
25

C H A P T E R

4
FSEDIT Procedure Windows

Overview 26
Viewing and Editing Observations 26

How the Control Level Affects Editing 27

Scrolling 28

Adding Observations 28

Entering and Editing Variable Values 28
FSEDIT Window Commands 28

Command Descriptions 29

Creating a New Data Set 39

Opening the FSEDIT NEW Window 39

Defining Variables 40

Closing the FSEDIT NEW Window 40
FSEDIT NEW Window Commands 40

Command Descriptions 40

Creating an FSEDIT Application 42

Storing Customization Information 42

Creating or Modifying a SCREEN Entry 43
Opening the FSEDIT Menu Window 43

Closing the FSEDIT Menu Window 44

Protecting Your Application 44

Modifying Screens and Identifying Fields 44

Step 1: Modifying the Display 45
Creating Fields 45

Creating Special Fields 46

FSEDIT Modify Window Commands 46

Specifying Color and Highlighting 47

Exiting the FSEDIT Modify Window 47

Step 2: Defining Fields 47
Defining Special Fields 48

FSEDIT Names Window Commands 48

Command Descriptions 49

Exiting the FSEDIT Names Window 50

Step 3: Identifying Fields 50
Unidentified Fields 50

Changing a Field from Unwanted to Identified 51

FSEDIT Identify Window Commands 51

Command Descriptions 52

Exiting the FSEDIT Identify Window 52
Editing, Browsing, and Compiling Program Statements 53

Using SAS Component Language 53

Browse Program Statements 53

26 Overview 4 Chapter 4

Assigning Special Attributes to Fields 53
Field Attributes 53

FSEDIT Attribute Window Frames 54

Scrolling in the FSEDIT Attribute Window 54

Attribute Frame Descriptions 55

Codes for Color and Highlighting Attributes 58
Modifying General Parameters 58

Parameter Fields 59

Commands Versus Parameter Settings 61

Creating Application-Specific Key Definitions 62

Overview
You can use the FSEDIT procedure to perform a variety of tasks. Each task has its

own associated window, as shown in the following table:

Task Window

Viewing and editing observations FSEDIT

Creating a new SAS data set FSEDIT NEW

Customizing the FSEDIT session FSEDIT Menu

• redesigning the display FSEDIT Modify

• defining special fields FSEDIT Names

• identifying field locations FSEDIT Identify

• writing an SCL program FSEDIT Program

• assigning field attributes FSEDIT Attribute

• setting session parameters FSEDIT Parms

The following sections explain
� how these tasks are performed with the FSEDIT procedure
� how the associated windows are used
� which commands are valid in each window.

Note: Most of the features that are described in the following sections for the
FSEDIT procedure are also available for the FSBROWSE procedure. However, the
FSEDIT functions that relate to creating new data sets and to adding, editing, or
deleting observations in existing data sets are not applicable to the FSBROWSE
procedure. 4

Viewing and Editing Observations
In the FSEDIT procedure, observations are viewed and edited in the FSEDIT

window. By default, this window is opened when you begin an FSEDIT session. If you
use the procedure to create a new data set, the FSEDIT window is opened after the
structure of the new data set has been defined in the FSEDIT NEW window.

Display 4.1 on page 27 shows the features of a typical FSEDIT window. The window
includes fields that contain the values of variables in the data set, as well as labels that
identify the fields.

FSEDIT Procedure Windows 4 How the Control Level Affects Editing 27

Display 4.1 Typical FSEDIT Window

By default, the window’s title bar includes both the name of the current data set and
the current observation number. No observation number is displayed when the engine
that is being used to read the data set does not support access by observation number.
For example, observation numbers are not displayed when the data set is compressed.

Unless you use a WHERE statement in conjunction with the PROC FSEDIT
statement, all observations in the data set are available for editing. The FSEDIT
procedure ignores the FIRSTOBS= and OBS= system options.

CAUTION:
The FSEDIT procedure edits a data set in place. The FSEDIT procedure does not leave
an unedited copy of the original. If you need to preserve a copy of the original data,
be sure to make a copy of the data set before you begin editing. 4

How the Control Level Affects Editing
The editing behavior of the FSEDIT procedure depends on which control level is

selected when the data set is opened. The control level is the degree to which the
procedure can restrict access to the data set.

The FSEDIT procedure supports two levels of control:

record locks only the observation that is currently being edited. With this
control level, you can open multiple FSEDIT windows for browsing
or editing the same data set. Using SAS/SHARE software, other
users can edit the same data set simultaneously.

member locks the entire data set. No other window or user can open the data
set while this control level is in effect.

By default, the FSEDIT procedure selects record-level control when it opens a SAS
data set. You can specify the control level with the UPDATE command in the FSEDIT
window, or by using the CNTLLEV= data set option with the data set name in the
PROC FSEDIT statement or in the FSEDIT command. See “FSEDIT Window
Commands” on page 28 for details about the UPDATE command. The CNTLLEV= data
set option is described in SAS Language Reference: Dictionary.

28 Scrolling 4 Chapter 4

Scrolling
When the FSEDIT window is opened, an initial observation is displayed for editing.

Scroll forward or backward to view other observations.
If an observation contains more variables than can be displayed in the FSEDIT

window at one time, the information in each observation is divided into discrete units
called screens. Each screen contains as many variable fields as will fit in the FSEDIT
window. Scroll right or left to move among the screens to view the additional variables.

Note: The FSEDIT window supports a maximum of 100 screens per observation. If
you attempt to open a data set that has an extremely large number of variables, such
that more than 100 screens would be required to accommodate all of the variables, then
only variables that fit within 100 screens are displayed. You can use the VAR statement
in conjunction with the PROC FSEDIT statement to restrict the number of variables
that are displayed in the FSEDIT window. 4

Adding Observations
There are two ways to add observations to the data set:
� Create a new blank observation and enter variable values.
� Duplicate an existing observation and edit the variable values.

The new observation is not actually added to the data set until you move to another
observation, save the data set, or end the procedure. You can cancel the observation
before it is added to the data set.

Entering and Editing Variable Values
To enter a value for a variable, simply type the value in the entry field (usually

indicated by underscores) that follows the variable name or label. To edit a value, type
the new value over the old value.

When an observation is displayed for editing, you can enter values only on the
command line and in entry fields. All other areas of the window are protected.

FSEDIT Window Commands
In addition to the global commands that are discussed in Chapter 9, “SAS/FSP

Software Global Commands,” on page 141, you can use the following commands while
editing observations:

Scrolling

n

=n

=variable

BACKWARD

BOTTOM

FORWARD

LEFT

RIGHT

FSEDIT Procedure Windows 4 Command Descriptions 29

TOP

Searching

FIND search-criterion <... search-criterion-n>

FIND@ search-criterion <... search-criterion-n>

LOCATE | LOC search-value

LOCATE: | LOC: search-string

NAME <variable>

RFIND

SEARCH search-string

SEARCH@ search-string <... search-string-n>

STRING variable <... variable-n>

Editing Observations

ADD

CANCEL

CURSOR

DELETE

DUP

OVERRIDE

UPDATE <RECORD | MEMBER>

Saving Data

AUTOSAVE <n>

END

SAVE

Creating Letters and Reports
(These commands are valid only if the LETTER= option is used in the PROC

FSEDIT statement.)

EDIT letter-name

LETTER

SEND letter-name

Other

KEYS

MODIFY <password>

REREAD

WHERE <<ALSO> expression> | <UNDO | CLEAR>

Command Descriptions
Here are descriptions of the FSEDIT window commands:

30 Command Descriptions 4 Chapter 4

n
displays the specified observation. If the n value is greater than the number of
observations in the data set, the last observation in the data set is displayed.

This command is not valid when the engine that is being used to read the data
set does not support access by observation number or when a permanent or
temporary WHERE clause is in effect.

=n
displays the specified screen of the current observation in a multiscreen
application. If the =n value is greater than the number of screens in the
application, the highest-numbered screen of the current observation is displayed.

This command has no effect if the FSEDIT window does not use multiple
screens.

=variable
positions the cursor on the entry field for the specified variable.

This command is particularly useful in multiscreen applications and in custom
displays.

ADD
creates a new blank observation for the data set and displays it so that you can
enter values.

The new observation is not actually added to the data set until you scroll to
another observation, issue a SAVE command, or end the FSEDIT session. You can
use the CANCEL or DELETE commands to cancel the new observation before it is
added to the data set.

AUTOSAVE <n>
specifies how frequently the procedure automatically saves the data set. The n
value determines the number of observations that must be modified (changed,
added, or deleted) before an automatic save is performed. By default, the FSEDIT
procedure saves the data set automatically whenever 25 observations have been
modified since the last save.

To check the current value of the AUTOSAVE parameter, issue the AUTOSAVE
command without specifying an n value.

When creating a FSEDIT application, you can change the default AUTOSAVE
value by changing the Autosave value field in the FSEDIT Parms window.

Regardless of the AUTOSAVE value, you can save the data set at any time by
using the SAVE command.

BACKWARD
displays the previous observation.

BOTTOM
displays the last observation in the data set.

Note: Some engines do not support the BOTTOM command. 4

CANCEL
cancels all changes that have been made to the current observation. You can
cancel changes only while the observation is displayed. Once you scroll to another
observation or issue a SAVE command, the changes cannot be canceled.

CURSOR
selects the position on the display (usually in a variable field) where the cursor is
positioned each time an observation is displayed. To specify the position, type
CURSOR on the command line, move the cursor to the desired position, and press
ENTER.

FSEDIT Procedure Windows 4 Command Descriptions 31

DELETE
marks the displayed observation for deletion. After you move to another
observation, you cannot return to a deleted one.

Depending on which engine is used, deleted observations may not be physically
removed from the data set, even though they are no longer accessible. To remove
deleted observations, use a DATA step or any other process, such as the SORT
procedure, that re-creates the data set.

Note: Some engines, such as the V5 engine, do not support deleting
observations. In this case, the DELETE command merely resets all variables in
the observation to missing values. 4

DUP
creates a duplicate of the displayed observation and displays the newly created
observation for editing. Duplicating an observation is useful when you are adding
an observation whose values are similar to those of an existing observation.

The duplicate observation is not actually added to the data set until you scroll
to another observation, issue a SAVE command, or end the FSEDIT procedure.
You can use the CANCEL or DELETE commands to cancel the new observation
before it is added to the data set.

EDIT letter-name
initiates the FSLETTER procedure and displays the specified document for editing
in the FSLETTER window. The letter-name value is the one-level name of a
LETTER entry in the SAS catalog that is specified in the LETTER= option of the
PROC FSEDIT statement that initiates the FSEDIT session. (The EDIT command
is valid only when the LETTER= option is used in the PROC FSEDIT statement.)
If the LETTER entry does not already exist, it is created.

If you use the SEND command in the FSLETTER window, fields in the
document are filled with the values of corresponding variables from the current
FSEDIT observation during the FSLETTER send step. When you end the
FSLETTER session, the FSEDIT session resumes.

For more information about creating letters and other documents, refer to
Chapter 5, “The FSLETTER Procedure,” on page 65. See also the LETTER and
SEND commands.

END
saves the data set, closes the FSEDIT window, and ends the FSEDIT session.

FIND search-criterion ... search-criterion-n
locates and displays the next observation that meets the specified criteria. The
general form of the search-criterion value is

variable-name comparison-operator search-value

where
� variable-name is the name of a variable in the data set. Computed variables

cannot be used as search variables.
� comparison-operator is one of the following:

32 Command Descriptions 4 Chapter 4

= ^= or = > >= < <=

EQ NE GT GE LT LE

� search-value is a valid value for the variable.
The following restrictions apply to the search-value value:

� Character values must be enclosed in quotes if they contain embedded
blanks, special characters, or leading numbers.

� Character values must match the case of the variable values, unless the
CAPS attribute is assigned to the variable field that is being searched. For
example, the following command will not locate observations in which the
value of the CITY variable is stored as Raleigh:

find city=raleigh

You must instead use the following command:

find city=Raleigh

When the CAPS attribute is assigned to the variable field that is being
searched, the value is converted to uppercase for purposes of the search,
regardless of the case in which it is entered.

� Numeric values can be entered either using the standard notation for
numeric constants (regardless of which format or informat is associated with
the variable) or using the informat that is associated with the variable. If the
informatted value contains special characters, the search value must be
enclosed in quotes. For example, if a variable named COST has the informat
COMMA8.2 and the format DOLLAR10.2, you can specify either of the
following to locate an observation in which the COST field value is displayed
as $1,234.50:

find cost=1234.50
find cost=’1,234.50’

The FIND command searches informatted values of the specified variable.
If the variable has a decimal value, then you must specify at least the
decimal point in the search value. For example, if a variable that is named
COST has the informat 5.2 and the value 6.00, then searching for the value 6
would not find a match, but searching for the value 6. would.

� Date values must be enclosed in quotes.
The command plus the string cannot be longer than 256 characters. Also, you

cannot specify more than 20 find variables.
If a list of criteria is specified, all those criteria must be met in order for an

observation to be selected. For example, the following command locates only
observations for which the YRS variable contains the value 3 and the STATE
variable contains NC:

find yrs=3 state=NC

The command will not locate observations that meet only one of the criteria. Use
the FIND@ command to locate observations that meet some but not all of the
conditions in the list.

After you issue a FIND command, you can use the RFIND command to repeat
the search for the next matching observation.

You can interrupt a FIND operation that is in progress. This feature is useful
when you want to halt a search request while editing or browsing a large data set.
To halt an active FIND operation, press the interrupt key or key combination for

FSEDIT Procedure Windows 4 Command Descriptions 33

your system. The FSEDIT procedure halts the operation and displays the
following message:

NOTE: Search was discontinued due to user break request.

To resume the search, issue an RFIND command.

Note: The key or key combination you use to interrupt an active process
depends on your host operating system and terminal device. For example, some
systems have a key that is labeled BREAK or ATTENTION (or ATTN). Other
systems use a combination of the CTRL key and another key. Refer to your host
documentation if you are unfamiliar with the interrupt key for your operating
system and terminal device. 4

See also the FIND@ and RFIND commands.

FIND@ search-criterion <... search-criterion-n>
locates and displays the next observation that meets at least one criterion in a list
of criteria. For example, use the following command to locate an observation that
has either a value greater than 1 for the variable YRS or the value NC for the
variable STATE:

find@ yrs>1 state=NC

See the discussion of the FIND command for an explanation of the format for
search-criterion values.

After you issue a FIND@ command, you can use the RFIND command to repeat
the search for the next matching observation.

FORWARD
displays the next observation.

KEYS
opens the KEYS window for browsing and editing function key definitions for the
FSEDIT window. Function key definitions are stored in catalog entries of type
KEYS.

The default key definitions for the FSEDIT window are stored in the
FSEDIT.KEYS entry in the SASHELP.FSP catalog. If you are using this default
set of key definitions when you issue the KEYS command and you change any key
definitions in the KEYS window, a new copy of the FSEDIT.KEYS entry is created
in your personal PROFILE catalog (SASUSER.PROFILE, or WORK.PROFILE if
the SASUSER library is not allocated). The changes that you make are recorded
in your personal copy of the KEYS entry.

Note: The FSEDIT and FSBROWSE procedures use the same default KEYS
entry. Changes that you make in the FSEDIT window also affect the default key
definitions for the FSBROWSE window. 4

If your FSEDIT session does not use an existing SCREEN entry, you can specify
a KEYS entry for your FSEDIT session by using the KEYS= option with the PROC
FSEDIT statement. If you do use an existing SCREEN entry, the KEYS entry
name that is recorded in the SCREEN entry is used. If you issue a KEYS
command when a KEYS entry has been specified, the FSEDIT procedure looks for
that entry first in the catalog that contains the SCREEN entry (if a SCREEN
entry is used), then in your personal PROFILE catalog. The first KEYS entry
found that has the specified name is opened for editing.

If the specified KEYS entry is not found in either catalog, then all function key
definitions are blank when the KEYS window is opened. If you then enter key
definitions, the specified entry is created when the KEYS window is closed. The
new entry is created in the catalog that contains the current SCREEN entry if a
SCREEN entry is used; otherwise, it is created in your personal PROFILE catalog.

34 Command Descriptions 4 Chapter 4

LEFT
scrolls to the previous screen of the current observation. This command is valid
only in multiscreen applications.

LETTER
initiates the FSLETTER procedure and opens the FSLETTER DIRECTORY
window to display the directory of the SAS catalog that was specified in the
LETTER= option. This command is valid only if you specify the LETTER= option
in the PROC FSEDIT statement that initiates the FSEDIT session.

From the FSLETTER DIRECTORY window, you can create new documents, or
you can select existing documents for editing or printing. If you issue a SEND
command in the FSLETTER window, fields in the document are filled with the
values of the corresponding variables from the current FSEDIT observation. When
you end the FSLETTER session, the FSEDIT session resumes.

LOCATE search-value
LOC search-value

locates and displays the next observation that contains a variable value that
exactly matches the specified numeric or character value. The FSEDIT procedure
searches for the matching value in the variable field that was identified in the
most recent NAME command.

The following restrictions apply to the search-value value:

� Character values must be enclosed in quotes if they contain embedded blanks
or special characters.

� Character values must match the case of the variable values, unless the
CAPS attribute is assigned to the variable field that is being searched. For
example, the following command will not locate observations in which the
CITY variable value is stored as Raleigh:

locate raleigh

You must instead use the following command:

locate Raleigh

When the CAPS attribute is assigned to the variable field that is being
searched, the value is converted to uppercase for purposes of the search,
regardless of the case in which it is entered.

� Numeric values must be entered using the standard notation for numeric
constants, regardless of the format or informat that is associated with the
variable. For example, if a variable named COST has the informat
COMMA8.2 and the format DOLLAR10.2, you must specify the following
command to locate an observation in which the COST field value is displayed
as $573.04:

locate 573.04

� Date values must be enclosed in quotes.

� The command plus the string cannot exceed 256 characters.
The LOCATE command finds only observations for which the specified search

value exactly matches the variable value. Use the LOCATE: or SEARCH
command to find partial matches.

After you issue a LOCATE command, you can use the RFIND command to
repeat the search for the next observation that contains the specified value.

You can interrupt a LOCATE operation that is in progress. This feature is
useful when you want to halt a search request while editing or browsing a large
data set. To halt an active LOCATE operation, press the interrupt key or key

FSEDIT Procedure Windows 4 Command Descriptions 35

combination for your system. The FSEDIT procedure halts the operation and
displays the following message:

NOTE: Search was discontinued due to user break request.

To resume the search, issue an RFIND command.

Note: The key or key combination you use to interrupt an active process
depends on your host operating system and terminal device. For example, some
systems have a key that is labeled BREAK or ATTENTION (or ATTN). Other
systems use a combination of the CTRL key and another key. Refer to your host
documentation if you are unfamiliar with the interrupt key for your operating
system and terminal device. 4

See also the LOCATE:, NAME, and RFIND commands.

LOCATE: search-string
LOC: search-string

locates and displays the next observation that contains a variable value for which
the beginning characters match the specified character value. The FSEDIT
procedure searches for the matching value in the variable field that was specified
in the most recent NAME command. See the description of the LOCATE command
for a list of restrictions on the search value.

Note: For numeric variables, the LOCATE: command finds only exact matches
(like the LOCATE command). You cannot search for partial matches in numeric
variables. 4

The LOCATE: command finds only observations for which the specified search
value matches the beginning characters of the variable value. For example, the
following command finds occurrences of both Burlington and Burnsville:

locate: Bur

Use the SEARCH command to find matches anywhere in the variable value
rather than just at the beginning.

After you issue a LOCATE: command, you can use the RFIND command to
repeat the search for the next observation that contains the specified value.

See also the LOCATE, NAME, and RFIND commands.

MODIFY <password>
opens the FSEDIT Menu window, from which you can customize the appearance
and behavior of the FSEDIT environment.

If the application you are using is password-protected, you must specify the
assigned password with the MODIFY command before you can modify the
SCREEN entry.

NAME <variable>
specifies the data set variable that will be searched by subsequent LOCATE or
LOCATE: commands. (Computed variables cannot be used as search variables.)
Issue the NAME command alone to display the current NAME variable.

For example, to find observations that contain particular values of a variable
named DISTRICT, issue this command:

name district

Then specify the desired district value in a LOCATE command to find observations
that belong to a specific district.

In an application, you can specify a default search variable in the FSEDIT
Parms window.

See also the LOCATE and LOCATE: commands.

36 Command Descriptions 4 Chapter 4

OVERRIDE
cancels all outstanding error conditions, permitting you to exit an observation even
though you have entered values that are outside of the acceptable range or have
left some required fields empty. Values that are flagged as outside the acceptable
range are recorded in the data set as entered. Values for fields in which nothing
was entered are recorded as missing values.

Note: When you are using an FSEDIT application, the OVERRIDE command
is valid only if the application allows overriding. Applications developers can block
the overriding of error conditions that are caused by blank required fields, by
values outside the acceptable range, or both. 4

REREAD
updates the current observation with the saved variable values from the data set.

RFIND
repeats the most recent FIND, FIND@, LOCATE, LOCATE:, SEARCH, or
SEARCH@ command.

RIGHT
scrolls to the next screen of the current observation. This command is valid only in
multiscreen applications.

SAVE
saves the SAS data set that you are editing without ending the FSEDIT session.
You can issue a SAVE command at any time while you are editing observations.

See also the AUTOSAVE command.

SEARCH <search-string>
locates and displays the next observation that contains a variable value that
includes the specified character value. (The SEARCH command is valid only for
character variables.) The FSEDIT procedure searches for the value in the variable
fields that were identified in the most recent STRING command.

The following restrictions are applicable to the search-string value:
� Values must be enclosed in quotes if they contain embedded blanks or special

characters.
� Values must match the case of the variable values, unless the CAPS attribute

is assigned to the variable fields that are being searched. For example, the
following command will not locate observations in which the CITY variable
value is stored as Raleigh:

search raleigh

You must instead use the following form of the command:

search Raleigh

When the CAPS attribute is assigned to the variable field that is being
searched, the value is converted to uppercase for purposes of the search,
regardless of the case in which it is entered.

� The command plus the string cannot exceed 256 characters.
If a list of values is specified, all of the strings must occur in an observation in

order for it to be located. For example, the following command locates only
observations for which the specified variables include both the strings Smith and
NC:

FSEDIT Procedure Windows 4 Command Descriptions 37

search Smith NC

The strings can occur in two different variable values (if more than one variable
is named in the STRING command) or both in the same variable value.

To find observations that contain some but not necessarily all of the values in
the list, use the SEARCH@ command.

After you issue a SEARCH command, you can use the RFIND command to
repeat the search for the next observation that contains the specified value.

You can interrupt a SEARCH operation that is in progress. This feature is
useful when you want to halt a search request while editing or browsing a large
data set. To halt an active SEARCH operation, press the interrupt key or key
combination for your system. The FSEDIT procedure halts the operation and
displays the following message:

NOTE: Search was discontinued due to user break request.

To resume the search, issue an RFIND command.

Note: The key or key combination you use to interrupt an active process
depends on your host operating system and terminal device. For example, some
systems have a key labeled BREAK or ATTENTION (or ATTN). Other systems use
a combination of the CTRL key and another key. Refer to your host documentation
if you are unfamiliar with the interrupt key for your operating system and
terminal device. 4

See also the SEARCH@, STRING, and RFIND commands.

SEARCH@ search-string <... search-string-n>
locates and displays the next observation that contains variable values that
include one or more of the specified character values. (The SEARCH@ command is
valid only for character values.) The FSEDIT procedure searches for the values in
the variables that were identified in the most recent STRING command. See the
description of the SEARCH command for restrictions that apply to the
character-string value.

For example, the following command displays the next observation that
contains either Cary, Raleigh, or Chapel Hill in one of the variables identified
in the STRING command:

search@ Cary Raleigh ’Chapel Hill’

After you issue a SEARCH@ command, you can use the RFIND command to
repeat the search for the next observation that contains the specified value.

See also the SEARCH, STRING, and RFIND commands.

SEND letter-name
initiates the FSLETTER procedure in its send step, displays the specified
document, and fills any entry fields in the document with corresponding variable
values from the current observation. The SEND command is valid only when the
LETTER= option is used in the PROC FSEDIT statement that initiates the
FSEDIT session.

The letter-name value is the one-level name of an existing LETTER entry in the
SAS catalog that is specified in the LETTER= option of the PROC FSEDIT
statement. An error message is printed if the specified LETTER entry does not
exist.

Use the END command to enter the second stage of the send step, or use the
CANCEL command to cancel the FSLETTER session. When you end the
FSLETTER session, the FSEDIT session resumes.

The SEND command provides a method for producing one copy of a document
for one observation. See Chapter 5, “The FSLETTER Procedure,” on page 65 for
more details.

38 Command Descriptions 4 Chapter 4

STRING <variable <... variable-n>>
identifies the data set variable or variables that will be searched by subsequent
SEARCH and SEARCH@ commands. The variables that are specified with the
command must be character variables in the data set. Computed variables cannot
be used as search variables.

For example, the following command causes the next SEARCH or SEARCH@
command to search the two specified variables:

string address1 address2

If you forget which variables are currently identified, issue the STRING
command with no following values to display the current variables on the
window’s message line.

In a custom application, you can specify default search variables in the FSEDIT
Parms window.

TOP
displays the first observation in the data set.

UPDATE <RECORD | MEMBER>
changes the control level of an FSEDIT window.

The UPDATE command fails if the specified control level would cause a locking
conflict. For example, you cannot specify UPDATE MEMBER if the same data set
is open with a control level of RECORD in another FSEDIT session.

WHERE <<ALSO> expression> | <UNDO | CLEAR>
imposes one or more sets of conditions that observations in the data set must meet
in order to be processed. Expression is any valid WHERE expression that includes
one or more of the variables in the input data set. (Refer to the description of the
WHERE statement in SAS Language Reference: Dictionary for details about the
operators and operands that are valid in WHERE expressions.) Observations that
do not satisfy the specified conditions cannot be displayed or edited.

The complete set of conditions that are imposed by a WHERE command is
called a temporary WHERE clause. These conditions can be modified or canceled
during the FSEDIT session. In contrast, a WHERE statement that is submitted by
the PROC FSEDIT statement defines a permanent WHERE clause that cannot be
changed or canceled during the FSEDIT session and which is not affected by
WHERE commands. See “WHERE Statement” on page 20 for details.

The word Where appears in the upper right corner of the window border
whenever a temporary WHERE clause is in effect.

The WHERE command has the following forms:

WHERE expression
applies the conditions that are specified in expression as the new temporary
WHERE clause, replacing any clause previously in effect.

WHERE ALSO expression
adds the conditions that are specified in expression to any existing temporary
WHERE clause.

WHERE UNDO
deletes the most recently added set of conditions from the temporary WHERE
clause.

WHERE
WHERE CLEAR

cancels the current temporary WHERE clause.
Whenever you change the temporary WHERE clause, the procedure scrolls to

the first observation in the data set that meets the specified conditions. When you

FSEDIT Procedure Windows 4 Opening the FSEDIT NEW Window 39

cancel the temporary WHERE clause, the procedure displays the first observation
in the data set.

If you edit values in an observation so that it no longer meets the conditions of
the WHERE clause, that observation can still be displayed and be edited.
However, a warning message is printed whenever the observation is displayed,
indicating that the observation no longer meets the WHERE conditions.

When you use the ADD or DUP commands to add a new observation, you can
enter values that do not meet the WHERE conditions. However, once you scroll to
another observation, that observation cannot be displayed or edited again while
the WHERE clause is in effect.

Creating a New Data Set
You can use the FSEDIT procedure to create a SAS data set. You name the variables

and specify their attributes in fields in the FSEDIT NEW window. After you exit the
FSEDIT NEW window, the data set is created and the FSEDIT window is opened so
that you can enter values in the new data set.

Opening the FSEDIT NEW Window
To open the FSEDIT NEW window, invoke the FSEDIT procedure, using the NEW=

option in the PROC FSEDIT statement. For example, to create a data set that is named
CUSTOMER in the SAS data library that has the libref MASTER, submit the following
statements:

proc fsedit new=master.customer;
run;

Display 4.2 on page 39 shows the FSEDIT NEW window that is opened when these
statements are submitted.

Display 4.2 The FSEDIT NEW Window

40 Defining Variables 4 Chapter 4

Defining Variables
The following rules apply to defining variables in the FSEDIT NEW window:
� You must give each variable a name. The name must follow SAS naming

conventions. See SAS Language Reference: Concepts for details.
� You can identify the type for each variable. Use N for numeric or $ (or C) for

character. If you leave the Type field blank, the default type is numeric.
� You can specify the length of each variable. If you leave the Length field blank,

the default length is 8.
� You can assign a label, a format, and an informat for each variable. See SAS

Language Reference: Concepts for a complete discussion of SAS variable attributes.

If you want to create a data set whose variable names and attributes are identical or
similar to those of an existing data set, use the LIKE= option in conjunction with the
NEW= option. The LIKE= option initializes the fields of the FSEDIT NEW window
with the names and attributes of the variables in the specified data set. You can edit
any of the variable names and attributes, and you can define additional variables before
creating the data set.

Closing the FSEDIT NEW Window
Use the END command to close the FSEDIT NEW window. This command also

creates the data set and opens the FSEDIT window for adding observations to the
newly created data set. After you issue the END command, you cannot return to the
FSEDIT NEW window to make structural changes to the data set.

FSEDIT NEW Window Commands
In addition to the global commands that are discussed in Chapter 9, “SAS/FSP

Software Global Commands,” on page 141, you can use the following commands in the
FSEDIT NEW window to scroll through information, to duplicate selected lines, or to
exit with the choice of creating a data set or canceling it.

Scrolling

BACKWARD <HALF | PAGE | MAX | n>

BOTTOM

FORWARD <HALF | PAGE | MAX | n>

LEFT

RIGHT

TOP

Other

CANCEL

END

KEYS

Command Descriptions
Here are descriptions of the FSEDIT New window commands:

FSEDIT Procedure Windows 4 Command Descriptions 41

BACKWARD <HALF | PAGE | MAX | n>
scrolls vertically toward the top of the window. The following scroll amounts can
be specified:

HALF scrolls upward by half the number of lines in the window.

PAGE scrolls upward by the number of lines in the window.

MAX scrolls upward until the first line is displayed.

n scrolls upward by the specified number of lines.

The default scroll amount is HALF.

BOTTOM
scrolls downward until the last line that contains a variable definition is displayed.

CANCEL
closes the FSEDIT NEW window and ends the FSEDIT session. The new data set
is not created.

END
closes the FSEDIT NEW window, creates the SAS data set that is defined in the
window, and opens an FSEDIT window for adding observations to the newly
created data set.

FORWARD <HALF | PAGE | MAX | n>
scrolls vertically toward the bottom of the window.

Note: You can scroll forward only if you have filled the last blank
variable-definition line that is currently displayed, or if there are more variables to
be displayed. 4

The following scroll amounts can be specified:

HALF scrolls downward by half the number of lines in the window.

PAGE scrolls downward by the number of lines in the window.

MAX scrolls downward until the last line that contains a variable
definition is displayed.

n scrolls downward by the specified number of lines.

The default scroll amount is HALF.

KEYS
opens the KEYS window for browsing and editing function key definitions.

Unlike the other FSEDIT windows, the FSEDIT NEW window uses the default
SAS windowing environment KEYS entry rather than the FSEDIT.KEYS entry or
the entry that is specified in the KEYS= option if that option is used with the
PROC FSEDIT statement.

LEFT
displays the FORMAT column when the INFORMAT column is displayed or vice
versa. The RIGHT command has the same effect.

RIGHT
displays the FORMAT column when the INFORMAT column is displayed or vice
versa. The LEFT command has the same effect.

TOP
scrolls upward until the first variable-definition line is displayed.

42 Creating an FSEDIT Application 4 Chapter 4

Creating an FSEDIT Application

If you are an applications developer, you can use the FSEDIT procedure as the basis
for data entry applications and editing applications. The FSEDIT procedure enables
you to customize the application environment to suit the needs of your users.
Customization can include

� redesigning the display

� creating special fields

� creating a SAS Component Language program to drive the application

� assigning field attributes to determine how variable values are presented

� setting general parameters that control behavior of the FSEDIT session.

Note: All of the following information about creating FSEDIT applications is equally
applicable to creating data presentation applications with the FSBROWSE procedure. 4

Storing Customization Information
To create a custom FSEDIT application, you must perform the following steps:

1 Identify the SAS catalog in which information about the customized features is to
be stored. Use the SCREEN= option in the PROC FSEDIT statement or the
screen-name argument in the FSEDIT command to identify the catalog. The
procedure can supply a default name for the SCREEN entry, or you can specify a
name.

2 Issue the MODIFY command in the FSEDIT window (or use the MODIFY option
in a PROC FSEDIT statement) to open the FSEDIT Menu window. From there
you can choose from several tasks that are involved in creating a customized
application.

Information about the features of an FSEDIT application is stored in a SCREEN
entry, a SAS catalog entry of type SCREEN. All of the customization information for an
application is stored in a single SCREEN entry.

Use the SCREEN= option in the PROC FSEDIT statement or the screen-name
argument in the FSEDIT command to identify the catalog and, optionally, the entry
name. When the FSEDIT procedure is initiated, the procedure looks in the specified
catalog for a SCREEN entry. If the catalog does not exist, it is created. If you do not
specify an entry name, the procedure looks for an entry that has the default name
FSEDIT.SCREEN. If a SCREEN entry that has the designated name is found, a
customized FSEDIT session is initiated. If the SCREEN entry does not exist, the
FSEDIT session is initiated without customized features. (The SCREEN entry is not
created until the MODIFY command is used.)

For example, if you submit the following statements, the procedure looks for an entry
named FSEDIT.SCREEN in the MASTER.SCRSUB catalog:

proc fsedit data=master.subscrib
screen=master.scrsub;

run;

If the MASTER.SCRSUB catalog does not exist, it is created. If the
FSEDIT.SCREEN entry does not exist in the catalog, it is created when the MODIFY
command is used for the first time.

If you submit the following statements, the procedure looks for an entry that is
named BASIC.SCREEN in the MASTER.SCRSUB catalog:

FSEDIT Procedure Windows 4 Creating or Modifying a SCREEN Entry 43

proc fsedit data=master.subscrib
screen=master.scrsub.basic.screen;

run;

If the MASTER.SCRSUB catalog does not exist, it is created. If the BASIC.SCREEN
entry does not exist in the catalog, it is created when the MODIFY command is used for
the first time. To use the customized application in a future session, users must specify
the complete three- or four-level name of the catalog entry. (The fourth level, the entry
type, can be omitted because the type for SCREEN entries is always SCREEN.)

Creating or Modifying a SCREEN Entry
The SCREEN entry for an FSEDIT application can hold a variety of information,

including

� the customized display format

� a SAS Component Language program

� attribute information for all of the fields

� the general parameters of the FSEDIT session.

Each of these elements is defined or modified in a separate FSEDIT auxiliary window.
You must use the FSEDIT Menu window to gain access to any of the auxiliary windows.

Opening the FSEDIT Menu Window
Issue the MODIFY command in the FSEDIT window to open the FSEDIT Menu

window. You can also open the FSEDIT Menu window at the beginning of an FSEDIT
session, before the FSEDIT window is opened, by using the MODIFY option with the
PROC FSEDIT statement. Display 4.3 on page 43 shows the FSEDIT Menu window.

Display 4.3 The FSEDIT Menu Window

To select an option from the main menu, type the option number on the command
line and press ENTER. Alternatively, you can move the cursor to the desired item
number and press ENTER.

Here are brief explanations of the available options:

Option 1 "Information about Screen Modification" provides information about
the tasks that are involved in customizing the FSEDIT application.

44 Modifying Screens and Identifying Fields 4 Chapter 4

This option opens a Help window; the effect is the same as using the
HELP command in the FSEDIT Menu window.

Option 2 "Screen Modification and Field Identification" enables you to
redesign the display, to define special fields, and to identify the
variable that is associated with each field. This option opens the
FSEDIT Modify window. See “Modifying Screens and Identifying
Fields” on page 44 for more information.

Option 3 "Edit Program Statements and Compile" enables you to create and
compile a SAS Component Language (SCL) program. This option
opens the FSEDIT Program window. See “Editing, Browsing, and
Compiling Program Statements” on page 53 for more information.

Option 4 "Assign Special Attributes to Fields" enables you to define or change
the attributes of variable fields. This option opens the FSEDIT
Attribute window. See “Assigning Special Attributes to Fields” on
page 53 for more information.

Option 5 "Modification of General Parameters" enables you to define or
change the general parameters of your FSEDIT application. This
option opens the FSEDIT Parms window. See “Modifying General
Parameters” on page 58 for more information.

Option 6 "Browse Program Statements" enables you to browse an SCL
program without compiling it. This option opens the FSEDIT
Program window. See “Editing, Browsing, and Compiling Program
Statements” on page 53 for more information.

Later sections describe each option and its associated window in greater detail.

Closing the FSEDIT Menu Window
Use the END command to close the FSEDIT Menu window. This command also

updates the SCREEN entry and returns you to the FSEDIT window. Any customized
features that you define using the options in the FSEDIT Menu window take effect
immediately.

Note: Customization information is not saved after the current FSEDIT session
unless you specify the SCREEN= option in the PROC FSEDIT statement or the
screen-name argument in the FSEDIT command. 4

Protecting Your Application
You can protect the integrity of your FSEDIT application by assigning a password to

the SCREEN entry. Once the password is assigned, a user of the application must
specify it with the MODIFY command in order to change customized features. Others
can use your application to edit a SAS data set, but the application itself is protected
from unwanted changes to the display, the SCL program, the field attributes, or the
FSEDIT general parameter settings.

Passwords are assigned in the Modify password field of the FSEDIT Parms window.
For details, see “Modifying General Parameters” on page 58.

Modifying Screens and Identifying Fields
Select option 2 from the FSEDIT Menu window to create a customized display for

your application. Customization is a three-step process:

FSEDIT Procedure Windows 4 Creating Fields 45

1 Modifying the display. Redesign the display by moving fields, adding fields, or
adding descriptive text.

2 Defining fields. Specify the attributes of repeated fields, fields for values that are
calculated in a SAS Component Language program, or both. This step is necessary
only when you add repeated or computed fields, which are described in the next
section.

3 Identifying fields. Specify the location of the field for each data set variable or
computed value.

Step 1: Modifying the Display
The first window that opens when you select option 2 from the FSEDIT Menu

window is the FSEDIT Modify window. In this window you design a customized display
for your application. Variable fields can be labeled more descriptively, rearranged, and
even deleted. You can add comments to help users enter data in the proper format.

The FSEDIT Modify window initially contains the display format for the FSEDIT
window (either the default format if a new SCREEN entry is being created, or the
previous customized format if an existing SCREEN entry is used.) During this first
step, the entire contents of the FSEDIT Modify window are unprotected, so you can
type over any area in the display, including the variable names. You can move, delete,
or insert any lines in the display. You can move variable fields and add any special
comments or instructions that would make entering data easier.

If the modified display format that you create has more lines than the number of
rows in the FSEDIT window, a multiscreen application is created. Users must scroll to
view the fields and text that do not fit in the first screen. Option 5 in the FSEDIT
Menu window enables you to specify the initial height of the FSEDIT window.

Creating Fields
There are three important requirements for variable fields in a customized display:
� Underscore (_) characters are used to define the location and length of fields. The

number of underscores you use for a field determines the field width (the number
of characters that can be entered in that field).

� Each field must be preceded and followed by at least one blank space, unless the
field begins in the leftmost column.

� If a field continues to the next set of underscores, an asterisk (*) must be placed in
the last position of a series of underscores, whether the next set is on the same
line or on the next line. For example, the following underscores and asterisks
define a single field:

__* - __* - ____

Note: The restriction of using an underscore as the field pad character is applicable
only when you are identifying fields to the FSEDIT procedure. This rule does not affect
the final appearance of the display. If you want to use a pad character other than the
default underscore to mark the location of a variable field, use option 4 from the
FSEDIT Menu window to change the PAD attribute for the field. 4

46 Creating Special Fields 4 Chapter 4

The default width of each variable field depends on how the variable is stored in the
data set and on whether the variable has an associated output format:*

Variable Type Default Width

character the larger of

• the width of the variable in the data set

• the width of the variable’s format or informat (whichever is
longer), if one has been assigned.

numeric either

• the width of the variable’s format or informat (whichever is
longer), if one has been assigned

• the default width of 12 (because BEST12. is the default numeric
format).

You can modify the default field widths when you create a customized display. For
example, many numeric fields do not require the full default width of 12 positions.
However, you should ensure that the width of the field is appropriate for the width of
the corresponding variable. Otherwise, users of your application may be unable to enter
the full range of valid variable values in the fields.

Creating Special Fields
In addition to variable fields, you can create two different types of special fields:

repeated fields
repeat the values from other variable fields or computed fields. Repeated fields
effectively provide multiple fields for a single variable. Changes that are made in
a variable field appear in any repeated fields for that variable, and changes that
are made in a repeated field affect the variable field as well as any other repeated
fields for that variable.

Repeated fields are useful in multiscreen applications when you want certain
fields to appear on more than one screen.

computed fields
display temporary values that are calculated or defined when a SAS Component
Language program executes. Although a computed field does not have an
associated variable in the input data set, it can be referenced in an SCL program
and used for calculations.

These special fields are defined in the same manner as variable fields, with a series
of underscores that are preceded and followed either by a blank or by the edge of the
window.

FSEDIT Modify Window Commands
When designing a display in the FSEDIT Modify window, you can use all of the

SAS/AF global commands and all of the SAS text editor commands.

* See SAS Language Reference: Concepts for a complete discussion of SAS variable attributes.

FSEDIT Procedure Windows 4 Step 2: Defining Fields 47

Note: Because the Modify window uses the SAS text editor, you can use the editor’s
spell checking feature. To check the spelling of the descriptive text in the window, use
the SPELL ALL command. 4

Specifying Color and Highlighting
If your terminal or workstation supports color and highlighting, you can change the

attributes of the text in your customized display. When your application is used, the
color information is ignored if the user’s device does not support color. If you have used
a color that is not available on the user’s device, the procedure substitutes the available
color that most closely matches the specified color.

Use the global COLOR TEXT command to change the color and highlighting
attributes of the text you enter. For example, the following command changes all of the
text you type after the command is issued to high-intensity blue:

color text blue h

Once you enter a COLOR TEXT command, the specified attributes are used until you
change them with another COLOR command. Refer to the description of the COLOR
command in the online Help for base SAS software for additional details.

Note: Some terminals or workstations provide special keys that control text color
and highlighting. If your device has such keys, you can use them to set color and
highlighting attributes as you enter the text. 4

Exiting the FSEDIT Modify Window
Issue the END command to close the FSEDIT Modify window. Before the window is

closed, the FSEDIT procedure displays the following question:

Did you create any computational or repeated fields (Y or N) ? _

Your response determines whether you go directly to the field identification step or
enter the field definition step first.

If you have added any special (computed or repeated) fields, type a Y in the space
provided. You then enter the field definition step (step 2), where you can define the
fields you have added. Otherwise, type an N in the space provided. The procedure then
takes you directly to the field identification step (step 3).

Step 2: Defining Fields
When you indicate in the FSEDIT Modify window that you have created special

fields, the FSEDIT Names window is opened when the FSEDIT Modify window is
closed. In the FSEDIT Names window you define the characteristics of special fields.
Display 4.4 on page 48 shows the initial FSEDIT Names window display.

48 Defining Special Fields 4 Chapter 4

Display 4.4 The FSEDIT Names Window

All of the entries in the FSEDIT Names window are initially blank. Special fields
that are added during customization are unknown to the FSEDIT procedure until they
are defined in the FSEDIT Names window. Special fields are used to hold repeated
values or computed values from the program. Do not confuse defining special fields
with adding variables to an existing SAS data set.

Defining Special Fields
The rules for defining special fields are similar to the rules for defining SAS variables

when you create a new data set:
� Give each special field a name in the Name field. The name must follow SAS

naming conventions. For repeated fields, use the exact name of the variable that is
being repeated.

� Indicate the type of each special field in the Type field. Use one of the following
characters:

For computed fields:
N for numeric fields
$ (or C) for character fields

For repeated fields:
R (the field automatically takes the type of the original variable field).

If you do not specify a value in the Type field, the default type is N (numeric
computed).

� Optionally, you can assign a format and an informat to each special field. Repeated
fields can have different formats and informats from the original variable field.

Note: For repeated fields, the first occurrence of the field in the display is treated as
the original field, the next occurrence is treated as the first repeat, and so on. 4

FSEDIT Names Window Commands
In addition to the global commands that are listed in Chapter 9, “SAS/FSP Software

Global Commands,” on page 141, you can use the following commands in the FSEDIT

FSEDIT Procedure Windows 4 FSEDIT Names Window Commands 49

Names window step to scroll through information, duplicate selected lines, and exit,
going directly into the field identification step.

Scrolling

BACKWARD

BOTTOM

FORWARD

TOP

Duplicating

REPEAT

SELECT

Other

END

KEYS

Command Descriptions
Here are descriptions of the FSEDIT Names window commands:

BACKWARD
scrolls toward the top of the window.

BOTTOM
scrolls to the bottom of the window.

END
exits the field definition step and enters the field identification step.

FORWARD
scrolls toward the bottom of the window. You can scroll forward only if you have
filled all lines that are currently displayed or if there are more special field names
to be displayed.

KEYS
opens the KEYS window for browsing and editing function key definitions. See the
description of the KEYS command in “FSEDIT Window Commands” on page 28 for
details.

Note: FSEDIT procedure windows share the same KEYS entry. Changes that
you make with this command from the FSEDIT Names window will affect the
other windows also. 4

REPEAT
specifies the target line on which you want a selected line to be repeated. After
executing the SELECT command, type REPEAT on the command line, position the
cursor on the desired line, and press ENTER. The selected line is then copied to
the indicated target line. Unless the field type is R (repeated), you receive an error
message warning you that the copy is the second occurrence of the field name. To
cancel the error, change the name on the copied line.

SELECT
specifies a line whose contents you want to be repeated on another line. Type
SELECT on the command line, position the cursor on the line you want to repeat,
and press ENTER. The selected line is remembered; any REPEAT command that
you issue subsequently will copy the selected line to the desired target line.

50 Exiting the FSEDIT Names Window 4 Chapter 4

TOP
scrolls to the top of the window.

Exiting the FSEDIT Names Window
When you have defined all computational and repeated fields, issue the END

command to leave the field definition step. Once all special fields are defined to the
procedure, you enter the field identification step, where you identify the locations of all
special fields and any variable fields that the FSEDIT procedure has lost track of.

Step 3: Identifying Fields
The FSEDIT Identify window is opened automatically when the FSEDIT Names

window is closed, or when the FSEDIT Modify window is closed if no special fields were
created during display modification. When the FSEDIT Identify window is opened, the
status of each field, whether a data set variable field or a special field, is determined to
be one of the following:

identified
The procedure knows the field’s location in the display.

unidentified
The procedure does not know the field’s location in the display and prompts you to
specify the location.

unwanted
The procedure knows that the variable has been omitted from the display and does
not prompt you for it. (For example, if you use a VAR statement to select variables
to display when you invoke the FSEDIT procedure, all variables in the data set
that are not specified in the VAR statement are deemed unwanted by the FSEDIT
procedure.)

Before you can exit the field identification step, all fields must be either identified or
defined as unwanted. When the FSEDIT procedure knows the location of all variable
fields, the following message is displayed:

NOTE: All fields are identified.

If the FSEDIT procedure does not know the location of a variable field, or if you have
added any special fields, you are asked to identify the location of the unidentified fields.

Unidentified Fields
Fields in a customized display can become unidentified in several ways:

� If you perform extensive editing when you modify the display, the FSEDIT
procedure may lose track of the location of some variables. Previously identified
fields may become unidentified.

� If you add a variable to the data set that is used in the application, you must
create a field for the variable in the display for the new variable to be recognized
by the FSEDIT procedure. (When you use a customized display, new fields are not
automatically added for new data set variables.) A field that you create for the
new variable is initially unidentified.

� If you add special fields, they are always initially unidentified. The FSEDIT
procedure knows their names but not their locations.

FSEDIT Procedure Windows 4 FSEDIT Identify Window Commands 51

For each unidentified field, you receive a prompt like the following:

Please put cursor on field: name and press ENTER ... or UNWANTED

To indicate that you are not using a particular variable in the application, issue the
UNWANTED command. To identify the location of a variable field or a special field that
is being used in the application, position the cursor on any underscore in the
appropriate field and press ENTER. Continue to identify fields until a message tells you
that all fields are identified.

For example, if you receive the prompt

Please put cursor on field: ADDR1 and press ENTER ... or UNWANTED

you can do one of the following:
1 Issue the UNWANTED command. (The command can be assigned to a function

key.) The FSEDIT procedure then knows that the variable ADDR1 has been
purposely excluded from the display, so it does not prompt you again to identify
the ADDR1 field’s location.

2 Position the cursor on one of the underscores for the appropriate variable field
(ADDR1 in this example), and press ENTER. The variable ADDR1 changes from
unidentified to identified. The FSEDIT procedure then knows the ADDR1 field’s
location.

Changing a Field from Unwanted to Identified
If you change your mind about making a variable unwanted, you can use the

DEFINE command. Follow DEFINE with the variable name; then position the cursor
on the variable field and press ENTER.

If you want to change the status of several variables, you can use the WANTED
command. When you issue the WANTED command without specifying any variable
names, all unwanted variables become unidentified. The FSEDIT procedure then
prompts you to identify the location of all unidentified variable fields.

Notice the difference between these two commands: DEFINE changes a single
variable directly from unwanted to identified. WANTED changes one or all variables
from unwanted to unidentified. You must then identify the location of each variable’s
field or define the variable as unwanted again.

FSEDIT Identify Window Commands
In addition to the global commands that are listed in Chapter 9, “SAS/FSP Software

Global Commands,” on page 141, you can use the following commands in the FSEDIT
Identify window:

Identifying Fields

DEFINE variable

UNWANTED

WANTED <variable>

Scrolling

=variable

LEFT

RIGHT

Other

52 Exiting the FSEDIT Identify Window 4 Chapter 4

END

KEYS

Command Descriptions
Here are descriptions of the FSEDIT Identify window commands:

=variable
locates identified variables. To determine the location of a variable field in the
display, type an equal sign on the command line, followed by the variable name,
and press ENTER. If the specified variable is an identified variable in the
customized display, the cursor then moves to the field for the variable.

DEFINE variable
changes the status of a variable from unwanted to identified. Follow DEFINE with
the name of the variable, position the cursor on any underscore of the field for that
variable, and press ENTER. Remember to use the actual name of the variable
instead of a label that you may have assigned to the variable in the customized
display.

END
ends the field identification step, closes the FSEDIT Identify window, and returns
to the FSEDIT Menu window. This command is not valid until all fields have been
either identified or defined as unwanted. If any fields are not currently identified,
the FSEDIT procedure prompts you to identify their locations before ending the
field identification step.

KEYS
opens the KEYS window for browsing and editing function key definitions. See the
description of the KEYS command in “FSEDIT Window Commands” on page 28 for
details.

Note: FSEDIT procedure windows share the same KEYS entry. Changes that
you make with this command from the FSEDIT Identify window also affect the
other windows. 4

LEFT
moves to the previous screen of an observation (in multiscreen applications).

RIGHT
moves to the next screen of an observation (in multiscreen applications).

UNWANTED
specifies that a variable field is unwanted and will not be used in this application.
To indicate an unwanted variable, issue the UNWANTED command when you are
prompted for the location of the variable field.

WANTED <variable>
changes the status of a specified variable from unwanted to unidentified. If you do
not specify a particular variable, all unwanted variables are changed to
unidentified variables. Once a variable becomes unidentified (rather than
unwanted), the FSEDIT procedure prompts you to identify its location.

Exiting the FSEDIT Identify Window
You cannot exit the field identification step until you have identified the locations of

the fields for all wanted variables and have received the following message:

NOTE: All fields are identified.

FSEDIT Procedure Windows 4 Field Attributes 53

After receiving this message, you can issue the END command to close the FSEDIT
Identify window and return to the FSEDIT Menu window.

Editing, Browsing, and Compiling Program Statements
Select option 3 from the FSEDIT Menu window to create, compile, and save a SAS

Component Language program for your FSEDIT application. This option opens the
FSEDIT Program window, in which you can use all of the SAS text editor commands to
enter and edit SCL program statements. Use the END command to compile and save
the SCL program in the current SCREEN entry. The END command also closes the
FSEDIT Program window and returns you to the FSEDIT Menu window.

Using SAS Component Language
SAS Component Language (SCL) enables you to add power and flexibility to your

FSEDIT applications. You can write SCL programs that
� cross-validate values that have been entered in FSEDIT window fields with other

variable values in the same SAS data set
� cross-validate values that have been entered in FSEDIT window fields with

variable values in other SAS data sets
� manipulate field values based on user input
� manipulate values in other SAS data sets
� manipulate external files
� provide custom messages and help based on user input.

Refer to SAS Component Language: Reference for more information about SCL
programming.

Browse Program Statements
Select option 6 from the FSEDIT Menu window to browse the current contents of the

FSEDIT Program window. When you open the FSEDIT Program window with this
option, all of the SAS text editor browsing commands are valid, but editing the SCL
program is prohibited. Use the END command to close the FSEDIT Program window
and return to the FSEDIT Menu window.

Assigning Special Attributes to Fields
Select option 4 from the FSEDIT Menu window to define the attributes of each field

in the FSEDIT display. This option opens the FSEDIT Attribute window. Use the END
command to close the FSEDIT Attribute window and return to the FSEDIT Menu
window.

Field Attributes
Field attributes make it easier for users of your application to enter and edit data

correctly. Each field has the following attributes:

54 FSEDIT Attribute Window Frames 4 Chapter 4

INITIAL
specifies an initial value for the field.

MAXIMUM
specifies the maximum value for the field.

MINIMUM
specifies the minimum value for the field.

REQUIRED
specifies whether a value must be entered in the field when a new observation is
added.

CAPS
specifies whether text in the field is converted to uppercase.

FCOLOR
specifies the text color of valid values.

ECOLOR
specifies the text color of invalid values.

FATTR
selects the text highlighting attribute of valid values.

EATTR
selects the text highlighting attribute of invalid values.

PAD
specifies the pad character for the field.

PROTECT
specifies whether the field value can be edited.

JUSTIFY
specifies the text alignment for the field.

NONDISPLAY
specifies whether text in the field is visible.

NOAUTOSKIP
specifies the cursor behavior for the field.

NOAUTOBLANK
specifies how values that are entered in numeric fields are processed.

FSEDIT Attribute Window Frames
The FSEDIT Attribute window is divided into a series of frames, one for each field

attribute. Each frame of the FSEDIT Attribute window defines the status of a
particular attribute for all of the fields in the customized display. Each frame uses the
customized display format that was created for the application.

Scrolling in the FSEDIT Attribute Window
Field attribute frames are stored in the order shown in “Field Attributes” on page 53.

You can move from one field attribute frame to another by using the BACKWARD and
FORWARD commands. You can also display the frame for a particular attribute by
typing its name on the command line and pressing ENTER.

For multiscreen applications, each field attribute frame is also divided into screens.
Use the LEFT and RIGHT commands to display fields on successive screens. Use the

FSEDIT Procedure Windows 4 Attribute Frame Descriptions 55

END command to close the FSEDIT Attribute window and return to the FSEDIT Menu
window.

Attribute Frame Descriptions
Here are descriptions the attribute frames:

INITIAL
assigns initial values to fields. The values that you enter in the fields of this frame
are displayed instead of pad characters in the corresponding fields for all new
observations that you add to the data set. Initial values that are assigned in this
frame do not affect existing values in the data set.

MAXIMUM
assigns the maximum values that can be entered in fields. If a user enters a data
value that is greater than the maximum value for that field, an error condition
occurs.

This attribute is valid for character fields as well as for numeric fields. For
character fields, the "greater than" comparison is based on the operating system’s
character collating sequence.

By default, users of your application can use the OVERRIDE command to
override the error condition that is caused by entering a value greater than the
specified maximum. This allows the value to be stored in the data set. You can
prevent this by indicating in the Override on errors field of the FSEDIT Parms
window that overriding is not allowed. See “Modifying General Parameters” on
page 58 for details.

MINIMUM
assigns the minimum values that can be entered in fields. If a user enters a data
value that is less than the minimum value for that field, an error condition occurs.

This attribute is valid for character fields as well as for numeric fields. For
character fields, the "less than" comparison is based on the operating system’s
character collating sequence.

By default, users of your application can use the OVERRIDE command to
override the error condition that is caused by entering a value less than the
specified minimum. This allows the value to be stored in the data set. You can
prevent this by indicating in the Override on errors field of the FSEDIT Parms
window that overriding is not allowed. See “Modifying General Parameters” on
page 58 for details.

REQUIRED
specifies required fields. When the FSEDIT application is used to add a new
observation to the data set, values must be entered in all required fields before the
user can leave the observation. A blank or missing value is not considered a valid
value unless, in the case of numeric variables, it is a special missing value.

Type an R in the first position of a field to indicate a required field.
By default, users of your application can use the OVERRIDE command to

override the error condition that is caused by attempting to leave an observation
without providing a value for a required field. You can prevent this by indicating
in the Override on required field of the FSEDIT Parms window that overriding
is not allowed. See “Modifying General Parameters” on page 58 for details.

CAUTION:
Do not assign this attribute to a field that is also assigned the PROTECTED attribute.
Doing so would require users of your application to enter a value in a field that
does not permit data entry. 4

56 Attribute Frame Descriptions 4 Chapter 4

CAPS
specifies fields in which entered values are to be automatically capitalized
(converted to all uppercase characters). This attribute has no effect on fields for
numeric variables.

Type a C in the first position of a field to specify that the field value is to be
automatically capitalized. By default, all fields initially have this attribute when
you create a new custom display. To enable lowercase letters to remain lowercase
in a field for which the CAPS attribute is currently specified, type an underscore
or a blank space over the C in the field.

FCOLOR
specifies the text color for each field. If the user’s device does not support extended
color attributes, this information is ignored.

Type the character that corresponds to the desired color in each field of this
frame. (See “Codes for Color and Highlighting Attributes” on page 58.) The initial
color code for all fields is Y (yellow).

ECOLOR
specifies the text color that will be used for each field when an error condition
involving the field is detected. You can use this attribute to draw attention to data
entry errors. If the user’s device does not support extended color attributes, this
information is ignored.

Type the character that corresponds to the desired color in each field of this
frame. (See “Codes for Color and Highlighting Attributes” on page 58.) The initial
color code for all fields is R (red).

FATTR
specifies the text highlighting attribute of each field.

Type the character that corresponds to the desired highlighting attribute in
each field of this frame. (See “Codes for Color and Highlighting Attributes” on
page 58.) There is no default highlighting attribute.

EATTR
specifies the text highlighting attribute that will be used for each field when an
error condition involving the field is detected. You can use highlighting to draw
attention to data entry errors. If the user’s device does not support extended
highlighting attributes, this information is ignored.

Type the character that corresponds to the desired highlighting attribute in
each field of this frame. (See “Codes for Color and Highlighting Attributes” on
page 58.) The initial highlighting attribute code for all fields is H (high intensity).

PAD
specifies which character is used to display fields in which no value has been
entered.

Type the desired pad character in the first position of each field of this frame.
(After you press ENTER, all positions in the field are filled with the specified pad
character.) The initial pad character for all fields is the underscore (_).

When the FSEDIT procedure processes a value that is entered in a padded field,
it converts any pad characters that remain in the field to blanks. Therefore, it is
best to choose a pad character that is not likely to be contained in a value for that
field.

Note: To include pad characters in field values, you can edit the field value
after initial data entry. For example, if you enter an underscore character in a
field that is padded with underscores, the entered underscore is converted to a
blank when the value is processed. However, padding is not used after a value is
entered in the field, so you can then immediately edit the field value to restore the
desired underscore. 4

FSEDIT Procedure Windows 4 Attribute Frame Descriptions 57

PROTECT
specifies whether fields are protected. Values in protected fields in existing
observations cannot be changed. When new observations are added, values cannot
be entered in protected fields.

Type a P in the first position of a field to protect the field.

CAUTION:
Do not assign this attribute to a field that is also assigned the REQUIRED attribute.
Doing so would require users of your application to enter a value in a field that
does not permit data entry. 4

JUSTIFY
specifies the alignment of values in fields.

Type one of the following values in each field:

L aligns values against the left side of the field.

R aligns values against the right side of the field.

C centers values in the field.
If you leave a field in this frame blank, the corresponding field in the

application display is right-aligned if it is a numeric field or left-aligned if it is a
character field (unless the $CHAR. format is used).

NONDISPLAY
specifies fields in which values are not to be visible. This attribute does not
prevent values from being entered in a field; it prevents values that are typed in a
field from appearing on the display. This attribute is useful for protecting fields
that contain passwords or other sensitive information.

Type an N in the first position of a field to prevent values from being displayed
in the corresponding field of the application display.

NOAUTOSKIP
specifies fields that the cursor does not leave unless it is explicitly moved. By
default, when the user types a character in the last position of a field, the cursor
jumps to the first position in the next field. When this attribute is specified, the
cursor does not automatically jump to the next field.

Type an N in the first position of a field of this frame to prevent the cursor from
automatically jumping from that field to the next field of the application display.

NOAUTOBLANK
specifies which numeric fields are not automatically blanked. This attribute is
ignored for character fields.

Type an N in the first position of a field to prevent the automatic blanking of
characters following the first blank in corresponding numeric fields in the FSEDIT
window.

By default, when the FSEDIT procedure processes the values that users enter
in numeric fields, it automatically clears all character positions following the first
blank that is encountered in the fields. This is a useful feature in most fields
because it enables users to enter numeric values left-justified in the field without
having to manually blank out the remainder of the field. (Values in numeric fields
are right-justified by default.) However, some numeric informats allow values that
contain embedded blanks. Examples include date informats such as DATEw. and
MMDDYYw., as well as the BZw.d informat. For fields that use these informats,
you can specify the NOAUTOBLANK attribute to suppress the automatic blanking
feature so that users can enter values that contain blanks.

58 Codes for Color and Highlighting Attributes 4 Chapter 4

Codes for Color and Highlighting Attributes
The following codes are valid for the FCOLOR and ECOLOR field attributes:

B blue G green W white A gray

R red C cyan K black N brown

P pink Y yellow M magenta O orange

When your application is used, the color attributes are ignored if the user’s device
does not support color. If you specify a color that is not available on the user’s device, the
procedure substitutes the available color that most closely matches the specified color.

The following codes are valid for the FATTR and EATTR field attributes:

H high intensity

U underlining

R reverse video

B blinking

Most monochrome devices support only high intensity and underlining. If a user’s
device does not support the highlighting attributes that you specify, the highlighting
attribute assignments are simply ignored. Therefore, you can assign these field
attributes even though the application may not always be used on a device that enables
users to take advantage of color and highlighting.

Modifying General Parameters
Select option 5 from the FSEDIT Menu window to view or modify the current

parameter settings for your FSEDIT application. This option opens the FSEDIT Parms
window. Use the END command to close the FSEDIT Parms window and return to the
FSEDIT Menu window.

Display 4.5 on page 58 shows the FSEDIT Parms window for a typical application.

Display 4.5 The FSEDIT Parms Window

FSEDIT Procedure Windows 4 Parameter Fields 59

Parameter Fields
To change one of the general parameters of the FSEDIT session, modify the value in

the corresponding parameter field in the FSEDIT Parms window. (If the field has a
current value, simply type over it.)

Here are descriptions of the available parameter fields:

Color and Attribute
On devices that support color, you can change the default color and highlighting
attribute of the following window areas:

Background controls the background color of the FSEDIT window.

Note: Some devices do not allow the background color to be
changed; for these devices, the background color parameter is
ignored. 4

Border controls the color of the window border in character-based
display environments.

Note: This parameter has no effect in graphical windowing
environments. 4

Banner controls the color of the Command===> text at the left of the
command line.

Note: This parameter has no effect if a menu bar is
displayed in place of a command line. 4

Command controls the color of the text that users type on the command
line.

Note: This parameter has no effect if a menu bar is
displayed in place of a command line. 4

Message controls the color of text that is displayed in the window’s
message line.

Protected controls the color of all descriptive text in the FSEDIT window.

Unprotected controls the color of all variable fields in the FSEDIT
window—even those for which the PROTECT field attribute is
specified in the FSEDIT Attribute window.

Note: If you change the color values in the Protected and Unprotected fields
of this window, the specified colors override the colors that you used when you
created the custom display for the application in the FSEDIT Modify window. 4

The following values are valid in the Color fields:

BLUE GREEN WHITE GRAY

RED CYAN BLACK BROWN

PINK YELLOW MAGENTA ORANGE

Note: If a specified color is not available on a user’s display device, the
procedure substitutes the available color that most closely matches the specified
color. 4

On devices that support extended highlighting attributes, you can assign a
highlighting attribute to specified areas in the window. (The Background,

60 Parameter Fields 4 Chapter 4

Protected, and Unprotected areas do not support highlighting attributes.) The
following values are valid in the Attribute fields:

NONE no highlighting

HIGHLIGHT high intensity

BLINKING blinking

UNDERLINE underlining

REVERSE reverse video

Note: If a parameter specifies a highlighting attribute that is not available on
the user’s display device, the parameter is ignored. 4

Allow DELETE command
controls whether users can issue the DELETE command to delete observations
from the data set.

Specify Y in this field (or leave it blank) if you want to permit users to delete
observations from the displayed data set. (You can use the NODEL option with the
PROC FSEDIT statement to override this parameter setting when the FSEDIT
session is invoked.) Specify N in this field to disable the DELETE command in the
FSEDIT window.

Allow ADD/DUP command
controls whether users can issue the ADD or DUP commands to add new
observations to the data set.

Specify Y in this field (or leave it blank) if you want to permit users to add new
observations to the displayed data set. (You can use the NOADD option with the
PROC FSEDIT statement to override this parameter setting when the FSEDIT
session is invoked.) Specify N in this field to disable the ADD and DUP commands
in the FSEDIT window.

Keys name
identifies the KEYS entry that contains function key assignments for the
application. The default is FSEDIT, which selects the default entry
FSEDIT.KEYS. The FSEDIT procedure searches for the specified entry in the
following catalogs in the order shown:

1 the SAS catalog that is identified in the SCREEN= option of the PROC
FSEDIT statement or in the screen-name parameter of the FSEDIT command

2 SASUSER.PROFILE (or WORK.PROFILE if the SASUSER library is not
allocated)

3 SASHELP.FSP
If the specified entry is not found, the default FSEDIT key definitions are used.

Override on errors
determines whether users of your application are permitted to use the OVERRIDE
command to exit an observation even though one or more fields contain invalid
values (such as a value that is outside the acceptable range that is assigned by the
MINIMUM and MAXIMUM attributes).

Specify Y to permit the use of the OVERRIDE command in these situations.
Specify N to prevent users from exiting an observation without supplying a value
within an acceptable range. Y is the default.

FSEDIT Procedure Windows 4 Commands Versus Parameter Settings 61

Override on required
determines whether users of your application are permitted to use the OVERRIDE
command to exit an observation even though one or more fields that have been
assigned the REQUIRED attribute contain no value.

Specify Y to permit the use of the OVERRIDE command in these situations.
Specify N to prevent users from exiting an observation without supplying values
for all required fields. Y is the default.

Autosave value
determines how frequently the data set that the application uses is automatically
saved. By default, AUTOSAVE is set to 25, which means that the data set is
automatically saved after each group of 25 observations is entered, edited, or
deleted.

You can also set the AUTOSAVE parameter by using the AUTOSAVE command.

Modify password
enables you to protect your customized application by assigning a password to it.
If you assign a value in the Modify password field, then users of the application
must specify the password with the MODIFY command in order to modify the
SCREEN entry. Also, if you assign a password, the MODIFY option is no longer
valid in the PROC FSEDIT statement.

The password can consist of any combination of letters and numbers, but it
must begin with a letter.

Rows and columns
enables you to specify the height and width (in rows and columns) of the FSEDIT
window for your application. You can position the FSEDIT window within the
display by specifying the row and column for the upper left corner of the window.

Name command variable
enables you to assign a default variable to search with the LOCATE command in
your application. If you specify a search variable here, users do not have to issue a
NAME command before using the LOCATE or LOCATE: commands in the
FSEDIT window. The search variable must be a data set variable. Computed
variables cannot be used as search variables.

String command variables
enables you to specify up to 29 variables to search for embedded text with the
SEARCH command in your application. If you specify search variables here, users
do not have to issue a STRING command before using the SEARCH or SEARCH@
commands in the FSEDIT window. The search variables must be data set
variables. Computed variables cannot be used as search variables.

Commands Versus Parameter Settings
Values for the NAME, STRING, and AUTOSAVE parameters, which are described

above, are saved when the FSEDIT Menu window is closed. Users can override the
stored parameter values for the duration of an FSEDIT session by executing the
NAME, STRING, or AUTOSAVE commands in the FSEDIT window. If a user opens the
FSEDIT Menu during an FSEDIT session, then any changes that are made with the
NAME, STRING, and AUTOSAVE commands in the FSEDIT window are automatically
saved with the customized information.

62 Creating Application-Specific Key Definitions 4 Chapter 4

Creating Application-Specific Key Definitions
The FSEDIT procedure enables you to specify a customized set of function key

assignments. This gives you control over which commands the function keys issue in
your application.

By default, the FSEDIT procedure uses the function key assignments that are
defined in the FSEDIT.KEYS entry in the SASHELP.FSP catalog. This is one of the
standard catalogs that are defined automatically when a SAS session is initiated. The
SASHELP.FSP catalog is shared by all SAS users at your site, so when you use the
KEYS command in the FSEDIT window, the procedure creates a copy of the
FSEDIT.KEYS entry in your personal PROFILE catalog (SASUSER.PROFILE, or
WORK.PROFILE if the SASUSER library is not allocated). This copy is then used in
subsequent FSEDIT sessions.

You can use the KEYS= option with the PROC FSEDIT statement to select a different
KEYS entry for your FSEDIT session. When you use the KEYS= option, the procedure
searches the following catalogs in the order shown for the specified KEYS entry:

1 the SAS catalog that is identified in the SCREEN= option, if that option was also
used with the PROC FSEDIT statement

2 SASUSER.PROFILE (or WORK.PROFILE if the SASUSER library is not allocated)
3 SASHELP.FSP

If the specified KEYS entry is not found, a blank KEYS entry that has the specified
name is created in the catalog that is identified in the SCREEN= option, or in your
personal PROFILE catalog if the SCREEN= option was not used with the PROC
FSEDIT statement.

When you use the MODIFY command to create a new SCREEN entry, the KEYS
entry that is used when the SCREEN entry is created is recorded in the Keys name
field in the FSEDIT Parms window. (See “Modifying General Parameters” on page 58
for details about the FSEDIT Parms window.) If you do not use the KEYS= option in
the PROC FSEDIT statement that initiates the FSEDIT session, the KEYS entry name
is FSEDIT.

Once a SCREEN entry is created, the KEYS entry name that is specified in the
SCREEN entry parameter takes precedence over one that is specified in a KEYS=
option. For example, assume that you have previously created a SCREEN entry named
DISPLAY.SCREEN in the MASTER.CUSTOM catalog, and that the Keys name
parameter that is specified in the SCREEN entry is MYKEYS. If you then submit the
following statements, the procedure uses the KEYS entry MYKEYS.KEYS (specified in
the SCREEN entry) rather than the EDKEYS.KEYS entry (specified in the KEYS=
option).

proc fsedit data=master.subscrib
screen=master.custom.display.screen
keys=edkeys;

run;

The procedure looks for the KEYS entry MYKEYS.KEYS in the MASTER.CUSTOM
catalog, then in SASUSER.PROFILE (or WORK.PROFILE), then in SASHELP.FSP. If
the entry is not found, a blank KEYS entry is created.

Note: The FSEDIT NEW window always uses the KEYS entry that was specified in
the KEYS= option or in the default entry FSEDIT.KEYS, not the entry that was
specified in the SCREEN entry. 4

You can change the associated KEYS entry during an FSEDIT session by using
option 5 in the FSEDIT Menu window. Use the MODIFY command to open the FSEDIT
Menu window; then select option 5 to open the FSEDIT Parms window. Enter the name

FSEDIT Procedure Windows 4 Creating Application-Specific Key Definitions 63

of the desired KEYS entry in the Keys name field. The new value takes effect
immediately. If the specified entry is not found in the current screen catalog (or in your
PROFILE catalog or SASHELP.FSP), then a new blank KEYS entry is created in the
screen catalog if one has been identified; otherwise, the entry is created in your
personal PROFILE catalog.

64 Creating Application-Specific Key Definitions 4 Chapter 4

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/FSP ® Software Procedures Guide, Version 8 , Cary, NC: SAS Institute Inc., 1999.

SAS/FSP® Software Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–517–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

