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Chapter 18
The STATESPACE Procedure

Overview

The STATESPACE procedure analyzes and forecasts multivariate time series using
the state space model. The STATESPACE procedure is appropriate for jointly fore-
casting several related time series that have dynamic interactions. By taking into
account the autocorrelations among the whole set of variables, the STATESPACE
procedure may give better forecasts than methods that model each series separately.

By default, the STATESPACE procedure automatically selects a state space model
appropriate for the time series, making the procedure a good tool for automatic fore-
casting of multivariate time series. Alternatively, you can specify the state space
model by giving the form of the state vector and the state transition and innovation
matrices.

The methods used by the STATESPACE procedure assume that the time series are
jointly stationary. Nonstationary series must be made stationary by some prelimi-
nary transformation, usually by differencing. The STATESPACE procedure allows
you to specify differencing of the input data. When differencing is specified, the
STATESPACE procedure automatically integrates forecasts of the differenced series
to produce forecasts of the original series.

The State Space Model
The state space modelrepresents a multivariate time series through auxiliary vari-
ables, some of which may not be directly observable. These auxiliary variables are
called thestate vector. The state vector summarizes all the information from the
present and past values of the time series relevant to the prediction of future values
of the series. The observed time series are expressed as linear combinations of the
state variables. The state space model is also called a Markovian representation, or
a canonical representation, of a multivariate time series process. The state space ap-
proach to modeling a multivariate stationary time series is summarized in Akaike
(1976).

The state space form encompasses a very rich class of models. Any Gaussian multi-
variate stationary time series can be written in a state space form, provided that the
dimension of the predictor space is finite. In particular, any autoregressive moving
average (ARMA) process has a state space representation and, conversely, any state
space process can be expressed in an ARMA form (Akaike 1974). More details on
the relation of the state space and ARMA forms are given in "Relation of ARMA and
State Space Forms" later in this chapter.

Let xt be ther � 1 vector of observed variables, after differencing (if differencing is
specified) and subtracting the sample mean. Letzt be the state vector of dimension
s, s � r, where the firstr components ofzt consist ofxt. Let the notationxt+kjt
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Part 2. General Information

represent the conditional expectation (or prediction) ofxt+k based on the information
available at timet. Then the lasts� r elements ofzt consist of elements ofxt+kjt,
wherek>0 is specified or determined automatically by the procedure.

There are various forms of the state space model in use. The form of the state space
model used by the STATESPACE procedure is based on Akaike (1976). The model
is defined by the followingstate transition equation:

zt+1 = Fzt +Get+1

In the state transition equation, thes� s coefficient matrixF is called thetransition
matrix; it determines the dynamic properties of the model.

Thes� r coefficient matrixG is called theinput matrix; it determines the variance
structure of the transition equation. For model identification, the firstr rows and
columns ofG are set to anr � r identity matrix.

The input vectoret is a sequence of independent normally distributed random vectors
of dimensionr with mean0 and covariance matrix�ee. The random erroret is
sometimes called the innovation vector or shock vector.

In addition to the state transition equation, state space models usually include amea-
surement equationor observation equationthat gives the observed valuesxt as a
function of the state vectorzt. However, since PROC STATESPACE always includes
the observed valuesxt in the state vectorzt, the measurement equation in this case
merely represents the extraction of the firstr components of the state vector.

The measurement equation used by the STATESPACE procedure is

xt = [Ir0]zt

whereIr is anr � r identity matrix. In practice, PROC STATESPACE performs the
extraction ofxt from zt without reference to an explicit measurement equation.

In summary:

xt is an observation vector of dimensionr.

zt is a state vector of dimensions, whose firstr elements arext and
whose lasts� r elements are conditional prediction of futurext.

F is ans�s transition matrix.

G is ans�r input matrix, with the identity matrixI r forming the first
r rows and columns.

et is a sequence of independent normally distributed random vectors
of dimensionr with mean0 and covariance matrix�ee.

How PROC STATESPACE Works
The design of the STATESPACE procedure closely follows the modeling strategy
proposed by Akaike (1976). This strategy employs canonical correlation analysis for
the automatic identification of the state space model.
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Chapter 18. Overview

Following Akaike (1976), the procedure first fits a sequence of unrestricted vector
autoregressive (VAR) models and computes Akaike’s information criterion (AIC) for
each model. The vector autoregressive models are estimated using the sample au-
tocovariance matrices and the Yule-Walker equations. The order of the VAR model
producing the smallest Akaike information criterion is chosen as the order (number
of lags into the past) to use in the canonical correlation analysis.

The elements of the state vector are then determined via a sequence of canonical cor-
relation analyses of the sample autocovariance matrices through the selected order.
This analysis computes the sample canonical correlations of the past with an increas-
ing number of steps into the future. Variables that yield significant correlations are
added to the state vector; those that yield insignificant correlations are excluded from
further consideration. The importance of the correlation is judged on the basis of
another information criterion proposed by Akaike. See the section "Canonical Cor-
relation Analysis" for details. If you specify the state vector explicitly, these model
identification steps are omitted.

Once the state vector is determined, the state space model is fit to the data. The free
parameters in theF, G, and�ee matrices are estimated by approximate maximum
likelihood. By default, theF andG matrices are unrestricted, except for identifia-
bility requirements. Optionally, conditional least-squares estimates can be computed.
You can impose restrictions on elements of theF andG matrices.

After the parameters are estimated, forecasts are produced from the fitted state space
model using the Kalman filtering technique. If differencing was specified, the fore-
casts are integrated to produce forecasts of the original input variables.
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Part 2. General Information

Getting Started

The following introductory example uses simulated data for two variables X and Y.
The following statements generate the X and Y series.

data in;
x=10; y=40;
x1=0; y1=0;
a1=0; b1=0;
iseed=123;
do t=-100 to 200;

a=rannor(iseed);
b=rannor(iseed);
dx = 0.5*x1 + 0.3*y1 + a - 0.2*a1 - 0.1*b1;
dy = 0.3*x1 + 0.5*y1 + b;
x = x + dx + .25;
y = y + dy + .25;
if t >= 0 then output;
x1 = dx; y1 = dy;
a1 = a; b1 = b;

end;
keep t x y;

run;

The simulated series X and Y are shown in Figure 18.1.

Figure 18.1. Example Series
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Chapter 18. Getting Started

Automatic State Space Model Selection

The STATESPACE procedure is designed to automatically select the best state space
model for forecasting the series. You can specify your own model if you wish, and
you can use the output from PROC STATESPACE to help you identify a state space
model. However, the easiest way to use PROC STATESPACE is to let it choose the
model.

Stationarity and Differencing
Although PROC STATESPACE selects the state space model automatically, it does
assume that the input series are stationary. If the series are nonstationary, then the
process may fail. Therefore the first step is to examine your data and test to see if
differencing is required. (See the section "Stationarity and Differencing" later in this
chapter for further discussion of this issue.)

The series shown in Figure 18.1 are nonstationary. In order to forecast X and Y
with a state space model, you must difference them (or use some other de-trending
method). If you fail to difference when needed and try to use PROC STATESPACE
with nonstationary data, an inappropriate state space model may be selected, and the
model estimation may fail to converge.

The following statements identify and fit a state space model for the first differences
of X and Y, and forecast X and Y 10 periods ahead:

proc statespace data=in out=out lead=10;
var x(1) y(1);
id t;

run;

The DATA= option specifies the input data set and the OUT= option specifies the
output data set for the forecasts. The LEAD= option specifies forecasting 10 obser-
vations past the end of the input data. The VAR statement specifies the variables to
forecast and specifies differencing. The notation X(1) Y(1) specifies that the state
space model analyzes the first differences of X and Y.

Descriptive Statistics and Preliminary Autoregressions
The first page of the printed output produced by the preceding statements is shown in
Figure 18.2.

1003
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The STATESPACE Procedure

Number of Observations 200

Standard
Variable Mean Error

x 0.144316 1.233457 Has been differenced.
With period(s) = 1.

y 0.164871 1.304358 Has been differenced.
With period(s) = 1.

The STATESPACE Procedure

Information Criterion for Autoregressive Models

Lag=0 Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 Lag=8

149.697 8.387786 5.517099 12.05986 15.36952 21.79538 24.00638 29.88874 33.55708

Information
Criterion for

Autoregressive
Models

Lag=9 Lag=10

41.17606 47.70222

Schematic Representation of Correlations

Name/Lag 0 1 2 3 4 5 6 7 8 9 10

x ++ ++ ++ ++ ++ ++ +. .. +. +. ..
y ++ ++ ++ ++ ++ +. +. +. +. .. ..

+ is > 2*std error, - is < -2*std error, . is between

Figure 18.2. Descriptive Statistics and VAR Order Selection

Descriptive statistics are printed first, giving the number of nonmissing observations
after differencing, and the sample means and standard deviations of the differenced
series. The sample means are subtracted before the series are modeled (unless the
NOCENTER option is specified), and the sample means are added back when the
forecasts are produced.

LetXt andYt be the observed values of X and Y, and letxt andyt be the values of X
and Y after differencing and subtracting the mean difference. The seriesxt modeled
by the STATEPSPACE procedure is

xt =

�
xt
yt

�
=

�
(1 �B)Xt � 0:144316
(1�B)Yt � 0:164871

�

where B represents the backshift operator.
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Chapter 18. Getting Started

After the descriptive statistics, PROC STATESPACE prints the Akaike information
criterion (AIC) values for the autoregressive models fit to the series. The smallest AIC
value, in this case 5.517 at lag 2, determines the number of autocovariance matrices
analyzed in the canonical correlation phase.

A schematic representation of the autocorrelations is printed next. This indicates
which elements of the autocorrelation matrices at different lags are significantly
greater or less than 0.

The second page of the STATESPACE printed output is shown in Figure 18.3.

The STATESPACE Procedure

Schematic Representation of Partial Autocorrelations

Name/Lag 1 2 3 4 5 6 7 8 9 10

x ++ +. .. .. .. .. .. .. .. ..
y ++ .. .. .. .. .. .. .. .. ..

+ is > 2*std error, - is < -2*std error, . is between

Yule-Walker Estimates for Minimum AIC

--------Lag=1------- --------Lag=2-------
x y x y

x 0.257438 0.202237 0.170812 0.133554
y 0.292177 0.469297 -0.00537 -0.00048

Figure 18.3. Partial Autocorrelations and VAR Model

Figure 18.3 shows a schematic representation of the partial autocorrelations, similar
to the autocorrelations shown in Figure 18.2. The selection of a second order autore-
gressive model by the AIC statistic looks reasonable in this case because the partial
autocorrelations for lags greater than 2 are not significant.

Next, the Yule-Walker estimates for the selected autoregressive model are printed.
This output shows the coefficient matrices of the vector autoregressive model at each
lag.

Selected State Space Model Form and Preliminary Estimates
After the autoregressive order selection process has determined the number of lags to
consider, the canonical correlation analysis phase selects the state vector. By default,
output for this process is not printed. You can use the CANCORR option to print
details of the canonical correlation analysis. See the section "Canonical Correlation
Analysis" later in this chapter for an explanation of this process.

Once the state vector is selected the state space model is estimated by approximate
maximum likelihood. Information from the canonical correlation analysis and from
the preliminary autoregression is used to form preliminary estimates of the state space
model parameters. These preliminary estimates are used as starting values for the
iterative estimation process.
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Part 2. General Information

The form of the state vector and the preliminary estimates are printed next, as shown
in Figure 18.4.

The STATESPACE Procedure
Selected Statespace Form and Preliminary Estimates

State Vector

x(T;T) y(T;T) x(T+1;T)

Estimate of Transition Matrix

0 0 1
0.291536 0.468762 -0.00411

0.24869 0.24484 0.204257

Input Matrix for Innovation

1 0
0 1

0.257438 0.202237

Variance Matrix for Innovation

0.945196 0.100786
0.100786 1.014703

Figure 18.4. Preliminary Estimates of State Space Model

Figure 18.4 first prints the state vector as X[T;T] Y[T;T] X[T+1;T]. This notation
indicates that the state vector is

zt =

24 xtjt
ytjt
xt+1jt

35

The notationxt+1jt indicates the conditional expectation or prediction ofxt+1 based
on the information available at timet, andxtjt andytjt arext andyt respectively.

The remainder of Figure 18.4 shows the preliminary estimates of the transition matrix
F, the input matrixG, and the covariance matrix�ee.

Estimated State Space Model
The next page of the STATESPACE output prints the final estimates of the fitted
model, as shown in Figure 18.5. This output has the same form as in Figure 18.4, but
shows the maximum likelihood estimates instead of the preliminary estimates.
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Chapter 18. Getting Started

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

State Vector

x(T;T) y(T;T) x(T+1;T)

Estimate of Transition Matrix

0 0 1
0.297273 0.47376 -0.01998

0.2301 0.228425 0.256031

Input Matrix for Innovation

1 0
0 1

0.257284 0.202273

Variance Matrix for Innovation

0.945188 0.100752
0.100752 1.014712

Figure 18.5. Fitted State Space Model

The estimated state space model shown in Figure 18.5 is

24xt+1jt+1yt+1jt+1
xt+2jt+1

35 =

24 0 0 1
0:297 0:474 �0:020
0:230 0:228 0:256

3524 xt
yt

xt+1jt

35+

24 1 0
0 1

0:257 0:202

35� et+1
nt+1

�
var

�
et+1
nt+1

�
=

�
0:945 0:101
0:101 1:015

�

The next page of the STATESPACE output lists the estimates of the free parameters
in theF andGmatrices with standard errors andt statistics, as shown in Figure 18.6.
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The STATESPACE Procedure

Parameter Estimates

Standard
Parameter Estimate Error t Value

F(2,1) 0.297273 0.129995 2.29
F(2,2) 0.473760 0.115688 4.10
F(2,3) -0.01998 0.313025 -0.06
F(3,1) 0.230100 0.126226 1.82
F(3,2) 0.228425 0.112978 2.02
F(3,3) 0.256031 0.305256 0.84
G(3,1) 0.257284 0.071060 3.62
G(3,2) 0.202273 0.068593 2.95

Figure 18.6. Final Parameter Estimates

Convergence Failures
The maximum likelihood estimates are computed by an iterative nonlinear maximiza-
tion algorithm, which may not converge. If the estimates fail to converge, warning
messages are printed in the output.

If you encounter convergence problems, you should recheck the stationarity of the
data and ensure that the specified differencing orders are correct. Attempting to fit
state space models to nonstationary data is a common cause of convergence failure.
You can also use the MAXIT= option to increase the number of iterations allowed,
or experiment with the convergence tolerance options DETTOL= and PARMTOL=.

Forecast Data Set
The following statements print the output data set. The WHERE statement excludes
the first 190 observations from the output, so that only the forecasts and the last 10
actual observations are printed.

proc print data=out;
id t;
where t > 190;

run;

The PROC PRINT output is shown in Figure 18.7.
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t x FOR1 RES1 STD1 y FOR2 RES2 STD2

191 34.8159 33.6299 1.18600 0.97221 58.7189 57.9916 0.72728 1.00733
192 35.0656 35.6598 -0.59419 0.97221 58.5440 59.7718 -1.22780 1.00733
193 34.7034 35.5530 -0.84962 0.97221 59.0476 58.5723 0.47522 1.00733
194 34.6626 34.7597 -0.09707 0.97221 59.7774 59.2241 0.55330 1.00733
195 34.4055 34.8322 -0.42664 0.97221 60.5118 60.1544 0.35738 1.00733
196 33.8210 34.6053 -0.78434 0.97221 59.8750 60.8260 -0.95102 1.00733
197 34.0164 33.6230 0.39333 0.97221 58.4698 59.4502 -0.98046 1.00733
198 35.3819 33.6251 1.75684 0.97221 60.6782 57.9167 2.76150 1.00733
199 36.2954 36.0528 0.24256 0.97221 60.9692 62.1637 -1.19450 1.00733
200 37.8945 37.1431 0.75142 0.97221 60.8586 61.4085 -0.54984 1.00733
201 . 38.5068 . 0.97221 . 61.3161 . 1.00733
202 . 39.0428 . 1.59125 . 61.7509 . 1.83678
203 . 39.4619 . 2.28028 . 62.1546 . 2.62366
204 . 39.8284 . 2.97824 . 62.5099 . 3.38839
205 . 40.1474 . 3.67689 . 62.8275 . 4.12805
206 . 40.4310 . 4.36299 . 63.1139 . 4.84149
207 . 40.6861 . 5.03040 . 63.3755 . 5.52744
208 . 40.9185 . 5.67548 . 63.6174 . 6.18564
209 . 41.1330 . 6.29673 . 63.8435 . 6.81655
210 . 41.3332 . 6.89383 . 64.0572 . 7.42114

Figure 18.7. OUT= Data Set Produced by PROC STATESPACE

The OUT= data set produced by PROC STATESPACE contains the VAR and ID
statement variables. In addition, for each VAR statement variable, the OUT= data set
contains the variables FORi, RESi, and STDi. These variables contain the predicted
values, residuals, and forecast standard errors for theith variable in the VAR state-
ment list. In this case, X is listed first in the VAR statement, so FOR1 contains the
forecasts of X, while FOR2 contains the forecasts of Y.

The following statements plot the forecasts and actuals for the series.

proc gplot data=out;
plot for1*t=1 for2*t=1 x*t=2 y*t=2 /

overlay href=200.5;
symbol1 v=circle i=join;
symbol2 v=star i=none;
where t > 150;

run;

The forecast plot is shown in Figure 18.8. The last 50 observations are also plotted
to provide context, and a reference line is drawn between the historical and forecast
periods. The actual values are plotted with asterisks.
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Figure 18.8. Plot of Forecasts

Controlling Printed Output
By default, the STATESPACE procedure produces a large amount of printed output.
The NOPRINT option suppresses all printed output. You can suppress the printed
output for the autoregressive model selection process with the PRINTOUT=NONE
option. The descriptive statistics and state space model estimation output are still
printed when PRINTOUT=NONE is specified. You can produce more detailed output
with the PRINTOUT=LONG option and by specifying the printing control options
CANCORR, COVB, and PRINT.

Specifying the State Space Model

Instead of allowing the STATESPACE procedure to select the model automatically,
you can use FORM and RESTRICT statements to specify a state space model.

Specifying the State Vector
Use the FORM statement to control the form of the state vector. You can use this
feature to force PROC STATESPACE to estimate and forecast a model different from
the model it would select automatically. You can also use this feature to reestimate
the automatically selected model (possibly with restrictions) without repeating the
canonical correlation analysis.

The FORM statement specifies the number of lags of each variable to include in
the state vector. For example, the statement FORM X 3; forces the state vector to
includextjt, xt+1jt, andxt+2jt. The following statement specifies the state vector
(xtjt; ytjt; xt+1jt), which is the same state vector selected in the preceding example:

form x 2 y 1;
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You can specify the form for only some of the variables and allow PROC STATES-
PACE to select the form for the other variables. If only some of the variables are
specified in the FORM statement, canonical correlation analysis is used to determine
the number of lags included in the state vector for the remaining variables not spec-
ified by the FORM statement. If the FORM statement includes specifications for all
the variables listed in the VAR statement, the state vector is completely defined and
the canonical correlation analysis is not performed.

Restricting the F and G matrices
After you know the form of the state vector, you can use the RESTRICT statement
to fix some parameters in theF andG matrices to specified values. One use of this
feature is to remove insignificant parameters by restricting them to 0.

In the introductory example shown in the preceding section, the F[2,3] parameter is
not significant. (The parameters estimation output shown in Figure 18.6 gives thet
statistic for F[2,3] as -0.06. F[3,3] and F[3,1] also have low significance witht < 2.)

The following statements reestimate this model with F[2,3] restricted to 0. The
FORM statement is used to specify the state vector and thus bypass the canonical
correlation analysis.

proc statespace data=in out=out lead=10;
var x(1) y(1);
id t;
form x 2 y 1;
restrict f(2,3)=0;

run;

The final estimates produced by these statements are shown in Figure 18.9.
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The STATESPACE Procedure
Selected Statespace Form and Fitted Model

State Vector

x(T;T) y(T;T) x(T+1;T)

Estimate of Transition Matrix

0 0 1
0.290051 0.467468 0
0.227051 0.226139 0.26436

Input Matrix for Innovation

1 0
0 1

0.256826 0.202022

Variance Matrix for Innovation

0.945175 0.100696
0.100696 1.014733

The STATESPACE Procedure

Parameter Estimates

Standard
Parameter Estimate Error t Value

F(2,1) 0.290051 0.063904 4.54
F(2,2) 0.467468 0.060430 7.74
F(3,1) 0.227051 0.125221 1.81
F(3,2) 0.226139 0.111711 2.02
F(3,3) 0.264360 0.299537 0.88
G(3,1) 0.256826 0.070994 3.62
G(3,2) 0.202022 0.068507 2.95

Figure 18.9. Results using RESTRICT Statement
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Syntax

The STATESPACE procedure uses the following statements:

PROC STATESPACE options;
BY variable : : : ;
FORM variable value : : : ;
ID variable;
INITIAL F (row,column)=value : : : G(row,column)=value ... ;
RESTRICT F(row,column)=value : : : G(row,column)=value ... ;
VAR variable (difference, difference, : : : ) ... ;

Functional Summary

The statements and options used by PROC STATESPACE are summarized in the
following table.

Description Statement Option

Input Data Set Options
specify the input data set PROC STATESPACE DATA=
prevent subtraction of sample mean PROC STATESPACE NOCENTER
specify the ID variable ID
specify the observed series and differencing VAR

Options for Autoregressive Estimates
specify the maximum order PROC STATESPACE ARMAX=
specify maximum lag for autocovariances PROC STATESPACE LAGMAX=
output only minimum AIC model PROC STATESPACE MINIC
specify the amount of detail printed PROC STATESPACE PRINTOUT=
write preliminary AR models to a data set PROC STATESPACE OUTAR=

Options for Canonical Correlation Analysis
print the sequence of canonical correlations PROC STATESPACE CANCORR
specify upper limit of dimension of state
vector

PROC STATESPACE DIMMAX=

specify the minimum number of lags PROC STATESPACE PASTMIN=
specify the multiplier of the degrees of
freedom

PROC STATESPACE SIGCORR=

Options for State Space Model Estimation
specify starting values INITIAL
print covariance matrix of parameter estimates PROC STATESPACE COVB
specify the convergence criterion PROC STATESPACE DETTOL=
specify the convergence criterion PROC STATESPACE PARMTOL=
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Description Statement Option

print the details of the iterations PROC STATESPACE ITPRINT
specify an upper limit of the number of lags PROC STATESPACE KLAG=
specify maximum number of iterations
allowed

PROC STATESPACE MAXIT=

suppress the final estimation PROC STATESPACE NOEST
write the state space model parameter esti-
mates to an output data set

PROC STATESPACE OUTMODEL=

use conditional least squares for final estimates PROC STATESPACE RESIDEST
specify criterion for testing for singularity PROC STATESPACE SINGULAR=

Options for Forecasting
start forecasting before end of the input data PROC STATESPACE BACK=
specify the time interval between observations PROC STATESPACE INTERVAL=
specify multiple periods in the time series PROC STATESPACE INTPER=
specify how many periods to forecast PROC STATESPACE LEAD=
specify the output data set for forecasts PROC STATESPACE OUT=
print forecasts PROC STATESPACE PRINT

Options to Specify the State Space Model
specify the state vector FORM
specify the parameter values RESTRICT

BY Groups
specify BY-group processing BY

Printing
suppresses all printed output NOPRINT

PROC STATESPACE Statement

PROC STATESPACE options;

The following options can be specified in the PROC STATESPACE statement.

Printing Options
NOPRINT

suppresses all printed output.

Input Data Options
DATA= SAS-data-set

specifies the name of the SAS data set to be used by the procedure. If the DATA=
option is omitted, the most recently created SAS data set is used.
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LAGMAX= k
specifies the number of lags for which the sample autocovariance matrix is computed.
The LAGMAX= option controls the number of lags printed in the schematic repre-
sentation of the autocorrelations.

The sample autocovariance matrix of lagi, denoted asCi, is computed as

Ci =
1

N � 1

NX
t=1+i

xtx
0
t�i

wherext is the differenced and centered data andN is the number of observations.
(If the NOCENTER option is specified, 1 is not subtracted fromN .) LAGMAX= k
specifies thatC0 throughCk are computed. The default is LAGMAX=10.

NOCENTER
prevents subtraction of the sample mean from the input series (after any specified
differencing) before the analysis.

Options for Preliminary Autoregressive Models
ARMAX= n

specifies the maximum order of the preliminary autoregressive models. The AR-
MAX= option controls the autoregressive orders for which information criteria are
printed, and controls the number of lags printed in the schematic representation of
partial autocorrelations. The default is ARMAX=10. See "Preliminary Autoregres-
sive Models" later in this chapter for details.

MINIC
writes to the OUTAR= data set only the preliminary Yule-Walker estimates for the
VAR model producing the minimum AIC. See "OUTAR= Data Set" later in this chap-
ter for details.

OUTAR= SAS-data-set
writes the Yule-Walker estimates of the preliminary autoregressive models to a SAS
data set. See "OUTAR= Data Set" later in this chapter for details.

PRINTOUT= SHORT | LONG | NONE
determines the amount of detail printed. PRINTOUT=LONG prints the lagged co-
variance matrices, the partial autoregressive matrices, and estimates of the resid-
ual covariance matrices from the sequence of autoregressive models. PRINT-
OUT=NONE suppresses the output for the preliminary autoregressive models. The
descriptive statistics and state space model estimation output are still printed when
PRINTOUT=NONE is specified. PRINTOUT=SHORT is the default.

Canonical Correlation Analysis Options
CANCORR

prints the canonical correlations and information criterion for each candidate state
vector considered. See "Canonical Correlation Analysis" later in this chapter for
details.
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DIMMAX= n
specifies the upper limit to the dimension of the state vector. The DIMMAX= option
can be used to limit the size of the model selected. The default is DIMMAX=10.

PASTMIN= n
specifies the minimum number of lags to include in the canonical correlation analy-
sis. The default is PASTMIN=0. See "Canonical Correlation Analysis" later in this
chapter for details.

SIGCORR= value
specifies the multiplier of the degrees of freedom for the penalty term in the informa-
tion criterion used to select the state space form. The default is SIGCORR=2. The
larger the value of the SIGCORR= option, the smaller the state vector tends to be.
Hence, a large value causes a simpler model to be fit. See "Canonical Correlations
Analysis" later in this chapter for details.

State Space Model Estimation Options
COVB

prints the inverse of the observed information matrix for the parameter estimates.
This matrix is an estimate of the covariance matrix for the parameter estimates.

DETTOL= value
specifies the convergence criterion. The DETTOL= and PARMTOL= option values
are used together to test for convergence of the estimation process. If, during an
iteration, the relative change of the parameter estimates is less than the PARMTOL=
value and the relative change of the determinant of the innovation variance matrix
is less than the DETTOL= value, then iteration ceases and the current estimates are
accepted. The default is DETTOL=1E-5.

ITPRINT
prints the iterations during the estimation process.

KLAG= n
sets an upper limit for the number of lags of the sample autocovariance matrix used
in computing the approximate likelihood function. If the data have a strong moving
average character, a larger KLAG= value may be necessary to obtain good estimates.
The default is KLAG=15. See "Parameter Estimation" later in this chapter for details.

MAXIT= n
sets an upper limit to the number of iterations in the maximum likelihood or condi-
tional least-squares estimation. The default is MAXIT=50.

NOEST
suppresses the final maximum likelihood estimation of the selected model.

OUTMODEL= SAS-data-set
writes the parameter estimates and their standard errors to a SAS data set. See "OUT-
MODEL= Data Set" later in this chapter for details.

PARMTOL= value
specifies the convergence criterion. The DETTOL= and PARMTOL= option values
are used together to test for convergence of the estimation process. If, during an
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iteration, the relative change of the parameter estimates is less than the PARMTOL=
value and the relative change of the determinant of the innovation variance matrix
is less than the DETTOL= value, then iteration ceases and the current estimates are
accepted. The default is PARMTOL=.001.

RESIDEST
computes the final estimates using conditional least squares on the raw data. This
type of estimation may be more stable than the default maximum likelihood method
but is usually more computationally expensive. See "Parameter Estimation" later in
this chapter for details of the conditional least squares method.

SINGULAR= value
specifies the criterion for testing for singularity of a matrix. A matrix is declared
singular if a scaled pivot is less than the SINGULAR= value when sweeping the
matrix. The default is SINGULAR=1E-7.

Forecasting Options
BACK= n

starts forecastingn periods before the end of the input data. The BACK= option value
must not be greater than the number of observations. The default is BACK=0.

INTERVAL= interval
specifies the time interval between observations. The INTERVAL= value is used
in conjunction with the ID variable to check that the input data are in order and
have no missing periods. The INTERVAL= option is also used to extrapolate the ID
values past the end of the input data. See Chapter 3, “Date Intervals, Formats, and
Functions,” for details on the INTERVAL= values allowed.

INTPER= n
specifies that each input observation corresponds ton time periods. For example,
the options INTERVAL=MONTH and INTPER=2 specify bimonthly data and are
equivalent to specifying INTERVAL=MONTH2. If the INTERVAL= option is not
specified, the INTPER= option controls the increment used to generate ID values for
the forecast observations. The default is INTPER=1.

LEAD= n
specifies how many forecast observations are produced. The forecasts start at the
point set by the BACK= option. The default is LEAD=0, which produces no fore-
casts.

OUT= SAS-data-set
writes the residuals, actual values, forecasts, and forecast standard errors to a SAS
data set. See "OUT= Data Set" later in this chapter for details.

PRINT
prints the forecasts.
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BY Statement

BY variable ... ;

A BY statement can be used with the STATESPACE procedure to obtain separate
analyses on observations in groups defined by the BY variables.

FORM Statement

FORM variable value ... ;

The FORM statement specifies the number of times a variable is included in the state
vector. Values can be specified for any variable listed in the VAR statement. If a
value is specified for each variable in the VAR statement, the state vector for the state
space model is entirely specified, and automatic selection of the state space model is
not performed.

The FORM statement forces the state vector,zt, to contain a specific variable a given
number of times. For example, if Y is one of the variables inxt, then the statement

form y 3;

forces the state vector to containYt; Yt+1jt, andYt+2jt, possibly along with other
variables.

The following statements illustrate the use of the FORM statement:

proc statespace data=in;
var x y;
form x 3 y 2;

run;

These statements fit a state space model with the following state vector:

zt =

266664
xtjt
ytjt
xt+1jt
yt+1jt
xt+2jt

377775
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ID Statement

ID variable;

The ID statement specifies a variable that identifies observations in the input data set.
The variable specified in the ID statement is included in the OUT= data set. The
values of the ID variable are extrapolated for the forecast observations based on the
values of the INTERVAL= and INTPER= options.

INITIAL Statement

INITIAL F (row,column)= value ... G(row, column)= value ... ;

The INITIAL statement gives initial values to the specified elements of theF andG
matrices. These initial values are used as starting values for the iterative estimation.

Parts of theF andG matrices represent fixed structural identities. If an element
specified is a fixed structural element instead of a free parameter, the corresponding
initialization is ignored.

The following is an example of an INITIAL statement:

initial f(3,2)=0 g(4,1)=0 g(5,1)=0;

RESTRICT Statement

RESTRICT F(row,column)= value ... G(row,column)= value ... ;

The RESTRICT statement restricts the specified elements of theF andG matrices
to the specified values.

To use the restrict statement you need to know the form of the model. Either specify
the form of the model with the FORM statement, or do a preliminary run, perhaps
with the NOEST option, to find the form of the model that PROC STATESPACE
selects for the data.

The following is an example of a RESTRICT statement:

restrict f(3,2)=0 g(4,1)=0 g(5,1)=0 ;

Parts of theF andG matrices represent fixed structural identities. If a restriction is
specified for an element that is a fixed structural element instead of a free parameter,
the restriction is ignored.
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VAR Statement

VAR variable (difference, difference, ... ) ... ;

The VAR statement specifies the variables in the input data set to model and fore-
cast. The VAR statement also specifies differencing of the input variables. The VAR
statement is required.

Differencing is specified by following the variable name with a list of difference
periods separated by commas. See the section "Stationarity and Differencing" for
more information on differencing of input variables.

The order in which variables are listed in the VAR statement controls the order in
which variables are included in the state vector. Usually, potential inputs should be
listed before potential outputs.

For example, assuming the input data are monthly, the following VAR statement
specifies modeling and forecasting of the one period and seasonal second difference
of X and Y:

var x(1,12) y(1,12);

In this example, the vector time series analyzed is

xt =

�
(1�B)(1�B12)Xt � x

(1�B)(1�B12)Yt � y

�

where B represents the back shift operator, andx andy represent the means of the
differenced series. If the NOCENTER option is specified the mean differences are
not subtracted.
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Details

Missing Values

The STATESPACE procedure does not support missing values. The procedure uses
the first contiguous group of observations with no missing values for any of the VAR
statement variables. Observations at the beginning of the data set with missing values
for any VAR statement variable are not used or included in the output data set.

Stationarity and Differencing

The state space model used by the STATESPACE procedure assumes that the time
series are stationary. Hence, the data should be checked for stationarity. One way
to check for stationarity is to plot the series. A graph of series over time can show a
time trend or variability changes.

You can also check stationarity by using the sample autocorrelation functions dis-
played by the ARIMA procedure. The autocorrelation functions of nonstationary
series tend to decay slowly. See Chapter 7, “The ARIMA Procedure,” for more in-
formation.

Another alternative is to use the STATIONARITY= option on the IDENTIFY state-
ment in PROC ARIMA to apply Dickey-Fuller tests for unit roots in the time series.
See Chapter 7, “The ARIMA Procedure,” for more information on Dickey-Fuller unit
root tests.

The most popular way to transform a nonstationary series to stationarity is by dif-
ferencing. Differencing of the time series is specified in the VAR statement. For
example, to take a simple first difference of the series X, use this statement:

var x(1);

In this example, the change in X from one period to the next is analyzed. When the se-
ries has a seasonal pattern, differencing at a period equal to the length of the seasonal
cycle may be desirable. For example, suppose the variable X is measured quarterly
and shows a seasonal cycle over the year. You can use the following statement to
analyze the series of changes from the same quarter in the previous year:

var x(4);

To difference twice, add another differencing period to the list. For ex-
ample, the following statement analyzes the series of second differences
(Xt �Xt�1)� (Xt�1 �Xt�2) = Xt � 2Xt�1 +Xt�2:

var x(1,1);

The following statement analyzes the seasonal second difference series.
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var x(1,4);

The series modeled is the 1-period difference of the 4-period difference:
(Xt �Xt�4)� (Xt�1 �Xt�5) = Xt �Xt�1 �Xt�4 +Xt�5.

Another way to obtain stationary series is to use a regression on time to de-trend the
data. If the time series has a deterministic linear trend, regressing the series on time
produces residuals that should be stationary. The following statements write residuals
of X and Y to the variable RX and RY in the output data set DETREND.

data a;
set a;
t=_n_;

run;

proc reg data=a;
model x y = t;
output out=detrend r=rx ry;

run;

You then use PROC STATESPACE to forecast the de-trended series RX and RY. A
disadvantage of this method is that you need to add the trend back to the forecast
series in an additional step. A more serious disadvantage of the de-trending method
is that it assumes a deterministic trend. In practice, most time series appear to have a
stochastic rather than a deterministic trend. Differencing is a more flexible and often
more appropriate method.

There are several other methods to handle nonstationary time series. For more infor-
mation and examples, refer to Brockwell and Davis (1991).

Preliminary Autoregressive Models

After computing the sample autocovariance matrices, PROC STATESPACE fits a
sequence of vector autoregressive models. These preliminary autoregressive models
are used to estimate the autoregressive order of the process and limit the order of the
autocovariances considered in the state vector selection process.

Yule-Walker Equations for Forward and Backward Models
Unlike a univariate autoregressive model, a multivariate autoregressive model has
different forms, depending on whether the present observation is being predicted from
the past observations or from the future observations.

Let xt be ther-component stationary time series given by the VAR statement after
differencing and subtracting the vector of sample means. (If the NOCENTER option
is specified, the mean is not subtracted.) Letn be the number of observations ofxt
from the input data set.

Let et be a vector white noise sequence with mean vector0 and variance matrix�p,
and letnt be a vector white noise sequence with mean vector0 and variance matrix

p. Let p be the order of the vector autoregressive model forxt.
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The forward autoregressive form based on the past observations is written as follows:

xt =

pX
i=1

�
p
ixt�i + et

The backward autoregressive form based on the future observations is written as fol-
lows:

xt =

pX
i=1

	
p
ixt+i + nt

LettingE denote the expected value operator, the autocovariance sequence for thext
series,�i, is

�i = Extx
0
t�i

The Yule-Walker equations for the autoregressive model that matches the firstp ele-
ments of the autocovariance sequence are

2664
�0 �1 � � � �p�1

�01 �0 � � � �p�2
...

...
...

�0p�1 �0p�2 � � � �0

3775
2664
�

p
1

�
p
2

...
�

p
p

3775 =

2664
�1
�2
...
�p

3775

and

26664
�0 �01 � � � �0p�1
�1 �0 � � � �0p�2
...

...
...

�p�1 �p�2 � � � �0

37775
2664
	

p
1

	
p
2

...
	

p
p

3775 =

2664
�01
�02
...
�0p

3775

Here�p
i are the coefficient matrices for the past observation form of the vector au-

toregressive model, and	p
i are the coefficient matrices for the future observation

form. More information on the Yule-Walker equations in the multivariate setting can
be found in Whittle (1963) and Ansley and Newbold (1979).

The innovation variance matrices for the two forms can be written as follows:

�p = �0 �

pX
i=1

�
p
i�

0
i
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p = �0 �

pX
i=1

	
p
i�i

The autoregressive models are fit to the data using the preceding Yule-Walker equa-
tions with�i replaced by the sample covariance sequenceCi. The covariance matri-
ces are calculated as

Ci =
1

N � 1

NX
t=i+1

xtx
0
t�i

Let b�p, b	p, b�p, and b
p represent the Yule-Walker estimates of�p, 	p, �p, and

p respectively. These matrices are written to an output data set when the OUTAR=
option is specified.

When the PRINTOUT=LONG option is specified, the sequence of matricesb�p and
the corresponding correlation matrices are printed. The sequence of matricesb�p is
used to compute Akaike information criteria for selection of the autoregressive order
of the process.

Akaike Information Criterion
The Akaike information criterion, or AIC, is defined as -2(maximum of log likeli-
hood)+2(number of parameters). Since the vector autoregressive models are esti-
mates from the Yule-Walker equations, not by maximum likelihood, the exact likeli-
hood values are not available for computing the AIC. However, for the vector autore-
gressive model the maximum of the log likelihood can be approximated as

ln(L)��
n

2
ln(jb�pj)

Thus, the AIC for the orderp model is computed as

AICp = nln(jb�pj) + 2pr2

You can use the printed AIC array to compute a likelihood ratio test of the autoregres-
sive order. The log-likelihood ratio test statistic for testing the orderp model against
the orderp� 1 model is

�nln(jb�pj) + nln(jb�p�1j)

This quantity is asymptotically distributed as a�2 with r
2 degrees of freedom if the

series is autoregressive of orderp� 1. It can be computed from the AIC array as

AICp�1 �AICp + 2r2
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You can evaluate the significance of these test statistics with the PROBCHI function
in a SAS DATA step, or with a�2 table.

Determining the Autoregressive Order
Although the autoregressive models can be used for prediction, their primary value is
to aid in the selection of a suitable portion of the sample covariance matrix for use in
computing canonical correlations. If the multivariate time seriesxt is of autoregres-
sive orderp, then the vector of past values to lagp is considered to contain essentially
all the information relevant for prediction of future values of the time series.

By default, PROC STATESPACE selects the order,p, producing the autoregressive
model with the smallestAICp. If the valuep for the minimumAICp is less than the
value of the PASTMIN= option, thenp is set to the PASTMIN= value. Alternatively,
you can use the ARMAX= and PASTMIN= options to force PROC STATESPACE to
use an order you select.

Significance Limits for Partial Autocorrelations
The STATESPACE procedure prints a schematic representation of the partial autocor-
relation matrices indicating which partial autocorrelations are significantly greater or
significantly less than 0. Figure 18.10 shows an example of this table.

The STATESPACE Procedure

Schematic Representation of Partial Autocorrelations

Name/Lag 1 2 3 4 5 6 7 8 9 10

x ++ +. .. .. .. .. .. .. .. ..
y ++ .. .. .. .. .. .. .. .. ..

+ is > 2*std error, - is < -2*std error, . is between

Figure 18.10. Significant Partial Autocorrelations

The partial autocorrelations are from the sample partial autoregressive matricesb�p
p.

The standard errors used for the significance limits of the partial autocorrelations are
computed from the sequence of matrices�p and
p.

Under the assumption that the observed series arises from an autoregressive process
of orderp� 1, the pth sample partial autoregressive matrixb�p

p has an asymptotic
variance matrix1

n

�1

p 
�p.

The significance limits forb�p
p used in the schematic plot of the sample partial autore-

gressive sequence are derived by replacing
p and�p with their sample estimators
to produce the variance estimate, as follows:

dV ar �b�p
p

�
=

�
1

n� rp

� b
�1
p 
b�p
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Canonical Correlation Analysis

Given the orderp, letpt be the vector of current and past values relevant to prediction
of xt+1:

pt = (x0t;x
0
t�1; � � �;x

0
t�p)

0

Let ft be the vector of current and future values:

ft = (x0t;x
0
t+1; � � �;x

0
t+p)

0

In the canonical correlation analysis, consider submatrices of the sample covariance
matrix ofpt andft. This covariance matrix,V, has a block Hankel form:

V =

26664
C0 C0

1 C0
2 � � � C0

p

C0
1 C0

2 C0
3 � � � C0

p+1

...
...

...
...

C0
p C0

p+1 C0
p+2 � � � C0

2p

37775

State Vector Selection Process
The canonical correlation analysis forms a sequence of potential state vectors,z

j
t .

Examine a sequence,f jt , of subvectors offt, and form the submatrix,Vj , consisting
of the rows and columns ofV corresponding to the components off jt , and compute
its canonical correlations.

The smallest canonical correlation ofVj is then used in the selection of the com-
ponents of the state vector. The selection process is described in the following. For
more details about this process, refer to Akaike (1976).

In the following discussion, the notationxt+kjt denotes the wide sense conditional
expectation (best linear predictor) ofxt+k, given allxs with s less than or equal tot.
In the notationxi;t+1, the first subscript denotes theith component ofxt+1.

The initial state vectorz1t is set toxt. The sequencef jt is initialized by setting

f1t = (z1
0

t ; x1;t+1jt)
0 = (x0t; x1;t+1jt)

0

That is, start by considering whether to addx1;t+1jt to the initial state vectorz1t .

The procedure forms the submatrixV1 corresponding tof1t and computes its canon-
ical correlations. Denote the smallest canonical correlation ofV1 as�min. If �min is
significantly greater than 0,x1;t+1jt is added to the state vector.

If the smallest canonical correlation ofV1 is not significantly greater than 0, then a
linear combination off1t is uncorrelated with the past,pt. Assuming that the determi-
nant ofC0 is not 0, (that is, no input series is a constant), you can take the coefficient
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of x1;t+1jt in this linear combination to be 1. Denote the coefficients ofz1t in this
linear combination as̀. This gives the relationship:

x1;t+1jt = `0xt

Therefore, the current state vector already contains all the past information useful for
predictingx1;t+1 and any greater leads ofx1;t. The variablex1;t+1jt is not added to
the state vector, nor are any termsx1;t+kjt considered as possible components of the
state vector. The variablex1 is no longer active for state vector selection.

The process described forx1;t+1jt is repeated for the remaining elements offt. The
next candidate for inclusion in the state vector is the next component offt corre-
sponding to an active variable. Components offt corresponding to inactive variables
that produced a zero�min in a previous step are skipped.

Denote the next candidate asxl;t+kjt. The vectorf jt is formed from the current state
vector andxl;t+kjt as follows:

f
j
t = (zj

0

t ; xl;t+kjt)
0

The matrixVj is formed fromf jt and its canonical correlations are computed. The
smallest canonical correlation ofVj is judged to be either greater than or equal to 0.
If it is judged to be greater than 0,xl;t+kjt is added to the state vector. If it is judged

to be 0, then a linear combination off jt is uncorrelated with thept, and the variable
xl is now inactive.

The state vector selection process continues until no active variables remain.

Testing Significance of Canonical Correlations
For each step in the canonical correlation sequence, the significance of the small-
est canonical correlation,�min, is judged by an information criterion from Akaike
(1976). This information criterion is

�nln(1� �2min)� �(r(p+ 1)� q + 1)

whereq is the dimension off jt at the current step,r is the order of the state vector,p
is the order of the vector autoregressive process, and� is the value of the SIGCORR=
option. The default is SIGCORR=2. If this information criterion is less than or equal
to 0, �min is taken to be 0; otherwise, it is taken to be significantly greater than 0.
(Do not confuse this information criterion with the AIC.)

Variables inxt+pjt are not added in the model, even with positive information crite-
rion, because of the singularity ofV. You can force the consideration of more candi-
date state variables by increasing the size of theVmatrix by specifying a PASTMIN=
option value larger thanp.

Printing the Canonical Correlations
To print the details of the canonical correlation analysis process, specify the CAN-
CORR option in the PROC STATESPACE statement. The CANCORR option prints
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the candidate state vectors, the canonical correlations, and the information criteria for
testing the significance of the smallest canonical correlation.

Bartlett’s�2 and its degrees of freedom are also printed when the CANCORR option
is specified. The formula used for Bartlett’s�2 is

�2 = �(n� :5(r(p+ 1)� q + 1))ln(1� �2min)

with r(p+ 1)� q + 1 degrees of freedom.

Figure 18.11 shows the output of the CANCORR option for the introductory example
shown in the "Getting Started" section of this chapter.

The STATESPACE Procedure
Canonical Correlations Analysis

Information Chi
x(T;T) y(T;T) x(T+1;T) Criterion Square DF

1 1 0.237045 3.566167 11.4505 4

Information Chi
x(T;T) y(T;T) x(T+1;T) y(T+1;T) Criterion Square DF

1 1 0.238244 0.056565 -5.35906 0.636134 3

Information Chi
x(T;T) y(T;T) x(T+1;T) x(T+2;T) Criterion Square DF

1 1 0.237602 0.087493 -4.46312 1.525353 3

Figure 18.11. Canonical Correlations Analysis

New variables are added to the state vector if the information criteria are positive. In
this example,yt+1jt andxt+2jt are not added to the state space vector because the
information criteria for these models are negative.

If the information criterion is nearly 0, then you may want to investigate models
that arise if the opposite decision is made regarding�min. This investigation can be
accomplished by using a FORM statement to specify part or all of the state vector.

Preliminary Estimates of F
When a candidate variablexl;t+kjt yields a zero�min and is not added to the state

vector, a linear combination off jt is uncorrelated with thept. Because of the method
used to construct thef jt sequence, the coefficient ofxl;t+kjt in l can be taken as 1.

Denote the coefficients ofzjt in this linear combination asl.

This gives the relationship:

xl;t+kjt = l0z
j
t

The vectorl is used as a preliminary estimate of the firstr columns of the row of the
transition matrixF corresponding toxl;t+k�1jt.

SAS OnlineDoc: Version 8
1028



Chapter 18. Details

Parameter Estimation

The model iszt+1 = Fzt +Get+1, whereet is a sequence of independent multivari-
ate normal innovations with mean vector0 and variance�ee. The observed sequence,
xt, composes the firstr components ofzt and, thus,xt = Hzt, whereH is ther � s

matrix [Ir 0].

LetE be ther � n matrix of innovations:

E = [ e1 � � � en ]

If the number of observations,n, is reasonably large, the log likelihood, L, can be
approximated up to an additive constant as follows:

L = �
n

2
ln(j�eej)�

1

2
trace(��1

eeEE
0)

The elements of�ee are taken as free parameters and are estimated as follows:

S0 =
1

n
EE0

Replacing�ee by S0 in the likelihood equation, the log likelihood, up to an additive
constant, is

L = �
n

2
ln(jS0j)

Letting B be the backshift operator, the formal relation betweenxt andet is

xt = H(I�BF)�1Get

et = (H(I�BF)�1G)�1xt =
1X
i=0

�ixt�i

LettingCi be theith lagged sample covariance ofxt, and neglecting end effects, the
matrixS0 is

S0 =

1X
i;j=0

�iC�i+j�
0

j

For the computation ofS0, the infinite sum is truncated at the value of the KLAG=
option. The value of the KLAG= option should be large enough that the sequence�i

is approximately 0 beyond that point.
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Let � be the vector of free parameters in theF andG matrices. The derivative of the
log likelihood with respect to the parameter� is

@L

@�
= �

n

2
trace

�
S�10

@S0

@�

�

The second derivative is

@2L

@�@�0
=

n

2

�
trace

�
S�10

@S0

@�0
S�10

@S0

@�

�
� trace

�
S�10

@2S0

@�@�0

��

Near the maximum, the first term is unimportant and the second term can be approx-
imated to give the following second derivative approximation:

@2L

@�@�0
�= �n trace

�
S�1
0

@E

@�

@E0

@�0

�

The first derivative matrix and this second derivative matrix approximation are com-
puted from the sample covariance matrixC0 and the truncated sequence�i. The
approximate likelihood function is maximized by a modified Newton-Raphson algo-
rithm employing these derivative matrices.

The matrixS0 is used as the estimate of the innovation covariance matrix,�ee. The
negative of the inverse of the second derivative matrix at the maximum is used as an
approximate covariance matrix for the parameter estimates. The standard errors of
the parameter estimates printed in the parameter estimates tables are taken from the
diagonal of this covariance matrix. The parameter covariance matrix is printed when
the COVB option is specified.

If the data are nearly nonstationary, a better estimate of�ee and the other parameters
can sometimes be obtained by specifying the RESIDEST option. The RESIDEST
option estimates the parameters using conditional least squares instead of maximum
likelihood.

The residuals are computed using the state space equation and the sample mean val-
ues of the variables in the model as start-up values. The estimate ofS0 is then com-
puted using the residuals from theith observation on, wherei is the maximum number
of times any variable occurs in the state vector. A multivariate Gauss-Marquardt al-
gorithm is used to minimizejS0j. Refer to Harvey (1981a) for a further description
of this method.
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Forecasting

Given estimates ofF,G, and�ee, forecasts ofxt are computed from the conditional
expectation ofzt.

In forecasting, the parametersF, G, and�ee are replaced with the estimates or by val-
ues specified in the RESTRICT statement. One-step-ahead forecasting is performed
for the observationxt, wheret�n� b. Heren is the number of observations and
b is the value of the BACK= option. For the observationxt, wheret > n� b, m-
step-ahead forecasting is performed form = t� n+ b. The forecasts are generated
recursively with the initial conditionz0 = 0.

The m-step-ahead forecast ofzt+m is zt+mjt, wherezt+mjt denotes the conditional
expectation ofzt+m given the information available at timet. The m-step-ahead
forecast ofxt+m is xt+mjt = Hzt+mjt, where the matrixH = [Ir0].

Let	i = FiG. Note that the lasts� r elements ofzt consist of the elements ofxujt
for u > t.

The state vectorzt+m can be represented as

zt+m = Fmzt +

m�1X
i=0

	iet+m�i

Sinceet+ijt = 0 for i > 0, them-step-ahead forecastzt+mjt is

zt+mjt = Fmzt = Fzt+m�1jt

Therefore, them-step-ahead forecast ofxt+m is

xt+mjt = Hzt+mjt

Them-step-ahead forecast error is

zt+m � zt+mjt =

m�1X
i=0

	iet+m�i

The variance of them-step-ahead forecast error is

Vz;m =

m�1X
i=0

	i�ee	
0
i

LettingVz;0 = 0, the variance of them-step-ahead forecast error ofzt+m,Vz;m, can
be computed recursively as follows:

Vz;m = Vz;m�1 +	m�1�ee	
0

m�1
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The variance of them-step-ahead forecast error ofxt+m is ther � r left upper sub-
matrix ofVz;m; that is,

Vx;m = HVz;mH
0

Unless the NOCENTER option is specified, the sample mean vector is added to the
forecast. When differencing is specified, the forecastsxt+mjt plus the sample mean
vector are integrated back to produce forecasts for the original series.

Let yt be the original series specified by the VAR statement, with some 0 values
appended corresponding to the unobserved past observations. Let B be the backshift
operator, and let�(B) be thes� s matrix polynomial in the backshift operator
corresponding to the differencing specified by the VAR statement. The off-diagonal
elements of�i are 0. Note that�0 = Is, whereIs is thes� s identity matrix. Then
zt =�(B)yt.

This gives the relationship

yt =��1(B)zt =
1X
i=0

�izt�i

where��1(B) =
P1

i=0�iB
i and�0 = Is.

Them-step-ahead forecast ofyt+m is

yt+mjt =

m�1X
i=0

�izt+m�ijt +

1X
i=m

�izt+m�i

Them-step-ahead forecast error ofyt+m is

m�1X
i=0

�i

�
zt+m�i � zt+m�ijt

�
=

m�1X
i=0

 
iX

u=0

�u	i�u

!
et+m�i

LettingVy;0 = 0, the variance of them-step-ahead forecast error ofyt+m,Vy;m, is

Vy;m =

m�1X
i=0

 
iX

u=0

�u	i�u

!
�ee

 
iX

u=0

�u	i�u

!0

= Vy;m�1 +

 
m�1X
u=0

�u	m�1�u

!
�ee

 
m�1X
u=0

�u	m�1�u

!0
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Relation of ARMA and State Space Forms

Every state space model has an ARMA representation, and conversely every ARMA
model has a state space representation. This section discusses this equivalence. The
following material is adapted from Akaike (1974), where there is a more complete
discussion. Pham-Dinh-Tuan (1978) also contains a discussion of this material.

Suppose you are given the following ARMA model:

�(B)xt = �(B)et

or, in more detail

xt ��1xt�1 � � � � ��pxt�p = et +�1et�1 + � � �+�qet�q (1)

whereet is a sequence of independent multivariate normal random vectors with mean
0 and variance matrix�ee; B is the backshift operator (Bxt = xt�1); �(B) and
�(B) are matrix polynomials in B; andxt is the observed process.

If the roots of the determinantial equationj�(B)j = 0 are outside the unit circle in
the complex plane, the model can also be written as

xt = ��1(B)�(B)et =

1X
i=0

	iet�i

The	i matrices are known as the impulse response matrices and can be computed
as��1(B)�(B).

You can assumep > q since, if this is not initially true, you can add more terms�i

that are identically 0 without changing the model.

To write this set of equations in a state space form, proceed as follows. Letxt+ijt be
the conditional expectation ofxt+i givenxw for w�t. The following relations hold:

xt+ijt =

1X
j=i

	jet+i�j

xt+ijt+1 = xt+ijt +	i�1et+1

However, from equation (1) you can derive the following relationship:

xt+pjt = �1xt+p�1jt + � � �+�pxt (2)

Hence, wheni = p, you can substitute forxt+pjt in the right-hand side of equation
(2) and close the system of equations.
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This substitution results in the following model in the state space form
zt+1 = Fzt +Get+1:

26664
xt+1

xt+2jt+1
...

xt+pjt+1

37775 =

2664
0 I 0 � � � 0
0 0 I � � � 0
...

...
...

...
�p �p�1 � � � �1

3775
26664

xt
xt+1jt

...
xt+p�1jt

37775+

2664
I

	1

...
	p�1

3775 et+1

Note that the state vectorzt is composed of conditional expectations ofxt and the
first r components ofzt are equal toxt.

The state space form can be cast into an ARMA form by solving the system of dif-
ference equations for the firstr components.

When converting from an ARMA form to a state space form, you can generate a
state vector larger than needed; that is, the state space model may not be a minimal
representation. When going from a state space form to an ARMA form, you can have
nontrivial common factors in the autoregressive and moving average operators that
yield an ARMA model larger than necessary.

If the state space form used is not a minimal representation, some but not all compo-
nents ofxt+ijt may be linearly dependent. This situation corresponds to[�p�p�1]
being of less than full rank when�(B) and�(B) have no common nontrivial
left factors. In this case,zt consists of a subset of the possible components of
[xt+ijt] i = 1; 2; � � �; p� 1: However, once a component ofxt+ijt (for example, the
jth one) is linearly dependent on the previous conditional expectations, then all sub-
sequentjth components ofxt+kjt for k > i must also be linearly dependent. Note
that in this case, equivalent but seemingly different structures can arise if the order of
the components withinxt is changed.

OUT= Data Set

The forecasts are contained in the output data set specified by the OUT= option on the
PROC STATESPACE statement. The OUT= data set contains the following variables:

� the BY variables

� the ID variable

� the VAR statement variables. These variables contain the actual values from
the input data set.

� FORi, numeric variables containing the forecasts. The variable FORi contains
the forecasts for theith variable in the VAR statement list. Forecasts are one-
step-ahead predictions until the end of the data or until the observation specified
by the BACK= option.
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� RESi, numeric variables containing the residual for the forecast of theith vari-
able in the VAR statement list. For forecast observations, the actual values are
missing and the RESi variables contain missing values.

� STDi, numeric variables containing the standard deviation for the forecast of
the ith variable in the VAR statement list. The values of the STDi variables can
be used to construct univariate confidence limits for the corresponding fore-
casts. However, such confidence limits do not take into account the covariance
of the forecasts.

OUTAR= Data Set

The OUTAR= data set contains the estimates of the preliminary autoregressive mod-
els. The OUTAR= data set contains the following variables:

� ORDER, a numeric variable containing the orderp of the autoregressive model
that the observation represents

� AIC, a numeric variable containing the value of the information criterionAICp

� SIGFl, numeric variables containing the estimate of the innovation covariance
matrices for the forward autoregressive models. The variable SIGFl contains
the lth column ofb�p in the observations with ORDER=p.

� SIGBl, numeric variables containing the estimate of the innovation covariance
matrices for the backward autoregressive models. The variable SIGBl contains
the lth column ofb
p in the observations with ORDER=p.

� FORk–l, numeric variables containing the estimates of the autoregressive pa-
rameter matrices for the forward models. The variable FORk–l contains the
lth column of the lagk autoregressive parameter matrixb�p

k in the observations
with ORDER=p.

� BACk–l, numeric variables containing the estimates of the autoregressive pa-
rameter matrices for the backward models. The variable BACk–l contains the
lth column of the lagk autoregressive parameter matrixb	p

k in the observations
with ORDER=p.

The estimates for the orderp autoregressive model can be selected as those observa-
tions with ORDER=p. Within these observations, thek,lth element of�p

i is given by
the value of the FORi–l variable in thekth observation. Thek,lth element of	p

i is
given by the value of BACi–l variable in thekth observation. Thek,lth element of�p

is given by SIGFl in thekth observation. Thek,lth element of
p is given by SIGBl
in thekth observation.

Table 18.1 shows an example of the OUTAR= data set, with ARMAX=3 andxt of
dimension 2. In Table 18.1,(i; j) indicate thei,jth element of the matrix.

1035
SAS OnlineDoc: Version 8



Part 2. General Information

Table 18.1. Values in the OUTAR= Data Set
Obs ORDER AIC SIGF1 SIGF2 SIGB1 SIGB2 FOR1–1 FOR1–2 FOR2–1 FOR2–2 FOR3–1

1 0 AIC0 �0(1;1) �0(1;2) 
0(1;1) 
0(1;2) . . . . .
2 0 AIC0 �0(2;1) �0(2;2) 
0(2;1) 
0(2;2) . . . . .

3 1 AIC1 �1(1;1) �1(1;2) 
1(1;1) 
1(1;2) �
1
1(1;1) �

1
1(1;2) . . .

4 1 AIC1 �1(2;1) �1(1;2) 
1(2;1) 
1(1;2) �
1
1(2;1) �

1
1(2;2) . . .

5 2 AIC2 �2(1;1) �2(1;2) 
2(1;1) 
2(1;2) �
2
1(1;1) �

2
1(1;2) �

2
2(1;1) �

2
2(1;2) .

6 2 AIC2 �2(2;1) �2(1;2) 
2(2;1) 
2(1;2) �
2
1(2;1) �

2
1(2;2) �

2
2(2;1) �

2
2(2;2) .

7 3 AIC3 �3(1;1) �3(1;2) 
3(1;1) 
3(1;2) �
3
1(1;1) �

3
1(1;2) �

3
2(1;1) �

3
2(1;2) �

3
3(1;1)

8 3 AIC3 �3(2;1) �3(1;2) 
3(2;1) 
3(1;2) �
3
1(2;1) �

3
1(2;2) �

3
2(2;1) �

3
2(2;2) �

3
3(2;1)

Obs FOR3–2 BACK1–1 BACK1–2 BACK2–1 BACK2–2 BACK3–1 BACK3–2
1 . . . . . . .
2 . . . . . . .
3 . 	

1
1(1;1) 	

1
1(1;2) . . . .

4 . 	
1
1(2;1) 	

1
1(2;2) . . . .

5 . 	
2
1(1;1) 	

2
1(1;2) 	

2
2(1;1) 	

2
2(1;2) . .

6 . 	
2
1(2;1) 	

2
1(2;2) 	

2
2(2;1) 	

2
2(2;2) . .

7 �
3
3(1;2) 	

3
1(1;1) 	

3
1(1;2) 	

3
2(1;1) 	

3
2(1;2) 	

3
3(1;1) 	

3
3(1;2)

8 �
3
3(2;2) 	

3
1(2;1) 	

3
1(2;2) 	

3
2(2;1) 	

3
2(2;2) 	

3
3(2;1) 	

3
3(2;2)

The estimated autoregressive parameters can be used in the IML procedure to obtain
autoregressive estimates of the spectral density function or forecasts based on the
autoregressive models.

OUTMODEL= Data Set

The OUTMODEL= data set contains the estimates of theF andGmatrices and their
standard errors, the names of the components of the state vector, and the estimates of
the innovation covariance matrix. The variables contained in the OUTMODEL= data
set are as follows:

� the BY variables

� STATEVEC, a character variable containing the name of the component of the
state vector corresponding to the observation. The STATEVEC variable has
the value STD for standard deviations observations, which contain the standard
errors for the estimates given in the preceding observation.

� F–j, numeric variables containing the columns of theF matrix. The variable
F–j contains thejth column ofF. The number of F–j variables is equal to
the value of the DIMMAX= option. If the model is of smaller dimension, the
extraneous variables are set to missing.

� G–j, numeric variables containing the columns of theG matrix. The variable
G–j contains thejth column ofG. The number of G–j variables is equal tor,
the dimension ofxt given by the number of variables in the VAR statement.

� SIG–j, numeric variables containing the columns of the innovation covariance
matrix. The variable SIG–j contains thejth column of�ee. There arer vari-
ables SIG–j.

Table 18.2 shows an example of the OUTMODEL= data set, withxt = (xt; yt)
0,

zt = (xt; yt; xt+1jt)
0, and DIMMAX=4. In Table 18.2,Fi;j andGi;j are thei,jth

elements ofF andG respectively. Note that all elements for F–4 are missing because
F is a3� 3 matrix.
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Table 18.2. Value in the OUTMODEL= Data Set

Obs STATEVEC F–1 F–2 F–3 F–4 G–1 G–2 SIG–1 SIG–2
1 X(T;T) 0 0 1 . 1 0 �1;1 �1;2

2 STD . . . . . . . .
3 Y(T;T) F2;1 F2;2 F2;3 . 0 1 �2;1 �2;2

4 STD stdF2;1 stdF2;2 stdF2;3 . . . . .
5 X(T+1;T) F3;1 F3;2 F3;3 . G3;1 G3;2 . .
6 STD stdF3;1 stdF3;2 stdF3;3 . stdG3;1 stdG3;2 . .

Printed Output

The printed output produced by the STATESPACE procedure is described in the fol-
lowing:

1. descriptive statistics, which include the number of observations used, the
names of the variables, their means and standard deviations (Std), and the dif-
ferencing operations used.

2. the Akaike information criteria for the sequence of preliminary autoregressive
models

3. if the PRINTOUT=LONG option is specified, the sample autocovariance ma-
trices of the input series at various lags.

4. if the PRINTOUT=LONG option is specified, the sample autocorrelation ma-
trices of the input series.

5. a schematic representation of the autocorrelation matrices, showing the signif-
icant autocorrelations.

6. if the PRINTOUT=LONG option is specified, the partial autoregressive ma-
trices. (These are�p

p as described in "Preliminary Autoregressive Models"
earlier in this chapter.)

7. a schematic representation of the partial autocorrelation matrices, showing the
significant partial autocorrelations.

8. the Yule-Walker estimates of the autoregressive parameters for the autoregres-
sive model with the minimum AIC.

9. if the PRINTOUT=LONG option is specified, the autocovariance matrices of
the residuals of the minimum AIC model. This is the sequence of estimated
innovation variance matrices for the solutions of the Yule-Walker equations.

10. if the PRINTOUT=LONG option is specified, the autocorrelation matrices of
the residuals of the minimum AIC model.

11. If the CANCORR option is specified, the canonical correlations analysis for
each potential state vector considered in the state vector selection process.
This includes the potential state vector, the canonical correlations, the informa-
tion criterion for the smallest canonical correlation, Bartlett’s�2 statistic (“Chi
Square”) for the smallest canonical correlation, and the degrees of freedom of
Bartlett’s�2.
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12. the components of the chosen state vector.

13. the preliminary estimate of the transition matrix,F, the input matrix,G, and
the variance matrix for the innovations,�ee.

14. if the ITPRINT option is specified, the iteration history of the likelihood max-
imization. For each iteration, this shows the iteration number, the number of
step halvings, the determinant of the innovation variance matrix, the damping
factor Lambda, and the values of the parameters.

15. the state vector, printed again to aid interpretation of the following listing ofF

andG.

16. the final estimate of the transition matrix,F.

17. the final estimate of the input matrix,G.

18. the final estimate of the variance matrix for the innovations,�ee.

19. a table listing the estimates of the free parameters inF andG and their standard
errors andt statistics.

20. if the COVB option is specified, the covariance matrix of the parameter esti-
mates.

21. if the COVB option is specified, the correlation matrix of the parameter esti-
mates.

22. if the PRINT option is specified, the forecasts and their standard errors.
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ODS Table Names

PROC STATESPACE assigns a name to each table it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. These names are listed in the following table. For
more information on ODS, see Chapter 6, “Using the Output Delivery System.”

Table 18.3. ODS Tables Produced in PROC STATESPACE

ODS Table Name Description Option
NObs Number of observations default
Summary Simple summary statistics table default
InfoCriterion Information criterion table default
CovLags Covariance Matrices of Input Series PRINTOUT=LONG
CorrLags Correlation Matrices of Input Series PRINTOUT=LONG
PartialAR Partial Autoregressive Matrices PRINTOUT=LONG
YWEstimates Yule-Walker Estimates for Minimum AIC default
CovResiduals Covariance of Residuals PRINTOUT=LONG
CorrResiduals Residual Correlations from AR Models PRINTOUT=LONG
StateVector State vector table default
CorrGraph Schematic Representation of Correlations default
TransitionMatrix Transition Matrix default
InputMatrix Input Matrix default
VarInnov Variance Matrix for the Innovation default
CovB Covariance of Parameter Estimates COVB
CorrB Correlation of Parameter Estimates COVB
CanCorr Canonical Correlation Analysis CANCORR
IterHistory Iterative Fitting table ITPRINT
ParameterEstimates Parameter Estimates Table default
Forecasts Forecasts Table PRINT
ConvergenceStatus Convergence Status Table default
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Example

Example 18.1. Series J from Box and Jenkins

This example analyzes the gas furnace data (series J) from Box and Jenkins. (The
data are not shown. Refer to Box and Jenkins (1976) for the data.)

First, a model is selected and fit automatically using the following statements.

title1 ’Gas Furnace Data’;
title2 ’Box & Jenkins Series J’;
title3 ’Automatically Selected Model’;

proc statespace data=seriesj cancorr;
var x y;

run;

The results for the automatically selected model are shown in Output 18.1.1.
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Output 18.1.1. Results for Automatically Selected Model

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure

Number of Observations 296

Standard
Variable Mean Error

x -0.05683 1.072766
y 53.50912 3.202121

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure

Information Criterion for Autoregressive Models

Lag=0 Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 Lag=8

651.3862 -1033.57 -1632.96 -1645.12 -1651.52 -1648.91 -1649.34 -1643.15 -1638.56

Information
Criterion for

Autoregressive
Models

Lag=9 Lag=10

-1634.8 -1633.59

Schematic Representation of Correlations

Name/Lag 0 1 2 3 4 5 6 7 8 9 10

x +- +- +- +- +- +- +- +- +- +- +-
y -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+

+ is > 2*std error, - is < -2*std error, . is between
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Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure

Schematic Representation of Partial Autocorrelations

Name/Lag 1 2 3 4 5 6 7 8 9 10

x +. -. +. .. .. -. .. .. .. ..
y -+ -- -. .+ .. .. .. .. .. .+

+ is > 2*std error, - is < -2*std error, . is between

Yule-Walker Estimates for Minimum AIC

------Lag=1------ ------Lag=2------ ------Lag=3------ ------Lag=4------
x y x y x y x y

x 1.925887 -0.00124 -1.20166 0.004224 0.116918 -0.00867 0.104236 0.003268
y 0.050496 1.299793 -0.02046 -0.3277 -0.71182 -0.25701 0.195411 0.133417

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure
Canonical Correlations Analysis

Information Chi
x(T;T) y(T;T) x(T+1;T) Criterion Square DF

1 1 0.804883 292.9228 304.7481 8

Information Chi
x(T;T) y(T;T) x(T+1;T) y(T+1;T) Criterion Square DF

1 1 0.906681 0.607529 122.3358 134.7237 7

Information Chi
x(T;T) y(T;T) x(T+1;T) y(T+1;T) x(T+2;T) Criterion Square DF

1 1 0.909434 0.610278 0.186274 -1.54701 10.34705 6

Information Chi
x(T;T) y(T;T) x(T+1;T) y(T+1;T) y(T+2;T) Criterion Square DF

1 1 0.91014 0.618937 0.206823 0.940392 12.80924 6

Information Chi
x(T;T) y(T;T) x(T+1;T) y(T+1;T) y(T+2;T) y(T+3;T) Criterion Square DF

1 1 0.912963 0.628785 0.226598 0.083258 -7.94103 2.041584 5
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Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure
Selected Statespace Form and Preliminary Estimates

State Vector

x(T;T) y(T;T) x(T+1;T) y(T+1;T) y(T+2;T)

Estimate of Transition Matrix

0 0 1 0 0
0 0 0 1 0

-0.84718 0.026794 1.711715 -0.05019 0
0 0 0 0 1

-0.19785 0.334274 -0.18174 -1.23557 1.787475

Input Matrix for Innovation

1 0
0 1

1.925887 -0.00124
0.050496 1.299793
0.142421 1.361696

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure
Selected Statespace Form and Preliminary Estimates

Variance Matrix for Innovation

0.035274 -0.00734
-0.00734 0.097569
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Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

State Vector

x(T;T) y(T;T) x(T+1;T) y(T+1;T) y(T+2;T)

Estimate of Transition Matrix

0 0 1 0 0
0 0 0 1 0

-0.86192 0.030609 1.724235 -0.05483 0
0 0 0 0 1

-0.34839 0.292124 -0.09435 -1.09823 1.671418

Input Matrix for Innovation

1 0
0 1

1.92442 -0.00416
0.015621 1.258495

0.08058 1.353204

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

Variance Matrix for Innovation

0.035579 -0.00728
-0.00728 0.095577

Parameter Estimates

Standard
Parameter Estimate Error t Value

F(3,1) -0.86192 0.072961 -11.81
F(3,2) 0.030609 0.026167 1.17
F(3,3) 1.724235 0.061599 27.99
F(3,4) -0.05483 0.030169 -1.82
F(5,1) -0.34839 0.135253 -2.58
F(5,2) 0.292124 0.046299 6.31
F(5,3) -0.09435 0.096527 -0.98
F(5,4) -1.09823 0.109525 -10.03
F(5,5) 1.671418 0.083737 19.96
G(3,1) 1.924420 0.058162 33.09
G(3,2) -0.00416 0.035255 -0.12
G(4,1) 0.015621 0.095771 0.16
G(4,2) 1.258495 0.055742 22.58
G(5,1) 0.080580 0.151622 0.53
G(5,2) 1.353204 0.091388 14.81
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The two series are believed to have a transfer function relation with the gas rate
(variable X) as the input and the CO2 concentration (variable Y) as the output. Since
the parameter estimates shown in Output 18.1.1 support this kind of model, the model
is reestimated with the feedback parameters restricted to 0. The following statements
fit the transfer function (no feedback) model.

title3 ’Transfer Function Model’;
proc statespace data=seriesj printout=none;

var x y;
restrict f(3,2)=0 f(3,4)=0

g(3,2)=0 g(4,1)=0 g(5,1)=0;
run;

The last 2 pages of the output are shown in Output 18.1.2.

Output 18.1.2. STATESPACE Output for Transfer Function Model

Gas Furnace Data
Box & Jenkins Series J

Transfer Function Model

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

State Vector

x(T;T) y(T;T) x(T+1;T) y(T+1;T) y(T+2;T)

Estimate of Transition Matrix

0 0 1 0 0
0 0 0 1 0

-0.68882 0 1.598717 0 0
0 0 0 0 1

-0.35944 0.284179 -0.0963 -1.07313 1.650047

Input Matrix for Innovation

1 0
0 1

1.923446 0
0 1.260856
0 1.346332
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Gas Furnace Data
Box & Jenkins Series J

Transfer Function Model

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

Variance Matrix for Innovation

0.036995 -0.0072
-0.0072 0.095712

Parameter Estimates

Standard
Parameter Estimate Error t Value

F(3,1) -0.68882 0.050549 -13.63
F(3,3) 1.598717 0.050924 31.39
F(5,1) -0.35944 0.229044 -1.57
F(5,2) 0.284179 0.096944 2.93
F(5,3) -0.09630 0.140876 -0.68
F(5,4) -1.07313 0.250385 -4.29
F(5,5) 1.650047 0.188533 8.75
G(3,1) 1.923446 0.056328 34.15
G(4,2) 1.260856 0.056464 22.33
G(5,2) 1.346332 0.091086 14.78
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