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Chapter 30
Forecasting Process Details

This chapter provides computational details on several aspects of the Time Series
Forecasting System.

Forecasting Process Summary

This section summarizes the forecasting process.

Parameter Estimation
The parameter estimation process for ARIMA and smoothing models is described
graphically in Figure 30.1.

Figure 30.1. Model Fitting Flow Diagram
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The specification of smoothing and ARIMA models is described in Chap-
ter 25, “Specifying Forecasting Models.” Computational details for these kinds
of models are provided in the following sections "Smoothing Models" and "ARIMA
Models." The results of the parameter estimation process are displayed in the Pa-
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Part 3. General Information

rameter Estimates table of the Model Viewer window along with the estimate of the
model variance and the final smoothing state.

Model Evaluation
The model evaluation process is described graphically in Figure 30.2.

Figure 30.2. Model Evaluation Flow Diagram
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Model evaluation is based on the one-step-ahead prediction errors for observations
within the period of evaluation. The one-step-ahead predictions are generated from
the model specification and parameter estimates. The predictions are inverse trans-
formed (median or mean) and adjustments are removed. The prediction errors (the
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Chapter 30. Forecasting Process Summary

difference of the dependent series and the predictions) are used to compute the statis-
tics of fit, which are described in the following section "Diagnostic Tests and Statistics
of Fit." The results generated by the evaluation process are displayed in the Statistics
of Fit table of the Model Viewer window.

Forecasting
The forecasting generation process is described graphically in Figure 30.3.

Figure 30.3. Forecasting Flow Diagram
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The forecasting process is similar to the model evaluation process described in the
preceding section, except thatk-step-ahead predictions are made from the end of
the data through the specified forecast horizon, and prediction standard errors and
confidence limits are calculated. The forecasts and confidence limits are displayed in
the Forecast plot or table of the Model Viewer window.

1457
SAS OnlineDoc: Version 8



Part 3. General Information

Forecast Combination Models

This section discusses the computation of predicted values and confidence limits for
forecast combination models. See Chapter 25, “Specifying Forecasting Models,”
for information on how to specify forecast combination models and their combining
weights.

Given the response time seriesfyt : 1 � t � ng with previously generated forecasts
for the m component models, a combined forecast is created from the component
forecasts as follows:

Predictions: ŷt =
Pm

i=1 wiŷi;t

Prediction Errors: êt = yt � ŷt

where ŷi;t are the forecasts of the component models andwi are the combining
weights.

The estimate of the root mean square prediction error and forecast confidence limits
for the combined forecast are computed by assuming independence of the prediction
errors of the component forecasts, as follows:

Standard Errors: �̂t =
qPm

i=1w
2
i �̂

2
i;t

Confidence Limits: ��̂tZ�=2
where�̂i;t are the estimated root mean square prediction errors for the component
models,� is the confidence limit width,1�� is the confidence level, andZ�=2 is the
�
2 quantile of the standard normal distribution.

Since, in practice, there may be positive correlation between the prediction errors of
the component forecasts, these confidence limits may be too narrow.

External or User-Supplied Forecasts

This section discusses the computation of predicted values and confidence limits for
external forecast models.

Given a response time seriesyt and external forecast seriesŷt, the prediction errors
are computed aŝet = yt � ŷt for thoset for which bothyt and ŷt are nonmissing.
The mean square error (MSE) is computed from the prediction errors.

The variance of thek-step-ahead prediction errors is set tok times the MSE. From
these variances, the standard errors and confidence limits are computed in the usual
way. If the supplied predictions contain so many missing values within the time range
of the response series that the MSE estimate cannot be computed, the confidence
limits, standard errors, and statistics of fit are set to missing.

Adjustments

Adjustment predictors are subtracted from the response time series prior to model
parameter estimation, evaluation, and forecasting. After the predictions of the ad-
justed response time series are obtained from the forecasting model, the adjustments
are added back to produce the forecasts.
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Chapter 30. Forecasting Process Summary

If yt is the response time series andXi;t, 1 � i � m aremadjustment predictor series,
then the adjusted response serieswt is

wt = yt �
mX
i=1

Xi;t

Parameter estimation for the model is performed using the adjusted response time
serieswt. The forecastŝwt of wt are adjusted to obtain the forecastsŷt of yt.

ŷt = ŵt +

mX
i=1

Xi;t

Missing values in an adjustment series are ignored in these computations.

Series Transformations

For pure ARIMA models, transforming the response time series may aid in obtaining
stationary noise series. For general ARIMA models with inputs, transforming the
response time series or one or more of the input time series may provide a better
model fit. Similarly, the fit of smoothing models may improve when the response
series is transformed.

There are four transformations available, for strictly positive series only. Letyt > 0
be the original time series, and letwt be the transformed series. The transformations
are defined as follows:

Log is the logarithmic transformation.

wt = ln(yt)

Logistic is the logistic transformation.

wt = ln(cyt=(1 � cyt))

where the scaling factorc is

c = (1� e�6)10�ceil(log10(max(yt)))

andceil(x) is the smallest integer greater than or equal tox.

Square Root is the square root transformation.

wt =
p
yt

Box Cox is the Box-Cox transformation.

wt =

8<
:

y�
t
�1
� ; �6=0

ln(yt); � = 0
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Part 3. General Information

Parameter estimation is performed using the transformed series. The transformed
model predictions and confidence limits are then obtained from the transformed time-
series and these parameter estimates.

The transformed model predictionŝwt are used to obtain either the minimum mean
absolute error (MMAE) or minimum mean squared error (MMSE) predictionsŷt,
depending on the setting of the forecast options. The model is then evaluated based
on the residuals of the original time series and these predictions. The transformed
model confidence limits are inverse-transformed to obtain the forecast confidence
limits.

Predictions for Transformed Models
Since the transformations described in the previous section are monotonic, applying
the inverse-transformation to the transformed model predictions results in theme-
dian of the conditional probability density function at each point in time. This is the
minimum mean absolute error (MMAE) prediction.

If wt = F(yt) is the transform with inverse-transformyt = F�1(wt), then

median(ŷt) = F�1(E [wt]) = F�1(ŵt)

The minimum mean squared error (MMSE) predictions are themeanof the condi-
tional probability density function at each point in time. Assuming that the prediction
errors are normally distributed with variance�2t , the MMSE predictions for each of
the transformations are as follows:

Log is the conditional expectation of inverse-logarithmic transforma-
tion.

ŷt = E[ewt ] = exp
�
ŵt + �2t =2

�
Logistic is the conditional expectation of inverse-logistic transformation.

ŷt = E

�
1

c(1 + exp(�wt))

�

where the scaling factorc = (1� e�6)10�ceil(log10(max(yt))).

Square Root is the conditional expectation of the inverse-square root transfor-
mation.

ŷt = E
�
w2
t

�
= ŵ2

t + �2t

Box Cox is the conditional expectation of the inverse Box-Cox transforma-
tion.

ŷt =

8<
:
E
�
(�wt + 1)1=�

�
; �6=0

E [ewt ] = exp(ŵt +
1
2�

2
t ); � = 0

The expectations of the inverse logistic and Box-Cox (� 6=0 ) transformations do not
generally have explicit solutions and are computed using numerical integration.

SAS OnlineDoc: Version 8
1460



Chapter 30. Smoothing Models

Smoothing Models

This section details the computations performed for the exponential smoothing and
Winters method forecasting models.

Smoothing Model Calculations

The descriptions and properties of various smoothing methods can be found in Gard-
ner (1985), Chatfield (1978), and Bowerman and O’Connell (1979). The following
section summarizes the smoothing model computations.

Given a time seriesfYt : 1 � t � ng, the underlying model assumed by the smooth-
ing models has the following (additive seasonal) form:

Yt = �t + �tt+ sp(t) + �t

where

�t represents the time-varying mean term.

�t represents the time-varying slope.

sp(t) represents the time-varying seasonal contribution for one of thep
seasons

�t are disturbances.

For smoothing models without trend terms,�t = 0; and for smoothing models with-
out seasonal terms,sp(t) = 0. Each smoothing model is described in the following
sections.

At each timet, the smoothing models estimate the time-varying components de-
scribed above with thesmoothing state. After initialization, the smoothing state is
updated for each observation using thesmoothing equations. The smoothing state at
the last nonmissing observation is used for predictions.

Smoothing State and Smoothing Equations
Depending on the smoothing model, thesmoothing stateat timet will consist of the
following:

Lt is a smoothed level that estimates�t.

Tt is a smoothed trend that estimates�t.

St�j , j = 0; : : :; p� 1, are seasonal factors that estimatesp(t).

The smoothing process starts with an initial estimate of the smoothing state, which is
subsequently updated for each observation using thesmoothing equations.

The smoothing equations determine how the smoothing state changes as time pro-
gresses. Knowledge of the smoothing state at timet� 1 and that of the time-series
value at timet uniquely determine the smoothing state at timet. The smoothing
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Part 3. General Information

weightsdetermine the contribution of the previous smoothing state to the current
smoothing state. The smoothing equations for each smoothing model are listed in the
following sections.

Smoothing State Initialization
Given a time seriesfYt : 1 � t � ng, the smoothing process first computes the
smoothing state for timet = 1. However, this computation requires an initial esti-
mate of the smoothing state at timet = 0, even though no data exists at or before
time t = 0.

An appropriate choice for the initial smoothing state is made by backcasting from
time t = n to t = 1 to obtain a prediction att = 0. The initialization for the back-
cast is obtained by regression with constant and linear terms and seasonal dummies
(additive or multiplicative) as appropriate for the smoothing model. For models with
linear or seasonal terms, the estimates obtained by the regression are used for initial
smoothed trend and seasonal factors; however, the initial smoothed level for back-
casting is always set to the last observation,Yn.

The smoothing state at timet = 0 obtained from the backcast is used to initialize the
smoothing process from timet = 1 to t = n (refer to Chatfield and Yar 1988).

For models with seasonal terms, the smoothing state is normalized so that the sea-
sonal factorsSt�j for j = 0; : : :; p� 1 sum to zero for models that assume additive
seasonality and average to one for models (such as Winters method) that assume
multiplicative seasonality.

Missing Values

When a missing value is encountered at timet, the smoothed values are updated
using theerror-correction formof the smoothing equations with the one-step-ahead
prediction error,et, set to zero. The missing value is estimated using the one-step-
ahead prediction at timet� 1, that is Ŷt�1(1) (refer to Aldrin 1989). The error-
correction forms of each of the smoothing models are listed in the following sections.

Predictions and Prediction Errors

Predictions are made based on the last known smoothing state. Predictions made at
time t for k steps ahead are denotedŶt(k) and the associated prediction errors are
denotedet(k) = Yt+k � Ŷt(k). Theprediction equationfor each smoothing model
is listed in the following sections.

Theone-step-ahead predictionsrefer to predictions made at timet� 1 for one time
unit into the future, that is,̂Yt�1(1), and theone-step-ahead prediction errorsare
more simply denotedet = et�1(1) = Yt � Ŷt�1(1). The one-step-ahead prediction
errors are also the model residuals, and the sum of squares of the one-step-ahead
prediction errors is the objective function used in smoothing weight optimization.

Thevariance of the prediction errorsare used to calculate the confidence limits (refer
to Sweet 1985, McKenzie 1986, Yar and Chatfield 1990, and Chatfield and Yar 1991).
The equations for the variance of the prediction errors for each smoothing model are
listed in the following sections.
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Chapter 30. Smoothing Models

Note: var(�t) is estimated by the mean square of the one-step-ahead prediction er-
rors.

Smoothing Weights

Depending on the smoothing model, the smoothing weights consist of the following:

� is a level smoothing weight.

 is a trend smoothing weight.

� is a seasonal smoothing weight.

� is a trend damping weight.

Larger smoothing weights (less damping) permit the more recent data to have a
greater influence on the predictions. Smaller smoothing weights (more damping)
give less weight to recent data.

Specifying the Smoothing Weights
Typically the smoothing weights are chosen to be from zero to one. (This is intuitive
because the weights associated with the past smoothing state and the value of cur-
rent observation would normally sum to one.) However, each smoothing model (ex-
cept Winters Method – Multiplicative Version) has an ARIMA equivalent. Weights
chosen to be within the ARIMA additive-invertible region will guarantee stable pre-
dictions (refer to Archibald 1990 and Gardner 1985). The ARIMA equivalent and
the additive-invertible region for each smoothing model are listed in the following
sections.

Optimizing the Smoothing Weights
Smoothing weights are determined so as to minimize the sum of squared one-step-
ahead prediction errors. The optimization is initialized by choosing from a predeter-
mined grid the initial smoothing weights that result in the smallest sum of squared,
one-step-ahead prediction errors. The optimization process is highly dependent on
this initialization. It is possible that the optimization process will fail due to the in-
ability to obtain stable initial values for the smoothing weights (refer to Greene 1993
and Judge et al 1980), and it is possible for the optimization to result in a local min-
ima.

The optimization process can result in weights to be chosen outside both the zero-
to-one range and the ARIMA additive-invertible region. By restricting weight opti-
mization to additive-invertible region, you can obtain a local minimum with stable
predictions. Likewise, weight optimization can be restricted to the zero-to-one range
or other ranges. It is also possible to fix certain weights to a specific value and opti-
mize the remaining weights.

Standard Errors
The standard errors associated with the smoothing weights are calculated from the
Hessian matrix of the sum of squared, one-step-ahead prediction errors with respect
to the smoothing weights used in the optimization process.

Weights Near Zero or One
Sometimes the optimization process results in weights near zero or one.
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Part 3. General Information

For Simple or Double (Brown) Exponential Smoothing, a level weight near zero im-
plies that simple differencing of the time series may be appropriate.

For Linear (Holt) Exponential Smoothing, a level weight near zero implies that the
smoothed trend is constant and that an ARIMA model with deterministic trend may
be a more appropriate model.

For Damped-Trend Linear Exponential Smoothing, a damping weight near one im-
plies that Linear (Holt) Exponential Smoothing may be a more appropriate model.

For Winters Method and Seasonal Exponential Smoothing, a seasonal weight near
one implies that a nonseasonal model may be more appropriate and a seasonal weight
near zero implies that deterministic seasonal factors may be present.

Equations for the Smoothing Models

Simple Exponential Smoothing
The model equation for simple exponential smoothing is

Yt = �t + �t

The smoothing equation is

Lt = �Yt + (1� �)Lt�1

The error-correction form of the smoothing equation is

Lt = Lt�1 + �et

(Note: For missing values,et = 0.)

Thek-step prediction equation is

Ŷt(k) = Lt

The ARIMA model equivalency to simple exponential smoothing is the
ARIMA(0,1,1) model

(1�B)Yt = (1� �B)�t

� = 1� �

The moving-average form of the equation is

Yt = �t +

1X
j=1

��t�j
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Chapter 30. Smoothing Models

For simple exponential smoothing, the additive-invertible region is

f0 < � < 2g

The variance of the prediction errors is estimated as

var(et(k)) = var(�t)

2
41 + k�1X

j=1

�2

3
5 = var(�t)(1 + (k � 1)�2)

Double (Brown) Exponential Smoothing
The model equation for double exponential smoothing is

Yt = �t + �tt+ �t

The smoothing equations are

Lt = �Yt + (1� �)Lt�1

Tt = �(Lt � Lt�1) + (1� �)Tt�1

This method may be equivalently described in terms of two successive applications
of simple exponential smoothing:

S
[1]
t = �Yt + (1� �)S

[1]
t�1

S
[2]
t = �S

[1]
t + (1� �)S

[2]
t�1

whereS [1]
t are the smoothed values ofYt, andS [2]

t are the smoothed values ofS [1]
t .

The prediction equation then takes the form:

Ŷt(k) = (2 + �k=(1 � �))S
[1]
t � (1 + �k=(1 � �))S

[2]
t

The error-correction form of the smoothing equations is

Lt = Lt�1 + Tt�1 + �et

Tt = Tt�1 + �2et

(Note: For missing values,et = 0.)

Thek-step prediction equation is

Ŷt(k) = Lt + ((k � 1) + 1=�)Tt
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The ARIMA model equivalency to double exponential smoothing is the
ARIMA(0,2,2) model

(1�B)2Yt = (1� �B)2�t

� = 1� �

The moving-average form of the equation is

Yt = �t +
1X
j=1

(2� + (j � 1)�2)�t�j

For double exponential smoothing, the additive-invertible region is

f0 < � < 2g

The variance of the prediction errors is estimated as

var(et(k)) = var(�t)

2
41 + k�1X

j=1

(2�+ (j � 1)�2)2

3
5

Linear (Holt) Exponential Smoothing
The model equation for linear exponential smoothing is

Yt = �t + �tt+ �t

The smoothing equations are

Lt = �Yt + (1� �)(Lt�1 + Tt�1)

Tt = (Lt � Lt�1) + (1� )Tt�1

The error-correction form of the smoothing equations is

Lt = Lt�1 + Tt�1 + �et

Tt = Tt�1 + �et

(Note: For missing values,et = 0.)

Thek-step prediction equation is

Ŷt(k) = Lt + kTt
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The ARIMA model equivalency to linear exponential smoothing is the
ARIMA(0,2,2) model

(1�B)2Yt = (1� �1B � �2B
2)�t

�1 = 2� �� �

�2 = �� 1

The moving-average form of the equation is

Yt = �t +

1X
j=1

(�+ j�)�t�j

For linear exponential smoothing, the additive-invertible region is

f0 < � < 2g

f0 <  < 4=�� 2g

The variance of the prediction errors is estimated as

var(et(k)) = var(�t)

2
41 + k�1X

j=1

(�+ j�)2

3
5

Damped-Trend Linear Exponential Smoothing
The model equation for damped-trend linear exponential smoothing is

Yt = �t + �tt+ �t

The smoothing equations are

Lt = �Yt + (1� �)(Lt�1 + �Tt�1)

Tt = (Lt � Lt�1) + (1� )�Tt�1

The error-correction form of the smoothing equations is

Lt = Lt�1 + �Tt�1 + �et

Tt = �Tt�1 + �et
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(Note: For missing values,et = 0.)

Thek-step prediction equation is

Ŷt(k) = Lt +
kX
i=1

�iTt

The ARIMA model equivalency to damped-trend linear exponential smoothing is the
ARIMA(1,1,2) model

(1� �B)(1�B)Yt = (1� �1B � �2B
2)�t

�1 = 1 + �� �� ��

�2 = (�� 1)�

The moving-average form of the equation (assumingj�j < 1) is

Yt = �t +

1X
j=1

(�+ ��(�j � 1)=(� � 1))�t�j

For damped-trend linear exponential smoothing, the additive-invertible region is

f0 < � < 2g

f0 < � < 4=�� 2g

The variance of the prediction errors is estimated as

var(et(k)) = var(�t)

2
41 + k�1X

j=1

(�+ ��(�j � 1)=(� � 1))2

3
5

Seasonal Exponential Smoothing
The model equation for seasonal exponential smoothing is

Yt = �t + sp(t) + �t

The smoothing equations are

Lt = �(Yt � St�p) + (1� �)Lt�1

St = �(Yt � Lt) + (1� �)St�p
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The error-correction form of the smoothing equations is

Lt = Lt�1 + �et

St = St�p + �(1 � �)et

(Note: For missing values,et = 0.)

Thek-step prediction equation is

Ŷt(k) = Lt + St�p+k

The ARIMA model equivalency to seasonal exponential smoothing is the
ARIMA(0,1,p+1)(0,1,0)p model

(1�B)(1�Bp)Yt = (1� �1B � �2B
p � �3B

p+1)�t

�1 = 1� �

�2 = 1� �(1 � �)

�3 = (1� �)(� � 1)

The moving-average form of the equation is

Yt = �t +
1X
j=1

 j�t�j

 j =

�
� for j modp6=0
�+ �(1 � �) for j modp = 0

For seasonal exponential smoothing, the additive-invertible region is

fmax(�p�; 0) < �(1� �) < (2� �)g

The variance of the prediction errors is estimated as

var(et(k)) = var(�t)

2
41 + k�1X

j=1

 2
j

3
5
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Winters Method – Additive Version
The model equation for the additive version of Winters method is

Yt = �t + �tt+ sp(t) + �t

The smoothing equations are

Lt = �(Yt � St�p) + (1� �)(Lt�1 + Tt�1)

Tt = (Lt � Lt�1) + (1� )Tt�1

St = �(Yt � Lt) + (1� �)St�p

The error-correction form of the smoothing equations is

Lt = Lt�1 + Tt�1 + �et

Tt = Tt�1 + �et

St = St�p + �(1 � �)et

(Note: For missing values,et = 0.)

Thek-step prediction equation is

Ŷt(k) = Lt + kTt + St�p+k

The ARIMA model equivalency to the additive version of Winters method is the
ARIMA(0,1,p+1)(0,1,0)p model

(1�B)(1�Bp)Yt =

"
1�

p+1X
i=1

�iB
i

#
�t

�j =

8><
>:

1� �� � j = 1
�� 2 � j � p� 1
1� � � �(1 � �) j = p
(1� �)(� � 1) j = p+ 1

The moving-average form of the equation is

Yt = �t +

1X
j=1

 j�t�j
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 j =

�
�+ j� for j modp6=0
�+ j� + �(1� �); for j modp = 0

For the additive version of Winters method (see Archibald 1990), the additive-
invertible region is

fmax(�p�; 0) < �(1 � �) < (2� �)g

f0 < � < 2� �� �(1 � �)(1� cos(#)g

where# is the smallest non-negative solution to the equations listed in Archibald
(1990).

The variance of the prediction errors is estimated as

var(et(k)) = var(�t)

2
41 + k�1X

j=1

 2
j

3
5

Winters Method – Multiplicative Version
In order to use the multiplicative version of Winters method, the time series and all
predictions must be strictly positive.

The model equation for the multiplicative version of Winters method is

Yt = (�t + �tt)sp(t) + �t

The smoothing equations are

Lt = �(Yt=St�p) + (1� �)(Lt�1 + Tt�1)

Tt = (Lt � Lt�1) + (1� )Tt�1

St = �(Yt=Lt) + (1� �)St�p

The error-correction form of the smoothing equations is

Lt = Lt�1 + Tt�1 + �et=St�p

Tt = Tt�1 + �et=St�p

St = St�p + �(1 � �)et=Lt

(Note: For missing values,et = 0.)
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Thek-step prediction equation is

Ŷt(k) = (Lt + kTt)St�p+k

The multiplicative version of Winters method does not have an ARIMA equivalent;
however, when the seasonal variation is small, the ARIMA additive-invertible region
of the additive version of Winters method described in the preceding section can
approximate the stability region of the multiplicative version.

The variance of the prediction errors is estimated as

var(et(k)) = var(�t)

2
4 1X
i=0

p�1X
j=0

( j+ipSt+k=St+k�j)
2

3
5

where j are as described for the additive version of Winters method, and j = 0 for
j � k.

ARIMA Models

AutoRegressiveIntegratedMoving-Average, orARIMA, models predict values of a
dependent time series with a linear combination of its own past values, past errors
(also called shocks or innovations), and current and past values of other time series
(predictor time series).

The Time Series Forecasting System uses the ARIMA procedure of SAS/ETS soft-
ware to fit and forecast ARIMA models. The maximum likelihood method is used
for parameter estimation. Refer to Chapter 7, “The ARIMA Procedure,” for details
of ARIMA model estimation and forecasting.

This section summarizes the notation used for ARIMA models.

Notation for ARIMA Models

A dependent time series that is modeled as a linear combination of its own past values
and past values of an error series is known as a (pure) ARIMA model.

Nonseasonal ARIMA Model Notation
The order of an ARIMA model is usually denoted by the notation ARIMA(p,d,q),
where

p is the order of the autoregressive part.

d is the order of the differencing (rarely shouldd > 2 be
needed).

q is the order of the moving-average process.
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Given a dependent time seriesfYt : 1 � t � ng, mathematically the ARIMA model
is written as

(1�B)dYt = �+
�(B)

�(B)
at

where

t indexes time

� is the mean term

B is the backshift operator; that is,BXt = Xt�1

�(B) is the autoregressive operator, represented as a polynomial
in the back shift operator:�(B) = 1� �1B � : : :� �pB

p

�(B) is the moving-average operator, represented as a polynomial
in the back shift operator:�(B) = 1� �1B � : : : � �qB

q

at is the independent disturbance, also called the random error.

For example, the mathematical form of the ARIMA(1,1,2) model is

(1�B)Yt = �+
(1� �1B � �2B

2)

(1� �1B)
at

Seasonal ARIMA Model Notation
Seasonal ARIMA models are expressed in factored form by the notation
ARIMA( p,d,q)(P,D,Q)s, where

P is the order of the seasonal autoregressive part

D is the order of the seasonal differencing (rarely shouldD >
1 be needed)

Q is the order of the seasonal moving-average process

s is the length of the seasonal cycle.

Given a dependent time seriesfYt : 1 � t � ng, mathematically the ARIMA sea-
sonal model is written as

(1�B)d(1�Bs)DYt = �+
�(B)�s(B

s)

�(B)�s(Bs)
at

where

�s(B
s) is the seasonal autoregressive operator, represented as a

polynomial in the back shift operator:
�s(B

s) = 1� �s;1B
s � : : :� �s;PB

sP

�s(B
s) is the seasonal moving-average operator, repre-

sented as a polynomial in the back shift operator:
�s(B

s) = 1� �s;1B
s � : : :� �s;QB

sQ
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For example, the mathematical form of the ARIMA(1,0,1)(1,1,2)12 model is

(1�B12)Yt = �+
(1� �1B)(1� �s;1B

12 � �s;2B
24)

(1� �1B)(1� �s;1B12)
at

Abbreviated Notation for ARIMA Models
If the differencing order, autoregressive order, or moving-average order is zero, the
notation is further abbreviated as

I(d)(D)s integrated model or ARIMA(0,d,0)(0,D,0)

AR(p)(P)s autoregressive model or ARIMA(p,0,0)(P,0,0)

IAR(p,d)(P,D)s integrated autoregressive model or ARIMA(p,d,0)(P,D,0)s
MA(q)(Q)s moving average model or ARIMA(0,0,q)(0,0,Q)s
IMA( d,q)(D,Q)s integrated moving average model or ARIMA(0,d,q)(0,D,Q)s
ARMA(p,q)(P,Q)s autoregressive moving-average model or ARIMA(p,0,q)(P,0,Q)s.

Notation for Transfer Functions
A transfer function can be used to filter a predictor time series to form a dynamic
regression model.

Let Yt be the dependent series, and letXt be the predictor series, and let	(B) be a
linear filter or transfer function for the effect ofXt onYt. The ARIMA model is then

(1�B)d(1�Bs)DYt = �+	(B)(1�B)d(1�Bs)DXt +
�(B)�s(B

s)

�(B)�s(Bs)
at

This model is called adynamic regressionof Yt onXt.

Nonseasonal Transfer Function Notation
Given theith predictor time seriesfXi;t : 1 � t � ng, the transfer function is written
as [Dif(di)Lag(ki)N(qi)/ D(pi)] where

di is the simple order of the differencing for theith predictor
time series,(1�B)diXi;t (rarely shoulddi > 2 be needed).

ki is the pure time delay (lag) for the effect of theith predictor
time series,Xi;tB

ki = Xi;t�ki .

pi is the simple order of the denominator for theith predictor
time series.

qi is the simple order of the numerator for theith predictor time
series.

The mathematical notation used to describe a transfer function is

	i(B) =
!i(B)

�i(B)
(1�B)diBki

where
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B is the backshift operator; that is,BXt = Xt�1.

�i(B) is the denominator polynomial of the transfer function for
theith predictor time series:�i(B) = 1� �i;1B � : : : � �i;piB

pi.

!i(B) is the numerator polynomial of the transfer function for the
ith predictor time series:!i(B) = 1� !i;1B � : : : � !i;qiB

qi.

The numerator factors for a transfer function for a predictor series are like the MA
part of the ARMA model for the noise series. The denominator factors for a transfer
function for a predictor series are like the AR part of the ARMA model for the noise
series. Denominator factors introduce exponentially weighted, infinite distributed
lags into the transfer function.

For example, the transfer function for theith predictor time series with

ki = 3 time lag is 3

di = 1 simple order of differencing is one

pi = 1 simple order of the denominator is one

qi = 2 simple order of the numerator is two

would be written as [Dif(1)Lag(3)N(2)/D(1)]. The mathematical notation for the
transfer function in this example is

	i(B) =
(1� !i;1B � !i;2B

2)

(1� �i;1B)
(1�B)B3

Seasonal Transfer Function Notation
The general transfer function notation for theith predictor time seriesXi;t with sea-
sonal factors is [Dif(di)(Di)s Lag(ki) N(qi)(Qi)s/ D(pi)(Pi)s] where

Di is the seasonal order of the differencing for theith predictor
time series (rarely shouldDi > 1 be needed).

Pi is the seasonal order of the denominator for theith predictor
time series (rarely shouldPi > 2 be needed).

Qi is the seasonal order of the numerator for theith predictor
time series, (rarely shouldQi > 2 be needed).

s is the length of the seasonal cycle.

The mathematical notation used to describe a seasonal transfer function is

	i(B) =
!i(B)!s;i(B

s)

�i(B)�s;i(Bs)
(1�B)di(1�Bs)DiBki

where
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�s;i(B
s) is the denominator seasonal polynomial of the transfer func-

tion for theith predictor time series:
�s;i(B) = 1� �s;i;1B � : : :� �s;i;Pi

BsPi

!s;i(B
s) is the numerator seasonal polynomial of the transfer function

for the ith predictor time series:
!s;i(B) = 1� !s;i;1B � : : :� !s;i;Qi

BsQi

For example, the transfer function for theith predictor time seriesXi;t whose seasonal
cycles = 12 with

di = 2 simple order of differencing is two

Di = 1 seasonal order of differencing is one

qi = 2 simple order of the numerator is two

Qi = 1 seasonal order of the numerator is one

would be written as [Dif(2)(1)s N(2)(1)s]. The mathematical notation for the transfer
function in this example is

	i(B) = (1� !i;1B � !i;2B
2)(1 � !s;i;1B

12)(1�B)2(1�B12)

Note: In this case, [Dif(2)(1)s N(2)(1)s] = [Dif(2)(1)sLag(0)N(2)(1)s/D(0)(0)s].

Predictor Series

This section discusses time trend curves, seasonal dummies, interventions, and ad-
justments.

Time Trend Curves

When you specify a time trend curve as a predictor in a forecasting model, the system
computes a predictor series that is a deterministic function of time. This variable is
then included in the model as a regressor, and the trend curve is fit to the dependent
series by linear regression, in addition to other predictor series.

Some kinds of nonlinear trend curves are fit by transforming the dependent series.
For example, the exponential trend curve is actually a linear time trend fit to the
logarithm of the series. For these trend curve specifications, the series transformation
option is set automatically, and you cannot independently control both the time trend
curve and transformation option.

The computed time trend variable is included in the output data set in a variable
named in accordance with the trend curve type. Lett represent the observation count
from the start of the period of fit for the model, and letXt represent the value of the
time trend variable at observationt within the period of fit. The names and definitions
of these variables are as follows. (Note: These deterministic variables are reserved
variable names.)
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Linear Trend Variable name–LINEAR–, withXt = t� c.

Quadratic Trend Variable name–QUAD–, withXt = (t� c)2. Note that a
quadratic trend implies a linear trend as a special case and
results in two regressors:–QUAD– and–LINEAR–.

Cubic Trend Variable name–CUBE–, with Xt = (t� c)3. Note that
a cubic trend implies a quadratic trend as a special case
and results in three regressors:–CUBE–, –QUAD–, and

–LINEAR–.

Logistic Trend Variable name–LOGIT–, with Xt = t. The model is a
linear time trend applied to the logistic transform of the de-
pendent series. Thus, specifying a logistic trend is equiv-
alent to specifying the Logistic series transformation and
a linear time trend. A logistic trend predictor can be used
only in conjunction with the logistic transformation, which
is set automatically when you specify logistic trend.

Logarithmic Trend Variable name–LOG–, withXt = ln(t).

Exponential Trend Variable name–EXP–, withXt = t. The model is a linear
time trend applied to the logarithms of the dependent se-
ries. Thus, specifying an exponential trend is equivalent to
specifying the log series transformation and a linear time
trend. An exponential trend predictor can be used only in
conjunction with the log transformation, which is set auto-
matically when you specify exponential trend.

Hyperbolic Trend Variable name–HYP–, withXt = 1=t.

Power Curve Trend Variable name–POW–, with Xt = ln(t). The model is
a logarithmic time trend applied to the logarithms of the
dependent series. Thus, specifying a power curve is equiv-
alent to specifying the log series transformation and a log-
arithmic time trend. A power curve predictor can be used
only in conjunction with the log transformation, which is
set automatically when you specify a power curve trend.

EXP(A+B/TIME) Trend Variable name–ERT–, with Xt = 1=t. The model is a
hyperbolic time trend applied to the logarithms of the de-
pendent series. Thus, specifying this trend curve is equiv-
alent to specifying the log series transformation and a hy-
perbolic time trend. This trend curve can be used only in
conjunction with the log transformation, which is set auto-
matically when you specify this trend.
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Intervention Effects

Interventions are used for modeling events that occur at specific times. That is, they
are known changes that affect the dependent series or outliers.

The ith intervention series is included in the output data set with variable name

–INTV i–, which is a reserved variable name.

Point Interventions
The point intervention is a one-time event. Theith intervention seriesXi;t has a point
intervention at timetint when the series is nonzero only at timetint, that is,

Xi;t =

�
1; t = tint
0; otherwise

Step Interventions
Step interventions are continuing, and the input time series flags periods after the
intervention. For a step intervention, before timetint, the ith intervention seriesXi;t

is zero and then steps to a constant level thereafter, that is,

Xi;t =

�
1; t � tint
0; otherwise

Ramp Interventions
A ramp intervention is a continuing intervention that increases linearly after the in-
tervention time. For a ramp intervention, before timetint, the ith intervention series
Xi;t is zero and increases linearly thereafter, that is, proportional to time.

Xi;t =

�
t� tint; t � tint
0; otherwise

Intervention Effect
Given theith intervention seriesXi;t, you can define how the intervention takes effect
by filters (transfer functions) of the form

	i(B) =
1� !i;1B � : : : � !i;qiB

qi

1� �i;1B � : : : � �i;piB
pi

whereB is the backshift operatorByt = yt�1.

The denominator of the transfer function determines the decay pattern of the inter-
vention effect, whereas the numerator terms determine the size of the intervention
effect time window.

For example, the following intervention effects are associated with the respective
transfer functions.

Immediately 	i(B) = 1
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Gradually 	i(B) = 1=(1 � �i;1B)

1 Lag window 	i(B) = 1� !i;1B

3 Lag window 	i(B) = 1� !i;1B � !i;2B
2 � !i;3B

3

Intervention Notation
interventions The notation used to describe intervention effects has the form
type:tint(qi)/(pi), wheretype is point, step, or ramp;tint is the time of the interven-
tion (for example, OCT87);qi is the transfer function numerator order; andpi is the
transfer function denominator order. Ifqi = 0, the part "(qi)" is omitted; if pi = 0,
the part "/(pi)" is omitted.

In the Intervention Specification window, theNumber of Lags option specifies
the transfer function numerator orderqi, and theEffect Decay Pattern op-
tion specifies the transfer function denominator orderpi. In the Effect Decay
Pattern options , values and resultingpi are: None, pi = 0; Exp, pi = 1;
Wave, pi = 2.

For example, a step intervention with date 08MAR90 and effect pat-
tern Exp is denoted "Step:08MAR90/(1)" and has a transfer function filter
	i(B) = 1=(1 � �1B). A ramp intervention immediately applied on 08MAR90
is denoted "Ramp:08MAR90" and has a transfer function filter	i(B) = 1.

Seasonal Dummy Inputs

For a seasonal cycle of lengths, the seasonal dummy regressors include
fXi;t : 1 � i � (s� 1); 1 � t � ng for models that include an intercept term and
fXi;t : 1 � i � s; 1 � t � ng for models that exclude an intercept term. Each ele-
ment of a seasonal dummy regressor is either zero or one, based on the following
rule:

Xi;t =

�
1; wheni = t mods
0; otherwise

Note that if the model includes an intercept term, the number of seasonal dummy
regressors is one less thans to ensure that the linear system is full rank.

The seasonal dummy variables are included in the output data set with variable names
prefixed with "SDUMMYi" and sequentially numbered. They are reserved variable
names.

Series Diagnostic Tests

This section describes the diagnostic tests that are used to determine the kinds of
forecasting models appropriate for a series.

The series diagnostics are a set of heuristics that provide recommendations on
whether or not the forecasting model should contain a log transform, trend terms,
and seasonal terms. These recommendations are used by the automatic model selec-

1479
SAS OnlineDoc: Version 8



Part 3. General Information

tion process to restrict the model search to a subset of the model selection list. (You
can disable this behavior using the Automatic Model Selection Options window.)

The tests that are used by the series diagnostics will not always produce the correct
classification of the series. They are intended to accelerate the process of searching
for a good forecasting model for the series, but you should not rely on them if finding
the very best model is important to you.

If you have information about the appropriate kinds of forecasting models (perhaps
from studying the plots and autocorrelations shown in the Series Viewer window),
you can set the series diagnostic flags in the Series Diagnostics window. Select the
YES, NO, or MAYBE values for theLog Transform , Trend , andSeasonal-
ity options in the Series Diagnostics window as you think appropriate.

The series diagnostics tests are intended as a heuristic tool only, and no statistical
validity is claimed for them. These tests may be modified and enhanced in future
releases of the Time Series Forecasting System. The testing strategy is as follows:

1. Log transform test. The log test fits a high order autoregressive model to the
series and to the log of the series and compares goodness-of-fit measures for
the prediction errors of the two models. If this test finds that log transform-
ing the series is suitable, theLog Transform option is set to YES, and the
subsequent diagnostic tests are performed on the log transformed series.

2. Trend test. The resultant series is tested for presence of a trend using an aug-
mented Dickey-Fuller test and a random walk with drift test. If either test finds
that the series appears to have a trend, theTrend option is set to YES, and the
subsequent diagnostic tests are performed on the differenced series.

3. Seasonality test. The resultant series is tested for seasonality. A seasonal
dummy model with AR(1) errors is fit and the joint significance of the seasonal
dummy estimates is tested. If the seasonal dummies are significant, the AIC
statistic for this model is compared to the AIC for and AR(1) model without
seasonal dummies. If the AIC for the seasonal model is lower than that of the
nonseasonal model, theSeasonal option is set to YES.

Statistics of Fit

This section explains the goodness-of-fit statistics reported to measure how well dif-
ferent models fit the data. The statistics of fit for the various forecasting models can
be viewed or stored in a data set using the Model Viewer window.

The various statistics of fit reported are as follows. In these formula,n is the number
of nonmissing observations andk is the number of fitted parameters in the model.

Number of Nonmissing Observations.
The number of nonmissing observations used to fit the model.

SAS OnlineDoc: Version 8
1480



Chapter 30. Statistics of Fit

Number of Observations.
The total number of observations used to fit the model, including both missing
and nonmissing observations.

Number of Missing Actuals.
The number of missing actual values.

Number of Missing Predicted Values.
The number of missing predicted values.

Number of Model Parameters.
The number of parameters fit to the data. For combined forecast, this is the number
of forecast components.

Total Sum of Squares (Uncorrected).
The total sum of squares for the series, SST, uncorrected for the mean:

Pn
t=1 y

2
t .

Total Sum of Squares (Corrected).
The total sum of squares for the series, SST, corrected for the mean:Pn

t=1 (yt � y)2, wherey is the series mean.

Sum of Square Errors.
The sum of the squared prediction errors, SSE.SSE =

Pn
t=1 (yt � ŷt)

2, whereŷ
is the one-step predicted value.

Mean Square Error.
The mean squared prediction error, MSE, calculated from the one-step-ahead fore-
casts.MSE = 1

nSSE . This formula enables you to evaluate small holdout sam-
ples.

Root Mean Square Error.
The root mean square error (RMSE),

p
MSE .

Mean Absolute Percent Error.
The mean absolute percent prediction error (MAPE),100

n

Pn
t=1 j(yt � ŷt)=ytj.

The summation ignores observations whereyt = 0.

Mean Absolute Error.
The mean absolute prediction error,1

n

Pn
t=1 jyt � ŷtj.

R-Square.
The R2 statistic,R2 = 1� SSE=SST . If the model fits the series badly, the
model error sum of squares,SSE, may be larger thanSSTand theR2 statistic will
be negative.

Adjusted R-Square.
The adjustedR2 statistic,1� (n�1n�k )(1 �R2).

Amemiya’s Adjusted R-Square.
Amemiya’s adjustedR2, 1� (n+kn�k )(1 � R2).
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Random Walk R-Square.
The random walkR2 statistic (Harvey’sR2 statistic using the random walk model
for comparison),1� (n�1n )SSE=RWSSE , whereRWSSE =

Pn
t=2 (yt � yt�1 � �)2,

and� = 1
n�1

Pn
t=2 (yt � yt�1).

Akaike’s Information Criterion.
Akaike’s information criterion (AIC),n ln(MSE ) + 2k.

Schwarz Bayesian Information Criterion.
Schwarz Bayesian information criterion (SBC or BIC),
n ln(MSE ) + k ln(n).

Amemiya’s Prediction Criterion.
Amemiya’s prediction criterion,1nSST (n+kn�k )(1 � R2) = (n+kn�k )

1
nSSE .

Maximum Error.
The largest prediction error.

Minimum Error.
The smallest prediction error.

Maximum Percent Error.
The largest percent prediction error,100 max((yt � ŷt)=yt). The summation ig-
nores observations whereyt = 0.

Minimum Percent Error.
The smallest percent prediction error,100 min((yt � ŷt)=yt). The summation
ignores observations whereyt = 0.

Mean Error.
The mean prediction error,1n

Pn
t=1 (yt � ŷt).

Mean Percent Error.
The mean percent prediction error,100n

Pn
t=1

(yt�ŷt)
yt

. The summation ignores
observations whereyt = 0.
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