79

CHAPTER

18

The GKEYMAP Procedure

Overview 719
Concepts 719
About Key Maps and Device Maps 719
What Key Maps Do 721
What Device Maps Do 722
Using Key Maps and Device Maps 722
Asymmetrical Maps 722
Seeing What Characters in a Font are Available 722
About the GKEYMAP Data Set 723
GKEYMAP Data Set Variables 723
Procedure Syntax 724
PROC GKEYMAP Statement 724
Examples 726
Example 1: Modifying a Key Map 726

Overview

The GKEYMAP procedure creates key maps and device maps that compensate for
differences between the way that characters are encoded internally bySAS/GRAPH
software and the way that they are encoded by different operating environments and
output devices.

In addition, the GKEYMAP procedure can create SAS data sets from existing key
maps and device maps, either Institute-supplied or user-generated. This capability is
useful when you want to make minor alterations in a large key map or device map and
you do not want to or cannot re-create the original data set with a DATA step.

The Institute supplies key maps for many keyboard configurations and
operating-environment character representations. Your SAS Software Consultant
should have selected the appropriate key map for your site. If the Institute-supplied
device maps and key maps do not meet your needs, you can use this procedure to
modify an existing map or create a new one.

Concepts

About Key Maps and Device Maps

The characters A through Z (upper- and lowercase), O through 9, and many symbols
and national characters are represented by a set of hexadecimal codes. However, a

720

About Key Maps and Device Maps A Chapter 18

character may be represented by one code for the keyboard, another code for the
operating environment, and yet another for the output device. To resolve these
differences, SAS/GRAPH software stores all characters using its own internal encoding
scheme, which is a set of hexadecimal values that are associated with all supported
characters. Figure 18.1 on page 721 shows these internal character encoding (ICE)
codes.

To accommodate differences in the encoding of characters, you must be able to
translate the hexadecimal codes generated by your keyboard or operating environment
into the corresponding SAS/GRAPH internal encoding. A key map gives you this ability.

You also must be able to convert the internal encoding that is used by
SAS/GRAPHSsoftware to the codes required to produce the corresponding hardware
characters on your output device. A device map gives you this ability.

Key maps and device maps are SAS catalog entries. Institute-supplied key maps
and device maps are stored in the catalog SASHELP.FONTS. User-generated key maps
and device maps are stored in the catalog GFONTO.FONTS. Key maps are stored with
the extension KEYMAP (for example, GERMAN.KEYMAP), and device maps are stored
with the extension DEVMAP (for example, DEFAULT.DEVMAP).

The GKEYMAP Procedure A About Key Maps and Device Maps 1

Figure 18.1 SAS/GRAPH Internal Character Encoding

© ® . TM o r Ll E w ' 1 111 n u
an 01 2. 03 04 04 [5.1] w7 0& a8 BA OB ac oD JE OF
} « ¢ § 0 6 t I - < » o
10 11 1z 13 14 16 16 17 18 19 1A 1B ¢ 1D 1E 1F

[} |
! # % % & «()y * + , - . i
0 21 22 23 24 25 28 27 28 29 2A 2B 20 n 2K 2F
0o 1 2 3 4 5 6 7 8 9 : ; < = > ?
] i1 a2 33 34 35 a6 av 38 g aA 3B ic an aE 3F
@ A B CDEFGH I J KL MNDO
40 41 48 43 44 45 46 47 48 4% 44 4B AC 4D 4E 4iF
P QR STUVWXY Z Vo] oA
50 51 52 53 B4 84 -] B7 it] it A 5B 5C 5D 5E 5F
a b ¢c d e f g h i |j kK I mn o
1] 61 62 63 B4 1.3 13 67 B3 &9 . %: BB 8C an BE BF
p g r s t u v w x y z { | } ~
70 71 72 73 T4 ki ki 77 7B 79 1A 7B 7C D TE iF
C U 6 a a a a4 ¢ & & e i i 1 A A
Bl B1 /2 23 a4 BS a6 a7] b BA RB a8Cc 80 BE ay
E & £ & 6 6 0 0 vy O U ¢ £ ¥ Pt f
a0 81] 83 a4 55 56 a7 94 Gy 9A vB 8C 40 9E oF
& i 6 o A N 2 2 - X - % W ; < >
Al Al AZ Ad Ad Ab AB AT AR A9 AA AR AG AD AE AF
- . C 7 & t F |
BO ;) B2 B3 B4)2 Bb BT BA Bo BA EB BC BD BE BF
<n C1 cz 3 4 Ch Cé cT .} ci CA CB CC cD CE CF
I l , ~ - ~ - i - i w ol $ s
Do m o ™ I D5 D5 DT a3 e oA B e DD DE DF
I N o« [K D P d& b % % % %% 4% %
EO E1 E$ E3 E4 Es Ed ET Ed E4 EA EB EC ED EF
¢ + 2 < ¢ § =+ & ¢ 8 3 #
FO F1 F2 2] F4 F5 F& F7 F8 Fa FA FC - FO FE FF

Note: Poaitiona O0-1F arc reserved.
Note: SAS Institute reserves the right to change, at any time, the character displayed and the hexadecimal code retumed for all
undefined codes.

What Key Maps Do

A key map changes the code generated by a keyboard key to the value corresponding
to the SAS/GRAPH internal character encoding. Otherwise, a different character (or no
character) may be drawn when the character is requested in a SAS/GRAPH software
font.

Key maps are required when the code that is sent to the operating environment does
not match the SAS/GRAPH internal encoding for the character corresponding to the key
that is pressed. They are useful for generating a character in a software font that is not
available on your keyboard or when the same key on different keyboards sends a
different character to the operating environment. They are also useful for creating new
characters by combining existing characters with accent characters (called diacritics).

122

About Key Maps and Device Maps A Chapter 18

Note: In Figure 18.1 on page 721, the diacritic characters specified by the codes D2
through DB are backspaced before being drawn and can be used to create new
characters (characters resulting from codes BO through B7, B9, and BA are not
backspaced before being drawn). See Example 1 on page 726 for an example of using a
diacritic character as an accent. Two commonly used characters have already been
created for you: the character located in position FO of the ICE table could be created
by combining DA with an uppercase C, and the character located in position BC could
be created by combining DB with an uppercase G. A

What Device Maps Do

A device map maps the code stored in the SAS/GRAPH internal encoding to the code
required to reproduce the character on the output device when a particular hardware
character is requested in a SAS/GRAPH program.

You usually use device maps in these two situations:

o reversing the translation performed by key maps (if needed). To display the proper
hardware character, you must use a device map to convert the SAS/GRAPH
internal encoding of the character back to the encoding that the device expects.

o accounting for differences between the code that represents a character on the
operating environment and the code or codes required to generate the same
character as a hardware character on an output device. The problem can be
further complicated if you have multiple output devices, each with its own way of
generating a particular character using hardware text.

Using Key Maps and Device Maps

You use key maps and device maps by specifying them with the KEYMAP= or
DEVMAP= options in a GOPTIONS statement. You also can specify a device map by
filling in the DEVMAP field in the Detail window of the device entry for the device
driver that you are using.

For example, if you use the GKEYMAP procedure to generate a key map called
MYKEYMAP, you can specify it with a statement like this:

goptions keymap=mykeymap;

Once you specify MYKEYMAP as your current key map, you can press a key and the
code it generates is translated by MYKEYMAP into the ICE code that is specified by
the key map.

When you specify a device map with the DEVMAP= graphics option and you use a
hardware character set, mapped characters are converted from their SAS/GRAPH
internal encoding to the codes required to display the corresponding characters on your
device. See Chapter 9, “Graphics Options and Device Parameters Dictionary,” on page
301 for more information on the KEYMAP= and DEVMAP= graphics options.

Asymmetrical Maps

It is possible, and sometimes necessary, to define a key map or device map that is
not symmetrical (that is, two or more input character codes map to the same output
character code). For example, if you define a key map to map the keyed character A to
the internal encoding for B, the keyed characters A and B both map to the internal
encoding for B, but no code maps to A. This situation may make it impossible for you to
display certain characters defined in software fonts.

Seeing What Characters in a Font are Available

To see what characters in a font can be displayed if a particular key map is used, do
the following:

The GKEYMAP Procedure A About the GKEYMAP Data Set 723

1 Use the KEYMAP= option in a GOPTIONS statement to specify the key map that
you are interested in.

2 Then, use the GFONT procedure with the ROMHEX option to display the font
that you want to use.

The hexadecimal values and corresponding font characters that are displayed are the
ones available under the specified map. If the map is not symmetrical, a warning is
issued. See Chapter 16, “The GFONT Procedure,” on page 675 for more information on
using hexadecimal values to display special characters.

Ahout the GKEYMAP Data Set

To generate a key map or device map, you must create a data set that contains the
mapping information and use that data set as input for the GKEYMAP procedure. The
mapping information is specified as values for the variables in the data set, which
should contain one observation for each character or key to be mapped. Any characters
not specified in the data set are passed through the map unchanged.

GKEYMAP Data Set Variables

To provide information on the character mapping that is to be performed for a key
map or a device map, you must use a variable named FROM to specify the character
that you are mapping from, and a variable named TO to specify the character to map
to. For key maps, these are the only variables in the data set. For device maps, you
may also need variables named CHARTYPE and TOLEN.

Here are definitions for these variables:

CHARTYPE
specifies which hardware character set to use when a device requires that you
select an alternate character set in order to display certain characters.
CHARTYPE is a numeric variable.

All of the characters in the TO string for a particular FROM value must use the
same character set. The CHARTYPE variable is required if you use the
MULTFONT option in the PROC GKEYMAP statement; otherwise, it is ignored.
(The CHARTYPE variable is always ignored when you are creating a key map.)
The CHARTYPE value must match a value listed in the Chartype field in the
Chartype window of the device entry for the device to which the map is applied.
However, you can set the CHARTYPE variable to a missing value to specify that
the character can be drawn in any hardware character set.

FROM
specifies the character you are mapping from. FROM is a character variable. For
each observation, the FROM variable should contain a single character value. Any
characters after the first are ignored. The data set must be sorted by the FROM
variable.

Featured in: Example 1 on page 726

TO

specifies the string that the character in the FROM variable is mapped to. TO is a
character variable.

For device maps, if the TO variable contains more than one character, you must
also specify TYPE=MAP1N in the PROC GKEYMAP statement to indicate that a
single FROM character is being mapped to multiple TO characters. In addition,
you must include the TOLEN variable in the data set to specify the length of each
TO string. If you specify TYPE=MAP11 in the PROC GKEYMAP statement or if
you do not use the TYPE= option, only the first byte of the TO string is recognized.

724 Procedure Syntax A Chapter 18

Featured in: Example 1 on page 726

TOLEN
specifies the length of the string in the TO variable. TOLEN is a numeric variable.
The TOLEN variable is used only with device maps and is required if you specify
TYPE=MAPIN in the PROC GKEYMAP statement; otherwise, it is ignored.

Procedure Syntax

Requirements: The NAME= argument is always required. To create a key map or device
map, the DATA= argument is required. To output a data set, the OUT= argument is
required.

PROC GKEYMAP NAME=map-name
data-set-argument
<option(s)>;

PROC GKEYMAP Statement

The PROC GKEYMAP Statement names the key map or device map to be created or output as a
data set. If the procedure creates a key map or a device map, it identifies the data set that is
used as input. If it outputs a map, it identifies the data set to which the map is written.

Syntax

PROC GKEYMAP NAME=map-name
data-set-argument
<option(s)>;

data-set-argument must be one or more of the following:
DATA=keymap-data-set
OUT=output-data-set

option(s) can be one or more of the following:
DEVICE=device-name
DEVMAP | KEYMAP
TYPE=MAP11 | MAP1N
MULTFONT

Required Arguments

NAME=map-name
identifies the map that is to be created or converted to a SAS data set. Key maps are
stored as map-name.KEYMAP, and device maps are stored as map-name.DEVMAP.
The value of the KEYMAP or DEVMAP option determines the type of map and the

The GKEYMAP Procedure A PROC GKEYMAP Statement 725

extension added to map-name. It is possible to use the same map-name value for
both a key map and a device map.

If you create a key map or device map, the map is stored as an entry in the catalog
GFONTN.FONTS where n is a number from 1 to 9, and you must use a LIBNAME
statement to specify a libref for GFONTN. See “About the Libref GFONTO0” on page
677 for details.

If you specify an existing key map or device map, SAS/GRAPH software searches
for the map using the same search path that it uses to search for fonts. See “Font
Locations” on page 127 for details.

Featured in: Example 1 on page 726

DATA=keymap-data-set
identifies the input data set for the GKEYMAP procedure. Used only when you are
creating a key map or device map.
See also: “SAS Data Sets” on page 25 and “About the GKEYMAP Data Set” on page
723

Featured in: Example 1 on page 726

OUT=output-data-set
identifies the output data set to which the data from a key map or device map are to
be written. Used only when you output an existing key map or device map as a SAS
data set.

Featured in: Example 1 on page 726

Options
You can specify as many options as you want and list them in any order.

DEVICE=device-name
specifies the device driver that a device map is associated with, where device-name is
the name of an entry in a device catalog. DEVICE= is not required when creating a
device map, but it can be used if you want to limit the use of the device map to one
particular driver. If you do not use DEVICE=, the device map can be used with any
device. DEVICE= is valid only if you are creating a device map.

DEVMAP | KEYMAP
specifies whether you are working with a device map or a key map. The default is
KEYMAP unless you use an option that can be used only with DEVMAP. This option
also specifies the type of map you are outputting as a data set.

Featured in: Example 1 on page 726

TYPE=MAP11 | MAP1N
specifies whether you are mapping characters in a device map one-to-one or
one-to-many. If you specify TYPE=MAP11 (the default), each character in a graphics
text string is mapped to only one character on the output device. If you specify
TYPE=MAPI1N, a single character in a graphics text string can be mapped to
multiple characters on the output device. For example, if two characters have to be
sent to the graphics output device to display a single hardware character, specify
TYPE=MAPI1N. Specify TYPE=MAP1N only when you create a device map.

MULTFONT
specifies that an alternate hardware character set is required to display one or more
characters in the device map. Specify the MULTFONT option only when you create a
device map.

Creating a Data Set from an Existing Key Map or Device Map

To generate a data set from an existing key map or device map, follow these steps:

726 Examples A Chapter 18

1 Specify the name of the key map or device map with the NAME= argument. If the
map is user generated, you must first submit a LIBNAME statement to associate
the libref GFONTO with the location where the map is stored, and NAME= must
specify the name that was specified for the key map or device map when it was
created. If the map is an Institute-supplied map, it is located in the catalog
SASHELP.FONTS, and you do not need to submit a LIBNAME statement to
access it.

2 In the OUT= argument, specify the name of the data set to which the data are to
be written. By default, the data set is written to the temporary library WORK.

Use the DEVMAP option if a device map is selected.

4 Optionally, use the PRINT procedure to display the newly created data set (most
values will be unprintable, so you should use a $HEX2. format for the FROM and
TO variables).

Creating and Using Key Maps and Device Maps

To create and use a key map or device map, follow these steps:

1 Submit a LIBNAME statement that associates the libref GFONTO with the
location where your map is to be stored.

2 Create a data set that contains the mapping information you need. You can use a
DATA step to create all of the mapping information for the key map or device map,
or you can create a data set from an existing key map or device map, then update
that data set with the mappings that you need. This process is illustrated in
Example 1 on page 726.

3 Use the GKEYMAP procedure to create the key map or device map, using as input
the data set that contains the mapping information. The GKEYMAP procedure
stores the map in the catalog GFONTO.FONTS.

4 Use the KEYMAP= or DEVMAP= option in a GOPTIONS statement to assign the
key map or device map in your SAS session. The specified map is used
automatically in your SAS/GRAPH programs. (The device map is used only when
you use a hardware character set.)

Examples

Example 1: Modifying a Key Map

Procedure features:
GKEYMAP options:

DATA=

KEYMAP

NAME=

OouT=

Other features:

DATA step
GOPTIONS procedure
GOPTIONS statement
LIBNAME statement

The GKEYMAP Procedure A Example 1: Modifying a Key Map 727

SORT procedure
Sample library member: GR18NO1

Kaiserstra3e
Sao Paulo

GR18NO1

This example shows how to change multiple characters in an existing key map. It
assumes that the national characters R and & are not on your keyboard, so you want to
create a key map that provides them.

To provide the R character, this example’'s key map converts the @ character into the
SAS/GRAPH internal encoding for ('B8'%x). Whenever the @ character is typed in text
that is displayed with a software font, the character R is drawn instead. In this case,
the replacement character uses the text position that would have been used by the
typed character.

Note: Once you have modified your key map so that @ is mapped to 3, you can no
longer generate @ in a software font from your keyboard when the key map is in effect. o

To provide the & character, which is not on the keyboard or in the ICE table, this
example’'s key map converts the asterisk (*) into the SAS/GRAPH internal encoding for
the accent character 'D5'x (a tilde). In this case, when the character * is typed, the
resulting tilde does not take up a text position but is backspaced and used as an accent
over the character preceding it in the text. To create the & character, therefore, the text
must contain the two characters a*.

Note: The example updates the current key map rather than creating a new key
map so that all of the other character mapping in the key map remains in effect. A

Assign the libref and set the graphics environment. LIBNAME associates the libref
GFONTO with the location of the SAS data library where your device maps and key maps are
stored.

libname gfont0 ’'SAS-data-library’;

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swiss ftitle=swissb htext=6;

728 Example 1: Modifying a Key Map A Chapter 18

Determine the name of the current key map. The SAS log in Output 18.1 on page 729
shows that the keymap name is DEFAULT.

proc goptions
option=keymap;
run;

Copy the DEFAULT key map to a temporary SAS data set. NAME= specifies the
DEFAULT key map as input to the procedure. OUT= specifies the data set TEMP, which is
created from the specified key map.

proc gkeymap name=default
out=temp;
run;

Create data set NEW. NEW will be used to create the key map for the character conversions.
Values for the FROM variable are the keyboard characters to be converted. Values for the TO
variable are hexadecimal codes from the SAS ICE table. OUTPUT is required to write a
separate observation for each character to be mapped.

data new;
from='@"’;
to='b8'x;
output;
from='*';
to='d5'x;
output;

run;

Sort data set NEW and update data set TEMP with the mapping information. The data
set NEW must be sorted by the FROM variable before its observations can be used to update
data set TEMP.

proc sort data=new;
by from;

data temp;
update temp new;
by from;

run;

Create a new key map from the modified data set. NAME= assigns a name to the new key
map. DATA= specifies the data set TEMP as input to the procedure. KEYMAP specifies that the
map being generated is a key map (the default).

proc gkeymap name=mykeymap
data=temp
keymap;

run;

The GKEYMAP Procedure A Example 1: Modifying a Key Map 729

Specify the new key map in a GOPTIONS statement. KEYMAP= specifies the name of the
new key map so that when the characters @ and a* are specified in TITLE statements, the
characters B and & are displayed in the output.

goptions keymap=mykeymap;

Print two titles with the special characters. The character @ is typed where the character
3 should print, and the character * is typed after the character it will accent.

titlel 'Kaiserstrale’;
title2 ’Sa*o Paulo’;
footnote j=r ’'GR18NO1 ';
proc gslide;

run;

quit;.

4

Output 18.1 Log from GOPTIONS Procedure

SAS/GRAPH software options and parameters
(executing in DMS Process environment)
KEYMAP=DEFAULT Input character map for hardware and software
text

730 Example 1: Modifying a Key Map A Chapter 18

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/GRAPH?® Software: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/GRAPH® Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-525-6

All rights reserved. Printed in the United States of America.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS’ and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA
registration.

0S/2}, 0S/390°, and IBM® are registered trademarks or trademarks of International
Business Machines Corporation.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

