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Chapter 20
The TSCSREG Procedure

Overview

The TSCSREG (TimeSeriesCrossSectionRegression) procedure analyzes a class of
linear econometric models that commonly arise when time series and cross-sectional
data are combined. The TSCSREG procedure deals with panel data sets that consist
of time series observations on each of several cross-sectional units.

Such models can be viewed as two-way designs with covariates

yit =

KX
k=1

Xitk�k + uit i = 1; : : :;N ; t = 1; : : :;T

whereN is the number of cross sections,T is the length of the time series for each
cross section, andK is the number of exogenous or independent variables.

The performance of any estimation procedure for the model regression parameters
depends on the statistical characteristics of the error components in the model. The
TSCSREG procedure estimates the regression parameters in the preceding model
under several common error structures. The error structures and the corresponding
methods the TSCSREG procedure uses to analyze them are as follows:

� one and two-way fixed and random effects models. If the specification is de-
pendent only on the cross section to which the observation belongs, such a
model is referred to as a model with one-way effects. A specification that de-
pends on both the cross section and the time series to which the observation
belongs is called a model with two-way effects.

� Therefore, the specifications for the one-way model are

uit = �i + �it

and the specifications for the two-way model are

uit = �i + et + �it

where�it is a classical error term with zero mean and a homoscedastic covari-
ance matrix.

� Apart from the possible one-way or two-way nature of the effect, the other
dimension of difference between the possible specifications is that of the na-
ture of the cross-sectional or time-series effect. The models are referred to as
fixed effects models if the effects are nonrandom and as random effects models
otherwise.
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Part 2. General Information

� first-order autoregressive model with contemporaneous correlation

uit = �iui;t�1 + �it

� The Parks method is used to estimate this model. This model assumes a first-
order autoregressive error structure with contemporaneous correlation between
cross sections. The covariance matrix is estimated by a two-stage procedure
leading to the estimation of model regression parameters by GLS.

� mixed variance-component moving average error process

uit = ai + bt + eit

eit = �0�t + �1�t�1 + : : : + �m�t�m

� The Da Silva method is used to estimate this model. The Da Silva method
estimates the regression parameters using a two-step GLS-type estimator.

The TSCSREG procedure analyzes panel data sets that consist of multiple time se-
ries observations on each of several individuals or cross-sectional units. The input
data set must be in time series cross-sectional form. See Chapter 2, “Working with
Time Series Data,” for a discussion of how time series related by a cross-sectional
dimension are stored in SAS data sets. The TSCSREG procedure requires that the
time series for each cross section have the same number of observations and cover
the same time range.

SAS OnlineDoc: Version 8
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Chapter 20. Getting Started

Getting Started

Specifying the Input Data

The input data set used by the TSCSREG procedure must be sorted by cross section
and by time within each cross section. Therefore, the first step in using PROC TSC-
SREG is to make sure that the input data set is sorted. Normally, the input data set
contains a variable that identifies the cross section for each observation and a variable
that identifies the time period for each observation.

To illustrate, suppose that you have a data set A containing data over time for each
of several states. You want to regress the variable Y on regressors X1 and X2. Cross
sections are identified by the variable STATE, and time periods are identified by the
variable DATE. The following statements sort the data set A appropriately:

proc sort data=a;
by state date;

run;

The next step is to invoke the TSCSREG procedure and specify the cross section and
time series variables in an ID statement. List the variables in the ID statement exactly
as they are listed in the BY statement.

proc tscsreg data=a;
id state date;

Alternatively, you can omit the ID statement and use the CS= and TS= options on the
PROC TSCSREG statement to specify the number of cross sections in the data set
and the number of time series observations in each cross section.

Unbalanced Data

In the case of fixed effects and random effects models, the TSCSREG procedure is
capable of processing data with different numbers of time series observations across
different cross sections. You must specify the ID statement to estimate models using
unbalanced data. The missing time series observations are recognized by the absence
of time series id variable values in some of the cross sections in the input data set.
Moreover, if an observation with a particular time series id value and cross-sectional
id value is present in the input data set, but one or more of the model variables are
missing, that time series point is treated as missing for that cross section.

Also, when PROC TSCSREG is processing balanced data, you now need to specify
only the CS= parameter if you do not specify an ID statement. The TS= parameter
is not required, since it can be inferred from the number of observations if the data is
balanced.
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Part 2. General Information

Specifying the Regression Model

Next, specify the linear regression model with a MODEL statement. The MODEL
statement in PROC TSCSREG is specified like the MODEL statement in other SAS
regression procedures: the dependent variable is listed first, followed by an equal
sign, followed by the list of regressor variables.

proc tscsreg data=a;
id state date;
model y = x1 x2;

run;

The reason for using PROC TSCSREG instead of other SAS regression procedures is
that you can incorporate a model for the structure of the random errors. It is important
to consider what kind of error structure model is appropriate for your data and to
specify the corresponding option in the MODEL statement.

The error structure options supported by the TSCSREG procedure are FIXONE,
FIXTWO, RANONE, RANTWO, FULLER, PARKS, and DASILVA. See the "De-
tails" section later in this chapter for more information about these methods and the
error structures they assume.

By default, the Fuller-Battese method is used. Thus, the preceding example is the
same as specifying the FULLER option, as shown in the following statements:

proc tscsreg data=a;
id state date;
model y = x1 x2 / fuller;

run;

You can specify more than one error structure option in the MODEL statement;
the analysis is repeated using each method specified. You can use any number of
MODEL statements to estimate different regression models or estimate the same
model using different options. See Example 20.1 in the section "Examples."

In order to aid in model specification within this class of models, the procedure pro-
vides two specification test statistics. The first is anF statistic that tests the null
hypothesis that the fixed effects parameters are all zero. The second is a Hausman
m-statistic that provides information about the appropriateness of the random effects
specification. It is based on the idea that, under the null hypothesis of no correlation
between the effects variables and the regressors, OLS and GLS are consistent, but
OLS is inefficient. Hence, a test can be based on the result that the covariance of an
efficient estimator with its difference from an inefficient estimator is zero. Rejection
of the null hypothesis might suggest that the fixed effects model is more appropriate.

The procedure also provides the Buse R-squared measure, which is the most ap-
propriate goodness-of-fit measure for models estimated using GLS. This number is
interpreted as a measure of the proportion of the transformed sum of squares of the
dependent variable that is attributable to the influence of the independent variables.
In the case of OLS estimation, the Buse R-squared measure is equivalent to the usual
R-squared measure.

SAS OnlineDoc: Version 8
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Chapter 20. Getting Started

Estimation Techniques

If the effects are fixed, the models are essentially regression models with dummy
variables corresponding to the specified effects. For fixed effects models, ordinary
least squares (OLS) estimation is best linear unbiased.

The other alternative is to assume that the effects are random. In the one-way case,
E (�i) = 0, E (�2i ) = �2� , and

E (�i�j) = 0 for i 6=j, and�i is uncorrelated with�it for all i andt. In the two-way
case, in addition to all of the preceding,E (et) = 0, E (e2t ) = �2e , and

E (etes) = 0 for t6=s, and theet are uncorrelated with the�i and the�it for all iandt.
Thus, the model is a variance components model, with the variance components�2�
and�2e , as well as�2� , to be estimated. A crucial implication of such a specification
is that the effects are independent of the regressors. For random effects models, the
estimation method is an estimated generalized least squares (EGLS) procedure that
involves estimating the variance components in the first stage and using the estimated
variance covariance matrix thus obtained to apply generalized least squares (GLS) to
the data.

Introductory Example

The following example uses the cost function data from Greene (1990) to estimate the
variance components model. The variable OUTPUT is the log of output in millions
of kilowatt-hours, and COST is the log of cost in millions of dollars. Refer to Greene
(1990) for details.

data greene;
input firm year output cost @@;

cards;
1 1955 5.36598 1.14867 1 1960 6.03787 1.45185
1 1965 6.37673 1.52257 1 1970 6.93245 1.76627
2 1955 6.54535 1.35041 2 1960 6.69827 1.71109
2 1965 7.40245 2.09519 2 1970 7.82644 2.39480
3 1955 8.07153 2.94628 3 1960 8.47679 3.25967
3 1965 8.66923 3.47952 3 1970 9.13508 3.71795
4 1955 8.64259 3.56187 4 1960 8.93748 3.93400
4 1965 9.23073 4.11161 4 1970 9.52530 4.35523
5 1955 8.69951 3.50116 5 1960 9.01457 3.68998
5 1965 9.04594 3.76410 5 1970 9.21074 4.05573
6 1955 9.37552 4.29114 6 1960 9.65188 4.59356
6 1965 10.21163 4.93361 6 1970 10.34039 5.25520

;

proc sort data=greene;
by firm year;

run;

Usually you cannot explicitly specify all the explanatory variables that affect the de-
pendent variable. The omitted or unobservable variables are summarized in the error
disturbances. The TSCSREG procedure used with the Fuller-Battese method adds

1117
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Part 2. General Information

the individual and time-specific random effects to the error disturbances, and the pa-
rameters are efficiently estimated using the GLS method. The variance components
model used by the Fuller-Battese method is

yit =
KX
k=1

Xitk�k + vi + et + �it i = 1; : : :;N ; t = 1; : : :;T

The following statements fit this model. Since the Fuller-Battese is the default
method, no options are required.

proc tscsreg data=greene;
model cost = output;
id firm year;

run;

The TSCSREG procedure output is shown in Figure 20.1. A model description is
printed first, which reports the estimation method used and the number of cross sec-
tions and time periods. The variance components estimates are printed next. Finally,
the table of regression parameter estimates shows the estimates, standard errors, and
t-tests.

SAS OnlineDoc: Version 8
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The TSCSREG Procedure

Dependent Variable: cost

Model Description

Estimation Method RanTwo
Number of Cross Sections 6
Time Series Length 4

Fit Statistics

SSE 0.3481 DFE 22
MSE 0.0158 Root MSE 0.1258
R-Square 0.8136

Variance Component Estimates

Variance Component for Cross Sections 0.046907
Variance Component for Time Series 0.00906
Variance Component for Error 0.008749

Hausman Test for
Random Effects

DF m Value Pr > m

1 26.46 <.0001

Parameter Estimates

Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -2.99992 0.6478 -4.63 0.0001
output 1 0.746596 0.0762 9.80 <.0001

Figure 20.1. The Variance Components Estimates

1119
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Part 2. General Information

Syntax

The following statements are used with the TSCSREG procedure.

PROC TSCSREG options;
BY variables;
ID cross-section-id-variable time-series-id-variable;
MODEL dependent = regressor-variables / options;
label: TEST equation [,equation... ];

Functional Summary

The statements and options used with the TSCSREG procedure are summarized in
the following table.

Description Statement Option

Data Set Options
specify the input data set TSCSREG DATA=
write parameter estimates to an output data set TSCSREG OUTEST=
include correlations in the OUTEST= data set TSCSREG CORROUT
include covariances in the OUTEST= data set TSCSREG COVOUT
specify number of time series observations TSCSREG TS=
specify number of cross sections TSCSREG CS=

Declaring the Role of Variables
specify BY-group processing BY
specify the cross section and time ID variables ID

Printing Control Options
print correlations of the estimates MODEL CORRB
print covariances of the estimates MODEL COVB
suppress printed output MODEL NOPRINT
perform tests of linear hypotheses TEST

Model Estimation Options
specify the one-way fixed effects model MODEL FIXONE
specify the two-way fixed effects model MODEL FIXTWO
specify the one-way random effects model MODEL RANONE
specify the one-way random effects model MODEL RANTWO
specify Fuller-Battese method MODEL FULLER
specify PARKS MODEL PARKS
specify Da Silva method MODEL DASILVA
specify order of the moving average error pro-
cess for Da Silva method

MODEL M=

SAS OnlineDoc: Version 8
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Chapter 20. Syntax

Description Statement Option

print � matrix for Parks method MODEL PHI
print autocorrelation coefficients for Parks
method

MODEL RHO

suppress the intercept term MODEL NOINT
control check for singularity MODEL SINGULAR=

PROC TSCSREG Statement

PROC TSCSREG options;

The following options can be specified on the PROC TSCSREG statement.

DATA= SAS-data-set
names the input data set. The input data set must be sorted by cross section and by
time period within cross section. If you omit DATA=, the most recently created SAS
data set is used.

TS= number
specifies the number of observations in the time series for each cross section. The
TS= option value must be greater than 1. The TS= option is required unless an ID
statement is used. Note that the number of observations for each time series must be
the same for each cross section and must cover the same time period.

CS= number
specifies the number of cross sections. The CS= option value must be greater than 1.
The CS= option is required unless an ID statement is used.

OUTEST= SAS-data-set
names an output data set to contain the parameter estimates. When the OUTEST=
option is not specified, the OUTEST= data set is not created. See the section "OUT-
EST= Data Set" later in this chapter for details on the structure of the OUTEST= data
set.

OUTCOV
COVOUT

writes the covariance matrix of the parameter estimates to the OUTEST= data set.
See the section "OUTEST= Data Set" later in this chapter for details.

OUTCORR
CORROUT

writes the correlation matrix of the parameter estimates to the OUTEST= data set.
See the section "OUTEST= Data Set" later in this chapter for details.

In addition, any of the following MODEL statement options can be specified in
the PROC TSCSREG statement: CORRB, COVB, FIXONE, FIXTWO, RANONE,
RANTWO, FULLER, PARKS, DASILVA, NOINT, NOPRINT, M=, PHI, RHO, and

1121
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Part 2. General Information

SINGULAR=. When specified in the PROC TSCSREG statement, these options are
equivalent to specifying the options for every MODEL statement. See the section
"MODEL Statement" for a complete description of each of these options.

BY Statement

BY variables ;

A BY statement can be used with PROC TSCSREG to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the input data set must be sorted by the BY variables as well as by cross section and
time period within the BY groups.

When both an ID statement and a BY statement are specified, the input data set must
be sorted first with respect to BY variables and then with respect to the cross section
and time series ID variables. For example,

proc sort data=a;
by byvar1 byvar2 csid tsid;

run;

proc tscsreg data=a;
by byvar1 byvar2;
id csid tsid;
...

run;

When both a BY statement and an ID statement are used, the data set may have a
different number of cross sections or a different number of time periods in each BY
group. If no ID statement is used, the CS=N and TS=T options must be specified and
each BY group must containN � T observations.

ID Statement

ID cross-section-id-variable time-series-id-variable;

The ID statement is used to specify variables in the input data set that identify the
cross section and time period for each observation.

When an ID statement is used, the TSCSREG procedure verifies that the input data
set is sorted by the cross section ID variable and by the time series ID variable within
each cross section. The TSCSREG procedure also verifies that the time series ID
values are the same for all cross sections.

To make sure the input data set is correctly sorted, use PROC SORT with a BY
statement with the variables listed exactly as they are listed in the ID statement to
sort the input data set.

SAS OnlineDoc: Version 8
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Chapter 20. Syntax

proc sort data=a;
by csid tsid;

run;

proc tscsreg data=a;
id csid tsid;
... etc. ...

run;

If the ID statement is not used, the TS= and CS= options must be specified on the
PROC TSCSREG statement. Note that the input data must be sorted by time within
cross section, regardless of whether the cross section structure is given by an ID
statement or by the options TS= and CS=.

If an ID statement is specified, the time series lengthT is set to the minimum number
of observations for any cross section, and only the firstT observations in each cross
section are used. If both the ID statement and the TS= and CS= options are specified,
the TS= and CS= options are ignored.

MODEL Statement

MODEL response = regressors / options;

The MODEL statement specifies the regression model and the error structure as-
sumed for the regression residuals. The response variable on the left side of the equal
sign is regressed on the independent variables listed after the equal sign. Any number
of MODEL statements can be used. For each model statement only one response
variable can be specified on the left side of the equal sign.

The error structure is specified by the FULLER, PARKS, and DASILVA options.
More than one of these three options can be used, in which case the analysis is re-
peated for each error structure model specified.

Models can be given labels. Model labels are used in the printed output to identify
the results for different models. If no label is specified, the response variable name is
used as the label for the model. The model label is specified as follows:

label : MODEL : : : ;

The following options can be specified on the MODEL statement after a slash (/).

CORRB
CORR

prints the matrix of estimated correlations between the parameter estimates.

COVB
VAR

prints the matrix of estimated covariances between the parameter estimates.

FIXONE
specifies that a one-way fixed effects model be estimated.

1123
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FIXTWO
specifies that a two-way fixed effects model be estimated.

RANONE
specifies that a one-way random effects model be estimated.

RANTWO
specifies that a two-way random effects model be estimated.

FULLER
specifies that the model be estimated using the Fuller-Battese method, which assumes
a variance components model for the error structure. See "Fuller-Battese Method"
later in this chapter for details. FULLER is the default.

PARKS
specifies that the model be estimated using the Parks method, which assumes a first-
order autoregressive model for the error structure. See "Parks Method" later in this
chapter for details.

DASILVA
specifies that the model be estimated using the Da Silva method, which assumes a
mixed variance-component moving average model for the error structure. See "Da
Silva Method" later in this chapter for details.

M= number
specifies the order of the moving average process in the Da Silva method. The M=
value must be less thanT � 1. The default is M=1.

PHI
prints the� matrix of estimated covariances of the observations for the Parks method.
The PHI option is relevant only when the PARKS option is used. See "Parks Method"
later in this chapter for details.

RHO
prints the estimated autocorrelation coefficients for the Parks method.

NOINT
NOMEAN

suppresses the intercept parameter from the model.

NOPRINT
suppresses the normal printed output.

SINGULAR= number
specifies a singularity criterion for the inversion of the matrix. The default depends
on the precision of the computer system.

SAS OnlineDoc: Version 8
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TEST Statement

label: TEST equation [,equation... ];

The TEST statement performsF-tests of linear hypotheses about the regression pa-
rameters in the preceding MODEL statement. Each equation specifies a linear hy-
pothesis to be tested. All hypotheses in one TEST statement are tested jointly. Vari-
able names in the equations must correspond to regressors in the preceding MODEL
statement, and each name represents the coefficient of the corresponding regressor.
The keyword INTERCEPT refers to the coefficient of the intercept.

The following illustrates the use of the TEST statement:

proc tscsreg;
model y = x1 x2 x3;
test x1 = 0, x2/2 + 2*x3= 0;
test_int: test intercept=0, x3 = 0;

1125
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Details

Notation

The discussion here is in the context of the usual panel structure,

yit =

KX
k=1

xitk�k + uit i = 1; : : :N ; t = 1; : : :Ti

with the specification ofuit dependent on the particular model. The total number
of observationsM =

P
N

i=1Ti. For the balanced data case,Ti = T for all i. The
M�M covariance matrix ofuit is denoted byV. LetX andy be the independent
and dependent variables arranged by cross section and by time within each cross
section. LetXs be theX matrix without the intercept. Generally, all other notation
is specific to each section.

The One-Way Fixed Effects Model

The specification for the one-way fixed effects model is

uit = �i + �it

where the�is are nonrandom. Since including both the intercept and all the�is in-
duces a redundancy (unless the intercept is suppressed with the NOINT option), the
�i estimates are reported under the restriction that�N = 0.

LetQ0 = diag(ETi), with �JTi = JTi=Ti andETi = ITi �
�JTi .

The estimators for the intercept and the fixed effects are given by the usual OLS
expressions.

If ~Xs = Q0Xs and~y = Q0y, the estimator of the slope coefficients is given by

~�s = ( ~X
0

s
~Xs)

�1 ~X
0

s~y

The estimator of the error variance is

�̂� = ~u
0

Q0~u=(M �N � (K � 1))

where the residuals~u are given by~u = (IM � JM j
0
M=M )(y �Xs

~�s) if there is an
intercept and by~u = (y �Xs

~�s)if there is not.

The Two-Way Fixed Effects Model

The specification for the two-way fixed effects model is

uit = �i + et + �it
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where the�is andets are nonrandom. If you do not specify the NOINT option, which
suppresses the intercept, the estimates for the fixed effects are reported under the
restriction that�N = 0 andeT = 0. If you specify the NOINT option to suppress the
intercept, only the restrictioneT = 0 is imposed.

LetX� andy� be the independent and dependent variables arranged by time and by
cross section within each time period. LetMt be the number of cross sections ob-
served in yeart and let

P
tMt = M . LetDt be theMt�N matrix obtained from the

N�N identity matrix from which rows corresponding to cross sections not observed
at timet have been omitted. Consider

Z = (Z1;Z2)

whereZ1 = (D
0

1;D
0

2; : : : ::D
0

T )
0

andZ2 = diag(D1jN ;D2jN ; : : : : : :DT jN ). The
matrixZ gives the dummy variable structure for the two-way model.

Let

�N = Z
0

1Z1; �T = Z
0

2Z2; A = Z
0

2Z1

�Z = Z2 � Z1�
�1
N A

0

Q = �T �A��1
N A

0

P = (IM � Z1�
�1
N Z

0

1)� �ZQ��Z
0

The estimators for the intercept and the fixed effects are given by the usual OLS
expressions.

The estimate of the regression slope coefficients is given by

~�s = (X
0

�sPX�s)
�1X

0

�sPy�

whereX�s is theX� matrix without the vector of 1s.

The estimator of the error variance is

�̂2� = ~u
0

P~u=(M � T �N + 1� (K � 1))

where the residuals are given by~u = (IM � jM j
0

M=M )(y� �X�s
~�s)if there is an

intercept in the model and by~u = y� �X�s
~�sif there is no intercept.

The One-Way Random Effects Model

The specification for the one-way random effects model is

uit = �i + �it

1127
SAS OnlineDoc: Version 8



Part 2. General Information

LetZ0 = diag(jTi ),P0 = diag(�JTi), andQ0 = diag(ETi), with �JTi = JTi=Ti and
ETi = ITi �

�JTi . Define ~Xs = Q0Xs and~y = Q0y.

The fixed effects estimator of�2� is still unbiased under the random effects assump-
tions, so you need to calculate only the estimate of�� .

In the balanced data case, the estimation method for the variance components is the
fitting constants method as applied to the one way model; refer to Baltagi and Chang
(1994). Fuller and Battese (1974) apply this method to the two-way model.

Let

R(�) = y
0

Z0(Z
0

0Z0)
�1Z

0

0y

R(�j�) = (( ~X
0

s
~Xs)

�1 ~X
0

s~y)
0

( ~X
0

s~y)

R(�) = (X
0

y)
0

(X
0

X)�1X
0

y

R(�j�) = R(�j�) + R(�)� R(�)

The estimator of the error variance is given by

�̂2� = (y
0

y� R(�j�)� R(�))=(M �N � (K � 1))

and the estimator of the cross-sectional variance component is given by

�̂2� = (R(�j�)� (N � 1)�̂2� )=(M � tr(Z
0

0X(X
0

X)�1X
0

Z0))

The estimation of the one-way unbalanced data model is performed using a special-
ization (Baltagi and Chang 1994) of the approach used by Wansbeek and Kapteyn
(1989) for unbalanced two-way models.

The estimation of the variance components is performed by using a quadratic un-
biased estimation (QUE) method. This involves focusing on quadratic forms of the
centered residuals, equating their expected values to the realized quadratic forms, and
solving for the variance components.

Let

q1 = ~u
0

Q0~u

q2 = ~u
0

P0~u

where the residuals~u are given by~u = (IM � jM j
0
M=M )(y �Xs

~X0
s
~Xs)

�1 ~Xs
0~y)

if there is an intercept and bytildeu = (y �Xs( ~X
0
s
~Xs)

�1 ~X0
s~y) if there is not.

Consider the expected values

E (q1) = (M �N � (K � 1))�2�
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E (q2) = (N � 1 + tr[(X
0

sQ0Xs)
�1X

0

sP0Xs]� tr[(X
0

sQ0Xs)
�1X

0

s
�JMXs])�

2
�

+[M � (
X
i

T 2
i =M )]�2�

�̂2� and�̂2� are obtained by equating the quadratic forms to their expected values.

The estimated generalized least squares procedure substitutes the QUE estimates into
the covariance matrix ofuit, which is given by

V = �2�IM + �2�Z0Z
0

0

The Two-Way Random Effects Model

The specification for the two way model is

uit = �i + et + �it

For balanced data, the two-way random effects model is estimated using the method
of Fuller and Battese (1974), so in this case, the RANTWO option is equivalent to
the FULLER option already existing in PROC TSCSREG.

The following method (Wansbeek and Kapteyn 1989) is used to handle unbalanced
data.

Let X� andy� be the independent and dependent variables arranged by time and
by cross section within each time period. LetMt be the number of cross sections
observed in timet and

P
tMt = M . LetDt be theMt�N matrix obtained from the

N�N identity matrix from which rows corresponding to cross sections not observed
at timet have been omitted. Consider

Z = (Z1;Z2)

whereZ1 = (D
0

1;D
0

2; : : : ::D
0

T )
0

andZ2 = diag(D1jN ;D2jN ; : : : : : :DT jN ).

The matrixZ gives the dummy variable structure for the two-way model.

Let

�N = Z
0

1Z1; �T = Z
0

2Z2; A = Z
0

2Z1

�Z = Z2 � Z1�
�1
N A

0

Q = �T �A��1
N A

0

P = (IM � Z1�
�1
N Z

0

1)�
�ZQ� �Z

0
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The estimator of the error variance is

�̂2� = ~u
0

P~u=M � T �N + 1� (K � 1))

where the~u are given by~u = (IM � jM j
0
M=M )(y��X�s(X

0
�sPX�s)

�1X�s
0Py�)

if there is an intercept and by~u = (y� �X�s(X
0
�sPX�s)

�1X0
�sPy�if there is not.

The estimation of the variance components is performed by using a quadratic un-
biased estimation (QUE) method that involves focusing on quadratic forms of the
residuals~u, equating their expected values to the realized quadratic forms, and solv-
ing for the variance components.

Let

qN = ~u
0

Z2�
�1
T Z

0

2~u

qT = ~u
0

Z1�
�1
N Z

0

1~u

Consider the expected values

E (qN ) = (T + kN � (1 + k0))�
2 + (T �

�1
M

)�2� + (M �
�2
M

)�2e

E (qT ) = (N + kT � (1 + k0))�
2 + (M �

�1
M

)�2� + (N �
�2
M

)�2e

where

k0 = j
0

MX�s(X
0

�sPX�s)
�1X

0

�sjM=M

kN = tr((X
0

�sPX�s)
�1X

0

�sZ2�
�1
T Z

0

2X�s)

kT = tr((X
0

�sPX�s)
�1X

0

�sZ1�
�1
N Z

0

1X�s)

�1 = j
0

MZ1Z
0

1jM

�2 = j
0

MZ2Z
0

2jM

The quadratic unbiased estimators for�2� and�2e are obtained by equating the ex-
pected values to the quadratic forms and solving for the two unknowns.

The estimated generalized least squares procedure substitute the QUE estimates into
the covariance matrix of the composite error termuit, which is given by

V = �2� IM + �2�Z1Z
0

1 + �2eZ2Z
0

2

SAS OnlineDoc: Version 8
1130



Chapter 20. Details

Parks Method (Autoregressive Model)

Parks (1967) considered the first-order autoregressive model in which the random
errorsuit, i = 1; 2; : : :;N , t = 1; 2; : : :;T , have the structure

E(u2it) = �ii (heteroscedasticity)
E(uitujt) = �ij (contemporaneously correlated)

uit = �iui;t�1 + �it (autoregression)

where

E(�it) = 0
E(ui;t�1�jt) = 0

E(�it�jt) = �ij
E(�it�js) = 0 (s6=t)
E(ui0) = 0

E(ui0uj0) = �ij = �ij=(1� �i�j)

The model assumed is first-order autoregressive with contemporaneous correlation
between cross sections. In this model, the covariance matrix for the vector of random
errorsu can be expressed as

E(uu
0

) = V =

2
664

�11P11 �12P12 : : : �1NP1N
�21P21 �22P22 : : : �2NP2N

...
...

...
...

�N1PN1 �N2PN2 : : : �NNPNN

3
775

where

Pij =

2
6666664

1 �j �2j : : : �T�1j

�i 1 �j : : : �T�2j

�2i �i 1 : : : �T�3j

...
...

...
...

...
�T�1i �T�2i �T�3i : : : 1

3
7777775

The matrixV is estimated by a two-stage procedure, and� is then estimated by
generalized least squares. The first step in estimatingV involves the use of ordinary
least squares to estimate� and obtain the fitted residuals, as follows:

û = y�X�̂OLS
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A consistent estimator of the first-order autoregressive parameter is then obtained in
the usual manner, as follows:

�̂i =

 
TX
t=2

ûitûi;t�1

! �  
TX
t=2

û2i;t�1

!
i = 1; 2; : : :;N

Finally, the autoregressive characteristic of the data can be removed (asymptot-
ically) by the usual transformation of taking weighted differences. That is, for
i = 1; 2; : : :;N ,

yi1

q
1� �̂2i =

pX
k=1

Xi1k�k

q
1� �̂2i + ui1

q
1� �̂2i

yit � �̂iyi;t�1 =

pX
k=1

(Xitk � �̂iXi;t�1;k)�k + uit � �̂iui;t�1 t = 2; : : :;T

which is written

y�it =

pX
k=1

X�

itk�k + u�it i = 1; 2; : : :;N ; t = 1; 2; : : :;T

Notice that the transformed model has not lost any observations (Seely and Zyskind
1971).

The second step in estimating the covariance matrixV is to apply ordinary least
squares to the preceding transformed model, obtaining

û� = y� �X���OLS

from which the consistent estimator of�ij is calculated:

sij =
�̂ij

(1� �̂i�̂j)

where

�̂ij =
1

(T � p)

TX
t=1

û�itû
�

jt

EGLS then proceeds in the usual manner,

�̂P = (X0V̂�1X)�1X0V̂�1y

SAS OnlineDoc: Version 8
1132



Chapter 20. Details

whereV̂ is the derived consistent estimator ofV. For computational purposes, it
should be pointed out that̂�P is obtained directly from the transformed model,

�̂P = (X�
0

(�̂�1
IT )X
�)�1X�

0

(�̂�1
IT )y
�

where�̂ = [�̂ij ]i;j=1;:::;N .

The preceding procedure is equivalent to Zellner’s two-stage methodology applied to
the transformed model (Zellner 1962).

Parks demonstrates that his estimator is consistent and asymptotically, normally dis-
tributed with

Var(�̂P) = (X0V�1X)�1

Standard Corrections
For the PARKS option, the first-order autocorrelation coefficient must be esti-
mated for each cross section. Let� be theN � 1 vector of true parameters and
R = (r1; : : :; rN )0 be the corresponding vector of estimates. Then, to ensure that only
range-preserving estimates are used in PROC TSCSREG, the following modification
for R is made:

ri =

8<
:
ri if jrij < 1
max(:95; rmax) if ri�1
min(�:95; rmin) if ri�� 1

where

rmax =

(
0 if ri < 0 or ri�1 for all i
max
j

[rj : 0�rj < 1] otherwise

and

rmin =

(
0 if ri > 0 or ri�� 1 for all i
max
j

[rj : �1 < rj�0] otherwise

Whenever this correction is made, a warning message is printed.

Da Silva Method (Variance-Component Moving Average
Model)

Suppose you have a sample of observations atT time points on each ofN cross-
sectional units. The Da Silva method assumes that the observed value of the depen-
dent variable at thetth time point on theith cross-sectional unit can be expressed
as

yit = x
0

it� + ai + bt + eit i = 1; : : :;N ; t = 1; : : :;T
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where

x
0

it = (xit1; : : :; xitp)is a vector of explanatory variables for thetth time point
andith cross-sectional unit

� = (�1; : : :; �p)
0 is the vector of parameters

ai is a time-invariant, cross-sectional unit effect

bt is a cross-sectionally invariant time effect

eit is a residual effect unaccounted for by the explanatory variables and the
specific time and cross-sectional unit effects

Since the observations are arranged first by cross sections, then by time periods within
cross sections, these equations can be written in matrix notation as

y = X� + u

where

u = (a
1T ) + (1N
b) + e

y = (y11; : : :; y1T ; y21; : : :; yNT )
0

X = (x11; : : :;x1T ;x21; : : :;xNT )
0

a = (a1: : :aN )0

b = (b1: : :bT )
0

e = (e11; : : :; e1T ; e21; : : :; eNT )
0

Here1N is anN � 1 vector with all elements equal to 1, and
 denotes the Kronecker
product.

It is assumed that

1. xit is a sequence of nonstochastic, knownp�1 vectors in<p whose elements
are uniformly bounded in<p. The matrixX has a full column rankp.

2. � is ap� 1 constant vector of unknown parameters.

3. a is a vector of uncorrelated random variables such thatE(ai) = 0 and
var(ai) = �2a, �2a > 0; i = 1; : : :;N .

4. b is a vector of uncorrelated random variables such thatE(bt) = 0 and
var(bt) = �2b ; �

2
b > 0; t = 1; : : :;T .
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5. ei = (ei1; : : :; eiT )
0 is a sample of a realization of a finite moving average time

series of orderm < T � 1 for eachi; hence,

eit = �0�t + �1�t�1 + : : : + �m�t�m; t = 1; : : :;T ; i = 1; : : :;N

where�0; �1; : : :; �m are unknown constants such that�0 6=0 and�m 6=0, and
f�jg

j=1
j=�1 is a white noise process, that is, a sequence of uncorrelated random

variables withE(�t) = 0; E(�2t ) = �2� , and�2� > 0.

6. The sets of random variablesfaigNi=1, fbtg
T
t=1, andfeitgTt=1 for i = 1; : : :;N

are mutually uncorrelated.

7. The random terms have normal distributions:ai�N(0; �2a); bt�N(0; �2b );and
�t�k�N(0; �2� ); for i = 1; : : :;N ; t = 1; : : :T ; k = 1; : : :;m.

If assumptions 1-6 are satisfied, then

E(y) = X�

and

var(y) = �2a(IN
JT ) + �2b (JN
IT ) + (IN
�T )

where�T is aT � T matrix with elements
ts as follows:

cov(eiteis) =

�

(jt� sj) if jt� sj� m
0 if jt� sj > m

where
(k) = �2�
Pm�k

j=0 �j�j+k for k = jt� sj. For the definition ofIN , IT , JN ,
andJT , see the "Fuller-Battese Method" section earlier in this chapter.

The covariance matrix, denoted byV, can be written in the form

V = �2a(IN
JT ) + �2b (JN
IT ) +

mX
k=0


(k)(IN
�
(k)
T )

where�(0)T = IT , and, fork=1,: : :, m, �(k)T is a band matrix whosekth off-diagonal
elements are 1’s and all other elements are 0’s.

Thus, the covariance matrix of the vector of observationsy has the form

var(y) =

m+3X
k=1

�kVk
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where

�1 = �2a
�2 = �2b
�k = 
(k � 3) k = 3; : : :;m+ 3
V1 = IN
JT
V2 = JN
IT
Vk = IN
�

(k�3)
T k = 3; : : :;m+ 3

The estimator of� is a two-step GLS-type estimator, that is, GLS with the unknown
covariance matrix replaced by a suitable estimator ofV. It is obtained by substituting
Seely estimates for the scalar multiples�k; k = 1; 2; : : :;m+ 3.

Seely (1969) presents a general theory of unbiased estimation when the choice of
estimators is restricted to finite dimensional vector spaces, with a special emphasis
on quadratic estimation of functions of the form

Pn
i=1 �i�i.

The parameters�i (i=1,: : :, n) are associated with a linear model E(y)=X� with co-
variance matrix

Pn
i=1 �iVi whereVi (i=1, : : :, n) are real symmetric matrices. The

method is also discussed by Seely (1970a,1970b) and Seely and Zyskind (1971).
Seely and Soong (1971) consider the MINQUE principle, using an approach along
the lines of Seely (1969).

Linear Hypothesis Testing

For a linear hypothesis of the formR �=r whereR is J�L and r is J�1, the F-
statistic withJ ;M � L degrees of freedom is computed as

(R� � r)
0

[R(X
0

V̂�1X)�1R0]�1R(R� � r)

R-squared

The conventional R-squared measure is inappropriate for all models that the TSC-
SREG procedure estimates using GLS since a number outside the 0-to-1 range may
be produced. Hence, a generalization of the R-squared measure is reported. The
following goodness-of-fit measure (Buse 1973) is reported:

R2 = 1�
û
0

V̂�1û

y
0

D
0

V̂�1Dy

whereû are the residuals of the transformed model,û = y �X(X
0

V̂�1X)�1X
0

V̂�1y,

andD = IM � jM j
0

M ( V̂�1

j
0

M
V̂�1jM

).

This is a measure of the proportion of the transformed sum of squares of the depen-
dent variable that is attributable to the influence of the independent variables.
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If there is no intercept in the model, the corresponding measure (Theil 1961) is

R2 = 1�
û
0

V̂�1û

y
0

V̂�1y

Clearly, in the case of OLS estimation, both the R-squared formulas given here reduce
to the usual R-squared formula.

Specification Tests

The TSCSREG procedure outputs the results of one specification test for fixed effects
and one specification test for random effects.

For fixed effects, let�f be then dimensional vector of fixed effects parameters. The
specification test reported is the conventionalF-statistic for the hypothesis�f = 0.
TheF-statistic withn;M �K degrees of freedom is computed as

�̂f Ŝ
�1
f �̂f=n

whereŜf is the estimated covariance matrix of the fixed effects parameters.

Hausman’s (1978) specification test orm-statistic can be used to test hypotheses in
terms of bias or inconsistency of an estimator. This test was also proposed by Wu
(1973) and further extended in Hausman and Taylor (1982). Hausman’sm-statistic is
as follows.

Consider two estimators,̂�a and�̂b, which under the null hypothesis are both consis-
tent, but only�̂a is asymptotically efficient. Under the alternative hypothesis, only�̂b
is consistent. Them-statistic is

m = (�̂b � �̂a)
0

(Ŝb � Ŝa)
�(�̂b � �̂a)

whereŜb andŜa are consistent estimates of the asymptotic covariance matrices of�̂b
and�̂a. Thenm is distributed�2 with k degrees of freedom, wherek is the dimension
of �̂a and�̂b.

In the random effects specification, the null hypothesis of no correlation between
effects and regressors implies that the OLS estimates of the slope parameters are
consistent and inefficient but the GLS estimates of the slope parameters are consistent
and efficient. This facilitates a Hausman specification test. The reported�2 statistic
has degrees of freedom equal to the number of slope parameters.

OUTEST= Data Set

PROC TSCSREG writes the parameter estimates to an output data set when the OUT-
EST= option is specified. The OUTEST= data set contains the following variables:

–MODEL– a character variable containing the label for the MODEL statement
if a label is specified
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–METHOD– a character variable identifying the estimation method. Current
methods are FULLER, PARKS, and DASILVA.

–TYPE– a character variable that identifies the type of observation. Val-
ues of the–TYPE– variable are CORRB, COVB, CSPARMS,
and PARMS; the CORRB observation contains correlations of the
parameter estimates; the COVB observation contains covariances
of the parameter estimates; the CSPARMS observation contains
cross-sectional parameter estimates; and the PARMS observation
contains parameter estimates.

–NAME– a character variable containing the name of a regressor variable for
COVB and CORRB observations and left blank for other obser-
vations. The–NAME– variable is used in conjunction with the

–TYPE– values COVB and CORRB to identify rows of the corre-
lation or covariance matrix.

–DEPVAR– a character variable containing the name of the response variable

–MSE– the mean square error of the transformed model

–CSID– the value of the cross section ID for CSPARMS observations.

–CSID– is used with the–TYPE– value CSPARMS to identify the
cross section for the first order autoregressive parameter estimate
contained in the observation.–CSID– is missing for observations
with other –TYPE– values. (Currently only the–A–1 variable
contains values for CSPARMS observations.)

–VARCS– the variance component estimate due to cross sections.–VARCS–
is included in the OUTEST= data set when either the FULLER or
DASILVA option is specified.

–VARTS– the variance component estimate due to time series.–VARTS– is
included in the OUTEST= data set when either the FULLER or
DASILVA option is specified.

–VARERR– the variance component estimate due to error.–VARERR– is in-
cluded in the OUTEST= data set when the FULLER option is spec-
ified.

–A–1 the first order autoregressive parameter estimate.–A–1 is included
in the OUTEST= data set when the PARKS option is specified. The
values of–A–1 are cross-sectional parameters, meaning that they
are estimated for each cross section separately.–A–1 has a value
only for –TYPE–=CSPARMS observations. The cross section to
which the estimate belongs is indicated by the–CSID– variable.

INTERCEP the intercept parameter estimate. (INTERCEP will be missing for
models for which the NOINT option is specified.)
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regressors the regressor variables specified in the MODEL statement. The re-
gressor variables in the OUTEST= data set contain the correspond-
ing parameter estimates for the model identified by–MODEL–
for –TYPE–=PARMS observations, and the corresponding co-
variance or correlation matrix elements for–TYPE–=COVB and

–TYPE–=CORRB observations. The response variable contains
the value -1 for the–TYPE–=PARMS observation for its model.

Printed Output

For each MODEL statement, the printed output from PROC TSCSREG includes the
following:

1. a model description, which gives the estimation method used, the model state-
ment label if specified, the number of cross sections and the number of obser-
vations in each cross section, and the order of moving average error process for
the DASILVA option

2. the estimates of the underlying error structure parameters

3. the regression parameter estimates and analysis. For each regressor, this in-
cludes the name of the regressor, the degrees of freedom, the parameter esti-
mate, the standard error of the estimate, at statistic for testing whether the es-
timate is significantly different from 0, and the significance probability of thet
statistic. Whenever possible, the notation of the original reference is followed.

Optionally, PROC TSCSREG prints the following:

4. the covariance and correlation of the resulting regression parameter estimates
for each model and assumed error structure

5. the�̂ matrix that is the estimated contemporaneous covariance matrix for the
PARKS option
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ODS Table Names

PROC TSCSREG assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 6, “Using the Output Delivery System.”

Table 20.1. ODS Tables Produced in PROC TSCSREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement

ModelDescription Model Description
FitStatistics Fit Statistics
FixedEffectsTest F Test for No Fixed Effects
ParameterEstimates Parameter Estimates
CovB Covariance of Parameter Estimates
CorrB Correlations of Parameter Estimates
VarianceComponents Variance Component Estimates
RandomEffectsTest Hausman Test for Random Effects
AR1Estimates First Order Autoregressive Parameter

Estimates
EstimatedPhiMatrix Estimated Phi Matrix PARKS
EstimatedAutocovariances Estimates of Autocovariances PARKS

ODS Tables Created by the TEST Statement

TestResults Test Results
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Example

Example 20.1. Analyzing Demand for Liquid Assets

In this example, the demand equations for liquid assets are estimated. The demand
function for the demand deposits is estimated under three error structures while de-
mand equations for time deposits and savings and loan (S & L) association shares are
calculated using the Parks method. The data for seven states (CA, DC, FL, IL, NY,
TX, and WA) are selected out of 49 states. Refer to Feige (1964) for data description.
All variables were transformed via natural logarithm. The first five observations of
the data set A are shown in Output 20.1.1.

data a;
input state $ year d t s y rd rt rs;
label d = ’Per Capita Demand Deposits’

t = ’Per Capita Time Deposits’
s = ’Per Capita S & L Association Shares’
y = ’Permanent Per Capita Personal Income’
rd = ’Service Charge on Demand Deposits’
rt = ’Interest on Time Deposits’
rs = ’Interest on S & L Association Shares’;

datalines;
... data lines are omitted ...

;

proc print data=a(obs=5);
run;

Output 20.1.1. A Sample of Liquid Assets Data

Obs state year d t s y rd rt rs

1 CA 1949 6.2785 6.1924 4.4998 7.2056 -1.0700 0.1080 1.0664
2 CA 1950 6.4019 6.2106 4.6821 7.2889 -1.0106 0.1501 1.0767
3 CA 1951 6.5058 6.2729 4.8598 7.3827 -1.0024 0.4008 1.1291
4 CA 1952 6.4785 6.2729 5.0039 7.4000 -0.9970 0.4492 1.1227
5 CA 1953 6.4118 6.2538 5.1761 7.4200 -0.8916 0.4662 1.2110

The SORT procedure is used to sort the data into the required time series cross-
sectional format. Then PROC TSCSREG analyzes the data.

proc sort data=a;
by state year;

run;

title ’Demand for Liquid Assets’;
proc tscsreg data=a;

model d = y rd rt rs / fuller parks dasilva m=7;
model t = y rd rt rs / parks;
model s = y rd rt rs / parks;
id state year;

run;
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The income elasticities for liquid assets are greater than 1 except for the demand
deposit income elasticity (0.692757) estimated by the Da Silva method. In Out-
put 20.1.2, Output 20.1.3 and Output 20.1.4, the coefficient estimates (-0.29094,
-0.43591, and -0.27736) of demand deposits (RD) imply that demand deposits in-
crease significantly as the service charge is reduced. The price elasticities (0.227152
and 0.408066) for time deposits (RT) and S & L association shares (RS) have the ex-
pected sign and thus an increase in the interest rate on time deposits or S & L shares
will increase the demand for the corresponding liquid asset. Demand deposits and S
& L shares appear to be substitutes ( Output 20.1.2, Output 20.1.3, Output 20.1.4, and
Output 20.1.6). Time deposits are also substitutes for S & L shares in the time deposit
demand equation ( Output 20.1.5), while these liquid assets are independent of each
other in Output 20.1.6 (insignificant coefficient estimate of RT, -0.02705). Demand
deposits and time deposits appear to be weak complements in Output 20.1.3 and Out-
put 20.1.4, while the cross elasticities between demand deposits and time deposits are
not significant in Output 20.1.2 and Output 20.1.5.
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Output 20.1.2. Demand for Demand Deposits – Fuller-Battese Method

Demand for Liquid Assets

The TSCSREG Procedure
Fuller and Battese Method Estimation

Dependent Variable: d Per Capita Demand Deposits

Model Description

Estimation Method Fuller
Number of Cross Sections 7
Time Series Length 11

Fit Statistics

SSE 0.0795 DFE 72
MSE 0.0011 Root MSE 0.0332
R-Square 0.6786

Variance Component Estimates

Variance Component for Cross Sections 0.03427
Variance Component for Time Series 0.00026
Variance Component for Error 0.00111

Hausman Test for
Random Effects

DF m Value Pr > m

4 5.51 0.2385

Parameter Estimates

Standard
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 -1.23606 0.7252 -1.70 0.0926 Intercept
y 1 1.064058 0.1040 10.23 <.0001 Permanent Per Capita

Personal Income
rd 1 -0.29094 0.0526 -5.53 <.0001 Service Charge on

Demand Deposits
rt 1 0.039388 0.0278 1.42 0.1603 Interest on Time

Deposits
rs 1 -0.32662 0.1140 -2.86 0.0055 Interest on S & L

Association Shares
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Output 20.1.3. Demand for Demand Deposits – Parks Method

Demand for Liquid Assets

The TSCSREG Procedure
Parks Method Estimation

Dependent Variable: d Per Capita Demand Deposits

Model Description

Estimation Method Parks
Number of Cross Sections 7
Time Series Length 11

Fit Statistics

SSE 73.3696 DFE 72
MSE 1.0190 Root MSE 1.0095
R-Square 0.9263

Parameter Estimates

Standard
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 -2.66565 0.3139 -8.49 <.0001 Intercept
y 1 1.222569 0.0423 28.87 <.0001 Permanent Per Capita

Personal Income
rd 1 -0.43591 0.0201 -21.71 <.0001 Service Charge on

Demand Deposits
rt 1 0.041237 0.0210 1.97 0.0530 Interest on Time

Deposits
rs 1 -0.26683 0.0654 -4.08 0.0001 Interest on S & L

Association Shares
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Output 20.1.4. Demand for Demand Deposits – Da Silva Method

Demand for Liquid Assets

The TSCSREG Procedure
Da Silva Method Estimation

Dependent Variable: d Per Capita Demand Deposits

Model Description

Estimation Method DaSilva
Number of Cross Sections 7
Time Series Length 11
Order of MA Error Process 7

Fit Statistics

SSE 21609.8923 DFE 72
MSE 300.1374 Root MSE 17.3245
R-Square 0.4995

Variance Component Estimates

Variance Component for Cross Sections 0.03063
Variance Component for Time Series 0.000148

Estimates of
Autocovariances

Lag Gamma

0 0.0008558553
1 0.0009081747
2 0.0008494797
3 0.0007889687
4 0.0013281983
5 0.0011091685
6 0.0009874973
7 0.0008462601

Demand for Liquid Assets

The TSCSREG Procedure
Da Silva Method Estimation

Dependent Variable: d Per Capita Demand Deposits

Parameter Estimates

Standard
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 1.281084 0.0824 15.55 <.0001 Intercept
y 1 0.692757 0.00677 102.40 <.0001 Permanent Per Capita

Personal Income
rd 1 -0.27736 0.00274 -101.18 <.0001 Service Charge on

Demand Deposits
rt 1 0.009378 0.00171 5.49 <.0001 Interest on Time

Deposits
rs 1 -0.09942 0.00601 -16.53 <.0001 Interest on S & L

Association Shares
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Output 20.1.5. Demand for Time Deposits – Parks Method

Demand for Liquid Assets

The TSCSREG Procedure
Parks Method Estimation

Dependent Variable: t Per Capita Time Deposits

Model Description

Estimation Method Parks
Number of Cross Sections 7
Time Series Length 11

Fit Statistics

SSE 63.3807 DFE 72
MSE 0.8803 Root MSE 0.9382
R-Square 0.9517

Parameter Estimates

Standard
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 -5.33334 0.5007 -10.65 <.0001 Intercept
y 1 1.516344 0.0810 18.72 <.0001 Permanent Per Capita

Personal Income
rd 1 -0.04791 0.0294 -1.63 0.1082 Service Charge on

Demand Deposits
rt 1 0.227152 0.0332 6.85 <.0001 Interest on Time

Deposits
rs 1 -0.42569 0.1262 -3.37 0.0012 Interest on S & L

Association Shares
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Output 20.1.6. Demand for Savings and Loan Shares – Parks Method

Demand for Liquid Assets

The TSCSREG Procedure
Parks Method Estimation

Dependent Variable: s Per Capita S & L Association Shares

Model Description

Estimation Method Parks
Number of Cross Sections 7
Time Series Length 11

Fit Statistics

SSE 71.9675 DFE 72
MSE 0.9995 Root MSE 0.9998
R-Square 0.9017

Parameter Estimates

Standard
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 -8.09632 0.7850 -10.31 <.0001 Intercept
y 1 1.832988 0.1157 15.84 <.0001 Permanent Per Capita

Personal Income
rd 1 0.576723 0.0435 13.26 <.0001 Service Charge on

Demand Deposits
rt 1 -0.02705 0.0312 -0.87 0.3891 Interest on Time

Deposits
rs 1 0.408066 0.1092 3.74 0.0004 Interest on S & L

Association Shares
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