
103

C H A P T E R

15
Preventing and Fixing Problems

Checklist for Transferring and Restoring Transport Files 103
Transferring the Transport File in Binary Format 104

Verifying That the Transport File Has Not Been Corrupted 104

Verifying That the Communications Software Has Not Changed File Attributes 104

Invoking the Communications Software at the Target Host 105

Using Compatible Transport Methods at the Source and Target Hosts 105
Validating the Integrity of the Transport File 106

Using an Unlabeled Tape 106

Dividing a Large Transport File Into Smaller Files for Tape 106

Error and Warning Messages 106

Bad Transport File 107

Catalog file open function is not supported by the XPORT engine 107
DATA= or LIBRARY= parameter expected instead of CATALOG= 108

filename is not a SAS file 108

Entry type catalog-entry-type is not supported by CPORT 108

Entry type catalog-entry-type is not compatible to earlier release 109

File library.member.DATA has too long a member name for the XPORT engine 109
File library.member.DATA has too long a member name for the V6 engine 109

File libref.ALL is damaged. I/O processing did not complete 109

Given transport file is bad 110

Internal error from getting data 110

Invalid data length 110
Member or library unavailable for use in file file 111

More library members exist in the input file. For all of them to get converted, please specify
LIBRARY=libref parameter in the PROC statement 111

PROC SQL will not store a V8 view into a V6 library 111

Requested function is not supported 112

Truncated record 112
Updating not allowed for libref.member-name because it was created for a different operating

system 112

UTILITY FILE OPEN function is not supported by the XPORT engine 112

Variable name XXXXXXXXX is illegal for file Version-6-data-set 112

Verifying Transfer Format and Transport File Attributes 113
Reblocking a Transport File 114

Checklist for Transferring and Restoring Transport Files

To avoid potential problems when transferring a transport file to the target host,
ensure that these conditions have been met.

104 Transferring the Transport File in Binary Format 4 Chapter 15

1 If transferring across the network, verify that the transport file is transferred in
binary format. See “Transferring the Transport File in Binary Format” on page
104 for more information.

2 Verify that the transport file has not been corrupted. See “Verifying That the
Transport File Has Not Been Corrupted” on page 104 for more information.

3 Verify that the communications software does not change file attributes. See
“Verifying That the Communications Software Has Not Changed File Attributes”
on page 104 for more information.

4 Consider invoking the communications software at the target host and getting the
transport file from the source host. See “Invoking the Communications Software at
the Target Host” on page 105 for more information.

5 Do not mix methods to create the transport file at the source host and then to
restore the transport file at the target host. See “Using Compatible Transport
Methods at the Source and Target Hosts” on page 105 for more information.

6 Before you transfer a transport file to the target host, validate the integrity of the
transport file by restoring it to the source host that created it. See “Validating the
Integrity of the Transport File” on page 106 for more information.

7 If transferring by means of tape, use an unlabeled tape. See “Using an Unlabeled
Tape” on page 106 for more information.

8 If transferring a large transport file by means of tape, break up the library into
multiple libraries and transport each one to tape. See “Dividing a Large Transport
File Into Smaller Files for Tape” on page 106 for more information.

Remaining sections explain these topics in detail.

Transferring the Transport File in Binary Format
When transferring a transport file using the communications software, verify that

the file is transferred in binary (or image) format. The content of the file must be
transferred in sequential bytes without modification.

If you use FTP to move a transport file to the target host, you should first specify
BINARY 80 before transferring the file.

If you use PATHWORKS, use the SEQUENTIAL_FIXED attribute when you set the
file_server service using PCSA_MANAGER. The default attribute is STREAM, which is
not appropriate for moving transport files.

Verifying That the Transport File Has Not Been Corrupted
Verify that your communications software does not insert a carriage return to mark

an end of record in the transport file during transfer to the target host. The insertion of
carriage returns and line feeds corrupts the transport file, making it impossible to
restore at the target host. For details about how to determine this condition, see the
recovery actions for “File libref.ALL is damaged. I/O processing did not complete” on
page 109.

Verifying That the Communications Software Has Not Changed File
Attributes

Verify that your communications software does not change file attributes. Here are
the required attributes with values:

Troubleshooting 4 Using Compatible Transport Methods at the Source and Target Hosts 105

Logical record length (LRECL) 80

Block size (BLKSIZE) 8000 blocks

Record format (RECFM) Fixed block

See your communications software documentation for information about controlling
these attributes.

At the target host, if you have a transport file that has not been corrupted (carriage
returns or line feeds have not been inserted), but whose record block size is incorrect
and you are unable to obtain a correctly blocked transport file, you may run a
reblocking program to fix the blocks to the correct size. For details, see “Reblocking a
Transport File” on page 114.

Invoking the Communications Software at the Target Host

To transfer the transport file to the target host, you may be more successful invoking
the communications software at the target host than at the source host. You probably
cannot put a file in a location on the target host because you do not have write
permission. For example, if transferring a transport file from UNIX to CMS, you are
advised to invoke the communications software at the CMS host. Because you probably
have read permission at the UNIX host, you can get the transport file and write it to
your CMS host.

Using Compatible Transport Methods at the Source and Target Hosts

Do not mix methods to create the transport file at the source host and then restore
the transport file at the target host. The methods that you use must be identical or be a
companion pair. For example, create and restore a transport file using the XPORT
engine and PROC COPY at both the source and target hosts. Likewise, create a
transport file using PROC CPORT at the source host and import the transport file
using PROC CIMPORT at the target host. Do not, for example, create a transport file
using the XPORT engine and PROC COPY at the source host and then try to use
PROC CIMPORT to restore the transport file at the target host.

To determine the method that was used to create a transport file, use a text editor or
an operating system read or view command to read the file on any Version 8 host that
represents character data as ASCII.

Note: For information about viewing transport files on hosts that represent
character data as EBCDIC, see “Representing EBCDIC as ASCII or Hexadecimal Data”
on page 122. 4

The XPORT engine creates a file whose first line contains this ASCII text:

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

PROC CPORT creates a file whose first line contains this text:

COMPRESSED **COMPRESSED** **COMPRESSED**

Note: If you set the NOCOMPRESS option to PROC CPORT, compression is
suppressed, which prevents the display of the preceding text in a transport file. 4

106 Validating the Integrity of the Transport File 4 Chapter 15

Validating the Integrity of the Transport File
To validate the integrity of the transport file before it is transferred to the target

host, using the appropriate method, try to read it back into native format at the source
host.

Here is a PROC COPY example:

/* This PROC COPY creates the transport file TRAN. */
libname tran xport ’transport-file’;
libname grades ’SAS-data-library’;
proc copy in=grades out=tran memtype=data;
run;
/* This PROC COPY reads back transport file TRAN. */
libname grades ’SAS-data-library’;
libname tran xport ’transport-file’;
proc copy in=tran out=test;
run;

Here is a PROC CPORT and PROC CIMPORT example:

/* This PROC CPORT creates the transport file. */
libname grades ’SAS-data-library’;
filename tran ’transport-file’;
proc cport library=grades file=tran;
run;
/* This PROC CIMPORT reads back the transport file. */
filename tran ’transport-file’;
libname grades ’SAS-data-library’;
proc cimport library=grades infile=tran;
run;

For both examples, check the log for error messages.

Using an Unlabeled Tape
When transferring a transport file by means of tape, use an unlabeled tape. Because

tape labels are processed differently in different operating environments, reading a file
from a standard label tape may be somewhat complicated at the target host.

Dividing a Large Transport File Into Smaller Files for Tape
When transferring a transport file by means of tape, if the transport file exceeds the

capacity of one tape, rather than using multi-volume tapes, you should divide the
original library into two or more libraries and create a separate, unlabeled tape for each
one. The original library can be restored at the target host.

Error and Warning Messages

For all hosts, the most common error and warning messages with recovery actions
are presented here. For host-specific messages, see the appropriate operating
environment chapter.

Troubleshooting 4 Catalog file open function is not supported by the XPORT engine 107

Bad Transport File

The primary cause for this message is that you are attempting to use
PROC CIMPORT to move a transport file that was created in Version 8 to a host that is
running Version 6. You cannot move a transport file from a Version 8 SAS session on a
source host to a Version 6 SAS session on a target host.

Another possibility is that either a file was transported in some format other than
BINARY or the attributes of the transport file changed while in transit to the target
host.

See “Verifying Transfer Format and Transport File Attributes” on page 113 for
recovery actions.

An alternative cause is that your site may use a translation table other than the
default. A customized translation table is set with the TRANTAB= system option. See
SAS Language Reference: Dictionary for details about setting the TRANTAB= system
option. Verify the value of the TRANTAB= system option:

proc options option=trantab;
run;

If you discover that your site is using an alternative translation table, you must
restore the option to its default value.

options trantab=();

Then create the transport file again, transfer it to the target host, and import the file
at the target host.

Another possible explanation applies to a source host that runs SAS Release 6.12 and
a target host that imports the file at the target host that runs SAS Release, 6.08, 6.09E,
or 6.10. Data set sort features (set through the SORTEDBY= data set option) are
included in the Release 6.12 CPORT procedure but not in the Release 6.08 CIMPORT
procedure.

Use either of two options to recover from this problem:

� Disable the sorting feature by using the SORTINFO= option in the Release 6.12
CPORT procedure. Here is an example:

proc cport data=grades.junior
file=’xgrades.junior’
sortinfo=no;

� To disable the Release 6.12 sorting feature, use the V608 or V609 engine option in
the Release 6.12 CPORT procedure. Here is an example:

proc cport data=grades.junior
file=’xgrades.junior’ v609;

The SORTEDBY= data set option information is included in Release 6.12
PROC CPORT.

Catalog file open function is not supported by the XPORT engine

You see this message when you attempt to create a transport file for a catalog or
catalog entry by using PROC COPY with the XPORT engine. Instead, you must use
PROC CPORT to create a transport file for a catalog or catalog entry and use PROC
CIMPORT to import them at the target host.

108 DATA= or LIBRARY= parameter expected instead of CATALOG= 4 Chapter 15

DATA= or LIBRARY= parameter expected instead of CATALOG=

This message is displayed at the target host when PROC CIMPORT contains a
CATALOG= destination member and the source host used PROC CPORT with the
LIBRARY= destination member. The target host must use either the DATA= or
LIBRARY= member type. Here is an example:

proc cport file=in libname=out;
proc cimport infile=in catalog=new;

Because the PROC CPORT LIBNAME= option specifies a destination member of type
LIBRARY, the PROC CIMPORT must also specify either a LIBNAME= or DATA=
option.

In order to select only a catalog entry type from an imported library, specify the ET=
option in PROC CIMPORT. To exclude a catalog entry type, use the EET= option. Here
are examples:

proc cimport infile=in library=new et=program memtype=catalog;
proc cimport infile=in library=new eet=program memtype=catalog;

In the first example, only catalog entries of type PROGRAM are imported. In the
second example, only catalog entries of type PROGRAM are excluded.
MEMTYPE=CATALOG restricts the import to catalogs only.

filename is not a SAS file

You typically see this message when using the CIMPORT procedure to import a data
set at the target host. There are two possible explanations.

The transport file that you are trying to import by using PROC CIMPORT may have
been created by using the XPORT engine with either the COPY procedure or the DATA
step. Read the beginning of the file to determine how the transport file was created. If
the XPORT engine created the transport file, the beginning of the file contains this text:

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

If the CPORT procedure created the transport file, the beginning of that file contains
this text:

COMPRESSED **COMPRESSED** **COMPRESSED** **COM

Note: If you set the NOCOMPRESS option in PROC CPORT, compression is
suppressed, which prevents the display of the preceding text in a transport file. 4

If incompatible methods were used to create and then restore the transport file, then
use the correct method to restore the transport file.

Another possible explanation is that your site may use a translation table other than
the default. For recovery actions for this problem, see “Bad Transport File” on page 107.

Entry type catalog-entry-type is not supported by CPORT
Transporting this catalog entry type between hosts and across SAS releases is not

supported.
Because you cannot retrieve the definitions from the module itself, you can try to

move the SAS statements that defined the entry type (such as IML modules) to the
target host and then re-create the modules.

Troubleshooting 4 File libref.ALL is damaged. I/O processing did not complete 109

Entry type catalog-entry-type is not compatible to earlier release
You see this message when you attempt to use PROC CPORT to move a catalog

entry from Version 8 back to Version 6. Version 8 does not support the backward
compatibility of this catalog entry.

File library.member.DATA has too long a member name for the XPORT
engine

This message appears when you use the XPORT engine with PROC COPY to move a
data set on a Version 8 source host whose name exceeds eight characters to a Version 6
library. Here is an explicit example of such a message:

ERROR: The file OUT.THIS_IS_LONG_NAMED_DATA.DATA
has too long a member name for the XPORT engine.

The member name THIS_IS_LONG_NAMED_DATA exceeds the eight-character
member name length, which is enforced by the Version 5 feature set in which the
XPORT engine was introduced.

The VALIDVARNAME SAS system option and the assigned value of V6, which
enables automatic truncation of long variable names, does not support member names.
To recover, copy the member to another member whose name does not exceed 8
characters and retry the transport operation.

File library.member.DATA has too long a member name for the V6
engine

This message appears when using PROC COPY to move a data set on a Version 8
source host whose name exceeds 8 characters to a Version 6 library. Here is an explicit
example of such a message:

ERROR: The file V6LIBMYDATABASE.DATA
has too long a member name for the V6 engine.

The Version 8 data set name MYDATABASE exceeds the maximum member name
length of 8 that is supported in Version 6. Version 6 interprets the data set name
MYDATABASE as containing 10 characters, which exceeds its maximum length of 8.

The VALIDVARNAME SAS system option and the assigned value of V6, which
enables automatic truncation of long variable names, does not support member names.
To recover, rename the member or copy it to another member whose name does not
exceed 8 characters and retry the transport operation.

File libref.ALL is damaged. I/O processing did not complete
This message typically alerts you to a file corruption. The likely explanation is that

your site’s communications software inserted carriage returns into the transport file.
At the target host, you can use a host-specific utility (such as the UNIX hexadecimal

dump utility xd) to view the transport file in hexadecimal format to determine if
carriage returns were inserted. See the UNIX xd(1) manual page for details. As
another example, for OS/390, use the SPF 1 command for browsing, select a data set,
and enter hex on in the command line.

110 Given transport file is bad 4 Chapter 15

Example Code 15.1 on page 110 shows an example of a transport file that contains a
carriage return character (0D) and a line feed character (OA) toward the end of the first
record. See the 0D and 0A hex values in the first two positions of the last line.

Example Code 15.1 Hexadecimal Representation of a Transport File

48 45 41 44 45 52 20 52 45 43 4F 52 44 2A 2A 2A HEADER R ECORD***
2A 2A 2A 2A 4C 49 42 52 41 52 59 20 48 45 41 44 ****LIBR ARY HEAD
45 52 20 52 45 43 4F 52 44 21 21 21 21 21 21 21 ER RECOR D!!!!!
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 00000000 000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 20 20 00000000 0000
0D 0A 53 41 53 20 20 20 20 20 53 41 53 20 20 20 ...SAS SAS

If you do not see carriage return or line feed characters, another form of corruption
that is not immediately apparent may have occurred. To test this possibility, at the
target host, create another transport file from a member of the same type and then
view its hexadecimal representation. Compare the appearance of the assumed
uncorrupted file that you just created with the suspected corrupted file that you are
trying to restore. A visual comparison may prove that the transport file that you are
trying to restore is indeed corrupt. In this case, re-create the transport file at the source
host, transfer it, and restore it at the target host.

At the source host, determine whether the transport file’s attributes include carriage
returns. For information about listing and correcting file attributes, see the appropriate
operating environment chapter.

At the source host, transfer the transport file to the target host again.
If you are still unable to restore a transport file that has the correct file attributes,

you may try using the re-blocking program in “Reblocking a Transport File” on page 114.

Given transport file is bad
See “Bad Transport File” on page 107 for recovery actions.

Internal error from getting data
This message typically appears because either a file was transported in some format

other than BINARY or the attributes of the transport file changed while in transit to
the target host.

See “Verifying Transfer Format and Transport File Attributes” on page 113 for
recovery actions.

Invalid data length
This message typically appears because either a file was transported in some format

other than BINARY or the attributes of the transport file changed while in transit to
the target host.

See “Verifying Transfer Format and Transport File Attributes” on page 113 for
recovery actions.

Troubleshooting 4 PROC SQL will not store a V8 view into a V6 library 111

Member or library unavailable for use in file file
This message typically appears because either a file was transported in some format

other than BINARY or the attributes of the transport file changed while in transit to
the target host.

See “Verifying Transfer Format and Transport File Attributes” on page 113 for
recovery actions.

Another possible explanation applies to a Release 6.12 SAS session on a source host
and a Release 6.08 SAS session on a target host. Data set sort features (specified by
using the SORTEDBY= data set option) are included in the Release 6.12 CPORT
procedure but not in the Release 6.08 CIMPORT procedure.

Use either of two options to recover from this problem:
� Disable the sorting feature by using the SORTINFO= option in the Release 6.12

CPORT procedure. Here is an example:

proc cport data=grades.jr file=’tranfile.jr’ sortinfo=no;

� To disable the Release 6.12 sorting feature, use the V608 engine explicitly in the
Release 6.12 CPORT procedure. Here is an example:

proc cport data=grades.jr file=’tranfile.j v608;

The SORTEDBY= data set option information is included in Release 6.12
PROC CPORT.

More library members exist in the input file. For all of them to get
converted, please specify LIBRARY=libref parameter in the PROC
statement

This warning message is displayed at the target host when PROC CIMPORT
contains a DATA= destination member and the source host used PROC CPORT with
the LIBRARY= destination member. Although, the target host successfully imports only
one data set, the message indicates that other members are contained in the library
that can also be imported. Here is an example:

proc cport file=in library=out;
proc cimport infile=in data=new;

In order to expand the import operation to include the entire contents of destination
library, specify the LIBRARY= option rather than the DATA= option in
PROC CIMPORT.

PROC SQL will not store a V8 view into a V6 library
This message is typically displayed when you use the XPORT engine to create a

Version 8 PROC SQL view in transport format in a Version 6 library. However, you can
use the XPORT engine to create an SQL table.

To recover, transport the data set that contains the SQL table to the target host and
re-create the PROC SQL view there.

112 Requested function is not supported 4 Chapter 15

Requested function is not supported
This message indicates a failure to move a library from a Version 8 source host to a

library on a Version 6 target host because of cross-version incompatibilities. For
example, Version 8 features such as generations data sets and integrity constraints are
not supported.

To recover, you must remove Version 8 features from the library or the member to be
moved to the library on the Version 6 host and retry the transport operation. Preceding
notes in the log can hint at the offending Version 8 feature that is not supported. Here
is an example:

NOTE: Integrity constraint mc defined.

You can infer from this message that Version 6 does not support integrity constraints.
For tips on how to remove Version 8 features, see the recovery actions for these

messages: “File library.member.DATA has too long a member name for the V6 engine”
on page 109 and “Variable name XXXXXXXXX is illegal for file Version-6-data-set ”on
page 112.

Truncated record
This message typically appears because either a file was transported in some format

other than BINARY or the attributes of the transport file changed in transit to the
target host.

See “Verifying Transfer Format and Transport File Attributes” on page 113 for
recovery actions.

This message can indicate that the transport file was moved to a virtual disk or
shared disk with other operating environments such as DOS, Macintosh, or UNIX. For
recovery actions, see the appropriate operating environment chapter.

Updating not allowed for libref.member-name because it was created
for a different operating system

This message appears when a host attempts to update a file whose format is foreign
to that of the accessing host. Use PROC CONTENTS on the file to verify the file’s data
representation. A data represention of FOREIGN proves that the formats of the file and
the accessing host are incompatible.

UTILITY FILE OPEN function is not supported by the XPORT engine
This message appears when you attempt to use PROC COPY with the XPORT

engine to create a transport file for a utility file, such as an MDDB. The XPORT engine
does not support utility files.

Variable name XXXXXXXXX is illegal for file Version-6-data-set
This message appears when using PROC CIMPORT to move a Version 8 data set

that contains long variable names to a Version 6 data set. Here is an explicit example
of such a message:

ERROR: The variable name Region_Of_The_Country
is illegal for file V6LIB.CITY.DATA.

Troubleshooting 4 Verifying Transfer Format and Transport File Attributes 113

The Version 8 variable name Region_Of_The_Country exceeds the maximum
variable name length of 8 that is supported in Version 6. To recover, in the SAS session
on the local host, set the VALIDVARNAME SAS system option to V6 to enable
automatic truncation of long variable names. Retry the transport operation. Here is an
example of setting this variable:

options validvarname=v6;

In this example, Region_Of_The_Country truncates to Region_O However, if the
data set contains multiple variables whose first 8 characters conflict, Version 8 uses a
truncation algorithm that ensures uniquely truncated variable names. For details, see
“Regressing SAS Data Sets from Version 8 to Version 6 Format” on page 19.

Verifying Transfer Format and Transport File Attributes

Verify that the communications software that you use to transfer the transport file is
in BINARY format. If you use FTP, for example, you would explicitly enter the FTP
BINARY command. Here is a sample invocation of FTP:

ftp
> open host
> binary
> get file file
> close
> quit

For details about FTP, see Chapter 4, “Transferring a Transport File or a CEDA
File,” on page 31.

Even if your communications software claims to submit transport files in an
appropriate format by default, always be certain of binary format by explicitly
specifying it. For details about how to specify the transfer format, consult your
communications software documentation.

Also, verify the file attributes of the transport file, which are required in order to
restore the file at the target host. Although some target hosts may not need file
attributes, the transfer method (tape and network) always does. See “Transport File
Attributes” on page 31 for a list of hosts that require file attributes. Problems can
result when the file attributes that are required by the target host and those applied by
the transfer method conflict.

Verify file attributes that are required by the target host. How you list and set file
attributes varies by host. See the appropriate host environment chapter for this
information.

Also verify the file attributes that the transfer method sets. For example, if using
FTP, you set file attributes in an FTP command. Here is a sample invocation of FTP:

ftp
> open host
> binary
> locsite recfm=fb blocksize=8000 lrecl=80
> get file file
> close
> quit

If transferring a transport file across a network, consult your communications
software documentation. For information about transferring a file by means of tape, see
the appropriate host environment chapter.

114 Reblocking a Transport File 4 Chapter 15

If you can correct the problem, re-create the transport file at the source host, transfer
it to the target, and restore it again.

If the problem persists, try to reblock the transport file and retry transporting it. See
“Reblocking a Transport File” on page 114.

Reblocking a Transport File

At the target host, if you determine that the transport file has an incorrect block
size and you are unable to obtain a transport file that contains the correct block size,
then use the reblocking program to reblock the transport file.

Note: The transport file against which the reblocking program is run must be
uncorrupted; that is, no extra carriage returns or line feeds can be inserted. If the
transport file is known to be corrupted, the reblocking program will fail. 4

This program copies the transport file and produces a new transport file that
contains 80-byte fixed block records.

Example Code 15.2 Program that Reblocks a Transport File

data _null_;

/* Note: the INFILE and FILE statements must */
/* be modified. Substitute your file names. */
infile ’your_transport.dat’ eof=wrapup;
file ’new_transport.dat’ recfm=f lrecl=80;

length irec $16 outrec $80 nullrec $80;
retain count 1 outrec nullrec;
input inrec $char16. @@;
substr(outrec, count, 16) = inrec;
count + 16;
if (count > 80) then do;

put outrec $char80.;
count=1;

end;
return;

wrapup:;
file log;
nullrec = repeat(’00’x,80);
if outrec = nullrec then do;

put ’ WARNING: Null characters may have been’
’ added at the end of transport file by’
’ communications software or by a copy’
’ utility. For a data set transport file,’
’ this could result in extra null’
’ observations being added at the end’
’ of the last data set.’;

end;
run;

In the example, the record format of the original transport file is fixed and the record
length is evenly divisible by 16.

Troubleshooting 4 Reblocking a Transport File 115

If your record type is fixed, but the record length is not evenly divisible by 16, then
determine the greatest common denominator that is divisible by both 80 and the
transport file record length. Substitute this number for all occurrences of 16 in the
preceding program.

For example, 80 is evenly divisible by 1, 2, 5, 8, and 10. A fixed record length of 99
for a transport file is evenly divisible by 1, 3, 9, and 11. Thus, 1 is the only common
denominator, and is, therefore, both the lowest common denominator and the greatest
common denominator.

Note: If the transport file has a variable length record type, then use 1 instead of 16
as the greatest common denominator. 4

CAUTION:
For a transport file that contains data sets, some communications software pads the final
record with null characters. The reblocking program may add extra observations that
contain all zero values to the end of the final data set in a library. 4

116 Reblocking a Transport File 4 Chapter 15

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., Moving
and Accessing SAS Files across Operating Environments, Version 8, Cary, NC: SAS
Institute Inc., 1999. 186 pages.

Moving and Accessing SAS Files across Operating Environments, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-480-2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX®, DB2®, OS/2®, OS/390®, and System/390® are registered trademarks or
trademarks of International Business Machines Corporation. ORACLE® is a registered
trademark or trademark of Oracle Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

