
133

C H A P T E R

20
Examples

The Examples 133
OpenVMS Alpha to HP-UX File Transport 134

Using PROC COPY at the Source Host to Create Transport Files 134

Viewing the SAS Log at the Source Host 135

Verifying Transport Files 136

Transferring the Transport Files to the Target Host 137
Using PROC COPY at the Target Host to Restore Transport Files into Native Format 139

Viewing the SAS Log at the Target Host 139

OS/390 to Windows NT File Transport 141

Using PROC CPORT at the Source Host to Create Transport Files 141

Viewing the SAS Log at the Source Host 141

Verifying the Transport Files 142
Transferring the Transport Files to the Target Host 143

Using PROC CIMPORT at the Target Host to Import Transport Files into Native Format 144

Viewing the SAS Log at the Target Host 145

OS/390 TSO to UNIX File Transport 146

Using PROC CPORT at the Source Host to Create Transport Files: OS/390 146
Viewing the SAS Log at the OS/390 Source Host 147

OS/390 JCL Batch to UNIX File Transport 152

The OS/390 JCL Batch Program 152

Using PROC COPY to Create a Transport File 152

Transferring the Transport File across the Network 153
Verifying the Accuracy of the Transport File 154

Using PROC COPY to Restore the Transport File 155

Recording the Creation of Data Sets and Transport Files in the SAS Log 156

Recording the Transfer of the Transport File to the Target Host in the SAS Log 157

Recording the Verification of the Transport File in the SAS Log 158

Recording the Restoration of the Transport File to the Source Host in the SAS Log 159
Methods for Verifying Transport Files 160

Restoring the Transport File at the Source Host 160

Verifying the Size of a Transport File 161

Comparing the Original Data Set with the Restored Data Set 161

The Examples
This chapter gives detailed examples that show how to create, transfer, and restore

transport files between two hosts. Table 20.1 on page 134 describes the basic
characteristics of each example:

134 OpenVMS Alpha to HP-UX File Transport 4 Chapter 20

Table 20.1 Summary of the Examples

Members to Move From Source Host
and SAS Release

To Target Host and
SAS Version

Using SAS
Procedure

Data sets OpenVMS Alpha 6.12 HP-UX 7 XPORT engine with
PROC COPY

Data sets and catalogs OS/390 6.09 Windows NT 7 PROC CPORT and
PROC CIMPORT

Data sets OS/390 TSO 7 UNIX 7 PROC CPORT and
PROC CIMPORT

Data sets JCL Batch OS/390
6.09

UNIX 7 XPORT engine with
PROC COPY

Although the examples are host-specific, the fundamental SAS command syntax for
all transport methods is identical across host types. Furthermore, although the
examples support a Version 7 environment, they also apply to Version 8. The
noteworthy syntax difference among host types is how you specify the SAS data library
name in the LIBNAME statement. For complete details about the syntax for the
LIBNAME statement, see your operating environment companion.

OpenVMS Alpha to HP-UX File Transport

Using PROC COPY at the Source Host to Create Transport Files
The following example shows a SAS program that creates three data sets in

OpenVMS Alpha format and translates them to transport format.

Example Code 20.1 SAS Program That Creates Data Sets and Transport Files

u libname xptlib xport ’xptlib.dat’;
v libname xptds xport ’xptds.dat’;

/* creates data set GRADES; contains numeric and */
/* character data */

w data grades;
input student $ test1 test2 final;

datalines;
Fred 66 80 70
Wilma 97 91 98
;

/* creates data set SIMPLE; contains */
/* character data only */

x data simple;
x=’dog’;
y=’cat’;
z=’fish’;

run;

4 Viewing the SAS Log at the Source Host 135

/* creates data set NUMBERS; contains */
/* numeric data only */

y data numbers;
do i=1 to 10;

output;
end;

run;

/* create a transport file for the entire library */
U proc copy in=work out=xptlib;

run;

/* create a tranport file for a dataset */
V proc copy in=work out=xptds;

select grades;
run;

1 The LIBNAME statement assigns the libref XPTLIB to the physical location
XPTLIB.DAT, which stores the entire library to be created. The XPORT engine
creates XPTLIB.DAT.

2 The LIBNAME statement assigns the libref XPTDS to physical location
XPTDS.DAT, which stores the single data set to be created. The XPORT engine
creates XPTDS.DAT.

3 The DATA step creates the data set WORK.GRADES, which contains two
observations. Each observation contains four variables (one character and three
numeric values).

4 The DATA step creates a second data set WORK.SIMPLE, which contains a single
observation. The observation contains three character values.

5 The DATA step creates a third data set WORK.NUMBERS, which contains ten
observations. Each observation contains a single numeric value.

6 PROC COPY copies all three data sets from the default WORK library to the new
library XPTLIB. The WORK data sets are written to the output library XPTLIB in
transport format.

7 PROC COPY copies the selected data set GRADES to the new library XPTDS. The
data set GRADES is written to output library XPTDS in transport format.

Viewing the SAS Log at the Source Host
The following example shows a SAS log that documents the successful execution of

the SAS program in “Using PROC CPORT at the Source Host to Create Transport
Files: OS/390” on page 146.

Example Code 20.2 Source Host SAS Log

u NOTE: SAS (r) Proprietary Software Release 6.12 TS050

v NOTE: Running on DEC Model 7000 MODEL 740 Serial Number 80000000.

w NOTE: Libref XPTLIB was successfully assigned as follows:
Engine: XPORT
Physical Name: Device:system-specific file/pathname XPTLIB.DAT

x NOTE: Libref XPTDS was successfully assigned as follows:
Engine: XPORT
Physical Name:system-specific file/pathname XPTDS.DAT

136 Verifying Transport Files 4 Chapter 20

y NOTE: The data set WORK.GRADES has 2 observations and 4 variables.
NOTE: The data set WORK.SIMPLE has 1 observations and 3 variables.
NOTE: The data set WORK.NUMBERS has 10 observations and 1 variables.
U NOTE: Copying WORK.GRADES to XPTLIB.GRADES (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across dissimilar engines.

System Option for BUFSIZE was used.
NOTE: The data set XPTLIB.GRADES has 2 observations and 4 variables.
NOTE: Copying WORK.NUMBERS to XPTLIB.NUMBERS (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across dissimilar engines.

System Option for BUFSIZE was used.
NOTE: The data set XPTLIB.NUMBERS has 10 observations and 1 variables.
NOTE: Copying WORK.SIMPLE to XPTLIB.SIMPLE (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across dissimilar engines.

System Option for BUFSIZE was used.
NOTE: The data set XPTLIB.SIMPLE has 1 observations and 3 variables.
V NOTE: Copying WORK.GRADES to XPTDS.GRADES (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across dissimilar engines.

System Option for BUFSIZE was used.
NOTE: The data set XPTDS.GRADES has 2 observations and 4 variables.

1 The source host runs SAS Release 6.12, which means that the SAS session default
library engine is V612.

2 The source host is a DEC Model 7000, which refers to the AX7000 (OpenVMS
Alpha).

3 SAS assigns the libref XPTLIB to the physical device whose specification is
platform-dependent. The XPORT engine creates XPTLIB.

4 SAS assigns the libref XPTDS to the physical device whose specification is
platform-dependent. The XPORT engine creates XPTDS.

5 The first three notes in this series report the creation of the data sets
WORK.GRADES, WORK.SIMPLE, and WORK.NUMBERS.

6 The next series of notes report that SAS copies WORK.GRADES to
XPTLIB.GRADES, WORK.NUMBERS to XPTLIB.NUMBERS, and
WORK.SIMPLE to XPTLIB.SIMPLE. The XPORT engine translates each data set
from OpenVMS Alpha format to transport format.

Note: The following notes about the SAS system option BUFSIZE do not indicate
an error condition. BUFSIZE specifies the permanent buffer size for an output
data set, which can be adjusted to improve system performance. The system value
that is assigned to the BUFSIZE option is used because the XPORT engine does
not support the BUFSIZE= option. See your operating environment companion
documentation for details. 4

7 SAS copies WORK.GRADES to XPTDS.GRADES. The XPORT engine translates
the data set from OpenVMS Alpha format to transport format.

Verifying Transport Files
You are advised to verify the integrity of your transport files at the source host

before the files are transferred to the target host. A successful verification at the source
host can eliminate the possibility that the transport file was created incorrectly. Also,
after you transfer the transport file to the target host, you can compare the transport
file that was sent from the source host with the file that was received at the target host.
See “Methods for Verifying Transport Files” on page 160 for details.

4 Transferring the Transport Files to the Target Host 137

Transferring the Transport Files to the Target Host
Before you transfer a transport file to the target host, verify its file attributes. The

following example shows typical output:

Example Code 20.3 Using DIR/FULL to Verify the Attributes of the Transport File

vms> DIR/FULL xptlib.dat
Directory HOSTVAX:[JOE.XPTTEST]

XPTLIB.DAT;1 File ID: (31223,952,0)
Size: 7/8 Owner: [HOSTVAX,JOE]
Created: 30-SEP-1999 16:47:31.34
Revised: 30-SEP-1999 16:47:31.69 (1)
Expires: Effective: File organization: Sequential
Shelved state: Online
File attributes: Allocation: 8, Extend: 0, Global buffer count: 0

Version limit: 2
u Record format: Fixed length 80 byte records
v Record attributes: None
RMS attributes: None
Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:RE, World:
Access Cntrl List: None

Total of 1 file, 7/8 blocks.
$ dir/size xptlib.dat

Directory HOSTVAX:[JOE.XPTTEST]

XPTLIB.DAT;1 7

Total of 1 file, 7 blocks.

1 The OpenVMS VAX RECORD FORMAT attribute indicates a fixed record type and
an 80-byte record size. These values are required for a successful file transfer
across the network.

An OpenVMS Alpha host RECORD FORMAT should indicate a record length of
512 bytes.

2 The RECORD ATTRIBUTES field should contain the value NONE.

CAUTION:
If this field contains CARRIAGE RETURN CARRIAGE CONTROL, file corruption results. To
prevent corruption before you transfer the transport file, remove this value from the
RECORD ATTRIBUTES field. An error message alerts you to this condition after you
attempt to transfer the corrupted file. 4

After you verify the attributes of a transport file, use FTP to transfer the transport
file to the target host.

In this example, the target host retrieves the transport file from the source host
because the source host does not have permission to write to the target host directory.
A source host is unlikely to have permission to write a transport file to a target host.

At the target host, change the directory to the location where the transport file will
be copied. The following example shows how to use FTP commands to get the transport
files.

138 Transferring the Transport Files to the Target Host 4 Chapter 20

Example Code 20.4 Typical FTP Dialog

u hp> ftp ax7000.vms.sas.com
Connected to ax7000.vms.com.
220 ax7000.vms.com MultiNet FTP Server Process V4.0(15) at Thu-Sep 30-99

12:59PM-EDT
Name (ax7000.vms.com:): joe
331 User name (joe) ok. Password, please.
Password:
230 User JOE logged into HOSTVAX:[JOE] at Thu 30-Sep-99 12:59PM-EDT, job

27a34cef.
Remote system type is VMS.

v ftp> cd [.xpttest]
250 Connected to system-specific file/pathname.

w ftp> binary
200 Type I ok.

x ftp> get xptds.dat xptds.dat
200 Port 14.83 at Host 10.26.2.45 accepted.
150 IMAGE retrieve of system-specific file/pathname XPTDS.DAT;1 started.

y 226 Transfer completed. 1360 (8) bytes transferred.
1360 bytes received in 0.02 seconds (87.59 Kbytes/s)

U ftp> get xptlib.dat xptlib.dat
200 Port 14.84 at Host 10.26.2.45 accepted.
150 IMAGE retrieve of system-specific file/pathname XPTLIB.DAT;1 started.

V 226 Transfer completed. 3120 (8) bytes transferred.
3120 bytes received in 0.04 seconds (85.81 Kbytes/s)

W ftp> quit

1 From the HP-UX target host, the user invokes FTP to connect to the OpenVMS
Alpha source host AX7000.VMS.SAS.COM.

2 After a connection is established, at the FTP prompt, user JOE changes to the
subdirectory on the source host that contains the transport files.

3 The transport file attribute BINARY indicates that the OpenVMS transport file
should be transferred from the source host in BINARY format.

4 The FTP get command obtains the transport file named XPTDS.DAT from the
source host and copies it to a new file that has the same name, XPTDS.DAT, in the
target host current directory.

5 Messages indicate that the transfer was successful and that the size of the
transport file was 1360 bytes. Compare the sizes of the transport files at the
source host and the target host. If the sizes are identical, then the network
successfully transferred the file. For details about listing file size, see “Verifying
the Size of a Transport File” on page 161.

6 The FTP get command obtains another transport file named XPTLIB.DAT from
the source host and copies it to a new file that has the same name, XPTLIB.DAT,
in the target host current directory.

7 Messages indicate that the transfer was successful. Compare the sizes of the
transport files at the source host and the target host.

8 The user quits the FTP session.

For complete details about using the file transfer utility, see your FTP documentation.

4 Viewing the SAS Log at the Target Host 139

Using PROC COPY at the Target Host to Restore Transport Files into
Native Format

The following example shows a SAS program that translates a transport file to
native file format.

Example Code 20.5 SAS Program That Restores Transport Files into Native File Format

u libname xptlib xport ’xptlib.dat’;
v libname xptds xport ’xptds.dat’;

w libname natvlib v7 ’natvlib’;
x libname natvds v7 ’natvds’;

/* translate transport file for library */
/* to native format on target host. */

y proc copy in=xptlib out=natvlib;
run;

/* translate transport file for data set*/
/* to native format on target host */

U proc copy in=xptds out=natvds;
select grades;

run;

1 The LIBNAME statement assigns the libref XPTLIB to the physical location
XPTLIB.DAT, which stores the entire library that was transferred to the target
host. The XPORT engine reads XPTLIB.

2 The LIBNAME statement assigns the libref XPTDS to the physical location
XPTDS.DAT, which stores the single data set that was transferred to the target
host. The XPORT engine reads XPTDS.

3 The LIBNAME statement assigns the libref NATVLIB to the physical location
NATVLIB, which stores the entire library to be translated from transport format
to native format. The V7 engine creates NATVLIB.

4 The LIBNAME statement assigns the libref NATVDS to the physical location
NATVDS, which stores the single data set to be translated from transport format
to native format. The V7 engine creates NATVDS.

5 PROC COPY copies all three data sets from the libref XPTLIB to the new libref
NATVLIB. The XPORT engine reads all data sets from XPTLIB in transport
format. The V7 engine writes the data sets to the output libref NATVLIB in native
HP-UX format.

6 PROC COPY selects the data set GRADES to copy to the new library NATVDS.
The XPORT engine reads the data set GRADES in transport format. The V7
engine writes the output library XPTDS in native HP-UX format.

Viewing the SAS Log at the Target Host
The following example shows a SAS log that documents the successful execution of

the SAS program shown in “Using PROC COPY at the Target Host to Restore
Transport Files into Native Format” on page 139.

140 Viewing the SAS Log at the Target Host 4 Chapter 20

Example Code 20.6 Target Host SAS Log

NOTE: Copyright (c) 1999 by SAS Institute Inc., Cary, NC, USA.
u NOTE: SAS (r) Proprietary Software Version 7 (TS00.00P1D090398)

Licensed to SAS Institute Inc., Site 0000000001.
v NOTE: This session is executing on the HP-UX B.10.20 platform.
NOTE: Running on HP Model 9000/715 Serial Number 2005516582.
libname xptlib xport ’xptlib.dat’;
w NOTE: Libref XPTLIB was successfully assigned as follows:

Engine: XPORT
Physical Name: system-specific file/pathname/xptlib.dat

libname xptds xport ’xptds.dat’;
x NOTE: Libref XPTDS was successfully assigned as follows:

Engine: XPORT
Physical Name:
system-specific file/pathname/xptds.dat

libname natvlib v7 ’natvlib’;
y NOTE: Libref NATVLIB was successfully assigned as follows:

Engine: V7
Physical Name:
system-specific file/pathname/natvlib

libname natvds v7 ’natvds’;
U NOTE: Libref NATVDS was successfully assigned as follows:

Engine: V7
Physical Name:
system-specific file/pathname/natvds

/* translate transport file for library to native */
/* format on target host. */
proc copy in=xptlib out=natvlib;
run;
NOTE: Input library XPTLIB is sequential.
V NOTE: Copying XPTLIB.GRADES to NATVLIB.GRADES (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set NATVLIB.GRADES has 2 observations and 4 variables.
W NOTE: Copying XPTLIB.NUMBERS to NATVLIB.NUMBERS (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set NATVLIB.NUMBERS has 10 observations and 1 variables.
X NOTE: Copying XPTLIB.SIMPLE to NATVLIB.SIMPLE (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set NATVLIB.SIMPLE has 1 observations and 3 variables.
/* translate transport file for data set to native */
/* on target host */
proc copy in=xptds out=natvds;

select grades;
run;
NOTE: Input library XPTDS is sequential.
at NOTE: Copying XPTDS.GRADES to NATVDS.GRADES (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set NATVDS.GRADES has 2 observations and 4 variables

4 Viewing the SAS Log at the Source Host 141

1 The target host runs SAS Version 7, which means that the SAS session on the
target host uses the default library engine V7.

2 The target host runs HP-UX.

3 The LIBNAME statement assigns the libref XPTLIB to the physical device whose
specification is platform-dependent. In this example, the physical device indicates
an HP-UX operating system. The XPORT engine reads XPTDS.

4 The LIBNAME statement assigns the libref XPTDS to the physical device whose
specification is platform-dependent. The XPORT engine reads XPTLIB.

5 The LIBNAME statement assigns the libref NATVLIB to the physical device
whose specification is platform-dependent. In this example, the physical device
indicates an HP-UX operating system. The V7 engine writes to NATVLIB.

6 The LIBNAME assigns the libref NATVDS to the physical device whose
specification is platform-dependent. In this example, the physical device indicates
an HP-UX operating system. The V7 engine writes to NATVDS.

7 PROC COPY copies XPTLIB.GRADES to NATVLIB.GRADES. The NATVLIB data
set is written in V7 format.

8 PROC COPY copies XPTLIB.NUMBERS to NATVLIB.NUMBERS. The NATVLIB
data set is written in V7 format.

9 PROC COPY copies XPTLIB.SIMPLE to NATVLIB.SIMPLE. The NATVLIB data
set is written in V7 format.

10 PROC COPY copies XPTLIB.GRADES to NATVDS.GRADES. The NATVDS data
set is written in V7 format.

OS/390 to Windows NT File Transport

Using PROC CPORT at the Source Host to Create Transport Files
The following example shows a SAS program that copies two data sets and two

catalogs from a library in OS/390 format and writes them to a default output file in
transport format.

Example Code 20.7 SAS Program That Copies Data Sets and Catalogs to a Transport File

libname test ’joe.mytest.sas’;
proc cport library=test;
run;

The LIBNAME statement assigns the libref TEST to the physical location
JOE.MYTEST.SAS, which points to the library to be transported. JOE is the userid
that is associated with the SAS session in which the transport operation is performed.
Because no FILE= option is provided, SAS uses the OS/390 default transport file name
userid.SASCAT.DATA. PROC CPORT reads the contents of the library TEST and writes
the library contents to the default output file in transport format.

Viewing the SAS Log at the Source Host
The following example shows a SAS log that documents the successful execution of

the SAS program shown in “Using PROC CPORT at the Source Host to Create
Transport Files” on page 141.

142 Verifying the Transport Files 4 Chapter 20

Example Code 20.8 Source Host SAS Log File

libname test ’joe.mytest.sas’;
proc cport lib=test;
run;
WARNING: No output file is specified. Default output
file JOE.SASCAT.DATA is used.

NOTE: Proc CPORT begins to transport data set TEST.CITY
NOTE: The data set contains 7 variables and 72 observations.
NOTE: Transporting data set index information.

NOTE: Proc CPORT begins to transport catalog TEST.FORMATS
NOTE: The catalog has 3 entries
NOTE: Transporting entry REGFMT .FORMATC
NOTE: Transporting entry SALEFMT .FORMATC
NOTE: Transporting entry SIZEFMT .FORMATC

NOTE: Proc CPORT begins to transport catalog TEST.TEST
NOTE: The catalog has 11 entries
NOTE: Transporting entry ABOUT .CBT
NOTE: Transporting entry APPEND .CBT
NOTE: Transporting entry BOOKMENU.CBT
NOTE: Transporting entry DEFAULT .FORM
NOTE: Transporting entry HELP .HELP
NOTE: Transporting entry CLIST .LIST
NOTE: Transporting entry ENTRYTYP.LIST
NOTE: Transporting entry SPELLALL.PMENU
NOTE: Transporting entry SPELLSUG.PMENU
NOTE: Transporting entry ADDON1 .PROGRAM
NOTE: Transporting entry ADDON2 .PROGRAM

NOTE: Proc CPORT begins to transport data set TEST.VARNUM
NOTE: The data set contains 10 variables

and 100 observations.

Note: Default output filenames are host-specific. 4

PROC CPORT reads the contents of the entire library that is referenced by the libref
TEST and writes to the default transport file. The remaining series of notes indicate
that PROC CPORT transports the data set TEST.CITY, the catalog TEST.FORMATS,
the catalog TEST.TEST, and data set TEST.VARNUM into the transport file
JOE.SASCAT.DATA.

Verifying the Transport Files

You are advised to verify the integrity of your transport files at the source host
before the files are transferred to the target host. A successful verification at the source
host can eliminate the possibility that the transport file was created incorrectly. Also,
after you transfer a file to the target host, you can compare the transport file that was
sent from the source host with the file that was received at the target host. See
“Methods for Verifying Transport Files” on page 160 for details.

4 Transferring the Transport Files to the Target Host 143

Transferring the Transport Files to the Target Host
Verify the file attributes of the transport files before they are transferred to the

target host. The following example shows typical output for TSO.

Example Code 20.9 Using TSO LISTD Command to Verify the Attributes of the Transport File

listd "userid.xportout.dat"
USERID.XPORTOUT.DAT
--RECFM-LRECL-BLKSIZE-DSORG

FB 80 8000 PS
--VOLUMES--

APP009

After you verify the attributes of the transport files, you can use FTP to transfer them
over the network. Change the default DCB attributes, as necessary, in the FTP dialog.
In this example, because the user on the source host has permission to write to the
target host, the FTP put command is used to write the transport file to the target host.

The following example shows the FTP commands you specify at the source host to
write the transport files to the target host.

Example Code 20.10 Typical FTP Dialog

u ftp mypc
EZA1450I MVS TCP/IP FTP V3R2
EZA1554I Connecting to SPIDER 10.24.2.32, port 21
220 spider FTP server (Version 4.162 Tue Nov 1
10:50:37 PST 1988) ready.

EZA1459I USER (identify yourself to the host):
userid password
EZA1701I >>>USER joe
331 Password required for joe.
EZA1701I >>>PASS ********
230 User joe logged in.
v EZA1460I Command:

binary
EZA1701I >>>TYPE i
200 Type set to I.
w EZA1460I Command:

put ’joe.sascat.data’ c:\tport.dat
x EZA1701I >>>SITE VARrecfm Lrecl=80
Recfm=FB BLKSIZE=8000

500 ’SITE VARRECFM Lrecl=80 Recfm=FB BLKSIZE=23440’:
EZA1701I >>>PORT 10,253,1,2,129,50

200 PORT command
y EZA1701I >>>STOR c:\tport.dat
150 Opening BINARY mode data connection for c:\tport.dat
U 226 Transfer complete.
EZA2517I 6071600 bytes transferred in 13 seconds.
Transfer rate 466.18 Kbytes/sec.

V EZA1460I Command:
quit
EZA1701I >>>QUIT
221 Goodbye.
READY

144 Using PROC CIMPORT at the Target Host to Import Transport Files into Native Format 4 Chapter 20

1 From the OS/390 source host, the user invokes FTP to connect to the Windows NT
target host MYPC.

2 The transport file attribute BINARY indicates that the OS/390 transport file
should be transferred from the source host in BINARY format .

3 The FTP put command copies the transport file named JOE.SASCAT.DATA from
the source host to the target host physical location C:\TPORT.DAT.

4 The FTP file attribute commands indicate a record length of 80 bytes, a fixed
record type, and a block size of 8000.

5 TPORT.DAT is saved to drive C.
6 Messages indicate that the transfer was successful. For details about listing a file

size, see “Verifying the Size of a Transport File” on page 161.
7 The user quits the FTP session.

Using PROC CIMPORT at the Target Host to Import Transport Files into
Native Format

The following example shows a SAS program that translates the transport file from
transport format into native format.

Example Code 20.11 SAS Program That Imports Transport Files into Native Format

libname newlib ’c:\mylib’;
proc cimport infile=’c:\tport.dat’ library=newlib;
run;

This LIBNAME statement assigns the libref NEWLIB to the physical location
c:\mylib, which stores the entire V7 library. PROC CIMPORT reads the entire
content of the transport file that is identified in the INFILE= option and writes it to the
output location that is identified in the LIBNAME= option.

As an alternative to importing the entire contents of the library into native V7
format, you can select or exclude specific entities from the transport library.

Here are examples:

Example Code 20.12 Selecting One or More Data Sets

filename target ’c:\tport.dat’;
libname newlib ’c:\mylib’;
proc cimport infile=target library=newlib;

select varnum;
run;

In the preceding example, the fileref TARGET points to the location where the
transport file was transferred to the target host. The libref NEWLIB points to the
location to store the selected member. PROC CIMPORT reads the entire content of the
transport file that is identified in the INFILE= option and writes only the member that
is identified in the SELECT statement. The data set VARNUM is written to the library
NEWLIB in Windows format.

Example Code 20.13 Selecting a Catalog Entry Type

filename target ’c:\tport.dat’;
libname newlib ’c:\mylib’;
proc cimport infile=target library=newlib

memtype=catalog et=program;
run;

4 Viewing the SAS Log at the Target Host 145

In the preceding example, PROC CIMPORT reads the entire content of the transport
file that is identified in the INFILE= option and writes only members of type CATALOG
and entries of type PROGRAM to the library NEWLIB in Windows format.

Example Code 20.14 Selecting Catalog Entries

filename target ’c:\tport.dat’;
libname newlib ’c:\mylib’;
proc cimport infile=target library=newlib memtype=cat;

select spellsug.pmenu addon1.program;
run;

In the preceding example, PROC CIMPORT reads the entire content of the transport
file that is identified in the INFILE= option and writes only the entries
SPELLSUG.PMENU and ADDON1.PROGRAM of member type CATALOG to the
library NEWLIB in Windows format.

Viewing the SAS Log at the Target Host
The following example shows a SAS log that documents the successful execution of

the SAS program that is shown in “Using PROC CIMPORT at the Target Host to
Import Transport Files into Native Format” on page 144.

Example Code 20.15 Target Host Log File

NOTE: Proc CIMPORT begins to create/update data set NEWLIB.CITY
NOTE: The data set index REGION is defined.
NOTE: Data set contains 7 variables and 72 observations.

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FORMATS
NOTE: Entry REGFMT.FORMATC has been imported.
NOTE: Entry SALEFMT.FORMATC has been imported.
NOTE: Entry SIZEFMT.FORMATC has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FORMATS: 3

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.TEST
NOTE: Entry ABOUT.CBT has been imported.
NOTE: Entry APPEND.CBT has been imported.
NOTE: Entry BOOKMENU.CBT has been imported.
NOTE: Entry DEFAULT.FORM has been imported.
NOTE: Entry HELP.HELP has been imported.
NOTE: Entry CLIST.LIST has been imported.
NOTE: Entry ENTRYTYP.LIST has been imported.
NOTE: Entry SPELLALL.PMENU has been imported.
NOTE: Entry SPELLSUG.PMENU has been imported.
NOTE: Entry ADDON1.PROGRAM has been imported.
NOTE: Entry ADDON2.PROGRAM has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.TEST: 11

NOTE: Proc CIMPORT begins to create/update data set NEWLIB.VARNUM
NOTE: Data set contains 10 variables and 100 observations.

PROC CIMPORT creates the data set NEWLIB.CITY, the catalog
NEWLIB.FORMAT, the catalog NEWLIB.TEST, and the data set NEWLIB.VARNUM at
the target host Windows NT in Windows format.

146 OS/390 TSO to UNIX File Transport 4 Chapter 20

OS/390 TSO to UNIX File Transport

Using PROC CPORT at the Source Host to Create Transport Files: OS/
390

The following example shows a SAS program that creates three data sets in OS/390
format and translates them to transport format.

Example Code 20.16 SAS Program That Creates Data Sets and Transport Files: OS/390

u/* Specify tport file */
filename tport ftp ’tport.dat’
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */
pass=’mypass’ /* Specify password */
rcmd=’site umask 022’ /* Set permissions to */

/* -rw-r--r-- */
recfm=s /* binary transfer */
debug; /* write ftp messages */
/*-----------------------------------*/
/* Allocate the SAS test library. */
/*-----------------------------------*/

v libname trantest ’.trantest.lib’
disp=(new,catlg,delete);

/*---------------------------------------*/
/* Creates data set GRADES which */
/* contains numeric and character data. */
/*---------------------------------------*/

w data trantest.grades;
input student $ test1 test2 final;

datalines;
Fred 66 80 70
Wilma 97 91 98
;
/*-----------------------------------*/
/* Creates data set SIMPLE which */
/* contains character data only. */
/*-----------------------------------*/
data trantest.simple;

x=’dog’;
y=’cat’;
z=’fish’;

run;

/*------------------------------------*/
/* Creates data set NUMBERS which */
/* contains numeric data only */
/*------------------------------------*/
data trantest.numbers;
do i=1 to 10;

output;

4 Viewing the SAS Log at the OS/390 Source Host 147

end;
run;

/*------------------------------------*/
/* Uses PROC CPORT to write the */
/* transport file. This transport */
/* file is written to UNIX by using */
/* the FTP access method. */
/*------------------------------------*/

x proc cport library=trantest file=tport;
run;

/*------------------------------------*/
/* Reads the transport file on UNIX */
/* by using the FTP access method. */
/* Uses PROC CIMPORT to transfer and */
/* to import the data sets to the */
/* WORK library. */
/*------------------------------------*/

y proc cimport infile=tport library=work;
run;

1 The FILENAME statement assigns the libref TPORT to the physical location
TPORT.DAT, which stores the entire library to be created. The FTP access method
option specifies the attributes of the file transfer operation. The RCMD= command
and SITE UMASK 022 argument set the user file access permissions on the target
host. The RECFM= option and the S argument specify a binary transfer. For
details about the FTP access method options, see the syntax for the FILENAME
statement in SAS Language Reference: Dictionary.

2 The LIBNAME statement assigns TRANTEST to the physical location
syspref.TRANTEST.LIB, which stores the data sets to be created. The DISP=
option specifies the status of the data set at the beginning and the end of the job.
NEW indicates that a new data set is to be created. CATLG specifies that the
system should place an entry in the system catalog for normal job termination.
DELETE specifies that the data set be deleted at the end of the step for abnormal
job termination.

3 The next three DATA statements create the SAS data sets.
4 PROC CPORT reads the library data sets from the OS/390 host and writes the

transport data to the UNIX target host.
5 PROC CIMPORT reads the transport file from the UNIX target host and writes

the SAS data sets to the WORK library.

Viewing the SAS Log at the OS/390 Source Host
The SAS log is presented in three parts. The following example shows the successful

creation of data sets on the OS/390 source host.

Example Code 20.17 Source Host OS/390 SAS Log: Part 1 of 3

u NOTE: SAS (r) Proprietary Software Version 7
(TS00.00P1P102298) Licensed to SAS INSTITUTE INC.,
Site 0000000001.

v NOTE: This session is executing on the
OS/390 V02R04M00 platform.

148 Viewing the SAS Log at the OS/390 Source Host 4 Chapter 20

NOTE: Running on IBM Model 9672,
IBM Model 9672,
IBM Model 9672.

+++++
w filename tport ftp ’tport.dat’/* Specify tport file */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */
pass=’mypass’ /* Specify password */
rcmd=’site umask 022’ /* Set permissions to */

/* -rw-r--r-- */
recfm=s /* binary transfer */
debug; /* write ftp messages */
/*--*/
/* Allocate the SAS test library. */
/*--*/
x libname trantest ’.trantest.lib’

disp=(new,catlg,delete);
NOTE: Libref TRANTEST was successfully assigned

as follows:
Engine: V7
Physical Name: JOE.TRANTEST.LIB

/*--------------------------------------*/
/* Creates data set GRADES which */
/* contains numeric and character data. */
/*--------------------------------------*/
y data trantest.grades;
input student $ test1 test2 final;
datalines;
NOTE: The data set TRANTEST.GRADES has

2 observations and 4 variables.
;
/*-----------------------------------*/
/* Creates data set SIMPLE which */
/* contains character data only. */
/*-----------------------------------*/
data trantest.simple;

x=’dog’;
y=’cat’;
z=’fish’;

run;

NOTE: The data set TRANTEST.SIMPLE has
1 observations and 3 variables.

/*------------------------------------*/
/* Creates data set NUMBERS which */
/* contains numeric data only. */
/*------------------------------------*/
data trantest.numbers;

do i=1 to 10;
output;

end;

4 Viewing the SAS Log at the OS/390 Source Host 149

run;

NOTE: The data set TRANTEST.NUMBERS has
10 observations and 1 variables.

1 The source host runs SAS Version 7, which means that the SAS session default
library engine is V7.

2 The IBM source host runs OS/390 V02R04M00.

3 The FILENAME statement identifies the external file and specifies the attributes
of the FTP access method, which transfers the transport file over the network.

4 The LIBNAME statement assigns the libref TRANTEST to the location for the
files in native format on the OS/390 source host.

5 The data sets TRANTEST.GRADES, TRANTEST.SIMPLE, and
TRANTEST.NUMBERS are created in the library that is referenced by
TRANTEST.

The following example shows the creation of the transport file and its transfer across
the network by using the FTP access method.

Example Code 20.18 OS/390 Source Host SAS Log: Part 2 of 3

/*---*/
/* Uses PROC CPORT to write the library */
/* TRANTEST data sets to the transport file */
/* via the FTP access method. */
/*--*/
u proc cport library=trantest file=tport;
run;
v NOTE: 220 myhost FTP server (Version 4.162

Tue Nov 1 10:50:37 PST 1988) ready.
NOTE: <<< 220 myhost FTP server (Version 4.162

Tue Nov 1 10:50:37 PST 1988) ready.
NOTE: >>> USER hostftp
NOTE: <<< 331 Password required for hostftp.
NOTE: >>> PASS XXXXXXX
NOTE: <<< 230 User hostftp logged in.
NOTE: >>> PORT 10,253,1,2,30,208
NOTE: <<< 200 PORT command
NOTE: >>> TYPE I
NOTE: <<< 200 Type set to I.
NOTE: >>> CWD transfer
NOTE: <<< 250 CWD command successful.
NOTE: >>> PWD
NOTE: <<< 257 "/mydir" is current directory.
NOTE: >>> site umask 022
NOTE: <<< 200 UMASK set to 022 (was 027)
NOTE: >>> STAT
NOTE: <<< 211- myhost FTP server status:
NOTE: <<< Version 4.162 Tue

Nov 1 10:50:37 PST 1988
NOTE: <<< Connected to sdcmvs.mvs.sas.com
NOTE: <<< Logged in as hostftp
NOTE: <<< TYPE: Image; STRUcture: File;

transfer MODE: Stream
NOTE: <<< PORT (10,253,1,2,30,208)

150 Viewing the SAS Log at the OS/390 Source Host 4 Chapter 20

NOTE: <<< 211 End of status
NOTE: >>> STOR tport.dat
NOTE: <<< 150 Opening BINARY mode data connection

for tport.dat.
NOTE: User hostftp has connected to FTP server

on Host myhost.unx.com.

NOTE: Proc CPORT begins to transport
data set TRANTEST.GRADES

NOTE: The data set contains 4 variables and
2 observations. Logical record length is 32.

NOTE: Proc CPORT begins to transport
data set TRANTEST.NUMBERS

NOTE: The data set contains 1 variables
and 10 observations.

Logical record length is 8.

NOTE: Proc CPORT begins to transport
data set TRANTEST.SIMPLE

NOTE: The data set contains 3 variables
and 1 observations.

Logical record length is 10.
NOTE: <<< 226 Transfer complete.
NOTE: >>> QUIT

1 PROC CPORT copies the files that are identified in the LIBRARY= option (from
OS/390 format) to the library that is identified in the FILE= option (in transport
format).

2 The FTP access method connects to the UNIX target host across the network and
writes the file referenced by the libref TPORT to the UNIX target host.

The following example shows the successful import of the transport file to native
format on the UNIX target host and a verification of the method that was used for
creating the transport file on the OS/390 source host.

Example Code 20.19 OS/390 Source Host SAS Log: Part 3 of 3

/*---*/
/* Use FTP access method to read the transport */
/* file. Use PROC CIMPORT to import the test */
/* data sets to library WORK. */
/*---*/
u proc cimport infile=tport library=work;
run;

v NOTE: 220 myhost FTP server (Version 4.162
Tue Nov 1 10:50:37 PST 1988) ready.

NOTE: <<< 220 myhost FTP server (Version 4.162
Tue Nov 1 10:50:37 PST 1988) ready.

NOTE: >>> USER hostftp
NOTE: <<< 331 Password required for hostftp.
NOTE: >>> PASS XXXXXXX
NOTE: <<< 230 User hostftp logged in.
NOTE: >>> PORT 10,253,1,2,30,210

4 Viewing the SAS Log at the OS/390 Source Host 151

NOTE: <<< 200 PORT command
NOTE: >>> TYPE I
NOTE: <<< 200 Type set to I.
NOTE: >>> CWD transfer
NOTE: <<< 250 CWD command successful.
NOTE: >>> PWD
NOTE: <<< 257 "/mydir" is current directory.
NOTE: >>> site umask 022
NOTE: <<< 200 UMASK set to 022 (was 027)
NOTE: >>> STAT
NOTE: <<< 211- myhost FTP server status:
NOTE: <<< Version 4.162 Tue Nov 1 10:50:37 PST 1988
NOTE: <<< Connected to sdcmvs.mvs.sas.com
NOTE: <<< Logged in as hostftp
NOTE: <<< TYPE: Image; STRUcture: File; transfer
NOTE: <<< MODE: Stream PORT (10,253,1,2,30,210)
NOTE: <<< 211 End of status
NOTE: >>> RETR tport.dat
NOTE: <<< 150 Opening BINARY mode data connection for

tport.dat (2320 bytes).
NOTE: User hostftp has connected to FTP server on

Host myhost.unx.com .
NOTE: Proc CIMPORT begins to create/update data set

WORK.GRADES
NOTE: Data set contains 4 variables and

2 observations.Logical record length is 32

NOTE: Proc CIMPORT begins to create/update
data set WORK.NUMBERS

NOTE: Data set contains 1 variables
and 10 observations. Logical record length is 8

NOTE: Proc CIMPORT begins to create/update
data set WORK.SIMPLE

NOTE: Data set contains 3 variables and
1 observations.

Logical record length is 10

NOTE: <<< 226 Transfer complete.
NOTE: >>> QUIT

1 PROC CIMPORT copies the file that is identified in the INFILE= option (from
transport format) to the library that is identified in the LIBRARY= option (in
native OS/390 format).

2 To validate the accuracy of the method that was used for importing the transport
file into native format on the UNIX target host, the FTP access method returns
the transport file TPORT.DAT to the OS/390 source host across the network. On
the local host, PROC CIMPORT copies the transport file into native format. A
successful execution of PROC CIMPORT on the source host verifies that a valid
transport file was created at the UNIX target host.

152 OS/390 JCL Batch to UNIX File Transport 4 Chapter 20

OS/390 JCL Batch to UNIX File Transport

The OS/390 JCL Batch Program
Although presented in four parts, the following program is designed as a single

program. The parts perform these tasks:
1 Use PROC COPY to create a transport file on the OS/390 source host.
2 Transfer the transport file over the network to the UNIX target host.
3 Verify the accuracy of the transport file.
4 Use PROC COPY to restore the transport file back to the OS/390 source host.

Embedded comments document the program.

Using PROC COPY to Create a Transport File
The following example shows the first part of the program that creates three data

sets in OS/390 format and translates them to transport format. For details in the SAS
log that documents the execution of this program part, see “Recording the Creation of
Data Sets and Transport Files in the SAS Log” on page 156.

Example Code 20.20 Creating Data Sets and Transport Files

//XPORTTST JOB job-card-information
//*--
//* Run SAS step that creates a transport library
//* for the three SAS test data sets.

//*--
//SASOUT EXEC SAS
//*--
//* Allocate the SAS XPORTOUT library.
//* The XPORTOUT library should have the
//* following data set information:
//* Record format: FB
//* Record length: 80
//* Block size: 8000
//* Organization: PS

//*--

//XPORTOUT DD DSN=userid.XPORTOUT.DAT, DISP=(NEW,CATLG,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),
// SPACE=(TRK,(1,1))
//SYSIN DD *
/*--*/
/* Assign the SAS test xport library */
/*--*/

libname xportout xport;

/*--*/
/* Creates data set GRADES which contains */
/* numeric and character data. */

4 Transferring the Transport File across the Network 153

/*--*/
data grades;

input student $ test1 test2 final;
datalines;
Fred 66 80 70
Wilma 97 91 98
;

/*-----------------------------------*/
/* Creates data set SIMPLE which */
/* contains character data only. */
/*-----------------------------------*/

data simple;
x=’dog’;
y=’cat’;
z=’fish’;

run;

/*------------------------------------*/
/* Creates data set NUMBERS which */
/* contains numeric data only. */
/*------------------------------------*/

data numbers;
do i=1 to 10;

output;
end;

run;
/*------------------------------------*/
/* Copy the three test data sets to */
/* the XPORT library. */
/*------------------------------------*/

proc copy in=work out=xportout;
run;
/*

Transferring the Transport File across the Network
The following example shows the generation of the FTP command file and the

transfer of the transport file over the network to the target host. For details in the SAS
log that documents the execution of this program part, see “Recording the Transfer of
the Transport File to the Target Host in the SAS Log” on page 157.

Example Code 20.21 Using FTP to Transfer Transport Files

//*---
//* Generate FTP command file for sending XPORTOUT
//* test library to the target host.
//*---
//FTPCMDO EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=userid.FTP.OUT,
// UNIT=DISK,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)

154 Verifying the Accuracy of the Transport File 4 Chapter 20

//*---
//* Ensure that the FTP commands specify a BINARY
//* mode transfer.
//*---
//SYSUT1 DD *
userid password
cd mydir
binary
put ’userid.xportout.dat’ xportout.dat
quit
/*
//*--
//* FTP library XPORTOUT to the target host.
//*--
//FTPXEQO EXEC PGM=IKJEFT01,REGION=2048K,DYNAMNBR=50,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSTSOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ALLOC FI(input) DA(’userid.FTP.OUT’) SHR
FTP target-host (EXIT
/*

Verifying the Accuracy of the Transport File
The following example shows the verification of the transport file by transferring it

from the UNIX target host to the OS/390 source host in native format. A successful
translation from transport format to native OS/390 format verifies the accuracy of the
transport file. For details in the SAS log that document the execution of this program
part, see “Recording the Verification of the Transport File in the SAS Log” on page 158.

Example Code 20.22 Verifying Transport Files

//*---
//* The following steps retrieve the XPORTOUT library
//* from the target host and read the three test
//* data sets back into the WORK library.
//*---
//* Generates the FTP command file for getting
//* the test library XPORTOUT from the target host.
//*---
//FTPCMDI EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=userid.FTP.IN,
// UNIT=DISK,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
//*---
//* The FTP commands specify a BINARY mode
//* transfer. Uses the LOCSITE command to define
//* the correct XPORT library data set information.
//*---
//SYSUT1 DD *
userid password

4 Using PROC COPY to Restore the Transport File 155

cd mydir
locsite recfm=fb blocksize=8000 lrecl=80
binary
get xportout.dat ’userid.xportin.dat’
quit
/*
//*--
//* Connects to the target host and retrieves
//* the library XPORTOUT.
//*--
//FTPXEQI EXEC PGM=IKJEFT01,REGION=2048K,DYNAMNBR=50,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSTSOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ALLOC FI(input) DA(’userid.FTP.IN’) SHR
FTP target-host (EXIT
/*

Using PROC COPY to Restore the Transport File
The following example restores the transport file to native format on the OS/390

source host. For details in the SAS log that document the execution of this program
part, see “Recording the Restoration of the Transport File to the Source Host in the SAS
Log” on page 159.

Example Code 20.23 Restoring the Transport File to Native Format

//*--
//* Runs SAS step that reads the transport library
//* and writes the three SAS test data sets to
//* library WORK.

//*--
//SASIN EXEC SAS
//XPORTIN DD DSN=userid.XPORTIN.DAT,DISP=SHR
//SYSIN DD *
/*--*/
/* Assigns the SAS test library XPORTIN. */
/*--*/

libname xportin xport;

/*--*/
/* Reads the transport file and writes the test */
/* data sets to library WORK. */
/*--*/

proc copy in=xportin out=work;
run;
/*

156 Recording the Creation of Data Sets and Transport Files in the SAS Log 4 Chapter 20

Recording the Creation of Data Sets and Transport Files in the SAS Log
The following example shows the SAS log that documents the creation of the data

sets and corresponding transport files.

Example Code 20.24 Viewing the SAS Log at the OS/390 Source Host (Part 1 of 4)

The SAS System
11:03 Monday, October 26, 1999

NOTE: Copyright (c) 1999 by SAS Institute Inc.,
Cary, NC, USA.

NOTE: SAS (r) Proprietary Software Version 6.09.0460P0304986
Licensed to SAS INSTITUTE INC., Site 0000000001.

NOTE: Running on IBM Model 9672,
IBM Model 9672,
IBM Model 9672.

NOTE: No options specified.

/*--*/
/* Assigns the SAS test library XPORTOUT. */
/*--*/
libname xportout xport;
NOTE: Libref XPORTOUT was successfully assigned

as follows:
Engine: XPORT
Physical Name: JOE.XPORTOUT.DAT

/*---*/
/* Creates data set GRADES which contains */
/* numeric and character data. */
/*---*/
data grades;

input student $ test1 test2 final;
datalines;

NOTE: The data set WORK.GRADES has 2 observations
and 4 variables.

/*------------------------------------*/
/* Creates data set SIMPLE which */
/* contains character data only. */
/*------------------------------------*/
data simple;
x=’dog’;
y=’cat’;
z=’fish’;
run;

NOTE: The data set WORK.SIMPLE has
1 observations and 3 variables.

4 Recording the Transfer of the Transport File to the Target Host in the SAS Log 157

/*------------------------------------*/
/* Creates data set NUMBERS which */
/* contains numeric data only. */
/*------------------------------------*/
data numbers;

do i=1 to 10;
output;
end;

run;
NOTE: The data set WORK.NUMBERS has
10 observations and 1 variables.

/*------------------------------------*/
/* Copies the three test data sets to */
/* the XPORTOUT library. */
/*------------------------------------*/
proc copy in=work out=xportout;
run;

NOTE: Copying WORK.GRADES to XPORTOUT.GRADES
(MEMTYPE=DATA).

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set XPORTOUT.GRADES has
2 observations and 4 variables.

NOTE: Copying WORK.NUMBERS to XPORTOUT.NUMBERS
(MEMTYPE=DATA).

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set XPORTOUT.NUMBERS has
10 observations and 1 variables.

NOTE: Copying WORK.SIMPLE to XPORTOUT.SIMPLE
(MEMTYPE=DATA).

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set XPORTOUT.SIMPLE has
1 observations and 3 variables.

Note: The notes about SAS system option BUFSIZE do not indicate an error
condition. BUFSIZE specifies the permanent buffer size for an output data set, which
can be adjusted to improve system performance. The system value that is assigned to
the BUFSIZE option is used because the XPORT engine does not support the
BUFSIZE= option. See your operating environment companion for details. 4

Recording the Transfer of the Transport File to the Target Host in the
SAS Log

The following example shows the SAS log that documents the transfer of the
transport file to the target host.

Example Code 20.25 Vewing the SAS Log at the OS/390 Source Host (Part 2 of 4)

EZA1450I MVS TCP/IP FTP V3R2
EZA1772I FTP: EXIT has been set.
EZA1736I conn MYHOST.MYCOMPANY.COM
EZA1554I Connecting to MYHOST.MYCOMPANY.COM

158 Recording the Verification of the Transport File in the SAS Log 4 Chapter 20

10.26.11.235, port 21
220 myhost FTP server (Version 4.162 Tue Nov 1 10:50:37 PST 1988)

ready.
EZA1459I USER (identify yourself to the host):
EZA1701I >>>USER joe
331 Password required for joe.
EZA1701I >>>PASS ********
230 User joe logged in.
EZA1460I Command:
EZA1736I cd joe
EZA1701I >>>CWD joe
250 CWD command successful.
EZA1460I Command:
EZA1736I binary
EZA1701I >>>TYPE i
200 Type set to I.
EZA1460I Command:
EZA1736I put ’joe.xportout.dat’

xportout.dat
EZA1701I >>>SITE VARrecfm Lrecl=80

Recfm=FB BLKSIZE=8000
500 ’SITE VARrecfm Lrecl=80 Recfm=FB

BLKSIZE=8000’: command not understood
EZA1701I >>>PORT 10,253,1,2,33,182
200 PORT command.
EZA1701I >>>STOR xportout.dat
150 Opening BINARY mode data connection for

xportout.dat.
226 Transfer complete.
EZA1460I Command:
EZA1736I quit
EZA1701I >>>QUIT

Recording the Verification of the Transport File in the SAS Log
The following example shows the SAS log that documents the portion of the program

that verifies the accuracy of the transport files that were transferred.

Example Code 20.26 Viewing the SAS Log at the OS/390 Source Host (Part 3 of 4)

EZA1450I MVS TCP/IP FTP V3R2
EZA1772I FTP: EXIT has been set.
EZA1736I conn MYHOST.MYCOMPANY.COM
EZA1554I Connecting to MYHOST.MYCOMPANY.COM

10.26.11.235, port 21
220 myhost FTP server (Version 4.162 Tue Nov 1 10:50:37 PST 1988)

ready.
EZA1459I USER (identify yourself to the host):
EZA1701I >>>USER joe
331 Password required for joe.
EZA1701I >>>PASS ********
230 User joe logged in.
EZA1460I Command:
EZA1736I cd joe

4 Recording the Restoration of the Transport File to the Source Host in the SAS Log 159

EZA1701I >>>CWD joe
250 CWD command successful.
EZA1460I Command:
EZA1736I locsite recfm=fb blocksize=8000 lrecl=80
EZA1460I Command:
EZA1736I binary
EZA1701I >>>TYPE i
200 Type set to I.
EZA1460I Command:
EZA1736I get xportout.dat ’joe.xportin.dat’
EZA1701I >>>PORT 10,253,1,2,33,184
200 PORT command
EZA1701I >>>RETR xportout.dat
150 Opening BINARY mode data connection for

xportout.dat(3120 bytes).
226 Transfer complete.
EZA1617I 3120 bytes transferred in 0.198 seconds.Transfer rate

9.12 Kbytes/sec.
EZA1460I Command:
EZA1736I quit
EZA1701I >>>QUIT

Recording the Restoration of the Transport File to the Source Host in
the SAS Log

The following example shows the SAS log that documents the portion of the program
that copies the transport file to native format on the OS/390 host.

Example Code 20.27 Viewing the SAS Log at the OS/390 Source Host (Part 4 of 4)

NOTE: SAS (r) Proprietary Software Release 6.09.0460P030498
Licensed to SAS INSTITUTE INC., Site 0000000001.

NOTE: Running on IBM Model 9672,
IBM Model 9672,
IBM Model 9672.

NOTE: No options specified.

/*---------------------------------------*/
/* Assigns the SAS test library XPORTIN. */
/*---------------------------------------*/
libname xportin xport;
NOTE: Libref XPORTIN was successfully assigned

as follows:
Engine: XPORT
Physical Name: JOE.XPORTIN.DAT

/*---*/
/* Reads the transport file and writes the */
/* test data sets to the library WORK. */
/*---*/
proc copy in=xportin out=work;
run;

NOTE: Input library XPORTIN is sequential.

160 Methods for Verifying Transport Files 4 Chapter 20

NOTE: Copying XPORTIN.GRADES to WORK.GRADES
(MEMTYPE=DATA).

NOTE: BUFSIZE is not cloned when copying across
different engines. System Option for BUFSIZE was used.

NOTE: The data set WORK.GRADES has 2 observations
and 4 variables.

NOTE: Copying XPORTIN.NUMBERS to WORK.NUMBERS
(MEMTYPE=DATA).

NOTE: BUFSIZE is not cloned when copying across
different engines. System Option for BUFSIZE was used.

NOTE: The data set WORK.NUMBERS has 10 observations
and 1 variables.

NOTE: Copying XPORTIN.SIMPLE to WORK.SIMPLE
(MEMTYPE=DATA).

Note: The notes about the SAS system option BUFSIZE do not indicate an error
condition. BUFSIZE specifies the permanent buffer size for an output data set, which
can be adjusted to improve system performance. The system value that is assigned to
the BUFSIZE option is used because the XPORT engine does not support the BUFSIZE=
option. See your operating environment companion documentation for details. 4

Methods for Verifying Transport Files
Here are several suggestions for verifying transport files. The first two methods are

performed before and after the file transfer. The final method is performed after the file
transfer.

� Restore the transport file back to the source host into native format.
� Use the operating system’s list command to verify that a transport file was

successfully created.
� For data sets only, use PROC CONTENTS to compare the content of the original

data set that was created on the source host with the file that was restored on the
target host.

Restoring the Transport File at the Source Host
Use the appropriate method (PROC COPY or PROC CIMPORT) to restore the

transport file back to your source host. A successful translation of the transport file to
native format on the source host verifies the integrity of the transport file to be
transferred.

This example shows the creation of a transport file:

libname xptlib xport ’xptlib.dat’;
/* create a transport file for the entire library */
proc copy in=work out=xptlib;
run;

PROC COPY reads the library from the libref WORK and writes the transport file to
the libref XPTLIB.

This example restores the transport file just created back to the source host:

libname test ’test’;
/* restore the transport file at the source host */
proc copy in=xptlib out=test;

4 Comparing the Original Data Set with the Restored Data Set 161

run;

The value for the OUT= option in the example that creates the transport file becomes
the value for the IN= option in the example that restores the transport file back to the
source host. To protect against overwriting the original data library that is created in
WORK, direct output to the library TEST. PROC COPY reads the transport file from
the libref XPTLIB and restores it to the libref TEST in native format.

For complete details about the syntax for these procedures, see SAS Procedures
Guide.

Verify the outcome of this test by viewing the SAS log at the source host. If the
transport operation succeeded at the source host, then you can assume that the
transport file content is correct. If the transport operation failed, then you can assume
that the transport file was not created correctly. In this case, re-create the transport file
and restore it again at the source host.

Verifying the Size of a Transport File
Use your operating system’s list command to verify that the transport file was

successfully created. Here is an OpenVMS Alpha example:

vms> dir/size=all *dat

Directory HOSTVAX:[JOE.XPTTEST]

XPTDS.DAT;1 7/8
XPTLIB.DAT;1 7/8

The sizes of both files are 7/8 of a block, which is equivalent to 448 bytes.
Here is a UNIX example:

$ ls -l *dat
-rw-r--r-- 1 joe mkt 448 Oct 13 14:24 xptds.dat
-rw-r--r-- 1 joe mkt 890 Oct 13 14:24 xptlib.dat

The size of XPTDS.DAT is 448 bytes; XPTLIB.DAT, 890 bytes.
The method for listing a file size varies according to host.
Compare the size of the transport file on the source host with the size of the

transport file that is transferred to the target host. If the sizes of the transport files are
identical, then you can assume that the network successfully transferred these files. If
the sizes are not the same, you can assume that the network transfer failed. In this
case, review the transfer options and re-try the transfer.

Comparing the Original Data Set with the Restored Data Set
You can use the CONTENTS procedure to reveal discrepancies between the original

data set at the source host and the restored data set at the target host. A comparison
could reveal a misconception about the transported data. For example, upon
examination of the data set, you could learn that an entire library of data sets was
mistakenly transported rather than only the intended data set.

Use the CONTENTS procedure or the PRINT procedure to list the contents of
members of type DATA.

In this example, PROC CONTENTS shows the contents of a single data set in a
library:

162 Comparing the Original Data Set with the Restored Data Set 4 Chapter 20

Example Code 20.28 Using PROC CONTENTS to Show the Contents of a Data Set

proc contents data=xptds._all_;
CONTENTS PROCEDURE

Data Set Name: XPTDS.GRADES Observations: .
Member Type: DATA Variables: 4
Engine: XPORT Indexes: 0
Created: . Observation Length: 32
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

4 FINAL Num 8 24
1 STUDENT Char 8 0
2 TEST1 Num 8 8
3 TEST2 Num 8 16

DATAPROG: Creates datasets for TRANSPORTING

CONTENTS PROCEDURE

-----Directory-----

Libref: XPTDS
Engine: XPORT
Physical Name: 1DUA330:[HOSTVAX.JOE.XPTTEST]XPTDS.DAT

Name Memtype Indexes

1 GRADES DATA

If you detect problems, re-create the transport file and restore it again at the source
host.

163

Glossary

Accessing a SAS file
is the process whereby a user is permitted to read, write, or update a SAS file on a
remote host across a network. Such a user does not typically own the file.

Architectural compatibility
is a characteristic shared by two or more hosts that use identical internal
representations for storing numeric data or character data or both. Compatible hosts
share identical representations along these dimensions: Floating point numeric
storage (IEEE and IBM 390); Character encoding (ASCII or EBCDIC), Endian (big or
little); Word alignment (4-byte boundaries or 8-byte boundaries), or Data type length
(16-bit, 32-bit, or 64-bit).

Host compatibility allows the exchange of data with no loss of precision or
accuracy. In order to exchange data between incompatible hosts, the SAS file first
must be converted to transport format. See Transport format.

Backward compatibility
is the ability of a SAS client that runs a later SAS version (such as Version 7 or
Version 8) to read, write, and update a SAS file that was created at an earlier SAS
version (such as Version 6) as long as the client’s application does not implement new
features such as long names. The SAS client and application that run the later
version are said to be backward compatible with the SAS file that runs the earlier
version. See also Forward compatibility.

Binary file
is a file stored in binary format, which cannot be text edited. Binary files are usually
executable, but they can contain data only.

Catalog
See SAS catalog.

Catalog entry
See SAS catalog entry.

CEDA (Cross-Environment Data Access)
is a feature of SAS/CONNECT that enables hosts of any type to create a SAS file in
non-native format and to read a SAS file, regardless of the compatibility of the host’s
internal representation with the format of the file being accessed. Using the file’s
universal header, any type of accessing host can dynamically translate the file to the
format that is native to the host for reading only. However, in order for the accessing

164 Glossary

host to write to or update the file, the file’s format already must be compatible with
that of the accessing host or the file’s owner must assign to the file a format that is
native to the accessing host. See also Native host format and Foreign host format.

Client
See SAS/SHARE client.

Communications access method
is the method your local session uses to communicate with a remote host. Values for
the communications access method are specified with the COMAMID= system option.

Compatible hosts
See Architectural compatibility.

Converting a SAS file
is the process of changing the format of a SAS file to that used by the SAS version
that runs on the target host. After a SAS file has been copied to the target host,
convert it by using the COPY procedure with options that identify the later version
input file and the earlier version output file as defined by the LIBNAME statements.
See also Copying a SAS file and Target host.

Copying a SAS file
is the process of transferring a SAS file between compatible hosts either by way of a
magnetic medium or across a network. No transporting or converting is performed.
To access the copied file, use the LIBNAME statement to assign a libref to the file.
See also Converting a SAS file, Moving a SAS file, and Transporting a SAS file.

Corrupt file
is the result of an operation that alters the file’s data or the file’s header, causing the
file’s structure or its contents to be inaccessible. A common cause of corruption
during file transport is that the transport file contains one or more incorrectly placed
carriage returns or line feeds to mark the end of record, which makes the entire file
unreadable after it is transferred across a network. Invalid file attributes set
through the communications software can cause corruption.

Cross-Environment Data Access
See CEDA.

Cross-version environment
is one in which SAS clients and servers use different versions or releases of SAS
software. These factors control whether a SAS file can be accessed for reading,
writing, or updating: 1) the version of SAS run by the server, 2) the version of SAS
run by the client, 3) the version of SAS that was used to create the file being
accessed, and 4) the member accessed.

Data control block (DCB)
is the OS/390 control block that contains information about the physical
characteristics of an operating system data set.

Data file
See SAS data file.

Data precision
is the reliability of numeric data in a SAS file that is exchanged between hosts.
Compatible hosts, which store floating-point numeric data identically, exchange
precise numeric data. Precision is lost when passed between incompatible hosts. The
two primary floating-point numeric formats are IEEE and IBM 390. See also
Architectural compatibility.

Data set
See SAS data set.

Glossary 165

Data view
See SAS data view.

Engine
is a part of the SAS System that reads from or writes to a file. Each engine allows
the SAS system to access files with a particular format. There are several types of
engines, including V6, V7, and V8. See also V6 engine, V7 engine, and V8 engine.

External file
is a file maintained by the host operating system that the SAS System can read data
from and route output to. External files can contain raw data, SAS programming
statements, procedures output, or output created by the PUT statement. An external
file is not a SAS data set. See also Fileref.

FAT-style disk drive
is a File Allocation Table that is maintained on disk drives that are used exclusively
with Windows and OS/2 hosts. The FAT file system keeps track of the status of
various segments of disk space used for file storage.

FDB (Financial Database)
is a variation of the SAS Multidimensional Database (MDDB) that has been
enhanced for use by CFO Vision. See also MDDB.

Fileref
is a name temporarily assigned to an external file or to an aggregate storage location
that identifies it to the SAS System. You assign a fileref with a FILENAME
statement or with an operating system command.

Do not confuse filerefs with librefs. Filerefs are used for external files; librefs are
used for SAS data libraries. See also Libref.

File transfer protocol
See FTP.

Financial Database
See FDB.

Foreign host format
is a relative term that contrasts the format of the file being accessed with the
internal data representation of the host that is accessing the file. If the internal
formats of the remote host and the file being accessed are not the same, then the
remote host can read, but cannot write to or update the file. A foreign host format is
also referred to as a non-native or an alien host format.

As an example, the format file created by a mainframe is considered foreign to
that of a Windows host. However, the format of a Windows host that is attempting to
access a file that is in Windows format is not foreign. See also Native file format.

Forward compatibility
is the ability of a SAS client that runs an earlier version of SAS to read, write, and
update a SAS file that was created with a later version of SAS as long as the SAS file
does not implement features that are specific to the later version, such as long
names. The accessing SAS client and the application that run the earlier version of
SAS are said to be forward compatible with the SAS file being accessed that was
created with a later version of SAS. See also Backward compatibility.

FTP (File Transfer Protocol)
In TCP/IP, FTP is an application protocol used for transferring files to and from hosts
across a network. FTP requires a userid and usually a password to allow access to
the remote host.

Generation data sets
are historical copies of a SAS data set. Multiple copies of a SAS data set can be kept
by requesting the generations feature. The multiple copies represent versions of the

166 Glossary

same data set, which are archived each time it is replaced. The copies are referred to
as a generation group and are a collection of data sets that have the same root
member name but different version numbers. There is a base version, which is the
most recent version, plus a set of historical versions.

Import
is to restore a SAS transport file to its original form (a SAS data library, a SAS
catalog, or a SAS data set) in the format appropriate to the target host operating
system. Use the CIMPORT procedure to restore a SAS transport file created by the
CPORT procedure. Import refers specifically to the use of the CIMPORT procedure
for transport file restoration. In general, this term also includes the use of the COPY
procedure with the XPORT engine for transport file restoration. See also Restoring a
transport file.

Incompatible hosts
See Architectural compatibility.

Integrity constraints
are a set of data validation rules that are specified to restrict the data values
accepted into a SAS data file. Using them can preserve the correctness and
consistency of stored data. SAS enforces the integrity constraints each time data is
inserted or updated in a variable that contains integrity constraints.

Item store
is a SAS member type that is a hierarchical file system with advanced performance
features. An item store can contain store registry information and ODS templates,
for example. Item stores on the OS/390 host also can contain HTML help files. SAS
item stores are of member type ITEMSTOR.

Job control language (JCL)
is a language used to communicate information about a job to the operating system,
including the data sets, time, and memory that the job needs.

Library concatenation
is the logical combination of two or more libraries that allows access to the SAS data
sets in the combined libraries by using a single libref.

Library reference
See libref.

Libref
is the name temporarily associated with a SAS data library. For example, in the
name SASUSER.ACCOUNTS, the name SASUSER is the libref. You can assign a
libref with a LIBNAME statement or with operating system control language.

Local SAS session
is a SAS session running on the local host. The local session accepts SAS statements
and passes those that are remote submitted to the remote host for processing. The
local session manages the output and messages from both the local session and the
remote session.

Long names
is a Version 7 and later enhancement to SAS that extends the maximum length of
names from the lengths defined in Version 6. This enhancement applies to the names
of variables, data sets, procedures, options, statement labels, and librefs or filerefs.
Maximum lengths for long names vary according to the type of name. Truncation
rules are applied to long names when regressing a Version 7 or later file to a Version
6 host.

MDDB (Multidimensional Database)
is a SAS database format for summary tables that optimizes access and retrieval
times for the data that the tables contain by storing data in pre-summarized format.

Glossary 167

Member type
is a name assigned by the SAS System that identifies the type of information stored
in a SAS file. Member types include ACCESS, CATALOG, DATA, FDB, ITEMSTOR,
MDDB, PROGRAM, and VIEW.

Migrating SAS files
is the process of moving SAS files (data and applications) from a host that runs an
earlier version of SAS to another host that runs a later version of SAS in order to
take advantage of features from the later version. See also Moving a SAS file.

Mixed library
is a Version 7 and later library that contains both Version 7 and later SAS files and
Version 6 SAS files. Although mixed libraries are permitted, their maintenance can
be difficult. To access a specific Version 6 file or Version 7 or later file in a Version 7
or later library, use the LIBNAME statement with the appropriate engine option. To
access all Version 6 files in a mixed library, specify explicitly the V6 engine in the
LIBNAME statement. To access all Version 7 or later files in a mixed library, specify
explicitly the V7 or V8 engine in the LIBNAME statement. If the engine option is
omitted from the LIBNAME statement, the base engine that is used by the SAS
session is selected, by default. See also SAS filename extension, V6 engine, V7
engine, and V8 engine.

Moving a SAS file
is the process of passing a SAS file from one host to another host either by way of a
magnetic medium or across a network. Three specific variations on moving a SAS file
are converting, copying, and transporting. See Converting a SAS file, Copying a SAS
file, and Transporting a SAS file.

Multidimensional Database
See MDDB.

Native host format
is a relative term that compares the format of the SAS file being accessed with the
internal data representation that is used by the remote host. If the remote host and
the file being accessed share a common internal data representation, then the remote
host can read, write, and update the file. As an example, a Windows host has read,
write, and update access to a file that is in Windows format. See also Foreign host
format.

Regressing a file
is the process of moving a SAS file from a later version to an earlier version of SAS;
for example, from Version 8 to Release 6.12. Reverting a file to an earlier version
requires the setting of the VALIDVARNAME option to the selected engine; for
example, OPTIONS VALIDVARNAME=V6, prior to using PROC COPY. If the file
created in the later version contains features that do not exist in the earlier version,
such as integrity constraints, then you cannot regress the file. Instead, you re-create
the file on a host that runs the later version of SAS.

Remote host
in SAS/CONNECT software, is the computer on which processing occurs when you
execute a PROC DOWNLOAD, PROC UPLOAD, or other SAS statement that is
executed with the RSUBMIT command or the RSUBMIT statement. The term
“remote” describes how you interact with the SAS session running on the computer;
it is not related to the physical location of the computer. See also Local SAS session.

Restoring a transport file
is the activity that returns the SAS transport file to its original form (a SAS data
library, a SAS catalog, or a SAS data set) in the format appropriate to the target host
operating system. Restoration is performed using either of two techniques, as

168 Glossary

appropriate: 1) the COPY procedure to restore a SAS transport file created by the
COPY procedure with the XPORT engine, 2) the CIMPORT procedure to restore a
SAS transport file created by the CPORT procedure. Also referred to as reading or
importing a transport file. See also Import.

SAS catalog
is a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain several different types of catalog
entries. Some catalog entries contain system information such as key definitions.
Other catalog entries contain application information such as window definitions, help
windows, formats, informats, macros, or graphics output. See also SAS catalog entry.

SAS catalog entry
is a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to the SAS System.

SAS data file
is a SAS data set that is implemented in a form that contains both the data values
and the descriptor information. SAS data files have the type DATA.

SAS data library
is a collection of SAS files accessed by the same library engine and recognized as a
logical unit by the SAS System. Each file is a member of the library.

SAS data set
is descriptor information and its related data values organized as a table of
observations and variables that can be processed by SAS software. A SAS data set
can be either a SAS data file or a SAS data view. See also SAS data file and SAS
data view.

SAS data view
is a SAS data set in which the descriptor information and the observations are
obtained from other files. A SAS data view contains only the descriptor and other
information required to retrieve the data values from other SAS files. Both PROC
SQL views and SAS/ACCESS views are considered SAS data views. SAS data views
are of member type VIEW.

SAS filename extension
is a standard filename identifier that captures these file attributes: 1) the engine
that was used to create the file, 2) the architecture of the host on which the file was
created, and 3) the member type in the file. SAS uses filename extensions as a key
for identifying the appropriate files for access. The length of a Version 6 filename
extension varies according to the host, whereas a Version 7 and later filename
extension is limited to eight characters. As an example, filename extension
.sas7bdat always identifies a file that was created with the V7 or later engine on a
UNIX host for a member of type DATA. See also Architectural compatibility, SAS
member type, V6 engine, V7 engine, and V8 engine.

SAS/SHARE client
is a SAS session that requests access to remote data by means of a SAS/SHARE
server.

SAS/SHARE server
is the result of an execution of the SERVER procedure. The SERVER procedure is
part of SAS/SHARE software. A SAS/SHARE server is also referred to as a server or
a SAS server. A server runs in a separate SAS execution that services users’ SAS
sessions by controlling and executing input and output requests to one or more SAS
data libraries.

Server
See SAS/SHARE server.

Glossary 169

Source host
is the host from which a SAS file is moved.

Target host
is the host to which a SAS file is moved.

Transferring a SAS file
is the process of delivering a SAS file from a source host to a target host, either by
means of a magnetic medium or across a network. See also Copying a SAS file.

Translation table
is an operating system-specific SAS catalog entry that is used to translate the value
of one character to another. Translation tables often are needed to support
requirements of National Language Support applications. An example of a
translation table is one that converts characters from EBCDIC to ASCII-ISO. Specify
a translation table by using the TRANTAB= system option, the TRANTAB statement
in the CPORT and CIMPORT procedures, or the TRANTAB statement in the SAS/
CONNECT UPLOAD and DOWNLOAD procedures.

Transport engine
is the facility that transforms a SAS file from its host-specific internal representation
to transport format. To create a transport file, explicitly invoke the XPORT engine in
the LIBNAME statement when used with the COPY procedure. See also Transport
file, Transport format, and Transporting a SAS file.

Transport file
is a sequential file that contains one or more data sets or catalogs or both in
transport format.

Transport format
is the internal representation of a transport file. The transport file contains a header,
(which describes the content of the file) and the content of the member type (which is
represented in binary format). Two distinctive transport formats result from the
method that is used to create the transport file. The methods are: 1) the COPY
procedure with the XPORT engine or 2) the CPORT and CIMPORT procedures. See
also Transport engine, Transport file, and Transporting a SAS file.

Transporting a SAS file
is the process of putting a SAS file in transport format in order to move it between
incompatible hosts. The transport process: 1) creates a transport file on the source
host, 2) transfers the transport file to the target host, and 3) restores the transport
file to native format on the target host. If the source and target hosts run different
versions of SAS, the transport process implicitly converts the file only from an earlier
SAS version to a later SAS version. See also Architectural compatibility, Converting
a SAS file, Transferring a SAS file, Transport file, and Transport format.

Universal header
is attached to the beginning of a SAS file that was created with CEDA. The header
contains architectural attributes such as number size, number alignment, data
representation, and character encoding. Accessing the universal header, the remote
host can determine if the file’s format is native or foreign to that of the accessing
host. If the file’s format is native, then the host can read, write, and update the file.
If the file’s format is foreign, then the host only can read it. See also Architectural
compatibility, CEDA, Foreign host format, and Native host format.

V6 engine
is the default Version 6 engine. This engine accesses SAS files in Version 6 format
SAS data libraries.

170 Glossary

V7 engine
is the default Version 7 engine. This engine accesses SAS files in Version 7 format
SAS data libraries. Version 7 files and Version 8 files are identical.

V8 engine
is the default Version 8 engine. This engine accesses SAS files in Version 8 format
SAS data libraries. Version 8 files and Version 7 files are identical.

XPORT
See Transport engine.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., Moving
and Accessing SAS Files across Operating Environments, Version 8, Cary, NC: SAS
Institute Inc., 1999. 186 pages.

Moving and Accessing SAS Files across Operating Environments, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-480-2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX®, DB2®, OS/2®, OS/390®, and System/390® are registered trademarks or
trademarks of International Business Machines Corporation. ORACLE® is a registered
trademark or trademark of Oracle Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

