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Chapter 7
The ARIMA Procedure

Overview

The ARIMA procedure analyzes and forecasts equally spaced univariate time se-
ries data, transfer function data, and intervention data using theAutoRegressive
IntegratedMoving-Average (ARIMA) or autoregressive moving-average (ARMA)
model. An ARIMA model predicts a value in a response time series as a linear com-
bination of its own past values, past errors (also called shocks or innovations), and
current and past values of other time series.

The ARIMA approach was first popularized by Box and Jenkins, and ARIMA models
are often referred to as Box-Jenkins models. The general transfer function model
employed by the ARIMA procedure was discussed by Box and Tiao (1975). When an
ARIMA model includes other time series as input variables, the model is sometimes
referred to as an ARIMAX model. Pankratz (1991) refers to the ARIMAX model as
dynamic regression.

The ARIMA procedure provides a comprehensive set of tools for univariate time se-
ries model identification, parameter estimation, and forecasting, and it offers great
flexibility in the kinds of ARIMA or ARIMAX models that can be analyzed. The
ARIMA procedure supports seasonal, subset, and factored ARIMA models; inter-
vention or interrupted time series models; multiple regression analysis with ARMA
errors; and rational transfer function models of any complexity.

The design of PROC ARIMA closely follows the Box-Jenkins strategy for time series
modeling with features for the identification, estimation and diagnostic checking, and
forecasting steps of the Box-Jenkins method.

Before using PROC ARIMA, you should be familiar with Box-Jenkins methods, and
you should exercise care and judgment when using the ARIMA procedure. The
ARIMA class of time series models is complex and powerful, and some degree of
expertise is needed to use them correctly.

If you are unfamiliar with the principles of ARIMA modeling, refer to textbooks on
time series analysis. Also refer toSAS/ETS Software: Applications Guide 1, Version
6, First Edition. You might consider attending the SAS Training Course "Forecast-
ing Techniques Using SAS/ETS Software." This course provides in-depth training
on ARIMA modeling using PROC ARIMA, as well as training on the use of other
forecasting tools available in SAS/ETS software.
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Part 2. General Information

Getting Started

This section outlines the use of the ARIMA procedure and gives a cursory description
of the ARIMA modeling process for readers less familiar with these methods.

The Three Stages of ARIMA Modeling

The analysis performed by PROC ARIMA is divided into three stages, corresponding
to the stages described by Box and Jenkins (1976). The IDENTIFY, ESTIMATE, and
FORECAST statements perform these three stages, which are summarized below.

1. In theidentificationstage, you use the IDENTIFY statement to specify the re-
sponse series and identify candidate ARIMA models for it. The IDENTIFY
statement reads time series that are to be used in later statements, possibly dif-
ferencing them, and computes autocorrelations, inverse autocorrelations, par-
tial autocorrelations, and cross correlations. Stationarity tests can be performed
to determine if differencing is necessary. The analysis of the IDENTIFY state-
ment output usually suggests one or more ARIMA models that could be fit.
Options allow you to test for stationarity and tentative ARMA order identifica-
tion.

2. In theestimation and diagnostic checkingstage, you use the ESTIMATE state-
ment to specify the ARIMA model to fit to the variable specified in the previous
IDENTIFY statement, and to estimate the parameters of that model. The ES-
TIMATE statement also produces diagnostic statistics to help you judge the
adequacy of the model.

Significance tests for parameter estimates indicate whether some terms in the
model may be unnecessary. Goodness-of-fit statistics aid in comparing this
model to others. Tests for white noise residuals indicate whether the residual
series contains additional information that might be utilized by a more complex
model. If the diagnostic tests indicate problems with the model, you try another
model, then repeat the estimation and diagnostic checking stage.

3. In theforecastingstage you use the FORECAST statement to forecast future
values of the time series and to generate confidence intervals for these forecasts
from the ARIMA model produced by the preceding ESTIMATE statement.

These three steps are explained further and illustrated through an extended example
in the following sections.

Identification Stage

Suppose you have a variable called SALES that you want to forecast. The follow-
ing example illustrates ARIMA modeling and forecasting using a simulated data set
TEST containing a time series SALES generated by an ARIMA(1,1,1) model. The
output produced by this example is explained in the following sections. The simu-
lated SALES series is shown in Figure 7.1.
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Chapter 7. Getting Started

Figure 7.1. Simulated ARIMA(1,1,1) Series SALES

Using the IDENTIFY Statement
You first specify the input data set in the PROC ARIMA statement. Then, you use
an IDENTIFY statement to read in the SALES series and plot its autocorrelation
function. You do this using the following statements:

proc arima data=test;
identify var=sales nlag=8;
run;

Descriptive Statistics
The IDENTIFY statement first prints descriptive statistics for the SALES series. This
part of the IDENTIFY statement output is shown in Figure 7.2.

The ARIMA Procedure

Name of Variable = sales

Mean of Working Series 137.3662
Standard Deviation 17.36385
Number of Observations 100

Figure 7.2. IDENTIFY Statement Descriptive Statistics Output

Autocorrelation Function Plots
The IDENTIFY statement next prints three plots of the correlations of the series with
its past values at different lags. These are the

� sample autocorrelation function plot

195
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Part 2. General Information

� sample partial autocorrelation function plot

� sample inverse autocorrelation function plot

The sample autocorrelation function plot output of the IDENTIFY statement is shown
in Figure 7.3.

The ARIMA Procedure

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 301.503 1.00000 | |********************|
1 288.454 0.95672 | . |******************* |
2 273.437 0.90691 | . |****************** |
3 256.787 0.85169 | . |***************** |
4 238.518 0.79110 | . |**************** |
5 219.033 0.72647 | . |*************** |
6 198.617 0.65876 | . |************* |
7 177.150 0.58755 | . |************ |
8 154.914 0.51381 | . |********** . |

"." marks two standard errors

Figure 7.3. IDENTIFY Statement Autocorrelations Plot

The autocorrelation plot shows how values of the series are correlated with past values
of the series. For example, the value 0.95672 in the "Correlation" column for the Lag
1 row of the plot means that the correlation between SALES and the SALES value
for the previous period is .95672. The rows of asterisks show the correlation values
graphically.

These plots are called autocorrelation functions because they show the degree of cor-
relation with past values of the series as a function of the number of periods in the
past (that is, the lag) at which the correlation is computed.

The NLAG= option controls the number of lags for which autocorrelations are shown.
By default, the autocorrelation functions are plotted to lag 24; in this example the
NLAG=8 option is used, so only the first 8 lags are shown.

Most books on time series analysis explain how to interpret autocorrelation plots and
partial autocorrelation plots. See the section "The Inverse Autocorrelation Function"
later in this chapter for a discussion of inverse autocorrelation plots.

By examining these plots, you can judge whether the series isstationaryor nonsta-
tionary. In this case, a visual inspection of the autocorrelation function plot indicates
that the SALES series is nonstationary, since the ACF decays very slowly. For more
formal stationarity tests, use the STATIONARITY= option. (See the section "Station-
arity" later in this chapter.)

The inverse and partial autocorrelation plots are printed after the autocorrelation plot.
These plots have the same form as the autocorrelation plots, but display inverse and
partial autocorrelation values instead of autocorrelations and autocovariances. The
partial and inverse autocorrelation plots are not shown in this example.
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Chapter 7. Getting Started

White Noise Test
The last part of the default IDENTIFY statement output is the check for white noise.
This is an approximate statistical test of the hypothesis that none of the autocorrela-
tions of the series up to a given lag are significantly different from 0. If this is true for
all lags, then there is no information in the series to model, and no ARIMA model is
needed for the series.

The autocorrelations are checked in groups of 6, and the number of lags checked
depends on the NLAG= option. The check for white noise output is shown in Figure
7.4.

The ARIMA Procedure

Autocorrelation Check for White Noise

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 426.44 6 <.0001 0.957 0.907 0.852 0.791 0.726 0.659

Figure 7.4. IDENTIFY Statement Check for White Noise

In this case, the white noise hypothesis is rejected very strongly, which is expected
since the series is nonstationary. Thep value for the test of the first six autocorrela-
tions is printed as <0.0001, which means thep value is less than .0001.

Identification of the Differenced Series
Since the series is nonstationary, the next step is to transform it to a stationary series
by differencing. That is, instead of modeling the SALES series itself, you model
the change in SALES from one period to the next. To difference the SALES series,
use another IDENTIFY statement and specify that the first difference of SALES be
analyzed, as shown in the following statements:

identify var=sales(1) nlag=8;
run;

The second IDENTIFY statement produces the same information as the first but for
the change in SALES from one period to the next rather than for the total sales in
each period. The summary statistics output from this IDENTIFY statement is shown
in Figure 7.5. Note that the period of differencing is given as 1, and one observation
was lost through the differencing operation.

The ARIMA Procedure

Name of Variable = sales

Period(s) of Differencing 1
Mean of Working Series 0.660589
Standard Deviation 2.011543
Number of Observations 99
Observation(s) eliminated by differencing 1

Figure 7.5. IDENTIFY Statement Output for Differenced Series

The autocorrelation plot for the differenced series is shown in Figure 7.6.
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Part 2. General Information

The ARIMA Procedure

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 4.046306 1.00000 | |********************|
1 3.351258 0.82823 | . |***************** |
2 2.390895 0.59088 | . |************ |
3 1.838925 0.45447 | . |********* |
4 1.494253 0.36929 | . |*******. |
5 1.135753 0.28069 | . |****** . |
6 0.801319 0.19804 | . |**** . |
7 0.610543 0.15089 | . |*** . |
8 0.326495 0.08069 | . |** . |

"." marks two standard errors

Figure 7.6. Autocorrelations Plot for Change in SALES

The autocorrelations decrease rapidly in this plot, indicating that the change in
SALES is a stationary time series.

The next step in the Box-Jenkins methodology is to examine the patterns in the au-
tocorrelation plot to choose candidate ARMA models to the series. The partial and
inverse autocorrelation function plots are also useful aids in identifying appropriate
ARMA models for the series. The partial and inverse autocorrelation function plots
are shown in Figure 7.7 and Figure 7.8.

The ARIMA Procedure

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.73867 | ***************| . |
2 0.36801 | . |******* |
3 -0.17538 | ****| . |
4 0.11431 | . |** . |
5 -0.15561 | .***| . |
6 0.18899 | . |**** |
7 -0.15342 | .***| . |
8 0.05952 | . |* . |

Figure 7.7. Inverse Autocorrelation Function Plot for Change in SALES
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Chapter 7. Getting Started

The ARIMA Procedure

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.82823 | . |***************** |
2 -0.30275 | ******| . |
3 0.23722 | . |***** |
4 -0.07450 | . *| . |
5 -0.02654 | . *| . |
6 -0.01012 | . | . |
7 0.04189 | . |* . |
8 -0.17668 | ****| . |

Figure 7.8. Partial Autocorrelation Plot for Change in SALES

In the usual Box and Jenkins approach to ARIMA modeling, the sample autocorre-
lation function, inverse autocorrelation function, and partial autocorrelation function
are compared with the theoretical correlation functions expected from different kinds
of ARMA models. This matching of theoretical autocorrelation functions of different
ARMA models to the sample autocorrelation functions computed from the response
series is the heart of the identification stage of Box-Jenkins modeling. Most textbooks
on time series analysis discuss the theoretical autocorrelation functions for different
kinds of ARMA models.

Since the input data is only a limited sample of the series, the sample autocorrelation
functions computed from the input series will only approximate the true autocorre-
lation functions of the process generating the series. This means that the sample
autocorrelation functions will not exactly match the theoretical autocorrelation func-
tions for any ARMA model and may have a pattern similar to that of several different
ARMA models.

If the series is white noise (a purely random process), then there is no need to fit a
model. The check for white noise, shown in Figure 7.9, indicates that the change in
sales is highly autocorrelated. Thus, an autocorrelation model, for example an AR(1)
model, might be a good candidate model to fit to this process.

The ARIMA Procedure

Autocorrelation Check for White Noise

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 154.44 6 <.0001 0.828 0.591 0.454 0.369 0.281 0.198

Figure 7.9. IDENTIFY Statement Check for White Noise
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Part 2. General Information

Estimation and Diagnostic Checking Stage

The autocorrelation plots for this series, as shown in the previous section, suggest an
AR(1) model for the change in SALES. You should check the diagnostic statistics to
see if the AR(1) model is adequate. Other candidate models include an MA(1) model,
and low-order mixed ARMA models. In this example, the AR(1) model is tried first.

Estimating an AR(1) Model
The following statements fit an AR(1) model (an autoregressive model of order 1),
which predicts the change in sales as an average change, plus some fraction of the
previous change, plus a random error. To estimate an AR model, you specify the
order of the autoregressive model with the P= option on an ESTIMATE statement, as
shown in the following statements:

estimate p=1;
run;

The ESTIMATE statement fits the model to the data and prints parameter estimates
and various diagnostic statistics that indicate how well the model fits the data. The
first part of the ESTIMATE statement output, the table of parameter estimates, is
shown in Figure 7.10.

The ARIMA Procedure

Conditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag

MU 0.90280 0.65984 1.37 0.1744 0
AR1,1 0.86847 0.05485 15.83 <.0001 1

Figure 7.10. Parameter Estimates for AR(1) Model

The table of parameter estimates is titled "Condidtional Least Squares Estimation,"
which indicates the estimation method used. You can request different estimation
methods with the METHOD= option.

The table of parameter estimates lists the parameters in the model; for each parameter,
the table shows the estimated value and the standard error andt value for the estimate.
The table also indicates the lag at which the parameter appears in the model.

In this case, there are two parameters in the model. The mean term is labeled MU; its
estimated value is .90280. The autoregressive parameter is labeled AR1,1; this is the
coefficient of the lagged value of the change in SALES, and its estimate is .86847.

The t values provide significance tests for the parameter estimates and indicate
whether some terms in the model may be unnecessary. In this case, thet value for the
autoregressive parameter is 15.83, so this term is highly significant. Thet value for
MU indicates that the mean term adds little to the model.
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The standard error estimates are based on large sample theory. Thus, the standard
errors are labeled as approximate, and the standard errors andt values may not be
reliable in small samples.

The next part of the ESTIMATE statement output is a table of goodness-of-fit statis-
tics, which aid in comparing this model to other models. This output is shown in
Figure 7.11.

The ARIMA Procedure

Constant Estimate 0.118749
Variance Estimate 1.15794
Std Error Estimate 1.076076
AIC 297.4469
SBC 302.6372
Number of Residuals 99

* AIC and SBC do not include log determinant.

Figure 7.11. Goodness-of-Fit Statistics for AR(1) Model

The "Constant Estimate" is a function of the mean term MU and the autoregressive
parameters. This estimate is computed only for AR or ARMA models, but not for
strictly MA models. See the section "General Notation for ARIMA Models" later in
this chapter for an explanation of the constant estimate.

The "Variance Estimate" is the variance of the residual series, which estimates the
innovation variance. The item labeled "Std Error Estimate" is the square root of the
variance estimate. In general, when comparing candidate models, smaller AIC and
SBC statistics indicate the better fitting model. The section "Estimation Details" later
in this chapter explains the AIC and SBC statistics.

The ESTIMATE statement next prints a table of correlations of the parameter esti-
mates, as shown in Figure 7.12. This table can help you assess the extent to which
collinearity may have influenced the results. If two parameter estimates are very
highly correlated, you might consider dropping one of them from the model.

The ARIMA Procedure

Correlations of Parameter
Estimates

Parameter MU AR1,1

MU 1.000 0.114
AR1,1 0.114 1.000

Figure 7.12. Correlations of the Estimates for AR(1) Model

The next part of the ESTIMATE statement output is a check of the autocorrelations
of the residuals. This output has the same form as the autocorrelation check for white
noise that the IDENTIFY statement prints for the response series. The autocorrelation
check of residuals is shown in Figure 7.13.
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The ARIMA Procedure

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 19.09 5 0.0019 0.327 -0.220 -0.128 0.068 -0.002 -0.096
12 22.90 11 0.0183 0.072 0.116 -0.042 -0.066 0.031 -0.091
18 31.63 17 0.0167 -0.233 -0.129 -0.024 0.056 -0.014 -0.008
24 32.83 23 0.0841 0.009 -0.057 -0.057 -0.001 0.049 -0.015

Figure 7.13. Check for White Noise Residuals for AR(1) Model

The�2 test statistics for the residuals series indicate whether the residuals are un-
correlated (white noise) or contain additional information that might be utilized by a
more complex model. In this case, the test statistics reject the no-autocorrelation hy-
pothesis at a high level of significance. (p=0.0019 for the first six lags.) This means
that the residuals are not white noise, and so the AR(1) model is not a fully adequate
model for this series.

The final part of the ESTIMATE statement output is a listing of the estimated model
using the back shift notation. This output is shown in Figure 7.14.

The ARIMA Procedure

Model for variable sales

Estimated Mean 0.902799
Period(s) of Differencing 1

Autoregressive Factors

Factor 1: 1 - 0.86847 B**(1)

Figure 7.14. Estimated ARIMA(1,1,0) Model for SALES

This listing combines the differencing specification given in the IDENTIFY state-
ment with the parameter estimates of the model for the change in sales. Since the
AR(1) model is for the change in sales, the final model for sales is an ARIMA(1,1,0)
model. UsingB, the back shift operator, the mathematical form of the estimated
model shown in this output is as follows:

(1�B)salest = 0:902799 +
1

(1� 0:86847B)
at

See the section "General Notation for ARIMA Model" later in this chapter for further
explanation of this notation.

Estimating an ARMA(1,1) Model
The IDENTIFY statement plots suggest a mixed autoregressive and moving average
model, and the previous ESTIMATE statement check of residuals indicates that an
AR(1) model is not sufficient. You now try estimating an ARMA(1,1) model for the
change in SALES.
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An ARMA(1,1) model predicts the change in SALES as an average change, plus
some fraction of the previous change, plus a random error, plus some fraction of the
random error in the preceding period. An ARMA(1,1) model for the change in sales
is the same as an ARIMA(1,1,1) model for the level of sales.

To estimate a mixed autoregressive moving average model, you specify the order of
the moving average part of the model with the Q= option on an ESTIMATE statement
in addition to specifying the order of the autoregressive part with the P= option. The
following statements fit an ARMA(1,1) model to the differenced SALES series:

estimate p=1 q=1;
run;

The parameter estimates table and goodness-of-fit statistics for this model are shown
in Figure 7.15.

The ARIMA Procedure

Conditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag

MU 0.89288 0.49391 1.81 0.0738 0
MA1,1 -0.58935 0.08988 -6.56 <.0001 1
AR1,1 0.74755 0.07785 9.60 <.0001 1

Constant Estimate 0.225409
Variance Estimate 0.904034
Std Error Estimate 0.950807
AIC 273.9155
SBC 281.7009
Number of Residuals 99

* AIC and SBC do not include log determinant.

Figure 7.15. Estimated ARMA(1,1) Model for Change in SALES

The moving average parameter estimate, labeled "MA1,1", is�0:58935. Both the
moving average and the autoregressive parameters have significantt values. Note
that the variance estimate, AIC, and SBC are all smaller than they were for the AR(1)
model, indicating that the ARMA(1,1) model fits the data better without overparam-
eterizing.

The check for white noise residuals is shown in Figure 7.16. The�2 tests show
that we cannot reject the hypothesis that the residuals are uncorrelated. Thus, you
conclude that the ARMA(1,1) model is adequate for the change in sales series, and
there is no point in trying more complex models.

203
SAS OnlineDoc: Version 8



Part 2. General Information

The ARIMA Procedure

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 3.95 4 0.4127 0.016 -0.044 -0.068 0.145 0.024 -0.094
12 7.03 10 0.7227 0.088 0.087 -0.037 -0.075 0.051 -0.053
18 15.41 16 0.4951 -0.221 -0.033 -0.092 0.086 -0.074 -0.005
24 16.96 22 0.7657 0.011 -0.066 -0.022 -0.032 0.062 -0.047

Figure 7.16. Check for White Noise Residuals for ARMA(1,1) Model

The output showing the form of the estimated ARIMA(1,1,1) model for SALES is
shown in Figure 7.17.

The ARIMA Procedure

Model for variable sales

Estimated Mean 0.892875
Period(s) of Differencing 1

Autoregressive Factors

Factor 1: 1 - 0.74755 B**(1)

Moving Average Factors

Factor 1: 1 + 0.58935 B**(1)

Figure 7.17. Estimated ARIMA(1,1,1) Model for SALES

The estimated model shown in this output is

(1�B)salest = 0:892875 +
(1 + 0:58935B)

(1� 0:74755B)
at

Since the model diagnostic tests show that all the parameter estimates are signifi-
cant and the residual series is white noise, the estimation and diagnostic checking
stage is complete. You can now proceed to forecasting the SALES series with this
ARIMA(1,1,1) model.
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Forecasting Stage

To produce the forecast, use a FORECAST statement after the ESTIMATE statement
for the model you decide is best. If the last model fit were not the best, then repeat the
ESTIMATE statement for the best model before using the FORECAST statement.

Suppose that the SALES series is monthly, that you wish to forecast one year ahead
from the most recently available sales figure, and that the dates for the observations
are given by a variable DATE in the input data set TEST. You use the following
FORECAST statement:

forecast lead=12 interval=month id=date out=results;
run;

The LEAD= option specifies how many periods ahead to forecast (12 months, in this
case). The ID= option specifies the ID variable used to date the observations of the
SALES time series. The INTERVAL= option indicates that data are monthly and
enables PROC ARIMA to extrapolate DATE values for forecast periods. The OUT=
option writes the forecasts to an output data set RESULTS. See the section "OUT=
Data Set" later in this chapter for information on the contents of the output data set.

By default, the FORECAST statement also prints the forecast values, as shown in
Figure 7.18. This output shows for each forecast period the observation number,
forecast value, standard error estimate for the forecast value, and lower and upper
limits for a 95% confidence interval for the forecast.

The ARIMA Procedure

Forecasts for variable sales

Obs Forecast Std Error 95% Confidence Limits

101 171.0320 0.9508 169.1684 172.8955
102 174.7534 2.4168 170.0165 179.4903
103 177.7608 3.9879 169.9445 185.5770
104 180.2343 5.5658 169.3256 191.1430
105 182.3088 7.1033 168.3866 196.2310
106 184.0850 8.5789 167.2707 200.8993
107 185.6382 9.9841 166.0698 205.2066
108 187.0247 11.3173 164.8433 209.2061
109 188.2866 12.5807 163.6289 212.9443
110 189.4553 13.7784 162.4501 216.4605
111 190.5544 14.9153 161.3209 219.7879
112 191.6014 15.9964 160.2491 222.9538

Figure 7.18. Estimated ARIMA(1,1,1) Model for SALES

Normally, you want the forecast values stored in an output data set, and you are not
interested in seeing this printed list of the forecast. You can use the NOPRINT option
on the FORECAST statement to suppress this output.

Using ARIMA Procedure Statements

The IDENTIFY, ESTIMATE, and FORECAST statements are related in a hierarchy.
An IDENTIFY statement brings in a time series to be modeled; several ESTIMATE
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statements can follow to estimate different ARIMA models for the series; for each
model estimated, several FORECAST statements can be used. Thus, a FORECAST
statement must be preceded at some point by an ESTIMATE statement, and an ESTI-
MATE statement must be preceded at some point by an IDENTIFY statement. Addi-
tional IDENTIFY statements can be used to switch to modeling a different response
series or to change the degree of differencing used.

The ARIMA procedure can be used interactively in the sense that all ARIMA pro-
cedure statements can be executed any number of times without reinvoking PROC
ARIMA. You can execute ARIMA procedure statements singly or in groups by fol-
lowing the single statement or group of statements with a RUN statement. The output
for each statement or group of statements is produced when the RUN statement is en-
tered.

A RUN statement does not terminate the PROC ARIMA step but tells the procedure
to execute the statements given so far. You can end PROC ARIMA by submitting a
QUIT statement, a DATA step, another PROC step, or an ENDSAS statement.

The example in the preceding section illustrates the interactive use of ARIMA pro-
cedure statements. The complete PROC ARIMA program for that example is as
follows:

proc arima data=test;
identify var=sales nlag=8;
run;
identify var=sales(1) nlag=8;
run;
estimate p=1;
run;
estimate p=1 q=1;
run;
forecast lead=12 interval=month id=date out=results;
run;

quit;

General Notation for ARIMA Models

ARIMA is an acronym for AutoRegressive Integrated Moving-Average. The order of
an ARIMA model is usually denoted by the notation ARIMA(p,d,q), where

p is the order of the autoregressive part

d is the order of the differencing

q is the order of the moving-average process

If no differencing is done (d = 0), the models are usually referred to as ARMA(p,q)
models. The final model in the preceding example is an ARIMA(1,1,1) model since
the IDENTIFY statement specifiedd = 1, and the final ESTIMATE statement speci-
fiedp = 1 andq = 1.
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Notation for Pure ARIMA Models
Mathematically the pure ARIMA model is written as

Wt = �+
�(B)

�(B)
at

where

t indexes time

Wt is the response seriesYt or a difference of the response series

� is the mean term

B is the backshift operator; that is,BXt = Xt�1

�(B) is the autoregressive operator, represented as a polynomial in the
back shift operator:�(B) = 1� �1B � : : : � �pB

p

�(B) is the moving-average operator, represented as a polynomial in the
back shift operator:�(B) = 1� �1B � : : :� �qB

q

at is the independent disturbance, also called the random error.

The seriesWt is computed by the IDENTIFY statement and is the series processed
by the ESTIMATE statement. Thus,Wt is either the response seriesYt or a difference
of Yt specified by the differencing operators in the IDENTIFY statement.

For simple (nonseasonal) differencing,Wt = (1�B)dYt . For seasonal differencing
Wt = (1�B)d(1�Bs)DYt, whered is the degree of nonseasonal differencing,D
is the degree of seasonal differencing, ands is the length of the seasonal cycle.

For example, the mathematical form of the ARIMA(1,1,1) model estimated in the
preceding example is

(1�B)Yt = �+
(1� �1B)

(1� �1B)
at

Model Constant Term
The ARIMA model can also be written as

�(B)(Wt � �) = �(B)at

or

�(B)Wt = const+ �(B)at

where

const = �(B)� = �� �1�� �2�� : : :� �p�
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Thus, when an autoregressive operator and a mean term are both included in the
model, the constant term for the model can be represented as�(B)�. This value is
printed with the label "Constant Estimate" in the ESTIMATE statement output.

Notation for Transfer Function Models
The general ARIMA model with input series, also called the ARIMAX model, is
written as

Wt = �+
X
i

!i(B)

�i(B)
BkiXi;t +

�(B)

�(B)
at

where

Xi;t is the ith input time series or a difference of theith input series at
time t

ki is the pure time delay for the effect of theith input series

!i(B) is the numerator polynomial of the transfer function for theith in-
put series

�i(B) is the denominator polynomial of the transfer function for theith
input series.

The model can also be written more compactly as

Wt = �+
X
i

	i(B)Xi;t + nt

where

	i(B) is the transfer function weights for theith input series modeled as
a ratio of the! and� polynomials:	i(B) = (!i(B)=�i(B))Bki

nt is the noise series:nt = (�(B)=�(B))at

This model expresses the response series as a combination of past values of the ran-
dom shocks and past values of other input series. The response series is also called
the dependent seriesor output series. An input time series is also referred to as an
independent seriesor apredictor series. Response variable, dependent variable, in-
dependent variable, or predictor variable are other terms often used.

Notation for Factored Models
ARIMA models are sometimes expressed in a factored form. This means that the
�, �, !, or � polynomials are expressed as products of simpler polynomials. For
example, we could express the pure ARIMA model as

Wt = �+
�1(B)�2(B)

�1(B)�2(B)
at

where�1(B)�2(B) = �(B) and�1(B)�2(B) = �(B).
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When an ARIMA model is expressed in factored form, the order of the model is
usually expressed using a factored notation also. The order of an ARIMA model
expressed as the product of two factors is denoted as ARIMA(p,d,q)�(P,D,Q).

Notation for Seasonal Models
ARIMA models for time series with regular seasonal fluctuations often use differ-
encing operators and autoregressive and moving average parameters at lags that are
multiples of the length of the seasonal cycle. When all the terms in an ARIMA model
factor refer to lags that are a multiple of a constants, the constant is factored out and
suffixed to the ARIMA(p,d,q) notation.

Thus, the general notation for the order of a seasonal ARIMA model with both sea-
sonal and nonseasonal factors is ARIMA(p,d,q)�(P,D,Q)s . The term (p,d,q) gives the
order of the nonseasonal part of the ARIMA model; the term (P,D,Q)s gives the order
of the seasonal part. The value ofs is the number of observations in a seasonal cy-
cle: 12 for monthly series, 4 for quarterly series, 7 for daily series with day-of-week
effects, and so forth.

For example, the notation ARIMA(0,1,2)�(0,1,1)12 describes a seasonal ARIMA
model for monthly data with the following mathematical form:

(1�B)(1�B12)Yt = �+ (1� �1;1B � �1;2B
2)(1� �2;1B

12)at

Stationarity

The noise (or residual) series for an ARMA model must bestationary, which means
that both the expected values of the series and its autocovariance function are inde-
pendent of time.

The standard way to check for nonstationarity is to plot the series and its autocorre-
lation function. You can visually examine a graph of the series over time to see if it
has a visible trend or if its variability changes noticeably over time. If the series is
nonstationary, its autocorrelation function will usually decay slowly.

Another way of checking for stationarity is to use the stationarity tests described in
the section “Stationarity Tests” on page 241.

Most time series are nonstationary and must be transformed to a stationary series
before the ARIMA modeling process can proceed. If the series has a nonstationary
variance, taking the log of the series may help. You can compute the log values in a
DATA step and then analyze the log values with PROC ARIMA.

If the series has a trend over time, seasonality, or some other nonstationary pattern,
the usual solution is to take the difference of the series from one period to the next
and then analyze this differenced series. Sometimes a series may need to be differ-
enced more than once or differenced at lags greater than one period. (If the trend or
seasonal effects are very regular, the introduction of explanatory variables may be an
appropriate alternative to differencing.)
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Differencing

Differencing of the response series is specified with the VAR= option of the IDEN-
TIFY statement by placing a list of differencing periods in parentheses after the vari-
able name. For example, to take a simple first difference of the series SALES, use the
statement

identify var=sales(1);

In this example, the change in SALES from one period to the next will be analyzed.

A deterministic seasonal pattern will also cause the series to be nonstationary, since
the expected value of the series will not be the same for all time periods but will be
higher or lower depending on the season. When the series has a seasonal pattern, you
may want to difference the series at a lag corresponding to the length of the cycle of
seasons. For example, if SALES is a monthly series, the statement

identify var=sales(12);

takes a seasonal difference of SALES, so that the series analyzed is the change in
SALES from its value in the same month one year ago.

To take a second difference, add another differencing period to the list. For example,
the following statement takes the second difference of SALES:

identify var=sales(1,1);

That is, SALES is differenced once at lag 1 and then differenced again, also at lag 1.
The statement

identify var=sales(2);

creates a 2-span difference, that is current period sales minus sales from two periods
ago. The statement

identify var=sales(1,12);

takes a second-order difference of SALES, so that the series analyzed is the difference
between the current period-to-period change in SALES and the change 12 periods
ago. You might want to do this if the series had both a trend over time and a seasonal
pattern.

There is no limit to the order of differencing and the degree of lagging for each
difference.
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Differencing not only affects the series used for the IDENTIFY statement output but
also applies to any following ESTIMATE and FORECAST statements. ESTIMATE
statements fit ARMA models to the differenced series. FORECAST statements fore-
cast the differences and automatically sum these differences back to undo the dif-
ferencing operation specified by the IDENTIFY statement, thus producing the final
forecast result.

Differencing of input series is specified by the CROSSCORR= option and works just
like differencing of the response series. For example, the statement

identify var=y(1) crosscorr=(x1(1) x2(1));

takes the first difference of Y, the first difference of X1, and the first difference of
X2. Whenever X1 and X2 are used in INPUT= options in following ESTIMATE
statements, these names refer to the differenced series.

Subset, Seasonal, and Factored ARMA Models

The simplest way to specify an ARMA model is to give the order of the AR and MA
parts with the P= and Q= options. When you do this, the model has parameters for the
AR and MA parts for all lags through the order specified. However, you can control
the form of the ARIMA model exactly as shown in the following section.

Subset Models
You can control which lags have parameters by specifying the P= or Q= option as
a list of lags in parentheses. A model like this that includes parameters for only
some lags is sometimes called asubsetor additive model. For example, consider the
following two ESTIMATE statements:

identify var=sales;
estimate p=4;
estimate p=(1 4);

Both specify AR(4) models, but the first has parameters for lags 1, 2, 3, and 4, while
the second has parameters for lags 1 and 4, with the coefficients for lags 2 and 3
constrained to 0. The mathematical form of the autoregressive models produced by
these two specifications is shown in Table 7.1.

Table 7.1. Saturated versus Subset Models
Option Autoregressive Operator
P=4 (1� �1B � �2B

2 � �3B
3 � �4B

4)

P=(1 4) (1� �1B � �4B
4)
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Seasonal Models
One particularly useful kind of subset model is aseasonal model. When the response
series has a seasonal pattern, the values of the series at the same time of year in
previous years may be important for modeling the series. For example, if the series
SALES is observed monthly, the statements

identify var=sales;
estimate p=(12);

model SALES as an average value plus some fraction of its deviation from this aver-
age value a year ago, plus a random error. Although this is an AR(12) model, it has
only one autoregressive parameter.

Factored Models
A factored model (also referred to as a multiplicative model) represents the ARIMA
model as a product of simpler ARIMA models. For example, you might model
SALES as a combination of an AR(1) process reflecting short term dependencies
and an AR(12) model reflecting the seasonal pattern.

It might seem that the way to do this is with the option P=(1 12), but the AR(1)
process also operates in past years; you really need autoregressive parameters at lags
1, 12, and 13. You can specify a subset model with separate parameters at these
lags, or you can specify a factored model that represents the model as the product
of an AR(1) model and an AR(12) model. Consider the following two ESTIMATE
statements:

identify var=sales;
estimate p=(1 12 13);
estimate p=(1)(12);

The mathematical form of the autoregressive models produced by these two specifi-
cations are shown in Table 7.2.

Table 7.2. Subset versus Factored Models
Option Autoregressive Operator
P=(1 12 13) (1� �1B � �12B

12 � �13B
13)

P=(1)(12) (1� �1B)(1� �12B
12)

Both models fit by these two ESTIMATE statements predict SALES from its values
1, 12, and 13 periods ago, but they use different parameterizations. The first model
has three parameters, whose meanings may be hard to interpret.

The factored specification P=(1)(12) represents the model as the product of two dif-
ferent AR models. It has only two parameters: one that corresponds to recent effects
and one that represents seasonal effects. Thus the factored model is more parsimo-
nious, and its parameter estimates are more clearly interpretable.
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Input Variables and Regression with ARMA Errors

In addition to past values of the response series and past errors, you can also model the
response series using the current and past values of other series, calledinput series.

Several different names are used to describe ARIMA models with input series.Trans-
fer function model, intervention model, interrupted time series model, regression
model with ARMA errors, Box-Tiao model, and ARIMAX modelare all different
names for ARIMA models with input series. Pankratz (1991) refers to these mod-
els asdynamic regression.

Using Input Series
To use input series, list the input series in a CROSSCORR= option on the IDENTIFY
statement and specify how they enter the model with an INPUT= option on the ES-
TIMATE statement. For example, you might use a series called PRICE to help model
SALES, as shown in the following statements:

proc arima data=a;
identify var=sales crosscorr=price;
estimate input=price;
run;

This example performs a simple linear regression of SALES on PRICE, producing the
same results as PROC REG or another SAS regression procedure. The mathematical
form of the model estimated by these statements is

Yt = �+ !0Xt + at

The parameter estimates table for this example (using simulated data) is shown in
Figure 7.19. The intercept parameter is labeled MU. The regression coefficient for
PRICE is labeled NUM1. (See the section "Naming of Model Parameters" later in
this chapter for information on how parameters for input series are named.)

The ARIMA Procedure

Conditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag Variable Shift

MU 199.83602 2.99463 66.73 <.0001 0 sales 0
NUM1 -9.99299 0.02885 -346.38 <.0001 0 price 0

Figure 7.19. Parameter Estimates Table for Regression Model

Any number of input variables can be used in a model. For example, the following
statements fit a multiple regression of SALES on PRICE and INCOME:

proc arima data=a;
identify var=sales crosscorr=(price income);
estimate input=(price income);
run;
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The mathematical form of the regression model estimated by these statements is

Yt = �+ !1X1;t + !2X2;t + at

Lagging and Differencing Input Series
You can also difference and lag the input series. For example, the following state-
ments regress the change in SALES on the change in PRICE lagged by one period.
The difference of PRICE is specified with the CROSSCORR= option and the lag of
the change in PRICE is specified by the 1 $ in the INPUT= option.

proc arima data=a;
identify var=sales(1) crosscorr=price(1);
estimate input=( 1 $ price );
run;

These statements estimate the model

(1�B)Yt = �+ !0(1�B)Xt�1 + at

Regression with ARMA Errors
You can combine input series with ARMA models for the errors. For example, the
following statements regress SALES on INCOME and PRICE but with the error term
of the regression model (called thenoise seriesin ARIMA modeling terminology)
assumed to be an ARMA(1,1) process.

proc arima data=a;
identify var=sales crosscorr=(price income);
estimate p=1 q=1 input=(price income);
run;

These statements estimate the model

Yt = �+ !1X1;t + !2X2;t +
(1� �1B)

(1� �1B)
at

Stationarity and Input Series
Note that the requirement of stationarity applies to the noise series. If there are no
input variables, the response series (after differencing and minus the mean term) and
the noise series are the same. However, if there are inputs, the noise series is the
residual after the effect of the inputs is removed.

There is no requirement that the input series be stationary. If the inputs are nonsta-
tionary, the response series will be nonstationary, even though the noise process may
be stationary.

When nonstationary input series are used, you can fit the input variables first with no
ARMA model for the errors and then consider the stationarity of the residuals before
identifying an ARMA model for the noise part.
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Identifying Regression Models with ARMA Errors
Previous sections described the ARIMA modeling identification process using the
autocorrelation function plots produced by the IDENTIFY statement. This identifi-
cation process does not apply when the response series depends on input variables.
This is because it is the noise process for which we need to identify an ARIMA
model, and when input series are involved the response series adjusted for the mean
is no longer an estimate of the noise series.

However, if the input series are independent of the noise series, you can use the
residuals from the regression model as an estimate of the noise series, then apply the
ARIMA modeling identification process to this residual series. This assumes that the
noise process is stationary.

The PLOT option on the ESTIMATE statement produces for the model residuals
the same plots as the IDENTIFY statement produces for the response series. The
PLOT option prints an autocorrelation function plot, an inverse autocorrelation func-
tion plot, and a partial autocorrelation function plot for the residual series.

The following statements show how the PLOT option is used to identify the
ARMA(1,1) model for the noise process used in the preceding example of regres-
sion with ARMA errors:

proc arima data=a;
identify var=sales crosscorr=(price income) noprint;
estimate input=(price income) plot;
run;
estimate p=1 q=1 input=(price income) plot;
run;

In this example, the IDENTIFY statement includes the NOPRINT option since the
autocorrelation plots for the response series are not useful when you know that the
response series depends on input series.

The first ESTIMATE statement fits the regression model with no model for the noise
process. The PLOT option produces plots of the autocorrelation function, inverse
autocorrelation function, and partial autocorrelation function for the residual series
of the regression on PRICE and INCOME.

By examining the PLOT option output for the residual series, you verify that the
residual series is stationary and identify an ARMA(1,1) model for the noise process.
The second ESTIMATE statement fits the final model.

Although this discussion addresses regression models, the same remarks apply to
identifying an ARIMA model for the noise process in models that include input series
with complex transfer functions.

Intervention Models and Interrupted Time Series

One special kind of ARIMA model with input series is called anintervention model
or interrupted time seriesmodel. In an intervention model, the input series is an indi-
cator variable containing discrete values that flag the occurrence of an event affecting
the response series. This event is an intervention in or an interruption of the normal
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evolution of the response time series, which, in the absence of the intervention, is
usually assumed to be a pure ARIMA process.

Intervention models can be used both to model and forecast the response series and to
analyze the impact of the intervention. When the focus is on estimating the effect of
the intervention, the process is often calledintervention analysisor interrupted time
series analysis.

Impulse Interventions
The intervention can be a one-time event. For example, you might want to study the
effect of a short-term advertising campaign on the sales of a product. In this case, the
input variable has the value of 1 for the period during which the advertising campaign
took place and the value 0 for all other periods. Intervention variables of this kind are
sometimes calledimpulse functionsor pulse functions.

Suppose that SALES is a monthly series, and a special advertising effort was made
during the month of March 1992. The following statements estimate the effect of
this intervention assuming an ARMA(1,1) model for SALES. The model is specified
just like the regression model, but the intervention variable AD is constructed in the
DATA step as a zero-one indicator for the month of the advertising effort.

data a;
set a;
ad = date = ’1mar1992’d;

run;

proc arima data=a;
identify var=sales crosscorr=ad;
estimate p=1 q=1 input=ad;

run;

Continuing Interventions
Other interventions can be continuing, in which case the input variable flags periods
before and after the intervention. For example, you might want to study the effect
of a change in tax rates on some economic measure. Another example is a study of
the effect of a change in speed limits on the rate of traffic fatalities. In this case, the
input variable has the value 1 after the new speed limit went into effect and the value
0 before. Intervention variables of this kind are calledstep functions.

Another example is the effect of news on product demand. Suppose it was reported in
July 1996 that consumption of the product prevents heart disease (or causes cancer),
and SALES is consistently higher (or lower) thereafter. The following statements
model the effect of this news intervention:

data a;
set a;
news = date >= ’1jul1996’d;

run;

proc arima data=a;
identify var=sales crosscorr=news;
estimate p=1 q=1 input=news;

run;
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Interaction Effects
You can include any number of intervention variables in the model. Intervention vari-
ables can have any pattern–impulse and continuing interventions are just two possible
cases. You can mix discrete valued intervention variables and continuous regressor
variables in the same model.

You can also form interaction effects by multiplying input variables and including the
product variable as another input. Indeed, as long as the dependent measure forms
a regular time series, you can use PROC ARIMA to fit any general linear model in
conjunction with an ARMA model for the error process by using input variables that
correspond to the columns of the design matrix of the linear model.

Rational Transfer Functions and Distributed Lag Models

How an input series enters the model is called itstransfer function. Thus, ARIMA
models with input series are sometimes referred to as transfer function models.

In the preceding regression and intervention model examples, the transfer function
is a single scale parameter. However, you can also specify complex transfer func-
tions composed of numerator and denominator polynomials in the backshift operator.
These transfer functions operate on the input series in the same way that the ARMA
specification operates on the error term.

Numerator Factors
For example, suppose you want to model the effect of PRICE on SALES as taking
place gradually with the impact distributed over several past lags of PRICE. This is
illustrated by the following statements:

proc arima data=a;
identify var=sales crosscorr=price;
estimate input=( (1 2 3) price );
run;

These statements estimate the model

Yt = �+ (!0 � !1B � !2B
2 � !3B

3)Xt + at

This example models the effect of PRICE on SALES as a linear function of the cur-
rent and three most recent values of PRICE. It is equivalent to a multiple linear re-
gression of SALES on PRICE, LAG(PRICE), LAG2(PRICE), and LAG3(PRICE).

This is an example of a transfer function with onenumerator factor. The numerator
factors for a transfer function for an input series are like the MA part of the ARMA
model for the noise series.

Denominator Factors
You can also use transfer functions withdenominator factors. The denominator fac-
tors for a transfer function for an input series are like the AR part of the ARMA model
for the noise series. Denominator factors introduce exponentially weighted, infinite
distributed lags into the transfer function.
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To specify transfer functions with denominator factors, place the denominator factors
after a slash (/) in the INPUT= option. For example, the following statements estimate
the PRICE effect as an infinite distributed lag model with exponentially declining
weights:

proc arima data=a;
identify var=sales crosscorr=price;
estimate input=( / (1) price );
run;

The transfer function specified by these statements is as follows:

!0
(1� �1B)

Xt

This transfer function also can be written in the following equivalent form:

!0

 
1 +

1X
i=1

�i1B
i

!
Xt

This transfer function can be used with intervention inputs. When it is used with a
pulse function input, the result is an intervention effect that dies out gradually over
time. When it is used with a step function input, the result is an intervention effect
that increases gradually to a limiting value.

Rational Transfer Functions
By combining various numerator and denominator factors in the INPUT= option, you
can specifyrational transfer functionsof any complexity. To specify an input with a
general rational transfer function of the form

!(B)

�(B)
BkXt

use an INPUT= option in the ESTIMATE statement of the form

input=( k $ ( !-lags ) / ( �-lags) x)

See the section "Specifying Inputs and Transfer Functions" later in this chapter for
more information.

Identifying Transfer Function Models
The CROSSCORR= option of the IDENTIFY statement prints sample cross-
correlation functions showing the correlations between the response series and the
input series at different lags. The sample cross-correlation function can be used to
help identify the form of the transfer function appropriate for an input series. See text-
books on time series analysis for information on using cross-correlation functions to
identify transfer function models.

For the cross-correlation function to be meaningful, the input and response series
must be filtered with a prewhitening model for the input series. See the section
"Prewhitening" later in this chapter for more information on this issue.
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Forecasting with Input Variables

To forecast a response series using an ARIMA model with inputs, you need values
of the input series for the forecast periods. You can supply values for the input vari-
ables for the forecast periods in the DATA= data set, or you can have PROC ARIMA
forecast the input variables.

If you do not have future values of the input variables in the input data set used by the
FORECAST statement, the input series must be forecast before the ARIMA proce-
dure can forecast the response series. If you fit an ARIMA model to each of the input
series for which you need forecasts before fitting the model for the response series,
the FORECAST statement automatically uses the ARIMA models for the input series
to generate the needed forecasts of the inputs.

For example, suppose you want to forecast SALES for the next 12 months. In this
example, we predict the change in SALES as a function of the lagged change in
PRICE, plus an ARMA(1,1) noise process. To forecast SALES using PRICE as an
input, you also need to fit an ARIMA model for PRICE.

The following statements fit an AR(2) model to the change in PRICE before fit-
ting and forecasting the model for SALES. The FORECAST statement automatically
forecasts PRICE using this AR(2) model to get the future inputs needed to produce
the forecast of SALES.

proc arima data=a;
identify var=price(1);
estimate p=2;
identify var=sales(1) crosscorr=price(1);
estimate p=1 q=1 input=price;
forecast lead=12 interval=month id=date out=results;

run;

Fitting a model to the input series is also important for identifying transfer functions.
(See the section "Prewhitening" later in this chapter for more information.)

Input values from the DATA= data set and input values forecast by PROC ARIMA
can be combined. For example, a model for SALES might have three input series:
PRICE, INCOME, and TAXRATE. For the forecast, you assume that the tax rate will
be unchanged. You have a forecast for INCOME from another source but only for
the first few periods of the SALES forecast you want to make. You have no future
values for PRICE, which needs to be forecast as in the preceding example.

In this situation, you include observations in the input data set for all forecast periods,
with SALES and PRICE set to a missing value, with TAXRATE set to its last actual
value, and with INCOME set to forecast values for the periods you have forecasts for
and set to missing values for later periods. In the PROC ARIMA step, you estimate
ARIMA models for PRICE and INCOME before estimating the model for SALES,
as shown in the following statements:

proc arima data=a;
identify var=price(1);
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estimate p=2;
identify var=income(1);
estimate p=2;
identify var=sales(1) crosscorr=( price(1) income(1) taxrate );
estimate p=1 q=1 input=( price income taxrate );
forecast lead=12 interval=month id=date out=results;
run;

In forecasting SALES, the ARIMA procedure uses as inputs the value of PRICE
forecast by its ARIMA model, the value of TAXRATE found in the DATA= data
set, and the value of INCOME found in the DATA= data set, or, when the INCOME
variable is missing, the value of INCOME forecast by its ARIMA model. (Because
SALES is missing for future time periods, the estimation of model parameters is not
affected by the forecast values for PRICE, INCOME, or TAXRATE.)

Data Requirements

PROC ARIMA can handle time series of moderate size; there should be at least 30
observations. With 30 or fewer observations, the parameter estimates may be poor.
With thousands of observations, the method requires considerable computer time and
memory.
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Syntax

The ARIMA procedure uses the following statements:

PROC ARIMA options;
BY variables;
IDENTIFY VAR=variable options;
ESTIMATE options;
FORECAST options;

Functional Summary

The statements and options controlling the ARIMA procedure are summarized in the
following table.

Description Statement Option

Data Set Options
specify the input data set PROC ARIMA DATA=

IDENTIFY DATA=
specify the output data set PROC ARIMA OUT=

FORECAST OUT=
include only forecasts in the output data set FORECAST NOOUTALL
write autocovariances to output data set IDENTIFY OUTCOV=
write parameter estimates to an output data set ESTIMATE OUTEST=
write correlation of parameter estimates ESTIMATE OUTCORR
write covariance of parameter estimates ESTIMATE OUTCOV
write estimated model to an output data set ESTIMATE OUTMODEL=
write statistics of fit to an output data set ESTIMATE OUTSTAT=

Options for Identifying the Series
difference time series and plot autocorrelations IDENTIFY
specify response series and differencing IDENTIFY VAR=
specify and cross correlate input series IDENTIFY CROSSCORR=
center data by subtracting the mean IDENTIFY CENTER
exclude missing values IDENTIFY NOMISS
delete previous models and start fresh IDENTIFY CLEAR
specify the significance level for tests IDENTIFY ALPHA=
perform tentative ARMA order identification
using the ESACF Method

IDENTIFY ESACF

perform tentative ARMA order identification
using the MINIC Method

IDENTIFY MINIC

perform tentative ARMA order identification
using the SCAN Method

IDENTIFY SCAN
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Description Statement Option

specify the range of autoregressive model or-
ders for estimating the error series for the
MINIC Method

IDENTIFY PERROR=

determines the AR dimension of the SCAN,
ESACF, and MINIC tables

IDENTIFY P=

determines the MA dimension of the SCAN,
ESACF, and MINIC tables

IDENTIFY Q=

perform stationarity tests IDENTIFY STATIONARITY=

Options for Defining and Estimating the Model
specify and estimate ARIMA models ESTIMATE
specify autoregressive part of model ESTIMATE P=
specify moving average part of model ESTIMATE Q=
specify input variables and transfer functions ESTIMATE INPUT=
drop mean term from the model ESTIMATE NOINT
specify the estimation method ESTIMATE METHOD=
use alternative form for transfer functions ESTIMATE ALTPARM
suppress degrees-of-freedom correction in
variance estimates

ESTIMATE NODF

Printing Control Options
limit number of lags shown in correlation plots IDENTIFY NLAG=
suppress printed output for identification IDENTIFY NOPRINT
plot autocorrelation functions of the residuals ESTIMATE PLOT
print log likelihood around the estimates ESTIMATE GRID
control spacing for GRID option ESTIMATE GRIDVAL=
print details of the iterative estimation process ESTIMATE PRINTALL
suppress printed output for estimation ESTIMATE NOPRINT
suppress printing of the forecast values FORECAST NOPRINT
print the one-step forecasts and residuals FORECAST PRINTALL

Options to Specify Parameter Values
specify autoregressive starting values ESTIMATE AR=
specify moving average starting values ESTIMATE MA=
specify a starting value for the mean parameter ESTIMATE MU=
specify starting values for transfer functions ESTIMATE INITVAL=

Options to Control the Iterative Estimation Process
specify convergence criterion ESTIMATE CONVERGE=
specify the maximum number of iterations ESTIMATE MAXITER=
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Description Statement Option

specify criterion for checking for singularity ESTIMATE SINGULAR=
suppress the iterative estimation process ESTIMATE NOEST
omit initial observations from objective ESTIMATE BACKLIM=
specify perturbation for numerical derivatives ESTIMATE DELTA=
omit stationarity and invertibility checks ESTIMATE NOSTABLE
use preliminary estimates as starting values for
ML and ULS

ESTIMATE NOLS

Options for Forecasting
forecast the response series FORECAST
specify how many periods to forecast FORECAST LEAD=
specify the ID variable FORECAST ID=
specify the periodicity of the series FORECAST INTERVAL=
specify size of forecast confidence limits FORECAST ALPHA=
start forecasting before end of the input data FORECAST BACK=
specify the variance term used to compute
forecast standard errors and confidence limits

FORECAST SIGSQ=

control the alignment of SAS Date values FORECAST ALIGN=

BY Groups
specify BY group processing BY

PROC ARIMA Statement

PROC ARIMA options;

The following options can be used in the PROC ARIMA statement:

DATA= SAS-data-set
specifies the name of the SAS data set containing the time series. If different DATA=
specifications appear in the PROC ARIMA and IDENTIFY statements, the one in
the IDENTIFY statement is used. If the DATA= option is not specified in either the
PROC ARIMA or IDENTIFY statement, the most recently created SAS data set is
used.

OUT= SAS-data-set
specifies a SAS data set to which the forecasts are output. If different OUT= spec-
ifications appear in the PROC ARIMA and FORECAST statement, the one in the
FORECAST statement is used.
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BY Statement

BY variables;

A BY statement can be used in the ARIMA procedure to process a data set in groups
of observations defined by the BY variables. Note that all IDENTIFY, ESTIMATE,
and FORECAST statements specified are applied to all BY groups.

Because of the need to make data-based model selections, BY-group processing is not
usually done with PROC ARIMA. You usually want different models for the different
series contained in different BY-groups, and the PROC ARIMA BY statement does
not let you do this.

Using a BY statement imposes certain restrictions. The BY statement must appear
before the first RUN statement. If a BY statement is used, the input data must come
from the data set specified in the PROC statement; that is, no input data sets can be
specified in IDENTIFY statements.

When a BY statement is used with PROC ARIMA, interactive processing only ap-
plies to the first BY group. Once the end of the PROC ARIMA step is reached, all
ARIMA statements specified are executed again for each of the remaining BY groups
in the input data set.

IDENTIFY Statement

IDENTIFY VAR=variable options;

The IDENTIFY statement specifies the time series to be modeled, differences the
series if desired, and computes statistics to help identify models to fit. Use an IDEN-
TIFY statement for each time series that you want to model.

If other time series are to be used as inputs in a subsequent ESTIMATE statement,
they must be listed in a CROSSCORR= list in the IDENTIFY statement.

The following options are used in the IDENTIFY statement. The VAR= option is
required.

ALPHA= significance-level
The ALPHA= option specifies the significance level for tests in the IDENTIFY state-
ment. The default is 0.05.

CENTER
centers each time series by subtracting its sample mean. The analysis is done on the
centered data. Later, when forecasts are generated, the mean is added back. Note
that centering is done after differencing. The CENTER option is normally used in
conjunction with the NOCONSTANT option of the ESTIMATE statement.

CLEAR
deletes all old models. This option is useful when you want to delete old models so
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that the input variables are not prewhitened. (See the section "Prewhitening" later in
this chapter for more information.)

CROSSCORR= variable (d11, d12, ..., d1k)
CROSSCORR= (variable (d11, d12, ..., d1k) ... variable (d21, d22, ..., d2k))

names the variables cross correlated with the response variable given by the VAR=
specification.

Each variable name can be followed by a list of differencing lags in parentheses, the
same as for the VAR= specification. If differencing is specified for a variable in the
CROSSCORR= list, the differenced series is cross correlated with the VAR= option
series, and the differenced series is used when the ESTIMATE statement INPUT=
option refers to the variable.

DATA= SAS-data-set
specifies the input SAS data set containing the time series. If the DATA= option is
omitted, the DATA= data set specified in the PROC ARIMA statement is used; if
the DATA= option is omitted from the PROC ARIMA statement as well, the most
recently created data set is used.

ESACF
computes the extended sample autocorrelation function and uses these estimates to
tentatively identify the autoregressive and moving average orders of mixed models.

The ESACF option generates two tables. The first table displays extended sam-
ple autocorrelation estimates, and the second table displays probability values that
can be used to test the significance of these estimates. The P=(pmin : pmax) and
Q=(qmin : qmax) options determine the size of the table.

The autoregressive and moving average orders are tentatively identified by finding
a triangular pattern in which all values are insignificant. The ARIMA procedure
finds these patterns based on the IDENTIFY statement ALPHA= option and displays
possible recommendations for the orders.

The following code generates an ESACF table with dimensions of p=(0:7) and
q=(0:8).

proc arima data=test;
identify var=x esacf p=(0:7) q=(0:8);

run;

See the “The ESACF Method” section on page 236 for more information.

MINIC
uses information criteria or penalty functions to provide tentative ARMA or-
der identification. The MINIC option generates a table containing the com-
puted information criterion associated with various ARMA model orders. The
PERROR=(p�;min : p�;max) option determines the range of the autoregressive model
orders used to estimate the error series. The P=(pmin : pmax) and Q=(qmin : qmax)

options determine the size of the table. The ARMA orders are tentatively identified
by those orders that minimize the information criterion.
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The following code generates a MINIC table with default dimensions of p=(0:5) and
q=(0:5) and with the error series estimated by an autoregressive model with an order,
p�, that minimizes the AIC in the range from 8 to 11.

proc arima data=test;
identify var=x minic perror=(8:11);

run;

See the “The MINIC Method” section on page 238 for more information.

NLAG= number
indicates the number of lags to consider in computing the autocorrelations and
cross correlations. To obtain preliminary estimates of an ARIMA(p,d,q) model, the
NLAG= value must be at leastp+q+d. The number of observations must be greater
than or equal to the NLAG= value. The default value for NLAG= is 24 or one-fourth
the number of observations, whichever is less. Even though the NLAG= value is
specified, the NLAG= value can be changed according to the data set.

NOMISS
uses only the first continuous sequence of data with no missing values. By default,
all observations are used.

NOPRINT
suppresses the normal printout (including the correlation plots) generated by the
IDENTIFY statement.

OUTCOV= SAS-data-set
writes the autocovariances, autocorrelations, inverse autocorrelations, partial autocor-
relations, and cross covariances to an output SAS data set. If the OUTCOV= option
is not specified, no covariance output data set is created. See the section "OUTCOV=
Data Set" later in this chapter for more information.

P= (pmin : pmax)
see the ESCAF, MINIC, and SCAN options for details.

PERROR= (p�;min : p�;max)
see the ESCAF, MINIC, and SCAN options for details.

Q= (qmin : qmax)
see the ESACF, MINIC, and SCAN options for details.

SCAN
computes estimates of the squared canonical correlations and uses these estimates to
tentatively identify the autoregressive and moving average orders of mixed models.

The SCAN option generates two tables. The first table displays squared canon-
ical correlation estimates, and the second table displays probability values that
can be used to test the significance of these estimates. The P=(pmin : pmax) and
Q=(qmin : qmax) options determine the size of each table.

The autoregressive and moving average orders are tentatively identified by finding
a rectangular pattern in which all values are insignificant. The ARIMA procedure
finds these patterns based on the IDENTIFY statement ALPHA= option and displays
possible recommendations for the orders.
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The following code generates a SCAN table with default dimensions of p=(0:5) and
q=(0:5). The recommended orders are based on a significance level of 0.1.

proc arima data=test;
identify var=x scan alpha=0.1;

run;

See the “The SCAN Method” section on page 239 for more information.

STATIONARITY=
performs stationarity tests. Stationarity tests can be used to determine whether dif-
ferencing terms should be included in the model specification. In each stationarity
test, the autoregressive orders can be specified by a range,test=armax, or as a list of
values,test=(ar1; ::; arn), wheretestis ADF, PP, or RW. The default is (0,1,2).

See the “Stationarity Tests” section on page 241 for more information.

STATIONARITY=(ADF= AR ordersDLAG= s)
STATIONARITY=(DICKEY= AR ordersDLAG= s)

performs augmented Dickey-Fuller tests. If the DLAG=s option specified withs is
greater than one, seasonal Dickey-Fuller tests are performed. The maximum allow-
able value ofs is 12. The default value ofs is one. The following code performs
augmented Dickey-Fuller tests with autoregressive orders 2 and 5.

proc arima data=test;
identify var=x stationarity=(adf=(2,5));

run;

STATIONARITY=(PP= AR orders)
STATIONARITY=(PHILLIPS= AR orders)

performs Phillips-Perron tests. The following code performs Augmented Phillips-
Perron tests with autoregressive orders ranging from 0 to 6.

proc arima data=test;
identify var=x stationarity=(pp=6);

run;

STATIONARITY=(RW= AR orders)
STATIONARITY=(RANDOMWALK= AR orders)

performs random-walk with drift tests. The following code performs random-walk
with drift tests with autoregressive orders ranging from 0 to 2.

proc arima data=test;
identify var=x stationarity=(rw);

run;
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VAR= variable
VAR= variable ( d1, d2, ..., dk)

names the variable containing the time series to analyze. The VAR= option is re-
quired.

A list of differencing lags can be placed in parentheses after the variable name
to request that the series be differenced at these lags. For example, VAR=X(1)
takes the first differences of X. VAR=X(1,1) requests that X be differenced
twice, both times with lag 1, producing a second difference series, which is
(Xt �Xt�1)� (Xt�1 �Xt�2) = Xt � 2Xt�1 +Xt�2.

VAR=X(2) differences X once at lag two(Xt �Xt�2) .

If differencing is specified, it is the differenced series that is processed by any subse-
quent ESTIMATE statement.

ESTIMATE Statement

ESTIMATE options;

The ESTIMATE statement specifies an ARMA model or transfer function model for
the response variable specified in the previous IDENTIFY statement, and produces
estimates of its parameters. The ESTIMATE statement also prints diagnostic infor-
mation by which to check the model. Include an ESTIMATE statement for each
model that you want to estimate.

Options used in the ESTIMATE statement are described in the following sections.

Options for Defining the Model and Controlling Diagnostic Statistics
The following options are used to define the model to be estimated and to control the
output that is printed.

ALTPARM
specifies the alternative parameterization of the overall scale of transfer functions in
the model. See the section "Alternative Model Parameterization" later in this chapter
for details.

INPUT= variable
INPUT= ( transfer-function variable... )

specifies input variables and their transfer functions.

The variables used on the INPUT= option must be included in the CROSSCORR= list
in the previous IDENTIFY statement. If any differencing is specified in the CROSS-
CORR= list, then the differenced series is used as the input to the transfer function.

The transfer function specification for an input variable is optional. If no transfer
function is specified, the input variable enters the model as a simple regressor. If
specified, the transfer function specification has the following syntax:

S$(L1;1; L1;2; : : :)(L2;1; : : :) : : : =(Lj;1; : : :) : : :
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Here,S is a shift or lag of the input variable, the terms before the slash (/) are numer-
ator factors, and the terms after the slash (/) are denominator factors of the transfer
function. All three parts are optional. See the section "Specifying Inputs and Transfer
Functions" later in this chapter for details.

METHOD=ML
METHOD=ULS
METHOD=CLS

specifies the estimation method to use. METHOD=ML specifies the maximum like-
lihood method. METHOD=ULS specifies the unconditional least-squares method.
METHOD=CLS specifies the conditional least-squares method. METHOD=CLS is
the default. See the section "Estimation Details" later in this chapter for more infor-
mation.

NOCONSTANT
NOINT

suppresses the fitting of a constant (or intercept) parameter in the model. (That is, the
parameter� is omitted.)

NODF
estimates the variance by dividing the error sum of squares (SSE) by the number of
residuals. The default is to divide the SSE by the number of residuals minus the
number of free parameters in the model.

NOPRINT
suppresses the normal printout generated by the ESTIMATE statement. If the NO-
PRINT option is specified for the ESTIMATE statement, then any error and warning
messages are printed to the SAS log.

P= order
P= (lag, ..., lag) ... (lag, ..., lag)

specifies the autoregressive part of the model. By default, no autoregressive parame-
ters are fit.

P=(l1, l2, ..., lk ) defines a model with autoregressive parameters at the specified lags.
P=order is equivalent to P=(1, 2, ...,order).

A concatenation of parenthesized lists specifies a factored model. For example,
P=(1,2,5)(6,12) specifies the autoregressive model

(1� �1;1B � �1;2B
2 � �1;3B

5)(1 � �2;1B
6 � �2;2B

12)

PLOT
plots the residual autocorrelation functions. The sample autocorrelation, the sample
inverse autocorrelation, and the sample partial autocorrelation functions of the model
residuals are plotted.
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Q= order
Q= (lag, ..., lag) ... (lag, ..., lag)

specifies the moving-average part of the model. By default, no moving-average part
is included in the model.

Q=(l1, l2, ..., lk) defines a model with moving-average parameters at the specified
lags. Q=order is equivalent to Q=(1, 2, ...,order). A concatenation of parenthesized
lists specifies a factored model. The interpretation of factors and lags is the same as
for the P= option.

Options for Output Data Sets
The following options are used to store results in SAS data sets:

OUTEST= SAS-data-set
writes the parameter estimates to an output data set. If the OUTCORR or OUTCOV
option is used, the correlations or covariances of the estimates are also written to the
OUTEST= data set. See the section "OUTEST= Data Set" later in this chapter for a
description of the OUTEST= output data set.

OUTCORR
writes the correlations of the parameter estimates to the OUTEST= data set.

OUTCOV
writes the covariances of the parameter estimates to the OUTEST= data set.

OUTMODEL= SAS-data-set
writes the model and parameter estimates to an output data set. If OUTMODEL= is
not specified, no model output data set is created. See the section "OUTMODEL=
Data Set" for a description of the OUTMODEL= output data set.

OUTSTAT= SAS-data-set
writes the model diagnostic statistics to an output data set. If OUTSTAT= is not
specified, no statistics output data set is created. See the section "OUTSTAT= Data
Set" later in this chapter for a description of the OUTSTAT= output data set.

Options to Specify Parameter Values
The following options enable you to specify values for the model parameters. These
options can provide starting values for the estimation process, or you can specify fixed
parameters for use in the FORECAST stage and suppress the estimation process with
the NOEST option. By default, the ARIMA procedure finds initial parameter esti-
mates and uses these estimates as starting values in the iterative estimation process.

If values for any parameters are specified, values for all parameters should be given.
The number of values given must agree with the model specifications.

AR= value...
lists starting values for the autoregressive parameters. See "Initial Values" later in this
chapter for more information.

INITVAL= ( initializer-spec variable... )
specifies starting values for the parameters in the transfer function parts of the model.
See "Initial Values" later in this chapter for more information.
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MA= value...
lists starting values for the moving-average parameters. See "Initial Values" later in
this chapter for more information.

MU= value
specifies the MU parameter.

NOEST
uses the values specified with the AR=, MA=, INITVAL=, and MU= options as fi-
nal parameter values. The estimation process is suppressed except for estimation of
the residual variance. The specified parameter values are used directly by the next
FORECAST statement. When NOEST is specified, standard errors,t values, and
the correlations between estimates are displayed as 0 or missing. (The NOEST op-
tion is useful, for example, when you wish to generate forecasts corresponding to a
published model.)

Options to Control the Iterative Estimation Process
The following options can be used to control the iterative process of minimizing the
error sum of squares or maximizing the log likelihood function. These tuning options
are not usually needed but may be useful if convergence problems arise.

BACKLIM= �n
omits the specified number of initial residuals from the sum of squares or likelihood
function. Omitting values can be useful for suppressing transients in transfer function
models that are sensitive to start-up values.

CONVERGE= value
specifies the convergence criterion. Convergence is assumed when the largest change
in the estimate for any parameter is less that the CONVERGE= option value. If the
absolute value of the parameter estimate is greater than 0.01, the relative change is
used; otherwise, the absolute change in the estimate is used. The default is CON-
VERGE=.001.

DELTA= value
specifies the perturbation value for computing numerical derivatives. The default is
DELTA=.001.

GRID
prints the error sum of squares (SSE) or concentrated log likelihood surface in a small
grid of the parameter space around the final estimates. For each pair of parameters,
the SSE is printed for the nine parameter-value combinations formed by the grid, with
a center at the final estimates and with spacing given by the GRIDVAL= specifica-
tion. The GRID option may help you judge whether the estimates are truly at the
optimum, since the estimation process does not always converge. For models with a
large number of parameters, the GRID option produces voluminous output.

GRIDVAL= number
controls the spacing in the grid printed by the GRID option. The default is GRID-
VAL=0.005.
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MAXITER= n
MAXIT= n

specifies the maximum number of iterations allowed. The default is MAXITER=50.
(The default was 15 in previous releases of SAS/ETS software.)

NOLS
begins the maximum likelihood or unconditional least-squares iterations from the
preliminary estimates rather than from the conditional least-squares estimates that
are produced after four iterations. See the section "Estimation Details" later in this
chapter for details.

NOSTABLE
specifies that the autoregressive and moving-average parameter estimates for the
noise part of the model not be restricted to the stationary and invertible regions, re-
spectively. See the section "Stationarity and Invertibility" later in this chapter for
more information.

PRINTALL
prints preliminary estimation results and the iterations in the final estimation process.

SINGULAR= value
specifies the criterion for checking singularity. If a pivot of a sweep operation is
less than the SINGULAR= value, the matrix is deemed singular. Sweep operations
are performed on the Jacobian matrix during final estimation and on the covariance
matrix when preliminary estimates are obtained. The default is SINGULAR=1E-7.

FORECAST Statement

FORECAST options;

The FORECAST statement generates forecast values for a time series using the pa-
rameter estimates produced by the previous ESTIMATE statement. See the section
"Forecasting Details" later in this chapter for more information on calculating fore-
casts.

The following options can be used in the FORECAST statement:

ALIGN= option
controls the alignment of SAS dates used to identify output observations.
The ALIGN= option allows the following values: BEGINNING|BEG|B, MID-
DLE|MID|M, and ENDING|END|E. BEGINNING is the default.

ALPHA= n
sets the size of the forecast confidence limits. The ALPHA= value must be between
0 and 1. When you specify ALPHA=�, the upper and lower confidence limits will
have a1� � confidence level. The default is ALPHA=.05, which produces 95%
confidence intervals. ALPHA values are rounded to the nearest hundredth.
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BACK= n
specifies the number of observations before the end of the data that the multistep
forecasts are to begin. The BACK= option value must be less than or equal to the
number of observations minus the number of parameters.

The default is BACK=0, which means that the forecast starts at the end of the avail-
able data. The end of the data is the last observation for which a noise value can be
calculated. If there are no input series, the end of the data is the last nonmissing value
of the response time series. If there are input series, this observation can precede the
last nonmissing value of the response variable, since there may be missing values for
some of the input series.

ID= variable
names a variable in the input data set that identifies the time periods associated with
the observations. The ID= variable is used in conjunction with the INTERVAL=
option to extrapolate ID values from the end of the input data to identify forecast
periods in the OUT= data set.

If the INTERVAL= option specifies an interval type, the ID variable must be a SAS
date or datetime variable with the spacing between observations indicated by the
INTERVAL= value. If the INTERVAL= option is not used, the last input value of
the ID= variable is incremented by one for each forecast period to extrapolate the ID
values for forecast observations.

INTERVAL= interval
INTERVAL= n

specifies the time interval between observations. See Chapter 3, “Date Intervals,
Formats, and Functions,” for information on valid INTERVAL= values.

The value of the INTERVAL= option is used by PROC ARIMA to extrapolate the ID
values for forecast observations and to check that the input data are in order with no
missing periods. See the section "Specifying Series Periodicity" later in this chapter
for more details.

LEAD= n
specifies the number of multistep forecast values to compute. For example, if
LEAD=10, PROC ARIMA forecasts for ten periods beginning with the end of the
input series (or earlier if BACK= is specified). It is possible to obtain fewer than the
requested number of forecasts if a transfer function model is specified and insufficient
data are available to compute the forecast. The default is LEAD=24.

NOOUTALL
includes only the final forecast observations in the output data set, not the one-step
forecasts for the data before the forecast period.

NOPRINT
suppresses the normal printout of the forecast and associated values.
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OUT= SAS-data-set
writes the forecast (and other values) to an output data set. If OUT= is not specified,
the OUT= data set specified in the PROC ARIMA statement is used. If OUT= is also
not specified in the PROC ARIMA statement, no output data set is created. See the
section "OUT= Data Set" later in this chapter for more information.

PRINTALL
prints the FORECAST computation throughout the whole data set. The forecast val-
ues for the data before the forecast period (specified by the BACK= option) are one-
step forecasts.

SIGSQ=
specifies the variance term used in the formula for computing forecast standard errors
and confidence limits. The default value is the Variance Estimate computed by the
preceding ESTIMATE statement. This option is useful when you wish to generate
forecast standard errors and confidence limits based on a published model. It would
often be used in conjunction with the NOEST option in the preceding ESTIMATE
statement.

Details

The Inverse Autocorrelation Function

The sample inverse autocorrelation function (SIACF) plays much the same role in
ARIMA modeling as the sample partial autocorrelation function (SPACF) but gener-
ally indicates subset and seasonal autoregressive models better than the SPACF.

Additionally, the SIACF may be useful for detecting over-differencing. If the data
come from a nonstationary or nearly nonstationary model, the SIACF has the charac-
teristics of a noninvertible moving average. Likewise, if the data come from a model
with a noninvertible moving average, then the SIACF has nonstationary characteris-
tics and therefore decays slowly. In particular, if the data have been over-differenced,
the SIACF looks like a SACF from a nonstationary process.

The inverse autocorrelation function is not often discussed in textbooks, so a brief
description is given here. More complete discussions can be found in Cleveland
(1972), Chatfield (1980), and Priestly (1981).

LetWt be generated by the ARMA(p,q) process

�(B)Wt = �(B)at

whereat is a white noise sequence. If�(B) is invertible (that is, if� considered as a
polynomial inB has no roots less than or equal to 1 in magnitude), then the model

�(B)Zt = �(B)at

is also a valid ARMA(q,p) model. This model is sometimes referred to as the dual
model. The autocorrelation function (ACF) of this dual model is called the inverse
autocorrelation function (IACF) of the original model.
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Notice that if the original model is a pure autoregressive model, then the IACF is
an ACF corresponding to a pure moving-average model. Thus, it cuts off sharply
when the lag is greater thanp; this behavior is similar to the behavior of the partial
autocorrelation function (PACF).

The sample inverse autocorrelation function (SIACF) is estimated in the ARIMA
procedure by the following steps. A high-order autoregressive model is fit to the
data by means of the Yule-Walker equations. The order of the autoregressive model
used to calculate the SIACF is the minimum of the NLAG= value and one-half the
number of observations after differencing. The SIACF is then calculated as the au-
tocorrelation function that corresponds to this autoregressive operator when treated
as a moving-average operator. That is, the autoregressive coefficients are convolved
with themselves and treated as autocovariances.

Under certain conditions, the sampling distribution of the SIACF can be approxi-
mated by the sampling distribution of the SACF of the dual model (Bhansali 1980). In
the plots generated by ARIMA, the confidence limit marks (.) are located at�2=pn.
These limits bound an approximate 95% confidence interval for the hypothesis that
the data are from a white noise process.

The Partial Autocorrelation Function

The approximation for a standard error for the estimated partial autocorrelation func-
tion at lagk is based on a null hypothesis that a pure autoregressive Gaussian process
of orderk-1 generated the time series. This standard error is1=

p
n and is used to

produce the approximate 95% confidence intervals depicted by the dots in the plot.

The Cross-Correlation Function

The autocorrelation, partial and inverse autocorrelation functions described in the
preceding sections help when you want to model a series as a function of its past
values and past random errors. When you want to include the effects of past and
current values of other series in the model, the correlations of the response series and
the other series must be considered.

The CROSSCORR= option on the IDENTIFY statement computes cross correlations
of the VAR= series with other series and makes these series available for use as inputs
in models specified by later ESTIMATE statements.

When the CROSSCORR= option is used, PROC ARIMA prints a plot of the cross-
correlation function for each variable in the CROSSCORR= list. This plot is similar
in format to the other correlation plots, but shows the correlation between the two
series at both lags and leads. For example

identify var=y crosscorr=x ...;

plots the cross-correlation function of Y and X,Cor(yt; xt�s), for s = �L to L,
whereL is the value of the NLAG= option. Study of the cross-correlation functions
can indicate the transfer functions through which the input series should enter the
model for the response series.
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The cross-correlation function is computed after any specified differencing has been
done. If differencing is specified for the VAR= variable or for a variable in the
CROSSCORR= list, it is the differenced series that is cross correlated (and the differ-
enced series is processed by any following ESTIMATE statement).

For example,

identify var=y(1) crosscorr=x(1);

computes the cross correlations of the changes in Y with the changes in X. Any
following ESTIMATE statement models changes in the variables rather than the vari-
ables themselves.

The ESACF Method

The ExtendedSampleAutocorrelation Function (ESACF) method can tentatively
identify the orders of astationary or nonstationaryARMA process based on iterated
least squares estimates of the autoregressive parameters. Tsay and Tiao (1984) pro-
posed the technique, and Choi (1990) provides useful descriptions of the algorithm.

Given a stationary or nonstationary time seriesfzt : 1 � t � ng with mean corrected
form ~zt = zt � �z, with a true autoregressive order ofp+ d, and with a true moving-
average order ofq, you can use the ESACF method to estimate the unknown orders
p+ d andq by analyzing the autocorrelation functions associated with filtered series
of the form

w
(m;j)
t = �̂(m;j)(B)~zt = ~zt �

mX
i=1

�̂
(m;j)
i ~zt�i

whereB represents the backshift operator, wherem = pmin; : : :; pmax are the au-
toregressivetestorders, wherej = qmin + 1; : : :; qmax + 1 are the moving average

testorders, and wherê�(m;j)
i are the autoregressive parameter estimates under the

assumption that the series is an ARMA(m; j) process.

For purely autoregressive models (j = 0), ordinary least squares (OLS) is used to

consistently estimatê�(m;0)
i . For ARMA models, consistent estimates are obtained

by the iterated least squares recursion formula, which is initiated by the pure autore-
gressive estimates:

�̂
(m;j)
i = �̂

(m+1;j�1)
i � �̂

(m;j�1)
i�1

�̂
(m+1;j�1)
m+1

�̂
(m;j�1)
m

Thejth lag of the sample autocorrelation function of the filtered series,w
(m;j)
t , is the

extended sample autocorrelation function, and it is denoted asrj(m) = rj(w
(m;j)).

The standard errors ofrj(m) are computed in the usual way using Bartlett’s ap-
proximation of the variance of the sample autocorrelation function,var(rj(m)) �
(1 +

Pj�1
t=1r

2
j (w

(m;j))).
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If the true model is an ARMA (p+ d; q) process, the filtered series,w(m;j)
t , follows

an MA(q) model forj�q so that

rj(p+d) � 0 j > q

rj(p+d) 6= 0 j = q

Additionally, Tsay and Tiao (1984) show that the extended sample autocorrelation
satisfies

rj(m) � 0 j � q > m� p� d � 0

rj(m) 6= c(m� p� d; j � q) 0 � j � q � m� p� d

wherec(m� p� d; j � q) is a nonzero constant or a continuous random variable
bounded by -1 and 1.

An ESACF table is then constructed using therj(m) for m = pmin;: : :; pmax and
j = qmin + 1; : : :; qmax + 1 to identify the ARMA orders (see Table 7.3). The or-
ders are tentatively identified by finding a right (maximal) triangular pattern with
vertices located at(p+ d; q) and (p+ d; qmax) and in which all elements are in-
significant (based on asymptotic normality of the autocorrelation function). The ver-
tex (p+ d; q) identifies the order. Table 7.4 depicts the theoretical pattern associated
with an ARMA(1,2) series.

Table 7.3. ESACF Table

MA
AR 0 1 2 3 � �
0 r1(0) r2(0) r3(0) r4(0) � �
1 r1(1) r2(1) r3(1) r4(1) � �
2 r1(2) r2(2) r3(2) r4(2) � �
3 r1(3) r2(3) r3(3) r4(3) � �
� � � � � � �
� � � � � � �

Table 7.4. Theoretical ESACF Table for an ARMA(1,2) Series

MA
AR 0 1 2 3 4 5 6 7
0 * X X X X X X X
1 * X 0 0 0 0 0 0
2 * X X 0 0 0 0 0
3 * X X X 0 0 0 0
4 * X X X X 0 0 0

X = significant terms
0 = insignificant terms
* = no pattern

237
SAS OnlineDoc: Version 8



Part 2. General Information

The MINIC Method

The MIN imum InformationCriterion (MINIC) method can tentatively identify the
order of astationary and invertibleARMA process. Note that Hannan and Rissannen
(1982) proposed this method, and Boxet al (1994) and Choi (1990) provide useful
descriptions of the algorithm.

Given a stationary and invertible time seriesfzt : 1 � t � ng with mean corrected
form ~zt = zt � �z, with a true autoregressive order ofp, and with a true moving-
average order ofq, you can use the MINIC method to compute information criteria
(or penalty functions) for various autoregressive and moving average orders. The
following paragraphs provide a brief description of the algorithm.

If the series is a stationary and invertible ARMA(p,q) process of the form

�(p;q)(B)~zt = �(p;q)(B)�t

the error series can be approximated by a high-order AR process

�̂t = �̂(p�;q)(B)~zt � �t

where the parameter estimates�̂(p�;q) are obtained from the Yule-Walker estimates.
The choice of the autoregressive order,p�, is determined by the order that minimizes
the Akaike information criterion (AIC) in the rangep�;min � p� � p�;max

AIC (p�; 0) = ln(~�2(p�;0)) + 2(p� + 0)=n

where

~�2(p�;0) =
1

n

nX
t=p�+1

�̂2t

Note that Hannan and Rissannen (1982) use the Bayesian information criterion (BIC)
to determine the autoregressive order used to estimate the error series. Boxet al
(1994) and Choi (1990) recommend the AIC.

Once the error series has been estimated for autoregressivetest order
m = pmin; : : :; pmax and for moving-averagetest order j = qmin; : : :; qmax, the
OLS estimateŝ�(m;j) and�̂(m;j) are computed from the regression model

~zt =

mX
i=1

�
(m;j)
i ~zt�i +

jX
k=1

�
(m;j)
k �̂t�k + error

From the preceding parameter estimates, the BIC is then computed

BIC (m; j) = ln(~�2(m;j)) + 2(m+ j)ln(n)=n
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where

~�2(m;j) =
1

n

nX
t=t0

 
~zt �

mX
i=1

�
(m;j)
i ~zt�i +

jX
k=1

�
(m;j)
k �̂t�k

!

wheret0 = p� +max(m; j).

A MINIC table is then constructed usingBIC (m; j) (see Table 7.5). If
pmax > p�;min, the preceding regression may fail due to linear dependence on
the estimated error series and the mean-corrected series. Values ofBIC (m; j) that
cannot be computed are set to missing. For large autoregressive and moving average
test orders with relatively few observations, a nearly perfect fit can result. This
condition can be identified by a large negativeBIC (m; j) value.

Table 7.5. MINIC Table

MA
AR 0 1 2 3 � �
0 BIC(0; 0) BIC(0; 1) BIC(0; 2) BIC(0; 3) � �
1 BIC(1; 0) BIC(1; 1) BIC(1; 2) BIC(1; 3) � �
2 BIC(2; 0) BIC(2; 1) BIC(2; 2) BIC(2; 3) � �
3 BIC(3; 0) BIC(3; 1) BIC(3; 2) BIC(3; 3) � �
� � � � � � �
� � � � � � �

The SCAN Method

TheSmallestCANonical (SCAN) correlation method can tentatively identify the or-
ders of astationary or nonstationaryARMA process. Tsay and Tiao (1985) proposed
the technique, and Boxet al (1994) and Choi (1990) provide useful descriptions of
the algorithm.

Given a stationary or nonstationary time seriesfzt : 1 � t � ng with mean corrected
form ~zt = zt � �z, with a true autoregressive order ofp+ d, and with a true moving-
average order ofq, you can use the SCAN method to analyze eigenvalues of the
correlation matrix of the ARMA process. The following paragraphs provide a brief
description of the algorithm.

For autoregressivetestorderm = pmin; : : :; pmax and for moving-averagetestorder
j = qmin; : : :; qmax, perform the following steps.

1. LetYm;t = (~zt; ~zt�1; : : :; ~zt�m)
0. Compute the following(m + 1) � (m + 1)

matrix

�̂(m; j + 1) =

 X
t

Ym;t�j�1Y
0

m;t�j�1

!
�1 X

t

Ym;t�j�1Y
0

m;t

!

�̂�(m; j + 1) =

 X
t

Ym;tY
0

m;t

!
�1 X

t

Ym;tY
0

m;t�j�1

!
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Â�(m; j) = �̂�(m; j + 1)�̂(m; j + 1)

wheret ranges fromj +m+ 2 to n.

2. Find thesmallesteigenvalue,̂��(m; j), of Â�(m; j) and its correspondingnor-

malizedeigenvector,�m;j = (1;��(m;j)
1 ;��(m;j)

2 ; : : : ;��(m;j)
m ). The squared

canonical correlation estimate is�̂�(m; j).

3. Using the�m;j as AR(m) coefficients, obtain the residuals fort = j +m+ 1

ton, by following the formula:w(m;j)
t = ~zt��

(m;j)
1 ~zt�1��

(m;j)
2 ~zt�2� : : :�

�
(m;j)
m ~zt�m.

4. From the sample autocorrelations of the residuals,rk(w), approximate the stan-
dard error of the squared canonical correlation estimate by

var(�̂�(m; j)1=2) � d(m; j)=(n �m� j)

whered(m; j) = (1 + 2
Pj�1

i=1 rk(w
(m;j))).

The test statistic to be used as an identification criterion is

c(m; j) = �(n�m� j)ln(1� �̂�(m; j)=d(m; j))

which is asymptotically�21 if m = p+ d andj � q or if m � p+ d andj = q. For
m > p andj < q, there is more than one theoretical zero canonical correlation be-
tweenYm;t andYm;t�j�1. Since thê��(m; j) are the smallest canonical correlations
for each(m; j), the percentiles ofc(m; j) are less than those of a�21; therefore, Tsay
and Tiao (1985) state that it is safe to assume a�21. Form < p andj < q, no conclu-
sions about the distribution ofc(m; j) are made.

A SCAN table is then constructed usingc(m; j) to determine which of thê��(m; j)
are significantly different from zero (see Table 7.6). The ARMA orders are tenta-
tively identified by finding a (maximal) rectangular pattern in which the�̂�(m; j) are
insignificant for all test ordersm � p+ d andj � q. There may be more than one
pair of values (p+ d; q) that permit such a rectangular pattern. In this case, parsi-
mony and the number of insignificant items in the rectangular pattern should help
determine the model order. Table 7.7 depicts the theoretical pattern associated with
an ARMA(2,2) series.

Table 7.6. SCAN Table

MA
AR 0 1 2 3 � �
0 c(0; 0) c(0; 1) c(0; 2) c(0; 3) � �
1 c(1; 0) c(1; 1) c(1; 2) c(1; 3) � �
2 c(2; 0) c(2; 1) c(2; 2) c(2; 3) � �
3 c(3; 0) c(3; 1) c(3; 2) c(3; 3) � �
� � � � � � �
� � � � � � �
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Table 7.7. Theoretical SCAN Table for an ARMA(2,2) Series

MA
AR 0 1 2 3 4 5 6 7
0 * X X X X X X X
1 * X X X X X X X
2 * X 0 0 0 0 0 0
3 * X 0 0 0 0 0 0
4 * X 0 0 0 0 0 0

X = significant terms
0 = insignificant terms
* = no pattern

Stationarity Tests

When a time series has a unit root, the series is nonstationary and the ordinary least
squares (OLS) estimator is not normally distributed. Dickey (1976) and Dickey and
Fuller (1979) studied the limiting distribution of the OLS estimator of autoregressive
models for time series with a simple unit root. Dickey, Hasza and Fuller (1984)
obtained the limiting distribution for time series with seasonal unit roots. Hamilton
(1994) discusses the various types of unit root testing.

For a description of Dickey-Fuller tests, refer to , "PROBDF Function for Dickey-
Fuller Tests" in Chapter 4.

Refer to Chapter 4, “SAS Macros and Functions,” for a description of the augmented
Dickey-Fuller tests. Refer to Chapter 8, “The AUTOREG Procedure,” for a descrip-
tion of Phillips-Perron tests.

The random walk with drift test recommends whether or not an integrated times series
has a drift term. Hamilton (1994) discusses this test.

Prewhitening

If, as is usually the case, an input series is autocorrelated, the direct cross-correlation
function between the input and response series gives a misleading indication of the
relation between the input and response series.

One solution to this problem is calledprewhitening. You first fit an ARIMA model
for the input series sufficient to reduce the residuals to white noise; then, filter the
input series with this model to get the white noise residual series. You then filter the
response series with the same model and cross correlate the filtered response with the
filtered input series.

The ARIMA procedure performs this prewhitening process automatically when you
precede the IDENTIFY statement for the response series with IDENTIFY and ESTI-
MATE statements to fit a model for the input series. If a model with no inputs was
previously fit to a variable specified by the CROSSCORR= option, then that model
is used to prewhiten both the input series and the response series before the cross
correlations are computed for the input series.
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For example,

proc arima data=in;
identify var=x;
estimate p=1 q=1;
identify var=y crosscorr=x;

Both X and Y are filtered by the ARMA(1,1) model fit to X before the cross correla-
tions are computed.

Note that prewhitening is done to estimate the cross-correlation function; the unfil-
tered series are used in any subsequent ESTIMATE or FORECAST statements, and
the correlation functions of Y with its own lags are computed from the unfiltered Y
series. But initial values in the ESTIMATE statement are obtained with prewhitened
data; therefore, the result with prewhitening can be different from the result without
prewhitening.

To suppress prewhitening for all input variables, use the CLEAR option on the IDEN-
TIFY statement to make PROC ARIMA forget all previous models.

Prewhitening and Differencing
If the VAR= and CROSSCORR= options specify differencing, the series are differ-
enced before the prewhitening filter is applied. When the differencing lists specified
on the VAR= option for an input and on the CROSSCORR= option for that input are
not the same, PROC ARIMA combines the two lists so that the differencing opera-
tors used for prewhitening include all differences in either list (in the least common
multiple sense).

Identifying Transfer Function Models

When identifying a transfer function model with multiple input variables, the cross-
correlation functions may be misleading if the input series are correlated with each
other. Any dependencies among two or more input series will confound their cross
correlations with the response series.

The prewhitening technique assumes that the input variables do not depend on past
values of the response variable. If there is feedback from the response variable to
an input variable, as evidenced by significant cross-correlation at negative lags, both
the input and the response variables need to be prewhitened before meaningful cross
correlations can be computed.

PROC ARIMA cannot handle feedback models. The STATESPACE procedure is
more appropriate for models with feedback.

Missing Values and Autocorrelations

To compute the sample autocorrelation function when missing values are present,
PROC ARIMA uses only cross products that do not involve missing values and em-
ploys divisors that reflect the number of cross products used rather than the total
length of the series. Sample partial autocorrelations and inverse autocorrelations are
then computed using the sample autocorrelation function. If necessary, a taper is
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employed to transform the sample autocorrelations into a positive definite sequence
before calculating the partial autocorrelation and inverse correlation functions. The
confidence intervals produced for these functions may not be valid when there are
missing values. The distributional properties for sample correlation functions are not
clear for finite samples. See Dunsmuir (1984) for some asymptotic properties of the
sample correlation functions.

Estimation Details

The ARIMA procedure primarily uses the computational methods outlined by Box
and Jenkins. Marquardt’s method is used for the nonlinear least-squares iterations.
Numerical approximations of the derivatives of the sum-of-squares function are taken
using a fixed delta (controlled by the DELTA= option).

The methods do not always converge successfully for a given set of data, particularly
if the starting values for the parameters are not close to the least-squares estimates.

Back-forecasting
The unconditional sum of squares is computed exactly; thus, back-forecasting is not
performed. Early versions of SAS/ETS software used the back-forecasting approxi-
mation and allowed a positive value of the BACKLIM= option to control the extent
of the back-forecasting. In the current version, requesting a positive number of back-
forecasting steps with the BACKLIM= option has no effect.

Preliminary Estimation
If an autoregressive or moving-average operator is specified with no missing lags,
preliminary estimates of the parameters are computed using the autocorrelations com-
puted in the IDENTIFY stage. Otherwise, the preliminary estimates are arbitrarily set
to values that produce stable polynomials.

When preliminary estimation is not performed by PROC ARIMA, then initial values
of the coefficients for any given autoregressive or moving average factor are set to 0.1
if the degree of the polynomial associated with the factor is 9 or less. Otherwise, the
coefficients are determined by expanding the polynomial (1�0:1B) to an appropriate
power using a recursive algorithm.

These preliminary estimates are the starting values in an iterative algorithm to com-
pute estimates of the parameters.

Estimation Methods
Maximum Likelihood

The METHOD= ML option produces maximum likelihood estimates. The likeli-
hood function is maximized via nonlinear least squares using Marquardt’s method.
Maximum likelihood estimates are more expensive to compute than the conditional
least-squares estimates, however, they may be preferable in some cases (Ansley and
Newbold 1980; Davidson 1981).

The maximum likelihood estimates are computed as follows. Let the univariate
ARMA model be

�(B)(Wt � �t) = �(B)at
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whereat is an independent sequence of normally distributed innovations with mean
0 and variance�2. Here�t is the mean parameter� plus the transfer function inputs.
The log likelihood function can be written as follows:

� 1

2�2
x
0


�1
x� 1

2
ln(j
j)� n

2
ln(�2)

In this equation,n is the number of observations,�2
 is the variance ofx as a func-
tion of the� and� parameters, andj�j denotes the determinant. The vectorx is the
time seriesWt minus the structural part of the model�t, written as a column vector,
as follows:

x =

2
664
W1

W2
...

Wn

3
775�

2
664
�1
�2
...
�n

3
775

The maximum likelihood estimate (MLE) of�2 is

s2 =
1

n
x
0


�1
x

Note that the default estimator of the variance divides byn� r, wherer is the number
of parameters in the model, instead of byn. Specifying the NODF option causes a
divisor of n to be used.

The log likelihood concentrated with respect to�2 can be taken up to additive con-
stants as

�n

2
ln(x0
�1

x)� 1

2
ln(j
j)

Let H be the lower triangular matrix with positive elements on the diagonal such that
HH

0 = 
. Let e be the vectorH�1
x. The concentrated log likelihood with respect

to �2 can now be written as

�n

2
ln(e0e)� ln(jHj)

or

�n

2
ln(jHj1=ne0ejHj1=n)

The MLE is produced by using a Marquardt algorithm to minimize the following sum
of squares:

jHj1=ne0ejHj1=n
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The subsequent analysis of the residuals is done usingeas the vector of residuals.

Unconditional Least Squares
The METHOD=ULS option produces unconditional least-squares estimates. The
ULS method is also referred to as theexact least-squares(ELS) method. For
METHOD=ULS, the estimates minimize

nX
t=1

~a2t =

nX
t=1

(xt �CtV
�1
t (x1; � � �; xt�1)0)2

whereCt is the covariance matrix ofxt and(x1; � � �; xt�1), andVt is the variance
matrix of (x1; � � �; xt�1) . In fact,

Pn
t=1 ~a

2
t is the same asx0
�1

x and, hence,e0e.
Therefore, the unconditional least-squares estimates are obtained by minimizing the
sum of squared residuals rather than using the log likelihood as the criterion function.

Conditional Least Squares
The METHOD=CLS option produces conditional least-squares estimates. The CLS
estimates are conditional on the assumption that the past unobserved errors are equal
to 0. The seriesxt can be represented in terms of the previous observations, as fol-
lows:

xt = at +
1X
i=1

�ixt�i

The� weights are computed from the ratio of the� and� polynomials, as follows:

�(B)

�(B)
= 1�

1X
i=1

�iB
i:

The CLS method produces estimates minimizing

nX
t=1

â2t =

nX
t=1

(xt �
1X
i=1

�̂ixt�i)
2

where the unobserved past values ofxt are set to 0 and̂�i are computed from the
estimates of� and� at each iteration.

For METHOD=ULS and METHOD=ML, initial estimates are computed using the
METHOD=CLS algorithm.

Start-up for Transfer Functions
When computing the noise series for transfer function and intervention models, the
start-up for the transferred variable is done assuming that past values of the input
series are equal to the first value of the series. The estimates are then obtained by
applying least squares or maximum likelihood to the noise series. Thus, for transfer
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function models, the ML option does not generate the full (multivariate ARMA) max-
imum likelihood estimates, but it uses only the univariate likelihood function applied
to the noise series.

Because PROC ARIMA uses all of the available data for the input series to generate
the noise series, other start-up options for the transferred series can be implemented
by prefixing an observation to the beginning of the real data. For example, if you fit a
transfer function model to the variable Y with the single input X, then you can employ
a start-up using 0 for the past values by prefixing to the actual data an observation with
a missing value for Y and a value of 0 for X.

Information Criteria
PROC ARIMA computes and prints two information criteria, Akaike’s information
criterion (AIC) (Akaike 1974; Harvey 1981) and Schwarz’s Bayesian criterion (SBC)
(Schwarz 1978). The AIC and SBC are used to compare competing models fit to the
same series. The model with the smaller information criteria is said to fit the data
better. The AIC is computed as

�2ln(L) + 2k

whereL is the likelihood function andk is the number of free parameters. The SBC
is computed as

�2ln(L) + ln(n)k

wheren is the number of residuals that can be computed for the time series. Some-
times Schwarz’s Bayesian criterion is called the Bayesian Information criterion
(BIC).

If METHOD=CLS is used to do the estimation, an approximation value ofL is used,
where L is based on the conditional sum of squares instead of the exact sum of
squares, and a Jacobian factor is left out.

Tests of Residuals
A table of test statistics for the hypothesis that the model residuals are white noise is
printed as part of the ESTIMATE statement output. The chi-square statistics used in
the test for lack of fit are computed using the Ljung-Box formula

�2m = n(n+ 2)

mX
k=1

r2k
(n� k)

where

rk =

Pn�k
t=1 atat+kPn

t=1 a
2
t

andat is the residual series.
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This formula has been suggested by Ljung and Box (1978) as yielding a better fit to
the asymptotic chi-square distribution than the Box-Pierce Q statistic. Some simula-
tion studies of the finite sample properties of this statistic are given by Davies, Triggs,
and Newbold (1977) and by Ljung and Box (1978).

Each chi-square statistic is computed for all lags up to the indicated lag value and is
not independent of the preceding chi-square values. The null hypotheses tested is that
the current set of autocorrelations is white noise.

t-values
The t values reported in the table of parameter estimates are approximations whose
accuracy depends on the validity of the model, the nature of the model, and the length
of the observed series. When the length of the observed series is short and the number
of estimated parameters is large with respect to the series length, thet approximation
is usually poor. Probability values corresponding to at distribution should be inter-
preted carefully as they may be misleading.

Cautions During Estimation
The ARIMA procedure uses a general nonlinear least-squares estimation method that
can yield problematic results if your data do not fit the model. Output should be
examined carefully. The GRID option can be used to ensure the validity and quality
of the results. Problems you may encounter include the following:

� Preliminary moving-average estimates may not converge. Should this occur,
preliminary estimates are derived as described previously in "Preliminary Esti-
mation." You can supply your own preliminary estimates with the ESTIMATE
statement options.

� The estimates can lead to an unstable time series process, which can cause
extreme forecast values or overflows in the forecast.

� The Jacobian matrix of partial derivatives may be singular; usually, this hap-
pens because not all the parameters are identifiable. Removing some of the
parameters or using a longer time series may help.

� The iterative process may not converge. PROC ARIMA’s estimation method
stops aftern iterations, wheren is the value of the MAXITER= option. If an
iteration does not improve the SSE, the Marquardt parameter is increased by a
factor of ten until parameters that have a smaller SSE are obtained or until the
limit value of the Marquardt parameter is exceeded.

� For METHOD=CLS, the estimates may converge but not to least-squares esti-
mates. The estimates may converge to a local minimum, the numerical calcu-
lations may be distorted by data whose sum-of-squares surface is not smooth,
or the minimum may lie outside the region of invertibility or stationarity.

� If the data are differenced and a moving-average model is fit, the parameter
estimates may try to converge exactly on the invertibility boundary. In this case,
the standard error estimates that are based on derivatives may be inaccurate.
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Specifying Inputs and Transfer Functions

Input variables and transfer functions for them may be specified using the INPUT=
option on the ESTIMATE statement. The variables used on the INPUT= option must
be included in the CROSSCORR= list in the previous IDENTIFY statement. If any
differencing is specified in the CROSSCORR= list, then the differenced variable is
used as the input to the transfer function.

General Syntax of the INPUT= Option
The general syntax of the INPUT= option is

ESTIMATE : : : INPUT=( transfer-function variable ... )

The transfer function for an input variable is optional. The name of a variable by
itself can be used to specify a pure regression term for the variable.

If specified, the syntax of the transfer function is

S $ (L1;1; L1;2; : : :)(L2;1; : : :): : :=(Li;1; Li;2; : : :)(Li+1;1; : : :): : :

S is the number of periods of time delay (lag) for this input series. Each term in
parentheses specifies a polynomial factor with parameters at the lags specified by the
Li;j values. The terms before the slash (/) are numerator factors. The terms after the
slash (/) are denominator factors. All three parts are optional.

Commas can optionally be used between input specifications to make the INPUT=
option more readable. The $ sign after the shift is also optional.

Except for the first numerator factor, each of the termsLi;1; Li;2; : : :; Li;k indicates a
factor of the form

(1� !i;1B
Li;1 � !i;2B

Li;2 � : : : � !i;kB
Li;k)

The form of the first numerator factor depends on the ALTPARM option. By default,
the constant 1 in the first numerator factor is replaced with a free parameter!0.

Alternative Model Parameterization
When the ALTPARM option is specified, the!0 parameter is factored out so it multi-
plies the entire transfer function, and the first numerator factor has the same form as
the other factors.

The ALTPARM option does not materially affect the results; it just presents the re-
sults differently. Some people prefer to see the model written one way, while others
prefer the alternative representation. Table 7.8 illustrates the effect of the ALTPARM
option.

Table 7.8. The ALTPARM Option
INPUT= Option ALTPARM Model
INPUT=((1 2)(12)/(1)X); No (!0 � !1B � !2B

2)(1� !3B
12)=(1� �1B)Xt

Yes !0(1� !1B � !2B
2)(1� !3B

12)=(1� �1B)Xt
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Differencing and Input Variables
If you difference the response series and use input variables, take care that the differ-
encing operations do not change the meaning of the model. For example, if you want
to fit the model

Yt =
!0

(1� �1B)
Xt +

(1� �1B)

(1�B)(1�B12)
at

then the IDENTIFY statement must read

identify var=y(1,12) crosscorr=x(1,12);
estimate q=1 input=(/(1)x) noconstant;

If instead you specify the differencing as

identify var=y(1,12) crosscorr=x;
estimate q=1 input=(/(1)x) noconstant;

then the model being requested is

Yt =
!0

(1� �1B)(1�B)(1�B12)
Xt +

(1� �1B)

(1�B)(1�B12)
at

which is a very different model.

The point to remember is that a differencing operation requested for the response
variable specified by the VAR= option is applied only to that variable and not to the
noise term of the model.

Initial Values

The syntax for giving initial values to transfer function parameters in the the INIT-
VAL= option parallels the syntax of the INPUT= option. For each transfer function in
the INPUT= option, the INITVAL= option should give an initialization specification
followed by the input series name. The initialization specification for each transfer
function has the form

C $ (V1;1; V1;2; : : :)(V2;1; : : :): : :=(Vi;1; : : :): : :

whereC is the lag 0 term in the first numerator factor of the transfer function (or the
overall scale factor if the ALTPARM option is specified), andVi;j is the coefficient
of theLi;j element in the transfer function.

To illustrate, suppose you want to fit the model

Yt = �+
(!0 � !1B � !2B

2)

(1� �1B � �2B2 � �3B3)
Xt�3 +

1

(1� �1B � �2B3)
at
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and start the estimation process with the initial values�=10, !0=1, !1=.5, !2=.03,
�1=.8, �2=-.1, �3=.002,�1=.1, �2=.01. (These are arbitrary values for illustration
only.) You would use the following statements:

identify var=y crosscorr=x;
estimate p=(1,3) input=(3$(1,2)/(1,2,3)x)

mu=10 ar=.1 .01 initval=(1$(.5,.03)/(.8,-.1,.002)x);

Note that the lags specified for a particular factor will be sorted, so initial values
should be given in sorted order. For example, if the P= option had been entered
as P=(3,1) instead of P=(1,3), the model would be the same and so would the AR=
option. Sorting is done within all factors, including transfer function factors, so initial
values should always be given in order of increasing lags.

Here is another illustration, showing initialization for a factored model with multiple
inputs. The model is

Yt = � +
!1;0

(1� �1;1B)
Wt + (!2;0 � !2;1B)Xt�3

+
1

(1� �1B)(1� �2B6 � �3B12)
at

and the initial values are�=10,!1;0=5, �1;1=.8,!2;0=1,!2;1=.5,�1=.1,�2=.05, and
�3=.01. You would use the following statements:

identify var=y crosscorr=(w x);
estimate p=(1)(6,12) input=(/(1)w, 3$(1)x)

mu=10 ar=.1 .05 .01 initval=(5$/(.8)w 1$(.5)x);

Stationarity and Invertibility

By default PROC ARIMA requires that the parameter estimates for the AR and MA
parts of the model always remain in the stationary and invertible regions, respectively.
The NOSTABLE option removes this restriction and for high-order models may save
some computer time. Note that using the NOSTABLE option does not necessarily
result in an unstable model being fit, since the estimates may leave the stable region
for some iterations, but still ultimately converge to stable values.

Naming of Model Parameters

In the table of parameter estimates produced by the ESTIMATE statement, model
parameters are referred to using the naming convention described in this section.

The parameters in the noise part of the model are named as ARi,j or MAi,j, where
AR refers to autoregressive parameters and MA to moving-average parameters. The
subscripti refers to the particular polynomial factor, and the subscriptj refers to the
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jth term within theith factor. These terms are sorted in order of increasing lag within
factors, so the subscriptj refers to thejth term after sorting.

When inputs are used in the model, the parameters of each transfer function are
named NUMi,j and DENi,j. The jth term in theith factor of a numerator polyno-
mial is named NUMi,j. Thejth term in theith factor of a denominator polynomial is
named DENi,j.

This naming process is repeated for each input variable, so if there are multiple inputs,
parameters in transfer functions for different input series have the same name. The
table of parameter estimates shows in the "Variable" column the input with which
each parameter is associated. The parameter name shown in the "Parameter" column
and the input variable name shown in the "Variable" column must be combined to
fully identify transfer function parameters.

The lag 0 parameter in the first numerator factor for the first input variable is named
NUM1. For subsequent input variables, the lag 0 parameter in the first numerator
factor is named NUMk, wherek is the position of the input variable in the INPUT=
option list. If the ALTPARM option is specified, the NUMk parameter is replaced by
an overall scale parameter named SCALEk.

For the mean and noise process parameters, the response series name is shown in the
"Variable" column. The "Lag" and "Shift" for each parameter are also shown in the
table of parameter estimates when inputs are used.

Missing Values and Estimation and Forecasting

Estimation and forecasting are carried out in the presence of missing values by fore-
casting the missing values with the current set of parameter estimates. The maximum
likelihood algorithm employed was suggested by Jones (1980) and is used for both
unconditional least-squares (ULS) and conditional least-squares (CLS) estimation.

The CLS algorithm simply fills in missing values with infinite memory forecast val-
ues, computed by forecasting ahead from the nonmissing past values as far as required
by the structure of the missing values. These artificial values are then employed in
the nonmissing value CLS algorithm. Artificial values are updated at each iteration
along with parameter estimates.

For models with input variables, embedded missing values (that is, missing values
other than at the beginning or end of the series) are not generally supported. Embed-
ded missing values in input variables are supported for the special case of a multiple
regression model having ARIMA errors. A multiple regression model is specified by
an INPUT= option that simply lists the input variables (possibly with lag shifts) with-
out any numerator or denominator transfer function factors. One-step-ahead forecasts
are not available for the response variable when one or more of the input variables
have missing values.

When embedded missing values are present for a model with complex transfer func-
tions, PROC ARIMA uses the first continuous nonmissing piece of each series to do
the analysis. That is, PROC ARIMA skips observations at the beginning of each se-
ries until it encounters a nonmissing value and then uses the data from there until it
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encounters another missing value or until the end of the data is reached. This makes
the current version of PROC ARIMA compatible with earlier releases that did not
allow embedded missing values.

Forecasting Details

If the model has input variables, a forecast beyond the end of the data for the input
variables is possible only if univariate ARIMA models have previously been fit to the
input variables or future values for the input variables are included in the DATA= data
set.

If input variables are used, the forecast standard errors and confidence limits of the
response depend on the estimated forecast error variance of the predicted inputs. If
several input series are used, the forecast errors for the inputs should be independent;
otherwise, the standard errors and confidence limits for the response series will not
be accurate. If future values for the input variables are included in the DATA= data
set, the standard errors of the forecasts will be underestimated since these values are
assumed to be known with certainty.

The forecasts are generated using forecasting equations consistent with the method
used to estimate the model parameters. Thus, the estimation method specified on the
ESTIMATE statement also controls the way forecasts are produced by the FORE-
CAST statement.

Infinite Memory Forecasts
If METHOD=CLS is used, the forecasts areinfinite memory forecasts, also called
conditional forecasts. The termconditional is used because the forecasts are com-
puted by assuming that the unknown values of the response series before the start of
the data are equal to the mean of the series. Thus, the forecasts are conditional on
this assumption.

The seriesxt can be represented as

xt = at +

1X
i=1

�ixt�i

where�(B)=�(B) = 1�P1

i=1 �iB
i.

Thek-step forecast ofxt+k is computed as

x̂t+k =

k�1X
i=1

�̂ix̂t+k�i +

1X
i=k

�̂ixt+k�i

where unobserved past values ofxt are set to zero, and̂�i is obtained from the esti-
mated parameterŝ� and�̂.

Finite Memory Forecasts
For METHOD=ULS or METHOD=ML, the forecasts arefinite memory forecasts,
also calledunconditional forecasts. For finite memory forecasts, the covariance func-
tion of the ARMA model is used to derive the best linear prediction equation.

SAS OnlineDoc: Version 8
252



Chapter 7. Details

That is, thek-step forecast ofxt+k, given(x1; � � �; xt�1), is

~xt+k = Ck;tV
�1
t (x1; � � �; xt�1)0

whereCk;t is the covariance ofxt+k and(x1; � � �; xt�1), andVt is the covariance
matrix of the vector(x1; � � �; xt�1). Ck;t andVt are derived from the estimated
parameters.

Finite memory forecasts minimize the mean-squared error of prediction if the param-
eters of the ARMA model are known exactly. (In most cases, the parameters of the
ARMA model are estimated, so the predictors are not true best linear forecasts.)

If the response series is differenced, the final forecast is produced by summing the
forecast of the differenced series. This summation, and thus the forecast, is condi-
tional on the initial values of the series. Thus, when the response series is differenced,
the final forecasts are not true finite memory forecasts because they are derived as-
suming that the differenced series begins in a steady-state condition. Thus, they fall
somewhere between finite memory and infinite memory forecasts. In practice, there
is seldom any practical difference between these forecasts and true finite memory
forecasts.

Forecasting Log Transformed Data

The log transformation is often used to convert time series that are nonstationary with
respect to the innovation variance into stationary time series. The usual approach is
to take the log of the series in a DATA step and then apply PROC ARIMA to the
transformed data. A DATA step is then used to transform the forecasts of the logs
back to the original units of measurement. The confidence limits are also transformed
using the exponential function.

As one alternative, you can simply exponentiate the forecast series. This procedure
gives a forecast for the median of the series, but the antilog of the forecast log series
underpredicts the mean of the original series. If you want to predict the expected
value of the series, you need to take into account the standard error of the forecast, as
shown in the following example, which uses an AR(2) model to forecast the log of a
series Y:

data in;
set in;
ylog = log( y );

run;

proc arima data=in;
identify var=ylog;
estimate p=2;
forecast lead=10 out=out;

run;

data out;
set out;
y = exp( ylog );
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l95 = exp( l95 );
u95 = exp( u95 );
forecast = exp( forecast + std*std/2 );

run;

Specifying Series Periodicity

The INTERVAL= option is used together with the ID= variable to describe the obser-
vations that make up the time series. For example, INTERVAL=MONTH specifies
a monthly time series in which each observation represents one month. See Chap-
ter 3, “Date Intervals, Formats, and Functions,” for details on the interval values
supported.

The variable specified by the ID= option in the PROC ARIMA statement identifies the
time periods associated with the observations. Usually, SAS date or datetime values
are used for this variable. PROC ARIMA uses the ID= variable in the following
ways:

� to validate the data periodicity. When the INTERVAL= option is specified,
PROC ARIMA uses the ID variable to check the data and verify that successive
observations have valid ID values corresponding to successive time intervals.
When the INTERVAL= option is not used, PROC ARIMA verifies that the ID
values are nonmissing and in ascending order.

� to check for gaps in the input observations. For example, if INTER-
VAL=MONTH and an input observation for April 1970 follows an observation
for January 1970, there is a gap in the input data with two omitted observations
(namely February and March 1970). A warning message is printed when a gap
in the input data is found.

� to label the forecast observations in the output data set. PROC ARIMA ex-
trapolates the values of the ID variable for the forecast observations from the
ID value at the end of the input data according to the frequency specifications
of the INTERVAL= option. If the INTERVAL= option is not specified, PROC
ARIMA extrapolates the ID variable by incrementing the ID variable value for
the last observation in the input data by 1 for each forecast period. Values of
the ID variable over the range of the input data are copied to the output data
set.

The ALIGN= option is used to align the ID variable to the beginning, middle or end
of the time ID interval specified by the INTERVAL= option.

OUT= Data Set

The output data set produced by the OUT= option of the PROC ARIMA or FORE-
CAST statements contains the following:

� the BY variables

� the ID variable
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� the variable specified by the VAR= option in the IDENTIFY statement, which
contains the actual values of the response series

� FORECAST, a numeric variable containing the one-step-ahead predicted val-
ues and the multistep forecasts

� STD, a numeric variable containing the standard errors of the forecasts

� a numeric variable containing the lower confidence limits of the forecast. This
variable is named L95 by default but has a different name if the ALPHA=
option specifies a different size for the confidence limits.

� RESIDUAL, a numeric variable containing the differences between actual and
forecast values

� a numeric variable containing the upper confidence limits of the forecast. This
variable is named U95 by default but has a different name if the ALPHA=
option specifies a different size for the confidence limits.

The ID variable, the BY variables, and the time series variable are the only ones
copied from the input to the output data set.

Unless the NOOUTALL option is specified, the data set contains the whole time
series. The FORECAST variable has the one-step forecasts (predicted values) for the
input periods, followed byn forecast values, wheren is the LEAD= value. The actual
and RESIDUAL values are missing beyond the end of the series.

If you specify the same OUT= data set on different FORECAST statements, the latter
FORECAST statements overwrite the output from the previous FORECAST state-
ments. If you want to combine the forecasts from different FORECAST statements
in the same output data set, specify the OUT= option once on the PROC ARIMA
statement and omit the OUT= option on the FORECAST statements.

When a global output data set is created by the OUT= option in the PROC ARIMA
statement, the variables in the OUT= data set are defined by the first FORECAST
statement that is executed. The results of subsequent FORECAST statements are
vertically concatenated onto the OUT= data set. Thus, if no ID variable is speci-
fied in the first FORECAST statement that is executed, no ID variable appears in the
output data set, even if one is specified in a later FORECAST statement. If an ID
variable is specified in the first FORECAST statement that is executed but not in a
later FORECAST statement, the value of the ID variable is the same as the last value
processed for the ID variable for all observations created by the later FORECAST
statement. Furthermore, even if the response variable changes in subsequent FORE-
CAST statements, the response variable name in the output data set will be that of the
first response variable analyzed.

OUTCOV= Data Set

The output data set produced by the OUTCOV= option of the IDENTIFY statement
contains the following variables:

� LAG, a numeric variable containing the lags corresponding to the values of
the covariance variables. The values of LAG range from 0 to N for covariance
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functions and from -N to N for cross-covariance functions, where N is the value
of the NLAG= option.

� VAR, a character variable containing the name of the variable specified by the
VAR= option.

� CROSSVAR, a character variable containing the name of the variable specified
in the CROSSCORR= option, which labels the different cross-covariance func-
tions. The CROSSVAR variable is blank for the autocovariance observations.
When there is no CROSSCORR= option, this variable is not created.

� N, a numeric variable containing the number of observations used to calculate
the current value of the covariance or cross-covariance function.

� COV, a numeric variable containing the autocovariance or cross-covariance
function values. COV contains the autocovariances of the VAR= variable when
the value of the CROSSVAR variable is blank. Otherwise COV contains the
cross covariances between the VAR= variable and the variable named by the
CROSSVAR variable.

� CORR, a numeric variable containing the autocorrelation or cross-correlation
function values. CORR contains the autocorrelations of the VAR= variable
when the value of the CROSSVAR variable is blank. Otherwise CORR con-
tains the cross correlations between the VAR= variable and the variable named
by the CROSSVAR variable.

� STDERR, a numeric variable containing the standard errors of the autocorre-
lations. The standard error estimate is based on the hypothesis that the process
generating the time series is a pure moving-average process of order LAG-1.
For the cross correlations, STDERR contains the value1=

p
n, which approx-

imates the standard error under the hypothesis that the two series are uncorre-
lated.

� INVCORR, a numeric variable containing the inverse autocorrelation function
values of the VAR= variable. For cross-correlation observations, (that is, when
the value of the CROSSVAR variable is not blank), INVCORR contains miss-
ing values.

� PARTCORR, a numeric variable containing the partial autocorrelation func-
tion values of the VAR= variable. For cross-correlation observations (that is,
when the value of the CROSSVAR variable is not blank), PARTCORR contains
missing values.

OUTEST= Data Set

PROC ARIMA writes the parameter estimates for a model to an output data set when
the OUTEST= option is specified in the ESTIMATE statement. The OUTEST= data
set contains the following:

� the BY variables

� –NAME–, a character variable containing the name of the parameter for the
covariance or correlation observations, or blank for the observations containing
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the parameter estimates. (This variable is not created if neither OUTCOV nor
OUTCORR is specified.)

� –TYPE–, a character variable that identifies the type of observation. A de-
scription of the–TYPE– variable values is given below.

� variables for model parameters

The variables for the model parameters are named as follows:

ERRORVAR This numeric variable contains the variance estimate. The

–TYPE–=EST observation for this variable contains the estimated
error variance, and the remaining observations are missing.

MU This numeric variable contains values for the mean parameter for
the model. (This variable is not created if NOCONSTANT is spec-
ified.)

MA j–k These numeric variables contain values for the moving average pa-
rameters. The variables for moving average parameters are named
MA j–k, wherej is the factor number, andk is the index of the pa-
rameter within a factor.

ARj–k These numeric variables contain values for the autoregressive pa-
rameters. The variables for autoregressive parameters are named
ARj–k, wherej is the factor number, andk is the index of the pa-
rameter within a factor.

Ij–k These variables contain values for the transfer function parameters.
Variables for transfer function parameters are named Ij–k, wherej
is the number of the INPUT variable associated with the transfer
function component, andk is the number of the parameter for the
particular INPUT variable. INPUT variables are numbered accord-
ing to the order in which they appear in the INPUT= list.

–STATUS– This variable describes the convergence status of the model. A
value of 0–CONVERGED indicates that the model converged.

The value of the–TYPE– variable for each observation indicates the kind of value
contained in the variables for model parameters for the observation. The OUTEST=
data set contains observations with the following–TYPE– values:

EST the observation contains parameter estimates

STD the observation contains approximate standard errors of the esti-
mates

CORR the observation contains correlations of the estimates. OUTCORR
must be specified to get these observations.

COV the observation contains covariances of the estimates. OUTCOV
must be specified to get these observations.
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FACTOR the observation contains values that identify for each parameter the
factor that contains it. Negative values indicate denominator fac-
tors in transfer function models.

LAG the observation contains values that identify the lag associated with
each parameter

SHIFT the observation contains values that identify the shift associated
with the input series for the parameter

The values given for–TYPE–=FACTOR,–TYPE–=LAG, or –TYPE–=SHIFT ob-
servations enable you to reconstruct the model employed when provided with only
the OUTEST= data set.

OUTEST= Examples
This section clarifies how model parameters are stored in the OUTEST= data set with
two examples.

Consider the following example:

proc arima data=input;
identify var=y cross=(x1 x2);
estimate p=(1)(6) q=(1,3)(12) input=(x1 x2) outest=est;

quit;
proc print data=est;
run;

The model specified by these statements is

Yt = �+ !1;0X1;t + !2;0X2;t +
(1� �11B � �12B

3)(1� �21B
12)

(1� �11B)(1� �21B6)
at

The OUTEST= data set contains the values shown in Table 7.9.

Table 7.9. OUTEST= Data Set for First Example
Obs –TYPE– Y MU MA1 –1 MA1–2 MA2–1 AR1–1 AR2–1 I1–1 I2–1

1 EST �2 � �11 �12 �21 �11 �21 !1;0 !2;0
2 STD . se� se�11 se�12 se�21 se�11 se�21 se!1;0 se!2;0
3 FACTOR . 0 1 1 2 1 2 1 1
4 LAG . 0 1 3 12 1 6 0 0
5 SHIFT . 0 0 0 0 0 0 0 0

Note that the symbols in the rows for–TYPE–=EST and–TYPE–=STD in Table 7.9
would be numeric values in a real data set.

Next, consider the following example:

proc arima data=input;
identify var=y cross=(x1(2) x2(1));
estimate p=1 q=1 input=(2 $ (1)/(1,2)x1 1 $ /(1)x2) outest=est;

quit;
proc print data=est;
run;
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The model specified by these statements is

Yt = �+
!10 � !11B

1� �11B � �12B2
X1;t�2 +

!20
1� �21B

X2;t�1 +
(1� �1B)

(1� �1B)
at

The OUTEST= data set contains the values shown in Table 7.10.

Table 7.10. OUTEST= Data Set for Second Example
Obs –TYPE– Y MU MA1 –1 AR1–1 I1–1 I1–2 I1–3 I1–4 I2–1 I2–2

1 EST �2 � �1 �1 !10 !11 �11 �12 !20 �21
2 STD . se� se�1 se�1 se!10 se!11 se�11 se�12 se!20 se�21
3 FACTOR . 0 1 1 1 1 -1 -1 1 -1
4 LAG . 0 1 1 0 1 1 2 0 1
5 SHIFT . 0 0 0 2 2 2 2 1 1

OUTMODEL= Data Set

The OUTMODEL= option in the ESTIMATE statement writes an output data set that
enables you to reconstruct the model. The OUTMODEL= data set contains much
the same information as the OUTEST= data set but in a transposed form that may be
more useful for some purposes. In addition, the OUTMODEL= data set includes the
differencing operators.

The OUTMODEL data set contains the following:

� the BY variables

� –NAME–, a character variable containing the name of the response or input
variable for the observation.

� –TYPE–, a character variable that contains the estimation method that was
employed. The value of–TYPE– can be CLS, ULS, or ML.

–STATUS– This variable describes the convergence status of the model. A value of
0–CONVERGED indicates that the model converged.

� –PARM–, a character variable containing the name of the parameter given by
the observation.–PARM– takes on the values ERRORVAR, MU, AR, MA,
NUM, DEN, and DIF.

� –VALUE–, a numeric variable containing the value of the estimate defined by
the–PARM– variable.

� –STD–, a numeric variable containing the standard error of the estimate.

� –FACTOR–, a numeric variable indicating the number of the factor to which
the parameter belongs.

� –LAG–, a numeric variable containing the number of the term within the factor
containing the parameter.

� –SHIFT–, a numeric variable containing the shift value for the input variable
associated with the current parameter.

The values of–FACTOR– and–LAG– identify which particular MA, AR, NUM, or
DEN parameter estimate is given by the–VALUE– variable. The–NAME– variable
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contains the response variable name for the MU, AR, or MA parameters. Otherwise,

–NAME– contains the input variable name associated with NUM or DEN parameter
estimates. The–NAME– variable contains the appropriate variable name associated
with the current DIF observation as well. The–VALUE– variable is 1 for all DIF
observations, and the–LAG– variable indicates the degree of differencing employed.

The observations contained in the OUTMODEL= data set are identified by the

–PARM– variable. A description of the values of the–PARM– variable follows:

NUMRESID –VALUE– contains the number of residuals.

NPARMS –VALUE– contains the number of parameters in the model.

NDIFS –VALUE– contains the sum of the differencing lags employed for
the response variable.

ERRORVAR –VALUE– contains the estimate of the innovation variance.

MU –VALUE– contains the estimate of the mean term.

AR –VALUE– contains the estimate of the autoregressive parameter
indexed by the–FACTOR– and–LAG– variable values.

MA –VALUE– contains the estimate of a moving average parameter
indexed by the–FACTOR– and–LAG– variable values.

NUM –VALUE– contains the estimate of the parameter in the numerator
factor of the transfer function of the input variable indexed by the

–FACTOR–, –LAG–, and–SHIFT– variable values.

DEN –VALUE– contains the estimate of the parameter in the denomi-
nator factor of the transfer function of the input variable indexed
by the–FACTOR–, –LAG–, and–SHIFT– variable values.

DIF –VALUE– contains the difference operator defined by the differ-
ence lag given by the value in the–LAG– variable.

OUTSTAT= Data Set

PROC ARIMA writes the diagnostic statistics for a model to an output data set when
the OUTSTAT= option is specified in the ESTIMATE statement. The OUTSTAT data
set contains the following:

� the BY variables.

� –TYPE–, a character variable that contains the estimation method used.

–TYPE– can have the value CLS, ULS, or ML.

� –STAT–, a character variable containing the name of the statistic given by the

–VALUE– variable in this observation.–STAT– takes on the values AIC, SBC,
LOGLIK, SSE, NUMRESID, NPARMS, NDIFS, ERRORVAR, MU, CONV,
and NITER.

� –VALUE–, a numeric variable containing the value of the statistic named by
the–STAT– variable.
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The observations contained in the OUTSTAT= data set are identified by the–STAT–
variable. A description of the values of the–STAT– variable follows:

AIC Akaike’s information criterion

SBC Schwarz’s Bayesian criterion

LOGLIK the log likelihood, if METHOD=ML or METHOD=ULS is speci-
fied

SSE the sum of the squared residuals

NUMRESID the number of residuals

NPARMS the number of parameters in the model

NDIFS the sum of the differencing lags employed for the response variable

ERRORVAR the estimate of the innovation variance

MU the estimate of the mean term

CONV tells if the estimation converged

NITER the number of iterations

Printed Output

The ARIMA procedure produces printed output for each of the IDENTIFY, ESTI-
MATE, and FORECAST statements. The output produced by each ARIMA state-
ment is described in the following sections.

IDENTIFY Statement Printed Output
The printed output of the IDENTIFY statement consists of the following:

1. a table of summary statistics, including the name of the response variable, any
specified periods of differencing, the mean and standard deviation of the re-
sponse series after differencing, and the number of observations after differ-
encing

2. a plot of the sample autocorrelation function for lags up to and including the
NLAG= option value. Standard errors of the autocorrelations also appear to
the right of the autocorrelation plot if the value of LINESIZE= option is suf-
ficiently large. The standard errors are derived using Bartlett’s approximation
(Box and Jenkins 1976, p. 177). The approximation for a standard error for the
estimated autocorrelation function at lagk is based on a null hypothesis that a
pure moving-average Gaussian process of orderk-1 generated the time series.
The relative position of an approximate 95% confidence interval under this null
hypothesis is indicated by the dots in the plot, while the asterisks represent the
relative magnitude of the autocorrelation value.

3. a plot of the sample inverse autocorrelation function. See the section "The
Inverse Autocorrelation Function" for more information on the inverse auto-
correlation function.
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4. a plot of the sample partial autocorrelation function

5. a table of test statistics for the hypothesis that the series is white noise. These
test statistics are the same as the tests for white noise residuals produced by the
ESTIMATE statement and are described in the section "Estimation Details"
earlier in this chapter.

6. if the CROSSCORR= option is used, a plot of the sample cross-correlation
function for each series specified in the CROSSCORR= option. If a model
was previously estimated for a variable in the CROSSCORR= list, the cross
correlations for that series are computed for the prewhitened input and response
series. For each input variable with a prewhitening filter, the cross-correlation
report for the input series includes

(a) a table of test statistics for the hypothesis of no cross correlation between
the input and response series

(b) the prewhitening filter used for the prewhitening transformation of the
predictor and response variables

7. if the ESACF option is used, ESACF tables are printed

8. if the MINIC option is used, a MINIC table is printed

9. if the SCAN option is used, SCAN table is printed

10. if the STATIONARITY option is used, STATIONARITY tests results are
printed

ESTIMATE Statement Printed Output
The printed output of the ESTIMATE statement consists of the following:

1. when the PRINTALL option is specified, the preliminary parameter estimates
and an iteration history showing the sequence of parameter estimates tried dur-
ing the fitting process

2. a table of parameter estimates showing the following for each parameter: the
parameter name, the parameter estimate, the approximate standard error,t
value, approximate probability (Pr > jtj), the lag for the parameter, the input
variable name for the parameter, and the lag or "Shift" for the input variable

3. the estimates of the constant term, the innovation variance (Variance Estimate),
the innovation standard deviation (Std Error Estimate), Akaike’s information
criterion (AIC), Schwarz’s Bayesian criterion (SBC), and the number of resid-
uals

4. the correlation matrix of the parameter estimates

5. a table of test statistics for hypothesis that the residuals of the model are white
noise titled "Autocorrelation Check of Residuals"

6. if the PLOT option is specified, autocorrelation, inverse autocorrelation, and
partial autocorrelation function plots of the residuals
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7. if an INPUT variable has been modeled in such a way that prewhitening is per-
formed in the IDENTIFY step, a table of test statistics titled "Crosscorrelation
Check of Residuals." The test statistic is based on the chi-square approxima-
tion suggested by Box and Jenkins (1976, pp. 395–396). The cross-correlation
function is computed using the residuals from the model as one series and the
prewhitened input variable as the other series.

8. if the GRID option is specified, the sum-of-squares or likelihood surface over
a grid of parameter values near the final estimates

9. a summary of the estimated model showing the autoregressive factors, moving
average factors, and transfer function factors in back shift notation with the
estimated parameter values.

FORECAST Statement Printed Output
The printed output of the FORECAST statement consists of the following:

1. a summary of the estimated model

2. a table of forecasts, with columns for the observation numbers (Obs), the fore-
cast values (Forecast), the forecast standard errors (Std Error), lower and upper
limits of the approximate 95% confidence interval (95% confidence limits).
The ALPHA= option can be used to change the confidence interval for fore-
casts. If the PRINTALL option is specified, the forecast table also includes
columns for the actual values of the response series (Actual) and the residual
values (Residual), and the table includes the input observations used to estimate
the model.

ODS Table Names

PROC ARIMA assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 6, “Using the Output Delivery System.”

Table 7.11. ODS Tables Produced in PROC ARIMA

ODS Table Name Description Option

ODS Tables Created by the IDENTIFY Statement

DescStats Descriptive Statistics
InputDescStats Input Descriptive Statistics
CorrGraph Correlations graph
StationarityTests Stationarity tests STATIONARITY

option
TentativeOrders Tenative Order Selection MINIC, ESACF,

or SCAN option
PACFGraph Partial autocorrelations graph
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Table 7.11. (continued)

ODS Table Name Description Option
IACFGraph Inverse autocorrelations graph
ChiSqAuto Chi-Square statistics table for autocorrelation
ChiSqCross Chi-Square statistics table for cross-

correlations
CROSSCORR=

MINIC Minimum Information Criterion MINIC option
ESACF Extended Sample Autocorrelation Function ESACF option
ESACFPValues ESACF Probability Values ESACF option
SCAN Squared Canonical Correlation Estimates SCAN option
SCANPValues SCAN Chi-Square[1] Probability Values SCAN option

ODS Tables Created by the ESTIMATE Statement

FitStatistics Fit Statistics
ARPolynomial Filter Equations
MAPolynomial Filter Equations
NumPolynomial Filter Equations
DenPolynomial Filter Equations
ParameterEstimates ParameterEstimates
ChiSqAuto Chi-Square statistics table for autocorrelation
ChiSqCross Chi-Square statistics table for cross-

correlations
InitialAREstimates Initial autoregressive parameter estimates
InitialMAEstimates Initial moving average parameter estimates
PrelimEstimates Preliminary Estimation
IterHistory Conditional Least Squares Estimation METHOD=CLS
OptSummary ARIMA Estimation Optimization PRINTALL option
ModelDescription Model description
InputDescription Input description
ObjectiveGrid Objective function grid matrix GRID option
CorrB Correlations of the Estimates

ODS Tables Created by the FORECAST Statement

Forecasts Forecast
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Examples

Example 7.1. Simulated IMA Model

This example illustrates the ARIMA procedure results for a case where the true model
is known. An integrated moving average model is used for this illustration.

The following DATA step generates a pseudo-random sample of 100 periods from
the ARIMA(0,1,1) processut = ut�1 + at � :8at�1, at iid N(0; 1).

title1 ’Simulated IMA(1,1) Series’;
data a;

u1 = 0.9; a1 = 0;
do i = -50 to 100;

a = rannor( 32565 );
u = u1 + a - .8 * a1;
if i > 0 then output;
a1 = a;
u1 = u;
end;

run;

The following ARIMA procedure statements identify and estimate the model.

proc arima data=a;
identify var=u nlag=15;
run;
identify var=u(1) nlag=15;
run;
estimate q=1 ;
run;

quit;

The results of the first IDENTIFY statement are shown in Output 7.1.1. The output
shows the behavior of the sample autocorrelation function when the process is nonsta-
tionary. Note that in this case the estimated autocorrelations are not very high, even
at small lags. Nonstationarity is reflected in a pattern of significant autocorrelations
that do not decline quickly with increasing lag, not in the size of the autocorrelations.
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Output 7.1.1. Output from the First IDENTIFY Statement

Simulated IMA(1,1) Series

The ARIMA Procedure

Name of Variable = u

Mean of Working Series 0.099637
Standard Deviation 1.115604
Number of Observations 100

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 1.244572 1.00000 | |********************|
1 0.547457 0.43988 | . |********* |
2 0.534787 0.42970 | . |********* |
3 0.569849 0.45787 | . |********* |
4 0.384428 0.30888 | . |****** |
5 0.405137 0.32552 | . |******* |
6 0.253617 0.20378 | . |**** . |
7 0.321830 0.25859 | . |***** . |
8 0.363871 0.29237 | . |******. |
9 0.271180 0.21789 | . |**** . |

10 0.419208 0.33683 | . |******* |
11 0.298127 0.23954 | . |***** . |
12 0.186460 0.14982 | . |*** . |
13 0.313270 0.25171 | . |***** . |
14 0.314594 0.25277 | . |***** . |
15 0.156329 0.12561 | . |*** . |

"." marks two standard errors
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The ARIMA Procedure

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.12382 | . **| . |
2 -0.17396 | .***| . |
3 -0.19966 | ****| . |
4 -0.01476 | . | . |
5 -0.02895 | . *| . |
6 0.20612 | . |**** |
7 0.01258 | . | . |
8 -0.09616 | . **| . |
9 0.00025 | . | . |

10 -0.16879 | .***| . |
11 0.05680 | . |* . |
12 0.14306 | . |***. |
13 -0.02466 | . | . |
14 -0.15549 | .***| . |
15 0.08247 | . |** . |

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.43988 | . |********* |
2 0.29287 | . |****** |
3 0.26499 | . |***** |
4 -0.00728 | . | . |
5 0.06473 | . |* . |
6 -0.09926 | . **| . |
7 0.10048 | . |** . |
8 0.12872 | . |***. |
9 0.03286 | . |* . |

10 0.16034 | . |***. |
11 -0.03794 | . *| . |
12 -0.14469 | .***| . |
13 0.06415 | . |* . |
14 0.15482 | . |***. |
15 -0.10989 | . **| . |

The ARIMA Procedure

Autocorrelation Check for White Noise

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 87.22 6 <.0001 0.440 0.430 0.458 0.309 0.326 0.204
12 131.39 12 <.0001 0.259 0.292 0.218 0.337 0.240 0.150

The second IDENTIFY statement differences the series. The results of the second
IDENTIFY statement are shown in Output 7.1.2. This output shows autocorrelation,
inverse autocorrelation, and partial autocorrelation functions typical of MA(1) pro-
cesses.
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Output 7.1.2. Output from the Second IDENTIFY Statement

The ARIMA Procedure

Name of Variable = u

Period(s) of Differencing 1
Mean of Working Series 0.019752
Standard Deviation 1.160921
Number of Observations 99
Observation(s) eliminated by differencing 1

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 1.347737 1.00000 | |********************|
1 -0.699404 -.51895 | **********| . |
2 -0.036142 -.02682 | . *| . |
3 0.245093 0.18186 | . |****. |
4 -0.234167 -.17375 | . ***| . |
5 0.181778 0.13488 | . |*** . |
6 -0.184601 -.13697 | . ***| . |
7 0.0088659 0.00658 | . | . |
8 0.146372 0.10861 | . |** . |
9 -0.241579 -.17925 | .****| . |

10 0.240512 0.17846 | . |****. |
11 0.031005 0.02301 | . | . |
12 -0.250954 -.18620 | . ****| . |
13 0.095295 0.07071 | . |* . |
14 0.194110 0.14403 | . |*** . |
15 -0.219688 -.16300 | . ***| . |

"." marks two standard errors

SAS OnlineDoc: Version 8
268



Chapter 7. Examples

The ARIMA Procedure

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.72538 | . |*************** |
2 0.48987 | . |********** |
3 0.35415 | . |******* |
4 0.34169 | . |******* |
5 0.33466 | . |******* |
6 0.34003 | . |******* |
7 0.24192 | . |***** |
8 0.12899 | . |***. |
9 0.06597 | . |* . |

10 0.01654 | . | . |
11 0.06434 | . |* . |
12 0.08659 | . |** . |
13 0.02485 | . | . |
14 -0.03545 | . *| . |
15 -0.00113 | . | . |

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.51895 | **********| . |
2 -0.40526 | ********| . |
3 -0.07862 | . **| . |
4 -0.14588 | .***| . |
5 0.02735 | . |* . |
6 -0.13782 | .***| . |
7 -0.16741 | .***| . |
8 -0.06041 | . *| . |
9 -0.18372 | ****| . |

10 -0.01478 | . | . |
11 0.14277 | . |***. |
12 -0.04345 | . *| . |
13 -0.19959 | ****| . |
14 0.08302 | . |** . |
15 0.00278 | . | . |

The ARIMA Procedure

Autocorrelation Check for White Noise

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 38.13 6 <.0001 -0.519 -0.027 0.182 -0.174 0.135 -0.137
12 50.62 12 <.0001 0.007 0.109 -0.179 0.178 0.023 -0.186

The ESTIMATE statement fits an ARIMA(0,1,1) model to the simulated data. Note
that in this case the parameter estimates are reasonably close to the values used to gen-
erate the simulated data. (� = 0; �̂ = :02: �1 = :8; �̂1 = :79: �2 = 1; �̂2 = :82:)

The ESTIMATE statement results are shown in Output 7.1.3.
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Output 7.1.3. Output from Fitting ARIMA(0,1,1) Model

The ARIMA Procedure

Conditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag

MU 0.02056 0.01972 1.04 0.2997 0
MA1,1 0.79142 0.06474 12.22 <.0001 1

Constant Estimate 0.020558
Variance Estimate 0.819807
Std Error Estimate 0.905432
AIC 263.2594
SBC 268.4497
Number of Residuals 99

* AIC and SBC do not include log determinant.

Correlations of Parameter
Estimates

Parameter MU MA1,1

MU 1.000 -0.124
MA1,1 -0.124 1.000

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 6.48 5 0.2623 -0.033 0.030 0.153 -0.096 0.013 -0.163
12 13.11 11 0.2862 -0.048 0.046 -0.086 0.159 0.027 -0.145
18 20.12 17 0.2680 0.069 0.130 -0.099 0.006 0.164 -0.013
24 24.73 23 0.3645 0.064 0.032 0.076 -0.077 -0.075 0.114

Model for variable u

Estimated Mean 0.020558
Period(s) of Differencing 1

Moving Average Factors

Factor 1: 1 - 0.79142 B**(1)

Example 7.2. Seasonal Model for the Airline Series

The airline passenger data, given as Series G in Box and Jenkins (1976), has
been used in time series analysis literature as an example of a nonstationary sea-
sonal time series. This example uses PROC ARIMA to fit the "airline model,"
ARIMA(0,1,1)�(0,1,1)12, to Box and Jenkins’ Series G.

The following statements read the data and log transform the series. The PROC
GPLOT step plots the series, as shown in Output 7.2.1.
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title1 ’International Airline Passengers’;
title2 ’(Box and Jenkins Series-G)’;
data seriesg;

input x @@;
xlog = log( x );
date = intnx( ’month’, ’31dec1948’d, _n_ );
format date monyy.;
datalines;

112 118 132 129 121 135 148 148 136 119 104 118
115 126 141 135 125 149 170 170 158 133 114 140
145 150 178 163 172 178 199 199 184 162 146 166
171 180 193 181 183 218 230 242 209 191 172 194
196 196 236 235 229 243 264 272 237 211 180 201
204 188 235 227 234 264 302 293 259 229 203 229
242 233 267 269 270 315 364 347 312 274 237 278
284 277 317 313 318 374 413 405 355 306 271 306
315 301 356 348 355 422 465 467 404 347 305 336
340 318 362 348 363 435 491 505 404 359 310 337
360 342 406 396 420 472 548 559 463 407 362 405
417 391 419 461 472 535 622 606 508 461 390 432
;

symbol1 i=join v=dot;
proc gplot data=seriesg;

plot x * date = 1 / haxis= ’1jan49’d to ’1jan61’d by year;
run;

Output 7.2.1. Plot of Data

The following PROC ARIMA step fits an ARIMA(0,1,1)�(0,1,1)12 model without a
mean term to the logarithms of the airline passengers series. The model is forecast,
and the results stored in the data set B.
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proc arima data=seriesg;
identify var=xlog(1,12) nlag=15;
run;
estimate q=(1)(12) noconstant method=uls;
run;
forecast out=b lead=24 id=date interval=month noprint;

quit;

The printed output from the IDENTIFY statement is shown in Output 7.2.2. The
autocorrelation plots shown are for the twice differenced series(1�B)(1�B12)X .
Note that the autocorrelation functions have the pattern characteristic of a first-order
moving average process combined with a seasonal moving average process with lag
12.

Output 7.2.2. IDENTIFY Statement Output

The ARIMA Procedure

Name of Variable = xlog

Period(s) of Differencing 1,12
Mean of Working Series 0.000291
Standard Deviation 0.045673
Number of Observations 131
Observation(s) eliminated by differencing 13

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.0020860 1.00000 | |********************|
1 -0.0007116 -.34112 | *******| . |
2 0.00021913 0.10505 | . |** . |
3 -0.0004217 -.20214 | ****| . |
4 0.00004456 0.02136 | . | . |
5 0.00011610 0.05565 | . |* . |
6 0.00006426 0.03080 | . |* . |
7 -0.0001159 -.05558 | . *| . |
8 -1.5867E-6 -.00076 | . | . |
9 0.00036791 0.17637 | . |**** |

10 -0.0001593 -.07636 | . **| . |
11 0.00013431 0.06438 | . |* . |
12 -0.0008065 -.38661 | ********| . |
13 0.00031624 0.15160 | . |*** . |
14 -0.0001202 -.05761 | . *| . |
15 0.00031200 0.14957 | . |*** . |

"." marks two standard errors
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The ARIMA Procedure

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.41027 | . |******** |
2 0.12711 | . |*** |
3 0.10189 | . |**. |
4 0.01978 | . | . |
5 -0.10310 | .**| . |
6 -0.11886 | .**| . |
7 -0.04088 | . *| . |
8 -0.05086 | . *| . |
9 -0.06022 | . *| . |

10 0.06460 | . |* . |
11 0.19907 | . |**** |
12 0.31709 | . |****** |
13 0.12434 | . |**. |
14 0.06583 | . |* . |
15 0.01515 | . | . |

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.34112 | *******| . |
2 -0.01281 | . | . |
3 -0.19266 | ****| . |
4 -0.12503 | ***| . |
5 0.03309 | . |* . |
6 0.03468 | . |* . |
7 -0.06019 | . *| . |
8 -0.02022 | . | . |
9 0.22558 | . |***** |

10 0.04307 | . |* . |
11 0.04659 | . |* . |
12 -0.33869 | *******| . |
13 -0.10918 | .**| . |
14 -0.07684 | .**| . |
15 -0.02175 | . | . |

The ARIMA Procedure

Autocorrelation Check for White Noise

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 23.27 6 0.0007 -0.341 0.105 -0.202 0.021 0.056 0.031
12 51.47 12 <.0001 -0.056 -0.001 0.176 -0.076 0.064 -0.387

The results of the ESTIMATE statement are shown in Output 7.2.3.
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Output 7.2.3. ESTIMATE Statement Output

The ARIMA Procedure

Unconditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag

MA1,1 0.39594 0.08149 4.86 <.0001 1
MA2,1 0.61331 0.07961 7.70 <.0001 12

Variance Estimate 0.001363
Std Error Estimate 0.036921
AIC -484.755
SBC -479.005
Number of Residuals 131

Correlations of Parameter
Estimates

Parameter MA1,1 MA2,1

MA1,1 1.000 -0.055
MA2,1 -0.055 1.000

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 5.56 4 0.2349 0.022 0.024 -0.125 -0.129 0.057 0.065
12 8.49 10 0.5816 -0.065 -0.042 0.102 -0.060 0.023 0.007
18 13.23 16 0.6560 0.022 0.039 0.045 -0.162 0.035 0.001
24 24.99 22 0.2978 -0.106 -0.104 -0.037 -0.027 0.219 0.040

Model for variable xlog

Period(s) of Differencing 1,12

Moving Average Factors

Factor 1: 1 - 0.39594 B**(1)
Factor 2: 1 - 0.61331 B**(12)

The following statements retransform the forecast values to get forecasts in the origi-
nal scales. See the section "Forecasting Log Transformed Data" earlier in this chapter
for more information.

data c;
set b;
x = exp( xlog );
forecast = exp( forecast + std*std/2 );
l95 = exp( l95 );
u95 = exp( u95 );

run;
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The forecasts and their confidence limits are plotted using the following PROC
GPLOT step. The plot is shown in Output 7.2.4.

symbol1 i=none v=star;
symbol2 i=join v=circle;
symbol3 i=join v=none l=3;
proc gplot data=c;

where date >= ’1jan58’d;
plot x * date = 1 forecast * date = 2

l95 * date = 3 u95 * date = 3 /
overlay haxis= ’1jan58’d to ’1jan62’d by year;

run;

Output 7.2.4. Plot of the Forecast for the Original Series

Example 7.3. Model for Series J Data from Box and Jenkins

This example uses the Series J data from Box and Jenkins (1976). First the input
series,X, is modeled with a univariate ARMA model. Next, the dependent series,Y,
is cross correlated with the input series. Since a model has been fit toX, bothY and
X are prewhitened by this model before the sample cross correlations are computed.
Next, a transfer function model is fit with no structure on the noise term. The residuals
from this model are identified by means of the PLOT option; then, the full model,
transfer function and noise is fit to the data.

The following statements read Input Gas Rate and Output CO2 from a gas furnace.
(Data values are not shown. See "Series J" in Box and Jenkins (1976) for the values.)
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title1 ’Gas Furnace Data’;
title2 ’(Box and Jenkins, Series J)’;
data seriesj;

input x y @@;
label x = ’Input Gas Rate’

y = ’Output CO2’;
datalines;
;

The following statements produce Output 7.3.1 through Output 7.3.5.

proc arima data=seriesj;

/*--- Look at the input process -------------------*/
identify var=x nlag=10;
run;

/*--- Fit a model for the input -------------------*/
estimate p=3;
run;

/*--- Crosscorrelation of prewhitened series ------*/
identify var=y crosscorr=(x) nlag=10;
run;

/*--- Fit transfer function - look at residuals ---*/
estimate input=( 3 $ (1,2)/(1,2) x ) plot;
run;

/*--- Estimate full model -------------------------*/
estimate p=2 input=( 3 $ (1,2)/(1) x );
run;

quit;

The results of the first IDENTIFY statement for the input series X are shown in
Output 7.3.1.
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Output 7.3.1. IDENTIFY Statement Results for X

Gas Furnace Data
(Box and Jenkins, Series J)

The ARIMA Procedure

Name of Variable = x

Mean of Working Series -0.05683
Standard Deviation 1.070952
Number of Observations 296

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 1.146938 1.00000 | |********************|
1 1.092430 0.95247 | . |******************* |
2 0.956652 0.83409 | . |***************** |
3 0.782051 0.68186 | . |************** |
4 0.609291 0.53123 | . |*********** |
5 0.467380 0.40750 | . |******** |
6 0.364957 0.31820 | . |****** |
7 0.298427 0.26019 | . |*****. |
8 0.260943 0.22751 | . |*****. |
9 0.244378 0.21307 | . |**** . |

10 0.238942 0.20833 | . |**** . |

"." marks two standard errors

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.71090 | **************| . |
2 0.26217 | . |***** |
3 -0.13005 | ***| . |
4 0.14777 | . |*** |
5 -0.06803 | .*| . |
6 -0.01147 | . | . |
7 -0.01649 | . | . |
8 0.06108 | . |*. |
9 -0.04490 | .*| . |

10 0.01100 | . | . |
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The ARIMA Procedure

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.95247 | . |******************* |
2 -0.78796 | ****************| . |
3 0.33897 | . |******* |
4 0.12121 | . |** |
5 0.05896 | . |*. |
6 -0.11147 | **| . |
7 0.04862 | . |*. |
8 0.09945 | . |** |
9 0.01587 | . | . |

10 -0.06973 | .*| . |

Autocorrelation Check for White Noise

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 786.35 6 <.0001 0.952 0.834 0.682 0.531 0.408 0.318

The ESTIMATE statement results for the AR(3) model for the input series X are
shown in Output 7.3.2.
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Output 7.3.2. Estimates of the AR(3) Model for X

The ARIMA Procedure

Conditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag

MU -0.12280 0.10902 -1.13 0.2609 0
AR1,1 1.97607 0.05499 35.94 <.0001 1
AR1,2 -1.37499 0.09967 -13.80 <.0001 2
AR1,3 0.34336 0.05502 6.24 <.0001 3

Constant Estimate -0.00682
Variance Estimate 0.035797
Std Error Estimate 0.1892
AIC -141.667
SBC -126.906
Number of Residuals 296

* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates

Parameter MU AR1,1 AR1,2 AR1,3

MU 1.000 -0.017 0.014 -0.016
AR1,1 -0.017 1.000 -0.941 0.790
AR1,2 0.014 -0.941 1.000 -0.941
AR1,3 -0.016 0.790 -0.941 1.000

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 10.30 3 0.0162 -0.042 0.068 0.056 -0.145 -0.009 0.059
12 19.89 9 0.0186 0.014 0.002 -0.055 0.035 0.143 -0.079
18 27.92 15 0.0221 0.099 0.043 -0.082 0.017 0.066 -0.052
24 31.05 21 0.0729 -0.078 0.024 0.015 0.030 0.045 0.004
30 34.58 27 0.1499 -0.007 -0.004 0.073 -0.038 -0.062 0.003
36 38.84 33 0.2231 0.010 0.002 0.082 0.045 0.056 -0.023
42 41.18 39 0.3753 0.002 0.033 -0.061 -0.003 -0.006 -0.043
48 42.73 45 0.5687 0.018 0.051 -0.012 0.015 -0.027 0.020

The ARIMA Procedure

Model for variable x

Estimated Mean -0.1228

Autoregressive Factors

Factor 1: 1 - 1.97607 B**(1) + 1.37499 B**(2) - 0.34336 B**(3)

The IDENTIFY statement results for the dependent series Y cross correlated with the
input series X is shown in Output 7.3.3. Since a model has been fit to X, both Y and
X are prewhitened by this model before the sample cross correlations are computed.
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Output 7.3.3. IDENTIFY Statement for Y Cross Correlated with X

The ARIMA Procedure

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.97076 | . |******************* |
2 -0.80388 | ****************| . |
3 0.18833 | . |**** |
4 0.25999 | . |***** |
5 0.05949 | . |*. |
6 -0.06258 | .*| . |
7 -0.01435 | . | . |
8 0.05490 | . |*. |
9 0.00545 | . | . |

10 0.03141 | . |*. |

Autocorrelation Check for White Noise

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 1023.15 6 <.0001 0.971 0.896 0.793 0.680 0.574 0.485
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The ARIMA Procedure

Correlation of y and x

Number of Observations 296
Variance of transformed series y 0.131438
Variance of transformed series x 0.035357

Both series have been prewhitened.

Crosscorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

-10 0.0015683 0.02301 | . | . |
-9 0.00013502 0.00198 | . | . |
-8 -0.0060480 -.08872 | **| . |
-7 -0.0017624 -.02585 | .*| . |
-6 -0.0080539 -.11814 | **| . |
-5 -0.0000944 -.00138 | . | . |
-4 -0.0012802 -.01878 | . | . |
-3 -0.0031078 -.04559 | .*| . |
-2 0.00065212 0.00957 | . | . |
-1 -0.0019166 -.02811 | .*| . |

0 -0.0003673 -.00539 | . | . |
1 0.0038939 0.05712 | . |*. |
2 -0.0016971 -.02489 | . | . |
3 -0.019231 -.28210 | ******| . |
4 -0.022479 -.32974 | *******| . |
5 -0.030909 -.45341 | *********| . |
6 -0.018122 -.26583 | *****| . |
7 -0.011426 -.16761 | ***| . |
8 -0.0017355 -.02546 | .*| . |
9 0.0022590 0.03314 | . |*. |

10 -0.0035152 -.05156 | .*| . |

"." marks two standard errors

Crosscorrelation Check Between Series

To Chi- Pr >
Lag Square DF ChiSq ---------------Crosscorrelations--------------

5 117.75 6 <.0001 -0.005 0.057 -0.025 -0.282 -0.330 -0.453

The ARIMA Procedure

Both variables have been prewhitened by the following filter:

Prewhitening Filter

Autoregressive Factors

Factor 1: 1 - 1.97607 B**(1) + 1.37499 B**(2) - 0.34336 B**(3)

The ESTIMATE statement results for the transfer function model with no structure
on the noise term is shown in Output 7.3.4. The PLOT option prints the residual
autocorrelation functions from this model.
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Output 7.3.4. Estimates of the Transfer Function Model

The ARIMA Procedure

Conditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag Variable Shift

MU 53.32237 0.04932 1081.24 <.0001 0 y 0
NUM1 -0.62868 0.25385 -2.48 0.0138 0 x 3
NUM1,1 0.47258 0.62253 0.76 0.4484 1 x 3
NUM1,2 0.73660 0.81006 0.91 0.3640 2 x 3
DEN1,1 0.15411 0.90483 0.17 0.8649 1 x 3
DEN1,2 0.27774 0.57345 0.48 0.6285 2 x 3

Constant Estimate 53.32237
Variance Estimate 0.704241
Std Error Estimate 0.839191
AIC 729.7249
SBC 751.7648
Number of Residuals 291

* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates

Variable y x x x x x
Parameter MU NUM1 NUM1,1 NUM1,2 DEN1,1 DEN1,2

y MU 1.000 0.013 0.002 -0.002 0.004 -0.006
x NUM1 0.013 1.000 0.755 -0.447 0.089 -0.065
x NUM1,1 0.002 0.755 1.000 0.121 -0.538 0.565
x NUM1,2 -0.002 -0.447 0.121 1.000 -0.892 0.870
x DEN1,1 0.004 0.089 -0.538 -0.892 1.000 -0.998
x DEN1,2 -0.006 -0.065 0.565 0.870 -0.998 1.000

The ARIMA Procedure

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 496.45 6 <.0001 0.893 0.711 0.502 0.312 0.167 0.064
12 498.58 12 <.0001 -0.003 -0.040 -0.054 -0.040 -0.022 -0.021
18 539.38 18 <.0001 -0.045 -0.083 -0.131 -0.170 -0.196 -0.195
24 561.87 24 <.0001 -0.163 -0.102 -0.026 0.047 0.106 0.142
30 585.90 30 <.0001 0.158 0.156 0.131 0.081 0.013 -0.037
36 592.42 36 <.0001 -0.048 -0.018 0.038 0.070 0.079 0.067
42 593.44 42 <.0001 0.042 0.025 0.013 0.004 0.006 0.019
48 601.94 48 <.0001 0.043 0.068 0.084 0.082 0.061 0.023
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The ARIMA Procedure

Autocorrelation Plot of Residuals

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.704241 1.00000 | |********************|
1 0.628846 0.89294 | . |****************** |
2 0.500490 0.71068 | . |************** |
3 0.353404 0.50182 | . |********** |
4 0.219895 0.31224 | . |****** |
5 0.117330 0.16660 | . |*** . |
6 0.044967 0.06385 | . |* . |
7 -0.0023551 -.00334 | . | . |
8 -0.028030 -.03980 | . *| . |
9 -0.037891 -.05380 | . *| . |

10 -0.028378 -.04030 | . *| . |

"." marks two standard errors

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.57346 | ***********| . |
2 0.02264 | . | . |
3 0.03631 | . |*. |
4 0.03941 | . |*. |
5 -0.01256 | . | . |
6 -0.01618 | . | . |
7 0.02680 | . |*. |
8 -0.05895 | .*| . |
9 0.07043 | . |*. |

10 -0.02987 | .*| . |
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The ARIMA Procedure

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.89294 | . |****************** |
2 -0.42765 | *********| . |
3 -0.13463 | ***| . |
4 0.02199 | . | . |
5 0.03891 | . |*. |
6 -0.02219 | . | . |
7 -0.02249 | . | . |
8 0.01538 | . | . |
9 0.00634 | . | . |

10 0.07737 | . |** |

Crosscorrelation Check of Residuals with Input x

To Chi- Pr >
Lag Square DF ChiSq ---------------Crosscorrelations--------------

5 0.48 2 0.7855 -0.009 -0.005 0.026 0.013 -0.017 -0.022
11 0.93 8 0.9986 -0.006 0.008 0.022 0.023 -0.017 -0.013
17 2.63 14 0.9996 0.012 0.035 0.037 0.039 -0.005 -0.040
23 19.19 20 0.5092 -0.076 -0.108 -0.122 -0.122 -0.094 -0.041
29 20.12 26 0.7857 -0.039 -0.013 0.010 -0.020 -0.031 -0.005
35 24.22 32 0.8363 -0.022 -0.031 -0.074 -0.036 0.014 0.076
41 30.66 38 0.7953 0.108 0.091 0.046 0.018 0.003 0.009
47 31.65 44 0.9180 0.008 -0.011 -0.040 -0.030 -0.002 0.028

Model for variable y

Estimated Intercept 53.32237

Input Number 1

Input Variable x
Shift 3

Numerator Factors

Factor 1: -0.6287 - 0.47258 B**(1) - 0.7366 B**(2)

Denominator Factors

Factor 1: 1 - 0.15411 B**(1) - 0.27774 B**(2)

The ESTIMATE statement results for the final transfer function model with AR(2)
noise are shown in Output 7.3.5.
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Output 7.3.5. Estimates of the Final Model

The ARIMA Procedure

Conditional Least Squares Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag Variable Shift

MU 53.26307 0.11926 446.63 <.0001 0 y 0
AR1,1 1.53292 0.04754 32.25 <.0001 1 y 0
AR1,2 -0.63297 0.05006 -12.64 <.0001 2 y 0
NUM1 -0.53522 0.07482 -7.15 <.0001 0 x 3
NUM1,1 0.37602 0.10287 3.66 0.0003 1 x 3
NUM1,2 0.51894 0.10783 4.81 <.0001 2 x 3
DEN1,1 0.54842 0.03822 14.35 <.0001 1 x 3

Constant Estimate 5.329371
Variance Estimate 0.058828
Std Error Estimate 0.242544
AIC 8.292811
SBC 34.00607
Number of Residuals 291

* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates

Variable y y y x
Parameter MU AR1,1 AR1,2 NUM1

y MU 1.000 -0.063 0.047 -0.008
y AR1,1 -0.063 1.000 -0.927 -0.003
y AR1,2 0.047 -0.927 1.000 0.023
x NUM1 -0.008 -0.003 0.023 1.000
x NUM1,1 -0.016 0.007 -0.005 0.713
x NUM1,2 0.017 -0.002 0.005 -0.178
x DEN1,1 -0.049 0.015 -0.022 -0.013

Correlations of Parameter Estimates

Variable x x x
Parameter NUM1,1 NUM1,2 DEN1,1

y MU -0.016 0.017 -0.049
y AR1,1 0.007 -0.002 0.015
y AR1,2 -0.005 0.005 -0.022
x NUM1 0.713 -0.178 -0.013
x NUM1,1 1.000 -0.467 -0.039
x NUM1,2 -0.467 1.000 -0.720
x DEN1,1 -0.039 -0.720 1.000
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The ARIMA Procedure

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 8.61 4 0.0717 0.024 0.055 -0.073 -0.054 -0.054 0.119
12 15.43 10 0.1172 0.032 0.028 -0.081 0.047 0.022 0.107
18 21.13 16 0.1734 -0.038 0.052 -0.093 -0.013 -0.073 -0.005
24 27.52 22 0.1922 -0.118 -0.002 -0.007 0.076 0.024 -0.004
30 36.94 28 0.1202 0.034 -0.021 0.020 0.094 -0.118 0.065
36 44.26 34 0.1119 -0.025 -0.057 0.113 0.022 0.030 0.065
42 45.62 40 0.2500 -0.017 -0.036 -0.029 -0.013 -0.033 0.017
48 48.60 46 0.3689 0.024 0.069 0.024 0.017 0.022 -0.044

Crosscorrelation Check of Residuals with Input x

To Chi- Pr >
Lag Square DF ChiSq ---------------Crosscorrelations--------------

5 0.93 3 0.8191 0.008 0.004 0.010 0.008 -0.045 0.030
11 6.60 9 0.6784 0.075 -0.024 -0.019 -0.026 -0.111 0.013
17 13.86 15 0.5365 0.050 0.043 0.014 0.014 -0.141 -0.028
23 18.55 21 0.6142 -0.074 -0.078 0.023 -0.016 0.021 0.060
29 27.99 27 0.4113 -0.071 -0.001 0.038 -0.156 0.031 0.035
35 35.18 33 0.3654 -0.014 0.015 -0.039 0.028 0.046 0.142
41 37.15 39 0.5544 0.031 -0.029 -0.070 -0.006 0.012 -0.004
47 42.42 45 0.5818 0.036 -0.038 -0.053 0.107 0.029 0.021

The ARIMA Procedure

Model for variable y

Estimated Intercept 53.26307

Autoregressive Factors

Factor 1: 1 - 1.53292 B**(1) + 0.63297 B**(2)

Input Number 1

Input Variable x
Shift 3

Numerator Factors

Factor 1: -0.5352 - 0.37602 B**(1) - 0.51894 B**(2)

Denominator Factors

Factor 1: 1 - 0.54842 B**(1)

SAS OnlineDoc: Version 8
286



Chapter 7. Examples

Example 7.4. An Intervention Model for Ozone Data

This example fits an intervention model to ozone data as suggested by Box and Tiao
(1975). Notice that since the response variable, OZONE, is differenced, the innova-
tion, X1, must also be differenced to generate a step function change in the response.
If X1 had not been differenced, the change in the response caused by X1 would be
a (seasonal) ramp and not a step function. Notice that the final model for the differ-
enced data is a multiple regression model with a moving-average structure assumed
for the residuals.

The model is fit by maximum likelihood. The seasonal moving-average parame-
ter and its standard error are fairly sensitive to which method is chosen to fit the
model, in agreement with the observations of Davidson (1981) and Ansley and New-
bold (1980); thus, fitting the model by the unconditional or conditional least squares
methods produce somewhat different estimates for these parameters.

Some missing values are appended to the end of the input data to generate additional
values for the independent variables. Since the independent variables are not mod-
eled, values for them must be available for any times at which predicted values are
desired. In this case, predicted values are requested for 12 periods beyond the end of
the data. Thus, values for X1, WINTER, and SUMMER must be given for 12 periods
ahead.

The following statements read in the data and compute dummy variables for use as
intervention inputs:

title1 ’Intervention Data for Ozone Concentration’;
title2 ’(Box and Tiao, JASA 1975 P.70)’;

data air;
input ozone @@;
label ozone = ’Ozone Concentration’

x1 = ’Intervention for post 1960 period’
summer = ’Summer Months Intervention’
winter = ’Winter Months Intervention’;

date = intnx( ’month’, ’31dec1954’d, _n_ );
format date monyy.;
month = month( date );
year = year( date );
x1 = year >= 1960;
summer = ( 5 < month < 11 ) * ( year > 1965 );
winter = ( year > 1965 ) - summer;

datalines;
2.7 2.0 3.6 5.0 6.5 6.1 5.9 5.0 6.4 7.4 8.2 3.9
4.1 4.5 5.5 3.8 4.8 5.6 6.3 5.9 8.7 5.3 5.7 5.7
3.0 3.4 4.9 4.5 4.0 5.7 6.3 7.1 8.0 5.2 5.0 4.7
3.7 3.1 2.5 4.0 4.1 4.6 4.4 4.2 5.1 4.6 4.4 4.0
2.9 2.4 4.7 5.1 4.0 7.5 7.7 6.3 5.3 5.7 4.8 2.7
1.7 2.0 3.4 4.0 4.3 5.0 5.5 5.0 5.4 3.8 2.4 2.0
2.2 2.5 2.6 3.3 2.9 4.3 4.2 4.2 3.9 3.9 2.5 2.2
2.4 1.9 2.1 4.5 3.3 3.4 4.1 5.7 4.8 5.0 2.8 2.9
1.7 3.2 2.7 3.0 3.4 3.8 5.0 4.8 4.9 3.5 2.5 2.4

287
SAS OnlineDoc: Version 8



Part 2. General Information

1.6 2.3 2.5 3.1 3.5 4.5 5.7 5.0 4.6 4.8 2.1 1.4
2.1 2.9 2.7 4.2 3.9 4.1 4.6 5.8 4.4 6.1 3.5 1.9
1.8 1.9 3.7 4.4 3.8 5.6 5.7 5.1 5.6 4.8 2.5 1.5
1.8 2.5 2.6 1.8 3.7 3.7 4.9 5.1 3.7 5.4 3.0 1.8
2.1 2.6 2.8 3.2 3.5 3.5 4.9 4.2 4.7 3.7 3.2 1.8
2.0 1.7 2.8 3.2 4.4 3.4 3.9 5.5 3.8 3.2 2.3 2.2
1.3 2.3 2.7 3.3 3.7 3.0 3.8 4.7 4.6 2.9 1.7 1.3
1.8 2.0 2.2 3.0 2.4 3.5 3.5 3.3 2.7 2.5 1.6 1.2
1.5 2.0 3.1 3.0 3.5 3.4 4.0 3.8 3.1 2.1 1.6 1.3
;

The following statements produce Output 7.4.1 and Output 7.4.2:

proc arima data=air;

/*--- Identify and seasonally difference ozone series ---*/
identify var=ozone(12) crosscorr=( x1(12) summer winter ) noprint;

/*--- Fit a multiple regression with a seasonal MA model ---*/
/*--- by the maximum likelihood method ---*/
estimate q=(1)(12) input=( x1 summer winter )

noconstant method=ml itprint;

/*--- Forecast ---*/
forecast lead=12 id=date interval=month;

run;

The ESTIMATE statement results are shown in Output 7.4.1.

Output 7.4.1. Parameter Estimates

Intervention Data for Ozone Concentration
(Box and Tiao, JASA 1975 P.70)

The ARIMA Procedure

Initial Moving Average
Estimates

Estimate

1 -0.29241

Initial Moving Average
Estimates

Estimate

12 0.40740

White Noise Variance Est 0.944969
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The ARIMA Procedure

Conditional Least Squares Estimation

Iteration SSE MA1,1 MA2,1 NUM1 NUM2 NUM3 Lambda

0 154.53 -0.29241 0.40740 -1.13490 -0.11731 0.05581 0.00001
1 146.20 -0.29256 0.59844 -1.20292 -0.29784 -0.11572 1E-6
2 145.88 -0.30071 0.59239 -1.26173 -0.26252 -0.08247 1E-7
3 145.88 -0.29976 0.59242 -1.26246 -0.26150 -0.08197 1E-8
4 145.88 -0.29983 0.59234 -1.26243 -0.26154 -0.08196 1E-9

Conditional Least
Squares Estimation

Iteration R Crit

0 1
1 0.230552
2 0.046601
3 0.001345
4 0.000125

Maximum Likelihood Estimation

Iter Loglike MA1,1 MA2,1 NUM1 NUM2 NUM3 Lambda R Crit

0 -249.07778 -0.29983 0.59234 -1.26243 -0.26154 -0.08196 0.00001 1
1 -245.89135 -0.26830 0.76634 -1.34490 -0.23984 -0.07578 1E-6 0.169445
2 -245.88484 -0.26653 0.76623 -1.33046 -0.23939 -0.08025 1E-7 0.008044
3 -245.88482 -0.26689 0.76661 -1.33070 -0.23936 -0.08020 1E-8 0.000603
4 -245.88481 -0.26684 0.76665 -1.33062 -0.23936 -0.08021 1E-9 0.000073

ARIMA Estimation Optimization Summary

Estimation Method Maximum Likelihood
Parameters Estimated 5
Termination Criteria Maximum Relative Change in Estimates
Iteration Stopping Value 0.001
Criteria Value 0.000195
Alternate Criteria Relative Change in Objective Function
Alternate Criteria Value 1.247E-8
Maximum Absolute Value of Gradient 0.00712
R-Square Change from Last Iteration 0.000073
Objective Function Log Gaussian Likelihood
Objective Function Value -245.885
Marquardt’s Lambda Coefficient 1E-9
Numerical Derivative Perturbation Delta 0.001
Iterations 4
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The ARIMA Procedure

Maximum Likelihood Estimation

Approx Std
Parameter Estimate Error t Value Pr > |t| Lag Variable Shift

MA1,1 -0.26684 0.06710 -3.98 <.0001 1 ozone 0
MA2,1 0.76665 0.05973 12.83 <.0001 12 ozone 0
NUM1 -1.33062 0.19236 -6.92 <.0001 0 x1 0
NUM2 -0.23936 0.05952 -4.02 <.0001 0 summer 0
NUM3 -0.08021 0.04978 -1.61 0.1071 0 winter 0

Variance Estimate 0.634506
Std Error Estimate 0.796559
AIC 501.7696
SBC 518.3602
Number of Residuals 204

Correlations of Parameter Estimates

Variable ozone ozone x1 summer winter
Parameter MA1,1 MA2,1 NUM1 NUM2 NUM3

ozone MA1,1 1.000 0.090 -0.039 0.062 -0.034
ozone MA2,1 0.090 1.000 -0.169 0.211 0.022
x1 NUM1 -0.039 -0.169 1.000 -0.124 -0.107
summer NUM2 0.062 0.211 -0.124 1.000 0.097
winter NUM3 -0.034 0.022 -0.107 0.097 1.000

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq ---------------Autocorrelations---------------

6 7.47 4 0.1132 0.017 0.054 0.043 0.101 -0.022 0.140
12 10.21 10 0.4220 -0.024 -0.059 -0.047 0.014 0.032 0.072
18 14.53 16 0.5593 0.054 0.006 -0.110 0.028 -0.042 0.043
24 19.99 22 0.5834 0.003 -0.074 -0.074 0.098 -0.038 0.043
30 27.00 28 0.5180 -0.072 -0.035 0.023 -0.028 -0.107 0.100
36 32.65 34 0.5336 0.022 -0.099 -0.006 0.087 -0.046 0.053
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Model for variable ozone

Period(s) of Differencing 12

Moving Average Factors

Factor 1: 1 + 0.26684 B**(1)
Factor 2: 1 - 0.76665 B**(12)

Input Number 1

Input Variable x1
Period(s) of Differencing 12
Overall Regression Factor -1.33062

Input Number 2

Input Variable summer
Overall Regression Factor -0.23936

Input Number 3

Input Variable winter
Overall Regression Factor -0.08021

The FORECAST statement results are shown in Output 7.4.2.

Output 7.4.2. Forecasts

The ARIMA Procedure

Forecasts for variable ozone

Obs Forecast Std Error 95% Confidence Limits

217 1.4205 0.7966 -0.1407 2.9817
218 1.8446 0.8244 0.2287 3.4604
219 2.4567 0.8244 0.8408 4.0725
220 2.8590 0.8244 1.2431 4.4748
221 3.1501 0.8244 1.5342 4.7659
222 2.7211 0.8244 1.1053 4.3370
223 3.3147 0.8244 1.6989 4.9306
224 3.4787 0.8244 1.8629 5.0946
225 2.9405 0.8244 1.3247 4.5564
226 2.3587 0.8244 0.7429 3.9746
227 1.8588 0.8244 0.2429 3.4746
228 1.2898 0.8244 -0.3260 2.9057
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Example 7.5. Using Diagnostics to Identify ARIMA models

Fitting ARIMA models is as much an art as it is a science. The ARIMA procedure
has diagnostic options to help tentatively identify the orders of both stationary and
nonstationary ARIMA processes.

Consider the Series A in Boxet al (1994), which consists of 197 concentration read-
ings taken every two hours from a chemical process. Let SeriesA be a data set con-
taining these readings in a variable named X. The following SAS statements use the
SCAN option of the IDENTIFY statement to generate Output 7.5.1 and Output 7.5.2.
See “The SCAN Method” for details of the SCAN method.

proc arima data=SeriesA;
identify var=x scan;

run;

Output 7.5.1. Example of SCAN Tables

SERIES A: Chemical Process Concentration Readings

The ARIMA Procedure

Squared Canonical Correlation Estimates

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 0.3263 0.2479 0.1654 0.1387 0.1183 0.1417
AR 1 0.0643 0.0012 0.0028 <.0001 0.0051 0.0002
AR 2 0.0061 0.0027 0.0021 0.0011 0.0017 0.0079
AR 3 0.0072 <.0001 0.0007 0.0005 0.0019 0.0021
AR 4 0.0049 0.0010 0.0014 0.0014 0.0039 0.0145
AR 5 0.0202 0.0009 0.0016 <.0001 0.0126 0.0001

SCAN Chi-Square[1] Probability Values

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 <.0001 <.0001 <.0001 0.0007 0.0037 0.0024
AR 1 0.0003 0.6649 0.5194 0.9235 0.3993 0.8528
AR 2 0.2754 0.5106 0.5860 0.7346 0.6782 0.2766
AR 3 0.2349 0.9812 0.7667 0.7861 0.6810 0.6546
AR 4 0.3297 0.7154 0.7113 0.6995 0.5807 0.2205
AR 5 0.0477 0.7254 0.6652 0.9576 0.2660 0.9168

In Output 7.5.1, there is one (maximal) rectangular region in which all the elements
are insignificant with 95% confidence. This region has a vertex at (1,1). Out-
put 7.5.2 gives recommendations based on the significance level specified by the
ALPHA=sigleveloption.
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Output 7.5.2. Example of SCAN Option Tentative Order Selection

The ARIMA Procedure

ARMA(p+d,q)
Tentative

Order
Selection

Tests

----SCAN---
p+d q

1 1

(5% Significance Level)

Another order identification diagnostic is the extended sample autocorrelation func-
tion or ESACF method. See “The ESACF Method” for details of the ESACF method.

The following statements generate Output 7.5.3 and Output 7.5.4.

proc arima data=SeriesA;
identify var=x esacf;

run;

Output 7.5.3. Example of ESACF Tables

The ARIMA Procedure

Extended Sample Autocorrelation Function

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 0.5702 0.4951 0.3980 0.3557 0.3269 0.3498
AR 1 -0.3907 0.0425 -0.0605 -0.0083 -0.0651 -0.0127
AR 2 -0.2859 -0.2699 -0.0449 0.0089 -0.0509 -0.0140
AR 3 -0.5030 -0.0106 0.0946 -0.0137 -0.0148 -0.0302
AR 4 -0.4785 -0.0176 0.0827 -0.0244 -0.0149 -0.0421
AR 5 -0.3878 -0.4101 -0.1651 0.0103 -0.1741 -0.0231

ESACF Probability Values

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 <.0001 <.0001 0.0001 0.0014 0.0053 0.0041
AR 1 <.0001 0.5974 0.4622 0.9198 0.4292 0.8768
AR 2 <.0001 0.0002 0.6106 0.9182 0.5683 0.8592
AR 3 <.0001 0.9022 0.2400 0.8713 0.8930 0.7372
AR 4 <.0001 0.8380 0.3180 0.7737 0.8913 0.6213
AR 5 <.0001 <.0001 0.0765 0.9142 0.1038 0.8103

In Output 7.5.3, there are three right-triangular regions in which all elements are in-
significant at the 5% level. The triangles have vertices (1,1), (3,1), and (4,1). Since
the triangle at (1,1) covers more insignificant terms, it is recommended first. Sim-
ilarly, the remaining recommendations are ordered by the number of insignificant
terms contained in the triangle. Output 7.5.4 gives recommendations based on the
significance level specified by the ALPHA=sigleveloption.
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Output 7.5.4. Example of ESACF Option Tentative Order Selection

The ARIMA Procedure

ARMA(p+d,q)
Tentative

Order
Selection

Tests

---ESACF---
p+d q

1 1
3 1
4 1

(5% Significance Level)

If you also specify the SCAN option in the same IDENTIFY statement, the two rec-
ommendations are printed side by side.

proc arima data=SeriesA;
identify var=x scan esacf;

run;

Output 7.5.5. Example of SCAN and ESACF Option Combined

The ARIMA Procedure

ARMA(p+d,q) Tentative
Order Selection Tests

---SCAN-- --ESACF--
p+d q p+d q

1 1 1 1
3 1
4 1

(5% Significance Level)

From above, the autoregressive and moving average orders are tentatively identified
by both SCAN and ESACF tables to be (p + d; q)=(1,1). Because both the SCAN
and ESACF indicate ap + d term of 1, a unit root test should be used to determine
whether this autoregressive term is a unit root. Since a moving average term appears
to be present, a large autoregressive term is appropriate for the Augmented Dickey-
Fuller test for a unit root.

Submitting the following code generates Output 7.5.6.

proc arima data=SeriesA;
identify var=x stationarity=(adf=(5,6,7,8));

run;
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Output 7.5.6. Example of STATIONARITY Option Output

The ARIMA Procedure

Augmented Dickey-Fuller Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 5 0.0403 0.6913 0.42 0.8024
6 0.0479 0.6931 0.63 0.8508
7 0.0376 0.6907 0.49 0.8200
8 0.0354 0.6901 0.48 0.8175

Single Mean 5 -18.4550 0.0150 -2.67 0.0821 3.67 0.1367
6 -10.8939 0.1043 -2.02 0.2767 2.27 0.4931
7 -10.9224 0.1035 -1.93 0.3172 2.00 0.5605
8 -10.2992 0.1208 -1.83 0.3650 1.81 0.6108

Trend 5 -18.4360 0.0871 -2.66 0.2561 3.54 0.4703
6 -10.8436 0.3710 -2.01 0.5939 2.04 0.7694
7 -10.7427 0.3773 -1.90 0.6519 1.91 0.7956
8 -10.0370 0.4236 -1.79 0.7081 1.74 0.8293

The preceding test results show that a unit root is very likely and that the series should
be differenced. Based on this test and the previous results, an ARIMA(0,1,1) would
be a good choice for a tentative model for Series A.

Using the recommendation that the series be differenced, the following statements
generate Output 7.5.7.

proc arima data=SeriesA;
identify var=x(1) minic;

run;

Output 7.5.7. Example of MINIC Table

The ARIMA Procedure

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 -2.05761 -2.3497 -2.32358 -2.31298 -2.30967 -2.28528
AR 1 -2.23291 -2.32345 -2.29665 -2.28644 -2.28356 -2.26011
AR 2 -2.23947 -2.30313 -2.28084 -2.26065 -2.25685 -2.23458
AR 3 -2.25092 -2.28088 -2.25567 -2.23455 -2.22997 -2.20769
AR 4 -2.25934 -2.2778 -2.25363 -2.22983 -2.20312 -2.19531
AR 5 -2.2751 -2.26805 -2.24249 -2.21789 -2.19667 -2.17426

The error series is estimated using an AR(7) model, and the minimum of this MINIC
table isBIC(0; 1). This diagnostic confirms the previous result indicating that an
ARIMA(0,1,1) is a tentative model for Series A.

If you also specify the SCAN or MINIC option in the same IDENTIFY statement, the
BIC associated with the SCAN table and ESACF table recommendations are listed.

proc arima data=SeriesA;
identify var=x(1) minic scan esacf;

run;
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Output 7.5.8. Example of SCAN, ESACF, MINIC Options Combined

The ARIMA Procedure

ARMA(p+d,q) Tentative Order Selection Tests

---------SCAN-------- --------ESACF--------
p+d q BIC p+d q BIC

0 1 -2.3497 0 1 -2.3497
1 1 -2.32345

(5% Significance Level)
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