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Chapter 8
The AUTOREG Procedure

Overview

The AUTOREG procedure estimates and forecasts linear regression models for time
series data when the errors are autocorrelated or heteroscedastic. The autoregressive
error model is used to correct for autocorrelation, and the generalized autoregressive
conditional heteroscedasticity (GARCH) model and its variants are used to model
and correct for heteroscedasticity.

When time series data are used in regression analysis, often the error term is not in-
dependent through time. Instead, the errors areserially correlatedor autocorrelated.
If the error term is autocorrelated, the efficiency of ordinary least-squares (OLS) pa-
rameter estimates is adversely affected and standard error estimates are biased.

The autoregressive error model corrects for serial correlation. The AUTOREG proce-
dure can fit autoregressive error models of any order and can fit subset autoregressive
models. You can also specify stepwise autoregression to select the autoregressive
error model automatically.

To diagnose autocorrelation, the AUTOREG procedure produces generalized Durbin-
Watson (DW) statistics and their marginal probabilities. Exactp-values are reported
for generalized DW tests to any specified order. For models with lagged dependent
regressors, PROC AUTOREG performs the Durbint-test and the Durbinh-test for
first-order autocorrelation and reports their marginal significance levels.

Ordinary regression analysis assumes that the error variance is the same for all obser-
vations. When the error variance is not constant, the data are said to beheteroscedas-
tic, and ordinary least-squares estimates are inefficient. Heteroscedasticity also af-
fects the accuracy of forecast confidence limits. More efficient use of the data and
more accurate prediction error estimates can be made by models that take the het-
eroscedasticity into account.

To test for heteroscedasticity, the AUTOREG procedure uses the portmanteau test
statistics and the Engle Lagrange multiplier tests. Test statistics and significance
p-values are reported for conditional heteroscedasticity at lags 1 through 12. The
Bera-Jarque normality test statistic and its significance level are also reported to test
for conditional nonnormality of residuals.

The family of GARCH models provides a means of estimating and correcting for
the changing variability of the data. The GARCH process assumes that the errors,
although uncorrelated, are not independent and models the conditional error variance
as a function of the past realizations of the series.
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Part 2. General Information

The AUTOREG procedure supports the following variations of the GARCH models:

� generalized ARCH (GARCH)

� integrated GARCH (IGARCH)

� exponential GARCH (EGARCH)

� GARCH-in-mean (GARCH-M)

For GARCH-type models, the AUTOREG procedure produces the conditional pre-
diction error variances as well as parameter and covariance estimates.

The AUTOREG procedure can also analyze models that combine autoregressive er-
rors and GARCH-type heteroscedasticity. PROC AUTOREG can output predictions
of the conditional mean and variance for models with autocorrelated disturbances and
changing conditional error variances over time.

Four estimation methods are supported for the autoregressive error model:

� Yule-Walker

� iterated Yule-Walker

� unconditional least squares

� exact maximum likelihood

The maximum likelihood method is used for GARCH models and for mixed AR-
GARCH models.

The AUTOREG procedure produces forecasts and forecast confidence limits when
future values of the independent variables are included in the input data set. PROC
AUTOREG is a useful tool for forecasting because it uses the time series part of the
model as well as the systematic part in generating predicted values. The autoregres-
sive error model takes into account recent departures from the trend in producing
forecasts.

The AUTOREG procedure permits embedded missing values for the independent or
dependent variables. The procedure should be used only for ordered and equally
spaced time series data.
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Chapter 8. Getting Started

Getting Started

Regression with Autocorrelated Errors

Ordinary regression analysis is based on several statistical assumptions. One key
assumption is that the errors are independent of each other. However, with time
series data, the ordinary regression residuals usually are correlated over time. It is not
desirable to use ordinary regression analysis for time series data since the assumptions
on which the classical linear regression model is based will usually be violated.

Violation of the independent errors assumption has three important consequences for
ordinary regression. First, statistical tests of the significance of the parameters and the
confidence limits for the predicted values are not correct. Second, the estimates of the
regression coefficients are not as efficient as they would be if the autocorrelation were
taken into account. Third, since the ordinary regression residuals are not independent,
they contain information that can be used to improve the prediction of future values.

The AUTOREG procedure solves this problem by augmenting the regression model
with an autoregressive model for the random error, thereby accounting for the auto-
correlation of the errors. Instead of the usual regression model, the following autore-
gressive error model is used:

yt = x0t� + �t
�t = �'1�t�1 � '2�t�2 � : : :� 'm�t�m + �t
�t � IN(0; �2)

The notation�t � IN(0; �2) indicates that each�t is normally and independently dis-
tributed with mean 0 and variance�2.

By simultaneously estimating the regression coefficients� and the autoregressive er-
ror model parameters'i, the AUTOREG procedure corrects the regression estimates
for autocorrelation. Thus, this kind of regression analysis is often calledautoregres-
sive error correctionor serial correlation correction.

Example of Autocorrelated Data
A simulated time series is used to introduce the AUTOREG procedure. The following
statements generate a simulated time series Y with second-order autocorrelation:

data a;
ul = 0; ull = 0;
do time = -10 to 36;

u = + 1.3 * ul - .5 * ull + 2*rannor(12346);
y = 10 + .5 * time + u;
if time > 0 then output;
ull = ul; ul = u;
end;

run;
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Part 2. General Information

The series Y is a time trend plus a second-order autoregressive error. The model
simulated is

yt = 10 + :5t+ �t
�t = 1:3�t�1 � :5�t�2 + �t
�t � IN(0; 4)

The following statements plot the simulated time series Y. A linear regression trend
line is shown for reference. (The regression line is produced by plotting the series
a second time using the regression interpolation feature of the SYMBOL statement.
Refer toSAS/GRAPH Software: Reference, Version 6, First Edition, Volume 1for
further explanation.)

title "Autocorrelated Time Series";
proc gplot data=a;

symbol1 v=dot i=join;
symbol2 v=none i=r;
plot y * time = 1 y * time = 2 / overlay;

run;

The plot of series Y and the regression line are shown in Figure 8.1.

Figure 8.1. Autocorrelated Time Series

Note that when the series is above (or below) the OLS regression trend line, it tends
to remain above (below) the trend for several periods. This pattern is an example of
positive autocorrelation.
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Chapter 8. Getting Started

Time series regression usually involves independent variables other than a time-trend.
However, the simple time-trend model is convenient for illustrating regression with
autocorrelated errors, and the series Y shown in Figure 8.1 is used in the following
introductory examples.

Ordinary Least-Squares Regression
To use the AUTOREG procedure, specify the input data set in the PROC AUTOREG
statement and specify the regression model in a MODEL statement. Specify the
model by first naming the dependent variable and then listing the regressors after an
equal sign, as is done in other SAS regression procedures. The following statements
regress Y on TIME using ordinary least squares:

proc autoreg data=a;
model y = time;

run;

The AUTOREG procedure output is shown in Figure 8.2.

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34
MSE 6.32216 Root MSE 2.51439
SBC 173.659101 AIC 170.492063
Regress R-Square 0.8200 Total R-Square 0.8200
Durbin-Watson 0.4752

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001
time 1 0.5021 0.0403 12.45 <.0001

Figure 8.2. AUTOREG Results for OLS estimation

The output first shows statistics for the model residuals. The model root mean square
error (Root MSE) is 2.51, and the model R2 is .82. Notice that two R2 statistics are
shown, one for the regression model (Reg Rsq) and one for the full model (Total Rsq)
that includes the autoregressive error process, if any. In this case, an autoregressive
error model is not used, so the two R2 statistics are the same.

Other statistics shown are the sum of square errors (SSE), mean square error (MSE),
error degrees of freedom (DFE, the number of observations minus the number of
parameters), the information criteria SBC and AIC, and the Durbin-Watson statistic.
(Durbin-Watson statistics and SBC and AIC are discussed in the "Details" section
later in this chapter.)
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Part 2. General Information

The output then shows a table of regression coefficients, with standard errors and
t-tests. The estimated model is

yt = 8:23 + :502t + �t
Est: V ar(�t) = 6:32

The OLS parameter estimates are reasonably close to the true values, but the esti-
mated error variance, 6.32, is much larger than the true value, 4.

Autoregressive Error Model
The following statements regress Y on TIME with the errors assumed to follow a
second-order autoregressive process. The order of the autoregressive model is speci-
fied by the NLAG=2 option. The Yule-Walker estimation method is used by default.
The example uses the METHOD=ML option to specify the exact maximum likeli-
hood method instead.

proc autoreg data=a;
model y = time / nlag=2 method=ml;

run;

The first part of the results are shown in Figure 8.3. The initial OLS results are
produced first, followed by estimates of the autocorrelations computed from the OLS
residuals. The autocorrelations are also displayed graphically.

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34
MSE 6.32216 Root MSE 2.51439
SBC 173.659101 AIC 170.492063
Regress R-Square 0.8200 Total R-Square 0.8200
Durbin-Watson 0.4752

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001
time 1 0.5021 0.0403 12.45 <.0001

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 5.9709 1.000000 | |********************|
1 4.5169 0.756485 | |*************** |
2 2.0241 0.338995 | |******* |

Preliminary MSE 1.7943

Figure 8.3. Preliminary Estimate for AR(2) Error Model
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Chapter 8. Getting Started

The maximum likelihood estimates are shown in Figure 8.4. Figure 8.4 also shows
the preliminary Yule-Walker estimates used as starting values for the iterative com-
putation of the maximum likelihood estimates.

The AUTOREG Procedure

Estimates of Autoregressive Parameters

Standard
Lag Coefficient Error t Value

1 -1.169057 0.148172 -7.89
2 0.545379 0.148172 3.68

Algorithm converged.

Maximum Likelihood Estimates

SSE 54.7493022 DFE 32
MSE 1.71092 Root MSE 1.30802
SBC 133.476508 AIC 127.142432
Regress R-Square 0.7280 Total R-Square 0.9542
Durbin-Watson 2.2761

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 7.8833 1.1693 6.74 <.0001
time 1 0.5096 0.0551 9.25 <.0001
AR1 1 -1.2464 0.1385 -9.00 <.0001
AR2 1 0.6283 0.1366 4.60 <.0001

Autoregressive parameters assumed given.

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 7.8833 1.1678 6.75 <.0001
time 1 0.5096 0.0551 9.26 <.0001

Figure 8.4. Maximum Likelihood Estimates of AR(2) Error Model

The diagnostic statistics and parameter estimates tables in Figure 8.4 have the same
form as in the OLS output, but the values shown are for the autoregressive error
model. The MSE for the autoregressive model is 1.71, which is much smaller than
the true value of 4. In small samples, the autoregressive error model tends to under-
estimate�2, while the OLS MSE overestimates�2.

Notice that the total R2 statistic computed from the autoregressive model residuals is
.954, reflecting the improved fit from the use of past residuals to help predict the next
Y value. The Reg Rsq value .728 is the R2 statistic for a regression of transformed
variables adjusted for the estimated autocorrelation. (This is not the R2 for the esti-
mated trend line. For details, see "R2 Statistics and Other Measures of Fit" later in
this chapter.)
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The parameter estimates table shows the ML estimates of the regression coefficients
and includes two additional rows for the estimates of the autoregressive parameters,
labeled A(1) and A(2).

The estimated model is

yt = 7:88 + :5096t + �t

�t = 1:25�t�1 � :628�t�2 + �t

Est: V ar(�t) = 1:71

Note that the signs of the autoregressive parameters shown in this equation for�t
are the reverse of the estimates shown in the AUTOREG procedure output. Figure
8.4 also shows the estimates of the regression coefficients with the standard errors
recomputed on the assumption that the autoregressive parameter estimates equal the
true values.

Predicted Values and Residuals
The AUTOREG procedure can produce two kinds of predicted values and corre-
sponding residuals and confidence limits. The first kind of predicted value is ob-
tained from only the structural part of the model,x0tb. This is an estimate of the
unconditional mean of the response variable at timet. For the time trend model,
these predicted values trace the estimated trend. The second kind of predicted values
include both the structural part of the model and the predicted values of the autore-
gressive error process. The full model (conditional) predictions are used to forecast
future values.

Use the OUTPUT statement to store predicted values and residuals in a SAS data set
and to output other values such as confidence limits and variance estimates. The P=
option specifies an output variable to contain the full model predicted values. The
PM= option names an output variable for the predicted mean. The R= and RM=
options specify output variables for the corresponding residuals, computed as the
actual value minus the predicted value.

The following statements store both kinds of predicted values in the output data set.
(The printed output is the same as previously shown in Figure 8.3 and Figure 8.4.)

proc autoreg data=a;
model y = time / nlag=2 method=ml;
output out=p p=yhat pm=trendhat;

run;

The following statements plot the predicted values from the regression trend line and
from the full model together with the actual values.

title "Predictions for Autocorrelation Model";
proc gplot data=p;

symbol1 v=star i=none;
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symbol2 v=circle i=join;
symbol3 v=none i=join;
plot y * time = 1 yhat * time = 2

trendhat * time = 3 / overlay ;
run;

The plot of predicted values is shown in Figure 8.5.

Figure 8.5. PROC AUTOREG Predictions

In Figure 8.5 the straight line is the autocorrelation corrected regression line, traced
out by the structural predicted values TRENDHAT. The jagged line traces the full
model prediction values. The actual values are marked by asterisks. This plot graph-
ically illustrates the improvement in fit provided by the autoregressive error process
for highly autocorrelated data.

Forecasting Autoregressive Error Models

To produce forecasts for future periods, include observations for the forecast periods
in the input data set. The forecast observations must provide values for the indepen-
dent variables and have missing values for the response variable.

For the time trend model, the only regressor is time. The following statements add
observations for time periods 37 through 46 to the data set A to produce an augmented
data set B:
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Part 2. General Information

data b;
y = .;
do time = 37 to 46; output; end;

run;

data b; merge a b; by time; run;

To produce the forecast, use the augmented data set as input to PROC AUTOREG,
and specify the appropriate options in the OUTPUT statement. The following state-
ments produce forecasts for the time trend with autoregressive error model. The out-
put data set includes all the variables in the input data set, the forecast values (YHAT),
the predicted trend (YTREND), and the upper (UCL) and lower (LCL) 95% confi-
dence limits.

proc autoreg data=b;
model y = time / nlag=2 method=ml;
output out=p p=yhat pm=ytrend

lcl=lcl ucl=ucl;
run;

The following statements plot the predicted values and confidence limits, and they
also plot the trend line for reference. The actual observations are shown for periods
16 through 36, and a reference line is drawn at the start of the out-of-sample forecasts.

title "Forecasting Autocorrelated Time Series";
proc gplot data=p;

plot y*time=1 yhat*time=2 ytrend*time=3
lcl*time=3 ucl*time=3 /
overlay href=36.5;

where time >= 16;
symbol1 v=star i=none;
symbol2 v=circle i=join;
symbol3 v=none i=join;

run;

The plot is shown in Figure 8.6. Notice that the forecasts take into account the re-
cent departures from the trend but converge back to the trend line for longer forecast
horizons.
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Figure 8.6. PROC AUTOREG Forecasts

Testing for Autocorrelation

In the preceding section, it is assumed that the order of the autoregressive process is
known. In practice, you need to test for the presence of autocorrelation.

The Durbin-Watson test is a widely used method of testing for autocorrelation. The
first-order Durbin-Watson statistic is printed by default. This statistic can be used to
test for first-order autocorrelation. Use the DWPROB option to print the significance
level (p-values) for the Durbin-Watson tests. (Since the Durbin-Watsonp-values are
computationally expensive, they are not reported by default.)

You can use the DW= option to request higher-order Durbin-Watson statistics.
Since the ordinary Durbin-Watson statistic only tests for first-order autocorrelation,
the Durbin-Watson statistics for higher-order autocorrelation are calledgeneralized
Durbin-Watson statistics.

The following statements perform the Durbin-Watson test for autocorrelation in the
OLS residuals for orders 1 through 4. The DWPROB option prints the marginal
significance levels (p-values) for the Durbin-Watson statistics.

proc autoreg data=a;
model y = time / dw=4 dwprob;

run;

The AUTOREG procedure output is shown in Figure 8.7. In this case, the first-order
Durbin-Watson test is highly significant, withp < .0001 for the hypothesis of no
first-order autocorrelation. Thus, autocorrelation correction is needed.
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The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34
MSE 6.32216 Root MSE 2.51439
SBC 173.659101 AIC 170.492063
Regress R-Square 0.8200 Total R-Square 0.8200

Durbin-Watson Statistics

Order DW Pr < DW Pr > DW

1 0.4752 <.0001 1.0000
2 1.2935 0.0137 0.9863
3 2.0694 0.6545 0.3455
4 2.5544 0.9818 0.0182

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is
the p-value for testing negative autocorrelation.

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001
time 1 0.5021 0.0403 12.45 <.0001

Figure 8.7. Durbin-Watson Test Results for OLS Residuals

Using the Durbin-Watson test, you can decide if autocorrelation correction is needed.
However, generalized Durbin-Watson tests should not be used to decide on the au-
toregressive order. The higher-order tests assume the absence of lower-order autocor-
relation. If the ordinary Durbin-Watson test indicates no first-order autocorrelation,
you can use the second-order test to check for second-order autocorrelation. Once
autocorrelation is detected, further tests at higher orders are not appropriate. In Fig-
ure 8.7, since the first-order Durbin-Watson test is significant, the order 2, 3, and 4
tests can be ignored.

When using Durbin-Watson tests to check for autocorrelation, you should specify
an order at least as large as the order of any potential seasonality, since seasonality
produces autocorrelation at the seasonal lag. For example, for quarterly data use
DW=4, and for monthly data use DW=12.

Lagged Dependent Variables
The Durbin-Watson tests are not valid when the lagged dependent variable is used in
the regression model. In this case, the Durbinh-test or Durbint-test can be used to
test for first-order autocorrelation.

For the Durbinh-test, specify the name of the lagged dependent variable in the
LAGDEP= option. For the Durbint-test, specify the LAGDEP option without giving
the name of the lagged dependent variable.

For example, the following statements add the variable YLAG to the data set A and
regress Y on YLAG instead of TIME.
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data b;
set a;
ylag = lag1( y );

run;

proc autoreg data=b;
model y = ylag / lagdep=ylag;

run;

The results are shown in Figure 8.8. The Durbinh statistic 2.78 is significant with a
p-value of .0027, indicating autocorrelation.

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 97.711226 DFE 33
MSE 2.96095 Root MSE 1.72074
SBC 142.369787 AIC 139.259091
Regress R-Square 0.9109 Total R-Square 0.9109
Durbin h 2.7814 Pr > h 0.0027

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.5742 0.9300 1.69 0.0999
ylag 1 0.9376 0.0510 18.37 <.0001

Figure 8.8. Durbin h -Test With a Lagged Dependent Variable

Stepwise Autoregression

Once you determine that autocorrelation correction is needed, you must select the
order of the autoregressive error model to use. One way to select the order of the
autoregressive error model isstepwise autoregression. The stepwise autoregression
method initially fits a high-order model with many autoregressive lags and then se-
quentially removes autoregressive parameters until all remaining autoregressive pa-
rameters have significantt-tests.

To use stepwise autoregression, specify the BACKSTEP option, and specify a large
order with the NLAG= option. The following statements show the stepwise feature,
using an initial order of 5:

proc autoreg data=a;
model y = time / method=ml nlag=5 backstep;

run;

The results are shown in Figure 8.9.

315
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The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34
MSE 6.32216 Root MSE 2.51439
SBC 173.659101 AIC 170.492063
Regress R-Square 0.8200 Total R-Square 0.8200
Durbin-Watson 0.4752

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001
time 1 0.5021 0.0403 12.45 <.0001

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 5.9709 1.000000 | |********************|
1 4.5169 0.756485 | |*************** |
2 2.0241 0.338995 | |******* |
3 -0.4402 -0.073725 | *| |
4 -2.1175 -0.354632 | *******| |
5 -2.8534 -0.477887 | **********| |

Backward Elimination of
Autoregressive Terms

Lag Estimate t Value Pr > |t|

4 -0.052908 -0.20 0.8442
3 0.115986 0.57 0.5698
5 0.131734 1.21 0.2340

Figure 8.9. Stepwise Autoregression

The estimates of the autocorrelations are shown for 5 lags. The backward elimination
of autoregressive terms report shows that the autoregressive parameters at lags 3, 4,
and 5 were insignificant and eliminated, resulting in the second-order model shown
previously in Figure 8.4. By default, retained autoregressive parameters must be
significant at the .05 level, but you can control this with the SLSTAY= option. The
remainder of the output from this example is the same as that in Figure 8.3 and Figure
8.4, and it is not repeated here.

The stepwise autoregressive process is performed using the Yule-Walker method. The
maximum likelihood estimates are produced after the order of the model is deter-
mined from the significance tests of the preliminary Yule-Walker estimates.

When using stepwise autoregression, it is a good idea to specify an NLAG= option
value larger than the order of any potential seasonality, since seasonality produces
autocorrelation at the seasonal lag. For example, for monthly data use NLAG=13,
and for quarterly data use NLAG=5.
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Subset and Factored Models
In the previous example, the BACKSTEP option dropped lags 3, 4, and 5, leaving an
order 2 model. However, in other cases a parameter at a longer lag may be kept while
some smaller lags are dropped. For example, the stepwise autoregression method
might drop lags 2, 3, and 5 but keep lags 1 and 4. This is called asubset model, since
the number of estimated autoregressive parameters is smaller than the order of the
model.

Subset models are common for seasonal data and often correspond tofactoredautore-
gressive models. A factored model is the product of simpler autoregressive models.
For example, the best model for seasonal monthly data may be the combination of a
first-order model for recent effects with a twelfth-order subset model for the season-
ality, with a single parameter at lag 12. This results in an order 13 subset model with
nonzero parameters at lags 1, 12, and 13. See Chapter 7, “The ARIMA Procedure,”
for further discussion of subset and factored autoregressive models.

You can specify subset models with the NLAG= option. List the lags to include in the
autoregressive model within parentheses. The following statements show an example
of specifying the subset model resulting from the combination of a first-order process
for recent effects with a fourth-order seasonal process:

proc autoreg data=a;
model y = time / nlag=(1 4 5);

run;

The MODEL statement specifies the following fifth-order autoregressive error model:

yt = a+ bt+ �t

�t = �'1�t�1 � '4�t�4 � '5�t�5 + �t

Testing for Heteroscedasticity

One of the key assumptions of the ordinary regression model is that the errors have
the same variance throughout the sample. This is also called thehomoscedasticity
model. If the error variance is not constant, the data are said to beheteroscedastic.

Since ordinary least-squares regression assumes constant error variance, het-
eroscedasticity causes the OLS estimates to be inefficient. Models that take into
account the changing variance can make more efficient use of the data. Also,
heteroscedasticity can make the OLS forecast error variance inaccurate since the
predicted forecast variance is based on the average variance instead of the variability
at the end of the series.

To illustrate heteroscedastic time series, the following statements re-create the sim-
ulated series Y. The variable Y has an error variance that changes from 1 to 4 in the
middle part of the series. The length of the series is also extended 120 observations.
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data a;
ul = 0; ull = 0;
do time = -10 to 120;

s = 1 + (time >= 60 & time < 90);
u = + 1.3 * ul - .5 * ull + s*rannor(12346);
y = 10 + .5 * time + u;
if time > 0 then output;
ull = ul; ul = u;
end;

run;

title "Heteroscedastic Autocorrelated Time Series";
proc gplot data=a;

symbol1 v=dot i=join;
symbol2 v=none i=r;
plot y * time = 1 y * time = 2 / overlay;

run;

The simulated series is plotted in Figure 8.10.

Figure 8.10. Heteroscedastic and Autocorrelated Series

To test for heteroscedasticity with PROC AUTOREG, specify the ARCHTEST op-
tion. The following statements regress Y on TIME and use the ARCHTEST option
to test for heteroscedastic OLS residuals. The DWPROB option is also used to test
for autocorrelation.
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proc autoreg data=a;
model y = time / nlag=2 archtest dwprob;
output out=r r=yresid;

run;

The PROC AUTOREG output is shown in Figure 8.11. The Q statistics test for
changes in variance across time using lag windows ranging from 1 through 12. (See
"Heteroscedasticity and Normality Tests" for details.) Thep-values for the test statis-
tics are given in parentheses. These tests strongly indicate heteroscedasticity, withp
< 0.0001 for all lag windows.

The Lagrange multiplier (LM) tests also indicate heteroscedasticity. These tests can
also help determine the order of the ARCH model appropriate for modeling the het-
eroscedasticity, assuming that the changing variance follows an autoregressive con-
ditional heteroscedasticity model.

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 690.266009 DFE 118
MSE 5.84971 Root MSE 2.41862
SBC 560.070468 AIC 554.495484
Regress R-Square 0.9814 Total R-Square 0.9814
Durbin-Watson 0.4060 Pr < DW <.0001
Pr > DW 1.0000

Q and LM Tests for ARCH Disturbances

Order Q Pr > Q LM Pr > LM

1 37.5445 <.0001 37.0072 <.0001
2 40.4245 <.0001 40.9189 <.0001
3 41.0753 <.0001 42.5032 <.0001
4 43.6893 <.0001 43.3822 <.0001
5 55.3846 <.0001 48.2511 <.0001
6 60.6617 <.0001 49.7799 <.0001
7 62.9655 <.0001 52.0126 <.0001
8 63.7202 <.0001 52.7083 <.0001
9 64.2329 <.0001 53.2393 <.0001

10 66.2778 <.0001 53.2407 <.0001
11 68.1923 <.0001 53.5924 <.0001
12 69.3725 <.0001 53.7559 <.0001

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 9.2217 0.4444 20.75 <.0001
time 1 0.5024 0.006374 78.83 <.0001

Figure 8.11. Heteroscedasticity Tests
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Heteroscedasticity and GARCH Models

There are several approaches to dealing with heteroscedasticity. If the error variance
at different times is known, weighted regression is a good method. If, as is usually
the case, the error variance is unknown and must be estimated from the data, you can
model the changing error variance.

The generalized autoregressive conditional heteroscedasticity(GARCH) model is
one approach to modeling time series with heteroscedastic errors. The GARCH re-
gression model with autoregressive errors is

yt = x0t� + �t

�t = �t � '1�t�1 � : : : � 'm�t�m

�t =
p
htet

ht = ! +

qX
i=1

�i�
2
t�i +

pX
j=1


jht�j

et � IN(0; 1)

This model combines themth-order autoregressive error model with the GARCH(p,q)
variance model. It is denoted as the AR(m)-GARCH(p,q) regression model.

The Lagrange multiplier (LM) tests shown in Figure 8.11 can help determine the
order of the ARCH model appropriate for the data. The tests are significant (p<.0001)
through order 12, which indicates that a very high-order ARCH model is needed to
model the heteroscedasticity.

The basic ARCH(q) model (p=0) is ashort memoryprocess in that only the most
recentq squared residuals are used to estimate the changing variance. The GARCH
model (p>0) allowslong memoryprocesses, which use all the past squared residuals
to estimate the current variance. The LM tests in Figure 8.11 suggest the use of the
GARCH model (p>0) instead of the ARCH model.

The GARCH(p,q) model is specified with the GARCH=(P=p,Q=q) option in the
MODEL statement. The basic ARCH(q) model is the same as the GARCH(0,q)
model and is specified with the GARCH=(Q=q) option.

The following statements fit an AR(2)-GARCH(1,1) model for the Y series regressed
on TIME. The GARCH=(P=1,Q=1) option specifies the GARCH(1,1) conditional
variance model. The NLAG=2 option specifies the AR(2) error process. Only
the maximum likelihood method is supported for GARCH models; therefore, the
METHOD= option is not needed. The CEV= option in the OUTPUT statement stores
the estimated conditional error variance at each time period in the variable VHAT in
an output data set named OUT.
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proc autoreg data=a;
model y = time / nlag=2 garch=(q=1,p=1) maxit=50;
output out=out cev=vhat;

run;

The results for the GARCH model are shown in Figure 8.12. (The preliminary esti-
mates are not shown.)

The AUTOREG Procedure

GARCH Estimates

SSE 218.860964 Observations 120
MSE 1.82384 Uncond Var 1.62996534
Log Likelihood -187.44013 Total R-Square 0.9941
SBC 408.392693 AIC 388.88025
Normality Test 0.0839 Pr > ChiSq 0.9589

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 8.9301 0.7235 12.34 <.0001
time 1 0.5075 0.0107 47.30 <.0001
AR1 1 -1.2301 0.1078 -11.41 <.0001
AR2 1 0.5023 0.1057 4.75 <.0001
ARCH0 1 0.0850 0.0757 1.12 0.2614
ARCH1 1 0.2103 0.0847 2.48 0.0130
GARCH1 1 0.7376 0.0960 7.68 <.0001

Figure 8.12. AR(2)-GARCH(1,1) Model

The normality test is not significant (p = 0.957), which is consistent with the hypoth-
esis that the residuals from the GARCH model,�t=

p
ht, are normally distributed.

The parameter estimates table includes rows for the GARCH parameters. ARCH0
represents the estimate for the parameter!, ARCH1 represents�1, and GARCH1
represents
1.

The following statements transform the estimated conditional error variance series
VHAT to the estimated standard deviation series SHAT. Then, they plot SHAT to-
gether with the true standard deviation S used to generate the simulated data.

data out;
set out;
shat = sqrt( vhat );

run;

title "Predicted and Actual Standard Deviations";
proc gplot data=out;

plot s*time=1 shat*time=2 / overlay;
symbol1 v=dot i=none;
symbol2 v=none i = join;

run;

The plot is shown in Figure 8.13.
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Figure 8.13. Estimated and Actual Error Standard Deviation Series

Note that in this example the form of heteroscedasticity used in generating the sim-
ulated series Y does not fit the GARCH model. The GARCH model assumescondi-
tional heteroscedasticity, with homoscedastic unconditional error variance. That is,
the GARCH model assumes that the changes in variance are a function of the real-
izations of preceding errors and that these changes represent temporary and random
departures from a constant unconditional variance. The data generating process used
to simulate series Y, contrary to the GARCH model, has exogenous unconditional
heteroscedasticity that is independent of past errors.

Nonetheless, as shown in Figure 8.13, the GARCH model does a reasonably good
job of approximating the error variance in this example, and some improvement in
the efficiency of the estimator of the regression parameters can be expected.

The GARCH model may perform better in cases where theory suggests that the data
generating process produces true autoregressive conditional heteroscedasticity. This
is the case in some economic theories of asset returns, and GARCH-type models are
often used for analysis of financial markets data.

Using the HETERO Statement with GARCH Models
The HETERO statement can be combined with the GARCH= option on the MODEL
statement to include input variables in the GARCH conditional variance model. For
example, the GARCH(1,1) variance model with two dummy input variables D1 and
D2 is

�t =
p
htet

ht = ! + �1�
2
t�1 + 
1ht�1 + �1D1 t + �2D2 t
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The following statements estimate this GARCH model:

proc autoreg data=one;
model y = x z / garch=(p=1,q=1);
hetero d1 d2;

run;

The parameters for the variables D1 and D2 can be constrained using the COEF=
option. For example, the constraints�1 = �2 = 1 are imposed by the following state-
ments:

proc autoreg data=one;
model y = x z / garch=(p=1,q=1);
hetero d1 d2 / coef=unit;

run;

Limitations of GARCH and Heteroscedasticity Specifications
When you specify both the GARCH= option and the HETERO statement, the
GARCH=(TYPE=EXP) option is not valid. The COVEST= option is not applica-
ble to the EGARCH model.

EGARCH, IGARCH, GARCH-M Models
The AUTOREG procedure supports several variations of the generalized conditional
heteroscedasticity model.

Using the TYPE= suboption of the GARCH= option, you can control the constraints
placed on the estimated GARCH parameters. You can specify unconstrained, non-
negativity constrained (default), stationarity constrained, or integration constrained.
The integration constraint produces the integrated GARCH or IGARCH model.

You can also use the TYPE= option to specify the exponential form of the GARCH
model, called the EGARCH model. The MEAN suboption of the GARCH= option
specifies the GARCH-in-mean or GARCH-M model.

The following statements illustrate the use of the TYPE= option to fit an AR(2)-
EGARCH(1,1) model to the series Y. (Output is not shown.)

proc autoreg data=a;
model y = time / nlag=2 garch=(p=1,q=1,type=exp);

run;

See the section "GARCH, IGARCH, EGARCH, and GARCH-M Models" later in
this chapter for details.
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Syntax

The AUTOREG procedure is controlled by the following statements:

PROC AUTOREG options ;
BY variables ;
MODEL dependent = regressors / options ;
HETERO variables / options ;
RESTRICT equation , : : : , equation ;
TEST equation , : : : , equation / option ;
OUTPUT OUT = SAS data set options ;

At least one MODEL statement must be specified. One OUTPUT statement can
follow each MODEL statement. One HETERO statement can follow each MODEL
statement.

Functional Summary

The statements and options used with the AUTOREG procedure are summarized in
the following table:

Description Statement Option

Data Set Options
specify the input data set AUTOREG DATA=
write parameter estimates to an output data set AUTOREG OUTEST=
include covariances in the OUTEST= data set AUTOREG COVOUT
write predictions, residuals, and confidence
limits to an output data set

OUTPUT OUT=

Declaring the Role of Variables
specify BY-group processing BY

Printing Control Options
request all printing options MODEL ALL
print transformed coefficients MODEL COEF
print correlation matrix of the estimates MODEL CORRB
print covariance matrix of the estimates MODEL COVB
print DW statistics up to order j MODEL DW=j
print marginal probability of the generalized
Durbin-Watson test statistics for large sample
sizes

MODEL DWPROB

print thep-values for the Durbin-Watson test
be computed using a linearized approximation
of the design matrix

MODEL LDW

print inverse of Toeplitz matrix MODEL GINV
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Description Statement Option

print the Godfrey LM serial correlation test MODEL GODFREY=
print details at each iteration step MODEL ITPRINT
print the Durbint statistic MODEL LAGDEP
print the Durbinh statistic MODEL LAGDEP=
print the log likelihood value of the regression
model

MODEL LOGLIKL

print the Jarque-Bera normality test MODEL NORMAL
print tests for ARCH process MODEL ARCHTEST
print the Lagrange multiplier test HETERO TEST=LM
print the Chow test MODEL CHOW=
print the predictive Chow test MODEL PCHOW=
suppress printed output MODEL NOPRINT
print partial autocorrelations MODEL PARTIAL
print Ramsey’s RESET test MODEL RESET
print tests for stationarity or unit roots MODEL STATIONARITY=(PHILLIPS=)
print tests of linear hypotheses TEST
specify the test statistics to use TEST TYPE=
prints the uncentered regressionR2 MODEL URSQ

Model Estimation Options
specify the order of autoregressive process MODEL NLAG=
center the dependent variable MODEL CENTER
suppress the intercept parameter MODEL NOINT
remove nonsignificant AR parameters MODEL BACKSTEP
specify significance level for BACKSTEP MODEL SLSTAY=
specify the convergence criterion MODEL CONVERGE=
specify the type of covariance matrix MODEL COVEST=
set the initial values of parameters used by the
iterative optimization algorithm

MODEL INITIAL=

specify iterative Yule-Walker method MODEL ITER
specify maximum number of iterations MODEL MAXITER=
specify the estimation method MODEL METHOD=
use only first sequence of nonmissing data MODEL NOMISS
specify the optimization technique MODEL OPTMETHOD=
imposes restrictions on the regression
estimates

RESTRICT

estimate and test heteroscedasticity models HETERO

GARCH Related Options
specify order of GARCH process MODEL GARCH=(Q=,P=)
specify type of GARCH model MODEL GARCH=(: : :,TYPE=)
specify various forms of the GARCH-M
model

MODEL GARCH=(: : :,MEAN=)

suppress GARCH intercept parameter MODEL GARCH=(: : :,NOINT)
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Description Statement Option

specify the trust region method MODEL GARCH=(: : :,TR)
estimate the GARCH model for the condi-
tional t-distribution

MODEL GARCH=(: : :) DIST=

estimates the start-up values for the condi-
tional variance equation

MODEL GARCH=(: : :,STARTUP=)

specify the functional form of the het-
eroscedasticity model

HETERO LINK=

specify that the heteroscedasticity model does
not include the unit term

HETERO NOCONST

impose constraints on the estimated parame-
ters the heteroscedasticity model

HETERO COEF=

impose constraints on the estimated standard
deviation of the heteroscedasticity model

HETERO STD=

output conditional error variance OUTPUT CEV=
output conditional prediction error variance OUTPUT CPEV=
specify the flexible conditional variance form
of the GARCH model

HETERO

Output Control Options
specify confidence limit size OUTPUT ALPHACLI=
specify confidence limit size for structural pre-
dicted values

OUTPUT ALPHACLM=

specify the significance level for the upper and
lower bounds of the CUSUM and CUSUMSQ
statistics

OUTPUT ALPHACSM=

specify the name of a variable to contain the
values of the Theil’s BLUS residuals

OUTPUT BLUS=

output the value of the error variance�2t OUTPUT CEV=
output transformed intercept variable OUTPUT CONSTANT=
specify the name of a variable to contain the
CUSUM statistics

OUTPUT CUSUM=

specify the name of a variable to contain the
CUSUMSQ statistics

OUTPUT CUSUMSQ=

specify the name of a variable to contain
the upper confidence bound for the CUSUM
statistic

OUTPUT CUSUMUB=

specify the name of a variable to contain
the lower confidence bound for the CUSUM
statistic

OUTPUT CUSUMLB=

specify the name of a variable to contain the
upper confidence bound for the CUSUMSQ
statistic

OUTPUT CUSUMSQUB=
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Description Statement Option

option specify the name of a variable to
contain the lower confidence bound for the
CUSUMSQ statistic

OUTPUT CUSUMSQLB=

output lower confidence limit OUTPUT LCL=
output lower confidence limit for structural
predicted values

OUTPUT LCLM=

output predicted values OUTPUT P=
output predicted values of structural part OUTPUT PM=
output residuals OUTPUT R=
output residuals from structural predictions OUTPUT RM=
specify the name of a variable to contain the
part of the predictive error variance (vt)

OUTPUT RECPEV=

specify the name of a variable to contain recur-
sive residuals

OUTPUT RECRES=

output transformed variables OUTPUT comp TRANSFORM=
output upper confidence limit OUTPUT UCL=
output upper confidence limit for structural
predicted values

OUTPUT UCLM=

PROC AUTOREG Statement

PROC AUTOREG options ;

The following options can be used in the PROC AUTOREG statement:

DATA= SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC AU-
TOREG uses the most recently created SAS data set.

OUTEST= SAS-data-set
writes the parameter estimates to an output data set. See "OUTEST= Data Set" later
in this chapter for information on the contents of this data set.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set.
This option is valid only if the OUTEST= option is specified.

In addition, any of the following MODEL statement options can be specified in the
PROC AUTOREG statement, which is equivalent to specifying the option for ev-
ery MODEL statement: ALL, ARCHTEST, BACKSTEP, CENTER, COEF, CON-
VERGE=, CORRB, COVB, DW=, DWPROB, GINV, ITER, ITPRINT, MAXITER=,
METHOD=, NOINT, NOMISS, NOPRINT, and PARTIAL.
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BY Statement

BY variables;

A BY statement can be used with PROC AUTOREG to obtain separate analyses on
observations in groups defined by the BY variables.

MODEL Statement

MODEL dependent = regressors / options ;

The MODEL statement specifies the dependent variable and independent regressor
variables for the regression model. If no independent variables are specified in the
MODEL statement, only the mean is fitted. (This is a way to obtain autocorrelations
of a series.)

Models can be given labels of up to eight characters. Model labels are used in the
printed output to identify the results for different models. The model label is specified
as follows:

label : MODEL : : : ;

The following options can be used in the MODEL statement after a slash (/).

CENTER
centers the dependent variable by subtracting its mean and suppresses the intercept
parameter from the model. This option is only valid when the model does not have
regressors (explanatory variables).

NOINT
suppresses the intercept parameter.

Autoregressive Error Options
NLAG= number
NLAG= ( number-list )

specifies the order of the autoregressive error process or the subset of autoregressive
error lags to be fitted. Note that NLAG=3 is the same as NLAG=(1 2 3). If the
NLAG= option is not specified, PROC AUTOREG does not fit an autoregressive
model.

GARCH Estimation Options
GARCH= ( option-list )

Specifies a GARCH-type conditional heteroscedasticity model. The GARCH= option
in the MODEL statement specifies the family of ARCH models to be estimated. The
GARCH(1,1) regression model is specified in the following statement:

model y = x1 x2 / garch=(q=1,p=1);
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When you want to estimate the subset of ARCH terms, for example, ARCH(1 3), you
can write the SAS statement as follows:

model y = x1 x2 / garch=(q=(1 3));

With the TYPE= option, you can specify various GARCH models. The
IGARCH(2,1) model without trend in variance is estimated as follows:

model y = / garch=(q=2,p=1,type=integ,noint);

The following options can be used in the GARCH=( ) option. The options are listed
within parentheses and separated by commas.

Q= number
Q= (number-list)

specifies the order of the process or the subset of ARCH terms to be fitted.

P= number
P= (number-list)

specifies the order of the process or the subset of GARCH terms to be fitted. If only
the P= option is specified, Q=1 is assumed.

TYPE= value
specifies the type of GARCH model. The values of the TYPE= option are

EXP specifies the exponential GARCH or EGARCH model.

INTEGRATED specifies the integrated GARCH or IGARCH model.

NELSON | NELSONCAO specifies the Nelson-Cao inequality constraints.

NONNEG specifies the GARCH model with nonnegativity constraints.

STATIONARY constrains the sum of GARCH coefficients to be less than 1.

The default is TYPE=NELSON.

MEAN= value
specifies the functional form of the GARCH-M model. The values of the MEAN=
option are

LINEAR specifies the linear function.

yt = x
0

t� + �ht + �t

LOG specifies the log function.

yt = x
0

t� + �lnht + �t

SQRT specifies the square root function.

yt = x
0

t� + �
p
ht + �t
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DIST= value
specifies the distribution assumed for the error term. The values of the DIST= option
are

T specifies Student’st distribution.

NORMAL specifies the standard normal distribution. The default is
DIST=NORMAL.

NOINT
suppresses the intercept parameter in the conditional variance model. This option is
valid only with the TYPE=INTEG option.

STARTUP= MSE | ESTIMATE
STARTUP=ESTIMATE requests that the positive constantc for the start-up values
of the GARCH conditional error variance process be estimated. By default or if
STARTUP=MSE is specified, the value of the mean squared error is used as the de-
fault constant.

TR
uses the trust region method for GARCH estimation. This algorithm is numerically
stable, though computation is expensive. The double quasi-Newton method is the
default.

Printing Options
ALL

requests all printing options.

ARCHTEST
requests the Q and LM statistics testing for the absence of ARCH effects.

CHOW= ( obs1 ... obsn )
The CHOW= option computes Chow tests to evaluate the stability of the regression
coefficient. The Chow test is also called the analysis-of-variance test.

COEF
prints the transformation coefficients for the firstp observations. These coefficients
are formed from a scalar multiplied by the inverse of the Cholesky root of the Toeplitz
matrix of autocovariances.

CORRB
prints the estimated correlations of the parameter estimates.

COVB
prints the estimated covariances of the parameter estimates.

COVEST= OP | HESSIAN | QML
The COVEST= option specifies the type of covariance matrix for the GARCH or
heteroscedasticity model. When COVEST=OP is specified, the outer product ma-
trix is used to compute the covariance matrix of the parameter estimates. The
COVEST=HESSIAN option produces the covariance matrix using the Hessian ma-
trix. The quasi-maximum likelihood estimates are computed with COVEST=QML.
The default is COVEST=OP.
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DW= n
prints Durbin-Watson statistics up to the ordern. The default is DW=1. When the
LAGDEP option is specified, the Durbin-Watson statistic is not printed unless the
DW= option is explicitly specified.

DWPROB
The DWPROB option now producesp-values for the generalized Durbin-Watson test
statistics for large sample sizes. Previously, the Durbin-Watson probabilities were
calculated only for small sample sizes. The new method of calculating Durbin-
Watson probabilities is based on the algorithm of Ansley, Kohn, and Shively (1992).

GINV
prints the inverse of the Toeplitz matrix of autocovariances for the Yule-Walker solu-
tion. See "Computational Methods" later in this chapter for details.

GODFREY
GODFREY= r

The GODFREY option produces Godfrey’s general Lagrange multiplier test against
ARMA errors.

ITPRINT
prints the objective function and parameter estimates at each iteration. The objective
function is the full log likelihood function for the maximum likelihood method, while
the error sum of squares is produced as the objective function of unconditional least
squares. For the ML method, the ITPRINT option prints the value of the full log
likelihood function, not the concentrated likelihood.

LAGDEP
LAGDV

prints the Durbint statistic, which is used to detect residual autocorrelation in the
presence of lagged dependent variables. See "Generalized Durbin-Watson Tests" later
in this chapter for details.

LAGDEP= name
LAGDV= name

prints the Durbinh statistic for testing the presence of first-order autocorrelation
when regressors contain the lagged dependent variable whose name is specified as
LAGDEP=name. If the Durbin h statistic cannot be computed, the asymptotically
equivalentt statistic is printed instead. See "Generalized Durbin-Watson Tests" for
details.

When the regression model contains several lags of the dependent variable, spec-
ify the lagged dependent variable for the smallest lag in the LAGDEP= option, for
example,

model y = x1 x2 ylag2 ylag3 / lagdep=ylag2;

LOGLIKL
The LOGLIKL option prints the log likelihood value of the regression model, assum-
ing normally distributed errors.
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NOPRINT
suppresses all printed output.

NORMAL
The NORMAL option specifies the Jarque-Bera’s normality test statistic for regres-
sion residuals.

PARTIAL
prints partial autocorrelations.

PCHOW= ( obs1 ... obsn )
The PCHOW= option computes the predictive Chow test. The form of the PCHOW=
option is the same as the CHOW= option; see the discussion of the CHOW= option
earlier in this chapter.

RESET
The RESET option produces Ramsey’s RESET test statistics. The RESET option
tests the null model

yt = xt� + ut

against the alternative

yt = xt� +

pX
j=2

�j ŷ
j
t + ut

where ŷt is the predicted value from the OLS estimation of the null model. The
RESET option produces three RESET test statistics forp = 2, 3, and 4.

STATIONARITY= ( PHILLIPS )
STATIONARITY= ( PHILLIPS=( value ... value ) )

The STATIONARITY= option specifies tests of stationarity or unit roots. The STA-
TIONARITY= option provides Phillips-Perron tests.

The PHILLIPS or PHILLIPS= suboption of the STATIONARITY= option produces
the Phillips-Perron unit root test when there are no regressors in the MODEL state-
ment. When the model includes regressors, the PHILLIPS option produces the
Phillips-Ouliaris cointegration test. The PHILLIPS option can be abbreviated as PP.

The PHILLIPS option performs the Phillips-Perron test for three null hypothesis
cases: zero mean, single mean, and deterministic trend. For each case, the PHILLIPS
option computes two test statistics, Z(�̂) andZ(t�̂), and reports theirp-values. These
test statistics have the same limiting distributions as the corresponding Dickey-Fuller
tests.

The three types of the Phillips-Perron unit root test reported by the PHILLIPS option
are as follows.
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Zero Mean computes the Phillips-Perron test statistic based on the zero mean
autoregressive model

yt = �yt�1 + ut

Single Mean computes the Phillips-Perron test statistic based on the autoregres-
sive model with a constant term

yt = �+ �yt�1 + ut

Trend computes the Phillips-Perron test statistic based on the autoregres-
sive model with constant and time trend terms

yt = �+ �yt�1 + �t+ ut

You can specify several truncation pointsl for weighted variance estimators using the
PHILLIPS=(l1: : :ln) specification.

URSQ
The URSQ option prints the uncentered regressionR

2. The uncentered regressionR2

is useful to compute Lagrange multiplier test statistics, since most LM test statistics
are computed asT*URSQ, whereT is the number of observations used in estimation.

Stepwise Selection Options
BACKSTEP

removes insignificant autoregressive parameters. The parameters are removed in or-
der of least significance. This backward elimination is done only once on the Yule-
Walker estimates computed after the initial ordinary least-squares estimation. The
BACKSTEP option can be used with all estimation methods since the initial parame-
ter values for other estimation methods are estimated using the Yule-Walker method.

SLSTAY= value
specifies the significance level criterion to be used by the BACKSTEP option. The
default is SLSTAY=.05.

Estimation Control Options
CONVERGE= value

specifies the convergence criterion. If the maximum absolute value of the change in
the autoregressive parameter estimates between iterations is less than this amount,
then convergence is assumed. The default is CONVERGE=.001.

INITIAL= ( initial-values )
START= ( initial-values )

The INITIAL= option specifies initial values for some or all of the parameter esti-
mates. The values specified are assigned to model parameters in the same order as
the parameter estimates are printed in the AUTOREG procedure output. The order
of values in the INITIAL= or START= option is: the intercept, the regressor coef-
ficients, the autoregressive parameters, the ARCH parameters, the GARCH param-
eters, the inverted degrees of freedom for Student’st distribution, the start-up value
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for conditional variance, and the heteroscedasticity model parameters� specified by
the HETERO statement.

The following is an example of specifying initial values for an AR(1)-GARCH(1,1)
model with regressors X1 and X2:

model y = w x / nlag=1 garch=(p=1,q=1)
initial=(1 1 1 .5 .8 .1 .6);

The model specified by this MODEL statement is

yt = �0 + �1wt + �2xt + �t

�t = �t � �1�t�1

�t =
p
htet

ht = ! + �1�
2
t�1 + 
1ht�1

�t N(0; �
2
t )

The initial values for the regression parameters, INTERCEP (�0), X1 (�1), and X2
(�2), are specified as 1. The initial value of the AR(1) coefficient (�1) is specified as
0.5. The initial value of ARCH0 (!) is 0.8, the initial value of ARCH1 (�1) is 0.1,
and the initial value of GARCH1 (
1) is 0.6.

When you use the RESTRICT statement, the initial values specified by the INITIAL=
option should satisfy the restrictions specified for the parameter estimates. If they do
not, the initial values you specify are adjusted to satisfy the restrictions.

LDW
The LDW option specifies thatp-values for the Durbin-Watson test be computed
using a linearized approximation of the design matrix when the model is nonlinear
due to the presence of an autoregressive error process. (The Durbin-Watson tests of
the OLS linear regression model residuals are not affected by the LDW option.) Refer
to White (1992) for Durbin-Watson testing of nonlinear models.

MAXITER= number
sets the maximum number of iterations allowed. The default is MAXITER=50.

METHOD= value
requests the type of estimates to be computed. The values of the METHOD= option
are

METHOD=ML specifies maximum likelihood estimates

METHOD=ULS specifies unconditional least-squares estimates

METHOD=YW specifies Yule-Walker estimates

METHOD=ITYW specifies iterative Yule-Walker estimates
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If the GARCH= or LAGDEP option is specified, the default is METHOD=ML. Oth-
erwise, the default is METHOD=YW.

NOMISS
requests the estimation to the first contiguous sequence of data with no missing val-
ues. Otherwise, all complete observations are used.

OPTMETHOD= QN | TR
The OPTMETHOD= option specifies the optimization technique when the GARCH
or heteroscedasticity model is estimated. The OPTMETHOD=QN option specifies
the quasi-Newton method. The OPTMETHOD=TR option specifies the trust region
method. The default is OPTMETHOD=QN.

HETERO Statement

The HETERO statement specifies variables that are related to the heteroscedasticity
of the residuals and the way these variables are used to model the error variance of
the regression.

The syntax of the HETERO statement is

HETERO variables / options ;

The heteroscedastic regression model supported by the HETERO statement is

yt = xt� + �t

�t N(0; �
2
t )

�2t = �2ht

ht = l(z
0

t�)

The HETERO statement specifies a model for the conditional varianceht. The vector
zt is composed of the variables listed on the HETERO statement,� is a parameter
vector, andl(�) is a link function that depends on the value of the LINK= option.

The keyword XBETA can be used in thevariableslist to refer to the model predicted
valuex

0

t�.

The errors�t are assumed to be uncorrelated– the heteroscedasticity models specified
by the HETERO statement cannot be combined with an autoregressive model for the
errors. Thus, the HETERO statement cannot be used if the NLAG= option is specified
in the MODEL statement.

You can specify the following options in the HETERO statement:
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LINK= value
The LINK= option specifies the functional form of the heteroscedasticity model. If
you want to estimate the GARCH model whose conditional error variance contains
exogenous variables, you do not need to specify the LINK= option. The default is
LINK=EXP. Values of the LINK= option are

EXP specifies the exponential link function. The following model is
estimated when you specify LINK=EXP:

ht = exp(z
0

t�)

SQUARE specifies the square link function. The following model is esti-
mated when you specify LINK=SQUARE:

ht = (1 + z
0

t�)
2

LINEAR specifies the linear function; that is, the HETERO statement vari-
ables predict the error variance linearly. The following model is
estimated when you specify LINK=LINEAR:

ht = (1 + z
0

t�)

COEF= value
The COEF= option imposes constraints on the estimated parameters� of the het-
eroscedasticity model. The values of the COEF= option are

NONNEG specifies that the estimated heteroscedasticity parameters� must be
nonnegative. When the HETERO statement is used in conjunction
with the GARCH= option, the default is COEF=NONNEG.

UNIT constrains all heteroscedasticity parameters� to equal 1.

ZERO constrains all heteroscedasticity parameters� to equal 0.

UNREST specifies unrestricted estimation of�. When the GARCH= option
is not specified, the default is COEF=UNREST.

STD= value
The STD= option imposes constraints on the estimated standard deviation� of the
heteroscedasticity model. The values of the STD= option are

NONNEG specifies that the estimated standard deviation parameter� must be
nonnegative.

UNIT constrains the standard deviation parameter� to equal 1.

UNREST specifies unrestricted estimation of�. This is the default.
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TEST= LM
The TEST=LM option produces a Lagrange multiplier test for heteroscedasticity. The
null hypothesis is homoscedasticity; the alternative hypothesis is heteroscedasticity
of the form specified by the HETERO statement. The power of the test depends on
the variables specified in the HETERO statement.

The test may give different results depending on the functional form specified by
the LINK= option. However, in many cases the test does not depend on the LINK=
option. The test is invariant to the form ofht whenht(0) = 1 andh

0

t(0)ne0. (The
conditionht(0) = 1 is satisfied except when the NOCONST option is specified with
LINK=SQUARE or LINK=LINEAR.)

NOCONST
The NOCONST option specifies that the heteroscedasticity model does not include
the unit term for the LINK=SQUARE and LINK=LINEAR options. For example,
the following model is estimated when you specify the options LINK=SQUARE NO-
CONST:

ht = (z
0

t�)
2

RESTRICT Statement

The RESTRICT statement provides constrained estimation.

RESTRICT equation , ... , equation ;

The RESTRICT statement places restrictions on the parameter estimates for covari-
ates in the preceding MODEL statement. Any number of RESTRICT statements can
follow a MODEL statement. Several restrictions can be specified in a single RE-
STRICT statement by separating the individual restrictions with commas.

Each restriction is written as a linear equation composed of constants and parameter
names. Refer to model parameters by the name of the corresponding regressor vari-
able. Each name used in the equation must be a regressor in the preceding MODEL
statement. Use the keyword INTERCEPT to refer to the intercept parameter in the
model.

The following is an example of a RESTRICT statement:

model y = a b c d;
restrict a+b=0, 2*d-c=0;

When restricting a linear combination of parameters to be 0, you can omit the equal
sign. For example, the following RESTRICT statement is equivalent to the preceding
example:

restrict a+b, 2*d-c;
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The following RESTRICT statement constrains the parameters estimates for three
regressors (X1, X2, and X3) to be equal:

restrict x1 = x2, x2 = x3;

The preceding restriction can be abbreviated as follows.

restrict x1 = x2 = x3;

Only simple linear combinations of parameters can be specified in RESTRICT state-
ment expressions; complex expressions involving parentheses, division, functions, or
complex products are not allowed.

TEST Statement

The AUTOREG procedure now supports a TEST statement for linear hypothesis
tests.

TEST equation , ... , equation / option ;

The TEST statement tests hypotheses about the covariates in the model estimated by
the preceding MODEL statement. Each equation specifies a linear hypothesis to be
tested. If more than one equation is specified, the equations are separated by commas.

Each test is written as a linear equation composed of constants and parameter names.
Refer to parameters by the name of the corresponding regressor variable. Each name
used in the equation must be a regressor in the preceding MODEL statement. Use the
keyword INTERCEPT to refer to the intercept parameter in the model.

You can specify the following option in the TEST statement:

TYPE= value
The TYPE= option specifies the test statistics to use,F or Wald. TYPE=F produces
anF-test. TYPE=WALD produces a Wald test. The default is TYPE=F.

The following example of a TEST statement tests the hypothesis that the coefficients
of two regressors A and B are equal:

model y = a b c d;
test a = b;

To test separate null hypotheses, use separate TEST statements. To test a joint hy-
pothesis, specify the component hypotheses on the same TEST statement, separated
by commas.

For example, consider the following linear model:

yt = �0 + �1x1t + �2x2t + �t
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The following statements test the two hypothesesH0 : �0 = 1 andH0 : �1 + �2 = 0:

model y = x1 x2;
test intercept = 1;
test x1 + x2 = 0;

The following statements test the joint hypothesisH0 : �0 = 1 and�1 + �2 = 0:

model y = x1 x2;
test intercept = 1, x1 + x2 = 0;

OUTPUT Statement

OUTPUT OUT= SAS-data-set keyword = options : : :;

The OUTPUT statement creates an output SAS data set as specified by the following
options:

OUT= SAS-data-set
names the output SAS data set containing the predicted and transformed values. If
the OUT= option is not specified, the new data set is named according to the DATAn
convention.

ALPHACLI= number
sets the confidence limit size for the estimates of future values of the response time
series. The ALPHACLI= value must be between 0 and 1. The resulting confidence
interval has 1-numberconfidence. The default is ALPHACLI=.05, corresponding to
a 95% confidence interval.

ALPHACLM= number
sets the confidence limit size for the estimates of the structural or regression part of
the model. The ALPHACLI= value must be between 0 and 1. The resulting con-
fidence interval has 1-numberconfidence. The default is ALPHACLM=.05, corre-
sponding to a 95% confidence interval.

ALPHACSM= .01 | .05 | .10
The ALPHACSM= option specifies the significance level for the upper and lower
bounds of the CUSUM and CUSUMSQ statistics output by the CUSUMLB=,
CUSUMUB=, CUSUMSQLB=, and CUSUMSQUB= options. The significance level
specified by the ALPHACSM= option can be .01, .05, or .10. Other values are not
supported.

The following options are of the formKEYWORD=name, whereKEYWORDspecifies
the statistic to include in the output data set andnamegives the name of the variable
in the OUT= data set containing the statistic.

BLUS= variable
The BLUS= option specifies the name of a variable to contain the values of the Theil’s
BLUS residuals. Refer to Theil (1971) for more information on BLUS residuals.
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CEV= variable
HT= variable

The CEV= option writes to the output data set the value of the error variance�2t from
the heteroscedasticity model specified by the HETERO statement or the value of the
conditional error varianceht by the GARCH= option in the MODEL statement.

CPEV= variable
writes the conditional prediction error variance to the output data set. The value of
conditional prediction error variance is equal to that of the conditional error variance
when there are no autoregressive parameters. For the exponential GARCH model,
conditional prediction error variance cannot be calculated. See "Predicted Values"
later in this chapter for details.

CONSTANT= variable
writes the transformed intercept to the output data set. The details of the transforma-
tion are described in "Computational Methods" later in this chapter.

CUSUM= variable
The CUSUM= option specifies the name of a variable to contain the CUSUM statis-
tics.

CUSUMSQ= variable
The CUSUMSQ= option specifies the name of a variable to contain the CUSUMSQ
statistics.

CUSUMUB= variable
The CUSUMUB= option specifies the name of a variable to contain the upper confi-
dence bound for the CUSUM statistic.

CUSUMLB= variable
The CUSUMLB= option specifies the name of a variable to contain the lower confi-
dence bound for the CUSUM statistic.

CUSUMSQUB= variable
The CUSUMSQUB= option specifies the name of a variable to contain the upper
confidence bound for the CUSUMSQ statistic.

CUSUMSQLB= variable
The CUSUMSQLB= option specifies the name of a variable to contain the lower
confidence bound for the CUSUMSQ statistic.

LCL= name
writes the lower confidence limit for the predicted value (specified in the PRE-
DICTED= option) to the output data set. The size of the confidence interval is set by
the ALPHACLI= option. When a GARCH model is estimated, the lower confidence
limit is calculated assuming that the disturbances have homoscedastic conditional
variance. See "Predicted Values" later in this chapter for details.

LCLM= name
writes the lower confidence limit for the structural predicted value (specified in the
PREDICTEDM= option) to the output data set under the name given. The size of the
confidence interval is set by the ALPHACLM= option.
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PREDICTED= name
P= name

writes the predicted values to the output data set. These values are formed from both
the structural and autoregressive parts of the model. See "Predicted Values" later in
this chapter for details.

PREDICTEDM= name
PM= name

writes the structural predicted values to the output data set. These values are formed
from only the structural part of the model. See "Predicted Values" later in this chapter
for details.

RECPEV= variable
The RECPEV= option specifies the name of a variable to contain the part of the
predictive error variance (vt) that is used to compute the recursive residuals.

RECRES= variable
The RECRES= option specifies the name of a variable to contain recursive residuals.
The recursive residuals are used to compute the CUSUM and CUSUMSQ statistics.

RESIDUAL= name
R= name

writes the residuals from the predicted values based on both the structural and time
series parts of the model to the output data set.

RESIDUALM= name
RM= name

writes the residuals from the structural prediction to the output data set.

TRANSFORM= variables
transforms the specified variables from the input data set by the autoregressive model
and writes the transformed variables to the output data set. The details of the transfor-
mation are described in "Computational Methods" later in this chapter. If you need
to reproduce the data suitable for reestimation, you must also transform an intercept
variable. To do this, transform a variable that is all 1s or use the CONSTANT= option.

UCL= name
writes the upper confidence limit for the predicted value (specified in the PRE-
DICTED= option) to the output data set. The size of the confidence interval is set
by the ALPHACLI= option. When the GARCH model is estimated, the upper con-
fidence limit is calculated assuming that the disturbances have homoscedastic condi-
tional variance. See "Predicted Values" later in this chapter for details.

UCLM= name
writes the upper confidence limit for the structural predicted value (specified in the
PREDICTEDM= option) to the output data set. The size of the confidence interval is
set by the ALPHACLM= option.
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Details

Missing Values

PROC AUTOREG skips any missing values at the beginning of the data set. If the
NOMISS option is specified, the first contiguous set of data with no missing values is
used; otherwise, all data with nonmissing values for the independent and dependent
variables are used. Note, however, that the observations containing missing values
are still needed to maintain the correct spacing in the time series. PROC AUTOREG
can generate predicted values when the dependent variable is missing.

Autoregressive Error Model

The regression model with autocorrelated disturbances is as follows:

yt = x0t� + �t

�t = �t � '1�t�1 � : : : � 'm�t�m

�t N(0; �
2)

In these equations,yt are the dependent values,xt is a column vector of regressor
variables,� is a column vector of structural parameters, and�t is normally and in-
dependently distributed with a mean of 0 and a variance of�2. Note that in this
parameterization, the signs of the autoregressive parameters are reversed from the
parameterization documented in most of the literature.

PROC AUTOREG offers four estimation methods for the autoregressive error model.
The default method, Yule-Walker (YW) estimation, is the fastest computationally.
The Yule-Walker method used by PROC AUTOREG is described in Gallant and
Goebel (1976). Harvey (1981) calls this method thetwo-step full transform method.
The other methods are iterated YW, unconditional least squares (ULS), and maxi-
mum likelihood (ML). The ULS method is also referred to as nonlinear least squares
(NLS) or exact least squares (ELS).

You can use all of the methods with data containing missing values, but you should
use ML estimation if the missing values are plentiful. See the section "Alternative
Autocorrelation Correction Methods" later in this chapter for further discussion of
the advantages of different methods.

The Yule-Walker Method
Let' represent the vector of autoregressive parameters

' = ('1; '2; : : :; 'm)
0

and let the variance matrix of the error vector� = (�1; : : :; �N )
0 be�

E(�� 0) = � = �2V
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If the vector of autoregressive parameters' is known, the matrixV can be computed
from the autoregressive parameters.� is then�2V. Given�, the efficient estimates
of regression parameters� can be computed using generalized least squares (GLS).
The GLS estimates then yield the unbiased estimate of the variance�2,

The Yule-Walker method alternates estimation of� using generalized least squares
with estimation of' using the Yule-Walker equations applied to the sample autocor-
relation function. The YW method starts by forming the OLS estimate of�. Next,'
is estimated from the sample autocorrelation function of the OLS residuals using the
Yule-Walker equations. ThenV is estimated from the estimate of', and� is esti-
mated fromV and the OLS estimate of�2. The autocorrelation corrected estimates of
the regression parameters� are then computed by GLS using the estimated� matrix.
These are the Yule-Walker estimates.

If the ITER option is specified, the Yule-Walker residuals are used to form a new
sample autocorrelation function, the new autocorrelation function is used to form
a new estimate of' andV, and the GLS estimates are recomputed using the new
variance matrix. This alternation of estimates continues until either the maximum
change in theb' estimate between iterations is less than the value specified by the
CONVERGE= option or the maximum number of allowed iterations is reached. This
produces the Iterated Yule-Walker estimates. Iteration of the estimates may not yield
much improvement.

The Yule-Walker equations, solved to obtainb' and a preliminary estimate of�2, are

R'̂ = �r

Herer = (r1; : : :; rm)
0, whereri is the lagi sample autocorrelation. The matrixR is

the Toeplitz matrix whosei,jth element isrji�jj. If you specify a subset model, then
only the rows and columns ofR andr corresponding to the subset of lags specified
are used.

If the BACKSTEP option is specified, for purposes of significance testing, the matrix
[R r] is treated as a sum-of-squares-and-crossproducts matrix arising from a simple
regression withN � k observations, wherek is the number of estimated parameters.

The Unconditional Least Squares and Maximum Likelihood Methods
Define the transformed error,e, as

e = L�1n

wheren = y �X�.

The unconditional sum of squares for the model, S, is

S = n0V�1n = e0e

The ULS estimates are computed by minimizingS with respect to the parameters�
and'i.
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The full log likelihood function for the autoregressive error model is

l = �N

2
ln(2�)� N

2
ln(�2)� 1

2
ln(jVj)� S

2�2

wherejVj denotes determinant ofV. For the ML method, the likelihood function is
maximized by minimizing an equivalent sum-of-squares function.

Maximizing l with respect to�2 (and concentrating�2 out of the likelihood) and
dropping the constant term�N

2 ln(2�) + 1� ln(N) produces the concentrated log
likelihood function

lc = �N

2
ln(SjVj1=N )

Rewriting the variable term within the logarithm gives

Sml = jLj1=Ne0ejLj1=N

PROC AUTOREG computes the ML estimates by minimizing the objective function
Sml = jLj1=Ne0ejLj1=N .

The maximum likelihood estimates may not exist for some data sets (Anderson and
Mentz 1980). This is the case for very regular data sets, such as an exact linear trend.

Computational Methods
Sample Autocorrelation Function

The sample autocorrelation function is computed from the structural residuals or
noisent = yt � x0tb, whereb is the current estimate of�. The sample autocorre-
lation function is the sum of all available lagged products ofnt of orderj divided by
`+ j, where` is the number of such products.

If there are no missing values, then`+ j = N , the number of observations. In this
case, the Toeplitz matrix of autocorrelations,R, is at least positive semidefinite. If
there are missing values, these autocorrelation estimates ofr can yield anR matrix
that is not positive semidefinite. If such estimates occur, a warning message is printed,
and the estimates are tapered by exponentially declining weights untilR is positive
definite.

Data Transformation and the Kalman Filter
The calculation ofV from ' for the general AR(m) model is complicated, and the
size ofV depends on the number of observations. Instead of actually calculatingV
and performing GLS in the usual way, in practice a Kalman filter algorithm is used
to transform the data and compute the GLS results through a recursive process.

In all of the estimation methods, the original data are transformed by the inverse of
the Cholesky root ofV. Let L denote the Cholesky root ofV, that isV = LL0 with L
lower triangular. For an AR(m) model,L�1 is a band diagonal matrix withmanoma-
lous rows at the beginning and the autoregressive parameters along the remaining
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rows. Thus, if there are no missing values, after the firstm-1 observations the data
are transformed as

zt = xt + '̂1xt�1 + : : :+ '̂mxt�m

The transformation is carried out using a Kalman filter, and the lower triangular ma-
trix L is never directly computed. The Kalman filter algorithm, as it applies here, is
described in Harvey and Phillips (1979) and Jones (1980). AlthoughL is not com-
puted explicitly, for ease of presentation the remaining discussion is in terms ofL . If
there are missing values, then the submatrix ofL consisting of the rows and columns
with nonmissing values is used to generate the transformations.

Gauss-Newton Algorithms
The ULS and ML estimates employ a Gauss-Newton algorithm to minimize the sum
of squares and maximize the log likelihood, respectively. The relevant optimization
is performed simultaneously for both the regression and AR parameters. The OLS
estimates of� and the Yule-Walker estimates of' are used as starting values for these
methods.

The Gauss-Newton algorithm requires the derivatives ofeor jLj1=Ne with respect to
the parameters. The derivatives with respect to the parameter vector� are

@e

@�0
= �L�1X

@jLj1=Ne
@�0

= �jLj1=NL�1X

These derivatives are computed by the transformation described previously. The
derivatives with respect to' are computed by differentiating the Kalman filter re-
currences and the equations for the initial conditions.

Variance Estimates and Standard Errors
For the Yule-Walker method, the estimate of the error variance,s2, is the error sum
of squares from the last application of GLS, divided by the error degrees of freedom
(number of observationsN minus the number of free parameters).

The variance-covariance matrix for the components ofb is taken ass2(X0V�1X)�1

for the Yule-Walker method. For the ULS and ML methods, the variance-covariance
matrix of the parameter estimates is computed ass2(J0J)�1. For the ULS method,J
is the matrix of derivatives ofe with respect to the parameters. For the ML method,
J is the matrix of derivatives ofjLj1=Ne divided by jLj1=N . The estimate of the
variance-covariance matrix ofb assuming that' is known iss2(X0V�1X)�1.

Park and Mitchell (1980) investigated the small sample performance of the standard
error estimates obtained from some of these methods. In particular, simulating an
AR(1) model for the noise term, they found that the standard errors calculated using
GLS with an estimated autoregressive parameter underestimated the true standard er-
rors. These estimates of standard errors are the ones calculated by PROC AUTOREG
with the Yule-Walker method.
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The estimates of the standard errors calculated with the ULS or ML methods take
into account the joint estimation of the AR and the regression parameters and may
give more accurate standard-error values than the YW method. At the same values of
the autoregressive parameters, the ULS and ML standard errors will always be larger
than those computed from Yule-Walker. However, simulations of the models used by
Park and Mitchell suggest that the ULS and ML standard error estimates can also be
underestimates. Caution is advised, especially when the estimated autocorrelation is
high and the sample size is small.

High autocorrelation in the residuals is a symptom of lack of fit. An autoregressive
error model should not be used as a nostrum for models that simply do not fit. It is
often the case that time series variables tend to move as a random walk. This means
that an AR(1) process with a parameter near one absorbs a great deal of the variation.
See Example 8.3 later in this chapter, which fits a linear trend to a sine wave.

For ULS or ML estimation, the joint variance-covariance matrix of all the regres-
sion and autoregression parameters is computed. For the Yule-Walker method, the
variance-covariance matrix is computed only for the regression parameters.

Lagged Dependent Variables
The Yule-Walker estimation method is not directly appropriate for estimating models
that include lagged dependent variables among the regressors. Therefore, the max-
imum likelihood method is the default when the LAGDEP or LAGDEP= option is
specified in the MODEL statement. However, when lagged dependent variables are
used, the maximum likelihood estimator is not exact maximum likelihood but is con-
ditional on the first few values of the dependent variable.

Alternative Autocorrelation Correction Methods

Autocorrelation correction in regression analysis has a long history, and various ap-
proaches have been suggested. Moreover, the same method may be referred to by
different names.

Pioneering work in the field was done by Cochrane and Orcutt (1949). TheCochrane-
Orcutt methodrefers to a more primitive version of the Yule-Walker method that
drops the first observation. The Cochrane-Orcutt method is like the Yule-Walker
method for first-order autoregression, except that the Yule-Walker method retains
information from the first observation. The iterative Cochrane-Orcutt method is also
in use.

The Yule-Walker method used by PROC AUTOREG is also known by other names.
Harvey (1981) refers to the Yule-Walker method as thetwo-step full transform
method. The Yule-Walker method can be considered as generalized least squares us-
ing the OLS residuals to estimate the covariances across observations, and Judge et al.
(1985) use the termestimated generalized least squares(EGLS) for this method. For
a first-order AR process, the Yule-Walker estimates are often termedPrais-Winsten
estimates(Prais and Winsten 1954). There are variations to these methods that use
different estimators of the autocorrelations or the autoregressive parameters.
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The unconditional least squares (ULS) method, which minimizes the error sum of
squares for all observations, is referred to as the nonlinear least squares (NLS) method
by Spitzer (1979).

The Hildreth-Lu method (Hildreth and Lu 1960) uses nonlinear least squares to
jointly estimate the parameters with an AR(1) model, but it omits the first trans-
formed residual from the sum of squares. Thus, the Hildreth-Lu method is a more
primitive version of the ULS method supported by PROC AUTOREG in the same
way Cochrane-Orcutt is a more primitive version of Yule-Walker.

The maximum likelihood method is also widely cited in the literature. Although the
maximum likelihood method is well defined, some early literature refers to estimators
that are called maximum likelihood but are not full unconditional maximum likeli-
hood estimates. The AUTOREG procedure produces full unconditional maximum
likelihood estimates.

Harvey (1981) and Judge et al. (1985) summarize the literature on various estimators
for the autoregressive error model. Although asymptotically efficient, the various
methods have different small sample properties. Several Monte Carlo experiments
have been conducted, although usually for the AR(1) model.

Harvey and McAvinchey (1978) found that for a one-variable model, when the in-
dependent variable is trending, methods similar to Cochrane-Orcutt are inefficient in
estimating the structural parameter. This is not surprising since a pure trend model is
well modeled by an autoregressive process with a parameter close to 1.

Harvey and McAvinchey (1978) also made the following conclusions:

� The Yule-Walker method appears to be about as efficient as the maximum like-
lihood method. Although Spitzer (1979) recommended ML and NLS, the Yule-
Walker method (labeled Prais-Winsten) did as well or better in estimating the
structural parameter in Spitzer’s Monte Carlo study (table A2 in their article)
when the autoregressive parameter was not too large. Maximum likelihood
tends to do better when the autoregressive parameter is large.

� For small samples, it is important to use a full transformation (Yule-Walker)
rather than the Cochrane-Orcutt method, which loses the first observation. This
was also demonstrated by Maeshiro (1976), Chipman (1979), and Park and
Mitchell (1980).

� For large samples (Harvey used 100), losing the first few observations does not
make much difference.

GARCH, IGARCH, EGARCH, and GARCH-M Models

Consider the seriesyt, which follows the GARCH process. The conditional distribu-
tion of the series Y for timet is written

ytj	t�1�N(0;ht)
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where	t�1 denotes all available information at timet� 1. The conditional variance
ht is

ht = ! +

qX
i=1

�iy
2
t�i +

pX
j=1


jht�j

where

p�0; q > 0

! > 0; �i�0; 
j�0

The GARCH(p,q) model reduces to the ARCH(q) process whenp = 0. At least one
of the ARCH parameters must be nonzero (q > 0). The GARCH regression model
can be written

yt = x0t� + �t

�t =
p
htet

ht = ! +

qX
i=1

�i�
2
t�i +

pX
j=1


jht�j

whereet�IN(0; 1).
In addition, you can consider the model with disturbances following an autoregressive
process and with the GARCH errors. The AR(m)-GARCH(p,q) regression model is
denoted

yt = x0t� + �t

�t = �t � '1�t�1 � : : : � 'm�t�m

�t =
p
htet

ht = ! +

qX
i=1

�i�
2
t�i +

pX
j=1


jht�j
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GARCH Estimation with Nelson-Cao Inequality Constraints
The GARCH(p,q) model is written in ARCH(1) form as

ht =

0@1�
pX

j=1


jB
j

1A�1 "
! +

qX
i=1

�i�
2
t�i

#

= !� +
1X
i=1

�i�
2
t�i

whereB is a backshift operator. Therefore,ht�0 if !��0 and�i�0;8i. Assume that
the roots of the following polynomial equation are inside the unit circle:

pX
j=0

�
jZ p�j

where
0 = �1 andZ is a complex scalar.
Pp

j=0�
jZ p�j and
Pq

i=1 �iZ
q�i, do

not share common factors. Under these conditions,j!�j <1, j�ij <1, and these
coefficients of the ARCH(1) process are well defined.

Definen = max(p; q). The coefficient�i is written

�0 = �1

�1 = 
1�0 + �2

� � �
�n�1 = 
1�n�2 + 
2�n�3 + � � �+ 
n�1�0 + �n
�k = 
1�k�1 + 
2�k�2 + � � �+ 
n�k�n for k�n

where�i = 0 for i > q and
j = 0 for j > p.

Nelson and Cao (1992) proposed the finite inequality constraints for GARCH(1,q)
and GARCH(2,q) cases. However, it is not straightforward to derive the finite in-
equality constraints for the general GARCH(p,q) model.

For the GARCH(1,q) model, the nonlinear inequality constraints are

! � 0

1 � 0
�k � 0 for k = 0; 1; � � �; q� 1

For the GARCH(2,q) model, the nonlinear inequality constraints are

�i 2 R for i = 1; 2
!� � 0
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�1 > 0
q�1X
j=0

��j
1 �j+1 > 0

�k � 0 for k = 0; 1; � � �; q

where�1 and�2 are the roots of(Z 2 � 
1Z � 
2).

For the GARCH(p,q) model withp > 2, only max(q-1,p)+1 nonlinear inequality con-
straints (�k�0 for k = 0 to max(q � 1; p)) are imposed, together with the in-sample
positivity constraints of the conditional varianceht.

IGARCH and Stationary GARCH Model
The condition

Pq
i=1 �i +

Pp
j=1 
j < 1 implies that

the GARCH process is weakly stationary since the mean, variance, and autocovari-
ance are finite and constant over time. However, this condition is not sufficient for
weak stationarity in the presence of autocorrelation. For example, the stationarity
condition for an AR(1)-GARCH(p,q) process is

1

1� '2
1

qX
i=1

�i +

pX
j=1


j < 1

When the GARCH process is stationary, the unconditional variance of�t is computed
as

V(�t ) =
!

(1�Pq
i=1 �i �

Pp
j=1 
j )

where�t =
p
htet andht is the

GARCH(p,q) conditional variance.

Sometimes, the multistep forecasts of the variance do not approach the unconditional
variance when the model is integrated in variance; that is,

Pq
i=1 �i +

Pp
j=1 
j = 1.

The unconditional variance for the IGARCH model does not exist. However, it is
interesting that the IGARCH model can be strongly stationary even though it is not
weakly stationary. Refer to Nelson (1990) for details.

EGARCH Model
The EGARCH model was proposed by Nelson (1991). Nelson and Cao (1992) argue
that the nonnegativity constraints in the linear GARCH model are too restrictive. The
GARCH model imposes the nonnegative constraints on the parameters,�i and
j,
while there are no restrictions on these parameters in the EGARCH model. In the
EGARCH model, the conditional variance,ht, is an asymmetric function of lagged
disturbances�t�i:

ln(ht) = ! +

qX
i=1

�ig(zt�i) +
pX

j=1


j ln(ht�j)
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where

g(zt) = �zt + 
[jztj �Ejztj]

zt = �t=
p
ht

The coefficient of the second term ing(zt) is set to be 1 (
=1) in our formulation.
Note thatEjztj = (2=�)1=2 if zt�N(0; 1). The properties of the EGARCH model are
summarized as follows:

� The functiong(zt) is linear inzt with slope coefficient� + 1 if zt is positive
while g(zt) is linear inzt with slope coefficient� � 1 if zt is negative

� Suppose that� = 0. Large innovations increase the conditional variance if
jztj �Ejztj > 0 and decrease

� the conditional variance ifjztj �Ejztj < 0.

� Suppose that� < 1. The innovation in variance,g(zt), is positive if the inno-
vationszt are less than(2=�)1=2=(� � 1). Therefore, the negative innovations
in returns,�t, cause the innovation to the conditional variance to be positive if
� is much less than 1.

GARCH-in-Mean
The GARCH-M model has the added regressor that is the conditional standard devi-
ation:

yt = x0t� + �
p
ht + �t

�t =
p
htet

whereht follows the ARCH or GARCH process.

Maximum Likelihood Estimation
The family of GARCH models are estimated using the maximum likelihood method.
The log-likelihood function is computed from the product of all conditional densities
of the prediction errors.

Whenet is assumed to have a standard normal distribution (et�N(0; 1)), the likeli-
hood function is given by

l =

NX
t=1

1

2

�
�ln(2�)� ln(ht)� �2t

ht

�

where�t = yt � x0t� andht is the conditional variance. When the GARCH(p,q)-
M model is estimated,�t = yt � x0t� � �

p
ht. When there are no regressors, the

residuals�t are denoted asyt or yt � �
p
ht.
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If et has the standardized Student’st distribution the log likelihood function for the
conditionalt distribution is

` =

NX
t=1

"
log

�
�

�
� + 1

2

��
� log

�
�
��
2

��
� 1

2
log((� � 2)ht)

�1

2
(� + 1)log

�
1 +

�2t
ht(� � 2)

�#

where�(�) is the gamma function and� is the degree of freedom (� > 2). Under
the conditionalt distribution, the additional parameter1=� is estimated. The log
likelihood function for the conditionalt distribution converges to the log likelihood
function of the conditional normal GARCH model as1=�!0.

The likelihood function is maximized via either the dual quasi-Newton or trust re-
gion algorithm. The default is the dual quasi-Newton algorithm. The starting values
for the regression parameters� are obtained from the OLS estimates. When there
are autoregressive parameters in the model, the initial values are obtained from the
Yule-Walker estimates. The starting value1:0�6 is used for the GARCH process
parameters.

The variance-covariance matrix is computed using the Hessian matrix. The dual
quasi-Newton method approximates the Hessian matrix while the quasi-Newton
method gets an approximation of the inverse of Hessian. The trust region method
uses the Hessian matrix obtained using numerical differentiation. When there are
active constraints, that is,q(�) = 0, the variance-covariance matrix is given by

V(�̂) = H�1[I�Q0(QH�1Q0)�1QH�1]

whereH = �@2l=@�@�0 andQ = @q(�)=@�0. Therefore, the variance-covariance
matrix without active constraints reduces toV(�̂) = H�1.

R2 Statistics and Other Measures of Fit

This section discusses various goodness-of-fit statistics produced by the AUTOREG
procedure.

Total R 2

The total R2 statistic (Total Rsq) is computed as

R2
tot = 1� SSE

SST

whereSSTis the sum of squares for the original response variable corrected for the
mean and SSE is the final error sum of squares. The Total Rsq is a measure of how
well the next value can be predicted using the structural part of the model and the
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past values of the residuals. If the NOINT option is specified,SSTis the uncorrected
sum of squares.

Regression R 2

The regression R2 (Reg RSQ) is computed as

R2
reg = 1� TSSE

TSST

whereTSSTis the total sum of squares of the transformed response variable cor-
rected for the transformed intercept, andTSSEis the error sum of squares for this
transformed regression problem. If the NOINT option is requested, no correction for
the transformed intercept is made. The Reg RSQ is a measure of the fit of the struc-
tural part of the model after transforming for the autocorrelation and is the R2for the
transformed regression.

The regression R2 and the total R2 should be the same when there is no autocorrela-
tion correction (OLS regression).

Calculation of Recursive Residuals and CUSUM Statistics
The recursive residualswt are computed as

wt =
etp
vt

vt = 1 + x
0

t

"
t�1X
i=1

xix
0

i

#�1

xt

Note that the forecast error variance ofet is the scalar multiple ofvt such that
V (et) = �2vt.

The CUSUM and CUSUMSQ statistics are computed using the preceding recursive
residuals.

CUSUMt =
tX

i=k+1

wi

�w

CUSUMSQt =

Pt
i=k+1 w

2
iPT

i=k+1 w
2
i

wherewi are the recursive residuals,

�w =

sPT
i=k+1 (wi � ŵ)2

(T � k � 1)

ŵ =
1

T � k

TX
i=k+1

wi

353
SAS OnlineDoc: Version 8



Part 2. General Information

andk is the number of regressors.

The CUSUM statistics can be used to test for misspecification of the model. The
upper and lower critical values for CUSUMt are

�a
"p

T � k + 2
(t� k)

(T � k)
1

2

#

wherea = 1.143 for a significance level .01, 0.948 for .05, and 0.850 for .10. These
critical values are output by the CUSUMLB= and CUSUMUB= options for the sig-
nificance level specified by the ALPHACSM= option.

The upper and lower critical values of CUSUMSQt are given by

�a+ (t� k)

T � k

where the value ofa is obtained from the table by Durbin (1969) if the
1
2(T � k)� 1�60. Edgerton and Wells (1994) provided the method of obtaining the
value ofa for large samples.

These critical values are output by the CUSUMSQLB= and CUSUMSQUB= options
for the significance level specified by the ALPHACSM= option.

Information Criteria AIC and SBC
The Akaike’s information criterion (AIC) and the Schwarz’s Bayesian information
criterion (SBC) are computed as follows:

AIC = �2ln(L) + 2k

SBC = �2ln(L) + ln(N)k

In these formulas,L is the value of the likelihood function evaluated at the param-
eter estimates,N is the number of observations, andk is the number of estimated
parameters. Refer to Judge et al. (1985) and Schwarz (1978) for additional details.

Generalized Durbin-Watson Tests

Consider the following linear regression model:

Y = X� + �

whereX is anN � k data matrix,� is a k � 1 coefficient vector, and� is aN � 1
disturbance vector. The error term� is assumed to be generated by thejth order
autoregressive process�t=�t-'j�t�j wherej'j j < 1, �t is a sequence of independent
normal error terms with mean 0 and variance�2. Usually, the Durbin-Watson statistic
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is used to test the null hypothesisH0 : '1 = 0 againstH1 : �'1 > 0. Vinod (1973)
generalized the Durbin-Watson statistic:

dj =

PN
t=j+1 (�̂t � �̂t�j)2PN

t=1 �̂
2
t

where�̂ are OLS residuals. Using the matrix notation,

dj =
� 0MA0

jAjM�

� 0M�

whereM = IN �X(X0X)�1X0 andAj is a(N � j) �N matrix:

Aj =

2664
�1 0 � � � 0 1 0 � � � 0
0 �1 0 � � � 0 1 0 � � �
...

...
...

...
...

...
...

...
0 � � � 0 �1 0 � � � 0 1

3775
and there arej � 1 zeros between -1 and 1 in each row of matrixAj.

The QR factorization of the design matrixX yields aN �N orthogonal matrixQ

X = QR

where R is aN � k upper triangular matrix. There exists aN � (N � k) submatrix of
Q such thatQ1Q

0
1 =M andQ0

1Q1 = IN�k. Consequently, the generalized Durbin-
Watson statistic is stated as a ratio of two quadratic forms:

dj =

Pn
l=1 �jl�l

2Pn
l=1 �

2
l

where�j1: : :�jn are uppern eigenvalues ofMA
0

jAjM and�l is a standard normal
variate, andn = min(N � k;N � j). These eigenvalues are obtained by a singular
value decomposition ofQ

0

1A
0

j (Golub and Loan 1989; Savin and White 1978).

The marginal probability (orp-value) fordj givenc0 is

Prob(

Pn
l=1 �jl�

2
lPn

l=1 �
2
l

< c0) = Prob(qj < 0)

where

qj =

nX
l=1

(�jl � c0)�
2
l
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When the null hypothesisH0 : 'j = 0 holds, the quadratic formqj has the character-
istic function

�j(t) =
nY
l=1

(1� 2(�jl � c0)it)
�1=2

The distribution function is uniquely determined by this characteristic function:

F (x) =
1

2
+

1

2�

Z 1

0

eitx�j(�t)� e�itx�j(t)
it

dt

For example, to testH0 : '4 = 0 given'1 = '2 = '3 = 0 againstH1 : �'4 > 0,
the marginal probability (p-value) can be used:

F (0) =
1

2
+

1

2�

Z 1

0

(�4(�t)� �4(t))

it
dt

where

�4(t) =
nY
l=1

(1� 2(�4l � d̂4)it)
�1=2

andd̂4 is the calculated value of the fourth-order Durbin-Watson statistic.

In the Durbin-Watson test, the marginal probability indicates positive autocorrelation
(�'j > 0) if it is less than the level of significance (�), while you can conclude that
a negative autocorrelation (�'j < 0) exists if the marginal probability based on the
computed Durbin-Watson statistic is greater than 1-�. Wallis (1972) presented tables
for bounds tests of fourth-order autocorrelation and Vinod (1973) has given tables for
a five percent significance level for orders two to four. Using the AUTOREG pro-
cedure, you can calculate the exactp-values for the general order of Durbin-Watson
test statistics. Tests for the absence of autocorrelation of orderp can be performed
sequentially; at thejth step, testH0 : 'j = 0 given '1 = : : : = 'j�1 = 0 against
'j 6=0. However, the size of the sequential test is not known.

The Durbin-Watson statistic is computed from the OLS residuals, while that of the
autoregressive error model uses residuals that are the difference between the predicted
values and the actual values. When you use the Durbin-Watson test from the residuals
of the autoregressive error model, you must be aware that this test is only an approx-
imation. See "Regression with Autoregressive Errors" earlier in this chapter. If there
are missing values, the Durbin-Watson statistic is computed using all the nonmissing
values and ignoring the gaps caused by missing residuals. This does not affect the
significance level of the resulting test, although the power of the test against certain
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alternatives may be adversely affected. Savin and White (1978) have examined the
use of the Durbin-Watson statistic with missing values.

Enhanced Durbin-Watson Probability Computation
The Durbin-Watson probability calculations have been enhanced to compute the
p-value of the generalized Durbin-Watson statistic for large sample sizes. Previously,
the Durbin-Watson probabilities were only calculated for small sample sizes.

Consider the following linear regression model:

Y = X� + u

ut + 'jut�j = �t; t = 1; : : :; N

whereX is anN � k data matrix,� is a k � 1 coefficient vector,u is a N � 1
disturbance vector,�t is a sequence of independent normal error terms with mean 0
and variance�2.

The generalized Durbin-Watson statistic is written as

DWj =
û0A0

jAjû

û0û

whereû is a vector of OLS residuals andAj is a (T � j)�T matrix. The generalized
Durbin-Watson statistic DWj can be rewritten as

DWj =
u0MA0

jAjMu

u0Mu
=

�0(Q0
1A

0
jAjQ1)�

�0�

whereQ0
1Q1 = IT�k; Q0

1X = 0; and � = Q0
1u.

The marginal probability for the Durbin-Watson statistic is

Pr(DWj < c) = Pr(h < 0)

whereh = �0(Q0
1A

0
jAjQ1 � cI)�.

Thep-value or the marginal probability for the generalized Durbin-Watson statistic is
computed by numerical inversion of the characteristic function�(u) of the quadratic
formh = �0(Q0

1A
0
jAjQ1�cI)�. The trapezoidal rule approximation to the marginal

probabilityPr(h < 0) is

Pr(h < 0) =
1

2
�

KX
k=0

Im
�
�((k + 1

2 )�)
�

�(k + 1
2)

+ EI(�) + ET (K)

where Im [�(�)] is the imaginary part of the characteristic function,EI(�) and
ET (K) are integration and truncation errors, respectively. Refer to Davies (1973)
for numerical inversion of the characteristic function.
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Ansley, Kohn, and Shively (1992) proposed a numerically efficient algorithm which
requires O(N ) operations for evaluation of the characteristic function�(u). The char-
acteristic function is denoted as

�(u) =
��I� 2iu(Q0

1A
0
jAjQ1 � cIN�k)

���1=2

= jVj�1=2
��X0V�1X

���1=2 ��X0X
��1=2

whereV = (1 + 2iuc)I � 2iuA0
jAj and i =

p�1. By applying the Cholesky
decomposition to the complex matrixV, you can obtain the lower triangular matrix
G which satisfiesV = GG0. Therefore, the characteristic function can be evaluated
in O(N ) operations using the following formula:

�(u) = jGj�1
��X�0X����1=2 ��X0X

��1=2
whereX� = G�1X. Refer to Ansley, Kohn, and Shively (1992) for more informa-
tion on evaluation of the characteristic function.

Tests for Serial Correlation with Lagged Dependent Variables
When regressors contain lagged dependent variables, the Durbin-Watson statistic (d1)
for the first-order autocorrelation is biased toward 2 and has reduced power. Wallis
(1972) shows that the bias in the Durbin-Watson statistic (d4) for the fourth-order
autocorrelation is smaller than the bias ind1 in the presence of a first-order lagged
dependent variable. Durbin (1970) proposed two alternative statistics (Durbinh and
t) that are asymptotically equivalent. Theh statistic is written as

h = �̂

q
N=(1 �NV̂ )

where�̂ =
PN

t=2 �̂t�̂t�1=
PN

t=1 �̂
2
t and V̂ is the least-squares variance estimate for

the coefficient of the lagged dependent variable. Durbin’st-test consists of regressing
the OLS residualŝ�t on explanatory variables and̂�t�1 and testing the significance
of the estimate for coefficient of̂�t�1.

Inder (1984) shows that the Durbin-Watson test for the absence of first-order autocor-
relation is generally more powerful than theh-test in finite samples. Refer to Inder
(1986) and King and Wu (1991) for the Durbin-Watson test in the presence of lagged
dependent variables.

Testing

Heteroscedasticity and Normality Tests
Portmanteau Q-Test

For nonlinear time series models, the portmanteau test statistic based on squared
residuals is used to test for independence of the series (McLeod and Li 1983):

Q(q) = N(N + 2)

qX
i=1

r(i; �̂2t )

(N � i)
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where

r(i; �̂2t ) =

PN
t=i+1 (�̂

2
t � �̂2)(�̂2t�i � �̂2)PN

t=1 (�̂
2
t � �̂2)2

�̂2 =
1

N

NX
t=1

�̂2t

This Q statistic is used to test the nonlinear effects (for example, GARCH ef-
fects) present in the residuals. The GARCH(p,q) process can be considered as an
ARMA(max(p,q),p) process. See the section "Predicting the Conditional Variance"
later in this chapter. Therefore, theQ statistic calculated from the squared residuals
can be used to identify the order of the GARCH process.

Lagrange Multiplier Test for ARCH Disturbances
Engle (1982) proposed a Lagrange multiplier test for ARCH disturbances. The test
statistic is asymptotically equivalent to the test used by Breusch and Pagan (1979).
Engle’s Lagrange multiplier test for theqth order ARCH process is written

LM(q) =
NW0Z(Z0Z)�1Z0W

W0W

where

W =

�
�̂21
�̂2

; : : :;
�̂2N
�̂2

�0
and

Z =

26664
1 �̂20 � � � �̂2�q+1
...

...
...

...
...

...
...

...
1 �̂2N�1 � � � �̂2N�q

37775
The presample values (�20 ,: : :, �2�q+1) have been set to 0. Note that the LM(q)
tests may have different finite sample properties depending on the presample values,
though they are asymptotically equivalent regardless of the presample values. The
LM andQ statistics are computed from the OLS residuals assuming that disturbances
are white noise. TheQ and LM statistics have an approximate�2

(q) distribution under
the white-noise null hypothesis.

Normality Test
Based on skewness and kurtosis, Bera and Jarque (1982) calculated the test statistic

TN =

�
N

6
b21 +

N

24
(b2 � 3)2

�
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where

b1 =

p
N
PN

t=1 û
3
t�PN

t=1 û
2
t

� 3

2

b2 =
N
PN

t=1 û
4
t�PN

t=1 û
2
t

�2
The�2(2)-distribution gives an approximation to the normality testTN .

When the GARCH model is estimated, the normality test is obtained using the stan-
dardized residualŝut = �̂t=

p
ht. The normality test can be used to detect misspecifi-

cation of the family of ARCH models.

Computation of the Chow Test
Consider the linear regression model

y = X� + u

where the parameter vector� contains k elements.

Split the observations for this model into two subsets at the break point specified by
the CHOW= option, so thaty = (y

0

1;y
0

2)
0

,

X = (X
0

1;X
0

2)
0

, and

u = (u
0

1;u
0

2)
0

.

Now consider the two linear regressions for the two subsets of the data modeled
separately,

y1 = X1�1 + u1

y2 = X2�2 + u2

where the number of observations from the first set isn1 and the number of observa-
tions from the second set isn2.

The Chow test statistic is used to test the null hypothesisH0 : �1 = �2 conditional
on the same error varianceV (u1) = V (u2). The Chow test is computed using three
sums of square errors.

Fchow =
(û0û� û0

1û1 � û
0

2û2)=k

(û
0

1û1 + û
0

2û2)=(n1 + n2 � 2k)

whereû is the regression residual vector from the full set model,û1 is the regression
residual vector from the first set model, andû2 is the regression residual vector from
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the second set model. Under the null hypothesis, the Chow test statistic has anF-
distribution withk and(n1 + n2 � 2k) degrees of freedom, wherek is the number
of elements in�.

Chow (1960) suggested another test statistic that tests the hypothesis that the mean
of prediction errors is 0. The predictive Chow test can also be used whenn2 < k.

The PCHOW= option computes the predictive Chow test statistic

Fpchow =
(û0û� û0

1û1)=n2

û
0

1û1=(n1 + k)

The predictive Chow test has anF-distribution withn2 and(n1 � k) degrees of free-
dom.

Unit Root and Cointegration Testing
Consider the random walk process

yt = yt�1 + ut

where the disturbances might be serially correlated with possible heteroscedasticity.
Phillips and Perron (1988) proposed the unit root test of the OLS regression model.

yt = �yt�1 + ut

Let s2 = 1
T�k

PT
t=1 û

2
t and let �̂2 be the variance estimate of the OLS estimator

�̂, where ût is the OLS residual. You can estimate the asymptotic variance of
1
T

PT
t=1 û

2
tusing the truncation lagl.

�̂ =

lX
j=0

�j [1� j=(l + 1)]
̂j

where�0 = 1, �j = 2 for j > 0, and
̂j = 1
T

PT
t=j+1 ûtût�j .

Then the Phillips-Perron Z(̂�) test (zero mean case) is written

Z(�̂) = T (�̂� 1)� 1

2
T

2�̂2(�̂� 
̂0)=s
2

and has the following limiting distribution:

1
2fB(1)2 � 1gR 1
0 [B(x)]

2dx

whereB(�) is a standard Brownian motion. Note that the realization Z(x) from the the
stochastic process B(�) is distributed as N(0,x) and thusB(1)2��2

1.
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Therefore, you can observe thatP(�̂ < 1)�0:68 asT!1, which shows that the
limiting distribution is skewed to the left.

Let t�̂ be thet-test statistic for̂�. The Phillips-PerronZ(t�̂) test is written

Z(t�̂) = (
̂0=�̂)
1=2t�̂ � 1

2
T �̂(�̂� 
̂0)=(s�̂

1=2)

and its limiting distribution is derived as

1
2f[B(1)]2 � 1g

fR 1
0 [B(x)]

2dxg1=2

When you test the regression modelyt = �+ �yt�1 + ut for the true random walk
process (single mean case), the limiting distribution of the statisticZ(�̂) is written

1
2f[B(1)]2 � 1g �B(1)

R 1
0 B(x)dxR 1

0 [B(x)]
2dx�

hR 1
0 B(x)dx

i2
while the limiting distribution of the statisticZ(t�̂) is given by

1
2f[B(1)]2 � 1g � B(1)

R 1
0 B(x)dx

fR 1
0 [B(x)]

2dx�
hR 1

0 B(x)dx
i2
g1=2

Finally, the limiting distribution of the Phillips-Perron test for the random walk with
drift processyt = �+ yt�1 + ut (trend case) can be derived as

[ 0 c 0 ]V �1

24 B(1)
B(1)2�1

2

B(1)� R 1
0 B(x)dx

35

wherec = 1 for Z(�̂) andc = 1p
Q

for Z(t�̂),

V =

24 1
R 1
0 B(x)dx

1
2R 1

0 B(x)dx
R 1
0 B(x)

2dx
R 1
0 xB(x)dx

1
2

R 1
0 xB(x)dx

1
3

35

Q = [ 0 c 0 ]V �1

24 0c
0

35
When several variableszt = (z1t; � � �; zkt)0 are cointegrated, there exists
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a (k�1) cointegrating vectorc such thatc’zt is stationary andc is a nonzero vector.
The residual based cointegration test is based on the following regression model:

yt = �1 + x
0
t� + ut

whereyt = z1t, xt = (z2t; � � �; zkt)0, and� = (�2,� � �,�k)0. You can estimate the con-
sistent cointegrating vector using OLS if all variables are difference stationary, that
is, I(1). The Phillips-Ouliaris test is computed using the OLS residuals from the
preceding regression model, and it performs the test for the null hypothesis of no
cointegration. The estimated cointegrating vector isĉ = (1;��̂2; � � �;��̂k)0.
Since the AUTOREG procedure does not produce thep-value of the cointegration
test, you need to refer to the tables by Phillips and Ouliaris (1990). Before you apply
the cointegration test, you might perform the unit root test for each variable.

Predicted Values

The AUTOREG procedure can produce two kinds of predicted values for the re-
sponse series and corresponding residuals and confidence limits. The residuals in
both cases are computed as the actual value minus the predicted value. In addition,
when GARCH models are estimated, the AUTOREG procedure can output predic-
tions of the conditional error variance.

Predicting the Unconditional Mean
The first type of predicted value is obtained from only the structural part of the model,
x0tb. These are useful in predicting values of new response time series, which are as-
sumed to be described by the same model as the current response time series. The pre-
dicted values, residuals, and upper and lower confidence limits for the structural pre-
dictions are requested by specifying the PREDICTEDM=, RESIDUALM=, UCLM=,
or LCLM= options in the OUTPUT statement. The ALPHACLM= option controls
the confidence level for UCLM= and LCLM=. These confidence limits are for esti-
mation of the mean of the dependent variable,x0tb, wherext is the column vector of
independent variables at observationt.

The predicted values are computed as

ŷt = x0tb

and the upper and lower confidence limits as

ût = ŷt + t�=2v

l̂t = ŷt � t�=2v

where v2 is an estimate of the variance ofŷt and t�=2 is the upper�/2 percentage
point of thet distribution.

Prob(T > t�=2) = �=2
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whereT is an observation from at distribution withq degrees of freedom. The value
of � can be set with the ALPHACLM= option. The degrees of freedom parameter,q,
is taken to be the number of observations minus the number of free parameters in the
regression and autoregression parts of the model. For the YW estimation method, the
value of v is calculated as

v =
q
s2x0t(X0V�1X)�1xt

wheres2 is the error sum of squares divided byq. For the ULS and ML methods, it
is calculated as

v =
q
s2x0tWxt

whereW is thek�k submatrix of(J0J)�1 that corresponds to the regression param-
eters. For details, see "Computational Methods" earlier in this chapter.

Predicting Future Series Realizations
The other predicted values use both the structural part of the model and the predicted
values of the error process. These conditional mean values are useful in predicting
future values of the current response time series. The predicted values, residuals,
and upper and lower confidence limits for future observations conditional on past
values are requested by the PREDICTED=, RESIDUAL=, UCL=, or LCL= options
in the OUTPUT statement. The ALPHACLI= option controls the confidence level
for UCL= and LCL=. These confidence limits are for the predicted value,

~yt = x0tb+ �tjt�1

where xt is the vector of independent variables and�tjt�1 is the minimum
variance linear predictor of the error term given the available past values of
�t�j ; j = 1; 2; : : :; t� 1, and the autoregressive

model for�t. If the m previous values of the structural residuals are available, then

�tjt�1 = �'̂1�t�1 � : : :� '̂m�t�m

where'̂1; : : :; '̂m are the estimated AR parameters. The upper and lower confidence
limits are computed as

~ut = ~yt + t�=2v

~lt = ~yt � t�=2v

where v, in this case, is computed as

v =

q
s2(x0t(X0V�1X)�1xt + r)
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where the valuers2 is the estimate of the variance of�tjt�1. At the start of the series,
and after missing values,r is generally greater than 1. See "Predicting the Conditional
Variance" for computational details ofr. The plot of residuals and confidence limits
in Example 8.4 later in this chapter illustrates this behavior.

Except to adjust the degrees of freedom for the error sum of squares, the preceding
formulas do not account for the fact that the autoregressive parameters are estimated.
In particular, the confidence limits are likely to be somewhat too narrow. In large
samples, this is probably not an important effect, but it may be appreciable in small
samples. Refer to Harvey (1981) for some discussion of this problem for AR(1)
models.

Note that at the beginning of the series (the firstmobservations, wherem is the value
of the NLAG= option) and after missing values, these residuals do not match the
residuals obtained by using OLS on the transformed variables. This is because, in
these cases, the predicted noise values must be based on less than a complete set of
past noise values and, thus, have larger variance. The GLS transformation for these
observations includes a scale factor as well as a linear combination of past values.
Put another way, theL�1 matrix defined in the section "Computational Methods" has
the value 1 along the diagonal, except for the firstm observations and after missing
values.

Predicting the Conditional Variance
The GARCH process can be written

�2t = ! +

nX
i=1

(�i + 
i)�
2
t�i �

pX
j=1


j�t�j + �t

where�t = �2t � htandn = max(p; q). This representation shows that the squared
residual�2t follows an ARMA(n,p) process. Then for anyd > 0, the conditional
expectations are as follows:

E(�2t+dj	t) = ! +
nX
i=1

(�i + 
i)E(�
2
t+d�ij	t)�

pX
j=1


jE(�t+d�j j	t)

Thed-step-ahead prediction error,�t+d = yt+d � yt+djt, has the conditional variance

V(�t+dj	t) =

d�1X
j=0

g2j�
2
t+d�jjt

where

�2t+d�jjt = E(�2t+d�j j	t)

Coefficients in the conditionald-step prediction error variance are calculated recur-
sively using the following formula:

gj = �'1gj�1 � : : :� 'mgj�m
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whereg0 = 1 andgj = 0 if j < 0; '1, : : :, 'm are autoregressive parameters. Since
the parameters are not known, the conditional variance is computed using the esti-
mated autoregressive parameters. Thed-step-ahead prediction error variance is sim-
plified when there are no autoregressive terms:

V(�t+dj	t) = �2t+djt

Therefore, the one-step-ahead prediction error variance is equivalent to the condi-
tional error variance defined in the GARCH process:

ht = E(�2t j	t�1) = �2tjt�1

Note that the conditional prediction error variance of the EGARCH and GARCH-M
models cannot be calculated using the preceding formula. Therefore, the confidence
intervals for the predicted values are computed assuming the homoscedastic condi-
tional error variance. That is, the conditional prediction error variance is identical to
the unconditional prediction error variance:

V(�t+dj	t) = V(�t+d) = �2
d�1X
j=0

g2j

since�2t+d�jjt = �2. You can computes2r, which is the second term of the vari-
ance for the predicted value~yt explained previously in "Predicting Future Series Re-
alizations," using the formula�2

Pd�1
j=0 g

2
j ; r is estimated from

Pd�1
j=0 g

2
j using the

estimated autoregressive parameters.

Consider the following conditional prediction error variance:

V(�t+dj	t) = �2
d�1X
j=0

g2j +

d�1X
j=0

g2j (�
2
t+d�jjt � �2)

The second term in the preceding equation can be interpreted as the noise from us-
ing the homoscedastic conditional variance when the errors follow the GARCH pro-
cess. However, it is expected that if the GARCH process is covariance stationary, the
difference between the conditional prediction error variance and the unconditional
prediction error variance disappears as the forecast horizond increases.

OUT= Data Set

The output SAS data set produced by the OUTPUT statement contains all the vari-
ables in the input data set and the new variables specified by the OUTPUT statement
options. See the section "OUTPUT Statement" earlier in this chapter for informa-
tion on the output variables that can be created. The output data set contains one
observation for each observation in the input data set.
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OUTEST= Data Set

The OUTEST= data set contains all the variables used in any MODEL statement.
Each regressor variable contains the estimate for the corresponding regression pa-
rameter in the corresponding model. In addition, the OUTEST= data set contains the
following variables:

–A–i the ith order autoregressive parameter estimate. There arem
such variables–A–1 through–A–m, wherem is the value of the
NLAG= option.

–AH–i the ith order ARCH parameter estimate, if the GARCH= option
is specified. There areq such variables–AH–1 through–AH–q,
whereq is the value of the Q= option. The variable–AH–0 con-
tains the estimate of!.

–DELTA– the estimated mean parameter for the GARCH-M model, if a
GARCH-in-mean model is specified

–DEPVAR– the name of the dependent variable

–GH–i the ith order GARCH parameter estimate, if the GARCH= option
is specified. There arep such variables–GH–1 through–GH–p,
wherep is the value of the P= option.

INTERCEP the intercept estimate. INTERCEP contains a missing value for
models for which the NOINT option is specified.

–METHOD– the estimation method that is specified in the METHOD= option

–MODEL– the label of the MODEL statement if one is given, or blank other-
wise

–MSE– the value of the mean square error for the model

–NAME– the name of the row of covariance matrix for the parameter esti-
mate, if the COVOUT option is specified

–LIKL – the log likelihood value of the GARCH model

–SSE– the value of the error sum of squares

–STDERR– standard error of the parameter estimate, if the COVOUT option is
specified

–THETA– the estimate of the� parameter in the EGARCH model, if an
EGARCH model is specified

–TYPE– OLS for observations containing parameter estimates, or COV for
observations containing covariance matrix elements.

The OUTEST= data set contains one observation for each MODEL statement giving
the parameter estimates for that model. If the COVOUT option is specified, the OUT-
EST= data set includes additional observations for each MODEL statement giving the
rows of the covariance of parameter estimates matrix. For covariance observations,
the value of the–TYPE– variable is COV, and the–NAME– variable identifies the
parameter associated with that row of the covariance matrix.
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Printed Output

The AUTOREG procedure prints the following items:

1. the name of the dependent variable

2. the ordinary least-squares estimates

3. estimates of autocorrelations, which include the estimates of the autocovari-
ances, the autocorrelations, and (if there is sufficient space) a graph of the
autocorrelation at each LAG

4. if the PARTIAL option is specified, the partial autocorrelations

5. the preliminary MSE, which results from solving the Yule-Walker equations.
This is an estimate of the final MSE.

6. the estimates of the autoregressive parameters (Coefficient), their standard er-
rors (Std Error), and the ratio of estimate to standard error (t Ratio).

7. the statistics of fit are printed for the final model. These include the error sum
of squares (SSE), the degrees of freedom for error (DFE), the mean square
error (MSE), the root mean square error (Root MSE), the Schwarz informa-
tion criterion (SBC), the Akaike information criterion (AIC), the regression R2

(Reg Rsq), and the total R2 (Total Rsq). For GARCH models, the following
additional items are printed:

� the value of the log likelihood function

� the number of observations that are used in estimation (OBS)

� the unconditional variance (UVAR)

� the normality test statistic and itsp-value

8. the parameter estimates for the structural model (B Value), a standard error
estimate (Std Error), the ratio of estimate to standard error (t Ratio), and an ap-
proximation to the significance probability for the parameter being 0 (Approx
Prob)

9. the regression parameter estimates, printed again assuming that the autoregres-
sive parameter estimates are known to be correct. The Std Error and related
statistics for the regression estimates will, in general, be different when the
autoregressive parameters are assumed to be given.

ODS Table Names

PROC AUTOREG assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 6, “Using the Output Delivery System.”
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Table 8.1. ODS Tables Produced in PROC AUTOREG

ODS Table Name Description Option

ODS Tables Created by the Model Statement

FitSummary Summary of regression default
SummaryDepVarCen Summary of regression (centered de-

pendent var)
CENTER

SummaryNoIntercept Summary of regression (no intercept) NOINT
YWIterSSE Yule-Walker iteration sum of squared

error
METHOD=ITYW

PreMSE Preliminary MSE NLAG=
Dependent Dependent variable default
DependenceEquations Linear dependence equation
ARCHTest Q and LM Tests for ARCH

Disturbances
ARCHTEST

ChowTest Chow Test and Predictive Chow Test CHOW=
PCHOW=

Godfrey Godfrey’s Serial Correlation Test GODFREY
GODFREY=

PhilPerron Phillips-Perron Unit Root Test STATIONARITY=
(PHILIPS<=()>)
(no regressor)

PhilOul Phillips-Ouliaris Cointegration Test STATIONARITY=
(PHILIPS<=()>)
(has regressor)

ResetTest Ramsey’s RESET Test RESET
ARParameterEstimates Estimates of Autoregressive

Parameters
NLAG=

CorrGraph Estimates of Autocorrelations NLAG=
BackStep Backward Elimination of Autore-

gressive Terms
BACKSTEP

ExpAutocorr Expected Autocorrelations NLAG=
IterHistory Iteration History ITPRINT
ParameterEstimates Parameter Estimates default
ParameterEstimatesGivenAR Parameter estimates assuming AR

parameters are given
NLAG=

PartialAutoCorr Partial autocorrelation PARTIAL
CovB Covariance of Parameter Estimates COVB
CorrB Correlation of Parameter Estimates CORRB
CholeskyFactor Cholesky Root of Gamma ALL
Coefficients Coefficients for First NLAG

Observations
COEF

GammaInverse Gamma Inverse GINV
ConvergenceStatus Convergence Status table default
DWTestProb Durbin-Watson Statistics DW=
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Table 8.1. (continued)

ODS Table Name Description Option
ODS Tables Created by the Restrict Statement

Restrict Restriction table default

ODS Tables Created by the Test Statement

FTest F test default
WaldTest Wald test TYPE=WALD

Examples

Example 8.1. Analysis of Real Output Series

In this example, the annual real output series is analyzed over the period 1901 to 1983
(Gordon 1986, pp 781-783). With the DATA step, the original data is transformed us-
ing the natural logarithm, and the differenced series DY is created for further analysis.
The log of real output is plotted in Output 8.1.1.

title ’Analysis of Real GNP’;
data gnp;

date = intnx( ’year’, ’01jan1901’d, _n_-1 );
format date year4.;
input x @@;
y = log(x);
dy = dif(y);
t = _n_;
label y = ’Real GNP’

dy = ’First Difference of Y’
t = ’Time Trend’;

datalines;
... datalines omitted ...
;

proc gplot data=gnp;
plot y * date /

haxis=’01jan1901’d ’01jan1911’d ’01jan1921’d ’01jan1931’d
’01jan1941’d ’01jan1951’d ’01jan1961’d ’01jan1971’d
’01jan1981’d ’01jan1991’d;

symbol i=join;
run;
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Output 8.1.1. Real Output Series: 1901 - 1983

The (linear) trend-stationary process is estimated using the following form:

yt = �0 + �1t+ �t

where

�t = �t � '1�t�1 � '2�t�2

�t�IN(0; ��)

The preceding trend-stationary model assumes that uncertainty over future horizons
is bounded since the error term,�t, has a finite variance. The maximum likelihood
AR estimates are shown in Output 8.1.2.

proc autoreg data=gnp;
model y = t / nlag=2 method=ml;

run;

371
SAS OnlineDoc: Version 8



Part 2. General Information

Output 8.1.2. Estimating the Linear Trend Model

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 0.23954331 DFE 79
MSE 0.00303 Root MSE 0.05507
SBC -230.39355 AIC -240.06891
Regress R-Square 0.8645 Total R-Square 0.9947
Durbin-Watson 1.9935

Standard Approx Variable
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 4.8206 0.0661 72.88 <.0001
t 1 0.0302 0.001346 22.45 <.0001 Time Trend
AR1 1 -1.2041 0.1040 -11.58 <.0001
AR2 1 0.3748 0.1039 3.61 0.0005

Autoregressive parameters assumed given.

Standard Approx Variable
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 4.8206 0.0661 72.88 <.0001
t 1 0.0302 0.001346 22.45 <.0001 Time Trend

Nelson and Plosser (1982) failed to reject the hypothesis that macroeconomic time
series are nonstationary and have no tendency to return to a trend line. In this context,
the simple random walk process can be used as an alternative process:

yt = �0 + yt�1 + �t

where�t = �t andy0 = 0. In general, the difference-stationary process is written as

�(L)(1 � L)yt = �0�(1) + �(L)�t

where L is the lag operator. You can observe that the class of a difference-stationary
process should have at least one unit root in the AR polynomial�(L)(1 � L).

The Dickey-Fuller procedure is used to test the null hypothesis that the series has a
unit root in the AR polynomial. Consider the following equation for the augmented
Dickey-Fuller test:

�yt = �0 + �t+ �1yt�1 +

mX
i=1


i�yt�i + �t

where� = 1� L. The test statistic�� is the usualt ratio for the parameter estimate
�̂1, but the�� does not follow at distribution.

The %DFTEST macro computes the test statistic�� and itsp value to perform the
Dickey-Fuller test. The default value ofm is 3, but you can specifym with the AR=
option. The option TREND=2 implies that the Dickey-Fuller test equation contains
linear time trend. See Chapter 4, “SAS Macros and Functions,” for details.
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%dftest(gnp,y,trend=2,outstat=stat1)

proc print data=stat1;
run;

The augmented Dickey-Fuller test indicates that the output series may have a
difference-stationary process. The statistic–TAU– has a value of -2.61903 and its
p-value is 0.29104. See Output 8.1.3.

Output 8.1.3. Augmented Dickey-Fuller Test Results

I
_ _ n
S D t

_ T E _ e
T A P N _ r
Y T V A M c A t

O P U A M S e R i
b E S R E E p _ m
s _ _ _ _ _ t V e

1 OLS 0 Converged AR_V .003198469 0.76919 -1 0.004816233
2 COV 0 Converged AR_V Intercept .003198469 0.08085 . 0.000513286
3 COV 0 Converged AR_V time .003198469 0.00051 . 0.000003387
4 COV 0 Converged AR_V DLAG_V .003198469 -0.01695 . -.000108543
5 COV 0 Converged AR_V AR_V1 .003198469 0.00549 . 0.000035988
6 COV 0 Converged AR_V AR_V2 .003198469 0.00842 . 0.000054197
7 COV 0 Converged AR_V AR_V3 .003198469 0.01056 . 0.000067710

_
_ P

D _ T _ V
L A A A N _ R D A
A R R R O T E L L

O G _ _ _ B A N A U
b _ V V V S U D G E
s V 1 2 3 _ _ _ _ _

1 -0.15629 0.37194 0.025483 -0.082422 79 -2.61903 2 1 0.27321
2 -0.01695 0.00549 0.008422 0.010556 79 -2.61903 2 1 0.27321
3 -0.00011 0.00004 0.000054 0.000068 79 -2.61903 2 1 0.27321
4 0.00356 -0.00120 -0.001798 -0.002265 79 -2.61903 2 1 0.27321
5 -0.00120 0.01242 -0.003455 0.002095 79 -2.61903 2 1 0.27321
6 -0.00180 -0.00346 0.014238 -0.002910 79 -2.61903 2 1 0.27321
7 -0.00226 0.00209 -0.002910 0.013538 79 -2.61903 2 1 0.27321

The AR(1) model for the differenced series DY is estimated using the maximum
likelihood method for the period 1902 to 1983. The difference-stationary process is
written

�yt = �0 + �t

�t = �t � '1�t�1

The estimated value of'1 is -0.297 and that of�0 is 0.0293. All estimated values are
statistically significant.

proc autoreg data=gnp;
model dy = / nlag=1 method=ml;

run;
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Output 8.1.4. Estimating the Differenced Series with AR(1) Error

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 0.27107673 DFE 80
MSE 0.00339 Root MSE 0.05821
SBC -226.77848 AIC -231.59192
Regress R-Square 0.0000 Total R-Square 0.0900
Durbin-Watson 1.9268

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.0293 0.009093 3.22 0.0018
AR1 1 -0.2967 0.1067 -2.78 0.0067

Autoregressive parameters assumed given.

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.0293 0.009093 3.22 0.0018

Example 8.2. Comparing Estimates and Models

In this example, the Grunfeld series are estimated using different estimation methods.
Refer to Maddala (1977) for details of the Grunfeld investment data set. For com-
parison, the Yule-Walker method, the ULS method, and maximum likelihood method
estimates are shown. With the DWPROB option, thep-value of the Durbin-Watson
statistic is printed. The Durbin-Watson test indicates the positive autocorrelation of
the regression residuals.

title ’Grunfeld’’s Investment Models Fit with Autoregressive Errors’;
data grunfeld;

input year gei gef gec;
label gei = ’Gross investment GE’

gec = ’Lagged Capital Stock GE’
gef = ’Lagged Value of GE shares’;

datalines;
... data lines omitted ...

;

proc autoreg data=grunfeld;
model gei = gef gec / nlag=1 dwprob;
model gei = gef gec / nlag=1 method=uls;
model gei = gef gec / nlag=1 method=ml;

run;

The printed output produced by each of the MODEL statements is shown in Out-
put 8.2.1 through Output 8.2.4.
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Output 8.2.1. OLS Analysis of Residuals

Grunfeld’s Investment Models Fit with Autoregressive Errors

The AUTOREG Procedure

Dependent Variable gei
Gross investment GE

Ordinary Least Squares Estimates

SSE 13216.5878 DFE 17
MSE 777.44634 Root MSE 27.88272
SBC 195.614652 AIC 192.627455
Regress R-Square 0.7053 Total R-Square 0.7053
Durbin-Watson 1.0721 Pr < DW 0.0038
Pr > DW 0.9962

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -9.9563 31.3742 -0.32 0.7548
gef 1 0.0266 0.0156 1.71 0.1063 Lagged Value of GE shares
gec 1 0.1517 0.0257 5.90 <.0001 Lagged Capital Stock GE

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 660.8 1.000000 | |********************|
1 304.6 0.460867 | |********* |

Preliminary MSE 520.5

Output 8.2.2. Regression Results Using Default Yule-Walker Method

Grunfeld’s Investment Models Fit with Autoregressive Errors

The AUTOREG Procedure

Estimates of Autoregressive Parameters

Standard
Lag Coefficient Error t Value

1 -0.460867 0.221867 -2.08

Yule-Walker Estimates

SSE 10238.2951 DFE 16
MSE 639.89344 Root MSE 25.29612
SBC 193.742396 AIC 189.759467
Regress R-Square 0.5717 Total R-Square 0.7717
Durbin-Watson 1.3321 Pr < DW 0.0232
Pr > DW 0.9768

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -18.2318 33.2511 -0.55 0.5911
gef 1 0.0332 0.0158 2.10 0.0523 Lagged Value of GE shares
gec 1 0.1392 0.0383 3.63 0.0022 Lagged Capital Stock GE
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Output 8.2.3. Regression Results Using Unconditional Least Squares Method

Grunfeld’s Investment Models Fit with Autoregressive Errors

The AUTOREG Procedure

Estimates of Autoregressive Parameters

Standard
Lag Coefficient Error t Value

1 -0.460867 0.221867 -2.08

Algorithm converged.

Unconditional Least Squares Estimates

SSE 10220.8455 DFE 16
MSE 638.80284 Root MSE 25.27455
SBC 193.756692 AIC 189.773763
Regress R-Square 0.5511 Total R-Square 0.7721
Durbin-Watson 1.3523

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -18.6582 34.8101 -0.54 0.5993
gef 1 0.0339 0.0179 1.89 0.0769 Lagged Value of GE shares
gec 1 0.1369 0.0449 3.05 0.0076 Lagged Capital Stock GE
AR1 1 -0.4996 0.2592 -1.93 0.0718

Autoregressive parameters assumed given.

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -18.6582 33.7567 -0.55 0.5881
gef 1 0.0339 0.0159 2.13 0.0486 Lagged Value of GE shares
gec 1 0.1369 0.0404 3.39 0.0037 Lagged Capital Stock GE
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Output 8.2.4. Regression Results Using Maximum Likelihood Method

Grunfeld’s Investment Models Fit with Autoregressive Errors

The AUTOREG Procedure

Estimates of Autoregressive Parameters

Standard
Lag Coefficient Error t Value

1 -0.460867 0.221867 -2.08

Algorithm converged.

Maximum Likelihood Estimates

SSE 10229.2303 DFE 16
MSE 639.32689 Root MSE 25.28491
SBC 193.738877 AIC 189.755947
Regress R-Square 0.5656 Total R-Square 0.7719
Durbin-Watson 1.3385

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -18.3751 34.5941 -0.53 0.6026
gef 1 0.0334 0.0179 1.87 0.0799 Lagged Value of GE shares
gec 1 0.1385 0.0428 3.23 0.0052 Lagged Capital Stock GE
AR1 1 -0.4728 0.2582 -1.83 0.0858

Autoregressive parameters assumed given.

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -18.3751 33.3931 -0.55 0.5897
gef 1 0.0334 0.0158 2.11 0.0512 Lagged Value of GE shares
gec 1 0.1385 0.0389 3.56 0.0026 Lagged Capital Stock GE

Example 8.3. Lack of Fit Study

Many time series exhibit high positive autocorrelation, having the smooth appearance
of a random walk. This behavior can be explained by the partial adjustment and
adaptive expectation hypotheses.

Short-term forecasting applications often use autoregressive models because these
models absorb the behavior of this kind of data. In the case of a first-order AR
process where the autoregressive parameter is exactly 1 (arandom walk), the best
prediction of the future is the immediate past.

PROC AUTOREG can often greatly improve the fit of models, not only by adding
additional parameters but also by capturing the random walk tendencies. Thus, PROC
AUTOREG can be expected to provide good short-term forecast predictions.

However, good forecasts do not necessarily mean that your structural model con-
tributes anything worthwhile to the fit. In the following example, random noise is
fit to part of a sine wave. Notice that the structural model does not fit at all, but the
autoregressive process does quite well and is very nearly a first difference (A(1) =
-.976).
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title1 ’Lack of Fit Study’;
title2 ’Fitting White Noise Plus Autoregressive Errors to a Sine Wave’;

data a;
pi=3.14159;
do time = 1 to 75;

if time > 75 then y = .;
else y = sin( pi * ( time / 50 ) );
x = ranuni( 1234567 );
output;
end;

run;

proc autoreg data=a;
model y = x / nlag=1;
output out=b p=pred pm=xbeta;

run;

proc gplot data=b;
plot y*time=1 pred*time=2 xbeta*time=3 / overlay;
symbol1 v=’none’ i=spline;
symbol2 v=triangle;
symbol3 v=circle;

run;

The printed output produced by PROC AUTOREG is shown in Output 8.3.1 and
Output 8.3.2. Plots of observed and predicted values are shown in Output 8.3.3.
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Output 8.3.1. Results of OLS Analysis: No Autoregressive Model Fit

Lack of Fit Study
Fitting White Noise Plus Autoregressive Errors to a Sine Wave

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 34.8061005 DFE 73
MSE 0.47680 Root MSE 0.69050
SBC 163.898598 AIC 159.263622
Regress R-Square 0.0008 Total R-Square 0.0008
Durbin-Watson 0.0057

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.2383 0.1584 1.50 0.1367
x 1 -0.0665 0.2771 -0.24 0.8109

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.4641 1.000000 | |********************|
1 0.4531 0.976386 | |********************|

Preliminary MSE 0.0217

Output 8.3.2. Regression Results with AR(1) Error Correction

Lack of Fit Study
Fitting White Noise Plus Autoregressive Errors to a Sine Wave

The AUTOREG Procedure

Estimates of Autoregressive Parameters

Standard
Lag Coefficient Error t Value

1 -0.976386 0.025460 -38.35

Yule-Walker Estimates

SSE 0.18304264 DFE 72
MSE 0.00254 Root MSE 0.05042
SBC -222.30643 AIC -229.2589
Regress R-Square 0.0001 Total R-Square 0.9947
Durbin-Watson 0.0942

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.1473 0.1702 -0.87 0.3898
x 1 -0.001219 0.0141 -0.09 0.9315

379
SAS OnlineDoc: Version 8



Part 2. General Information

Output 8.3.3. Plot of Autoregressive Prediction

Example 8.4. Missing Values

In this example, a pure autoregressive error model with no regressors is used to gen-
erate 50 values of a time series. Approximately fifteen percent of the values are
randomly chosen and set to missing. The following statements generate the data.

title ’Simulated Time Series with Roots:’;
title2 ’ (X-1.25)(X**4-1.25)’;
title3 ’With 15% Missing Values’;
data ar;

do i=1 to 550;
e = rannor(12345);
n = sum( e, .8*n1, .8*n4, -.64*n5 ); /* ar process */
y = n;
if ranuni(12345) > .85 then y = .; /* 15% missing */
n5=n4; n4=n3; n3=n2; n2=n1; n1=n; /* set lags */
if i>500 then output;
end;

run;

The model is estimated using maximum likelihood, and the residuals are plotted with
99% confidence limits. The PARTIAL option prints the partial autocorrelations. The
following statements fit the model:

proc autoreg data=ar partial;
model y = / nlag=(1 4 5) method=ml;
output out=a predicted=p residual=r ucl=u lcl=l alphacli=.01;

run;
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The printed output produced by the AUTOREG procedure is shown in Output 8.4.1.

Output 8.4.1. Autocorrelation-Corrected Regression Results

Simulated Time Series with Roots:
(X-1.25)(X**4-1.25)

With 15% Missing Values

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 182.972379 DFE 40
MSE 4.57431 Root MSE 2.13876
SBC 181.39282 AIC 179.679248
Regress R-Square 0.0000 Total R-Square 0.0000
Durbin-Watson 1.3962

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -2.2387 0.3340 -6.70 <.0001

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 4.4627 1.000000 | |********************|
1 1.4241 0.319109 | |****** |
2 1.6505 0.369829 | |******* |
3 0.6808 0.152551 | |*** |
4 2.9167 0.653556 | |************* |
5 -0.3816 -0.085519 | **| |

Partial
Autocorrelations

1 0.319109
4 0.619288
5 -0.821179
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The AUTOREG Procedure

Preliminary MSE 0.7609

Estimates of Autoregressive Parameters

Standard
Lag Coefficient Error t Value

1 -0.733182 0.089966 -8.15
4 -0.803754 0.071849 -11.19
5 0.821179 0.093818 8.75

Expected
Autocorrelations

Lag Autocorr

0 1.0000
1 0.4204
2 0.2480
3 0.3160
4 0.6903
5 0.0228

Algorithm converged.

Maximum Likelihood Estimates

SSE 48.4396756 DFE 37
MSE 1.30918 Root MSE 1.14419
SBC 146.879013 AIC 140.024725
Regress R-Square 0.0000 Total R-Square 0.7353
Durbin-Watson 2.9457

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -2.2370 0.5239 -4.27 0.0001
AR1 1 -0.6201 0.1129 -5.49 <.0001
AR4 1 -0.7237 0.0914 -7.92 <.0001
AR5 1 0.6550 0.1202 5.45 <.0001
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The AUTOREG Procedure

Expected
Autocorrelations

Lag Autocorr

0 1.0000
1 0.4204
2 0.2423
3 0.2958
4 0.6318
5 0.0411

Autoregressive parameters assumed given.

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -2.2370 0.5225 -4.28 0.0001

The following statements plot the residuals and confidence limits:

data reshape1;
set a;
miss = .;
if r=. then do;

miss = p;
p = .;
end;

run;

title ’Predicted Values and Confidence Limits’;
proc gplot data=reshape1;

plot l*i=1 miss*i=2 p*i=3 u*i=4 / overlay;
symbol1 i=join v=none l=2;
symbol2 i=needle v=’X’;
symbol3 i=needle v=circle;
symbol4 i=join v=none l=2;

run;

The plot of the predicted values and the upper and lower confidence limits is shown
in Output 8.4.2. Note that the confidence interval is wider at the beginning of the
series (when there are no past noise values to use in the forecast equation) and after
missing values where, again, there is an incomplete set of past residuals.
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Output 8.4.2. Plot of Residuals and Confidence Interval

Example 8.5. Money Demand Model

The following example estimates the log-log money demand equation using the max-
imum likelihood method. The money demand model contains four explanatory vari-
ables. The lagged nominal money stock M1 is divided by the current price level GDF
to calculate a new variable M1CP since the money stock is assumed to follow the par-
tial adjustment process. The variable M1CP is then used to estimate the coefficient of
adjustment. All variables are transformed using the natural logarithm with a DATA
step. Refer to Balke and Gordon (1986) for data description.

The first eight observations are printed using the PRINT procedure and are shown
in Output 8.5.1. Note that the first observation of the variables M1CP and INFR are
missing. Therefore, the money demand equation is estimated for the period 1968:2
to 1983:4 since PROC AUTOREG ignores the first missing observation.

data money;
date = intnx( ’qtr’, ’01jan1968’d, _n_-1 );
format date yyqc6.;
input m1 gnp gdf ycb @@;
m = log( 100 * m1 / gdf );
m1cp = log( 100 * lag(m1) / gdf );
y = log( gnp );
intr = log( ycb );
infr = 100 * log( gdf / lag(gdf) );
label m = ’Real Money Stock (M1)’

m1cp = ’Lagged M1/Current GDF’
y = ’Real GNP’
intr = ’Yield on Corporate Bonds’
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infr = ’Rate of Prices Changes’;
datalines;
;

Output 8.5.1. Money Demand Data Series – First 8 Observations

Obs date m1 gnp gdf ycb m m1cp y intr infr

1 1968:1 187.15 1036.22 81.18 6.84 5.44041 . 6.94333 1.92279 .
2 1968:2 190.63 1056.02 82.12 6.97 5.44732 5.42890 6.96226 1.94162 1.15127
3 1968:3 194.30 1068.72 82.80 6.98 5.45815 5.43908 6.97422 1.94305 0.82465
4 1968:4 198.55 1071.28 84.04 6.84 5.46492 5.44328 6.97661 1.92279 1.48648
5 1969:1 201.73 1084.15 84.97 7.32 5.46980 5.45391 6.98855 1.99061 1.10054
6 1969:2 203.18 1088.73 86.10 7.54 5.46375 5.45659 6.99277 2.02022 1.32112
7 1969:3 204.18 1091.90 87.49 7.70 5.45265 5.44774 6.99567 2.04122 1.60151
8 1969:4 206.10 1085.53 88.62 8.22 5.44917 5.43981 6.98982 2.10657 1.28331

The money demand equation is first estimated using OLS. The DW=4 option pro-
duces generalized Durbin-Watson statistics up to the fourth order. Their exact
marginal probabilities (p-values) are also calculated with the DWPROB option. The
Durbin-Watson test indicates positive first-order autocorrelation at, say, the 10% con-
fidence level. You can use the Durbin-Watson table, which is available only for 1%
and 5% significance points. The relevant upper (dU ) and lower (dL) bounds are
dU = 1:731 anddL = 1:471, respectively, at 5% significance level. However, the
bounds test is inconvenient since sometimes you may get the statistic in the inconclu-
sive region while the interval between the upper and lower bounds becomes smaller
with the increasing sample size.

title ’Partial Adjustment Money Demand Equation’;
title2 ’Quarterly Data - 1968:2 to 1983:4’;

proc autoreg data=money outest=est covout;
model m = m1cp y intr infr / dw=4 dwprob;

run;
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Output 8.5.2. OLS Estimation of the Partial Adjustment Money Demand Equation

Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4

The AUTOREG Procedure

Dependent Variable m
Real Money Stock (M1)

Ordinary Least Squares Estimates

SSE 0.00271902 DFE 58
MSE 0.0000469 Root MSE 0.00685
SBC -433.68709 AIC -444.40276
Regress R-Square 0.9546 Total R-Square 0.9546

Durbin-Watson Statistics

Order DW Pr < DW Pr > DW

1 1.7355 0.0607 0.9393
2 2.1058 0.5519 0.4481
3 2.0286 0.5002 0.4998
4 2.2835 0.8880 0.1120

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 0.3084 0.2359 1.31 0.1963
m1cp 1 0.8952 0.0439 20.38 <.0001 Lagged M1/Current GDF
y 1 0.0476 0.0122 3.89 0.0003 Real GNP
intr 1 -0.0238 0.007933 -3.00 0.0040 Yield on Corporate Bonds
infr 1 -0.005646 0.001584 -3.56 0.0007 Rate of Prices Changes

The autoregressive model is estimated using the maximum likelihood method.
Though the Durbin-Watson test statistic is calculated after correcting the autocorre-
lation, it should be used with care since the test based on this statistic is not justified
theoretically.

proc autoreg data=money;
model m = m1cp y intr infr / nlag=1 method=ml maxit=50;
output out=a p=p pm=pm r=r rm=rm ucl=ucl lcl=lcl

uclm=uclm lclm=lclm;
run;

proc print data=a(obs=8);
var p pm r rm ucl lcl uclm lclm;

run;

A difference is shown between the OLS estimates in Output 8.5.2 and the AR(1)-ML
estimates in Output 8.5.3. The estimated autocorrelation coefficient is significantly
negative (-0.88345). Note that the negative coefficient of A(1) should be interpreted
as a positive autocorrelation.

Two predicted values are produced dash predicted values computed for the structural
model and predicted values computed for the full model. The full model includes
both the structural and error-process parts. The predicted values and residuals are
stored in the output data set A, as are the upper and lower 95% confidence limits
for the predicted values. Part of the data set A is shown in Output 8.5.4. The first
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observation is missing since the explanatory variables, M1CP and INFR, are missing
for the corresponding observation.

Output 8.5.3. Estimated Partial Adjustment Money Demand Equation

Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4

The AUTOREG Procedure

Estimates of Autoregressive Parameters

Standard
Lag Coefficient Error t Value

1 -0.126273 0.131393 -0.96

Algorithm converged.

Maximum Likelihood Estimates

SSE 0.00226719 DFE 57
MSE 0.0000398 Root MSE 0.00631
SBC -439.47665 AIC -452.33545
Regress R-Square 0.6954 Total R-Square 0.9621
Durbin-Watson 2.1778

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 2.4121 0.4880 4.94 <.0001
m1cp 1 0.4086 0.0908 4.50 <.0001 Lagged M1/Current GDF
y 1 0.1509 0.0411 3.67 0.0005 Real GNP
intr 1 -0.1101 0.0159 -6.92 <.0001 Yield on Corporate Bonds
infr 1 -0.006348 0.001834 -3.46 0.0010 Rate of Prices Changes
AR1 1 -0.8835 0.0686 -12.89 <.0001

Autoregressive parameters assumed given.

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 2.4121 0.4685 5.15 <.0001
m1cp 1 0.4086 0.0840 4.87 <.0001 Lagged M1/Current GDF
y 1 0.1509 0.0402 3.75 0.0004 Real GNP
intr 1 -0.1101 0.0155 -7.08 <.0001 Yield on Corporate Bonds
infr 1 -0.006348 0.001828 -3.47 0.0010 Rate of Prices Changes

Output 8.5.4. Partial List of the Predicted Values

Obs p pm r rm ucl lcl uclm lclm

1 . . . . . . . .
2 5.45962 5.45962 -.005763043 -0.012301 5.49319 5.42606 5.47962 5.43962
3 5.45663 5.46750 0.001511258 -0.009356 5.47987 5.43340 5.48700 5.44800
4 5.45934 5.46761 0.005574104 -0.002691 5.48267 5.43601 5.48723 5.44799
5 5.46636 5.46874 0.003442075 0.001064 5.48903 5.44369 5.48757 5.44991
6 5.46675 5.46581 -.002994443 -0.002054 5.48925 5.44424 5.48444 5.44718
7 5.45672 5.45854 -.004074196 -0.005889 5.47882 5.43462 5.47667 5.44040
8 5.44404 5.44924 0.005136019 -0.000066 5.46604 5.42203 5.46726 5.43122

Example 8.6. Estimation of ARCH(2) Process

Stock returns show a tendency for small changes to be followed by small changes
while large changes are followed by large changes. The plot of daily price changes
of the IBM common stock (Box and Jenkins 1976, p 527) are shown in Output 8.6.1.
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The time series look serially uncorrelated, but the plot makes us skeptical of their
independence.

With a DATA step, the stock (capital) returns are computed from the closing prices.
To forecast the conditional variance, an additional 46 observations with missing val-
ues are generated.

title ’IBM Stock Returns (daily)’;
title2 ’29jun1959 - 30jun1960’;

data ibm;
infile datalines eof=last;
input x @@;
r = dif( log( x ) );
time = _n_-1;
output;
return;

last:
do i = 1 to 46;

r = .;
time + 1;
output;

end;
return;

datalines;
;

proc gplot data=ibm;
plot r*time / vref=0;
symbol1 i=join v=none;

run;
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Output 8.6.1. IBM Stock Returns: Daily

The simple ARCH(2) model is estimated using the AUTOREG procedure. The
MODEL statement option GARCH=(Q=2) specifies the ARCH(2) model. The OUT-
PUT statement with the CEV= option produces the conditional variances V. The con-
ditional variance and its forecast is calculated using parameter estimates:

ht = !̂ + �̂1�
2
t�1 + �̂2�

2
t�2

E(�2t+dj	t) = !̂ +

2X
i=1

�̂iE(�
2
t+d�ij	t)

whered > 1:

proc autoreg data=ibm maxit=50;
model r = / noint garch=(q=2);
output out=a cev=v;

run;

The parameter estimates for!; �1, and�2 are 0.00011, 0.04136, and 0.06976, re-
spectively. The normality test indicates that the conditional normal distribution may
not fully explain the leptokurtosis in the stock returns (Bollerslev 1987).

The ARCH model estimates are shown in Output 8.6.2, and conditional variances are
also shown in Output 8.6.3.
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Output 8.6.2. ARCH(2) Estimation Results

The AUTOREG Procedure

Dependent Variable r

Ordinary Least Squares Estimates

SSE 0.03214307 DFE 254
MSE 0.0001265 Root MSE 0.01125
SBC -1558.802 AIC -1558.802
Regress R-Square 0.0000 Total R-Square 0.0000
Durbin-Watson 2.1377

NOTE: No intercept term is used. R-squares are redefined.

Algorithm converged.

GARCH Estimates

SSE 0.03214307 Observations 254
MSE 0.0001265 Uncond Var 0.00012632
Log Likelihood 781.017441 Total R-Square 0.0000
SBC -1545.4229 AIC -1556.0349
Normality Test 105.8557 Pr > ChiSq <.0001

NOTE: No intercept term is used. R-squares are redefined.

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

ARCH0 1 0.000112 7.5608E-6 14.85 <.0001
ARCH1 1 0.0413 0.0511 0.81 0.4181
ARCH2 1 0.0697 0.0432 1.62 0.1062
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Output 8.6.3. Conditional Variance for IBM Stock Prices
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