675

CHAPTER

16

The GFONT Procedure

Overview 675
About Displaying Fonts 676
About Creating Fonts 676
Concepts 676
About Fonts 676
About the Libref GFONTO 677
Procedure Syntax 678
PROC GFONT Statement 678
Creating a Font 687
The Font Data Set 687
Font Data Set Variables 688
Creating a Font Data Set 694
The Kern Data Set 694
Kern Data Set Variables 694
Creating a Kern Data Set 695
The Space Data Set 696
Space Data Set Variables 696
Creating a Space Data Set 696
Examples 698
Example 1: Displaying Fonts and Character Codes 698
Example 2: Creating Figures for a Symbol Font 700

Overview

The GFONT procedure displays new or existing fonts and creates user-generated
fonts for use in SAS/GRAPH programs. These fonts can contain standard Roman
alphabet characters, foreign language characters, symbols, logos, or figures.

The GFONT procedure

o displays SAS/GRAPH software fonts

o displays fonts that were previously generated with the GFONT procedure
(user-generated fonts)

o displays the character codes or hexadecimal values that are associated with the
characters in a font

O creates stroked fonts or polygon fonts.

Each of these activities has its own requirements, its own process, and its own
options (although some options are valid for either process). In this chapter, each topic

676 About Displaying Fonts A Chapter 16

to which this distinction applies is divided into two sections: "Displaying Fonts" and
"Creating Fonts."

About Displaying Fonts

You can use the GFONT procedure to display a font when you want to do one of the
following:

O review the characters that are available in either Institute-supplied fonts or
user-generated fonts

O see the character codes or the hexadecimal values that are associated with the
characters in a font.

When you display a font, you can modify the color and height of displayed font
characters, draw reference lines around the characters, or display the associated
character codes or hexadecimal values. See Example 1 on page 698.

About Creating Fonts

You can use the GFONT procedure to create and store fonts of your own design. The
GFONT procedure is not limited to creating alphabet fonts. You can use it to create and
store any series of figures that you can draw using X and Y coordinates or that you can
digitize. The characters or figures in a font can be displayed with any SAS/GRAPH
statement or option that allows for font specification and a text string (for example, a
TITLE statement). See “Creating a Font” on page 687 for details.

Concepts

Ahout Fonts

Some specialized terms are associated with font characteristics. The capline of a
font is the highest point of a normal uppercase letter. The baseline is the line upon
which the characters rest. The font maximum is the highest vertical coordinate in a
font. The font minimum is the lowest vertical coordinate in a font. Figure 16.1 on page
676 illustrates these GFONT procedure terms:

Figure 16.1 Parts of a Font

font
4+— maximum —»
— —4—capline—» — -~
— - «— baseline— font — —
<+— minimum—»

Specialized terms also exist for types of fonts. The term uniform font refers to a font
in which all of the characters occupy exactly the same amount of space, even though the

The GFONT Procedure A About the Libref GFONT0 677

characters themselves are different sizes. Each character in a uniform font is placed in
the center of its space, and a fixed amount of space is added between characters. A
proportional font is a font in which each character occupies a space that is proportional
to its actual width (for example, m occupies more space than i). The characters in a
stroked font are drawn with discrete line segments or circular arcs. Figure 16.2 on page
677 illustrates a stroked font with several characters from the Simplex font.

Figure 16.2 Characters from a Stroked Font

ABCE ?e

Figure 16.3 on page 677 illustrates two types of polygon fonts: filled (CENTBI) and
outline (CENTBIE). A filled font is a polygon font in which the areas between the lines
are solid. An outline font is a polygon font in which the areas are empty.

Figure 16.3 Filled and Outline Characters from Polygon Fonts

ABC$? @
ABCS? @

All font characters, regardless of whether they are stroked or polygon, are drawn
with line segments. In the GFONT procedure, the term line segment means a
continuous line that can change direction. For example, the letter C in Figure 16.2 on
page 677 is drawn with one line segment, while the letter A can be drawn with two.

Polygon characters can also be drawn with one or more line segments. In a polygon
font, one character can be made up of a single polygon, multiple polygons, or polygons
with holes. For example, the letter C in Figure 16.3 on page 677 is a single polygon
with one line segment. The question mark (?) is made up of two polygons, each drawn
with a separate line segment. The letter A is one polygon with a hole in it. It is drawn
with one line segment that is broken to form the outer boundary of the figure and the
boundary of the hole.

About the Libref GFONTO

The GFONT procedure stores user-generated fonts in the location that is associated
with the libref GFONTO. Therefore, before you create a font or display a user-generated
font, you must submit a LIBNAME statement that associates the libref GFONTO with
the location where the font is to be stored, as follows:

678

Procedure Syntax A Chapter 16

libname gfont0 ’'SAS-data-library’;

Since the GFONTO library is the first place that SAS/GRAPH software looks for
fonts, you should always assign that libref to the library that contains your personal
fonts. If for some reason you have personal fonts in more than one SAS data library,
assign them librefs in the sequence GFONTO, GFONT1, GFONT2, and so forth. The
search for entries terminates if there is a break in the sequence; the catalog
GFONT1.FONTS is not checked if the libref GFONTO is undefined. If the libref
GFONTO is not defined, by default SAS/GRAPH software begins searching for fonts in
SASHELP.FONTS.

To cancel or redefine the libref GFONTN, submit the following statement:

goptions reset=all fcache=0;

Note that when you specify RESET=ALL, all graphics options are reset to their
default values. Once you have cleared the font cache, you can redefine the libref with
another LIBNAME statement.

Procedure Syntax

Requirements: A font name is required. To display a font, include NOBUILD. To create a
font, include DATA=.

Global statements: FOOTNOTE, TITLE
Reminder: The procedure can include the SAS/IGRAPH NOTE statement.
Supports: Output Delivery System (ODS)

PROC GFONT NAME=font-name
mode
<display-option(s)>
<creation-option(s)>;

PROC GFONT Statement

The PROC GFONT statement can either create user-defined fonts or display existing software fonts.
Therefore, it names the font to be created or displayed. If the procedure creates a font it names
the input data set. Optionally, the procedure modifies the design and appearance of the fonts that
you create or display, and specifies a destination catalog for graphics output.

Syntax

PROC GFONT NAME=font-name
mode
<display-option(s)>
<creation-option(s)>;

o mode must be one of the following:
DATA=font-data-set
NOBUILD

The GFONT Procedure A Displaying Fonts: Required Arguments, Options 679

o display-option(s) can be one or more of the following:
CTEXT=text-color
GOUT=<libref.>output-catalog
HEIGHT=character-height<units>
NOKEYMAP
NOROMAN
NOROMHEX
REFCOL-=reference-line-color
REFLINES
ROMCOL=code-color
ROMFONT=font
ROMHEX
ROMHT=height<units>
SHOWALL
SHOWROMAN

O creation-option(s) can be one or more of the following:
BASELINE=y
CAPLINE=y
CHARSPACETYPE=DATA | FIXED | NONE | UNIFORM
CODELEN=1 | 2
FILLED
KERNDATA=kern-data-set
MWIDTH=character-width
NODISPLAY
NOKEYMAP
RESOL=1...4
ROMHEX
SHOWROMAN
SPACEDATA=space-data-set
UNIFORM

For more detail on using the GFONT syntax, see “Displaying Fonts: Required

Arguments, Options” on page 679 and “Creating Fonts: Required Arguments, Options
“on page 682.

Displaying Fonts: Required Arguments, Options

Required Arguments for Displaying Fonts

NAME=font-name

N=font-name
specifies the font to be displayed. Font-name can be the name of a SAS software font
or a font you previously created.

See also: Chapter 6, “SAS/GRAPH Fonts,” on page 125

680

Displaying Fonts: Required Arguments, Options A Chapter 16

NOBUILD

NB
specifies that the GFONT procedure is to display an existing font. The NOBUILD
argument tells the procedure that no font is being generated and not to look for an
input data set.

Featured in: Example 1 on page 698

To display a user-generated font, you must define libref GFONTO. See “About the
Libref GFONTO” on page 677 for details.

Options for Displaying Fonts

Options that can be used for either font display or font creation are described here
and in “Options for Creating Fonts” on page 683.

Options that display a font can be used when you create a font if you also display it
(that is, the NODISPLAY option is not used in the PROC GFONT statement). However,
none of the display options affect the design and appearance of the stored font except
the NOKEYMAP, SHOWROMAN, and ROMHEX options.

When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area
PT points

If you omit units, a unit specification is searched for in this order:
1 the value of GUNIT=in a GOPTIONS statement
2 the default unit, CELLS.

CTEXT=text-color

CT=text-color
specifies a color for the body of the characters. If you do not use the CTEXT= option,
a color specification is searched for in the following order:

1 the CTEXT= option in a GOPTIONS statement
2 the default, the first color in the colors list.

The CTEXT= value is not stored as part of the font.

Featured in: Example 2 on page 700

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the display
of the font. The GOUT option is ignored if you use the NODISPLAY option in the
PROC GFONT statement. You can use the GREPLAY procedure to view the output
that is stored in the catalog. If you omit the libref, SAS/GRAPH looks for the catalog
in the temporary library called WORK and creates the catalog if it does not exist.

See also: “Storing Graphics Output in SAS Catalogs” on page 49

HEIGHT=character-height<units>

H=character-height<units>
specifies the height of the font characters in number of units, n. Height is measured
from the minimum font measurement to the capline. By default, HEIGHT=2.

The GFONT Procedure A Displaying Fonts: Required Arguments, Options 681

Featured in: Example 1 on page 698

NOKEYMAP
specifies that the current key map is ignored when displaying the font and its
character codes or hexadecimal values. If you do not use the NOKEYMAP option
when you display a font, the current key map remains in effect. If any characters in
the font are not available through the current key map, they are not displayed and a
warning is issued in the SAS log. This happens when the key map is asymmetrical,
that is, not all characters in the font are mapped into the current key map.

Displaying a font using the NOKEYMAP option enables you to see all of the

characters in the font, including those that are not mapped into your current key
map. Note that only those characters that are mapped into your current key map are
available (that is, those that are displayed when you display the font without the
NOKEYMAP option).

See also: Chapter 6, “SAS/GRAPH Fonts,” on page 125 Chapter 18, “The
GKEYMAP Procedure,” on page 719 and the NOKEYMAP option on page 685 for
Creating Fonts

NOROMAN
NR

turns off the automatic display of character codes that are produced when you use
the SHOWROMAN option during font creation.

NOROMHEX

NOHEX
turns off the automatic display of hexadecimal values that are produced when you
use the ROMHEX option during font creation.

REFCOL-=reference-line-color
specifies a color for reference lines. By default, the first color in the colors list is used.

REFLINES
draws reference lines around each displayed character. Vertical reference lines show
the width of the character. Horizontal reference lines show the font maximum and
the font minimum, as well as the baseline and the capline. See Figure 16.1 on page
676 for an illustration of the placement of reference lines.

ROMCOL=code-color

RC=code-color
specifies the color of the character codes or hexadecimal values that are displayed
with the SHOWROMAN and ROMHEX options. If you do not use the ROMCOL=
option, a color specification is searched for in the following order:

1 the CTEXT= option in a GOPTIONS statement

2 the default, the first color in the colors list.
The ROMCOL-= value is not stored as part of the font.

Featured in: Example 1 on page 698
ROMFONT=font
RF=font
specifies the font for character codes and hexadecimal values that are displayed by

the SHOWROMAN and ROMHEX options. If you do not use the ROMFONT= option,
a font specification is searched for in the following order:

1 the FTEXT= option in a GOPTIONS statement
2 the default hardware font, NONE.
Featured in: Example 1 on page 698

682

Creating Fonts: Required Arguments, Options A Chapter 16

ROMHEX

HEX
displays hexadecimal values below the font characters. If you use both the ROMHEX
and SHOWROMAN options, both the character codes and the hexadecimal values are
displayed. You also can use the ROMHEX option when you create a font.

See also: the ROMHEX option on page 686

ROMHT=height<units>
RH=height<units >
specifies the height of the character codes and the hexadecimal values that are
displayed with the SHOWROMAN and ROMHEX options in number of units, n. If
you do not use the ROMHT= option, a height specification is searched for in the
following order:
1 the HTEXT= option in a GOPTIONS statement
2 the default, ROMHT=1.
Featured in: Example 1 on page 698

SHOWALL
displays the font with a space for every possible character position whether or not a
font character exists for that position. The characters that are displayed are those
available under your current key map, unless you use the NOKEYMAP option. The
SHOWALL option usually is used in conjunction with the ROMHEX option, in which
case all possible hexadecimal values are displayed. If, under your current key map, a
font character is available for a position, it displays above the hexadecimal value. If
no character is available for a position, the space above the hexadecimal value is
blank. You can use the SHOWALL option to show where undefined character
positions fall in the font.

SHOWROMAN

SR
displays character codes below the font characters even if they are not displayed
automatically with the font. If you use both the SHOWROMAN and ROMHEX
options, both the character codes and the hexadecimal values are displayed. You can
also use the SHOWROMAN option when you create a font.
See also: the SHOWROMAN option on page 686 for Creating Fonts.
Featured in: Example 1 on page 698

Details

To display a font, you must specify the name of the font with the NAME= argument
and include the NOBUILD argument. For example, to display the Weather font with
character codes that are displayed in the Swiss font, use the following statement:

proc gfont name=weather nobuild romfont=swiss;

Creating Fonts: Required Arguments, Options

Required Arguments for Creating Fonts

NAME=font-name

N=font-name
assigns a name to the font that you create. Font-name is the name of a catalog entry
and must be a valid SAS name of no more than eight characters. Do not use the
name of an Institute-supplied font or NONE for the name of a font.

The GFONT Procedure A Creating Fonts: Required Arguments, Options 683

Featured in: Example 2 on page 700

DATA=font-data-set
specifies the SAS data set that the GFONT procedure uses to build the font. The
data set must be sorted by the variables CHAR and SEGMENT. By default, the
procedure uses the most recently created data set as the font data set.

See also: “SAS Data Sets” on page 25
Featured in: Example 2 on page 700

When you create a font, you must define the libref GFONTO. See “About the Libref
GFONTO” on page 677 for details.

Note: If a user-generated font has the same name as an Institute-supplied font and
if the libref GFONTO has been defined, the user-generated font is used because
GFONTO is searched first. o

Options for Creating Fonts

Options that can be used for either font display or font creation are described here
and in “Options for Displaying Fonts” on page 680.

Options that display a font can be used when you create a font if you also display it
(that is, the NODISPLAY option is not used in the PROC GFONT statement). However,
none of the display options affect the design and appearance of the stored font except
the NOKEYMAP, SHOWROMAN, and ROMHEX options.

When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area
PT points

If you omit units, a unit specification is searched for in this order:
1 the value of GUNIT=in a GOPTIONS statement
2 the default unit, CELLS.

BASELINE=y

B=y
specifies the vertical coordinate in the font data set that is the baseline of the
characters. The baseline is the line upon which the letters rest. If you do not use the
BASELINE= option, the GFONT procedure uses the lowest vertical coordinate of the
first character in the font data set.

CAPLINE=y

C=y
specifies the vertical coordinate in the font data set that is the capline of the
characters. The capline is the highest point of normal Roman capitals. If you do not
use the CAPLINE= option, the GFONT procedure uses the highest vertical coordinate
in the font data set, in which case the capline and the font maximum are the same.
See Figure 16.1 on page 676 for an illustration of capline and font maximum.

If you use the CAPLINE= option, then when the GFONT procedure calculates the
height of a character, any parts of the character that project above the capline are
ignored in the calculation.

You can use this option to prevent an accented capital like A from being shortened
to accommodate the accent. For example, if you do not use the CAPLINE= option,

684 Creating Fonts: Required Arguments, Options A Chapter 16

the capline and the font maximum are the same and the A is shortened to make
room for the accent below the capline. However, if CAPLINE= is used, the top of the
letter A is at the capline, and the accent is drawn above the capline and below the
font maximum.

CHARSPACETYPE=DATA | FIXED | NONE | UNIFORM
CSP=DATA | FIXED | NONE | UNIFORM
specifies the type of intercharacter spacing. The following are valid values:

DATA

specifies that the first observation for each character sets the width of that

character. When CHARSPACETYPE=DATA, the PTYPE variable is required, and

the observation that specifies the width of the character must have a PTYPE value

of W. See “The Font Data Set” on page 687 for details on the PTYPE variable.
Intercharacter spacing is included in the character’'s width. For example, if the

first observation for the letter A specifies a character width of 10 units and the A

itself occupies only 8 units, the remaining 2 units serve as intercharacter spacing.

Note: The character can extend beyond the width that you specified in the first
observation if desired. A

FIXED
adds a fixed amount of space between characters based on the font size. The width
of the individual character is determined by the data that generate the character.

NONE
specifies that no space is added between characters. The width of the individual
character is determined by the data that generate the character. This type of
spacing is useful for script fonts in which the characters should appear connected.

UNIFORM
specifies that the amount of space that is used for each character is uniform rather
than proportional. This means that each character occupies the same amount of
space. For example, in uniform spacing the letters m and i occupy the same
amount of space, whereas in proportional spacing m occupies more space than i.
In uniform spacing, the character is always centered in the space and a fixed space
is added between characters.

When UNIFORM is specified, the amount of space that is used for each

character is one of the following:

o by default, the width of the widest character in the font.

o the width specified by the MWIDTH= option. See the MWIDTH= option on
page 685 for details.
Specifying CHARSPACETYPE=UNIFORM is the same as using the UNIFORM
option.

Note: By default, CHARSPACETYPE=FIXED. &

CODELEN=1 | 2
specifies the length in bytes of the CHAR variable. By default, CODELEN=1. To
specify double-byte character sets for languages such as Chinese, Japanese, or
Korean, use CODELEN=2. If you specify a double-byte character set, you cannot
specify kerning or space adjustment with the KERNDATA= or SPACEDATA= options.

FILLED
F
specifies that the characters in a user-generated polygon font are filled.

Featured in: Example 2 on page 700

The GFONT Procedure A Creating Fonts: Required Arguments, Options 685

KERNDATA=kern-data-set

KERN=Kkern-data-set
specifies the SAS data set that contains kerning information. When the
KERNDATA= option is used during font creation, the data that are contained in the
kern data set are applied to the font and stored with it. You cannot specify kerning
for a double-byte character set that is created by using the option CODELEN=2.

See also: “The Kern Data Set” on page 694

MWIDTH=character-width
specifies the width of a character in a uniform font, where character-width is the
number of font units. The MWIDTH= option is only valid when you specify uniform
spacing by using the UNIFORM option or when you specify
CHARSPACETYPE=UNIFORM. If you do not use MWIDTH=, the default is the
width of the widest character in the font (usually the letter m).

Typically, you use the MWIDTH= option to tighten the spacing between
characters. To do this, specify a smaller value (narrower width) for character-width.
Figure 16.4 on page 685 shows the effect of decreasing the space that is allowed for
uniformly spaced characters.

Figure 16.4 Using the MWIDTH= Option to Modify Spacing

default mwidth reduced mwidih

i

i & *
» -

1. |

\ 1

[fixed space Y fixad apace

See also: the CHARSPACETYPE= option on page 684 and the UNIFORM option on
page 687

NODISPLAY
ND
specifies that the GFONT procedure is not to display the font that it is creating.

NOKEYMAP
specifies that the current key map is ignored when you generate and use the font
that is being created, and that the character codes you enter are not mapped in any
way before being displayed. As a result, the generated font is never affected by any
setting of the KEYMAP= graphics option.

CAUTION:
Fonts generated with the NOKEYMAP option are never affected by any setting of the
KEYMAP= graphics option. ~

By default, the NOKEYMAP option is not used; in which case, when you build a
font, the current key map is applied to the values in the CHAR variable.

However, your current key map may not be symmetrical; that is, two or more
input character codes may be mapped to the same output character. For example, if
A is mapped to B, then both A and B map to B, but nothing maps to A. In this case,

686

Creating Fonts: Required Arguments, Options A Chapter 16

more than one code in your input data set can map to the same character in the
resulting font. For example, if A and B are values of CHAR, both map to B. If this
happens, a message that indicates the problem characters is displayed in the SAS
log. To solve this problem, you can do one of the following:

o change the character code of one of the characters

o eliminate one of the characters

o use the NOKEYMAP option.

When you use the NOKEYMAP option, your font works correctly only if the end
user’s host or controller encoding is the same as the encoding used to create the
input data set.

See also: the NOKEYMAP option on page 681 for Displaying Fonts and Chapter 18,

“The GKEYMAP Procedure,” on page 719

RESOL=1..4
R=1..4

controls the resolution of the fonts by specifying the number of bytes (1 through 4)
for storing coordinates in the font. The GFONT procedure provides three resolution
levels (RESOL=3 produces the same resolution level as RESOL=4). By default,
RESOL=1.

The higher the number, the closer together the points that define the character
can be spaced. A high value specifies a denser set of points for each character so that
the characters approximate smooth curved lines at very large sizes. RESOL=2 works
well for most applications; RESOL=3 or 4 may be too dense to be practical.

The table below shows the resolution number and the maximum number of
distinct points that can be defined horizontally or vertically.

Resolution Number of Distinct Points
2 32,766

3 2,147,483,646

4 2,147,483,646

Featured in: Example 2 on page 700

ROMHEX
HEX

specifies that hexadecimal values display automatically below the font characters

when the GFONT procedure displays the font. If you use the ROMHEX option for a

font that you create, you can later use the NOROMHEX option to suppress display of

the hexadecimal values.

See also: the SHOWROMAN option on page 686, the ROMHEX option on page 682
for Displaying Fonts, and the NOROMHEX option on page 681

SHOWROMAN
SR

specifies that character codes display automatically below the font characters when

the GFONT procedure displays the font. If you use the SHOWROMAN option for a

font you create, you can later use the NOROMAN option to suppress display of the

character codes.

See also: the ROMHEX option on page 686, the SHOWROMAN option on page 682
for Displaying Fonts, and the NOROMAN option on page 681

SPACEDATA=space-data-set
SPACE=space-data-set

specifies the SAS data set that contains font spacing information. When you use the
SPACEDATA= option during font creation, the data contained in the space data set

The GFONT Procedure A Creating a Font 687

are applied to the font and stored with it. You cannot specify space adjustment for a
double-byte character set that is created by using the option CODELEN=2.

See also: “The Space Data Set” on page 696
UNIFORM
U

specifies that characters are spaced uniformly rather than proportionately. Using the
UNIFORM option is the same as specifying CHARSPACETYPE=UNIFORM.

See also: the CHARSPACETYPE= option on page 684 and the MWIDTH= option on
page 685

Creating a Font

To create a font, you must create a data set that contains font information.
Typically, you use a DATA step to create a SAS data set from which the GFONT
procedure generates the font. The data set is referred to as the font data set and you
can specify it with the DATA= argument.

To produce the font, invoke the GFONT procedure and specify the data set that
contains the font information. In addition you can include options to modify the design
and appearance of the font. For example, the following statement uses the data set
FONTDATA to generate the font MYLOGO:

proc gfont data=fontdata name=mylogo;

For a demonstration of the font creation process, see Example 2 on page 700.

The GFONT procedure uses three types of data sets: the font data set, the kern data
set, and the space data set. Each type of data set must contain certain variables and
meet certain requirements. The following sections explain what each data set contains,
how it is built, and what the requirements of the variables are.

The Font Data Set

The font data set consists of a series of observations that include the horizontal and
vertical coordinate values and line segment numbers that the GFONT procedure uses to
generate each character. In addition, each observation must include a character code
that is associated with the font character and is used to specify the font character in a
text string. The font data set also determines whether the font is stroked or polygon. A
font data set that generates a polygon font produces an outline font by default. You can
use the FILLED option with the same data set to generate a filled font.

The variables in the font data set must be assigned certain names and types. The
table below summarizes the characteristics of the variables which are described further
in “Font Data Set Variables” on page 688.

Creating a Font

Table 16.1

A Chapter 16

Font Data Set Variables

Variable

Description

Type Length Valid Values

With Stroked
Fonts

With Polygon
Fonts

CHAR

the character
code
associated
with the font
character

character

character 1

lor2

keyboard
characters
or
hexadecimal
values

LorP

required

required

LP the type of
line segment
being drawn,
either a line
or a polygon

optional required

PTYPE the type of character 1 VorCorW

data in the
observation

optional optional

SEGMENT the number numeric number
of the line

segment or

polygon being

drawn

required required

X the
horizontal
coordinate

numeric number required required

Y the vertical numeric number

coordinate

required required

Font Data Set Variables

CHAR
provides a code for the character or figure that you are creating. CHAR is a
character variable with a length of 1 or 2 and is required for all fonts.

CAUTION:
Using reserved or undefined hexadecimal codes as CHAR values may require the use
of the NOKEYMAP option.

The CHAR variable takes any character as its value, including characters that
you can enter from your keyboard and hexadecimal values from '00'x to 'FF'x. (If
you use hexadecimal values as CHAR values, your font may not work correctly
under a key map that is different from the one under which the font was created
because positions that are not defined in one key map may be defined in another.)

When you specify the code character in a text string, the associated font
character is drawn. For example, if you create a Roman alphabet font, typically
the characters you specify for CHAR are keyboard characters that match the
character in the font. All of the observations that build the letter A have a CHAR
value of A. When you specify 'A’ in a text string this produces A in the output.

However, if you build a symbol font, the symbols may not have corresponding
keyboard characters. In that case, you select a character or hexadecimal value to

The GFONT Procedure A Creating a Font 689

represent each symbol in the font and assign it to CHAR. For example, in the
Special font, the letter G is assigned as the code for the fleur-de-lis symbol. When
you specify the code in a text string, the associated symbol displays.

If the CODELEN= option is set to 2, the values for CHAR represent two
characters, such as AA, or a four-digit hexadecimal value, such as '00A5'x.

LP
tells the GFONT procedure whether the coordinates of each segment form a line or
a polygon. LP is a character variable with a length of 1. It is required for polygon
fonts but optional for stroked fonts. You can assign the LP variable either of the
following values:

L lines

P polygons.

Every group of line segments with an LP value of P is designated as a polygon;
if the observations do not draw a completely closed figure, the program closes the
figure automatically. For example, the following observations do not contain an LP
variable. They produce a shape like the one in Figure 16.5 on page 689.

OBS CHAR SEG X Y
1 b 1 1 1
2 b 1 1 3
3 b 1 3 3
4 b 1 3 1

Figure 16.5 Using an LP Value of Line

LP (continued)
An LP variable with a value of P for all observations added to the data set
produces a complete box like the one in Figure 16.6 on page 690.

OBS CHAR SEG X Y LP
1 b 1 1 1 P
2 b 1 1 3 P
3 b 1 3 3 P
4 b 1 3 1 P

690 Creating a Font A Chapter 16

Figure 16.6 Using an LP Value of Polygon

LP (continued)
The LP variable allows you to mix lines and polygons when you create characters
in a font. For example, the following observations produce the single figure that is
composed of a polygon and a line segment, as shown in Figure 16.7 on page 690:

OBS CHAR SEG LP

N~ o 0 b W N B
o o T T T T O
N NN R R R R
AN O W w P P|x
o M O P w W k|<x<
r r - U U U U

Figure 16.7 Mixing LP Values of Line and Polygon

PTYPE
tells the GFONT procedure what type of data are in the observation. PTYPE is a
character variable of length 1 that is optional for both stroked and polygon fonts.
For each observation, the PTYPE variable assigns a characteristic to the point

The GFONT Procedure A Creating a Font 691

that is determined by the X and Y values. You can assign the PTYPE variable any
of the following values:

\ normal point in the line segment
C center of a circular arc joining two V points
W width value for CHARSPACETYPE=DATA.

If the GFONT procedure encounters the sequence V-C-V in consecutive
observations, it draws an arc that connects the two V points and has its center at
the C point. If a circle cannot be centered at C and pass through both V points,
the results are unpredictable. Arcs are limited to 106 degrees or less.

If you specify an observation with a PTYPE value of W, it must always be the
first observation for a character. Instead of providing digitizing data to the
procedure, the observation gives the minimum and maximum X values for the
character. Note that in this case, the Y variable observation actually contains the
maximum X value. Usually, these values include a little extra space for
intercharacter spacing. Use a PTYPE of W only if you have specified
CHARSPACETYPE=DATA, otherwise, the points are ignored. For more
information on intercharacter spacing, see the description of the
CHARSPACETYPE= option on page 684.

If you do not specify a PTYPE variable in the font data set, all points are
assumed to be V-type points.

The following observations illustrate how the PTYPE variable is used to draw
an arc similar to Figure 16.8 on page 692. (After the figure was generated, a grid
was overlaid on it to show the location of the points.) A comment following each
observation explains its function.

OBS CHAR SEG X Y LP PTYPE Comment

1 a 1 40 60 P W define width of
character as 20
font units,
which is the
number of units
from left
margin, 40, to
right margin,
60

2 a 1 45 40 P \Y start line
segment at
position 45,40

3 a 1 45 50 P \Y draw a line to
position 45,50,
which is start

point of arc

4 a 1 45 40 P C draw an arc
whose center is
at 45,40

5 a 1 55 40 P \Y finish drawing

the arc at 55,40

692 Creating a Font A Chapter 16

Figure 16.8 Using the PTYPE Variable to Create an Arc

60

55
50
45

40 45 50 55 60

Note the following:

O Three observations are required to draw the arc: observation 3 and observation
5 denote the start point and endpoint of the arc, respectively, and observation 4
locates the center of the arc.

o The figure is closed because the line segments have an LP value of P (polygon).

O The font that contains the figure of the arc was generated with a PROC GFONT
statement like the following:

proc gfont data=arc name=arcfig charspacetype=data filled ;

Note that the GFONT procedure uses the CHARSPACETYPE= option with a
value of DATA to specify that the first observation sets the width of the
character. The FILLED option fills the area of the arc.

SEGMENT

numbers the line segments that compose a character or symbol. SEGMENT is a
numeric variable that is required for both polygon and stroked fonts. All the
observations for a given line segment have the same segment number. The
segment number changes when a new line segment starts.

When the GFONT procedure draws a stroked character with more than one line
segment (for example, the letter E), or a polygon character with a hole (for
example, the letter A), it needs to know when one line stops and where the next
line begins. There are two ways to do this, as follows:

1 Change the segment number when a new line segment starts. If the value of
LP is L (line), a change in segment numbers tells the GFONT procedure not
to connect the last point in line segment 1 and the first point in line segment
2. If the value of LP is P (polygon), a change in segment numbers causes both
of the following:

O The last point in line segment 1 is joined to the first point in line
segment 1, thus closing the polygon.

O The program starts a new polygon. If the value of CHAR has not
changed, the new polygon is part of the same character.

Use this method for characters that are composed of two polygons, such as
a question mark (?). If you draw a polygon with a hole in it, such as the letter
A, use the second method.

2 Keep the same segment number for all lines, but insert an observation with
missing values for X and Y between the observation that marks the end of
the first line and the observation that begins the next line. For example, if
you are drawing the letter O, insert an observation with a missing value
between the line that draws the outer circle and the beginning of the line
that draws the inner circle.

The first method is preferred, unless you are creating a polygon character with

a hole in it. In this case, you should separate the lines with a missing value and

The GFONT Procedure A Creating a Font 693

keep the same segment numbers. (Note that if you use separate line segments
when you create a polygon with a hole, the results may be unpredictable.) For
example, observations such as the following from a data set called BOXES were
used to draw the hollow square in Figure 16.9 on page 693. The data points that
form the figure are laid out on a grid shown next to the square.

OBS CHAR SEG

-
o

w w P | x
R,ow ow k<

© 0O N o U A W N R
o o o o T T T T O
e e e = e
T © UV U UV U UV TV T

A M O O
o » b~ O

Note that observation 5, which has missing values for X and Y, separates the
observations that draw the inner box from those that draw the outer box and that
the segment number is the same for all the observations. Figure 16.9 on page 693
was generated with a GFONT statement like the following:

proc gfont data=boxes name=boxes filled;

Note that the FILLED option is included and that only the space between the
two squares is filled.

Figure 16.9 Drawing Nested Polygons

S =N W W,

XY
specify the horizontal and vertical coordinates of the points for each character.
These variables must be numeric, and they must be named X and Y for the
horizontal and vertical coordinates, respectively. Their values describe the position
of the points on the character. These values can be in any range that you choose,

694

Creating a Font A Chapter 16

but both variables must describe the character in the same scale or font units. In
other words, 10 horizontal units must be the same distance as 10 vertical units.
You should define vertical coordinates for all characters on the same baseline.

Note: When you specify PTYPE=W, both X and Y contain horizontal coordinate
values. 2

Creating a Font Data Set

You can create a font data set by digitizing the shape of the characters or figures
either manually or with special digitizing equipment. To create a font data set by
digitizing the characters manually, follow these steps:

1 Determine the coordinate points for each line segment by drawing the characters
on a grid.

2 Lay out the observations for each character. Each observation describes a move
from one point to another along a line segment. For each line segment, enter the
coordinate points in the order in which they are drawn. For a stroked font, when
you start a new line segment, change the segment number. For a polygon font,
when you start a new polygon, change the line segment number.

If the polygon has a hole in it, as in the letter O, keep the line segment number
and separate the lines with a missing value. Use the same value for CHAR for all
of the observations that describe one character.

3 Create a SAS data set that contains the variables CHAR, SEGMENT, X, and Y,
and read in the data for each observation. Include the variables LP and PTYPE if
necessary.

4 Sort the data set by CHAR and SEGMENT.
5 Assign the font data set with the DATA= argument.

This process is illustrated in Example 2 on page 700.

The Kern Data Set

The kern data set consists of observations that specify how much space to add or
remove between any two characters when they appear in combination. This process,
called kerning, increases or decreases space between the characters. Kerning usually is
applied to certain pairs of characters that, because of their shape, have too much space
between them. Reducing the space between characters may allow part of one character
to extend over the body of the next. Examples of some combinations that should be
kerned are AT, AV, AW, TA, VA, and WA.

You can apply kerning to the intercharacter spacing that you specify with the
CHARSPACETYPE= option (except for uniform fonts). You can refine the kerning of
your characters as little or as much as you like. You assign the kern data set with the
KERNDATA= option.

Kern Data Set Variables
The kern data set must contain these variables:

CHAR1
specifies the first character in the pair to be kerned. CHARL1 is a character
variable with a length of 1.

CHAR2
specifies the second character in the pair to be kerned. CHAR?2 is a character
variable with a length of 1.

The GFONT Procedure A Creating a Font 695

XADJ
specifies the amount of space to add or remove between the two characters. XADJ
is a numeric variable that uses the same font units as the font data set. The value
of XADJ specifies the horizontal adjustment to be applied to CHAR2 whenever
CHARL1 is followed immediately by CHAR2. Negative numbers decrease the
spacing, and positive numbers increase the spacing.

Creating a Kern Data Set

Each observation in a kern data set names the pair of characters to be kerned and
the amount of space to be added or deleted between them. To create a kern data set,
follow these steps:

1 Select the pairs of characters to be kerned, and specify the space adjustment (in
font units) for each pair as a positive number (more space) or negative number
(less space).

2 Create a SAS data set that contains the variables CHAR1, CHAR2, and XADJ;
produce one observation for each pair of characters and the corresponding space
adjustment.

data kernl;
input charl $ char2 $ xadj;
datalines;

AT -4
DA -3
T A -4

3 Assign the kern data set with the KERNDATA= option.

proc gfont data=fontdata
name=font2
charspacetype=data
kerndata=kernl
nodisplay;

run;

Figure 16.10 on page 696 illustrates how you can use the KERNDATA= option to
create a font in which the space between specified pairs of letters is reduced. The
characters A, D, and T are shown as the word DATA. The first line uses the unkerned
font, FONT1, and the second line uses the kerned font, FONT2. Note that the
characters in FONT2 are spaced more closely than the characters in FONT1.

The following title statements specify the kerned and unkerned fonts and are used
with the GSLIDE procedure to produce Figure 16.10 on page 696:

title2 lspace=6 f=fontl h=10 j=1 ’'DATA’;
title3 lspace=4 f=font2 h=10 j=1 ’'DATA’;

696 Creating a Font A Chapter 16

Figure 16.10 Comparison of Kerned and Unkerned Text

Unkerned and Kerned Characters

DATA
DATA

The Space Data Set

As the height (point size) of a font increases, less space is required between letters
in relation to their height. If the point size decreases, more space may be needed. The
space data set tells the GFONT procedure how much to increase or decrease the
intercharacter spacing for a given point size. Like kerning, spacing is added to or
subtracted from the intercharacter spacing that is specified by the CHARSPACETYPE=
option. However, kerning applies the adjustment to specified pairs of characters, while
spacing is applied uniformly to all characters.

Values that are specified in the space data set are added to the normal
intercharacter spacing and any kerning data. Normal intercharacter spacing is
determined by the CHARSPACETYPE= option.

Space Data Set Variables
The space data set must contain these variables:

SIZE
specifies the point size of the font. SIZE is a numeric variable.

ADJ
specifies the spacing adjustment for the point size in hundredths (1/100) of a point.
(A point is equal to 1/72 of an inch.) ADJ is a numeric variable. Positive values for
the ADJ variable increase the spacing between characters; negative values reduce
the space.

Creating a Space Data Set

Each observation in a space data set specifies a point size (SIZE) and the amount of
space (ADJ) to be added or subtracted between characters when a font of that point size
is requested. When you specify a point size that is not in the space data set, the
adjustment for the next smaller size is used. To create a space data set, follow these
steps:

1 Determine the amount of adjustment that is required for typical point sizes;
positive numbers increase spacing, and negative numbers decrease spacing.

2 Create a SAS data set that contains the variables SIZE and ADJ; produce one
observation for each point size and corresponding space adjustment.

The GFONT Procedure A Creating a Font 697

data spacel;
input size adj;
datalines;

6 40
12 0
18 -40
24 -90
30 -150
36 =300
42 -620

3 Assign the space data set with the SPACEDATA= option.

proc gfont data=reflib.fontdata
name=font3
charspacetype=data
spacedata=spacel
nodisplay;

run;

Figure 16.11 on page 698 illustrates how to use the SPACEDATA= option to
generate a font in which intercharacter spacing is adjusted according to the height of
the characters. The characters A, D, and T are shown as the word DATA. Each pair of
lines displays the word DATA and at the same size uses first the font with spacing
adjustment (FONT3) and then the original font (FONT1). Note that as the size of the
characters increases, the space between them decreases.

The following title statements are used with the GSLIDE procedure to produce
Figure 16.11 on page 698:

title2;

title3 f=font3 h=.25in j=1 'DATA’; /* 18 points */
titled4 f=fontl h=.25in j=1 ’'DATA’;

title5;

title6 f=font3 h=.50in j=1 'DATA’; /* 36 points */
title7 f=fontl h=.50in j=1 ’'DATA’;

title8;
title9 f=font3 h=1.0in j=1 ’'DATA’; /* 72 points */
titlel0 f=fontl h=1.0in j=1 'DATA’;

698 Examples A Chapter 16

Figure 16.11 Comparison of Text with and without Spacing Adjustments

Spacing Adjusted According to Point Size

DATA
DATA

DATA
DATA

Examples

The following examples illustrate major features of the GFONT procedure.

Example 1: Displaying Fonts and Character Codes

Procedure features:
GFONT statement options:

HEIGHT=
NOBUILD
ROMCOL=
ROMFONT=
ROMHT=
SHOWROMAN

Sample library member: GR16NO01

The GFONT Procedure A Example 1: Displaying Fonts and Character Codes 699

Figure 16.12 Display of the Greek Font with Character Codes (GR16N01)

The GREEK Font with Character Codes

CH# P Y & () x + — /0 1

! # 05 % & [- /0 1

2 3 4 5 6 7 8 9 p = ¢ 2 e A B =
2 3 4 5 6 7 8 9 < = > ? @ A B C
A E ¢ [H I E K A M N O N 6o P ¥ T T
D E F G H | J K L M N 0 P Q R S T U
v o Q X / _ o & 56 & @9 vy m ¢ € K A

GR16N01

This example illustrates the SHOWROMAN option, which displays the character
codes that are associated with the font characters that are being displayed. A display
such as this one shows which keyboard character you enter to produce the Greek
character you want. In addition, this example shows how to modify the appearance of
both the font characters and the character codes when they are displayed.

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Define title and footnote.

title 'The GREEK Font with Character Codes’;
footnote j=r 'GR16NO1 ’;

Display the GREEK font with character codes. NOBUILD indicates that the font specified
in the NAME= argument is an existing font. HEIGHT= specifies the height of the Greek
characters. ROMCOL=, ROMFONT=, and ROMHT= assign the color, type style, and height of
the character codes. SHOWROMAN displays the character codes.

proc gfont name=greek
nobuild
height=3.7
romcol=red
romfont=swissl
romht=2.7

700 Example 2: Creating Figures for a Symbol Font A Chapter 16

showroman;
run;
quit;

Example 2: Creating Figures for a Symhol Font

Procedure features:
GFONT statement options:

CTEXT=
DATA=
FILLED
NAME=
RESOL=

Other features:
LIBNAME statement

Sample library member: GR16NO02

A Font of Three Figures

> ¥ O

A B C

R 02

This example shows how to create three simple figures for a symbol font. Each
figure is laid out on a grid that is 64 font units square. The third figure is a circle with

a slash through it. Figure 16.13 on page 701 shows the figure and some of its
coordinate points laid out on a grid.

The GFONT Procedure A Example 2: Creating Figures for a Symbol Font 701

Figure 16.13 Diagram of Circle with Slash Figure

64

Lo
¢
t
t
'
'
§
I
1
1
H

51.6, 45.9\--

0,32 -4 - 64, 32

Assign the librefs and set the graphics environment. REFLIB is the permanent library
that is used to store the data set. The second LIBNAME statement associates the libref
GFONTO with the SAS data library in which the font catalog is stored.

libname reflib ’'SAS-data-library’;

libname gfont0 ’'SAS-data-library’;

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create the font data set REFLIB.FIGURES for a triangle, a heart, and a circle with
slash. The first figure, a right-pointing triangle that is assigned the character code A, is a
polygon drawn with three straight lines.

data reflib.figures;
input char $§ ptype $ x y segment 1lp $;
datalines;

A W 0 64 0 P /* triangle pointing right */
A \% 4 4 1 P
A \% 60 32 1 P
A \% 4 60 1 P
A \% 4 4 1 P

The second figure, a heart that is assigned the character code B, uses the PTYPE variable
combination V-C-V to draw the arcs that make up the top of the heart. Each side requires two
arcs. Since the arcs are continuous, the observation that marks the end of one arc is also the
beginning of the next arc. The heart drawing begins at the bottom point and continues
counterclockwise.

B W 0 64 0 P /* heart */
B v 32 2 1 P
B v 44 17 1 P
B v 58 40 1 P
B C 46 47 1 P

702 Example 2: Creating Figures for a Symbol Font A Chapter 16

B v 56 58 1 P
B C 46 47 1 P
B v 32 52 1 P
B C 18 47 1 P
B v 8 58 1 P
B C 18 47 1 P
B v 6 40 1 P
B \Y 20 17 1 P
B \Y 32 2 1 P

The third figure, a circle with a slash through it that is assigned the character code C, is
composed of three polygons: a circle and two empty arcs. An observation with missing values
separates the observations defining each of the three polygons. The outer circle is defined by the
first group of observations. The empty arcs are drawn with three continuous arcs using the
PTYPE variable pattern V-C-V-C-V-C-V. The straight line that closes the arc is drawn
automatically by the GFONT procedure in order to complete the polygon. Because all the
polygons are part of one character, the continuous space they define is filled.

C W 0 64 0 P /* circle with slash */
Cc v 32 64 1 P
Cc Cc 32 32 1 P
Cc v 64 32 1 P
Cc Cc 32 32 1 P
Cc v 32 0 1 P
Cc Cc 32 32 1 P
Cc v 0 32 1 P
Cc Cc 32 32 1 P
Cc v 32 64 1 P
C v . . 1 P
C v 12.4 18.1 1 P
Cc Cc 32 32 1 P
Cc v 8 32 1 P
Cc Cc 32 32 1 P
Cc v 32 56 1 P
Cc Cc 32 32 1 P
C v 45.9 51.6 1 P
C v . . 1 P
C v 51.6 45.9 1 P
Cc Cc 32 32 1 P
Cc v 56 32 1 P
Cc Cc 32 32 1 P
Cc v 32 8 1 P
Cc Cc 32 32 1 P
C v 18.1 12.4 1 P

Define the title and footnote.

title 'A Font of Three Figures’;
footnote j=r 'GR16N02 ';

The GFONT Procedure A Example 2: Creating Figures for a Symbol Font 703

Generate and display the font FIGURES. The DATA= argument names the input data set
that is used to generate the font. The NAME= argument names the font that the procedure
generates and automatically stores it in the GFONTO catalog. (Note that you do not need to
specify GFONTO.) FILLED specifies a filled polygon font. CTEXT= specifies the color of the
figures in the font display. The color specification is not stored with the font. RESOL= is set to 2
to improve the resolution of the lines. By default, the newly generated font is displayed (the
NODISPLAY option is not used).

proc gfont data=reflib.figures
name=figures
filled
height=.75in
ctext=red
showroman
romht=.5in
resol=2;

run;

quit;

704 Example 2: Creating Figures for a Symbol Font A Chapter 16

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/GRAPH?® Software: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/GRAPH® Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-525-6

All rights reserved. Printed in the United States of America.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS’ and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA
registration.

0S/2}, 0S/390°, and IBM® are registered trademarks or trademarks of International
Business Machines Corporation.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

