank value for FIT tasks.–METHOD– is a character-valued
variable. Values are NEWTON, JACOBI, SIEDEL, or ONEPASS.

–MODE– takes the value ESTIMATE for FIT tasks and the value SIMULATE
or FORECAST for SOLVE tasks.–MODE– is a character-valued
variable.

–NMISS– the number of missing or otherwise unusable observations during
the model estimation. For FIT tasks,–NMISS– is initially set to
0; at the start of each iteration,–NMISS– is set to the number of
unusable observations for the previous iteration. For SOLVE tasks,

–NMISS– is set to a missing value.

–NUSED– the number of nonmissing observations used in the estimation. For
FIT tasks, PROC MODEL initially sets–NUSED– to the number
of parameters; at the start of each iteration,–NUSED– is reset
to the number of observations used in the previous iteration. For
SOLVE tasks,–NUSED– is set to a missing value.

–OBS– counts the observations being processed.–OBS– is negative or 0
for observations in the lag starting phase.

–REP– the replication number for Monte Carlo simulation when the RAN-
DOM= option is specified in the SOLVE statement.–REP– is 0
when the RANDOM= option is not used and for FIT tasks. When

–REP–=0, the random-number generator functions always return
0.

–WEIGHT– the weight of the observation. For FIT tasks,–WEIGHT– provides
a weight for the observation in the estimation.–WEIGHT– is ini-
tialized to 1.0 at the start of execution for FIT tasks. For SOLVE
tasks,–WEIGHT– is ignored.

Program Variables
Variables not in any of the other classes are called program variables. Program vari-
ables are used to hold intermediate results of calculations. Program variables are
reinitialized to missing values before each observation is processed. Program vari-
ables can be lagged. The RETAIN statement can be used to give program variables
initial values and enable them to keep their values between observations.

Character Variables
PROC MODEL supports both numeric and character variables. Character variables
are not involved in the model specification but can be used to label observations, to
write debugging messages, or for documentation purposes. All variables are numeric
unless they are the following.
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� character variables in a DATA= SAS data set

� program variables assigned a character value

� declared to be character by a LENGTH or ATTRIB statement.

Equation Translations

Equations written in normalized form are always automatically converted to general
form equations. For example, when a normalized-form equation such as

y = a + b*x;

is encountered, it is translated into the equations

PRED.y = a + b*x;
RESID.y = PRED.y - ACTUAL.y;
ERROR.y = PRED.y - y;

If the same system is expressed as the following general-form equation, then this
equation is used unchanged.

EQ.y = y - a + b*x;

This makes it easy to solve for arbitrary variables and to modify the error terms for
autoregressive or moving average models.

Use the LIST option to see how this transformation is performed. For example, the
following statements produce the listing shown in Figure 14.72.

proc model data=line list;
y = a1 + b1*x1 + c1*x2;
fit y;

run;

The MODEL Procedure

Listing of Compiled Program Code
Stmt Line:Col Statement as Parsed

1 15820:39 PRED.y = a1 + b1 * x1 + c1 * x2;
1 15820:39 RESID.y = PRED.y - ACTUAL.y;
1 15820:39 ERROR.y = PRED.y - y;

Figure 14.72. LIST Output

PRED.Y is the predicted value of Y, and ACTUAL.Y is the value of Y in the data
set. The predicted value minus the actual value, RESID.Y, is then the error term,�,
for the original Y equation. ACTUAL.Y and Y have the same value for parameter
estimation. For solve tasks, ACTUAL.Y is still the value of Y in the data set but Y
becomes the solved value; the value that satisfies PRED.Y - Y = 0.

The following are the equation variable definitions.
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EQ. The value of an EQ-prefixed equation variable (normally used to
define a general-form equation) represents the failure of the equa-
tion to hold. When the EQ.namevariable is 0, thenameequation
is satisfied.

RESID. The RESID.namevariables represent the stochastic parts of the
equations and are used to define the objective function for the es-
timation process. A RESID.-prefixed equation variable is like an
EQ-prefixed variable but makes it possible to use or transform the
stochastic part of the equation. The RESID. equation is used in
place of the ERROR. equation for model solutions if it has been
reassigned or used in the equation.

ERROR. An ERROR.namevariable is like an EQ-prefixed variable, except
that it is used only for model solution and does not affect parameter
estimation.

PRED. For a normalized-form equation (specified by assignment to a
model variable), the PRED.nameequation variable holds the pre-
dicted value, wherenameis the name of both the model variable
and the corresponding equation. (PRED-prefixed variables are not
created for general-form equations.)

ACTUAL. For a normalized-form equation (specified by assignment to a
model variable), the ACTUAL.nameequation variable holds the
value of thenamemodel variable read from the input data set.

DERT. The DERT.namevariable defines a differential equation. Once de-
fined, it may be used on the right-hand side of another equation.

H. The H.namevariable specifies the functional form for the variance
of the named equation.

GMM–H. This is created for H.varsand is the moment equation for the vari-
ance for GMM. This variable is used only for GMM.

GMM_H.name = RESID.name**2 - H.name;

MSE. The MSE.y variable contains the value of the mean square error
for y at each iteration. An MSE. variable is created for each de-
pendent/endogenous variable in the model. These variables can be
used to specify the lagged values in the estimation and simulation
of GARCH type models.

demret = intercept ;
if ( _OBS_ = 1 ) then

h.demret = arch0 + arch1 * mse.demret +
garch1 * mse.demret;

else
h.demret = arch0 +

arch1 * zlag( resid.demret ** 2) +
garch1 * zlag(h.demret) ;
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NRESID. This is created for H.vars and is the normalized residual of the
variable <name>. The formula is

NRESID.name = RESID.name/ sqrt(H.name);

The three equation variable prefixes, RESID., ERROR., and EQ. allow for control
over the objective function for the FIT, the SOLVE, or both the FIT and the SOLVE
stages. For FIT tasks, PROC MODEL looks first for a RESID.namevariable for
each equation. If defined, the RESID-prefixed equation variable is used to define the
objective function for the parameter estimation process. Otherwise, PROC MODEL
looks for an EQ-prefixed variable for the equation and uses it instead.

For SOLVE tasks, PROC MODEL looks first for an ERROR.name variable for each
equation. If defined, the ERROR-prefixed equation variable is used for the solution
process. Otherwise, PROC MODEL looks for an EQ-prefixed variable for the equa-
tion and uses it instead. To solve the simultaneous equation system, PROC MODEL
computes values of the solution variables (the model variables being solved for) that
make all of the ERROR.name and EQ.namevariables close to 0.

Derivatives

Nonlinear modeling techniques require the calculation of derivatives of certain vari-
ables with respect to other variables. The MODEL procedure includes an analytic
differentiator that determines the model derivatives and generates program code to
compute these derivatives. When parameters are estimated, the MODEL procedure
takes the derivatives of the equation with respect to the parameters. When the model
is solved, Newton’s method requires the derivatives of the equations with respect to
the variables solved for.

PROC MODEL uses exact mathematical formulas for derivatives of non-user-defined
functions. For other functions, numerical derivatives are computed and used.

The differentiator differentiates the entire model program, including conditional logic
and flow of control statements. Delayed definitions, as when the LAG of a program
variable is referred to before the variable is assigned a value, are also differentiated
correctly.

The differentiator includes optimization features that produce efficient code for the
calculation of derivatives. However, when flow of control statements such as GOTO
statements are used, the optimization process is impeded, and less efficient code for
derivatives may be produced. Optimization is also reduced by conditional statements,
iterative DO loops, and multiple assignments to the same variable.

The table of derivatives is printed with the LISTDER option. The code generated for
the computation of the derivatives is printed with the LISTCODE option.

Derivative Variables
When the differentiator needs to generate code to evaluate the expression for the
derivative of a variable, the result is stored in a special derivative variable. Derivative
variables are not created when the derivative expression reduces to a previously com-
puted result, a variable, or a constant. The names of derivative variables, which may
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sometimes appear in the printed output, have the form @obj/@wrt, whereobj is the
variable whose derivative is being taken andwrt is the variable that the differentiation
is with respect to. For example, the derivative variable for the derivative ofY with
respect toX is named@Y/@X.

The derivative variables cannot be accessed or used as part of the model program.

Mathematical Functions

The following is a brief summary of SAS functions useful for defining models. Addi-
tional functions and details are inSAS Language: Reference. Information on creating
new functions can be found inSAS/TOOLKIT Software: Usage and Reference, chap-
ter 15, "Writing a SAS Function or Call Routine."

ABS(x) the absolute value ofx

ARCOS(x) the arccosine in radians ofx. x should be between�1 and1.

ARSIN(x) the arcsine in radians ofx. x should be between�1 and1.

ATAN(x) the arctangent in radians ofx

COS(x) the cosine ofx. x is in radians.

COSH(x) the hyperbolic cosine ofx

EXP(x) ex

LOG(x) the natural logarithm ofx

LOG10(x) the log base ten ofx

LOG2(x) the log base two ofx

SIN(x) the sine ofx. x is in radians.

SINH(x) the hyperbolic sine ofx

SQRT(x) the square root ofx

TAN(x) the tangent ofx. x is in radians and is not an odd multiple of�=2.

TANH(x) the hyperbolic tangent ofx

Random-Number Functions
The MODEL procedure provides several functions for generating random numbers
for Monte Carlo simulation. These functions use the same generators as the corre-
sponding SAS DATA step functions.

The following random-number functions are supported: RANBIN, RANCAU, RAN-
EXP, RANGAM, RANNOR, RANPOI, RANTBL, RANTRI, and RANUNI. For
more information, refer toSAS Language: Reference.

Each reference to a random-number function sets up a separate pseudo-random se-
quence. Note that this means that two calls to the same random function with the same
seed produce identical results. This is different from the behavior of the random-
number functions used in the SAS DATA step. For example, the statements

x=rannor(123);
y=rannor(123);
z=rannor(567);
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produce identical values for X and Y, but Z is from an independent pseudo-random
sequence.

For FIT tasks, all random-number functions always return 0. For SOLVE tasks, when
Monte Carlo simulation is requested, a random-number function computes a new ran-
dom number on the first iteration for an observation (if it is executed on that iteration)
and returns that same value for all later iterations of that observation. When Monte
Carlo simulation is not requested, random-number functions always return 0.

Functions Across Time

PROC MODEL provides four types of special built-in functions that refer to the val-
ues of variables and expressions in previous time periods. These functions have the
form

LAGn( i , x ) returns theith lag ofx, wheren is the maximum lag;

DIFn(x) difference ofx at lagn

ZLAGn( i , x ) returns theith lag ofx, wheren is the maximum lag, with missing
lags replaced with zero;

ZDIFn(x) difference with lag length truncated and missing values converted
to zero;

MOVAVGn( x ) the width of the moving average isn, andx is the variable or ex-
pression to compute the moving average of. Missing values ofx
are omitted in computing the average.

wheren represents the number of periods, andx is any expression. The argumenti is
a variable or expression giving the lag length (0 <= i <= n), if the index valuei is
omitted, the maximum lag lengthn is used.

If you do not specifyn, the number of periods is assumed to be one. For example,
LAG(X) is the same as LAG1(X). No more than four digits can be used with a lagging
function; that is, LAG9999 is the greatest LAG function, ZDIF9999 is the greatest
ZDIF function, and so on.

The LAG functions get values from previous observations and make them available
to the program. For example, LAG(X) returns the value of the variable X as it was
computed in the execution of the program for the preceding observation. The expres-
sion LAG2(X+2*Y) returns the value of the expression X+2*Y, computed using the
values of the variables X and Y that were computed by the execution of the program
for the observation two periods ago.

The DIF functions return the difference between the current value of a variable or
expression and the value of its LAG. For example, DIF2(X) is a short way of writ-
ing X-LAG2(X), and DIF15(SQRT(2*Z)) is a short way of writing SQRT(2*Z)-
LAG15(SQRT(2*Z)).

The ZLAG and ZDIF functions are like the LAG and DIF functions, but they are
not counted in the determination of the program lag length, and they replace missing
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values with 0s. The ZLAG function returns the lagged value if the lagged value is
nonmissing, or 0 if the lagged value is missing. The ZDIF function returns the differ-
enced value if the differenced value is nonmissing, or 0 if the value of the differenced
value is missing. The ZLAG function is especially useful for models with ARMA
error processes. See "Lag Logic", which follows for details.

Lag Logic
The LAG and DIF lagging functions in the MODEL procedure are different from the
queuing functions with the same names in the DATA step. Lags are determined by
the final values that are set for the program variables by the execution of the model
program for the observation. This can have upsetting consequences for programs that
take lags of program variables that are given different values at various places in the
program, for example,

temp = x + w;
t = lag( temp );
temp = q - r;
s = lag( temp );

The expression LAG(TEMP) always refers to LAG(Q-R), never to LAG(X+W),
since Q-R is the final value assigned to the variable TEMP by the model program.
If LAG(X+W) is wanted for T, it should be computed as T=LAG(X+W) and not
T=LAG(TEMP), as in the preceding example.

Care should also be exercised in using the DIF functions with program variables that
may be reassigned later in the program. For example, the program

temp = x ;
s = dif( temp );
temp = 3 * y;

computes values for S equivalent to

s = x - lag( 3 * y );

Note that in the preceding examples, TEMP is a program variable,not a model vari-
able. If it were a model variable, the assignments to it would be changed to assign-
ments to a corresponding equation variable.

Note that whereas LAG1(LAG1(X)) is the same as LAG2(X), DIF1(DIF1(X)) isnot
the same as DIF2(X). The DIF2 function is the difference between the current pe-
riod value at the point in the program where the function is executed and the final
value at the end of execution two periods ago; DIF2 is not the second difference.
In contrast, DIF1(DIF1(X)) is equal to DIF1(X)-LAG1(DIF1(X)), which equals X-
2*LAG1(X)+LAG2(X), which is the second difference of X.

More information on the differences between PROC MODEL and the DATA step
LAG and DIF functions is found in Chapter 2.
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Lag Lengths
The lag length of the model program is the number of lags needed for any relevant
equation. The program lag length controls the number of observations used to initial-
ize the lags.

PROC MODEL keeps track of the use of lags in the model program and automati-
cally determines the lag length of each equation and of the model as a whole. PROC
MODEL sets the program lag length to the maximum number of lags needed to com-
pute any equation to be estimated, solved, or needed to compute any instrument vari-
able used.

In determining the lag length, the ZLAG and ZDIF functions are treated as always
having a lag length of 0. For example, if Y is computed as

y = lag2( x + zdif3( temp ) );

then Y has a lag length of 2 (regardless of how TEMP is defined). If Y is computed
as

y = zlag2( x + dif3( temp ) );

then Y has a lag length of 0.

This is so that ARMA errors can be specified without causing the loss of additional
observations to the lag starting phase and so that recursive lag specifications, such
as moving-average error terms, can be used. Recursive lags are not permitted unless
the ZLAG or ZDIF functions are used to truncate the lag length. For example, the
following statement produces an error message:

t = a + b * lag( t );

The program variable T depends recursively on its own lag, and the lag length of T is
therefore undefined.

In the following equation RESID.Y depends on the predicted value for the Y equation
but the predicted value for the Y equation depends on the LAG of RESID.Y, and, thus,
the predicted value for the Y equation depends recursively on its own lag.

y = yhat + ma * lag( resid.y );

The lag length is infinite, and PROC MODEL prints an error message and stops.
Since this kind of specification is allowed, the recursion must be truncated at some
point. The ZLAG and ZDIF functions do this.

The following equation is legal and results in a lag length for the Y equation equal to
the lag length of YHAT:

y = yhat + ma * zlag( resid.y );
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Initially, the lags of RESID.Y are missing, and the ZLAG function replaces the miss-
ing residuals with 0s, their unconditional expected values.

The ZLAG0 function can be used to zero out the lag length of an expression.
ZLAG0(x) returns the current period value of the expressionx, if nonmissing, or
else returns 0, and prevents the lag length ofx from contributing to the lag length of
the current statement.

Initializing Lags
At the start of each pass through the data set or BY group, the lag variables are set to
missing values and an initialization is performed to fill the lags. During this phase,
observations are read from the data set, and the model variables are given values from
the data. If necessary, the model is executed to assign values to program variables that
are used in lagging functions. The results for variables used in lag functions are saved.
These observations are not included in the estimation or solution.

If, during the execution of the program for the lag starting phase, a lag function
refers to lags that are missing, the lag function returns missing. Execution errors that
occur while starting the lags are not reported unless requested. The modeling system
automatically determines whether the program needs to be executed during the lag
starting phase.

If L is the maximum lag length of any equation being fit or solved, then the first L
observations are used to prime the lags. If a BY statement is used, the first L observa-
tions in the BY group are used to prime the lags. If a RANGE statement is used, the
first L observations prior to the first observation requested in the RANGE statement
are used to prime the lags. Therefore, there should be at least L observations in the
data set.

Initial values for the lags of model variables can also be supplied in VAR, ENDOGE-
NOUS, and EXOGENOUS statements. This feature provides initial lags of solution
variables for dynamic solution when initial values for the solution variable are not
available in the input data set. For example, the statement

var x 2 3 y 4 5 z 1;

feeds the initial lags exactly like these values in an input data set:

Lag X Y Z
2 3 5 .
1 2 4 1

If initial values for lags are available in the input data set and initial lag values are
also given in a declaration statement, the values in the VAR, ENDOGENOUS, or
EXOGENOUS statements take priority.

The RANGE statement is used to control the range of observations in the input data
set that are processed by PROC MODEL. In the statement

range date = ’01jan1924’d to ’01dec1943’d;
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‘01jan1924’ specifies the starting period of the range, and ‘01dec1943’ specifies the
ending period. The observations in the data set immediately prior to the start of the
range are used to initialize the lags.

Language Differences

For the most part, PROC MODEL programming statements work the same as they
do in the DATA step as documented inSAS Language: Reference. However, there
are several differences that should be noted.

DO Statement Differences
The DO statement in PROC MODEL does not allow a character index variable. Thus,
the following DO statement is not valid in PROC MODEL, although it is supported
in the DATA step:

do i = ’A’, ’B’, ’C’; /* invalid PROC MODEL code */

IF Statement Differences
The IF statement in PROC MODEL does not allow a character-valued condition. For
example, the following IF statement is not supported by PROC MODEL:

if ’this’ then statement;

Comparisons of character values are supported in IF statements, so the following IF
statement is acceptable:

if ’this’ < ’that’ then statement};

PROC MODEL allows for embedded conditionals in expressions. For example the
following two statements are equivalent:

flag = if time = 1 or time = 2 then conc+30/5 + dose*time
else if time > 5 then (0=1) else (patient * flag);

if time = 1 or time = 2 then flag= conc+30/5 + dose*time;
else if time > 5 then flag=(0=1); else flag=patient*flag;

Note that the ELSE operator only involves the first object or token after it so that the
following assignments are not equivalent:

total = if sum > 0 then sum else sum + reserve;
total = if sum > 0 then sum else (sum + reserve);

The first assignment makes TOTAL always equal to SUM plus RESERVE.

PUT Statement Differences
The PUT statement, mostly used in PROC MODEL for program debugging, only
supports some of the features of the DATA step PUT statement. It also has some new
features that the DATA step PUT statement does not support.
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The PROC MODEL PUT statement does not support line pointers, factored lists,
iteration factors, overprinting, the–INFILE– option, or the colon (:) format modifier.

The PROC MODEL PUT statement does support expressions but an expression must
be enclosed in parentheses. For example, the following statement prints the square
root of x:

put (sqrt(x));

Subscripted array names must be enclosed in parentheses. For example, the following
statement prints theith element of the array A:

put (a i);

However, the following statement is an error:

put a i;

The PROC MODEL PUT statement supports the print item–PDV– to print a format-
ted listing of all the variables in the program. For example, the following statement
prints a much more readable listing of the variables than does the–ALL – print item:

put _pdv_;

To print all the elements of the array A, use the following statement:

put a;

To print all the elements of A with each value labeled by the name of the element
variable, use the statement

put a=;

ABORT Statement Difference
In the MODEL procedure, the ABORT statement does not allow any arguments.

SELECT/WHEN/OTHERWISE Statement Differences
The WHEN and OTHERWISE statements allow more than one target statement. That
is, DO groups are not necessary for multiple statement WHENs. For example in
PROC MODEL, the following syntax is valid:

select;
when(exp1)

stmt1;
stmt2;

when(exp2)
stmt3;
stmt4;

end;
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The ARRAY Statement

ARRAYarrayname [{dimensions}] [$ [length]] [ variables and constants];

The ARRAY statement is used to associate a name with a list of variables and con-
stants. The array name can then be used with subscripts in the model program to refer
to the items in the list.

In PROC MODEL, the ARRAY statement does not support all the features of the
DATA step ARRAY statement. Implicit indexing cannot be used; all array references
must have explicit subscript expressions. Only exact array dimensions are allowed;
lower-bound specifications are not supported. A maximum of six dimensions is al-
lowed.

On the other hand, the ARRAY statement supported by PROC MODEL does allow
both variables and constants to be used as array elements. You cannot make as-
signments to constant array elements. Both dimension specification and the list of
elements are optional, but at least one must be supplied. When the list of elements is
not given or fewer elements than the size of the array are listed, array variables are
created by suffixing element numbers to the array name to complete the element list.

The following are valid PROC MODEL array statements:

array x[120]; /* array X of length 120 */
array q[2,2]; /* Two dimensional array Q */
array b[4] va vb vc vd; /* B[2] = VB, B[4] = VD */
array x x1-x30; /* array X of length 30, X[7] = X7 */
array a[5] (1 2 3 4 5); /* array A initialized to 1,2,3,4,5 */

RETAIN Statement

RETAIN variables initial-values ;
The RETAIN statement causes a program variable to hold its value from a previous
observation until the variable is reassigned. The RETAIN statement can be used to
initialize program variables.

The RETAIN statement does not work for model variables, parameters, or con-
trol variables because the values of these variables are under the control of PROC
MODEL and not programming statements. Use the PARMS and CONTROL state-
ments to initialize parameters and control variables. Use the VAR, ENDOGENOUS,
or EXOGENOUS statement to initialize model variables.

Storing Programs in Model Files

Models can be saved and recalled from SAS catalog files. SAS catalogs are special
files that can store many kinds of data structures as separate units in one SAS file.
Each separate unit is called an entry, and each entry has an entry type that identifies
its structure to the SAS system.

In general, to save a model, use the OUTMODEL=nameoption on the PROC
MODEL statement, wherenameis specified aslibref.catalog.entry, libref.entry, or
entry. The libref, catalog, andentry names must be valid SAS names no more than
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eight characters long. Thecatalogname is restricted to seven characters on the CMS
operating system. If not given, thecatalogname defaults to MODELS, and thelibref
defaults to WORK. The entry type is always MODEL. Thus, OUTMODEL=X writes
the model to the file WORK.MODELS.X.MODEL.

The MODEL= option is used to read in a model. A list of model files can be specified
in the MODEL= option, and a range of names with numeric suffixes can be given, as
in MODEL=(MODEL1-MODEL10). When more than one model file is given, the
list must be placed in parentheses, as in MODEL=(A B C), except in the case of a
single name. If more than one model file is specified, the files are combined in the
order listed in the MODEL= option.

When the MODEL= option is specified in the PROC MODEL statement and model
definition statements are also given later in the PROC MODEL step, the model files
are read in first, in the order listed, and the model program specified in the PROC
MODEL step is appended after the model program read from the MODEL= files. The
class assigned to a variable, when multiple model files are used, is the last declaration
of that variable. For example, if Y1 was declared endogenous in the model file M1
and exogenous in the model file M2, the following statement will cause Y1 to be
declared exogenous.

proc model model=(m1 m2);

The INCLUDE statement can be used to append model code to the current model
code. In contrast, when the MODEL= option is used on the RESET statement, the
current model is deleted before the new model is read.

No model file is output by default if the PROC MODEL step performs any FIT or
SOLVE tasks, or if the MODEL= option or the NOSTORE option is used. How-
ever, to ensure compatibility with previous versions of SAS/ETS software, when the
PROC MODEL step does nothing but compile the model program, no input model file
is read, and the NOSTORE option is not used, a model file is written. This model file
is the default input file for a later PROC SYSNLIN or PROC SIMNLIN step. The de-
fault output model filename in this case is WORK.MODELS.–MODEL–.MODEL.

If FIT statements are used to estimate model parameters, the parameter estimates
written to the output model file are the estimates from the last estimation performed
for each parameter.

Diagnostics and Debugging

PROC MODEL provides several features to aid in finding errors in the model pro-
gram. These debugging features are not usually needed; most models can be devel-
oped without them.

The example model program that follows will be used in the following sections to
illustrate the diagnostic and debugging capabilities. This example is the estimation
of a segmented model.
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*---------Fitting a Segmented Model using MODEL----*
| | |
| y | quadratic plateau |
| | y=a+b*x+c*x*x y=p |
| | ..................... |
| | . : |
| | . : |
| | . : |
| | . : |
| | . : |
| +-----------------------------------------X |
| x0 |
| |
| continuity restriction: p=a+b*x0+c*x0**2 |
| smoothness restriction: 0=b+2*c*x0 so x0=-b/(2*c)|
*--------------------------------------------------*;
title ’QUADRATIC MODEL WITH PLATEAU’;
data a;

input y x @@;
datalines;

.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7

.78 8 .70 9 .74 10 .77 11 .78 12 .74 13 .80 13

.80 15 .78 16
;
proc model data=a;
parms a 0.45 b 0.5 c -0.0025;

x0 = -.5*b / c; /* join point */
if x < x0 then /* Quadratic part of model */

y = a + b*x + c*x*x;
else /* Plateau part of model */

y = a + b*x0 + c*x0*x0;

fit y;
run;

Program Listing
The LIST option produces a listing of the model program. The statements are printed
one per line with the original line number and column position of the statement.

The program listing from the example program is shown in Figure 14.73.
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QUADRATIC MODEL WITH PLATEAU

The MODEL Procedure

Listing of Compiled Program Code
Stmt Line:Col Statement as Parsed

1 15888:74 x0 = (-0.5 * b) / c;
2 15888:96 if x < x0 then
3 15888:124 PRED.y = a + b * x + c * x * x;
3 15888:124 RESID.y = PRED.y - ACTUAL.y;
3 15888:124 ERROR.y = PRED.y - y;
4 15888:148 else
5 15888:176 PRED.y = a + b * x0 + c * x0 * x0;
5 15888:176 RESID.y = PRED.y - ACTUAL.y;
5 15888:176 ERROR.y = PRED.y - y;

Figure 14.73. LIST Output for Segmented Model

The LIST option also shows the model translations that PROC MODEL performs.
LIST output is useful for understanding the code generated by the %AR and the
%MA macros.

Cross-Reference
The XREF option produces a cross-reference listing of the variables in the model
program. The XREF listing is usually used in conjunction with the LIST option. The
XREF listing does not include derivative (@-prefixed) variables. The XREF listing
does not include generated assignments to equation variables, PRED, RESID, and
ERROR-prefixed variables, unless the DETAILS option is used.

The cross-reference from the example program is shown in Figure 14.74.

The MODEL Procedure

Cross Reference Listing For Program
Symbol----------- Kind Type References (statement)/(line):(col)

a Var Num Used: 3/15913:130 5/15913:182
b Var Num Used: 1/15913:82 3/15913:133 5/15913:185
c Var Num Used: 1/15913:85 3/15913:139 5/15913:192
x0 Var Num Assigned: 1/15913:85

Used: 2/15913:103 5/15913:185
5/15913:192 5/15913:195

x Var Num Used: 2/15913:103 3/15913:133
3/15913:139 3/15913:141

PRED.y Var Num Assigned: 3/15913:136 5/15913:189

Figure 14.74. XREF Output for Segmented Model
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Compiler Listing
The LISTCODE option lists the model code and derivatives tables produced by the
compiler. This listing is useful only for debugging and should not normally be
needed.

LISTCODE prints the operator and operands of each operation generated by the com-
piler for each model program statement. Many of the operands are temporary vari-
ables generated by the compiler and given names such as #temp1. When derivatives
are taken, the code listing includes the operations generated for the derivatives calcu-
lations. The derivatives tables are also listed.

A LISTCODE option prints the transformed equations from the example shown in
Figure 14.75 and Figure 14.76.

The MODEL Procedure

Listing of Compiled Program Code
Stmt Line:Col Statement as Parsed

1 16459:83 x0 = (-0.5 * b) / c;
1 16459:83 @x0/@b = -0.5 / c;
1 16459:83 @x0/@c = (0 - x0) / c;
2 16459:105 if x < x0 then
3 16459:133 PRED.y = a + b * x + c * x * x;
3 16459:133 @PRED.y/@a = 1;
3 16459:133 @PRED.y/@b = x;
3 16459:133 @PRED.y/@c = x * x;
3 16459:133 RESID.y = PRED.y - ACTUAL.y;
3 16459:133 @RESID.y/@a = @PRED.y/@a;
3 16459:133 @RESID.y/@b = @PRED.y/@b;
3 16459:133 @RESID.y/@c = @PRED.y/@c;
3 16459:133 ERROR.y = PRED.y - y;
4 16459:157 else
5 16459:185 PRED.y = a + b * x0 + c * x0 * x0;
5 16459:185 @PRED.y/@a = 1;
5 16459:185 @PRED.y/@b = x0 + b * @x0/@b + (c

* @x0/@b * x0 + c * x0 * @x0/@b);
5 16459:185 @PRED.y/@c = b * @x0/@c + ((x0 + c

* @x0/@c) * x0 + c * x0 * @x0/@c);
5 16459:185 RESID.y = PRED.y - ACTUAL.y;
5 16459:185 @RESID.y/@a = @PRED.y/@a;
5 16459:185 @RESID.y/@b = @PRED.y/@b;
5 16459:185 @RESID.y/@c = @PRED.y/@c;
5 16459:185 ERROR.y = PRED.y - y;

Figure 14.75. LISTCODE Output for Segmented Model - Statements as Parsed
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The MODEL Procedure

1 Stmt ASSIGN line 5619 column
83. (1) arg=x0
argsave=x0
Source Text: x0 = -.5*b / c;

Oper * at 5619:91 (30,0,2). * : #temp1 <- -0.5 b
Oper / at 5619:94 (31,0,2). / : x0 <- #temp1 c
Oper eeocf at 5619:94 (18,0,1). eeocf : _DER_ <- _DER_
Oper / at 5619:94 (31,0,2). / : @x0/@b <- -0.5 c
Oper - at 5619:94 (33,0,2). - : @1dt1_2 <- 0 x0
Oper / at 5619:94 (31,0,2). / : @x0/@c <- @1dt1_2 c

2 Stmt IF line 5619 column ref.st=ASSIGN stmt
105. (2) arg=#temp1 number 5 at 5619:185
argsave=#temp1
Source Text: if x < x0 then

Oper < at 5619:112 < : #temp1 <- x x0
(36,0,2).

3 Stmt ASSIGN line 5619 column
133. (1) arg=PRED.y
argsave=y
Source Text: y = a + b*x + c*x*x;

Oper * at 5619:142 * : #temp1 <- b x
(30,0,2).

Oper + at 5619:139 + : #temp2 <- a #temp1
(32,0,2).

Oper * at 5619:148 * : #temp3 <- c x
(30,0,2).

Oper * at 5619:150 * : #temp4 <- #temp3 x
(30,0,2).

Oper + at 5619:145 + : PRED.y <- #temp2 #temp4
(32,0,2).

Oper eeocf at 5619:150 eeocf : _DER_ <- _DER_
(18,0,1).

Oper * at 5619:150 * : @1dt1_1 <- x x
(30,0,2).

Oper = at 5619:145 (1,0,1). = : @PRED.y/@a <- 1
Oper = at 5619:145 (1,0,1). = : @PRED.y/@b <- x
Oper = at 5619:145 (1,0,1). = : @PRED.y/@c <- @1dt1_1

3 Stmt Assign line 5619 column
133. (1) arg=RESID.y
argsave=y

Oper - at 5619:133 - : RESID.y <- PRED.y ACTUAL.y
(33,0,2).

Oper eeocf at 5619:133 eeocf : _DER_ <- _DER_
(18,0,1).

Oper = at 5619:133 (1,0,1). = : @RESID.y/@a <- @PRED.y/@a
Oper = at 5619:133 (1,0,1). = : @RESID.y/@b <- @PRED.y/@b
Oper = at 5619:133 (1,0,1). = : @RESID.y/@c <- @PRED.y/@c

3 Stmt Assign line 5619 column
133. (1) arg=ERROR.y
argsave=y

Oper - at 5619:133 - : ERROR.y <- PRED.y y
(33,0,2).

4 Stmt ELSE line 5619 column
157. (9)
Source Text: else

Figure 14.76. LISTCODE Output for Segmented Model - Compiled Code
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Analyzing the Structure of Large Models

PROC MODEL provides several features to aid in analyzing the structure of the
model program. These features summarize properties of the model in various forms.

The following Klein’s model program is used to introduce the LISTDEP, BLOCK,
and GRAPH options.

proc model out=m data=klein listdep graph block;
endogenous c p w i x wsum k y;
exogenous wp g t year;
parms c0-c3 i0-i3 w0-w3;
a: c = c0 + c1 * p + c2 * lag(p) + c3 * wsum;
b: i = i0 + i1 * p + i2 * lag(p) + i3 * lag(k);
c: w = w0 + w1 * x + w2 * lag(x) + w3 * year;
x = c + i + g;
y = c + i + g-t;
p = x-w-t;
k = lag(k) + i;
wsum = w + wp;
id year;

run;

Dependency List
The LISTDEP option produces a dependency list for each variable in the model pro-
gram. For each variable, a list of variables that depend on it and a list of variables it
depends on is given. The dependency list produced by the example program is shown
in Figure 14.77.
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The MODEL Procedure

Dependency Listing For Program
Symbol----------- Dependencies

c Current values affect: ERROR.c PRED.x
RESID.x ERROR.x PRED.y RESID.y ERROR.y

p Current values affect: PRED.c RESID.c
ERROR.c PRED.i RESID.i ERROR.i ERROR.p
Lagged values affect: PRED.c PRED.i

w Current values affect: ERROR.w
PRED.p RESID.p ERROR.p PRED.wsum
RESID.wsum ERROR.wsum

i Current values affect: ERROR.i PRED.x
RESID.x ERROR.x PRED.y RESID.y
ERROR.y PRED.k RESID.k ERROR.k

x Current values affect: PRED.w RESID.w
ERROR.w ERROR.x PRED.p RESID.p ERROR.p
Lagged values affect: PRED.w

wsum Current values affect: PRED.c
RESID.c ERROR.c ERROR.wsum

k Current values affect: ERROR.k
Lagged values affect: PRED.i RESID.i
ERROR.i PRED.k RESID.k

Figure 14.77. A Portion of the LISTDEP Output for Klein’s Model

BLOCK Listing
The BLOCK option prints an analysis of the program variables based on the assign-
ments in the model program. The output produced by the example is shown in Figure
14.78.

The MODEL Procedure
Model Structure Analysis

(Based on Assignments to Endogenous Model Variables)

Exogenous Variables wp g t year
Endogenous Variables c p w i x wsum k y

NOTE: The System Consists of 2 Recursive Equations and 1 Simultaneous Blocks.

Block Structure of the System

Block 1 c p w i x wsum

Dependency Structure of the System

Block 1 Depends On All_Exogenous
k Depends On Block 1 All_Exogenous
y Depends On Block 1 All_Exogenous

Figure 14.78. The BLOCK Output for Klein’s Model

One use for the block output is to put a model in recursive form. Simulations of the
model can be done with the SEIDEL method, which is efficient if the model is recur-
sive and if the equations are in recursive order. By examining the block output, you
can determine how to reorder the model equations for the most efficient simulation.
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Adjacency Graph
The GRAPH option displays the same information as the BLOCK option with the
addition of an adjacency graph. An X in a column in an adjacency graph indicates
that the variable associated with the row depends on the variable associated with the
column. The output produced by the example is shown in Figure 14.79.
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The MODEL Procedure

Adjacency Matrix for Graph of System
w y
s e
u w a

Variable c p w i x m k y p g t r

* * * *
c X X . . . X . . . . . .
p . X X . X . . . . . X .
w . . X . X . . . . . . X
i . X . X . . . . . . . .
x X . . X X . . . . X . .
wsum . . X . . X . . X . . .
k . . . X . . X . . . . .
y X . . X . . . X . X X .
wp * . . . . . . . . X . . .
g * . . . . . . . . . X . .
t * . . . . . . . . . . X .
year * . . . . . . . . . . . X

(Note: * = Exogenous Variable.)

Transitive Closure Matrix of Sorted System
w
s
u

Block Variable c p w i x m k y

1 c X X X X X X . .
1 p X X X X X X . .
1 w X X X X X X . .
1 i X X X X X X . .
1 x X X X X X X . .
1 wsum X X X X X X . .

k X X X X X X X .
y X X X X X X . X

Adjacency Matrix for Graph of System
Including Lagged Impacts

w y
s e
u w a

Block Variable c p w i x m k y p g t r

* * * *
1 c X L . . . X . . . . . .
1 p . X X . X . . . . . X .
1 w . . X . L . . . . . . X
1 i . L . X . . L . . . . .
1 x X . . X X . . . . X . .
1 wsum . . X . . X . . X . . .

k . . . X . . L . . . . .
y X . . X . . . X . X X .
wp * . . . . . . . . X . . .
g * . . . . . . . . . X . .
t * . . . . . . . . . . X .
year * . . . . . . . . . . . X

(Note: * = Exogenous Variable.)

Figure 14.79. The GRAPH Output for Klein’s Model
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The first and last graphs are straightforward. The middle graph represents the depen-
dencies of the nonexogenous variables after transitive closure has been performed
(that is, A depends on B, and B depends on C, so A depends on C). The preceding
transitive closure matrix indicates that K and Y do not directly or indirectly depend
on each other.

Examples

Example 14.1. OLS Single Nonlinear Equation

This example illustrates the use of the MODEL procedure for nonlinear ordinary
least-squares (OLS) regression. The model is a logistic growth curve for the pop-
ulation of the United States. The data is the population in millions recorded at ten
year intervals starting in 1790 and ending in 1990. For an explanation of the starting
values given by the START= option, see "Troubleshooting Convergence Problems"
earlier in this chapter. Portions of the output from the following code are shown in
Output 14.1.1 and Output 14.1.2.

title ’Logistic Growth Curve Model of U.S. Population’;
data uspop;

input pop :6.3 @@;
retain year 1780;
year=year+10;
label pop=’U.S. Population in Millions’;
datalines;

3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
226542 248710
;

proc model data=uspop;
label a = ’Maximum Population’

b = ’Location Parameter’
c = ’Initial Growth Rate’;

pop = a / ( 1 + exp( b - c * (year-1790) ) );
fit pop start=(a 1000 b 5.5 c .02)/ out=resid outresid;

run;
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Output 14.1.1. Logistic Growth Curve Model Summary

Logistic Growth Curve Model of U.S. Population

The MODEL Procedure

Model Summary

Model Variables 1
Parameters 3
Equations 1
Number of Statements 1

Model Variables pop
Parameters a(1000) b(5.5) c(0.02)

Equations pop

Logistic Growth Curve Model of U.S. Population

The MODEL Procedure

The Equation to Estimate is

pop = F(a, b, c)

Output 14.1.2. Logistic Growth Curve Estimation Summary

Logistic Growth Curve Model of U.S. Population

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE R-Square R-Sq

pop 3 18 345.6 19.2020 0.9972 0.9969

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

a 387.9307 30.0404 12.91 <.0001 Maximum Population
b 3.990385 0.0695 57.44 <.0001 Location Parameter
c 0.022703 0.00107 21.22 <.0001 Initial Growth Rate

The adjustedR2 value indicates the model fits the data well. There are only 21
observations and the model is nonlinear, so significance tests on the parameters are
only approximate. The significance tests and associated approximate probabilities
indicate that all the parameters are significantly different from 0.

The FIT statement included the options OUT=RESID and OUTRESID so that the
residuals from the estimation are saved to the data set RESID. The residuals are plot-
ted to check for heteroscedasticity using PROC GPLOT as follows.
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proc gplot data=resid;
plot pop*year / vref=0;
title "Residual";
symbol1 v=plus;

run;

The plot is shown in Output 14.1.3.

Output 14.1.3. Residual for Population Model (Actual - Predicted)

The residuals do not appear to be independent, and the model could be modified to
explain the remaining nonrandom errors.

Example 14.2. A Consumer Demand Model

This example shows the estimation of a system of nonlinear consumer demand equa-
tions based on the translog functional form using seemingly unrelated regression
(SUR). Expenditure shares and corresponding normalized prices are given for three
goods.

Since the shares add up to one, the system is singular; therefore, one equation is omit-
ted from the estimation process. The choice of which equation to omit is arbitrary.
The parameter estimates of the omitted equation (share3) can be recovered from the
other estimated parameters. The nonlinear system is first estimated in unrestricted
form.

title1 ’Consumer Demand--Translog Functional Form’;
title2 ’Nonsymmetric Model’;
proc model data=tlog1;
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var share1 share2 p1 p2 p3;
parms a1 a2 b11 b12 b13 b21 b22 b23 b31 b32 b33;
bm1 = b11 + b21 + b31;
bm2 = b12 + b22 + b32;
bm3 = b13 + b23 + b33;
lp1 = log(p1);
lp2 = log(p2);
lp3 = log(p3);
share1 = ( a1 + b11 * lp1 + b12 * lp2 + b13 * lp3 ) /

( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
share2 = ( a2 + b21 * lp1 + b22 * lp2 + b23 * lp3 ) /

( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
fit share1 share2

start=( a1 -.14 a2 -.45 b11 .03 b12 .47 b22 .98 b31 .20
b32 1.11 b33 .71 ) / outsused = smatrix sur;

run;

A portion of the printed output produced in the preceding example is shown in Out-
put 14.2.1 .

Output 14.2.1. Estimation Results from the Unrestricted Model

Consumer Demand--Translog Functional Form
Nonsymmetric Model

The MODEL Procedure

Model Summary

Model Variables 5
Parameters 11
Equations 2
Number of Statements 8

Model Variables share1 share2 p1 p2 p3
Parameters a1(-0.14) a2(-0.45) b11(0.03) b12(0.47) b13 b21

b22(0.98) b23 b31(0.2) b32(1.11) b33(0.71)
Equations share1 share2

Consumer Demand--Translog Functional Form
Nonsymmetric Model

The MODEL Procedure

The 2 Equations to Estimate

share1 = F(a1, b11, b12, b13, b21, b22, b23, b31, b32, b33)
share2 = F(a2, b11, b12, b13, b21, b22, b23, b31, b32, b33)

NOTE: At SUR Iteration 2 CONVERGE=0.001 Criteria Met.
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Consumer Demand--Translog Functional Form
Nonsymmetric Model

The MODEL Procedure

Nonlinear SUR Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

share1 5.5 38.5 0.00166 0.000043 0.00656 0.8067 0.7841
share2 5.5 38.5 0.00135 0.000035 0.00592 0.9445 0.9380

Nonlinear SUR Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

a1 -0.14881 0.00225 -66.08 <.0001
a2 -0.45776 0.00297 -154.29 <.0001
b11 0.048382 0.0498 0.97 0.3379
b12 0.43655 0.0502 8.70 <.0001
b13 0.248588 0.0516 4.82 <.0001
b21 0.586326 0.2089 2.81 0.0079
b22 0.759776 0.2565 2.96 0.0052
b23 1.303821 0.2328 5.60 <.0001
b31 0.297808 0.1504 1.98 0.0550
b32 0.961551 0.1633 5.89 <.0001
b33 0.8291 0.1556 5.33 <.0001

Number of Observations Statistics for System

Used 44 Objective 1.7493
Missing 0 Objective*N 76.9697

The model is then estimated under the restriction of symmetry (bij=bji).

Hypothesis testing requires that theSmatrix from the unrestricted model be imposed
on the restricted model, as explained in "Tests on Parameters" in this chapter. TheS
matrix saved in the data set SMATRIX is requested by the SDATA= option.

A portion of the printed output produced in the following example is shown in Out-
put 14.2.2.

title2 ’Symmetric Model’;
proc model data=tlog1;

var share1 share2 p1 p2 p3;
parms a1 a2 b11 b12 b22 b31 b32 b33;
bm1 = b11 + b12 + b31;
bm2 = b12 + b22 + b32;
bm3 = b31 + b32 + b33;
lp1 = log(p1);
lp2 = log(p2);
lp3 = log(p3);
share1 = ( a1 + b11 * lp1 + b12 * lp2 + b31 * lp3 ) /

( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
share2 = ( a2 + b12 * lp1 + b22 * lp2 + b32 * lp3 ) /
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( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
fit share1 share2

start=( a1 -.14 a2 -.45 b11 .03 b12 .47 b22 .98 b31 .20
b32 1.11 b33 .71 ) / sdata=smatrix sur;

run;

A chi-square test is used to see if the hypothesis of symmetry is accepted or rejected.
(Oc-Ou) has a chi-square distribution asymptotically, whereOc is the constrained
OBJECTIVE*N andOu is the unconstrained OBJECTIVE*N. The degrees of free-
dom is equal to the difference in the number of free parameters in the two models.

In this example, Ou is 76.9697 and Oc is 78.4097, resulting in a difference of 1.44
with 3 degrees of freedom. You can obtain the probability value by using the follow-
ing statements:

data _null_;
/* reduced-full, nrestrictions */

p = 1-probchi( 1.44, 3 );
put p=;

run;

The output from this DATA step run is ‘P=0.6961858724’. With this probability you
cannot reject the hypothesis of symmetry. This test is asymptotically valid.

Output 14.2.2. Estimation Results from the Restricted Model

Consumer Demand--Translog Functional Form
Symmetric Model

The MODEL Procedure

The 2 Equations to Estimate

share1 = F(a1, b11, b12, b22, b31, b32, b33)
share2 = F(a2, b11, b12, b22, b31, b32, b33)
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Consumer Demand--Translog Functional Form
Symmetric Model

The MODEL Procedure

Nonlinear SUR Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

share1 4 40 0.00166 0.000041 0.00644 0.8066 0.7920
share2 4 40 0.00139 0.000035 0.00590 0.9428 0.9385

Nonlinear SUR Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

a1 -0.14684 0.00135 -108.99 <.0001
a2 -0.4597 0.00167 -275.34 <.0001
b11 0.02886 0.00741 3.89 0.0004
b12 0.467827 0.0115 40.57 <.0001
b22 0.970079 0.0177 54.87 <.0001
b31 0.208143 0.00614 33.88 <.0001
b32 1.102415 0.0127 86.51 <.0001
b33 0.694245 0.0168 41.38 <.0001

Number of Observations Statistics for System

Used 44 Objective 1.7820
Missing 0 Objective*N 78.4097

Example 14.3. Vector AR(1) Estimation

This example shows the estimation of a two-variable vector AR(1) error process for
the Grunfeld model (Grunfeld 1960) using the %AR macro. First, the full model
is estimated. Second, the model is estimated with the restriction that the errors are
univariate AR(1) instead of a vector process. The following produces Output 14.3.1
and Output 14.3.2.

data grunfeld;
input year gei gef gec whi whf whc;
label gei = ’Gross Investment GE’

gec = ’Capital Stock Lagged GE’
gef = ’Value of Outstanding Shares GE Lagged’
whi = ’Gross Investment WH’
whc = ’Capital Stock Lagged WH’
whf = ’Value of Outstanding Shares Lagged WH’;

datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8
1937 77.2 2803.3 118.0 35.05 729.0 7.4
1938 44.6 2039.7 156.2 22.89 560.4 18.1
1939 48.1 2256.2 172.6 18.84 519.9 23.5
1940 74.4 2132.2 186.6 28.57 628.5 26.5
1941 113.0 1834.1 220.9 48.51 537.1 36.2
1942 91.9 1588.0 287.8 43.34 561.2 60.8
1943 61.3 1749.4 319.9 37.02 617.2 84.4

879
SAS OnlineDoc: Version 8



Part 2. General Information

1944 56.8 1687.2 321.3 37.81 626.7 91.2
1945 93.6 2007.7 319.6 39.27 737.2 92.4
1946 159.9 2208.3 346.0 53.46 760.5 86.0
1947 147.2 1656.7 456.4 55.56 581.4 111.1
1948 146.3 1604.4 543.4 49.56 662.3 130.6
1949 98.3 1431.8 618.3 32.04 583.8 141.8
1950 93.5 1610.5 647.4 32.24 635.2 136.7
1951 135.2 1819.4 671.3 54.38 723.8 129.7
1952 157.3 2079.7 726.1 71.78 864.1 145.5
1953 179.5 2371.6 800.3 90.08 1193.5 174.8
1954 189.6 2759.9 888.9 68.60 1188.9 213.5
;

title1 ’Example of Vector AR(1) Error Process
Using Grunfeld’’s Model’;

/* Note: GE stands for General Electric
and WH for Westinghouse */

proc model outmodel=grunmod;
var gei whi gef gec whf whc;
parms ge_int ge_f ge_c wh_int wh_f wh_c;
label ge_int = ’GE Intercept’

ge_f = ’GE Lagged Share Value Coef’
ge_c = ’GE Lagged Capital Stock Coef’
wh_int = ’WH Intercept’
wh_f = ’WH Lagged Share Value Coef’
wh_c = ’WH Lagged Capital Stock Coef’;

gei = ge_int + ge_f * gef + ge_c * gec;
whi = wh_int + wh_f * whf + wh_c * whc;

run;

The preceding PROC MODEL step defines the structural model and stores it in the
model file named GRUNMOD.

The following PROC MODEL step reads in the model, adds the vector autoregressive
terms using %AR, and requests SUR estimation using the FIT statement.

title2 ’With Unrestricted Vector AR(1) Error Process’;
proc model data=grunfeld model=grunmod;

%ar( ar, 1, gei whi )
fit gei whi / sur;

run;

The final PROC MODEL step estimates the restricted model.

title2 ’With restricted AR(1) Error Process’;
proc model data=grunfeld model=grunmod;

%ar( gei, 1 )
%ar( whi, 1)
fit gei whi / sur;

run;
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Output 14.3.1. Results for the Unrestricted Model (Partial Output)

Example of Vector AR(1) Error Process Using Grunfeld’s Model
With Unrestricted Vector AR(1) Error Process

The MODEL Procedure

Model Summary

Model Variables 6
Parameters 10
Equations 2
Number of Statements 6

Model Variables gei whi gef gec whf whc
Parameters ge_int ge_f ge_c wh_int wh_f wh_c ar_l1_1_1(0)

ar_l1_1_2(0) ar_l1_2_1(0) ar_l1_2_2(0)
Equations gei whi

Example of Vector AR(1) Error Process Using Grunfeld’s Model
With Unrestricted Vector AR(1) Error Process

The MODEL Procedure

The 2 Equations to Estimate

gei = F(ge_int, ge_f, ge_c, wh_int, wh_f, wh_c, ar_l1_1_1, ar_l1_1_2)
whi = F(ge_int, ge_f, ge_c, wh_int, wh_f, wh_c, ar_l1_2_1, ar_l1_2_2)

NOTE: At SUR Iteration 9 CONVERGE=0.001 Criteria Met.
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Example of Vector AR(1) Error Process Using Grunfeld’s Model
With Unrestricted Vector AR(1) Error Process

The MODEL Procedure

Nonlinear SUR Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE R-Square R-Sq

gei 5 15 9374.5 625.0 0.7910 0.7352
whi 5 15 1429.2 95.2807 0.7940 0.7391

Nonlinear SUR Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

ge_int -42.2858 30.5284 -1.39 0.1863 GE Intercept
ge_f 0.049894 0.0153 3.27 0.0051 GE Lagged Share

Value Coef
ge_c 0.123946 0.0458 2.70 0.0163 GE Lagged Capital

Stock Coef
wh_int -4.68931 8.9678 -0.52 0.6087 WH Intercept
wh_f 0.068979 0.0182 3.80 0.0018 WH Lagged Share

Value Coef
wh_c 0.019308 0.0754 0.26 0.8015 WH Lagged Capital

Stock Coef
ar_l1_1_1 0.990902 0.3923 2.53 0.0233 AR(ar) gei: LAG1

parameter for gei
ar_l1_1_2 -1.56252 1.0882 -1.44 0.1716 AR(ar) gei: LAG1

parameter for whi
ar_l1_2_1 0.244161 0.1783 1.37 0.1910 AR(ar) whi: LAG1

parameter for gei
ar_l1_2_2 -0.23864 0.4957 -0.48 0.6372 AR(ar) whi: LAG1

parameter for whi

Output 14.3.2. Results for the Restricted Model (Partial Output)

Example of Vector AR(1) Error Process Using Grunfeld’s Model
With Restricted AR(1) Error Process

The MODEL Procedure

Model Summary

Model Variables 6
Parameters 8
Equations 2
Number of Statements 6

Model Variables gei whi gef gec whf whc
Parameters ge_int ge_f ge_c wh_int wh_f wh_c gei_l1(0) whi_l1(0)

Equations gei whi
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Example of Vector AR(1) Error Process Using Grunfeld’s Model
With Restricted AR(1) Error Process

The MODEL Procedure

Nonlinear SUR Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE R-Square R-Sq

gei 4 16 10558.8 659.9 0.7646 0.7204
whi 4 16 1669.8 104.4 0.7594 0.7142

Nonlinear SUR Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

ge_int -30.1239 29.7227 -1.01 0.3259 GE Intercept
ge_f 0.043527 0.0149 2.93 0.0099 GE Lagged Share

Value Coef
ge_c 0.119206 0.0423 2.82 0.0124 GE Lagged Capital

Stock Coef
wh_int 3.112671 9.2765 0.34 0.7416 WH Intercept
wh_f 0.053932 0.0154 3.50 0.0029 WH Lagged Share

Value Coef
wh_c 0.038246 0.0805 0.48 0.6410 WH Lagged Capital

Stock Coef
gei_l1 0.482397 0.2149 2.24 0.0393 AR(gei) gei lag1

parameter
whi_l1 0.455711 0.2424 1.88 0.0784 AR(whi) whi lag1

parameter

Example 14.4. MA(1) Estimation

This example estimates parameters for an MA(1) error process for the Grunfeld
model, using both the unconditional least-squares and the maximum-likelihood meth-
ods. The ARIMA procedure estimates for Westinghouse equation are shown for com-
parison. The output of the following code is summarized in Output 14.4.1:

title1 ’Example of MA(1) Error Process Using Grunfeld’’s Model’;
title2 ’MA(1) Error Process Using Unconditional Least Squares’;
proc model data=grunfeld model=grunmod;

%ma(gei,1, m=uls);
%ma(whi,1, m=uls);
fit whi gei start=( gei_m1 0.8 -0.8) / startiter=2;

run;
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Output 14.4.1. PROC MODEL Results Using ULS Estimation

Example of MA(1) Error Process Using Grunfeld’s Model
MA(1) Error Process Using Unconditional Least Squares

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE R-Square R-Sq

whi 4 16 1874.0 117.1 0.7299 0.6793
resid.whi 16 1295.6 80.9754
gei 4 16 13835.0 864.7 0.6915 0.6337
resid.gei 16 7646.2 477.9

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

ge_int -26.839 32.0908 -0.84 0.4153 GE Intercept
ge_f 0.038226 0.0150 2.54 0.0217 GE Lagged Share

Value Coef
ge_c 0.137099 0.0352 3.90 0.0013 GE Lagged Capital

Stock Coef
wh_int 3.680835 9.5448 0.39 0.7048 WH Intercept
wh_f 0.049156 0.0172 2.85 0.0115 WH Lagged Share

Value Coef
wh_c 0.067271 0.0708 0.95 0.3559 WH Lagged Capital

Stock Coef
gei_m1 -0.87615 0.1614 -5.43 <.0001 MA(gei) gei lag1

parameter
whi_m1 -0.75001 0.2368 -3.17 0.0060 MA(whi) whi lag1

parameter

The estimation summary from the following PROC ARIMA statements is shown in
Output 14.4.2.

title2 ’PROC ARIMA Using Unconditional Least Squares’;

proc arima data=grunfeld;
identify var=whi cross=(whf whc ) noprint;
estimate q=1 input=(whf whc) method=uls maxiter=40;

run;
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Output 14.4.2. PROC ARIMA Results Using ULS Estimation

Example of MA(1) Error Process Using Grunfeld’s Model
PROC ARIMA Using Unconditional Least Squares

The ARIMA Procedure

Unconditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag Variable Shift

MU 3.68608 9.54425 0.39 0.7044 0 whi 0
MA1,1 -0.75005 0.23704 -3.16 0.0060 1 whi 0
NUM1 0.04914 0.01723 2.85 0.0115 0 whf 0
NUM2 0.06731 0.07077 0.95 0.3557 0 whc 0

Constant Estimate 3.686077
Variance Estimate 80.97535
Std Error Estimate 8.998631
AIC 149.0044
SBC 152.9873
Number of Residuals 20

The model stored in Example 14.3 is read in using the MODEL= option and the
moving average terms are added using the %MA macro.

The MA(1) model using maximum likelihood is estimated using the following:

title2 ’MA(1) Error Process Using Maximum Likelihood ’;
proc model data=grunfeld model=grunmod;

%ma(gei,1, m=ml);
%ma(whi,1, m=ml);
fit whi gei;

run;

For comparison, the model is estimated using PROC ARIMA as follows:

title2 ’PROC ARIMA Using Maximum Likelihood ’;
proc arima data=grunfeld;

identify var=whi cross=(whf whc) noprint;
estimate q=1 input=(whf whc) method=ml;

run;

PROC ARIMA does not estimate systems so only one equation is evaluated.

The estimation results are shown in Output 14.4.3 and Output 14.4.4. The small
differences in the parameter values between PROC MODEL and PROC ARIMA can
be eliminated by tightening the convergence criteria for both procedures.

885
SAS OnlineDoc: Version 8



Part 2. General Information

Output 14.4.3. PROC MODEL Results Using ML Estimation

Example of MA(1) Error Process Using Grunfeld’s Model
MA(1) Error Process Using Maximum Likelihood

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE R-Square R-Sq

whi 4 16 1857.5 116.1 0.7323 0.6821
resid.whi 16 1344.0 84.0012
gei 4 16 13742.5 858.9 0.6936 0.6361
resid.gei 16 8095.3 506.0

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

ge_int -25.002 34.2933 -0.73 0.4765 GE Intercept
ge_f 0.03712 0.0161 2.30 0.0351 GE Lagged Share

Value Coef
ge_c 0.137788 0.0380 3.63 0.0023 GE Lagged Capital

Stock Coef
wh_int 2.946761 9.5638 0.31 0.7620 WH Intercept
wh_f 0.050395 0.0174 2.89 0.0106 WH Lagged Share

Value Coef
wh_c 0.066531 0.0729 0.91 0.3749 WH Lagged Capital

Stock Coef
gei_m1 -0.78516 0.1942 -4.04 0.0009 MA(gei) gei lag1

parameter
whi_m1 -0.69389 0.2540 -2.73 0.0148 MA(whi) whi lag1

parameter

Output 14.4.4. PROC ARIMA Results Using ML Estimation

Example of MA(1) Error Process Using Grunfeld’s Model
PROC ARIMA Using Maximum Likelihood

The ARIMA Procedure

Maximum Likelihood Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag Variable Shift

MU 2.95645 9.20752 0.32 0.7481 0 whi 0
MA1,1 -0.69305 0.25307 -2.74 0.0062 1 whi 0
NUM1 0.05036 0.01686 2.99 0.0028 0 whf 0
NUM2 0.06672 0.06939 0.96 0.3363 0 whc 0

Constant Estimate 2.956449
Variance Estimate 81.29645
Std Error Estimate 9.016455
AIC 148.9113
SBC 152.8942
Number of Residuals 20
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Example 14.5. Polynomial Distributed Lags Using %PDL

This example shows the use of the %PDL macro for polynomial distributed lag mod-
els. Simulated data is generated so that Y is a linear function of six lags of X, with
the lag coefficients following a quadratic polynomial. The model is estimated using a
fourth-degree polynomial, both with and without endpoint constraints. The example
uses simulated data generated from the following model:

yt = 10 +

6X
z=0

f(z)xt�z + �

f(z) = �5z2 + 1:5z

The LIST option prints the model statements added by the %PDL macro.

/*--------------------------------------------------------------*/
/* Generate Simulated Data for a Linear Model with a PDL on X */
/* y = 10 + x(6,2) + e */
/* pdl(x) = -5.*(lg)**2 + 1.5*(lg) + 0. */
/*--------------------------------------------------------------*/
data pdl;

pdl2=-5.; pdl1=1.5; pdl0=0;
array zz(i) z0-z6;
do i=1 to 7;

z=i-1;
zz=pdl2*z**2 + pdl1*z + pdl0;
end;

do n=-11 to 30;
x =10*ranuni(1234567)-5;
pdl=z0*x + z1*xl1 + z2*xl2 + z3*xl3 + z4*xl4 + z5*xl5 + z6*xl6;
e =10*rannor(123);
y =10+pdl+e;
if n>=1 then output;
xl6=xl5; xl5=xl4; xl4=xl3; xl3=xl2; xl2=xl1; xl1=x;
end;

run;

title1 ’Polynomial Distributed Lag Example’;

title3 ’Estimation of PDL(6,4) Model-- No Endpoint Restrictions’;
proc model data=pdl;

parms int; /* declare the intercept parameter */
%pdl( xpdl, 6, 4 ) /* declare the lag distribution */
y = int + %pdl( xpdl, x ); /* define the model equation */
fit y / list; /* estimate the parameters */

run;
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Output 14.5.1. PROC MODEL Listing of Generated Program

Polynomial Distributed Lag Example

Estimation of PDL(6,4) Model-- No Endpoint Restrictions

The MODEL Procedure

Listing of Compiled Program Code
Stmt Line:Col Statement as Parsed

1 25242:14 XPDL_L0 = XPDL_0;
2 25254:14 XPDL_L1 = XPDL_0 + XPDL_1 +

XPDL_2 + XPDL_3 + XPDL_4;
3 25283:14 XPDL_L2 = XPDL_0 + XPDL_1 *

2 + XPDL_2 * 2 ** 2 + XPDL_3
* 2 ** 3 + XPDL_4 * 2 ** 4;

4 25331:14 XPDL_L3 = XPDL_0 + XPDL_1 *
3 + XPDL_2 * 3 ** 2 + XPDL_3
* 3 ** 3 + XPDL_4 * 3 ** 4;

5 25379:14 XPDL_L4 = XPDL_0 + XPDL_1 *
4 + XPDL_2 * 4 ** 2 + XPDL_3
* 4 ** 3 + XPDL_4 * 4 ** 4;

6 25427:14 XPDL_L5 = XPDL_0 + XPDL_1 *
5 + XPDL_2 * 5 ** 2 + XPDL_3
* 5 ** 3 + XPDL_4 * 5 ** 4;

7 25475:14 XPDL_L6 = XPDL_0 + XPDL_1 *
6 + XPDL_2 * 6 ** 2 + XPDL_3
* 6 ** 3 + XPDL_4 * 6 ** 4;

8 25121:204 PRED.y = int + XPDL_L0 * x + XPDL_L1 *
LAG1( x ) + XPDL_L2 * LAG2( x ) +
XPDL_L3 * LAG3( x ) + XPDL_L4
* LAG4( x ) + XPDL_L5 * LAG5(
x ) + XPDL_L6 * LAG6( x );

8 25121:204 RESID.y = PRED.y - ACTUAL.y;
8 25121:204 ERROR.y = PRED.y - y;
9 25218:15 ESTIMATE XPDL_L0, XPDL_L1, XPDL_L2,

XPDL_L3, XPDL_L4, XPDL_L5, XPDL_L6;
10 25218:15 _est0 = XPDL_L0;
11 25221:15 _est1 = XPDL_L1;
12 25224:15 _est2 = XPDL_L2;
13 25227:15 _est3 = XPDL_L3;
14 25230:15 _est4 = XPDL_L4;
15 25233:15 _est5 = XPDL_L5;
16 25238:14 _est6 = XPDL_L6;
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Output 14.5.2. PROC MODEL Results Specifying No Endpoint Restrictions

Polynomial Distributed Lag Example

Estimation of PDL(6,4) Model-- No Endpoint Restrictions

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

y 6 18 2070.8 115.0 10.7259 0.9998 0.9998

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

int 9.621969 2.3238 4.14 0.0006
XPDL_0 0.084374 0.7587 0.11 0.9127 PDL(XPDL,6,4)

parameter for (L)**0
XPDL_1 0.749956 2.0936 0.36 0.7244 PDL(XPDL,6,4)

parameter for (L)**1
XPDL_2 -4.196 1.6215 -2.59 0.0186 PDL(XPDL,6,4)

parameter for (L)**2
XPDL_3 -0.21489 0.4253 -0.51 0.6195 PDL(XPDL,6,4)

parameter for (L)**3
XPDL_4 0.016133 0.0353 0.46 0.6528 PDL(XPDL,6,4)

parameter for (L)**4

The LIST output for the model without endpoint restrictions is shown in Out-
put 14.5.1 and Output 14.5.2. The first seven statements in the generated program
are the polynomial expressions for lag parameters XPDL–L0 through XPDL–L6.
The estimated parameters are INT, XPDL–0, XPDL–1, XPDL–2, XPDL–3, and
XPDL–4.

Portions of the output produced by the following PDL model with endpoints of the
model restricted to 0 are presented in Output 14.5.3 and Output 14.5.4.

title3 ’Estimation of PDL(6,4) Model-- Both Endpoint Restrictions’;
proc model data=pdl ;

parms int; /* declare the intercept parameter */
%pdl( xpdl, 6, 4, r=both ) /* declare the lag distribution */
y = int + %pdl( xpdl, x ); /* define the model equation */
fit y /list; /* estimate the parameters */

run;
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Output 14.5.3. PROC MODEL Results Specifying Both Endpoint Restrictions

Polynomial Distributed Lag Example

Estimation of PDL(6,4) Model-- Both Endpoint Restrictions

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

y 4 20 449868 22493.4 150.0 0.9596 0.9535

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

int 17.08581 32.4032 0.53 0.6038
XPDL_2 13.88433 5.4361 2.55 0.0189 PDL(XPDL,6,4)

parameter for (L)**2
XPDL_3 -9.3535 1.7602 -5.31 <.0001 PDL(XPDL,6,4)

parameter for (L)**3
XPDL_4 1.032421 0.1471 7.02 <.0001 PDL(XPDL,6,4)

parameter for (L)**4

Note that XPDL–0 and XPDL–1 are not shown in the estimate summary. They were
used to satisfy the endpoint restrictions analytically by the generated %PDL macro
code. Their values can be determined by back substitution.

To estimate the PDL model with one or more of the polynomial terms dropped, spec-
ify the largest degree of the polynomial desired with the %PDL macro and use the
DROP= option on the FIT statement to remove the unwanted terms. The dropped
parameters should be set to 0. The following PROC MODEL code demonstrates
estimation with a PDL of degree 2 without the 0th order term.

title3 ’Estimation of PDL(6,2) Model-- With XPDL_0 Dropped’;
proc model data=pdl list;

parms int; /* declare the intercept parameter */
%pdl( xpdl, 6, 2 ) /* declare the lag distribution */
y = int + %pdl( xpdl, x ); /* define the model equation */
xpdl_0 =0;
fit y drop=xpdl_0; /* estimate the parameters */

run;

The results from this estimation are shown in Output 14.5.4.
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Output 14.5.4. PROC MODEL Results Specifying %PDL( XPDL, 6, 2)

Polynomial Distributed Lag Example

Estimation of PDL(6,2) Model-- With XPDL_0 Dropped

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

y 3 21 2114.1 100.7 10.0335 0.9998 0.9998

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

int 9.536382 2.1685 4.40 0.0003
XPDL_1 1.883315 0.3159 5.96 <.0001 PDL(XPDL,6,2)

parameter for (L)**1
XPDL_2 -5.08827 0.0656 -77.56 <.0001 PDL(XPDL,6,2)

parameter for (L)**2

Example 14.6. General-Form Equations

Data for this example are generated. General-form equations are estimated and fore-
cast using PROC MODEL. The system is a basic supply-demand model. Portions of
the output from the following code is shown in Output 14.6.1 through Output 14.6.4.

title1 "General Form Equations for Supply-Demand Model";

proc model;
var price quantity income unitcost;
parms d0-d2 s0-s2;
eq.demand=d0+d1*price+d2*income-quantity;
eq.supply=s0+s1*price+s2*unitcost-quantity;

/* estimate the model parameters */
fit supply demand / data=history outest=est n2sls;
instruments income unitcost year;

run;

/* produce forecasts for income and unitcost assumptions */
solve price quantity / data=assume out=pq;

run;

/* produce goal-seeking solutions for
income and quantity assumptions*/

solve price unitcost / data=goal out=pc;
run;

title2 "Parameter Estimates for the System";
proc print data=est;
run;
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title2 "Price Quantity Solution";
proc print data=pq;
run;

title2 "Price Unitcost Solution";
proc print data=pc;
run;

Three data sets were used in this example. The first data set, HISTORY, was used to
estimate the parameters of the model. The ASSUME data set was used to produce a
forecast of PRICE and QUANTITY. Notice that the ASSUME data set does not have
to contain the variables PRICE and QUANTITY.

data history;
input year income unitcost price quantity;
datalines;

1976 2221.87 3.31220 0.17903 266.714
1977 2254.77 3.61647 0.06757 276.049
1978 2285.16 2.21601 0.82916 285.858
1979 2319.37 3.28257 0.33202 295.034
1980 2369.38 2.84494 0.63564 310.773
1981 2395.26 2.94154 0.62011 319.185
1982 2419.52 2.65301 0.80753 325.970
1983 2475.09 2.41686 1.01017 342.470
1984 2495.09 3.44096 0.52025 348.321
1985 2536.72 2.30601 1.15053 360.750
;

data assume;
input year income unitcost;
datalines;

1986 2571.87 2.31220
1987 2609.12 2.45633
1988 2639.77 2.51647
1989 2667.77 1.65617
1990 2705.16 1.01601
;

The output produced by the first SOLVE statement is shown in Output 14.6.3.

The third data set, GOAL, is used in a forecast of PRICE and UNITCOST as a func-
tion of INCOME and QUANTITY.

data goal;
input year income quantity;
datalines;

1986 2571.87 371.4
1987 2721.08 416.5
1988 3327.05 597.3
1989 3885.85 764.1
1990 3650.98 694.3
;
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The output from the final SOLVE statement is shown in Output 14.6.4.

Output 14.6.1. Printed Output from the FIT Statement

General Form Equations for Supply-Demand Model

The MODEL Procedure

The 2 Equations to Estimate

supply = F(s0(1), s1(price), s2(unitcost))
demand = F(d0(1), d1(price), d2(income))

Instruments 1 income unitcost year

General Form Equations for Supply-Demand Model

The MODEL Procedure

Nonlinear 2SLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

supply 3 7 3.3240 0.4749 0.6891
demand 3 7 1.0829 0.1547 0.3933

Nonlinear 2SLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

d0 -395.887 4.1841 -94.62 <.0001
d1 0.717328 0.5673 1.26 0.2466
d2 0.298061 0.00187 159.65 <.0001
s0 -107.62 4.1780 -25.76 <.0001
s1 201.5711 1.5977 126.16 <.0001
s2 102.2116 1.1217 91.12 <.0001

Output 14.6.2. Listing of OUTEST= Data Set Created in the FIT Statement

General Form Equations for Supply-Demand Model
Parameter Estimates for the System

_
S _

_ _ T N
N T A U
A Y T S

O M P U E
b E E S D d d d s s s
s _ _ _ _ 0 1 2 0 1 2

1 2SLS 0 Converged 10 -395.887 0.71733 0.29806 -107.620 201.571 102.212
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Output 14.6.3. Listing of OUT= Data Set Created in the First SOLVE Statement

General Form Equations for Supply-Demand Model
Price Quantity Solution

Obs _TYPE_ _MODE_ _ERRORS_ price quantity income unitcost year

1 PREDICT SIMULATE 0 1.20473 371.552 2571.87 2.31220 1986
2 PREDICT SIMULATE 0 1.18666 382.642 2609.12 2.45633 1987
3 PREDICT SIMULATE 0 1.20154 391.788 2639.77 2.51647 1988
4 PREDICT SIMULATE 0 1.68089 400.478 2667.77 1.65617 1989
5 PREDICT SIMULATE 0 2.06214 411.896 2705.16 1.01601 1990

Output 14.6.4. Listing of OUT= Data Set Created in the Second SOLVE Statement

General Form Equations for Supply-Demand Model
Price Unitcost Solution

Obs _TYPE_ _MODE_ _ERRORS_ price quantity income unitcost year

1 PREDICT SIMULATE 0 0.99284 371.4 2571.87 2.72857 1986
2 PREDICT SIMULATE 0 1.86594 416.5 2721.08 1.44798 1987
3 PREDICT SIMULATE 0 2.12230 597.3 3327.05 2.71130 1988
4 PREDICT SIMULATE 0 2.46166 764.1 3885.85 3.67395 1989
5 PREDICT SIMULATE 0 2.74831 694.3 3650.98 2.42576 1990

Example 14.7. Spring and Damper Continuous System

This model simulates the mechanical behavior of a spring and damper system shown
in Figure 14.80.

spring constant K damper constant C

initial displacement 10

initial velocity 0

mass 9.2

Figure 14.80. Spring and Damper System Model

A mass is hung from a spring with spring constant K. The motion is slowed by a
damper with damper constant C. The damping force is proportional to the velocity,
while the spring force is proportional to the displacement.

This is actually a continuous system; however, the behavior can be approximated by
a discrete time model. We approximate the differential equation

@ disp

@ time
= velocity
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with the difference equation

� disp

� time
= velocity

This is rewritten

disp� LAG(disp)

dt
= velocity

wheredt is the time step used. In PROC MODEL, this is expressed with the program
statement

disp = lag(disp) + vel * dt;

This statement is simply a computing formula for Euler’s approximation for the inte-
gral

disp =

Z
velocity dt

If the time step is small enough with respect to the changes in the system, the approx-
imation is good. Although PROC MODEL does not have the variable step-size and
error-monitoring features of simulators designed for continuous systems, the proce-
dure is a good tool to use for less challenging continuous models.

This model is unusual because there are no exogenous variables, and endogenous
data are not needed. Although you still need a SAS data set to count the simulation
periods, no actual data are brought in.

Since the variables DISP and VEL are lagged, initial values specified in the VAR
statement determine the starting state of the system. The mass, time step, spring
constant, and damper constant are declared and initialized by a CONTROL statement.

title1 ’Simulation of Spring-Mass-Damper System’;

/*- Generate some obs. to drive the simulation time periods ---*/
data one;

do n=1 to 100;
output;

end;
run;

proc model data=one;
var force -200 disp 10 vel 0 accel -20 time 0;
control mass 9.2 c 1.5 dt .1 k 20;
force = -k * disp -c * vel;
disp = lag(disp) + vel * dt;
vel = lag(vel) + accel * dt;
accel = force / mass;
time = lag(time) + dt;

895
SAS OnlineDoc: Version 8



Part 2. General Information

The displacement scale is zeroed at the point where the force of gravity is offset,
so the acceleration of the gravity constant is omitted from the force equation. The
control variable C and K represent the damper and the spring constants respectively.

The model is simulated three times, and the simulation results are written to output
data sets. The first run uses the original initial conditions specified in the VAR state-
ment. In the second run, the time step is reduced by half. Notice that the path of the
displacement is close to the old path, indicating that the original time step is short
enough to yield an accurate solution. In the third run, the initial displacement is dou-
bled; the results show that the period of the motion is unaffected by the amplitude.
These simulations are performed by the following statements:

/*- Simulate the model for the base case -------------------*/
control run ’1’;
solve / out=a;

run;

/*- Simulate the model with half the time step -------------*/
control run ’2’ dt .05;
solve / out=b;

run;

/*- Simulate the model with twice the initial displacement -*/
control run ’3’;
var disp 20;
solve / out=c;

run;

The output SAS data sets containing the solution results are merged and the displace-
ment time paths for the three simulations are plotted. The three runs are identified
on the plot as 1, 2, and 3. The following code produces Output 14.7.1 through Out-
put 14.7.2.

/*- Plot the results ---------------------------------------*/
data p;

set a b c;
run;

title2 ’Overlay Plot of All Three Simulations’;
proc gplot data=p;

plot disp*time=run;
run;
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Output 14.7.1. Printed Output Produced by PROC MODEL SOLVE Statements

Simulation of Spring-Mass-Damper System

The MODEL Procedure

Model Summary

Model Variables 5
Control Variables 5
Equations 5
Number of Statements 5
Program Lag Length 1

Model Variables force(-200) disp(10) vel(0) accel(-20) time(0)
Control Variables mass(9.2) c(1.5) dt(0.1) k(20) run(1)

Equations force disp vel accel time

Simulation of Spring-Mass-Damper System

The MODEL Procedure
Dynamic Simultaneous Simulation

Data Set Options

DATA= ONE
OUT= A

Solution Summary

Variables Solved 5
Simulation Lag Length 1
Solution Method NEWTON
CONVERGE= 1E-8
Maximum CC 8.68E-15
Maximum Iterations 1
Total Iterations 99
Average Iterations 1

Observations Processed

Read 100
Lagged 1
Solved 99
First 2
Last 100

Variables Solved For force disp vel accel time
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Simulation of Spring-Mass-Damper System

The MODEL Procedure
Dynamic Simultaneous Simulation

Data Set Options

DATA= ONE
OUT= B

Solution Summary

Variables Solved 5
Simulation Lag Length 1
Solution Method NEWTON
CONVERGE= 1E-8
Maximum CC 1.32E-15
Maximum Iterations 1
Total Iterations 99
Average Iterations 1

Observations Processed

Read 100
Lagged 1
Solved 99
First 2
Last 100

Variables Solved For force disp vel accel time
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Simulation of Spring-Mass-Damper System

The MODEL Procedure
Dynamic Simultaneous Simulation

Data Set Options

DATA= ONE
OUT= C

Solution Summary

Variables Solved 5
Simulation Lag Length 1
Solution Method NEWTON
CONVERGE= 1E-8
Maximum CC 3.93E-15
Maximum Iterations 1
Total Iterations 99
Average Iterations 1

Observations Processed

Read 100
Lagged 1
Solved 99
First 2
Last 100

Variables Solved For force disp vel accel time

Output 14.7.2. Overlay Plot of all Three Simulations
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Example 14.8. Nonlinear FIML Estimation

The data and model for this example were obtained from Bard (1974, p.133-138).
The example is a two-equation econometric model used by Bodkin and Klein to fit
U.S production data for the years 1909-1949. The model is the following:

g1 = c110
c2z4(c5z

�c4
1 + (1� c5)z

�c4
2 )�c3=c4 � z3 = 0

g2 = [c5=(1 � c5)](z1=z2)
(�1�c4) � z5 = 0

wherez1 is capital input,z2 is labor input,z3 is real output,z4 is time in years with
1929 as year zero, andz5 is the ratio of price of capital services to wage scale. The
ci’s are the unknown parameters.z1 andz2 are considered endogenous variables. A
FIML estimation is performed.

data bodkin;
input z1 z2 z3 z4 z5;

datalines;
1.33135 0.64629 0.4026 -20 0.24447
1.39235 0.66302 0.4084 -19 0.23454
1.41640 0.65272 0.4223 -18 0.23206
1.48773 0.67318 0.4389 -17 0.22291
1.51015 0.67720 0.4605 -16 0.22487
1.43385 0.65175 0.4445 -15 0.21879
1.48188 0.65570 0.4387 -14 0.23203
1.67115 0.71417 0.4999 -13 0.23828
1.71327 0.77524 0.5264 -12 0.26571
1.76412 0.79465 0.5793 -11 0.23410
1.76869 0.71607 0.5492 -10 0.22181
1.80776 0.70068 0.5052 -9 0.18157
1.54947 0.60764 0.4679 -8 0.22931
1.66933 0.67041 0.5283 -7 0.20595
1.93377 0.74091 0.5994 -6 0.19472
1.95460 0.71336 0.5964 -5 0.17981
2.11198 0.75159 0.6554 -4 0.18010
2.26266 0.78838 0.6851 -3 0.16933
2.33228 0.79600 0.6933 -2 0.16279
2.43980 0.80788 0.7061 -1 0.16906
2.58714 0.84547 0.7567 0 0.16239
2.54865 0.77232 0.6796 1 0.16103
2.26042 0.67880 0.6136 2 0.14456
1.91974 0.58529 0.5145 3 0.20079
1.80000 0.58065 0.5046 4 0.18307
1.86020 0.62007 0.5711 5 0.18352
1.88201 0.65575 0.6184 6 0.18847
1.97018 0.72433 0.7113 7 0.20415
2.08232 0.76838 0.7461 8 0.18847
1.94062 0.69806 0.6981 9 0.17800
1.98646 0.74679 0.7722 10 0.19979
2.07987 0.79083 0.8557 11 0.21115
2.28232 0.88462 0.9925 12 0.23453
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2.52779 0.95750 1.0877 13 0.20937
2.62747 1.00285 1.1834 14 0.19843
2.61235 0.99329 1.2565 15 0.18898
2.52320 0.94857 1.2293 16 0.17203
2.44632 0.97853 1.1889 17 0.18140
2.56478 1.02591 1.2249 18 0.19431
2.64588 1.03760 1.2669 19 0.19492
2.69105 0.99669 1.2708 20 0.17912
;

proc model data=bodkin;
parms c1-c5;
endogenous z1 z2;
exogenous z3 z4 z5;

eq.g1 = c1 * 10 **(c2 * z4) * (c5*z1**(-c4)+
(1-c5)*z2**(-c4))**(-c3/c4) - z3;

eq.g2 = (c5/(1-c5))*(z1/z2)**(-1-c4) -z5;

fit g1 g2 / fiml ;
run;

When FIML estimation is selected, the log likelihood of the system is output as the
objective value. The results of the estimation are show in Output 14.8.1.

Output 14.8.1. FIML Estimation Results for U.S. Production Data

The MODEL Procedure

Nonlinear FIML Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

g1 4 37 0.0529 0.00143 0.0378
g2 1 40 0.0173 0.000431 0.0208

Nonlinear FIML Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

c1 0.58395 0.0218 26.76 <.0001
c2 0.005877 0.000673 8.74 <.0001
c3 1.3636 0.1148 11.87 <.0001
c4 0.473688 0.2699 1.75 0.0873
c5 0.446748 0.0596 7.49 <.0001

Number of Observations Statistics for System

Used 41 Log Likelihood 110.7773
Missing 0
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Example 14.9. Circuit Estimation

Consider the nonlinear circuit shown in Figure 14.81.

21

Figure 14.81. Nonlinear Resistor Capacitor Circuit

The theory of electric circuits is governed by Kirchhoff’s laws: the sum of the cur-
rents flowing to a node is zero, and the net voltage drop around a closed loop is zero.
In addition to Kirchhoff’s laws, there are relationships between the current I through
each element and the voltage drop V across the elements. For the circuit in Figure
14.81, the relationships are

C
dV

dt
= I

for the capacitor and

V = (R1 + R2(1� exp(�V )))I

for the nonlinear resistor. The following differential equation describes the current at
node 2 as a function of time and voltage for this circuit:

label dvdt

C
dV2

dt
� V1 �V2

R1 + R2(1� exp(�V ))
= 0

This equation can be written in the form

dV2

dt
=

V1 �V2

(R1 + R2(1� exp(�V )))C

Consider the following data.

data circ;
input v2 v1 time@@;
datalines;

-0.00007 0.0 0.0000000001 0.00912 0.5 0.0000000002
0.03091 1.0 0.0000000003 0.06419 1.5 0.0000000004
0.11019 2.0 0.0000000005 0.16398 2.5 0.0000000006
0.23048 3.0 0.0000000007 0.30529 3.5 0.0000000008
0.39394 4.0 0.0000000009 0.49121 4.5 0.0000000010
0.59476 5.0 0.0000000011 0.70285 5.0 0.0000000012
0.81315 5.0 0.0000000013 0.90929 5.0 0.0000000014
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1.01412 5.0 0.0000000015 1.11386 5.0 0.0000000016
1.21106 5.0 0.0000000017 1.30237 5.0 0.0000000018
1.40461 5.0 0.0000000019 1.48624 5.0 0.0000000020
1.57894 5.0 0.0000000021 1.66471 5.0 0.0000000022

;

You can estimate the parameters in the previous equation by using the following SAS
statements:

proc model data=circ mintimestep=1.0e-23;
parm R2 2000 R1 4000 C 5.0e-13;
dert.v2 = (v1-v2)/((r1 + r2*(1-exp( -(v1-v2)))) * C);
fit v2;

run;

The results of the estimation are shown in Output 14.9.1.

Output 14.9.1. Circuit Estimation

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

R2 3002.465 1556.5 1.93 0.0688
R1 4984.848 1504.9 3.31 0.0037
C 5E-13 1.01E-22 4.941E9 <.0001

Example 14.10. Systems of Differential Equations

The following is a simplified reaction scheme for the competitive inhibitors with
recombinant human renin (Morelock et al. 1995).

I
+
E  +  D

k2r

EI

ED

k2f

k1f

k1r

Figure 14.82. Competitive Inhibition of Recombinant Human Renin

In Figure 14.82,E= enzyme,D= probe, andI= inhibitor.
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The differential equations describing this reaction scheme are

dD

dt
= k1r�ED � k1f�E�D

dED

dt
= k1f�E�D � k1r�ED

dE

dt
= k1r�ED � k1f�E�D + k2r�EI � k2f�E�I

dEI

dt
= k2f�E�I � k2r�EI

dI

dt
= k2r�EI � k2f�E�I

For this system, the initial values for the concentrations are derived from equilibrium
considerations (as a function of parameters) or are provided as known values.

The experiment used to collect the data was carried out in two ways; pre-incubation
(type=’disassoc’) and no pre-incubation (type=’assoc’). The data also contain re-
peated measurements. The data contain values for fluorescence F, which is a function
of concentration. Since there are no direct data for the concentrations, all the differ-
ential equations are simulated dynamically.

The SAS statements used to fit this model are

proc model data=fit;

parameters qf = 2.1e8
qb = 4.0e9
k2f = 1.8e5
k2r = 2.1e-3
l = 0;

k1f = 6.85e6;
k1r = 3.43e-4;

/* Initial values for concentrations */
control dt 5.0e-7

et 5.0e-8
it 8.05e-6;

/* Association initial values --------------*/
if type = ’assoc’ and time=0 then

do;
ed = 0;

/* solve quadratic equation ----------*/
a = 1;
b = -(&it+&et+(k2r/k2f));
c = &it*&et;
ei = (-b-(((b**2)-(4*a*c))**.5))/(2*a);
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d = &dt-ed;
i = &it-ei;
e = &et-ed-ei;

end;

/* Disassociation initial values ----------*/
if type = ’disassoc’ and time=0 then

do;
ei = 0;
a = 1;
b = -(&dt+&et+(&k1r/&k1f));
c = &dt*&et;
ed = (-b-(((b**2)-(4*a*c))**.5))/(2*a);
d = &dt-ed;
i = &it-ei;
e = &et-ed-ei;

end;

if time ne 0 then
do;

dert.d = k1r* ed - k1f *e *d;

dert.ed = k1f* e *d - k1r*ed;

dert.e = k1r* ed - k1f* e * d + k2r * ei - k2f * e *i;

dert.ei = k2f* e *i - k2r * ei;

dert.i = k2r * ei - k2f* e *i;

end;

/* L - offset between curves */
if type = ’disassoc’ then

F = (qf*(d-ed)) + (qb*ed) -L;
else

F = (qf*(d-ed)) + (qb*ed);

Fit F / method=marquardt;
run;

This estimation requires the repeated simulation of a system of 42 differential equa-
tions (5 base differential equations and 36 differential equations to compute the par-
tials with respect to the parameters).

The results of the estimation are shown in Output 14.10.1.
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Output 14.10.1. Kinetics Estimation

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq

f 5 797 2525.0 3.1681 1.7799 0.9980 0.9980

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t|

qf 2.0413E8 681443 299.55 <.0001
qb 4.2263E9 9133179 462.74 <.0001
k2f 6451229 867011 7.44 <.0001
k2r 0.007808 0.00103 7.55 <.0001
l -5.76981 0.4138 -13.94 <.0001

Example 14.11. Monte Carlo Simulation

This example illustrates how the form of the error in a ODE model affects the results
from a static and dynamic estimation. The differential equation studied is

dy

dt
= a� ay

The analytical solution to this differential equation is

y = 1� exp(�at)

The first data set contains errors that are strictly additive and independent. The data
for this estimation are generated by the following DATA step:

data drive1;
a = 0.5;
do iter=1 to 100;

do time = 0 to 50;
y = 1 - exp(-a*time) + 0.1 *rannor(123);
output;

end;
end;

The second data set contains errors that are cumulative in form.

data drive2;
a = 0.5;
yp = 1.0 + 0.01 *rannor(123);
do iter=1 to 100;
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do time = 0 to 50;
y = 1 - exp(-a)*(1 - yp);
yp = y + 0.01 *rannor(123);
output;

end;
end;

The following statements perform the 100 static estimations for each data set:

proc model data=drive1 noprint;
parm a 0.5;
dert.y = a - a * y;
fit y / outest=est;
by iter;

run;

Similar code is used to produce 100 dynamic estimations with a fixed and an unknown
initial value. The first value in the data set is used to simulate an error in the initial
value. The following PROC UNIVARIATE code processes the estimations:

proc univariate data=est noprint;
var a;
output out=monte mean=mean p5=p5 p95=p95;

run;

proc print data=monte; run;

The results of these estimations are summarized in Table 14.4.

Table 14.4. Monte Carlo Summary, A=0.5

Estimation Additive Error Cumulative Error
Type mean p95 p5 mean p95 p5

static 0.77885 1.03524 0.54733 0.57863 1.16112 0.31334
dynamic fixed 0.48785 0.63273 0.37644 3.8546E24 8.88E10 -51.9249
dynamic unknown 0.48518 0.62452 0.36754 641704.51 1940.42 -25.6054

For this example model, it is evident that the static estimation is the least sensitive to
misspecification.
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