
1027

C H A P T E R

31
The DATA Step Graphics
Interface

Overview 1028
Syntax 1029

Requirements 1030

Applications of the DATA Step Graphics Interface 1030

Enhancing Existing Graphs 1030

Creating Custom Graphs 1030
Using the DATA Step Graphics Interface 1031

Summary of Use 1031

Producing and Storing DSGI Graphs 1031

Structure of DSGI Data Sets 1032

Using SAS/GRAPH Global Statements with DSGI 1032

Operating States 1033
The Current Window System 1033

Debugging DSGI Programs 1033

DSGI Graphics Summary 1034

DSGI Functions 1034

DSGI Routines 1038
Creating Simple Graphics with DSGI 1041

Setting Attributes for Graphics Elements 1042

How Operating States Control the Order of DSGI Statements 1044

Functions That Change the Operating State 1044

Order of Functions and Routines 1045
Bundling Attributes 1047

Attributes That Can Be Bundled for Each Graphics Primitive 1047

Assigning Attributes to a Bundle 1048

Selecting a Bundle 1049

Defining Multiple Bundles for a Graphics Primitive 1049

How DSGI Selects the Value of an Attribute to Use 1049
Disassociating an Attribute from a Bundle 1050

Using Viewports and Windows 1050

Defining Viewports 1051

Clipping around Viewports 1051

Defining Windows 1051
Activating Transformations 1052

Inserting Existing Graphs into DSGI Graphics Output 1053

Generating Multiple Graphics Output in One DATA Step 1054

Processing DSGI Statements in Loops 1054

Examples 1055
Vertically Angling Text 1055

Changing the Reading Direction of the Text 1058

Using Viewports in DSGI 1059

1028 Overview 4 Chapter 31

Scaling Graphs by Using Windows 1062
Enlarging an Area of a Graph by Using Windows 1065

Using GASK Routines in DSGI 1067

Generating a Drill-down Graph Using DSGI 1069

See Also 1073

Overview
The DATA Step Graphics Interface (DSGI) enables you to create graphics output

within the DATA step or from within an SCL application. Through DSGI, you can call
the graphics routines used by SAS/GRAPH software to generate an entire custom graph
or to add features to an existing graph. You can use DSGI to write a custom graphics
application in conjunction with all the power of the programming statements accessible
by the DATA step.

DSGI provides many of the same features as the Annotate facility, but it also has
many advantages over the Annotate facility.

� You can use DSGI functions and routines through SCL.
� You can save disk space. DSGI graphics can be generated through the DATA step

without creating an output data set. The graphics output is stored as a catalog
entry in the catalog you select and, optionally, is displayed after the DATA step is
submitted.

� DSGI generates graphics faster than the Annotate facility. With the Annotate
facility, you must first create a data set and then submit a PROC step to display
the graphics output. In DSGI, you eliminate the PROC step because the graphics
output is generated after the DATA step.

� DSGI supports viewports and windows, which enable you to specify the
dimensions, position, and scale of the graphics output. They also allow you to
include multiple graphs in the same graphics output.

You should consider using the Annotate facility for enhancing procedure output and
using DSGI for creating custom graphics without using a graphics procedure.

DSGI is based upon the Graphics Kernal System (GKS) standard, although it does
not follow a strict interpretation, nor is it implemented on a particular level of GKS.
GKS was used to provide a recognizable interface to the user. Because of its modularity,
the standard allows for enhancements to DSGI without the side effect of converting
programs between versions of SAS/GRAPH software.

This chapter explains the concepts used to create graphics output with DSGI. The
discussion provides an overview of the functions and routines used in DSGI. For
complete details of each function and routine, see Chapter 32, “DATA Step Graphics
Interface Dictionary,” on page 1075.

Display 31.1 on page 1029 shows a pie chart that was created entirely with DSGI
functions. Display 31.2 on page 1029 is an example of a text slide that was created with
DSGI statements.

The DATA Step Graphics Interface 4 Syntax 1029

Display 31.1 Exploded Pie Chart Generated with the DSGI

Display 31.2 Text Slide Created Using the DSGI

Syntax
DSGI uses GASK routines and functions to draw graphics elements. These

statements have the following syntax:

CALL GASK(operator, arguments);

return-code-variable=function-name (operator, arguments);

where

arguments are the additional required variables or values for the routine or
function.

return-code-
variable

is an arbitrary name and can be any numeric variable name. It will
hold the return code upon execution of the function.

1030 Requirements 4 Chapter 31

function-name is the DSGI command you want to execute and must be one of the
following: GDRAW, GINIT, GPRINT, GRAPH, GSET, or GTERM.

operator is a character string that names the function you either want to
submit or for which you want the current settings. When used with
functions, operator can take different values depending on
function-name.

Requirements
When using DSGI statements, the following formats for arguments must be used:
� All x and y coordinates are expressed in units of the current window system. (See

“The Current Window System” on page 1033 for details.)
� The arguments used with DSGI functions can be expressed as either constants or

variables. The arguments used with GASK routines must be variable names since
values are returned through them. See Chapter 32, “DATA Step Graphics
Interface Dictionary,” on page 1075 for a complete explanation of each argument
used with DSGI functions and routines.

� All arguments that are character constants must be enclosed in either single or
double quotation marks.

Applications of the DATA Step Graphics Interface
With the DATA Step Graphics Interface you can
� enhance existing graphs
� create custom graphs.

Enhancing Existing Graphs
You can use DSGI to enhance graphs that were previously generated by using

SAS/GRAPH procedures. You can add text and other graphics elements. You can also
alter the appearance of the existing graph by scaling or reducing it. To enhance a graph
produced by a SAS/GRAPH graphics procedure, you must insert the existing graph into
graphics output being generated with DSGI.

To insert a graph, you must provide DSGI with the following information:
� the catalog in which the existing graph is located
� the name of the existing graph
� the coordinates of the place in the graphics output where you want to insert the

existing graph
� a square coordinate system ((0,0) to (100,100))
� the statements to draw enhancements to the existing graph.

The coordinates that DSGI uses to position existing graphs, enhancements to that
graph, or graphics elements are based on units of percent of the window system
currently defined. See “Using Viewports and Windows” on page 1050.

Creating Custom Graphs
You can produce custom graphs with DSGI without using a data set to produce the

graphics output. DSGI enables you to generate

The DATA Step Graphics Interface 4 Producing and Storing DSGI Graphs 1031

� arcs
� bars
� ellipses
� elliptical arcs
� lines
� markers
� pie slices
� polygons (filled areas)
� text.

To create custom graphs, you must provide the system with the following information:
� DSGI statements to draw graphics elements
� the coordinates of the graphics elements in the output.

In addition, you can specify the color, pattern, size, style, and position of these
graphics elements.

Using the DATA Step Graphics Interface
The following sections provide general information about using DSGI, including

general steps for using DSGI, how to produce and store graphs, how the data sets used
with DSGI are structured, how SAS/GRAPH global statements can be used with DSGI,
and how to debug DSGI programs. The sections also explain some of the basic concepts
of DSGI, including information about operating states and windowing systems.

Summary of Use
To generate graphics output using DSGI, you generally follow these steps:
1 On a grid that matches the dimensions of the graphics output, sketch the output

you want to produce.
2 Determine the coordinates of each graphics element.
3 In the DATA step, write the program to generate the graphics output. The basic

steps are to

a initialize DSGI
b open a graphics segment
c generate graphics elements
d close the graphics segment
e end DSGI.

4 Submit the DATA step with a final RUN statement to display the output.

Note: The DISPLAY graphics option must be in effect for the graphics output to be
displayed. See Chapter 9, “Graphics Options and Device Parameters Dictionary,” on
page 301 for more information about the DISPLAY graphics option. 4

Producing and Storing DSGI Graphs
When you create or enhance graphs with DSGI, the DSGI graphics are displayed

and stored as part of the graphics output. When you execute the DATA step, DSGI
creates a catalog entry using the name from the GRAPH(’CLEAR’, . . .)function.

1032 Structure of DSGI Data Sets 4 Chapter 31

By default, DSGI uses the name DSGI if you have not specified a name with the
GRAPH(’CLEAR’, . . .)function. By default, the catalog entry is stored in WORK.GSEG
unless you specify another catalog with the GSET(’CATALOG’, . . .)function.

If you generate another graph using a name that matches an existing catalog entry
in the current catalog, DSGI uses the default naming conventions for the catalog entry.
See “Names and Descriptions of Catalog Entries” on page 51 for a description of the
conventions used to name catalog entries.

If you want to store your output in a permanent library or in a different temporary
catalog, you must use the GSET(’CATALOG’, . . .)function. This function allows you to
specify the libref and catalog name for the output catalog. Before you use the
GSET(’CATALOG’, . . .)function, you must allocate the libref using a LIBNAME
statement.

You can redisplay DSGI graphics output stored in catalog entries using the
GREPLAY procedure or the GRAPH window.

Structure of DSGI Data Sets
The DSGI DATA step is usually not written to produce an output data set. Unlike

data sets created by the Annotate facility, which contain observations for each graphics
element drawn, DSGI does not usually create an observation for each graphics
primitive. Only variables created in the DATA step are written to the output data set.

You can output as many observations to the data set as you want. To output these
values, you must use the OUTPUT statement. You can also use any other valid SAS
DATA step statements in a DSGI DATA step. See SAS Language Reference: Dictionary
for information about the statements used in the DATA step.

Using SAS/GRAPH Global Statements with DSGI
You can use some SAS/GRAPH global statements with DSGI programs. DSGI

recognizes FOOTNOTE, GOPTIONS, and TITLE statements; however, it ignores AXIS,
LEGEND, NOTE, PATTERN, and SYMBOL statements.

FOOTNOTE and TITLE statements affect DSGI graphics output the same way as
they affect other SAS/GRAPH procedure output. When TITLE and FOOTNOTE
statements are used, the output from DSGI statements is placed in the procedure
output area. See “Placement of Graphic Elements in the Graphics Output Area” on page
34 for an explanation of how space in graphics output is allocated to titles and footnotes.

Some DSGI functions override the graphics options. The following table lists the
DSGI functions that directly override graphics options. For details about the graphics
options, see Chapter 9, “Graphics Options and Device Parameters Dictionary,” on page
301.

DSGI Function
Graphics Option
That Is Overridden

GSET(’CBACK’, . . .) CBACK=

GSET(’COLREP’, . . .) COLORS=

GSET(’DEVICE’, . . .) DEVICE=

GSET(’HPOS’, . . .) HPOS=

GSET(’HSIZE’, . . .) HSIZE=

GSET(’VPOS’, . . .) VPOS=

GSET(’VSIZE’, . . .) VSIZE=

The DATA Step Graphics Interface 4 Debugging DSGI Programs 1033

DSGI Function
Graphics Option
That Is Overridden

GSET(’TEXCOLOR’, . . .) CTEXT=

GSET(’TEXFONT’, . . .) FTEXT=

GSET(’TEXHEIGHT’, . . .) HTEXT=

Operating States
The operating state of DSGI determines which functions and routines may be issued

at any point in the DATA step. You can only submit a function or routine when the
operating state is appropriate for it. See “How Operating States Control the Order of
DSGI Statements” on page 1044 for a discussion of how functions and routines should
be ordered within the operating states.

The operating states defined by DSGI are

GKCL facility closed, the initial state of DSGI. No graphical resources have
been allocated.

GKOP facility open. When DSGI is open, you may check the settings of the
attributes.

SGOP segment open. At this point, graphics output primitives may be
generated.

WSAC workstation active. When the workstation is active, it can receive
DSGI statements.

WSOP workstation open. In this implementation, the graphics catalog,
either the default or the one specified through the
GSET(’CATALOG’, . . .)command, is opened or created.

Refer to individual functions and routines in Chapter 32, “DATA Step Graphics
Interface Dictionary,” on page 1075 for the operating states from which that function or
routine can be issued.

The Current Window System
When DSGI draws graphics, it evaluates x and y coordinates in terms of the current

window system, either a window you have defined or the default window system. Unless
you define and activate a different window, DSGI uses the default window system.

The default window system assigns two arbitrary systems of units to the x and y
axes. The default window guarantees a range of 0 through 100 in one direction (usually
the y direction) and at least 0 through 100 in the other (usually the x direction). The
ranges depend on the dimensions of your device. You can use the GASK(’WINDOW’, . .
.)routine to determine the dimensions of your default window system.

You can define the x and y ranges to be any numeric range. For example, you can use
− 1000 to +2000 on the x axis and 30 to 35 on the y axis. The units used are arbitrary.

Debugging DSGI Programs
When DSGI encounters an error in a program, it flags the statement in the SAS log

and displays a description of the error. (To receive SAS System messages,

1034 DSGI Graphics Summary 4 Chapter 31

GSET(’MESSAGE’, . . .)must be ON.) The description provides you with an
explanation of the error. The description may also provide a return code. If you get a
return code, you can refer to “Return Codes for DSGI Routines and Functions” on page
1165 for a description of the error and why it might have occurred.

Some of the most common errors in DSGI programs are

� syntax errors

� an invalid number of arguments for the function or routine

� a function or routine being executed in an operating state that is not correct for
the function or routine.

DSGI Graphics Summary

The following sections summarize the functions and routines you can use to create
graphics output with DSGI.

DSGI Functions
DSGI provides functions that

� initialize and terminate DSGI

� generate graphics elements

� control the appearance of graphics elements by setting attributes

� control the overall appearance of the graphics output

� perform management operations for the catalog

� control messages issued by DSGI.

Table 31.1 on page 1034 summarizes the types of operations available and the
functions used to invoke them. Refer to Chapter 32, “DATA Step Graphics Interface
Dictionary,” on page 1075 for details about each function.

Table 31.1 DATA Step Graphics Interface Functions

DSGI
Operations Associated Function

Function
Description

Bundling Attributes (valid values for xxx are FIL, LIN,
MAR, and TEX)

GSET(’ASF’, . . .) sets the aspect
source flag of an
attribute

GSET(’xxxINDEX’, . . .) selects the bundle
of attributes to use

GSET(’xxxREP’, . . .) assigns attributes
to a bundle

Setting Attributes That Affect Graphics Elements

color index GSET(’COLREF’), . . .) assigns a color
name to color index

The DATA Step Graphics Interface 4 DSGI Functions 1035

DSGI
Operations Associated Function

Function
Description

fill area GSET(’FILCOLOR’, . . .) selects the color of
the fill area

GSET(’FILSTYLE’, . . .) selects the pattern
when FILTYPE is
HATCH or
PATTERN

GSET(’FILTYPE’, . . .) specifies the type of
interior for the fill
area

GSET(’HTML’, . . .) specifies the HTML
string to invoke
when an affected
DSGI graphic
element in a web
page is clicked

line GSET(’LINCOLOR’, . . .) selects the color of
the line

GSET(’LINTYPE’, . . .) sets the type of line

GSET(’LINWIDTH’, . . .) specifies the width
of the line

marker GSET(’MARCOLOR’, . . .) selects the color of
the marker

GSET(’MARSIZE’, . . .) determines the size
of the marker

GSET(’MARTYPE’, . . .) sets the type of
marker drawn

text GSET(’TEXALIGN’, . . .) specifies horizontal
and vertical
alignment of text

GSET(’TEXCOLOR’, . . .) selects the color of
the text

GSET(’TEXFONT’, . . .) sets the font for the
text

GSET(’TEXHEIGHT’, . . .) selects the height of
the text

GSET(’TEXPATH’, . . .) determines reading
direction of text

GSET(’TEXUP’, . . .) selects the angle of
text

Setting Attributes That Affect Entire Graph

GSET(’ASPECT’, . . .) sets the aspect ratio

GSET(’CATALOG’, . . .) selects the catalog
to use

1036 DSGI Functions 4 Chapter 31

DSGI
Operations Associated Function

Function
Description

GSET(’CBACK’, . . .) selects the
background color

GSET(’DEVICE’, . . .) specifies the output
device

GSET(’HPOS’, . . .) sets the number of
columns in the
graphics output
area

GSET(’HSIZE’, . . .) sets the width of
the graphics output
area in units of
inches

GSET(’VPOS’, . . .) sets the number of
rows in the
graphics output
area

GSET(’VSIZE’, . . .) sets the height of
the graphics output
area in units of
inches

Managing Catalogs

GRAPH(’COPY’, . . .) copies a graph to
another entry
within the same
catalog

GRAPH(’DELETE’, . . .) deletes a graph

GRAPH(’INSERT’, . . .) inserts a previously
created graph into
the currently open
segment

GRAPH(’RENAME’, . . .) renames a graph

Drawing Graphics Elements

arc GDRAW(’ARC’, . . .) draws a circular arc

bar GDRAW(’BAR’, . . .) draws a rectangle
that can be filled

ellipse GDRAW(’ELLIPSE’, . . .) draws an oblong
circle that can be
filled

elliptical arc GDRAW(’ELLARC’, . . .) draws an elliptical
arc

fill area GDRAW(’FILL’, . . .) draws a polygon
that can be filled

The DATA Step Graphics Interface 4 DSGI Functions 1037

DSGI
Operations Associated Function

Function
Description

line GDRAW(’LINE’, . . .) draws a single line,
a series of
connected lines, or
a dot

marker GDRAW(’MARK’, . . .) draws one or more
symbols

pie GDRAW(’PIE’, . . .) draws a pie slice
that can be filled

text GDRAW(’TEXT’, . . .) draws a character
string

Initializing DSGI

GINIT() initializes DSGI

GRAPH(’CLEAR’, . . .) opens a segment to
receive graphics
primitives

Handling Messages

GDRAW(’MESSAGE’, . . .) prints a message in
the SAS log

GPRINT(code) prints the
description of a
DSGI error code

GSET(’MESSAGE’, . . .) turns message
logging on or off

Ending DSGI

GRAPH(’UPDATE’, . . .) closes the currently
open segment and,
optionally, displays
it

GTERM() ends DSGI

Activating Transformations

GET(’TRANSNO’, . . .) selects the
transformation
number of the
viewport or window
to use

Defining Viewports

GSET(’CLIP’, . . .) turns clipping on or
off

GSET(’VIEWPORT’, . . .) sets the coordinates
of the viewport and
assigns it a
transformation
number

1038 DSGI Routines 4 Chapter 31

DSGI
Operations Associated Function

Function
Description

Defining Windows

GSET(’WINDOW’, . . .) sets the coordinates
of the window and
assigns it a
transformation
number

DSGI Routines
DSGI routines return the values set by some of the DSGI functions. Table 31.2 on

page 1038 summarizes the types of values that the GASK routines can check. Refer to
Chapter 32, “DATA Step Graphics Interface Dictionary,” on page 1075 for details about
each routine.

Table 31.2 DATA Step Graphics Interface Routines

DSGI
Operations Associated Routine Routine Description

Checking Attribute Bundles (valid values for xxx are FIL,
LIN, MAR, and TEX)

GASK(’ASK’, . . .) returns the aspect
source flag of the
attribute

GASK(’xxxINDEX’, . . .) returns the index of the
active bundle

GASK(’xxxREP’, . . .) returns the attributes
assigned to the bundle

Checking Attribute Settings

color index GASK(’COLINDEX’, . . .) returns the color indices
that currently have
colors assigned to them

GASK(’COLREP’, . . .) returns the color name
assigned to the color
index

fill area GASK(’FILCOLOR’, . . .) returns the color of the
fill area

GASK(’FILSTYLE’, . . .) returns the index of the
pattern when the
FILTYPE is HATCH or
PATTERN

GASK(’FILTYPE’, . . .) returns the index of the
type of interior

The DATA Step Graphics Interface 4 DSGI Routines 1039

DSGI
Operations Associated Routine Routine Description

GASK(’HTML’, . . .) finds the HTML string
that is in effect when
one of the following
graphic elements is
drawn: bar, ellipse, fill,
mark, pie, and text.

line GASK(’LINCOLOR’, . . .) returns the color index
of the color of the line

GASK(’LINTYPE’, . . .) returns the index of the
type of line

GASK(’LINWIDTH’, . . .) returns the width of the
line

marker GASK(’MARCOLOR’, . . .) returns the color index
of the color of markers

GASK(’MARSIZE’, . . .) returns the size of
markers

GASK(’MARTYPE’, . . .) returns the index of the
type of marker drawn

text GASK(’TEXALIGN’, . . .) returns the horizontal
and vertical alignment
of text

GASK(’TEXCOLOR’, . . .) returns the color index
of the color of text

GASK(’TEXEXTENT’, . . .) returns the coordinates
of text extent rectangle
and the text
concatenation point of
the character string

GASK(’TEXFONT’, . . .) returns the text font

GASK(’TEXHEIGHT’, . . .) returns the height of
text

GASK(’TEXPATH’, . . .) returns the reading
direction of text

GASK(’TEXUP’, . . .) returns the character up
vector in x vector and y
vector

Checking Attributes That Affect Entire Graph

GASK(’ASPECT’, . . .) returns the aspect ratio

GASK(’CATALOG’, . . .) returns the current
catalog

GASK(’CBACK’, . . .) returns the background
color

GASK(’DEVICE’, . . .) returns the current
output device

1040 DSGI Routines 4 Chapter 31

DSGI
Operations Associated Routine Routine Description

GASK(’HPOS’, . . .) returns the number of
columns in the graphics
output area

GASK(’HSIZE’, . . .) returns the width of the
graphics output area in
units of inches

GASK(’MAXDISP’, . . .) returns the dimensions
of maximum display
area for the device in
meters and pixels

GASK(’VPOS’, . . .) returns the number of
rows in the graphics
output area

GASK(’VSIZE’, . . .) returns the height of the
graphics output area in
units of inches

Querying Catalogs

GASK(’GRAPHLIST’, . . .) returns the names of
graphs in the current
catalog

GASK(’NUMGRAPH’, . . .) returns the number of
graphs in the current
catalog

GASK(’OPENGRAPH’, . . .) returns the name of the
currently open graph

Checking System Status

GASK(’STATE’, . . .) returns the current
operating state

GASK(’WSACTIVE’, . . .) returns whether or not
the workstation is active

GASK(’WSOPEN’, . . .) returns whether or not
the workstation is open

Checking Transformation Definitions

GASK(’TRANS’, . . .) returns the coordinates
of the viewport and
window associated with
the transformation

GASK(’TRANSNO’, . . .) returns the active
transformation number

Checking Viewport Definitions

GASK(’CLIP’, . . .) returns the status of
clipping

The DATA Step Graphics Interface 4 Creating Simple Graphics with DSGI 1041

DSGI
Operations Associated Routine Routine Description

GASK(’VIEWPORT’, . . .) returns the coordinates
of the viewport assigned
to the transformation
number

Checking Window Definitions

GASK(’WINDOW’, . . .) returns the coordinates
of the window assigned
to the transformation
number

Creating Simple Graphics with DSGI
Within any DSGI program, you need to follow these basic steps:
1 Initialize DSGI.

The function that initializes DSGI is GINIT(). GINIT() loads the graphics
sublibrary, opens a workstation, and activates a workstation.

2 Open a graphics segment.
Before you can submit graphics primitives, you must submit the

GRAPH(’CLEAR’, . . .) function. GRAPH(’CLEAR’, . . .) opens a graphic segment
so that graphics primitives can be submitted.

3 Generate graphics elements.
DSGI can generate arcs, bars, ellipses, elliptical arcs, lines, markers, pie slices,

polygons (fill areas), and text. These graphics elements are all produced with the
GDRAW function using their associated operator names.

GDRAW functions can only be submitted when a graphics segment is open.
Therefore, they must be submitted between the GRAPH(’CLEAR’, . . .) and
GRAPH(’UPDATE’, . . .) functions.

4 Close the graphics segment.
Once the attribute and graphics statements have been entered, you must

submit statements to close the graphics segment and output the graph. The
GRAPH(’UPDATE’, . . .) function closes the graphic segment currently open and,
optionally, displays the graphics output.

5 End DSGI.
The GTERM() function ends DSGI by deactivating and closing the workstation,

and closing the graphics sublibrary. It frees any memory allocated by DSGI.
Note: You must execute a RUN statement at the end of the DATA step to

display the output.

Figure 31.1 on page 1042 outlines the basic steps and shows the functions used to
initiate steps 1, 2, 4, and 5. Step 3 can consist of many types of functions. The
GDRAW(’LINE’, . . .)function is used as an example.

1042 Creating Simple Graphics with DSGI 4 Chapter 31

Figure 31.1 Basic Steps Used in Creating DSGI Graphics Output

Notice that there are two pairs of functions that work together within a DSGI DATA
step (shown by a and b in Figure 31.1 on page 1042). The first pair, GINIT() and
GTERM(), begin and end DSGI. Within the first pair, the second pair, GRAPH(’CLEAR’,
. . .)and GRAPH(’UPDATE’, . . .)begin and end a graphics segment. You can repeat
these pairs within a single DATA step to produce multiple graphics output; however,
the relative positions of these functions must be maintained within a DATA step. See
“Generating Multiple Graphics Output in One DATA Step” on page 1054 for more
information about producing multiple graphics outputs from one DATA step.

The order of these steps is controlled by DSGI operating states. Before any DSGI
function or routine can be submitted, the operating state in which that function or
routine can be submitted must be active. See “How Operating States Control the Order
of DSGI Statements” on page 1044.

Setting Attributes for Graphics Elements
The appearance of the graphics elements is determined by the settings of the

attributes. Attributes control such aspects as height of text; text font; and color, size,
and width of the graphics element. In addition, the HTML attribute determines
whether the element provides a link to another graphic or web page. Attributes are set
and reset with GSET functions. GASK routines return the current setting of the
attribute specified.

Each graphics primitive is associated with a particular set of attributes. Its
appearance or linking capability can only be altered by that set of attributes. Table 31.3
on page 1043 lists the operators used with GDRAW functions to generate graphics
elements and the attributes that control them.

The DATA Step Graphics Interface 4 Creating Simple Graphics with DSGI 1043

Table 31.3 Graphics Output Primitive Functions and Associated Attributes

Graphics
Output
Primitive Functions Associated Attributes

Arc GDRAW(’ARC’, . . .) HTML, LINCOLOR,
LININDEX, LINREP,
LINTYPE,
LINWIDTH

Bar GDRAW(’BAR’, . . .) FILCOLOR,
FILINDEX, FILREP,
FILSTYLE,
FILTYPE, HTML

Ellipse GDRAW(’ELLIPSE’, . . .) FILCOLOR,
FILINDEX, FILREP,
FILSTYLE,
FILTYPE, HTML

Elliptical Arc GDRAW(’ELLARC’, . . .) HTML, LINCOLOR,
LININDEX, LINREP,
LINTYPE,
LINWIDTH

Fill Area GDRAW(’FILL’, . . .) FILCOLOR,
FILINDEX, FILREP,
FILSTYLE,
FILTYPE, HTML

Line GDRAW(’LINE’, . . .) HTML, LINCOLOR,
LININDEX, LINREP,
LINTYPE,
LINWIDTH

Marker GDRAW(’MARK’, . . .) HTML, MARCOLOR,
MARINDEX,
MARREP, MARSIZE,
MARTYPE

Pie GDRAW(’PIE’, . . .) FILCOLOR,
FILINDEX, FILREP,
FILSTYLE,
FILTYPE, HTML

Text GDRAW(’TEXT’, . . .) HTML, TEXALIGN,
TEXCOLOR,
TEXFONT,
TEXHEIGHT,
TEXINDEX,
TEXPATH, TEXREP,
TEXUP

Attribute functions must precede the graphics primitive they control. Once an
attribute is set, it controls any associated graphics primitives that follow. If you want to
change the setting, you can issue another GSET(attribute, . . .)function with the new
setting.

1044 Creating Simple Graphics with DSGI 4 Chapter 31

If you do not set an attribute before you submit a graphics primitive, DSGI uses the
default value for the attribute. Refer to Chapter 32, “DATA Step Graphics Interface
Dictionary,” on page 1075 for the default values used for each attribute.

How Operating States Control the Order of DSGI Statements
Each DSGI function and routine can only be submitted when certain operating

states are active. This restriction affects the order of functions and routines within the
DATA step. Generally, the operating states within a DATA step follow this order:

GKCL ! WSAC ! SGOP ! WSAC ! GKCL

Functions That Change the Operating State
The functions described earlier in steps 1, 2, 4, and 5 actually control the changes to

the operating state. For example, the GINIT() function must be submitted when the
operating state is GKCL, the initial state of DSGI. GINIT() then changes the operating
state to WSAC. The GRAPH(’CLEAR’, . . .)function must be submitted when the
operating state is WSAC and before any graphics primitives are submitted. The reason
it precedes graphics primitives is that it changes the operating state to SGOP, the
operating state in which you can submit graphics primitives. The following list shows
the change in the operating state due to specific functions:

GINIT() GKCL ! WSAC

GRAPH(’CLEAR’, . . .) WSAC ! SGOP

GRAPH(’UPDATE’, . . .) SGOP ! WSAC

GTERM() WSAC ! GKCL

Because these functions change the operating state, you must order all other
functions and routines so that the change in operating state is appropriate for the
functions and routines that follow. The following program statements show how the
operating state changes from step to step in a typical DSGI program. They also
summarize the functions and routines that can be submitted under each operating
state. The functions that change the operating state are included as actual statements.
Refer to “Operating States” on page 1076 for the operating states from which functions
and routines can be submitted.

data dsname;

/* GKCL - initial state of DSGI; can execute: */
/* 1. GSET functions that set attributes */
/* that affect the entire graphics output */
/* 2. some catalog management functions */
/* (some GRAPH functions) */

/* Step 1 - initialize DSGI */
rc=ginit();

/* WSAC - workstation is active; can execute: */
/* 1. most GASK routines */
/* 2. some catalog management functions */
/* (some GRAPH functions) */
/* 3. GSET functions that set attributes */
/* and bundles, viewports, windows, */

The DATA Step Graphics Interface 4 Creating Simple Graphics with DSGI 1045

/* transformations, and message logging */

/* Step 2 - open a graphics segment */
rc=graph(’clear’, ’text’);

/* SGOP - segment open; can execute: */
/* 1. any GASK routine */
/* 2. any GDRAW function */
/* 3. some catalog management functions */
/* (some GRAPH functions) */
/* 4. GSET functions that set attributes */
/* and bundles, viewports, windows, */
/* transformations, and message logging */

/* Step 3 - execute graphics primitives */
rc = gdraw(’line’, 2, 30,50,50,50);

/* Step 4 - close the graphics segment */
rc=graph(’update’);

/* WSAC - workstation is active; can execute: */
/* 1. most GASK routines */
/* 2. some catalog management functions */
/* (some GRAPH functions) */
/* 3. GSET functions that set attributes */
/* and bundles, viewports, windows, */
/* transformations, and message logging */

/* Step 5 - end DSGI */
rc=gterm();

/* GKCL - initial state of DSGI */
run;

Order of Functions and Routines

Functions and routines within each operating state can technically be submitted in
any order; however, once an attribute is set, it remains in effect until the end of the
DATA step or until you change its value. If you are producing multiple graphics output
within the same DATA step, the attributes for one output affect the ones that follow.
Attributes are not reset until after the GTERM() function is submitted.

Notice that you can set attributes for the graphics primitives in several places. As
long as the functions that set the attributes are executed before the graphics primitives,
they will affect the graphics output. If you execute them after a graphics primitive, the
primitive is not affected. See “Setting Attributes for Graphics Elements” on page 1042.

The following program statements illustrate a more complex DSGI program that
produces Display 31.3 on page 1047 when submitted. Notice that all attributes for a
graphics primitive are executed before the graphics primitive. In addition, the GINIT()
and GTERM() pairing and the GRAPH(’CLEAR’) and GRAPH(’UPDATE’) pairing are
maintained within the DATA step. Refer to “Operating States” on page 1076 for the
operating states in which each function and routine can be submitted.

/* set the graphics environment */
goptions reset=global gunit=pct border

hsize=7 in vsize=5 in

1046 Creating Simple Graphics with DSGI 4 Chapter 31

targetdevice=pscolor;

/* execute a DATA step with DSGI */
data dsname;

/* initialize SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* assign colors to color index */
rc=gset(’colrep’, 1, ’blue’);
rc=gset(’colrep’, 2, ’red’);

/* define and display titles */
rc=gset(’texcolor’, 1);
rc=gset(’texfont’, ’swissb’);
rc=gset(’texheight’, 6);
rc=gdraw(’text’, 45, 93, ’Simple Graphics Output’);

/* change the height and */
/* display second title */

rc=gset(’texheight’, 4);
rc=gdraw(’text’, 58, 85, ’Created with DSGI’);

/* define and display footnotes */
/* using same text font and */
/* color as defined for titles */

rc=gset(’texheight’, 3);
rc=gdraw(’text’, 125, 1, ’GR31N03 ’);

/* define and draw bar */
rc=gset(’lincolor’, 2);
rc=gset(’linwidth’, 5);
rc=gdraw(’line’, 2, 72, 72, 30, 70);
rc=gdraw(’line’, 2, 52, 92, 50, 50);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

The DATA Step Graphics Interface 4 Bundling Attributes 1047

Display 31.3 Simple Graphics Output Generated with DSGI

Bundling Attributes
DSGI allows you to bundle attributes. As a result, you can select a group of

attribute values rather than having to select each one individually. This feature is
useful if you use the same attribute settings over and over within the same DATA step.

To use an attribute bundle, you assign the values of the attributes to a bundle index.
When you want to use those attributes for a graphics primitive, you select the bundle
rather than set each attribute separately.

Attributes That Can Be Bundled for Each Graphics Primitive
Each graphics primitive has a group of attributes associated with it that can be

bundled. Only the attributes in that group can be assigned to the bundle. Table 31.4 on
page 1047 shows the attributes that can be bundled for each graphics primitive.

Note: You do not have to use attribute bundles for all graphics primitives if you use
a bundle for one. You can define bundles for some graphics primitives and set the
attributes individually for others. 4

However, if the other graphics primitives are associated with the same attributes
you have bundled and you do not want to use the same values, you can use other
bundles to set the attributes, or you can set the attributes back to ’INDIVIDUAL’.

Table 31.4 Attributes That Can Be Bundled for Each Graphics Primitive

Graphics Output Primitive
Associated Attributes
That Can Be Bundled

GDRAW(’ARC’, . . .) LINCOLOR, LINTYPE,
LINWIDTH

GDRAW(’BAR’, . . .) FILCOLOR, FILSTYLE,
FILTYPE

GDRAW(’ELLARC’, . . .) LINCOLOR, LINTYPE,
LINWIDTH

1048 Bundling Attributes 4 Chapter 31

Graphics Output Primitive
Associated Attributes
That Can Be Bundled

GDRAW(’ELLIPSE’, . . .) FILCOLOR, FILSTYLE,
FILTYPE

GDRAW(’FILL’, . . .) FILCOLOR, FILSTYLE,
FILTYPE

GDRAW(’LINE’, . . .) LINCOLOR, LINTYPE,
LINWIDTH

GDRAW(’MARK’, . . .) MARCOLOR,
MARSIZE, MARTYPE

GDRAW(’PIE’, . . .) FILCOLOR, FILSTYLE,
FILTYPE

GDRAW(’TEXT’, . . .) TEXCOLOR, TEXFONT

Assigning Attributes to a Bundle
To assign values of attributes to a bundle, you must
� assign the values to a numeric bundle index with the GSET(’xxx REP’, . . .

)function. Each set of attributes that can be bundled uses a separate GSET(’xxx
REP’, . . .)function, where xxx is the appropriate prefix for the set of attributes to
be bundled. Valid values for xxx are FIL, LIN, MAR, and TEX.

� set the aspect source flag (ASF) of the attributes to ’BUNDLED’ before you use the
bundled attributes. You can use the GSET(’ASF’, . . .)function to set the ASF of
an attribute. You need to execute a GSET(’ASF’, . . .)function for each attribute
in the bundle.

The following example assigns the text attributes, color, and font, to the bundle
indexed by the number 1. As shown in the GSET(’TEXREP’, . . .)function, the color for
the bundle is green, the second color in the COLOR= graphics option. The font for the
bundle is the ’ZAPF’ font. (See “COLREP” on page 1134 for an explanation of how
colors are used in DSGI.)

goptions colors=(red green blue);

data dsname;
.
. /* other DATA step statements */
.

/* associate the bundle with the index 1 */
rc=gset(’texrep’, 1, 2, ’zapf’);

.

. /* more statements */

.
/* assign the text attributes to a bundle */

rc=gset(’asf’, ’texcolor’, ’bundled’);
rc=gset(’asf’, ’texfont’, ’bundled’);

/* draw the text */
rc=gdraw(’text’, 50, 50, ’Today is the day.’);

The bundled attributes are used when an associated GDRAW function is executed. If
the ASF of an attribute is not set to ’BUNDLED’ at the time a GDRAW function is
executed, DSGI searches for a value to use in the following order:

The DATA Step Graphics Interface 4 Bundling Attributes 1049

1 the current value of the attribute
2 the default value of the attribute.

Selecting a Bundle
Once you have issued the GSET(’ASF’, . . .)and GSET(’xxx REP’, . . .)functions,

you can issue the GSET(’xxx INDEX’, . . .)function to select the bundle. The following
statement selects the bundle defined in the previous example:

/* invoke the bundle of text attributes */
rc=gset(’texindex’, 1);

The 1 in this example corresponds to the index number specified in the
GSET(’TEXREP’, . . .)function.

Defining Multiple Bundles for a Graphics Primitive
You can set up more than one bundle for graphics primitives by issuing another

GSET(’xxx REP’, . . .)function with a different index number. If you wanted to add a
second attribute bundle for text to the previous example, you could issue the following
statement:

/* define another attribute bundle for text */
rc=gset(’texrep’, 2, 3, ’swiss’);

When you activate the second bundle, the graphics primitives for the text that
follows will use the third color, blue, and the SWISS font.

Note: When using a new bundle, you do not need to reissue the GSET(’ASF’, . . .)
functions for the attributes that will be bundled. Once the ASF of an attribute has been
set, the setting remains in effect until it is changed. 4

How DSGI Selects the Value of an Attribute to Use
Attributes that are bundled override any of the same attributes that are individually

set. For example, you assign the line color green, the type 1, and the width 5 to a line
bundle with the following statements:

goptions colors=(red green blue);
rc=gset(’asf’, ’lincolor’, ’bundled’);
rc=gset(’asf’, ’linwidth’, ’bundled’);
rc=gset(’asf’, ’lintype’, ’bundled’);
rc=gset(’linrep’, 3, 2, 5, 1);

In subsequent statements, you activate the bundle, select other attributes for the
line, and then draw a line:

/* activate the bundle */
rc=gset(’linindex’, 3);

/* select other attributes for the line */
rc=gset(’lincolor’, 3);
rc=gset(’linwidth’, 10);
rc=gset(’lintype’, 4);

/* draw a line from point (30,50) to (70,50) */
rc=gdraw(’line’, 2, 30, 70, 50, 50);

The color, type, and width associated with the line bundle are used rather than the
attributes set just before the GDRAW(’LINE’, . . .)function was executed. The line that

1050 Using Viewports and Windows 4 Chapter 31

is drawn is green (the second color from the colors list of the COLORS= graphics
option), 5 units wide, and solid (line type 1).

During processing, DSGI chooses the value of an attribute using the following logic:

1 Get the index of the active line bundle.

2 Check the ASF of the LINCOLOR attribute. If the ASF is ’INDIVIDUAL’, the
value selected with GSET(’LINCOLOR’, . . .) is used; otherwise, the LINCOLOR
associated with the bundle index is used.

3 Check the ASF of the LINTYPE attribute. If the ASF is ’INDIVIDUAL’, the value
selected with GSET(’LINTYPE’, . . .) is used; otherwise, the LINTYPE associated
with the bundle index is used.

4 Check the ASF of the LINWIDTH attribute. If the ASF is ’INDIVIDUAL’, the
value selected with GSET(’LINWIDTH’, . . .) is used; otherwise, the LINWIDTH
associated with the bundle index is used.

5 Draw the line using the appropriate color, type, and width for the line.

Disassociating an Attribute from a Bundle
To disassociate an attribute from a bundle, use the GSET(’ASF’, . . .)function to

reset the ASF of the attribute to ’INDIVIDUAL’. The following program statements
demonstrate how to disassociate the attributes from the text bundle:

/* disassociate an attribute from a bundle */
rc=gset(’asf’, ’texcolor’, ’individual’);
rc=gset(’asf’, ’texfont’, ’individual’);

Using Viewports and Windows
In DSGI, you can define viewports and windows. Viewports enable you to subdivide

the graphics output area and insert existing graphs or draw graphics elements in
smaller sections of the graphics output area. Windows define the coordinate system
within a viewport and enable you to scale the graph or graphics elements drawn within
the viewport.

The default viewport is defined as (0,0) to (1,1) with 1 being 100 percent of the
graphics output area. If you do not define a viewport, graphics elements or graphs are
drawn using the default.

The default window is defined so that a rectangle drawn from window coordinates
(0,0) to (100,100) is square and fills the display in one dimension. The actual
dimensions of the default window are device dependent. Use the
GASK(’WINDOW’, . . .) routine to find the exact dimensions of your default window.
You can define a window without defining a viewport. The coordinate system of the
window is used with the default viewport.

If you define a viewport, you can position it anywhere in the graphics output area.
You can define multiple viewports within the graphics output area so that more than
one existing graph, part of a graph, or more than one graphics element can be inserted
into the graphics output.

Transformations activate both a viewport and the associated window. DSGI
maintains 21 (0 through 20) transformations. By default, transformation 0 is active.
Transformation 0 always uses the entire graphics output area for the viewport and
maps the window coordinates to fill the viewport. The definition of the viewport and
window of transformation 0 may not be changed.

By default, the viewports and windows of all the other transformations (1 through
20) are set to the defaults for viewports and windows. If you want to define a different
viewport or window, you must select a transformation number between 1 and 20.

The DATA Step Graphics Interface 4 Using Viewports and Windows 1051

You generally follow these steps when defining viewports or windows:

� Define the viewport or window.

� Activate the transformation so that the viewport or window is used for the output.

These steps can be submitted in any order; however, if you use a transformation you
have not defined, the default viewport and window are used. Once you activate a
transformation, the graphics elements drawn by the subsequent DSGI functions are
drawn in the viewport and window associated with that transformation.

Defining Viewports
You can define a viewport with the GSET(’VIEWPORT’, n, . . .)function, where n is

the transformation number of the viewport you are defining. You can also use this
function to define multiple viewports, each containing a portion of the graphics output
area. You can then place a separate graph, part of a graph, or graphics elements within
each viewport.

The following program statements divide the graphics output area into four subareas:

/* define the first viewport, indexed by 1 */
rc=gset(’viewport’, 1, .05, .05, .45, .45);

/* define the second viewport, indexed by 2 */
rc=gset(’viewport’, 2, .55, .05, .95, .45);

/* define the third viewport, indexed by 3 */
rc=gset(’viewport’, 3, .55, .55, .95, .95);

/* define the fourth viewport, indexed by 4 */
rc=gset(’viewport’, 4, .05, .55, .45, .95);

Once you define the viewports, you can insert existing graphs or draw graphics
elements in each viewport by activating the transformation of that viewport.

Clipping around Viewports
When you use viewports, you also may need to use the clipping feature. Even

though you have defined the dimensions of your viewport, it is possible for graphics
elements to display past its boundaries. If the graphics elements are too large to fit into
the dimensions you have defined, portions of the graphics elements actually display
outside of the viewport. To ensure that only the portions of the graphics elements that
fit within the dimensions of the viewport display, turn the clipping feature on by using
the GSET(’CLIP’, . . .)function. For details, see “CLIP” on page 1133.

Defining Windows
You can define a window by using the GSET(’WINDOW’,n, . . .)function, where n is

the transformation number of the window you are defining. If you are defining a
window for a viewport you have also defined, n must match the transformation number
of the viewport.

You can scale the x and y axes differently for a window. The following program
statements scale the axes for each of the four viewports defined earlier in "Defining
Viewpoints":

/* define the window for viewport 1 */
rc=gset(’window’, 1, 0, 50, 20, 100);

1052 Using Viewports and Windows 4 Chapter 31

/* define the window for viewport 2 */
rc=gset(’window’, 2, 0, 40, 20, 90);

/* define the window for viewport 3 */
rc=gset(’window’, 3, 10, 25, 45, 100);

/* define the window for viewport 4 */
rc=gset(’window’, 4, 0, 0, 100, 100);

See “Scaling Graphs by Using Windows” on page 1062 for an example of using
windows to scale graphs.

Note: When you define a window for a viewport, the transformation numbers in
the GSET(’VIEWPORT’, . . .)and GSET(’WINDOW’, . . .)functions must match in
order for DSGI to activate them simultaneously. 4

Activating Transformations
Once you have defined a viewport or window, you must activate the transformation

in order for DSGI to use the viewport or window. To activate the transformation, use
the GSET(’TRANSNO’,n, . . .)function where n has the same value as n in
GSET(’VIEWPORT’,n, . . .)or GSET(’WINDOW’,n, . . .).

The following program statements illustrate how to activate the viewports and
windows defined in the previous examples:

/* define the viewports */
.
.
.
/* define the windows */
.
.
.
/* activate the first transformation */

gset(’transno’, 1);
.
. /* graphics primitive functions follow */
.

/* activate the second transformation */
gset(’transno’, 2);
.
. /* graphics primitive functions follow */
.

/* activate the third transformation */
gset(’transno’, 3);
.
. /* graphics primitive functions follow */
.

/* activate the fourth transformation */
gset(’transno’, 4);
.
. /* graphics primitive functions follow */
.

When you activate these transformations, your display is logically divided into four
subareas as shown in Figure 31.2 on page 1053.

The DATA Step Graphics Interface 4 Inserting Existing Graphs into DSGI Graphics Output 1053

Figure 31.2 Graphics Output Area Divided into Four Logical Transformations

If you want to use the default viewport and window after selecting different ones,
execute the GSET(’TRANSNO’, 0) function to reselect the default transformation for
DSGI.

Inserting Existing Graphs into DSGI Graphics Output
You can insert existing graphs into graphics output you are creating. The graph you

insert must be in the same catalog in which you are currently working. Follow these
steps to insert an existing graph:

1 Use the GSET(’CATALOG’, . . .)function to set the output catalog to the catalog
that contains the existing graph.

Note: Unless you are using the WORK library, you must have previously
defined the libref in a LIBNAME statement or window when using
GSET(’CATALOG’, . . .). 4

2 Define a viewport with the dimensions and position of the place in the graphics
output where you want to insert the existing graph. GSET(’VIEWPORT’,n, . . .)
defines a viewport and GSET(’WINDOW’,n, . . .)defines a window.

3 Define a window as (0,0) to (100,100) so that the inserted graph is not distorted.
The graph must have a square area defined to avoid the distortion. If your device
does not have a square graphics output area, the window defaults to the units of
the device rather than (0,0) to (100,100) and may distort the graph.

4 Activate the transformation number n, as defined in the viewport function, and
possibly in the window function, using GSET(’TRANSNO’, n, . . .).

5 Use the GRAPH(’INSERT’, . . .)function with the name of the existing graph.

The following program statements provide an example of including an existing
graph in the graphics output being created. The name of the existing graph is ’MAP’.
’LOCAL’ points to the library containing the catalog ’MAPCTLG’. The coordinates of the
viewport are percentages of the graphics output area. SAS-data-library refers to a
permanent SAS data library.

Example Code 31.1 Graphics Output Area Divided into Four Logical Transformations

libname local ’SAS-data-library’;

1054 Generating Multiple Graphics Output in One DATA Step 4 Chapter 31

.

.

.
/* select the output catalog to the */
/* catalog that contains ’map’ */

rc=gset(’catalog’, ’local’, ’mapctlg’);
.
.
.

/* define the viewport to contain the */
/* existing graph */

rc=gset(’viewport’, 1, .25, .45, .75, .9);
rc=gset(’window’, 1, 0, 0, 100, 100);

/* set the transformation number to the one */
/* defined in the viewport function */

rc=gset(’transno’, 1);

/* insert the existing graph */
rc=graph(’insert’, ’map’);

These statements put the existing graph ’MAP’ in the upper half of the graphics
output.

Generating Multiple Graphics Output in One DATA Step
You can produce more than one graphics output within the same DATA step. All

statements between the GRAPH(’CLEAR’, . . .)and GRAPH(’UPDATE’, . . .)functions
will produce one graphics output.

Each time the GRAPH(’UPDATE’, . . .)function is executed, a graph is displayed.
After the GTERM() function is executed, no more graphs are displayed for the DATA
step. The GINIT() function must be executed again to produce more graphs.

CAUTION:
Be careful using global SAS/GRAPH statements when you are producing multiple output
from within the DATA step. 4

If you use global SAS/GRAPH statements when producing multiple output from one
DATA step, the last definition of the statements is used for all displays.

Processing DSGI Statements in Loops
You can process DSGI statements in loops to draw a graphics element multiple

times in one graphics output or to produce multiple output. If you use loops, you must
maintain the GRAPH(’CLEAR’, . . .)and GRAPH(’UPDATE’, . . .)pairing within the
GINIT() and GTERM() pairing. (See Figure 31.1 on page 1042.) The following program
statements illustrate how you can use DSGI statements to produce multiple graphics
output for different output devices:

data _null_;
length d1-d5 $ 8;
input d1-d5;
array devices{5} d1-d5;

The DATA Step Graphics Interface 4 Examples 1055

.

.

.
do j=1 to 5;

rc=gset(’device’, devices{j});
.
.
.
rc=ginit();
.
.
.
do i=1 to 5;

rc=graph(’clear’);
rc=gset(’filcolor’, i);
rc=gdraw(’bar’, 45, 45, 65, 65);
rc=graph(’update’);

end;
.
.
.
rc=gterm();

end;
cards;

tek4105 hp7475 ps qms800 ibm3279
;
run;

The inner loop produces five graphs for each device. Each graphics output produced
by the inner loop consists of a bar. The bar uses a different color for each graph. The
outer loop produces all of the graphs for five different devices. A total of 25 graphs is
generated by these loops.

Examples
The following examples show different applications for DSGI and illustrate some of

its features such as defining viewports and windows, inserting existing graphs, angling
text, using GASK routines, enlarging a segment of a graph, and scaling a graph.

These examples use some additional graphics options that may not be used in other
examples in this book. Because the dimensions of the default window vary across
devices, the TARGETDEVICE=, HSIZE=, and VSIZE= graphics options are used to
make the programs more portable. The COLORS= graphics option provides a standard
colors list.

Refer to Chapter 32, “DATA Step Graphics Interface Dictionary,” on page 1075 for a
complete description of each of the functions used in the examples.

Vertically Angling Text
This example generates a pie chart with text that changes its angle as you rotate

around the pie. DSGI positions the text by aligning it differently depending on its
location on the pie. In addition, DSGI changes the angle of the text so that it aligns
with the spokes of the pie.

This example illustrates how global statements can be used with DSGI. In this
example, FOOTNOTE and TITLE statements create the footnotes and title for the
graph. The GOPTIONS statement defines general aspects of the graph. The COLORS=

1056 Examples 4 Chapter 31

graphics option provides a colors list from which the colors referenced in
GSET(’xxx COLOR’, . . .)functions are selected.

The following program statements produce Display 31.4 on page 1057:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote and title */
footnote1 j=r ’GR31N04 ’;
title1 ’Text Up Vector’;

/* execute DATA step with DSGI */
data vector;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define and display arc */
/* with intersecting lines */

rc=gset(’lincolor’, 2);
rc=gset(’linwidth’, 5);
rc=gdraw(’arc’, 84, 50, 35, 0, 360);
rc=gdraw(’line’, 2, 49, 119, 51, 51);
rc=gdraw(’line’, 2, 84, 84, 15, 85);

/* define height of text */
rc=gset(’texheight’, 5);

/* mark 360 degrees on the arc */
/* using default align */

rc=gdraw(’text’, 121, 50, ’0’);

/* set text to align to the right and */
/* mark 180 degrees on the arc */

rc=gset(’texalign’, ’right’, ’normal’);
rc=gdraw(’text’, 47, 50, ’180’);

/* set text to align to the center and */
/* mark 90 and 270 degrees on the arc */

rc=gset(’texalign’, ’center’, ’normal’);
rc=gdraw(’text’, 84, 87, ’90’);
rc=gdraw(’text’, 84, 9, ’270’);

/* reset texalign to normal and */
/* display coordinate values or quadrant */

rc=gset(’texalign’, ’normal’, ’normal’);
rc=gdraw(’text’, 85, 52, ’(0.0, +1.0)’);

/* rotate text using TEXUP and */

The DATA Step Graphics Interface 4 Examples 1057

/* display coordinate values or quadrant */
rc=gset(’texup’, 1.0, 0.0);
rc=gdraw(’text’, 85, 49, ’(+1.0, 0.0)’);

/* rotate text using TEXUP and */
/* display coordinate values or quadrant */

rc=gset(’texup’, 0.0, -1.0);
rc=gdraw(’text’, 83, 50, ’(0.0, -1.0)’);

/* rotate text using TEXUP and */
/* display coordinate values or quadrant */

rc=gset(’texup’, -1.0, 0.0);
rc=gdraw(’text’, 83, 52, ’(-1.0, 0.0)’);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

Display 31.4 Text Angled with the GSET(’TEXUP’, ...) Function

This example illustrates the following features:
� The COLORS= graphics option provides a colors table to be used with the

GSET(’LINCOLOR’, . . .)function.
� The HSIZE= graphics option provides a standard width for the graphics output

area.
� The VSIZE= graphics option provides a standard height for the graphics output

area.
� The TARGETDEVICE= graphics option selects the standard color PostScript

driver to use as the target device.
� The GINIT() function begins DSGI.
� The GRAPH(’CLEAR’) function sets the graphics environment. Because the

function does not specify a name for the catalog entry, DSGI will use the default
name ’DSGI’.

� The GSET(’TEXHEIGHT’, . . .), GSET(’LINCOLOR’, . . .), and
GSET(’LINWIDTH’, . . .)functions set attributes of the graphics primitives. The

1058 Examples 4 Chapter 31

COLORS= graphics option provides a colors table for the GSET(’LINCOLOR’, 2)
function to reference. In this example, the color indexed by 2 is used to draw lines.
Since no other colors table is explicitly defined with GSET(’COLREP’, . . .)
functions, DSGI looks at the colors list and chooses the color indexed by 2 (the
second color in the list) to draw the lines.

� The GDRAW(’ARC’, . . .)function draws an empty pie chart. The arguments of
the GDRAW(’ARC’, . . .)function provide the coordinates of the starting point, the
radius, and the beginning and ending angles of the arc.

� The GDRAW(’LINE’, . . .)function draws a line. It provides the type of line, the
coordinates of the beginning point, and the coordinates of the ending point.

� The GDRAW(’TEXT’, . . .)function draws the text. It sets the coordinates of the
starting point of the text string as well as the text string to be written.

� The GSET(’TEXALIGN’, . . .)function aligns text to the center, left, or right of the
starting point specified in the GDRAW(’TEXT’, . . .)function.

� The GSET(’TEXUP’, . . .)function determines the angle at which the text is to be
written.

� The GRAPH(’UPDATE’, . . .)function closes the graphics segment.
� The GTERM() function ends DSGI.

Changing the Reading Direction of the Text
This example changes the reading direction of text. Notice that the data set name is

NULL. No data set is created as a result of this DATA step; however, the graphics
output is generated. The following program statements produce Display 31.5 on page
1059:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote and title */
footnote1 j=r ’GR31N05 ’;
title1 ’Text Path’;

/* execute DATA step with DSGI */
data _null_;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define height of text */
rc=gset(’texheight’, 5);

/* display first text */
rc=gdraw(’text’, 105, 50, ’Right’);

/* change text path so that text reads from */
/* right to left and display next text */

rc=gset(’texpath’, ’left’);

The DATA Step Graphics Interface 4 Examples 1059

rc=gdraw(’text’, 65, 50, ’Left’);

/* change text path so that text reads up */
/* the display and display next text */

rc=gset(’texpath’, ’up’);
rc=gdraw(’text’, 85, 60, ’Up’);

/* change text path so that text reads down */
/* the display and display next text */

rc=gset(’texpath’, ’down’);
rc=gdraw(’text’, 85, 40, ’Down’);

/* display the graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

Display 31.5 Reading Direction of the Text Changed with the GSET(’TEXPATH’, ...) Function

Features not explained earlier in "Vertically Angling Text" are described here:
� DATA _NULL_ causes the DATA step to be executed, but no data set is created.
� The GSET(’TEXPATH’, . . .)function changes the direction in which the text reads.

Using Viewports in DSGI
This example uses the GCHART procedure to generate a graph, defines a viewport

in which to display it, and inserts the GCHART graph into the graphics output being
created by DSGI. Display 31.6 on page 1061 shows the pie chart created by the
GCHART procedure. Display 31.7 on page 1062 shows the same pie chart after it has
been inserted into a DSGI graph.

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=4
colors=(black blue green red)
hsize=7 in vsize=7 in
targetdevice=pscolor;

1060 Examples 4 Chapter 31

/* create data set TOTALS */
data totals;

length dept $ 7 site $ 8;
do year=1996 to 1999;

do dept=’Parts’,’Repairs’,’Tools’;
do site=’New York’,’Atlanta’,’Chicago’,’Seattle’;

sales=ranuni(97531)*10000+2000;
output;

end;
end;

end;
run;

/* define the footnote */
footnote1 h=3 j=r ’GR31N06 ’;

/* generate pie chart from TOTALS */
/* and create catalog entry PIE */

proc gchart data=totals;
format sales dollar8.;
pie site

/ type=sum
sumvar=sales
midpoints=’New York’ ’Chicago’ ’Atlanta’ ’Seattle’
fill=solid
cfill=green
coutline=blue
angle=45
percent=inside
value=inside
slice=outside
noheading
name=’gr31n06’;

run;

/* define the titles */
title1 ’Total Sales’;
title2 ’For Period 1996-1999’;

/* execute DATA step with DSGI */
data piein;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define and activate viewport for inserted graph */
rc=gset(’viewport’, 1, .15, .05, .85, .90);
rc=gset(’window’, 1, 0, 0, 100, 100);
rc=gset(’transno’, 1);

The DATA Step Graphics Interface 4 Examples 1061

/* insert graph created from GCHART procedure */
rc=graph(’insert’, ’gr31n06’);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

Display 31.6 Pie Chart Produced with the GCHART Procedure

1062 Examples 4 Chapter 31

Display 31.7 Pie Chart Inserted into DSGI Graph by Using a Viewport

Features not explained in previous examples are described here:
� A graph can be created by another SAS/GRAPH procedure and inserted into DSGI

graphics output. In this case, the NAME= option in the PIE statement of the
GCHART procedure names the graph, ’GR31N06’, to be inserted.

� The GSET(’VIEWPORT’, . . .)function defines the section of the graphics output
area into which GR31N06 is inserted. The dimensional ratio of the viewport
should match that of the entire graphics output area so that the inserted graph is
not distorted.

� The GSET(’WINDOW’, . . .)function defines the coordinate system to be used
within the viewport. In this example, the coordinates (0,0) to (100,100) are used.
These coordinates provide a square area to insert the graph and preserve the
aspect ratio of the GCHART graph.

� The GSET(’TRANSNO’, . . .)function activates the transformation for the defined
viewport and window.

� The GRAPH(’INSERT’, . . .)function inserts the existing graph, ’GR31N06’, into
the one being created with DSGI. If no viewport has been explicitly defined, DSGI
inserts the graph into the default viewport, which is the entire graphics output
area.

Scaling Graphs by Using Windows
This example uses the GPLOT procedure to generate a plot of AMOUNT*MONTH

and store the graph in a permanent catalog. DSGI then scales the graph by defining a
window in another DSGI graph and inserting the GPLOT graph into that window.
Display 31.8 on page 1064 shows the plot as it is displayed with the GPLOT procedure.
Display 31.9 on page 1065 shows how the same plot is displayed when the x axis is
scaled from 15 to 95 and the y axis is scaled from 15 to 75.

/* set the graphics environment */
goptions reset=global gunit=pct border

The DATA Step Graphics Interface 4 Examples 1063

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* create data set EARN, which holds month */
/* and amount of earnings for that month */

data earn;
input month amount;
datalines;

1 2.1
2 3
3 5
4 6.4
5 9
6 7.2
7 6
8 9.8
9 4.4
10 2.5
11 5.75
12 4.35
;
run;

/* define the footnote for the first graph */
footnote1 j=r ’GR31N07(a) ’;

/* define axis and symbol characteristics */
axis1 label=(color=green ’Millions of Dollars’)

order=(1 to 10 by 1)
value=(color=green);

axis2 label=(color=green ’Months’)
order=(1 to 12 by 1)
value=(color=green Tick=1 ’Jan’ Tick=2 ’Feb’ Tick=3 ’Mar’

Tick=4 ’Apr’ Tick=5 ’May’ Tick=6 ’Jun’
Tick=7 ’Jul’ Tick=8 ’Aug’ Tick=9 ’Sep’
Tick=10 ’Oct’ Tick=11 ’Nov’ Tick=12 ’Dec’);

symbol value=M font=special height=8 interpol=join
color=blue width=3;

/* generate a plot of AMOUNT * MONTH, */
/* and store in member GR31N07 */

proc gplot data=earn;
plot amount*month

/ haxis=axis2
vaxis=axis1
name=’gr31n07’;

run;

/* define the footnote and titles for */
/* second graph, which will scale output */

footnote1 j=r ’GR31N07(b) ’;

1064 Examples 4 Chapter 31

title1 ’XYZ Corporation Annual Earnings’;
title2 h=4 ’Fiscal Year 1999’;

/* execute DATA step with DSGI using */
/* catalog entry created in previous */
/* plot, but do not create a data set */
/* (determined by specifying _NULL_) */

data _null_;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define viewport and window for inserted graph */
rc=gset(’viewport’, 1, .20, .30, .90, .75);
rc=gset(’window’, 1, 15, 15, 95, 75);
rc=gset(’transno’, 1);

/* insert graph previously created */
rc=graph(’insert’, ’gr31n07’);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

Display 31.8 Plot Produced with the GPLOT Procedure

The DATA Step Graphics Interface 4 Examples 1065

Display 31.9 Plot Scaled by Using a Window in DSGI

One feature not explained in previous examples is described here:

� The GSET(’WINDOW’, . . .)function scales the plot with respect to the viewport
that is defined. The x axis is scaled from 15 to 95, and the y axis is scaled from 15
to 75. If no viewport were explicitly defined, the window coordinates would be
mapped to the default viewport, the entire graphics output area.

Enlarging an Area of a Graph by Using Windows
This example illustrates how you can enlarge a section of a graph by using windows.

In the first DATA step, the program statements generate graphics output that contains
four pie charts. The second DATA step defines a window that enlarges the bottom-left
quadrant of the graphics output and inserts ’GR31N08’ into that window. The following
program statements produce Display 31.10 on page 1067 from the first DATA step, and
Display 31.11 on page 1067 from the second DATA step:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote for the first graph */
footnote1 j=r ’GR31N08(a) ’;

/* execute DATA step with DSGI */
data plot;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’, ’gr31n08’);

/* define and draw first pie chart */
rc=gset(’filcolor’, 4);
rc=gset(’filtype’, ’solid’);

1066 Examples 4 Chapter 31

rc=gdraw(’pie’, 30, 75, 22, 0, 360);

/* define and draw second pie chart */
rc=gset(’filcolor’, 1);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 30, 25, 22, 0, 360);

/* define and draw third pie chart */
rc=gset(’filcolor’, 3);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 90, 75, 22, 0, 360);

/* define and draw fourth pie chart */
rc=gset(’filcolor’, 2);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 90, 25, 22, 0, 360);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

/* define the footnote for the second graph */
footnote1 j=r ’GR31N08(b) ’;

/* execute DATA step with DSGI */
/* that zooms in on a section of */
/* the previous graph */

data zoom;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define and activate a window */
/* that will enlarge the lower left */
/* quadrant of the graph */

rc=gset(’window’, 1, 0, 0, 50, 50);
rc=gset(’transno’, 1);

/* insert the previous graph into */
/* window 1 */

rc=graph(’insert’, ’gr31n08’);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

The DATA Step Graphics Interface 4 Examples 1067

Display 31.10 Four Pie Charts Generated with DSGI

Display 31.11 Area of the Graph Enlarged by Using Windows

Features not explained in previous examples are described here:

� The GSET(’WINDOW’, . . .)function defines a window into which the graph is
inserted. In this example, no viewport is defined, so the window coordinates map
to the default viewport, which is the entire graphics output area. The result of
using the default viewport is that only the portion of the graph enclosed by the
coordinates of the window is displayed.

� The GRAPH(’INSERT’, . . .)function inserts a graph that was previously
generated with DSGI. If you want to insert output created by DSGI, the output to
be inserted must be closed.

Using GASK Routines in DSGI
This example illustrates how to invoke GASK routines and how to display the

returned values in the SAS log and write them to a data set.

1068 Examples 4 Chapter 31

This example assigns a predefined color to color index 2 and then invokes a GASK
routine to get the name of the color associated with color index 2. The value returned
from the GASK call is displayed in the log and written to a data set. Output 31.1 on
page 1068 shows how the value appears in the log. Output 31.2 on page 1069 shows
how the value appears in the data set in the OUTPUT window.

/* execute DATA step with DSGI */
data routine;

/* declare character variables used */
/* in GASK subroutines */

length color $ 8;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* set color for color index 2 */
rc=gset(’colrep’, 2, ’orange’);

/* check color associated with color index 2 and */
/* display the value in the LOG window */

call gask(’colrep’, 2, color, rc);
put ’Current FILCOLOR =’ color;
output;

/* end DSGI */
rc=graph(’update’);
rc=gterm();

run;

/* display the contents of ROUTINE */
proc print data=routine;
run;

Output 31.1 Checking the Color Associated with a Particular Color Index

The DATA Step Graphics Interface 4 Examples 1069

3 /* execute DATA step with DSGI */
4 data routine;
5
6 /* declare character variables used */
7 /* in GASK subroutines */
8 length color $ 8;
9
10 /* prepare SAS/GRAPH software */
11 /* to accept DSGI statements */
12 rc=ginit();
13 rc=graph(’clear’);
14
15 /* set color for color index 2 */
16 rc=gset(’colrep’, 2, ’orange’);
17
18 /* check color associated with color index 2 and */
19 /* display the value in the LOG window */
20 call gask(’colrep’, 2, color, rc);
21 put ’Current FILCOLOR =’ color;
22 output;
23
24 /* end DSGI */
25 rc=graph(’update’);
26 rc=gterm();
27 run;

Current FILCOLOR =ORANGE

Output 31.2 Writing the Value of an Attribute to a Data Set

The SAS System 13:50 Tuesday, December 22, 1998 1

Obs color rc

1 ORANGE 0

Features not explained in previous examples are described here:

� The GSET(’COLREP’, . . .)function assigns the predefined color ’ORANGE’ to the
color index 2.

� GASK routines check the current value of an attribute. In this example, the
GASK(’COLREP’, . . .)function returns the color associated with color index 2.

� A PUT statement displays the value of the COLOR argument in the log.

� An OUTPUT statement writes the value of COLOR to the ROUTINE data set.

� The GRAPH(’UPDATE’) function closes the graphics segment.

� The PRINT procedure displays the contents of the ROUTINE data set.

Generating a Drill-down Graph Using DSGI
This example uses ODS processing with DSGI to generate a drill-down graph. To get

the drill-down capability, you use the GSET(’HTML’,...) function to specify a URL that
points to the location of the target output. This HTML string can be used with the
following graphic element types drawn in the code after the string is set: BAR,
ELLIPSE, FILL, MARK, PIE, and TEXT. The example uses a PIE element type.

1070 Examples 4 Chapter 31

Note: The example assumes users will access the output through a file system
rather than accross the Web, so the HTML string uses a file specification rather than a
full URL. For information on bringing SAS/GRAPH output to the Web, see Chapter 5,
“Bringing SAS/GRAPH Output to the Web,” on page 71. For specific information about
drill-down graphs, see “About Drill-down Graphs” on page 90. 4

This example also includes a FILENAME statement to allocate an aggregate storage
location for the HTML and GIF files produced by the code. You should replace the term
path-to-Web-server with the location where you want to store the files.

In the example, the ODS HTML statement is used to create a body file named
dsgi.htm. When file dsgi.htm is viewed in a Web browser, it displays a solid pie chart,
as shown in Display 31.12 on page 1071. To drill down to the graph shown in Display
31.13 on page 1072, click anywhere in the pie chart. This example uses PROC GSLIDE
to create the simple graphic that is used for the target output:

/* This is the only line you have to */
/* change to run the program. Specify */
/* a location in your file system. */

filename odsout ’path-to-Web-server’;

/* close the listing destination */
ods listing close;

/* set the graphics environment */
goptions reset=global gunit=pct noborder

ftitle=swissb htitle=6
ftext=swiss htext=3
colors=(black blue)
hsize=5 in vsize=5 in
device=gif;

/* define tile and footnote for graph */
title1 ’Drill-down Graph’;
footnote1 j=l ’ Click in pie chart’

j=r ’GR31N10 ’;

ods html body=’dsgi.htm’
path=odsout;

/* execute DATA step with DSGI */
data _null_;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* set a value for the html variable */
rc=gset(’html’, ’href="blue.htm"’);

/* define and draw a pie chart */
rc=gset(’filcolor’, 2);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 55, 50, 22, 0, 360);

/* generate graph and end DSGI */
rc=graph(’update’);
rc=gterm();

The DATA Step Graphics Interface 4 Examples 1071

run;

goptions ftext=centb ctext=blue;

/* open a new body file for the */
/* target output */

ods html body=’blue.htm’
path=odsout;

title1;
footnote1;
proc gslide wframe=4

cframe=blue
name=’blue’;
note height=20;
note height=10

justify=center
’Blue Sky’;

run;
quit;

ods html close;
ods listing;

Display 31.12 Drill-down Graph Generated with DSGI

1072 Examples 4 Chapter 31

Display 31.13 Target Output for Drill-down Graph

Features not explained in previous examples are described here:

� FILENAME allocates a storage location for the HTML and GIF files that are
produced by the program.

� To conserve system resources, ODS LISTING CLOSE closes the Listing
destination.

� On the GOPTIONS statement, DEVICE=GIF tells SAS/GRAPH to generate a GIF
file for each GRSEG that is created in the code. The GIF files are needed to
display the graphics output in a Web browser.

� On the first ODS HTML statement, BODY= specifies a name for the file that will
reference the pie chart that is generated with DSGI. PATH= specifes the output
location that was allocated by the FILENAME statement.

� In the DATA step, the presence of the GSET(’HTML’,...) function causes
SAS/GRAPH to create the pie chart as a drill-down graph. The HTML string
’href=“blue.htm”’ will be used as the value for the HREF attribute in the image
map that SAS/GRAPH creates for the drill-down capability. The image map will be
created in the body file dsgi.htm, because that is the file that references the pie
chart. (The target output file blue.htm does not exist yet, but it will be created by
the GSLIDE procedure later in the program.)

� The second ODS HTML file specifies a new body file. Thus, the first body file
dsgi.htm is closed, and the new body file blue.htm is opened. File blue.htm is the
file that is identified as the target output by the HREF value on the
GSET(’HTML’,...) function.

� PROC GSLIDE produces the graphic that is used as the target output for the
drill-down graph.

� ODS HTML CLOSE closes the HTML destination, and ODS LISTING opens the
Listing destination for subsequent output during the SAS session.

The DATA Step Graphics Interface 4 See Also 1073

See Also

“Storing Graphics Output in SAS Catalogs” on page 49
for an explanation of graphics catalogs and catalog entries

Chapter 9, “Graphics Options and Device Parameters Dictionary,” on page 301
for complete information about graphics options

“TITLE, FOOTNOTE, and NOTE Statements” on page 251
for details of using the TITLE and FOOTNOTE statements

“GOPTIONS Statement” on page 182
for details of using the GOPTIONS statement

Chapter 10, “The Annotate Data Set,” on page 403
for an explanation of the Annotate facility

Chapter 32, “DATA Step Graphics Interface Dictionary,” on page 1075
for complete information on the functions and routines used with DSGI

SAS Language Reference: Dictionary
for information about additional functions and statements that can be used in the
DATA step

1074 See Also 4 Chapter 31

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/GRAPH ® Software: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/GRAPH® Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–525–6
All rights reserved. Printed in the United States of America.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
OS/2® , OS/390® , and IBM® are registered trademarks or trademarks of International
Business Machines Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

