
3

C H A P T E R

2
Using the SAS/ACCESS Interface
to CA-IDMS

Overview of the DATA Step Statement Extensions 4
CA-IDMS Record Currency 4

CA-IDMS Input Buffer 4

Introductory Example of a DATA Step Program 5

Creating DATA Step Views 8

The CA-IDMS INFILE Statement 10
CA-IDMS Environment Options 11

Other CA-IDMS Options 11

Standard INFILE Statement Options 13

Summary of CA-IDMS INFILE Statement Options 13

Using the CA-IDMS INFILE Statement 14

Specifying DML Function Calls 14
ACCEPT 15

BIND 17

FIND and OBTAIN 17

FIND/OBTAIN CALC 17

FIND/OBTAIN CURRENT 19
FIND/OBTAIN DB-KEY 20

FIND/OBTAIN OWNER 21

FIND/OBTAIN WITHIN SET USING SORT KEY 22

FIND/OBTAIN WITHIN SET or AREA 23

GET 25
IF 26

RETURN 27

Summary of Options Needed to Generate CA-IDMS Function Calls 29

How the CA-IDMS Function Call Is Generated 31

Using Multiple Sources of Input 32

The CA-IDMS INPUT Statement 33
Using the Null INPUT Statement 34

Holding Records in the Input Buffer 35

Checking Call Status Codes 35

Obtaining the Value of _ERROR_ 35

Obtaining the CA-IDMS Error Codes 36
Checking for Non-Error Conditions and Resetting _ERROR_ 36

Catching Errors Before Moving Data 36

Handling End of File 37

Example: Traversing a Set 37

Example: Using the Trailing @ and the INPUT with No Arguments 42

4 Overview of the DATA Step Statement Extensions 4 Chapter 2

Overview of the DATA Step Statement Extensions
Special SAS System extensions to the standard SAS INFILE statement enable you

to access CA-IDMS data in a SAS DATA step. The extended statement is referred to as
the CA-IDMS INFILE statement and its corresponding INPUT statement is referred to
as the CA-IDMS INPUT statement. The CA-IDMS INFILE and CA-IDMS INPUT
statements work together to generate and issue calls to CA-IDMS. A CA-IDMS DATA
step can contain standard SAS statements as well as the SAS statements that are used
with the SAS/ACCESS interface to CA-IDMS.

The CA-IDMS INFILE statement defines to the SAS System the parameters that are
needed to build CA-IDMS calls. The CA-IDMS INFILE statement

� names the subschema
� names SAS variables to contain

� the dictionary name
� the database name
� the node name (for distributed DBMS)
� CA-IDMS functions (for example, OBTAIN or FIND)
� the area name
� the set name
� the record name
� the sort field
� the database key
� the CALC key
� the key offset
� the key length
� the status returned by the call.

When it is executed, the CA-IDMS INPUT statement formats and issues the
CA-IDMS function call using the parameters specified in the CA-IDMS INFILE
statement.

The CA-IDMS INFILE statement is required in any DATA step that accesses a
CA-IDMS database because the special extensions of the CA-IDMS INFILE statement
specify the variables that set up the CA-IDMS calls. When a CA-IDMS INFILE
statement is used with a CA-IDMS INPUT statement, the database function calls are
issued.

The syntax and usage of the CA-IDMS INFILE and INPUT statements are described
in detail later in this chapter.

CA-IDMS Record Currency
You need to understand the concept of currency before using the DATA step

interface to CA-IDMS. CA-IDMS keeps track of the most recently accessed record by its
database location or db-key. As each record is accessed, it becomes current of the
run-unit, record type, set, or area. Some DML calls require that certain currencies are
established before the call is issued. See your CA-IDMS documentation for more
information about currency.

CA-IDMS Input Buffer
A buffer is allocated by the SAS System as an input area for data retrieval. The

length of this buffer is specified by the LRECL= option in the CA-IDMS INFILE

Using the SAS/ACCESS Interface to CA-IDMS 4 Introductory Example of a DATA Step Program 5

statement. The input buffer is formatted by CA-IDMS in the same way an input area
for any CA-IDMS program is formatted.

The data INFORMATS specified in the CA-IDMS INPUT statement must match the
original data format. This information can be obtained from CA-IDMS Integrated Data
Dictionary (IDD) or from a COBOL or Assembler copy library, source programs, a SAS
macro library, or other documentation sources. Database Administrator (DBA) staff at
your installation can help you find the segment data formats you need.

Introductory Example of a DATA Step Program
The following example is a simple DATA step program that reads record occurrences

from a CA-IDMS database and creates a SAS data set. Next, the program processes the
SAS data set with PROC PRINT.

The example accesses the EMPLOYEE database with the subschema EMPSS01.
This subschema allows access to all of the DEPARTMENT records. This example uses
the IDMS option in the INFILE statement, which tells the SAS System that this
particular external file reference is for a CA-IDMS database.

The numbers in the program correspond to the numbered comments following the
program.

u data work.org_department;
retain iseq;

v infile empss01 idms func=func1 record=recname
area=iarea sequence=iseq errstat=err
set=iset;

/* BIND the DEPARTMENT record */
w if_n_ = 1 then do;

func1 = ’BIND’;
recname = ’DEPARTMENT’;

x input;
if (err ne ’0000’) then go to staterr;
iseq = ’FIRST’

end;

/* Now get the DEPARTMENT records by issuing */
/* OBTAIN for DEPT record and test for success */

func1 = ’OBTAIN’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;

y input @;
U if (err ne ’0000’ and err ne ’0307’) then go to

staterr;
if err eq ’0307’ then do;

error = 0;
/* No more DEPT records so STOP */
stop;

end;
V input

@1 department_id 4.0
@5 department_name $char45.
@50 department_head 4.0;

6 Introductory Example of a DATA Step Program 4 Chapter 2

W iseq = ’NEXT’;
X return;

staterr:
at put @1 ’WARNING: ’ @10 func1 @17

’RETURNED ERR =’ @37 err;
atop;

end;
run;

ak proc print data=work.org_department;
run;

u The DATA statement references a temporary SAS data set called
ORG_DEPARTMENT, which is opened for output.

v The INFILE statement tells the SAS System to use the EMPSS01
subschema. The IDMS option tells SAS that EMPSS01 is a
CA-IDMS subschema instead of a fileref. This statement also tells
the CA-IDMS interface to use the named SAS variables as follows:

� FUNC1 to store the function type
� RECNAME to store the record name
� IAREA to store the area name
� ISEQ to store the function call sequence information
� ISET to store the set name

The CA-IDMS INFILE statement also tells the interface to store
the error status from the call in ERR.

w The first time through the DATA step, all CA-IDMS records that will
be accessed must be bound to CA-IDMS. To bind the DEPARTMENT
record type, the program sets FUNC1 to BIND and RECNAME to
DEPARTMENT.

x The CA-IDMS INPUT statement uses the values in the SAS
variables FUNC1 and RECNAME to generate the first call to
CA-IDMS. In this example, the call generated is a BIND for the
DEPARTMENT record. All records must be bound to CA-IDMS
before any data retrieval calls are performed. A null INPUT
statement is used because the BIND function does not retrieve any
CA-IDMS data.

y This INPUT statement also uses the values in the SAS variables
FUNC1 and RECNAME, along with the values in ISEQ and IAREA
to generate an OBTAIN FIRST DEPARTMENT RECORD IN AREA
ORG-DEMO-REGION call. However, no data are moved into the
program data vector because no variables are defined in the
INPUT @; statement. The call holds the contents of the input buffer
and allows the DATA step to check the call status that is returned
from CA-IDMS.

U The program examines the status code returned by CA-IDMS. If
CA-IDMS returns 0000, then the program proceeds to the next
INPUT statement. If CA-IDMS does not return 0000 or 0307, then
the program branches to the error routine.

V When this INPUT statement executes, data are moved from the
input buffer into the program data vector.

Using the SAS/ACCESS Interface to CA-IDMS 4 Introductory Example of a DATA Step Program 7

W The ISEQ value is changed to NEXT to generate an OBTAIN NEXT
DEPARTMENT RECORD IN AREA ORG-DEMO-REGION.

X For the subsequent interations of the DATA step, the RETURN
statement causes execution to return to the beginning of the DATA
step.

at For any unexpected status codes, a message is written to the SAS
log and the DATA step stops.

ak The PRINT procedure prints the contents of the
WORK.ORG-DEPARTMENT data set.

Output 2.1 on page 7 shows the SAS log for this example.

Output 2.1 SAS Log

1 data work.org_department;
2 infile empss01 idms func=func1 record=recname area=iarea
3 sequence=iseq errstat=err set=iset;
4
5 err = ’0000’;

.

.

.
37 end;
38 run;

NOTE: The infile EMPSS01 is:
Subschema=EMPSS01

NOTE: 11 records were read from the infile EMPSS01.
The minimum record length was 0.
The maximum record length was 56.

NOTE: The data set WORK.ORG_DEPARTMENT has 9 observations and 3 variables.
NOTE: The DATA statement used 0.22 CPU seconds and 2629K.
39 proc print data=work.org_department;
40 run;

NOTE: The PROCEDURE PRINT printed page 1.

Output 2.2 on page 7 shows the output of this example.

Note: The log shows that 11 records were read from the infile, but Output 2.2 on
page 7 shows only 9 observations. Every time the SAS System encounters a CA-IDMS
INPUT statement that submits a call, it increments by one an internal counter that
keeps track of how many record occurrences are read from the database. The count is
printed to the SAS log as a NOTE. Because this program contains CA-IDMS INPUT
statements that do not retrieve data, this count can be misleading. 4

Output 2.2 Department List

8 Creating DATA Step Views 4 Chapter 2

The SAS System
Obs department_id department_name department_

head
1 2000 ACCOUNTING AND PAYROLL 11
2 3200 COMPUTER OPERATIONS 4
3 5300 BLUE SKIES 321
4 5100 BRAINSTORMING 15
5 1000 PERSONNEL 13
6 4000 PUBLIC RELATIONS 7
7 5200 THERMOREGULATION 349
8 3100 INTERNAL SOFTWARE 3
9 100 EXECUTIVE ADMINISTRATION 30

Creating DATA Step Views

The preceding introductory DATA step example can be made into a DATA step view.
A DATA step view is a SAS data set of type VIEW that contains a definition of the data
rather than containing the physical data. For CA-IDMS, a DATA step view is a compiled
version of statements that, when executed, access and retrieve the data from CA-IDMS.

A DATA step view is a stored SAS file that you can reference in other SAS tasks to
access data directly. A view’s input data can come from one or more sources, including
external files and other SAS data sets. Because a DATA step view only reads (opens for
input) other files, you cannot update the view’s underlying data. For a complete
description of using DATA step views, refer to SAS Language Reference: Dictionary.

Note: Version 7 does not allow you to name a fileref for a task that has the same
name as the CA-IDMS subschema. 4

The following DATA step code is part of a SAS macro that is invoked twice to create
two DATA step views. When the DATA step views are referenced in the SET
statements of the subsequent DATA step executions, DEPARTMENT records are read
from the CA-IDMS database and selected record data values are placed in two SAS
data sets. Then, each SAS data set is processed with PROC PRINT to produce the same
output as shown in Output 2.2 on page 7.

The numbers in the program correspond to the numbered comments following the
program.

u %macro deptview(viewname=,p1=,p2=,p3=);
v data &viewname / view &viewname;
w keep &p1 &p2 &p3;

retain iseq;
infile empss01 idms func=func1 record=recname

area=iarea sequence=iseq errstat=err
set=iset;

/* BIND the DEPARTMENT record */
if _n_ eq 1 then do;

func1 = ’BIND’;
recname = ’DEPARTMENT’;
input;
iseq = ’FIRST’;

end;

/* Now get the DEPARTMENT records */
func1 = ’OBTAIN’;

Using the SAS/ACCESS Interface to CA-IDMS 4 Creating DATA Step Views 9

recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;
input @;
if (err ne ’0000’ and err ne ’0307’) then go to

staterr;
if err eq ’0307’ then do;

error = 0;
/* No more DEPT records so STOP */
stop;

end;
input
@1 department_id 4.0
@5 department_name $char45.
@50 department_head 4.0;
iseq = ’NEXT’;
return;
staterr:
put @1 ’WARNING: ’ @10 func1 @17

’RETURNED ERR = ’@37 err;
stop;

x %mend;
y %deptview(viewname=work.deptname , p1=DEPARTMENT_ID,

p2=DEPARTMENT_NAME);
U %deptview(viewname=work.depthead , p1=DEPARTMENT_ID,

p2=DEPARTMENT_HEAD);

options linesize=132;

V data work.deptlist;
set work.deptname;

W proc print data=work.deptlist;
title2 ’DEPARTMENT NAME LIST’;

X data work.headlist;
set work.depthead;

at proc print data=work.headlist;
title2 ’HEADS OF DEPARTMENTS LIST’;

run;

u %MACRO defines the start of the macro DEPTVIEW, which contains
4 parameter variables: one required and three input overrides.
VIEWNAME is required; it is the name of the DATA step view.
VIEWNAME can be overridden at macro invocation. The overrides
are P1, P2, and P3. These may or may not be specified, but one
must be specified to avoid a warning message.

P1 name of the first data item name to keep

P2 name of the second data item name to keep

P3 name of the third data item name to keep

10 The CA-IDMS INFILE Statement 4 Chapter 2

Three data items are allowed because there are 3 input fields in
the CA-IDMS INPUT statement for the database.

v The DATA statement specifies the DATA step view name.

w The KEEP statement identifies the variables that are available to
any task that references this input DATA step view.

x %MEND defines the end of macro DEPTVIEW.

y %DEPTVIEW invokes the macro and generates a DATA step view
named WORK.DEPTNAME that, when referenced as input, supplies
observations containing values for the variables DEPARTMENT_ID
and DEPARTMENT_NAME.

U %DEPTVIEW invokes the macro and generates a DATA step view
named WORK.DEPTHEAD that, when referenced as input, supplies
observations containing values for the variables DEPARTMENT_ID
and DEPARTMENT_HEAD.

V Data set WORK.DEPTLIST is created using the DATA step view
WORK.DEPTNAME as input.

W PROC PRINT prints WORK.DEPTLIST.

X Data set WORK.HEADLIST is created using the DATA step view
WORK.DEPTHEAD as input.

at PROC PRINT prints WORK.HEADLIST.

The CA-IDMS INFILE Statement
If you are unfamiliar with the standard INFILE statement, refer to SAS Language

Reference: Dictionary for more information.
A standard INFILE statement specifies an external file to be read by an INPUT

statement. A CA-IDMS INFILE statement specifies a subschema, which in turn
identifies the CA-IDMS database, records, and elements to be accessed with CA-IDMS
calls. Special extensions in the CA-IDMS INFILE statement specify SAS variables and
constants that are used to build a CA-IDMS call and to handle the data returned by the
call. A subset of the standard INFILE statement options can also be specified in a
CA-IDMS INFILE statement.

Use the following syntax when you issue a CA-IDMS INFILE statement:

INFILE SUBSCHname IDMS <options>;

where

SUBSCHname
specifies the name of the subschema used to communicate with CA-IDMS in the
current DATA step. A subschema name is required and must immediately follow
INFILE. (A standard INFILE statement would specify a fileref in this position.)
You can open only one subschema per DATA step.

IDMS
tells the SAS System that this INFILE statement refers to a CA-IDMS database.
IDMS is required and must follow the subschema name.

options
usually define SAS variables that contain CA-IDMS information used to generate
DML calls. These variables are not added automatically to a SAS output data set

Using the SAS/ACCESS Interface to CA-IDMS 4 Other CA-IDMS Options 11

(that is, they have the status of variables that are dropped). To include the
variables in an output SAS data set, create separate variables and assign values to
them. The variables do not need to be predefined before specification in the
CA-IDMS INFILE statement. The SAS System defines them automatically with
the correct type and length. The following sections describe the options that are
valid in the INFILE statement.

CA-IDMS Environment Options
The following options affect how the bind-run call is generated. All of the

environment options are optional. If any of the next four options’ values should change
during the execution of the DATA step, a finish call is executed, followed by a new
bind-run call.

DANAME=variable
specifies a SAS variable that contains the logical CA-IDMS database name, as
defined in the database name table.

DANODE=variable
specifies a SAS variable that contains the DC/UCF of CA-IDMS where the database
is defined. Use this option only if you are running a Distributed Database System.

DCNAME=variable
specifies a SAS variable that contains the name of the CA-IDMS dictionary where
the subschema is defined. Use this option only if you are using a subschema that
is defined in a dictionary other than the default dictionary.

DCNODE=variable
specifies a SAS variable that contains the DC/UCF system needed to process the
database requests. Use this option only if you are running a Distributed Database
System.

Other CA-IDMS Options
The following list describes additional options that are available only on the

CA-IDMS INFILE statement.

AREA=variable
names a SAS variable that contains the name of the CA-IDMS AREA you want to
access. The AREA must be included in the subschema that was specified on the
INFILE statement.

DBKEY=variable
names a SAS variable to which the database record’s key, db-key, is assigned after
successful execution of an ACCEPT or a RETURN call to the database. A record’s
db-key can then be used to access a record directly. In this case, the DBKEY
variable contains the db-key of the record that you want to access directly, along
with FIND or OBTAIN in the FUNC= variable.

ERRSTAT=variable
names a SAS variable to which the CA-IDMS call status is assigned after each
CA-IDMS call. If ERRSTAT= is not specified, call status codes are not returned.
The variable is a character variable with a length of 4.

It is highly recommended that you check the call status codes that CA-IDMS
returns, and this option provides a convenient way to do so. (See “Checking Call
Status Codes” on page 35 for more information on checking call statuses in
CA-IDMS DATA step programs.)

12 Other CA-IDMS Options 4 Chapter 2

FUNC=variable
names a SAS variable that contains the CA-IDMS call function that is used when
the CA-IDMS INPUT statement is executed. The variable must be assigned a
valid CA-IDMS call function code before a CA-IDMS INPUT statement is executed.
The value of the FUNC= variable can be changed between calls. The valid
function calls are BIND, FIND, OBTAIN, ACCEPT, GET, IF, and RETURN. Each
of these function calls is described in “Specifying DML Function Calls” on page 14.

IKEY=variable
specifies a SAS variable that contains the CALC KEY. Owner records of a set can
be predefined to have a CALC key. Using the CALC key enables direct access to the
owner records. The IKEY option is used with the IKEYLEN and KEYOFF options.

IKEYLEN=variable
specifies a SAS variable that contains the length of the CALC key. The SAS
variable for the IKEYLEN option is defined as a numeric variable.

KEYOFF=variable
specifies a numeric SAS variable that is set to the position of the CALC key within
the CA-IDMS record.

LRECL=length
specifies the length of the SAS buffers that are used as I/O areas when CA-IDMS
calls are executed. The length must be greater than or equal to the length of the
longest record accessed. If LRECL= is not specified, the default buffer length is
1000 bytes. See “CA-IDMS Input Buffer” on page 4 for more information.

RECORD=variable
specifies a SAS variable that contains the name of the CA-IDMS record type you
want to access. The record type must be included in the subschema that was
specified on the INFILE statement.

SEQUENCE=variable
names a SAS variable that contains the requested record location within the set or
area. This variable can also establish currency and/or determine the direction of
the traversal. Valid values for the SEQUENCE SAS variable are:

� NEXT

� FIRST

� LAST

� PRIOR

� nth

� CURRENT

� OWNER

� DUP

� USING

SET=variable
names a SAS variable that contains the name of the CA-IDMS set you want to
access. The set must be included in the subschema that was specified on the
INFILE statement.

SORTFLD=variable
names a SAS variable that contains the sort control element to be used in
searching the sorted set. If the FUNC= variable contains RETURN, SORTFLD=
will contain the record’s symbolic key, after successful completion of the call to
CA-IDMS.

Using the SAS/ACCESS Interface to CA-IDMS 4 Summary of CA-IDMS INFILE Statement Options 13

Standard INFILE Statement Options
The following standard INFILE statement options can be specified in a CA-IDMS

INFILE statement:

OBS=n
specifies, in a CA-IDMS DATA step program, the maximum number of CA-IDMS
function calls to execute. This number includes INPUT statements that do not
retrieve data, such as BIND.

STOPOVER
stops processing if the record returned to the input buffer does not contain values
for all the variables that are specified in the CA-IDMS INPUT statement.

OBS= and STOPOVER are the only standard INFILE options that can be specified in
a CA-IDMS INFILE statement.

One other standard INFILE statement option, the MISSOVER option, is the default
for CA-IDMS INFILE statements and does not have to be specified. The MISSOVER
option prevents the SAS System from reading past the current record data in the input
buffer if values for all variables specified by the CA-IDMS INPUT statement are not
found. Variables for which data are not found are assigned missing values. Without the
default action of the MISSOVER option, SAS would issue another function call anytime
the INPUT statement execution forced the input pointer past the end of the record.

Refer to SAS Language Reference: Dictionary for complete descriptions of these
options.

Summary of CA-IDMS INFILE Statement Options
Table 2.1 on page 13 summarizes the CA-IDMS INFILE statement options.

Table 2.1 Summary of CA-IDMS INFILE Statement Options

Option Specifies

AREA= variable that contains CA-IDMS area name

DANAME= variable that contains database to be accessed by the run unit

DANODE= variable that contains the central version of CA-IDMS where the
database resides

DBKEY= variable that contains a database record’s key

DCNAME= variable that contains the name of the CA-IDMS dictionary where
the subschema is defined

DCNODE= variable that contains the DC/UCF system needed to process the
database requests

ERRSTAT= variable to which the CA-IDMS error status is assigned after each
CA-IDMS call

FUNC= variable that contains the CA-IDMS call function used when a
CA-IDMS INPUT statement is executed

IKEY= variable that contains the value of the CALC KEY

IKEYLEN= variable that contains the length of the CALC key

14 Using the CA-IDMS INFILE Statement 4 Chapter 2

Option Specifies

KEYOFF= variable that is set to the position of the CALC key within the
CA-IDMS record

LRECL= the length of the SAS buffers used as I/O areas when CA-IDMS calls
are executed

<MISSOVER> prevents the SAS System from reading past the current record data
in the input buffer if values for all variables specified by the
CA-IDMS INPUT statement are not found. Specified by default.

OBS= the maximum number of CA-IDMS function calls to be issued by the
DATA step

RECORD= variable that contains the name of the CA-IDMS record you want to
access

SEQUENCE= variable that contains the requested record location within the set or
area, and/or establishes currency, and/or determines the direction of
the traversal

SET= variable that contains the name of the CA-IDMS set you want to
access

SORTFLD= variable that contains the value of the sort-control element to be
used in searching the sorted set

STOPOVER stops processing if the record returned to the input buffer does not
contain values for all variables specified in the CA-IDMS INPUT
statement

Using the CA-IDMS INFILE Statement

You access CA-IDMS records and sets, one record at a time, using the CA-IDMS
INFILE and INPUT statements.

By specifying options on the INFILE statement, you can generate navigational DML
calls to CA-IDMS. To issue the appropriate DML calls, you need a thorough knowledge
of the database structure.

The CA-IDMS access method that you need to use depends on how the sets were
defined to the database. The access methods are CALC, CURRENT, DBKEY, OWNER,
SORT KEY, or WITHIN.

The DATA step interface determines what type of access method to generate the calls
for, based on the DML function call and options that you specify in the INFILE
statement. Valid DML functions are OBTAIN, FIND, BIND, ACCEPT, GET, IF, and
RETURN. The OBTAIN and GET functions are the only functions that retrieve a
record’s contents from the database.

Specifying DML Function Calls

The following sections describe which options to use to issue each of the CA-IDMS
function calls: ACCEPT, BIND, FIND, OBTAIN, GET, IF, and RETURN.

Each box that appears below shows the required and optional information that needs
to be specified in INFILE statement option variables. The INFILE statement option
variables are SAS variables assigned in the INFILE statement.

Using the SAS/ACCESS Interface to CA-IDMS 4 ACCEPT 15

For example, to generate the ACCEPT CURRENCY function call, you must first
assign INFILE statement option variables by using FUNC=, RECORD=, and
SEQUENCE=. Then you can give the variables the values ACCEPT, DEPARTMENT,
and CURRENT, respectively. See the example below for a detailed description of the
ACCEPT CURRENCY function call.

Note: The values of INFILE statement option variables remain set and are used for
each subsequent function call unless you override or reassign their values. 4

ACCEPT
The ACCEPT db-key statement moves the db-key of the current record to the

DBKEY= option variable that you have defined in the CA-IDMS INFILE statement.
After accepting the db-key, you can use the FIND or OBTAIN db-key statements to
access records directly by using the db-key you saved from the ACCEPT db-key function
call.

The db-key is a unique 4-byte identifier assigned to a record when the record is
stored in the database. The db-key remains unchanged until the record is erased or the
database is unloaded and reloaded. Any record in the subschema can be accessed
directly using its db-key, regardless of its location.

Note: If other function calls to CA-IDMS are made before you want to use the
db-key again, it must be copied into another variable. If the db-key is not needed for
the next function call, it must be blanked out, or its value will be used in the function
call, which will produce unexpected results. 4

To generate the ACCEPT CURRENCY <record-name|set|area> INTO DBKEY
function call, specify these options:

� FUNC= ACCEPT

� DBKEY= contains the current record’s DBKEY

� SEQUENCE= CURRENT|NEXT|PRIOR|OWNER

And one of these options:

� RECORD= the IDMS record name

� SET= the IDMS set name

� AREA= the area the record participates in

The following example shows the ACCEPT CURRENCY function call for the
DEPARTMENT record. The numbers in the program correspond to numbered
comments following the program.

infile empss01 idms func=func1 record=rec1
dbkey=key1 errstat=err sequence=seq1;

.

.

.
u func1 = ’ACCEPT’;
v rec1 = ’DEPARTMENT’;
w seq1 = ’CURRENT’;

input;
if err eq ’0000’ then do

x put @1 ’DBKEY OF RECORD = ’ @19 key1;
.
.
.

16 ACCEPT 4 Chapter 2

u FUNC1 is assigned the value of ACCEPT.

v REC1 is assigned the record name DEPARTMENT because you
want the db-key of this record. Before you can issue an ACCEPT
function call for a specific record, you must first establish currency
on the record.

w SEQ1 is set to CURRENT to indicate that you want the db-key of
the DEPARTMENT record which is current of the run unit.

x after successful execution of the the ACCEPT function call, KEY1
contains the db-key for the current DEPARTMENT record. The PUT
statement prints the value of KEY1 on the SAS log.

The following example shows the ACCEPT NEXT function call for the
DEPT-EMPLOYEE set. The numbers in the program correspond to the numbered
comments following the program.

infile empss01 idms func=func1 set=set1
dbkey=key1 errstat=err sequence=seq1;

.

.

.
u func1 = ’ACCEPT’;
v set1 = ’DEPT-EMPLOYEE’;
w seq1 = ’NEXT’;

input;
if err eq ’0000’ then do

x put @1 ’DBKEY OF RECORD = ’ @19 key1;
.
.
.

u FUNC1 is assigned the function of ACCEPT.

v SET1 is assigned the set name that is current of the run unit. If, for
example, you have currency on the EMPLOYEE record, the
ACCEPT NEXT causes the db-key of the next record in the
DEPT-EMPLOYEE set to be returned from the function call to
CA-IDMS. The next record in the DEPT-EMPLOYEE set could be
either an EMPLOYEE record or a DEPARTMENT record, depending
on your location in the set when the ACCEPT NEXT function call is
issued.

w SEQ1 is set to NEXT to indicate that you want the db-key from the
next record in the DEPT-EMPLOYEE set.

x after successful execution of the ACCEPT function call, KEY1
contains the db-key for the NEXT record. The PUT statement prints
the db-key on the SAS log.

You can now save the db-key to use now or later with the OBTAIN or FIND
functions. Using the db-key gives you direct access to the record regardless of
established currencies.

Using the SAS/ACCESS Interface to CA-IDMS 4 FIND and OBTAIN 17

BIND
The only form of the BIND function that is needed in the CA-IDMS DATA step is

the BIND RECORD. The BIND RECORD statement establishes addressability for a
CA-IDMS record so that its data can be retrieved and placed into the input buffer. A
BIND RECORD must be issued for every record type the DATA step will access before
any data are retrieved. The BIND RECORD function call does not retrieve any data
from CA-IDMS. A BIND function call is not necessary if no data are being retrieved,
i.e., you are issuing a FIND, ACCEPT, or RETURN function call.

To generate the BIND RECORD function call, specify these options:
� FUNC= BIND
� RECORD= the IDMS record name

The following code example shows the BIND RECORD function call. The numbers in
the program correspond to the numbered comments following the program.

infile empss01 idms func=func1 record=recname
.
.
.

u func1 = ’BIND’;
v recname = ’DEPARTMENT’;
w input;

.

.

.

u FUNC1 is assigned the function of BIND.

v RECNAME is assigned the value of DEPARTMENT because this is
the record on which you want to perform the BIND RECORD.

w This INPUT statement generates and submits the BIND RECORD
function call to CA-IDMS.

FIND and OBTAIN
The FIND function locates a record in the database. The OBTAIN function locates a

record and moves the data from the record to the input buffer. The FIND and OBTAIN
functions have identical options so they will be discussed together. There are six
formats of the FIND and OBTAIN functions. Each one will be described individually.

FIND/OBTAIN CALC
The FIND/OBTAIN CALC function accesses a record by using its CALC key value.

The record must be stored in the database with a location mode of CALC. The FIND/
OBTAIN CALC DUP function accesses duplicate records with the same CALC key as
the current record, provided that the current record of the same record type had been
accessed using FIND/OBTAIN CALC.

For an example program that locates records directly using CALC key values that
have been stored in a SAS data set, see “Example: Using the Trailing @ and the INPUT
with No Arguments” on page 42.

To generate the FIND|OBTAIN CALC record-name function call, specify these
options:

18 FIND and OBTAIN 4 Chapter 2

� FUNC= FIND or OBTAIN
� RECORD= an IDMS record name
� IKEY= a valid IDMS record CALC key
� KEYOFF= the offset into the record where the CALC key is located
� IKEYLEN= the length of the CALC key

To generate the FIND|OBTAIN CALC DUP record-name function call, include:
� SEQUENCE = ’DUP’

The following example shows a FIND CALC function call for the EMPLOYEE record
followed by an OBTAIN CALC DUP for the same record. The numbers in the program
correspond to the numbered comments following the program.

infile empss01 idms func=funct record=recname
ikey=ckey keyoff=key0 errstat=stat
sequence=seq ikeylen=klen;

.

.

.
u funct = ’FIND’;
v recname = ’EMPLOYEE’;
w ckey = ’0101’;
x key0 = 0;
y klen = 4;
U input;

.

.

.
V funct = ’OBTAIN’;
W seq = ’DUP’;

if stat eq ’0000’ then do
X input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate 6.0
@103 termdate 6.0
@109 birthdate 6.0;

.

.

.

u FUNCT is assigned the value of FIND.

v RECNAME is assigned the name of the record that you want to
access. In this example, the record is the EMPLOYEE record.

w CKEY is assigned the character value of ’0101’, which is the value of
the CALC key of the EMPLOYEE record you want to access. Upon

Using the SAS/ACCESS Interface to CA-IDMS 4 FIND and OBTAIN 19

successful execution of the FIND CALC function call, currency is set
to the EMPLOYEE record with the employee ID number of 0101.
The CALC key for the employee record is the employee ID.

x KEYO is set to zero because the employee ID or the CALC key is at
offset zero in the employee record. In other words, the employee ID
is the first element in the employee record.

y KLEN is set to 4, which is the length of the CALC key, the employee
ID.

U This INPUT statement generates and submits the FIND CALC
function call to CA-IDMS. No SAS variables are created. The FIND
function establishes currency but does not retrieve data.

V FUNCT is set to OBTAIN to generate an OBTAIN CALC function
call to CA-IDMS.

W SEQ is set to DUP so the code will generate an OBTAIN CALC DUP
function call. RECNAME, CKEY, KLEN, and KEYO are still set
from the previous FIND CALC function call and do not have to be
set.

X This INPUT statement contains SAS variables because the OBTAIN
function call causes CA-IDMS to locate the specified record and
move the data associated with the record to the record buffer.

The INPUT keyword submits the generated function call, which,
if successful, returns a record to the buffer. The remaining portion of
the INPUT statement maps fields from the buffer to the program
data vector.

FIND/OBTAIN CURRENT
The FIND/OBTAIN CURRENT function accesses records by using established

currencies. You can FIND or OBTAIN records that are current of the record type, set,
or area. You can also use this form of the FIND or OBTAIN function call to establish
the appropriate record as current of the run unit.

To generate the FIND|OBTAIN CURRENT OF <record|set|area> function call,
specify these options:

� FUNC= FIND or OBTAIN
� SEQUENCE= CURRENT

And optionally use one of the following:
� RECORD= a IDMS record name
� SET= an IDMS set name
� AREA= the area in which the record is a participant

The following example shows a FIND CURRENT function call for the
DEPARTMENT record. The numbers in the program correspond to the numbered
comments following the program.

infile empss01 idms func=funct record=recname
errstat=stat sequence=seq;

.

.

.
u funct = ’FIND’;
v seq = ’CURRENT’;

20 FIND and OBTAIN 4 Chapter 2

w recname = ’DEPARTMENT’;
x input;

.

.

.

u FUNCT is assigned the value of FIND.

v SEQ is assigned CURRENT so the function call to CA-IDMS will
locate the current record of the specified record type, set, or area. In
this example, the code is looking for the current record of the record
type DEPARTMENT.

w RECNAME specifies the name of the record type that is to be
accessed. In this example, the record is the DEPARTMENT record.

You can use the AREA option or the SET option instead of the
RECORD option with the FIND/OBTAIN CURRENT function to
locate the current record of the named area or set, respectively.

x This INPUT statement generates and submits the FIND CURRENT
function call to CA-IDMS.

FIND/OBTAIN DB-KEY
The FIND/OBTAIN DBKEY function locates a record directly using a db-key that

has been stored previously by your DATA step program. The ACCEPT function is used
to acquire the record’s db-key. Any record in the subschema can be accessed directly
using the db-key, regardless of its location mode.

To generate the FIND|OBTAIN DBKEY function call, specify these options:
� FUNC= FIND or OBTAIN
� DBKEY= a db-key value

And optionally:
� RECORD= the IDMS record name

The following example shows an ACCEPT NEXT function call, which acquires the
db-key of a record. It is followed by an OBTAIN DBKEY function call, which uses the
db-key acquired by the ACCEPT NEXT function call. The numbers in the program
correspond to the numbered comments following the program.

infile empss01 idms func=funct dbkey=dkey
errstat=stat sequence=seq;

.

.

.
u funct = ’ACCEPT’;

seq = ’NEXT’;
v dkey = ’ ’;

input;
.
.
.
funct = ’OBTAIN’;

w seq = ’ ’;
x input @1 department_id 4.0

@5 department_name $char45.

Using the SAS/ACCESS Interface to CA-IDMS 4 FIND and OBTAIN 21

@50 department_head 4.0;
.
.
.

u FUNCT is assigned the value of ACCEPT to get the db-key for the
next record, based on currency.

v DKEY is set to blanks to receive the new db-key.

After the ACCEPT function call has successfully executed, the
db-key is returned to the DATA step in the DKEY variable. The
db-key can be saved and used later to access the record directly.

w The SEQ option is set to blanks because it is not used with the
OBTAIN DBKEY function call.

If the RECORD option is used with FIND/OBTAIN DBKEY, the
db-key value must contain a db-key of the named record type.

x The INPUT statement generates and submits the OBTAIN DBKEY
function call. If successful, data returned to the buffer are mapped
to the named variables.

FIND/OBTAIN OWNER
The FIND/OBTAIN OWNER function locates the owner record of the current set.

This function call can be used to return the owner record of any set, whether or not the
set has been assigned owner pointers.

To generate the FIND|OBTAIN OWNER function call, specify these options:

� FUNC= FIND or OBTAIN

� SET= an IDMS set name

� SEQUENCE= OWNER

The following example shows an OBTAIN OWNER function call. This example
assumes currency is on an employee record occurrence. The numbers in the program
correspond to the numbered comments following the program.

infile empss01 idms func=funct set=inset
errstat=stat sequence=seq;

.

.

.
u funct = ’OBTAIN’;
v seq = ’OWNER’;
w inset = ’DEPT-EMPLOYEE’;
x input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

.

.

.

u FUNCT is assigned the value of OBTAIN so that the data for the
owner record is returned to the DATA step program.

22 FIND and OBTAIN 4 Chapter 2

v SEQ is assigned OWNER to generate an OBTAIN OWNER function
call.

w INSET specifies the set whose owner record is to be retrieved.

x The INPUT statement generates and submits the OBTAIN OWNER
function call. If successful, data returned to the buffer are mapped
to the named variables.

FIND/OBTAIN WITHIN SET USING SORT KEY
The FIND/OBTAIN SORT KEY function locates a member record in a sorted set.

Sorted sets are ordered in ascending and descending sequence based on the sort field
value. The search for member records begins with either the current record of the set or
the owner of the set. The record that is retrieved will be the first record that has a sort
field value that is equal to the value in the SORTFLD SAS variable. If no record
matches the SORTFLD value, currency to the next and prior records of the set are
maintained so that the DATA step program can traverse the set using the SORTFLD
value to perform a generic search.

To generate the FIND|OBTAIN record WITHIN set|record USING sortfield function
call, specify these options:

� FUNC= FIND or OBTAIN

� SORTFLD= a valid sort field value

� RECORD= a IDMS record name SET= an IDMS set name

To generate the FIND|OBTAIN record WITHIN set|record CURRENT USING
sortfield function call, include:

� SEQUENCE= CURRENT

The following example shows an OBTAIN record WITHIN CURRENT set USING
sortfield function call. The numbers in the program correspond to the numbered
comments following the program.

infile empss01 idms func=funct record+recname
errstat=stat sequence=seq set=inset
sortfld=skey;

.

.

.
u funct = ’OBTAIN’;
v seq = ’CURRENT’;
w skey = ’GARFIELD’ || ’JENNIFER’;
x recname = ’EMPLOYEE’;
y inset = ’EMP-NAME-NDX’;
U input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate 6.0
@103 termdate 6.0

Using the SAS/ACCESS Interface to CA-IDMS 4 FIND and OBTAIN 23

@109 birthdate 6.0
@115 filler01 $char2. ;

.

.

.

u FUNCT is assigned the value of OBTAIN to retrieve the data for the
employee record with the sort key of JENNIFER GARFIELD.

v SEQ is set to CURRENT to indicate that the search begins with the
current record of the set specified in INSET.

w SKEY contains the value of the sort control element to be used in
searching the sorted set. In this example, SKEY is set to the last
and first name value of the employee name sort control element in
the EMP-NAME-NDX set where you want to begin the search.

x RECNAME is set to the name of the record to retrieve. In this
example, you are looking for the EMPLOYEE record.

y INSET is assigned the name of a sorted set.

U The INPUT statement generates and submits the OBTAIN
SORTFLD WITHIN CURRENT set function call. If successful, data
are mapped from the buffer to the named variables.

FIND/OBTAIN WITHIN SET or AREA
The FIND/OBTAIN WITHIN function locates a record either logically, based on set

relationships, or physically, based on database location. Using various options with
FIND/OBTAIN WITHIN, you can either access each record sequentially in a set or area,
or select specific occurrences of a given record within a set or area.

Follow these rules when selecting members within a set:
� Currency must be established on a set before attempting to access records in the

set.
� The next or prior records in the set are determined by the record that is current of

the set named in the SET= option. The set must have prior pointers defined in
order to retrieve records using the SEQUENCE= option of PRIOR.

� The first or last record in a set is the first or last member in the logical order of
the set. The last record in a set can only be accessed if prior pointers have been
established for the set.

� The nth record in a set is the set member in the nth position of the set. The search
for the nth member begins with the owner of the current set and continues until
the nth record is located or until an end-of-set condition occurs. If the nth number
is negative, the search uses prior pointers. To use negative numbers, prior
pointers must have been established for the set.

� When an end-of-set occurs, the owner of the set becomes the current record of the
run-unit, the record type, its area, and its set.

Follow these rules when selecting records within an area:
� The first record within an area is the record with the lowest db-key. The last

record within an area is the record with the highest db-key.
� The next record within an area is the record with the next highest db-key in

relationship to the record which is current of the named area. The prior record
works the same way, except the prior record is the record with the next lowest
db-key.

24 FIND and OBTAIN 4 Chapter 2

� Before the next or prior record within an area can be requested, the first, last, or
nth record within an area must be accessed to correctly establish a starting
position within the area.

To generate the FIND | OBTAIN NEXT | PRIOR | FIRST | LAST | nth <record>
WITHIN set|area function call, specify:

� FUNC= FIND or OBTAIN

And one of these options:
� SET= an IDMS set name
� AREA= the area that the record participates in
� SEQUENCE= NEXT|PRIOR|FIRST|LAST|nth

And optionally:
� RECORD= a IDMS record name

The following example shows an OBTAIN PRIOR record WITHIN AREA function
call. Currency has already been established on an EMPLOYEE record. The numbers in
the program correspond to the numbered comments following the program.

infile empss01 idms func=funct area=subarea
record=recname errstat=stat
sequence=seq;

.

.

.
u funct = ’OBTAIN’;
v seq = ’PRIOR’;
w subarea = ’EMP-DEMO-REGION’;

recname = ’EMPLOYEE’
x input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate 6.0
@103 termdate 6.0
@109 birthdate 6.0
@115 filler01 $char2. ;

.

.

.

u FUNCT is assigned the function of OBTAIN to retrieve the data for
the EMPLOYEE record.

v SEQ is set to PRIOR to indicate that the prior EMPLOYEE record is
requested.

w SUBAREA contains the name of the current area from which to
retrieve the EMPLOYEE record.

Using the SAS/ACCESS Interface to CA-IDMS 4 GET 25

x The INPUT statement generates and submits the OBTAIN PRIOR
function call. If successful, data are mapped from the buffer to the
named variables.

GET
The GET statement moves the record that is current of the run unit into the input

buffer. The GET function is used in conjunction with the FIND function. The FIND
function locates records in the database without moving the data associated with the
record to the record buffer.

To generate the GET <record-name> function call, specify:

� FUNC= GET

And optionally:

� RECORD= the IDMS record name

The following example shows the GET function call with no other options.

infile empss01 idms func=func1 record=rec1
errstat=err;

.

.

.
u func1 = ’GET’;
v input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

.

.

.

u FUNC1 is assigned the value of GET.

v The record that is current of the run unit is moved into the input
buffer. Currency must be established before issuing the GET
function.

The following example shows the GET function call for the DEPARTMENT record.

infile empss01 idms func=func1 record=rec1
errstat=err;

.

.

.
func1 = ’GET’;

u rec1 = ’DEPARTMENT’;
input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

.

.

.

26 IF 4 Chapter 2

u The difference between this GET function call and the previous GET
call is the use of the SAS variable REC1. This variable is set to the
name of the specific record to move into the record buffer. In this
example, the data associated with the DEPARTMENT record is
moved. Currency must be established on the DEPARTMENT record
before a GET call can be made for the record.

IF
The DML IF statement tests for the existence or membership of a record occurrence

in a named set occurrence, and returns the result in the ERRSTAT variable.
There are two formats for the DML IF statement:

� IF SET <NOT> EMPTY tests for the existence of a record occurrence and returns
a status value of 0000 if the set occurrence is empty, and a status value of 1601 if
the set occurrence is not empty.

� IF <NOT> SET MEMBER checks the membership of the current record occurrence
and returns a status value of 0000 if the record occurrence is a member of the
named set occurrence, and a status value of 1608 if the record occurrence is a
non-member.

To issue the DML IF statement, specify these options:

� FUNC= IF

� INSET= an IDMS set name
� SEQUENCE= EMPTY|NEMPTY|MEMBER| NMEMBER

The following is an example of a DML IF function call.

infile empss01 idms func=funct record=recname
area=subarea errstat=stat sequence=seq
set=inset;

u funct = ’FIND’;
seq = ’FIRST’;
recname = ’DEPARTMENT’;
subarea = ’ORG-DEMO-REGION’;
input;
if (stat ^= ’0000’) then go to staterr;

v funct = ’IF’;
w seq = ’NEMPTY’;
x inset = ’DEPT-EMPLOYEE’;

recname = ’ ’;
subarea = ’ ’;
input;

y if (stat = ’1601’) then do;
put @1 ’Set ’ @5 inset @14 ’is not empty’;
stat = ’0000’;
error = 0;
end;

U else if (stat = ’0000’) then
put @1 ’Set’ @5 inset @14 ’is empty’;
else go to staterr;
stop;

Using the SAS/ACCESS Interface to CA-IDMS 4 RETURN 27

u Run-unit currency for the DML IF statement is established by the
previous function call. Here, a FIND function call establishes
run-unit currency on the record DEPARTMENT for the DML IF
statement, but does not retrieve the record.

v FUNCT is assigned the value of IF to indicate that a test will be
performed. Set currency is determined by the owner of the current
record in the set named in INSET.

w SEQ is set to NEMPTY to indicate the type of test.

x INSET names the set to test.

y The first SAS IF statement directs the DATA step to write a
message to the log if the value of STAT is 1601, which means that
the set is not empty.

U The second SAS IF statement directs the DATA step to stop if the
value of STAT is 0000, which means the set is empty.

RETURN
The RETURN function retrieves the db-key and the symbolic key for an indexed

record without retrieving the record’s data. This function establishes currency on the
index set.

There are two formats for the RETURN function:

� The RETURN CURRENCY function retrieves the db-key and symbolic key for an
index entry based on established currencies or its position in the index set.

� The RETURN USING SORTKEY function retrieves the db-key and symbolic key
associated with a specific index key entry.

To generate the RETURN CURRENCY <set> NEXT |PRIOR|FIRST|LAST INTO
DBKEY key INTO SORTKEY skey function call, specify these options:

� FUNC= RETURN
� SET= an IDMS index set name
� SEQUENCE= FIRST|LAST|NEXT|PRIOR
� SORTFLD= upon successful completion of the function call, this SAS variable will

contain the current record’s symbolic key.
� DBKEY= upon successful completion of the function call, this SAS variable will

contain the current record’s db-key.

The following example shows the RETURN FIRST function call.

infile empss01 idms func=func1 errstat=err
sequence=seq set=inset sortkey=skey dbkey=dkey;

.

.
u func1 = ’RETURN’;
v seq = ’FIRST’;
w inset = ’EMP-NAME-NDX’;

input;
x put @1 ’DBKEY OF RECORD = ’ @19 dkey;

put @1 ’SKEY OF RECORD = ’ @19 skey;
.
.

28 RETURN 4 Chapter 2

.

u FUNC1 is assigned the function of RETURN.

v SEQ is assigned the value of FIRST. FIRST returns the db-key for
the first index entry in the set EMP-NAME-NDX. You could also
request the db-key from the PRIOR, FIRST, or LAST index entry in
the set by assigning these values to the SEQUENCE= option.

w SET is assigned the name of the index set (INSET) from which the
specified db-key is to be returned.

x DKEY will contain the db-key for the first entry in
EMP-NAME-NDX. SKEY will contain the symbolic key for the entry.
The PUT statements print the db-key and the symbolic key on the
SAS log.

To generate the RETURN USING SORTKEY <set> INTO DBKEY key INTO
SORTKEY skey function call, specify these options:

� FUNC= RETURN

� SEQUENCE= USING

� SET= an IDMS set name

� SORTKEY= the index key entry to search for. After successful completion of the
function call, this SAS variable will contain the record’s symbolic key.

� DBKEY= upon successful completion of the function call, this SAS variable will
contain the record’s db-key.

The following example shows the RETURN USING function call.

infile empss01 idms func=func1 record=recname
ikeylen=keyl errstat=err sequence=seq
set=inset dbkey=dkey sortkey=skey;

.

.

.
u func1 = ’RETURN’;
v seq = ’USING’;
w inset = ’EMP-NAME-NDX’;
x skey = ’GARFIELD JENNIFER’;
y keyl = 25;
U dkey = ’ ’;

input;
.
.
.

u FUNC1 is assigned the function of RETURN.

v SEQ is set to USING to indicate that the index key entry in SKEY
will be used to locate the db-key. In this example, SKEY is set to the
last name and first name GARFIELD JENNIFER. The call will
return the db-key and symbolic key of the first record it encounters
which contains the name GARFIELD JENNIFER.

w INSET is the name of the index set to be searched.

x SKEY specifies the index key value to search for.

Using the SAS/ACCESS Interface to CA-IDMS 4 Summary of Options Needed to Generate CA-IDMS Function Calls 29

y KEYL specifies the length of index key value.

U DKEY is set to blanks to receive the db-key.

After the RETURN function call has successfully executed, the
db-key is returned to the DATA step in the DKEY variable.

Summary of Options Needed to Generate CA-IDMS Function Calls

Table 2.2 on page 29 outlines the SAS INFILE parameters that are required to
generate each of the CA-IDMS function calls for COBOL DML.

Table 2.2 Options Needed to Generate Function Calls for COBOL DML

COBOL DML Call INFILE Statement Options

FUNC SEQUENCE RECORD SET AREA

ACCEPT CURRENT - - -

DBKEY SORTFLD IKEY IKEYLEN

ACCEPT db-key FROM CURRENCY

Required - - -

FUNC SEQUENCE RECORD SET AREA

ACCEPT CURRENT Required - -

DBKEY SORTFLD IKEY IKEYLEN

ACCEPT db-key FROM record-name
CURRENCY

Required - - -

FUNC SEQUENCE RECORD SET AREA

ACCEPT CURRENT - Required -

DBKEY SORTFLD IKEY IKEYLEN

ACCEPT db-key FROM set-name
CURRENCY

Required - - -

FUNC SEQUENCE RECORD SET AREA

ACCEPT CURRENT - - Required

DBKEY SORTFLD IKEY IKEYLEN

ACCEPT db-key FROM area-name
CURRENCY

Required - - -

FUNC SEQUENCE RECORD SET AREA

ACCEPT NEXT PRIOR
OWNER

- Required -

DBKEY SORTFLD IKEY IKEYLEN

ACCEPT db-key FROM set-name
NEXT|PRIOR|OWNER CURRENCY

Required - - -

FUNC SEQUENCE RECORD SET AREA

- BIND - Required -

DBKEY SORTFLD IKEY IKEYLEN

BIND record-name

- - - -

30 Summary of Options Needed to Generate CA-IDMS Function Calls 4 Chapter 2

COBOL DML Call INFILE Statement Options

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN - Required - -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN CALC* record-name

- - Required Required

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN DUP Required - -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN DUPLICATE* record-name

- - Required Required

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN CURRENT - - -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN CURRENT

- - - -

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN CURRENT Required - -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN CURRENT record-name

- - - -

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN NEXT PRIOR
FIRST LAST
Nth

Optional Required -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN
CURRENT|NEXT|PRIOR|FIRST|LAST|Nth
WITHIN set-name

- - - -

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN NEXT PRIOR
FIRST LAST
Nth

Optional - Required

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN
CURRENT|NEXT|PRIOR|FIRST|LAST|Nth
WITHIN area-name

- - - -

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN OWNER - Required -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN OWNER WITHIN set-name

- - - -

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN - Required Required -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN record-name WITHIN
set-name USING sort-key

- - - -

Using the SAS/ACCESS Interface to CA-IDMS 4 How the CA-IDMS Function Call Is Generated 31

COBOL DML Call INFILE Statement Options

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN CURRENT Required Required -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN record-name WITHIN
set-name CURRENT USING sort-key

- - - -

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN - - - -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAIN DBKEY db-key

Required - - -

FUNC SEQUENCE RECORD SET AREA

FIND OBTAIN - Required - -

DBKEY SORTFLD IKEY IKEYLEN

FIND/OBTAINrecord-name DB-KEY IS
db-key

Required - - -

FUNC SEQUENCE RECORD SET AREA

- GET - Required -

DBKEY SORTFLD IKEY IKEYLEN

GET record-name

- - - -

FUNC SEQUENCE RECORD SET AREA

RETURN CURRENT
FIRST LAST
NEXT PRIOR

- Required -

DBKEY SORTFLD IKEY IKEYLEN

RETURN db-key FROM index-set-name
CURRENT|FIRST|LAST|NEXT| PRIOR
KEY INTO symbolic-key

Required Required - -

FUNC SEQUENCE RECORD SET AREA

RETURN USING - Required

DBKEY SORTFLD IKEY IKEYLEN

RETURN db-key FROM index-set-name
USING index-key-value KEY INTO
symbolic-key

Required Required - -

* KEYOFF= INFILE statement option required for these calls

How the CA-IDMS Function Call Is Generated
To determine which type of DML function call you want to generate, the CA-IDMS

DATA step access method must make some assumptions from the various options that
you specify. The access method first determines what value is specified in the FUNC
option.

� If the FUNC option contains BIND, GET, ACCEPT, or RETURN, the required
options are checked for a value, then the optional options are checked, and the
appropriate function call is generated.

� If the FUNC option contains FIND or OBTAIN, the access method checks whether
a value was entered for the following options:

32 Using Multiple Sources of Input 4 Chapter 2

SORTFLD
If the SORTFLD option was entered, the required and optional options for
the OBTAIN or FIND with the SORTFLD are verified before a function call is
generated. If the SORTFLD option was not entered, the access method then
determines if the IKEY option was entered to generate a function call using
the CALC key.

IKEY
If the IKEY option was entered, then all of the required and optional options
are verified for a function call using the CALC key. If the IKEY option was
not entered, the access method then looks to see if the DBKEY option was
entered.

DBKEY
If the DBKEY was entered, the same verification is done for the options as
before and a function call is generated. If DBKEY was not entered, then the
access method looks to see if the SEQUENCE option was entered.

SEQUENCE
If a value was entered for the SEQUENCE option, the value is examined. If
the value is

CURRENT
The other options are checked to determine what type of currency call to
generate.

OWNER
An OBTAIN or FIND OWNER or a FIND DUP OWNER function call is
generated.

NEXT, PRIOR, FIRST, LAST, or nth
The access method tries to generate an OBTAIN or FIND WITHIN
function call by using the other options that were entered.

If the access method cannot generate a function call from the options that you
entered or if the options for a particular function call are incorrect, an error message is
returned, the automatic variable _ERROR_ is set to 1, and the CA-IDMS call status is
set to 9999. Your DATA step program should check for these conditions after each
function call to the database.

Using Multiple Sources of Input
You can have more than one input source in a DATA step. For example, you can

read from a CA-IDMS database and a SAS data set in the same DATA step. You
cannot, however, read from more than one subschema in a single DATA step. If you
want to use several external files (MVS data sets) in a DATA step, use separate INFILE
statements for each source.

The input source is set (or reset) when an INFILE statement is executed. The file or
CA-IDMS subschema referenced in the most recently executed INFILE statement is the
current input source for INPUT statements. The current input source does not change
until a different INFILE statement executes, regardless of the number of INPUT
statements executed.

If after you change input sources by executing multiple INFILE statements you want
to return to an earlier input source, it is not necessary to repeat all options specified in
the original INFILE statement. The SAS System remembers options from the first
INFILE statement with the same fileref or subschema name. In a standard INFILE
statement, you need only specify the fileref. In a CA-IDMS INFILE statement, specify

Using the SAS/ACCESS Interface to CA-IDMS 4 The CA-IDMS INPUT Statement 33

the subschema and IDMS. Options specified in a previous INFILE statement with the
same fileref or subschema name cannot be altered.

Note: The subschema name cannot be the same name as a fileref on a JCL DD
statement, a TSO ALLOC statement, or a filename’s fileref for the current execution of
the SAS System. 4

The CA-IDMS INPUT Statement
If you are unfamiliar with the INPUT statement, refer to SAS Language Reference:

Dictionary for more information.
An INPUT statement reads from the file specified by the most recently executed

INFILE statement. If the INFILE statement is a CA-IDMS INFILE statement, the
INPUT statement issues a CA-IDMS function call as formatted by variables specified in
the INFILE statement.

There are no special options for the CA-IDMS INPUT statement as there are for the
CA-IDMS INFILE statement. The form of the CA-IDMS INPUT statement is the same
as that of the standard INPUT statement:

INPUT <specification-1 > <…specification-n > <@|@@ >;

For example, suppose you issue an OBTAIN function call for the EMPLOYEE record.
The CA-IDMS INPUT statement might be coded as follows:

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate 8.0
@105 termdate 8.0
@113 birthdate 8.0;

When this CA-IDMS INPUT statement executes, the DATA step interface generates
and submits a function call from the options you entered on the CA-IDMS INFILE
statement. If the FUNC= variable specified in the INFILE statement is assigned a
value of GET or OBTAIN, an EMPLOYEE record is retrieved and placed in the input
buffer. Data for the variables specified in the CA-IDMS INPUT statement are then
moved from the input buffer to SAS variables in the program data vector.

Depending on which options you specify in the CA-IDMS INFILE statement and
which form of the CA-IDMS INPUT statement you use, the INPUT statement will do
one of the following:

� retrieve a record from the database, place it into the input buffer without moving
any variables into the program data vector, and possibly hold the record for the
next INPUT statement. If the FUNC= variable specifies GET or OBTAIN, but the
INPUT statement does not list any variables, then data are placed into the input
buffer without being moved into the program data vector. If the INPUT statement
specifies a trailing @ or @@, the record is held for processing by the next INPUT
statement. See “Using the Null INPUT Statement” on page 34 and “Holding
Records in the Input Buffer” on page 35 for more information.

34 Using the Null INPUT Statement 4 Chapter 2

� retrieve a record from the database, place it into the input buffer, move data from
the input buffer into variables in the program data vector, and possibly hold the
record for the next INPUT statement. If the FUNC= variable specifies GET or
OBTAIN, and the INPUT statement specifies one or more variables, then data are
placed into the input buffer and mapped into variables in the program data vector.
If the INPUT statement specifies a trailing @ or @@, the record is held for
processing by the next INPUT statement. See “Holding Records in the Input
Buffer” on page 35 for more information.

� submit a DBMS request without retrieving a record. If the FUNC= variable
specifies BIND, FIND, ACCEPT or RETURN, then no record data are retrieved
from the database. These functions are described in “Specifying DML Function
Calls” on page 14. See “Using the Null INPUT Statement” on page 34 for more
information.

� release a previously held record from the input buffer. If the previous INPUT
statement specified a trailing @ or @@, and the current INPUT statement is a null
INPUT statement (input;), then the previously held record is released. See
“Holding Records in the Input Buffer” on page 35 for more information.

Note: Every time the SAS System encounters a CA-IDMS INPUT statement, it
increments by one an internal counter that keeps track of how many function calls are
issued from the input data set. The count is printed to the SAS log as a NOTE. Because
you may have coded several CA-IDMS INPUT statements that do not retrieve data, this
count may not accurately reflect the actual number of records retrieved from the
database. 4

Although the syntax of the CA-IDMS INPUT statement and the standard INPUT
statement are the same, your use of the CA-IDMS INPUT statement is often different.
Suggested uses of the CA-IDMS INPUT statement are described in the following
sections.

Using the Null INPUT Statement

When an INPUT statement does not specify any variable names or options, it is
called a null INPUT statement:

input;

A null INPUT statement serves three purposes:

� A null CA-IDMS INPUT statement generates and submits a CA-IDMS function
call to the database. To issue a CA-IDMS function call that does not retrieve data
(FIND, ACCEPT, RETURN, and BIND), use a null INPUT statement.

� A null CA-IDMS INPUT statement retrieves a record from the database and
places it in the input buffer, but does not move data values to the program data
vector. When you want to issue an OBTAIN or GET function call, you can use the
INPUT statement with a trailing ’@’ or ’@@’ to retrieve a record from the database,
then check the status code returned from CA-IDMS before moving data values to
the program data vector.

� If the previous INPUT statement was input @; or input var1 var2 var3 @;,
a null INPUT statement releases the previously held record. See “Holding Records
in the Input Buffer” on page 35 for information.

Using the SAS/ACCESS Interface to CA-IDMS 4 Checking Call Status Codes 35

Holding Records in the Input Buffer
The trailing @ and @@ pointer controls tell the SAS System to hold the current

record in the input buffer so that it can be processed by a subsequent INPUT statement.
The trailing @ tells the SAS System to hold the record for the next INPUT statement in
the same iteration of the DATA step. The double trailing @ tells the SAS System to
hold the record for the next INPUT statement across iterations of the DATA step.

Assuming the FUNC= variable in your INFILE statement specifies GET or OBTAIN,
the following INPUT statement submits a function call to the database, retrieves a
record from the database, places it in the input buffer, and places a hold on the buffer:

input @;

The next INPUT statement that is executed does not issue another function call and
does not place a new record in the input buffer. Instead, the second INPUT statement
uses the data placed in the input buffer by the first INPUT statement.

If your INPUT statement also specifies variable names, then that statement issues a
function call to the database, retrieves a record, places the record into the input buffer,
and moves data values for the named variables into the program data vector:

input ssnumber $char11. @;

The SAS System holds the record in the input buffer for use with the next INPUT
statement.

If you have used an INPUT statement with a trailing @ or @@, and you now want to
release the record from the input buffer, use a null INPUT statement as described in
“Using the Null INPUT Statement” on page 34.

Checking Call Status Codes
For each function call issued, CA-IDMS returns a call status code that indicates

whether or not the function call was successful. Because the success of a function call
can affect the remainder of the program, you should check call status codes after every
call to CA-IDMS. SAS provides the automatic SAS variable _ERROR_, whose values
indicate the success of a function call.

Table 2.3 on page 35 shows the _ERROR_ values and their meaning.

Table 2.3 Summary of _ERROR_ Values

Value of _ERROR_

Possible
Corresponding
Status Codes Description

0 CA-IDMS 0000 Function call executed successfully

1 All CA-IDMS status
codes except 0000

CA-IDMS error code returned. Contents of the input buffer
and the program data vector are printed in the SAS log with
the next INPUT statement or when control returns to the
beginning of the DATA step, whichever comes first.

SAS status 9999 Program cannot perform function call from options specified.

Obtaining the Value of _ERROR_
Check the SAS log to see the value of _ERROR_. If _ERROR_=1, it is printed in the

SAS log along with the contents of the input buffer and the program data vector.

36 Checking Call Status Codes 4 Chapter 2

Obtaining the CA-IDMS Error Codes
You can obtain the status code returned by CA-IDMS by specifying a variable name

with the ERRSTAT= option of the CA-IDMS INFILE statement. This variable will be
assigned the CA-IDMS status after each function call to the database.

Refer to your CA-IDMS documentation for explanations of CA-IDMS error status
codes.

Checking for Non-Error Conditions and Resetting _ERROR_
Some of the CA-IDMS status codes that set _ERROR_ to 1 might not represent

errors in your SAS program. When this happens in your application, you should check
the actual error status code returned by CA-IDMS as well as the value of _ERROR_ by
the methods stated in the above sections, and possibly reset _ERROR_ to 0.

For example, suppose you are writing a program that accesses all the
DEPARTMENT and EMPLOYEE records from all the DEPT-EMPLOYEE set
occurrences. When an end-of-set condition (CA-IDMS status code 0307) occurs on the
EMPLOYEE record, _ERROR_ is set to 1; however, you do not consider the end-of-set
condition to be an error. Instead, you want your application to obtain the next owner
record or DEPARTMENT record from the next DEPT-EMPLOYEE set occurrence.

If a status code sets _ERROR_ but you do not consider the condition to be an error,
you should reset _ERROR_ to 0 before executing another INPUT statement or
returning to the beginning of the DATA step. Otherwise, the contents of the input
buffer and program data vector are printed on the SAS log. See U in “Example:
Traversing a Set” on page 37 for an example of how to reset _ERROR_ to 0.

Catching Errors Before Moving Data
In all programs it is important to check the values of either the _ERROR_ or

ERRSTAT= variables before moving data from the input buffer into the program data
vector. For example, if a GET or OBTAIN function call fails to retrieve the expected
record, the input buffer might still contain data from a previous GET or OBTAIN call or
be filled with missing values. You might not want to move these values to SAS
variables. By checking either the ERRSTAT= or _ERROR_ variable, you can determine
whether the function call was successful and decide whether to move the input buffer
data to SAS variables.

When you need to issue a retrieval call but you want to check either _ERROR_ or
ERRSTAT= values before moving data to SAS variables, use a CA-IDMS INPUT
statement with no variables specified, but with a trailing @, to issue the call:

input @;

Because no variables are specified, no data are moved to the program data vector.
The statement contains a trailing @, so the record remains in the input buffer, and your
application can check the values in _ERROR_ and/or ERRSTAT= before determining
what action to take. For more information, see “Holding Records in the Input Buffer”
on page 35.

For example, suppose you have specified ERRSTAT=ERR and FUNC=FUNC1 on
your INFILE statement, and you have assigned FUNC1= ’GET’ or ’OBTAIN’. You can
use the following code to check the error status before moving data:

u input @;
v if (err ne ’0000’ and err ne ’0307’) then

go to staterr;
w if err eq ’0307’ then do;
x _error_ = 0;

/* No more DEPT records so STOP */

Using the SAS/ACCESS Interface to CA-IDMS 4 Example: Traversing a Set 37

stop;
end;

y input @1 department_id 4.0
@5 department_name $char45.
@50 department_head 4.0;

u The INPUT statement retrieves a record from the database and
places a hold on the input buffer but does not move data to the
program data vector.

v A SAS IF statement checks to see if ERR is not equal to 0000 or
0307. If not, the program branches to the STATERR routine, which
issues an error message and stops the DATA step.

w If the INPUT statement encountered the end-of-set, then the
ERROR variable is reset to 0 (x) to prevent the contents of the
input buffer and program data vector from being printed on the SAS
log, and the DATA step stops.

y If the first INPUT statement (u) was successful, then the second
INPUT statement moves the data from the record being held in the
input buffer to the program data vector and releases the hold.

Handling End of File
Because of the nature and design of a network database, the concept of an end of file

does not exist. Consequently, the SAS option EOF= should not be used on a CA-IDMS
INFILE statement. Instead you should either code your DATA step to stop processing
when you have retrieved all the records you need or set up your code to loop, stopping
only when it reaches a desired condition.

Example: Traversing a Set

The following DATA step shows how to traverse the DEPT-EMPLOYEE set using
the CA-IDMS INFILE and CA-IDMS INPUT statements. The numbers in the program
correspond to the numbered comments following the program.

u data work.dept_employee;

v infile empss01 idms func=func1 record=recname
area=iarea sequence=iseq errstat=err
set=iset;

/* BIND the DEPARTMENT and EMPLOYEE */
/* records in the first data set */
/* iteration; if successful, then */
/* OBTAIN FIRST DEPARTMENT WITHIN AREA */

w if _n_ = 1 then do;
func1 = ’BIND’;
recname = ’DEPARTMENT’;

x input;
if (err ne ’0000’) then go to staterr;

38 Example: Traversing a Set 4 Chapter 2

recname = ’EMPLOYEE’;
input;
if (err ne ’0000’) then go to staterr;

/* Get a DEPARTMENT record */

iseq = ’FIRST’;
func1 = ’OBTAIN’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;

end;

else do;
func1 = ’FIND’;
iseq = ’OWNER’;
input;
if (err ne ’0000’) then go to staterr;
func1 = ’OBTAIN’;
iseq = ’NEXT’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;
iset = ’ ’;

end;

/* OBTAIN DEPT record and test */
/* for success */

y input @;
U if (err ne ’0000’ and err ne ’0307’) then

go to staterr;
if err eq ’0307’ then do;

error = 0;
/* No more DEPT records so STOP */
stop;

end;
V input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

/* Get the EMPLOYEE records for this DEPT */
/* record */

iseq = ’FIRST’;
recname = ’EMPLOYEE’;
iset = ’DEPT-EMPLOYEE’;
iarea = ’ ’;
do until (err = ’0307’);

/* OBTAIN EMPLOYEE records and test for */
/* SUCCESS */

input @;
if (err ne ’0000’ and err ne ’0307’) then

go to staterr;

Using the SAS/ACCESS Interface to CA-IDMS 4 Example: Traversing a Set 39

if err = ’0000’ then do;
input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@75 phone 10.0
@85 status $char2.
@87 ssnumber $char9.
@96 startdate 8.0
@104 termdate 8.0
@112 birthdate 8.0;

W output;
X iseq = ’next’;

end;
end;
error = 0;
return;

staterr:
put @1 ’WARNING: ’ @10 func1 @17

’RETURNED ERR =’@37 err;
stop;

run;

at proc print data=work.dept_employee;
title1 ’This is an Area Sweep of the

DEPT-EMPLOYEE Set’;
title2 ’The Area Sweep is from Beginning to End’;
run;

u The DATA statement references a temporary SAS data set called
DEPT_EMPLOYEE, which is to be opened for output.

v The INFILE statement tells SAS to use the EMPSS01 subschema.
The IDMS option tells the SAS System that EMPSS01 is a
CA-IDMS subschema instead of a fileref. The statement also tells
the DATA step interface to use the SAS variables as follows:

� FUNC1 to contain the function type

� RECNAME to contain the record name

� IAREA to contain the area name

� ISEQ to contain the function call sequence information

� ISET to contain the set name.

The statement also tells the interface to store the call status in
ERR.

w All record types to be retrieved must first be bound to CA-IDMS.
The BIND function call need only be issued once per record type
prior to retrieval. The automatic SAS System variable _N_ is used
to indicate the first iteration of the DATA step code.

40 Example: Traversing a Set 4 Chapter 2

x The INPUT statements generate and submit the function call to
CA-IDMS requesting that a BIND be performed for the record type
specified in RECNAME. In this example, the DEPARTMENT record
type is bound first, then the EMPLOYEE record type is bound.

y This INPUT statement also uses the values in the SAS variables
FUNC1 and RECNAME, along with the values in ISEQ and IAREA
to generate an OBTAIN FIRST DEPARTMENT RECORD IN AREA
ORG-DEMO-REGION DML call. However, no data are moved into
the program data vector because no variables are defined on the
INPUT @; statement. This function call allows the DATA step to
check the status that is returned from CA-IDMS before moving data
into the program data vector. This function call is issued only on the
first iteration of the DATA step. On subsequent iterations, the
values in these SAS variables are used to generate an OBTAIN
NEXT DEPARTMENT RECORD IN AREA ORG-DEMO-REGION
DML call.

U The program examines the status code returned by CA-IDMS. If
CA-IDMS returns 0000, then the program proceeds to the next
statement. If CA-IDMS returns 0307 (end of set), then there are no
more department records and the DATA step stops.

V When this INPUT statement executes, DEPARTMENT RECORD
data are moved from the program data vector into the SAS buffer.

W As the DATA step executes, EMPLOYEE records that are members
of the DEPT-EMPLOYEE set are retrieved, and observations that
contain the EMPLOYEE data are written to the DEPT_EMPLOYEE
data set.

X The ISEQ value is changed to NEXT to generate an OBTAIN NEXT
EMPLOYEE RECORD IN SET DEPT-EMPLOYEE DML call.

at The PRINT procedure prints the list of DEPARTMENT and
EMPLOYEE records.

Output 2.3 on page 40 shows the SAS log for this example.

Output 2.3 SAS Log

Using the SAS/ACCESS Interface to CA-IDMS 4 Example: Traversing a Set 41

1 data work.dept_employee(drop=filler);
2 infile empss01 idms func=func1
3 record=recname
4 area=iarea
5 sequence=iseq
6 errstat=err
7 set=iset;

.

.

.
91 run;
NOTE: The infile EMPSS01 is:

Subschema=EMPSS01
NOTE: 86 records were read from the infile EMPSS01.

The minimum record length was 0.
The maximum record length was 116.

NOTE: The data set WORK.DEPT_EMPLOYEES has 56
observations and 16 variables.

NOTE: The DATA statement used 0.37 CPU seconds
and 2709K.

92 proc print data=work.dept_employees;
93 title1 ’This is an Area Sweep of the

DEPT-EMPLOYEE Set’;
94 title2 ’The Area Sweep is from the

Beginning to End’;
95 run;
NOTE: The PROCEDURE PRINT printed pages 1-3.

Output 2.4 on page 41 shows a portion of the output of this example.

Output 2.4 Area Sweep of DEPT-EMPLOYEE Set

42 Example: Using the Trailing @ and the INPUT with No Arguments 4 Chapter 2

This is an Area Sweep of the DEPT-EMPLOYEE Set

The Area Sweep is from the Beginning to End

department_ department_ employee_

Obs id department_name head id firstname lastname street

1 2000 ACCOUNTING AND PAYROLL 11 69 JUNE BLOOMER 14 ZITHER TERR

2 2000 ACCOUNTING AND PAYROLL 11 100 EDWARD HUTTON 781 CROSS ST

3 2000 ACCOUNTING AND PAYROLL 11 11 RUPERT JENSON 999 HARVEY ST

.

.

.

24 5100 BRAINSTORMING 15 15 RENE MAKER 10 DROVER DR

25 5100 BRAINSTORMING 15 341 RICHARD MUNYON 17 BLACKHILL DR

26 5100 BRAINSTORMING 1 458 RICHARD WAGNER 677 GERMANY LN

Obs city state zip phone status ssnumber startdate termdate birthdate

1 LEXINGTON MA 01675 617555554 40 103955781 880050 500000 60042

2 MELROSE MA 02176 617665101 00 101122333 377090 700000 41030

3 MELROSE MA 02176 617665555 60 102234789 180092 900000 48081

.

.

.

24 BOSTON MA 02123 617452141 40 101067334 378010 200000 45052

25 WESTWOOD MA 02090 617329001 70 111100208 180111 400000 50121

26 NATICK MA 02178 617432110 90 101177666 378060 700000 34030

This is an Area Sweep of the DEPT-EMPLOYEE Set

The Area Sweep is from the Beginning to End

department_ department_ employee_

Obs id department_name head id firstname lastname street

27 1000 PERSONNEL 13 81 TOM FITZHUGH 450 THRUWAY ST

28 1000 PERSONNEL 13 51 CYNTHIA JOHNSON 17 MANIFESTO DR

29 1000 PERSONNEL 13 91 MADELINE ORGRATZI 67 RAINBOW DR

.

.

.

50 3100 INTERNAL SOFTWARE 3 35 LARRY LITERATA 123 SATURDAY TERR

51 3100 INTERNAL SOFTWARE 3 23 KATHERINE O’HEARN 12 EAST SPEEN ST

52 3100 INTERNAL SOFTWARE 3 21 RALPH TYRO 888 FORTITHE ST

Obs city state zip phone status ssnumber startdate termdate birthdate

27 MANSFIELD MA 03458 617882012 30 111234567 881091 900000 56021

28 WALPOLE MA 02546 617777888 80 501134787 877032 300000 45010

29 KENDON MA 06182 617431191 90 123106787 880101 0 51101

.

.

.

50 WILMINGTON MA 02476 617591232 30 102356783 180090 900000 55043

51 NATICK MA 02364 617889713 40 101955671 278050 400000 54040

52 SINGER MA 02254 617445919 10 101989345 680122 100000 55122

Example: Using the Trailing @ and the INPUT with No Arguments

This example shows the use of the trailing @ and the INPUT statement with no
arguments. This DATA step creates a SAS data set, DEPT5100, from data in the
EMPLOYEE records in department number 5100. The subschema used defines the
DEPARTMENT and the EMPLOYEE record with all their elements.

The example starts by issuing a BIND on the DEPARTMENT record and the
EMPLOYEE record. This CA-IDMS call is required for each record that will be
retrieved, but the BIND function itself does not retrieve any data. To generate these
calls, a null INPUT statement is used. The same thing is done with the FIND CALC

Using the SAS/ACCESS Interface to CA-IDMS 4 Example: Using the Trailing @ and the INPUT with No Arguments 43

DEPARTMENT call. Once again, this call does not retrieve any data so the null INPUT
statement is used.

Each OBTAIN call is issued by a CA-IDMS INPUT statement with a trailing @, so
the retrieved record is placed in the buffer and held there. The ERR variable is
checked. If a call results in an error, the job terminates. If a call is successful, another
CA-IDMS INPUT statement moves the data to SAS variables in the program data
vector, and the observation is written to the appropriate SAS data set. Output 2.5 on
page 44 shows the output of this example.

data work.dept5100(drop=filler);
infile empss01 idms func=func1 record=recname

sequence=iseq errstat=err ikey=ckey
ikeylen=keylen keyoff=offset set=iset;

/* BIND the DEPARTMENT and EMPLOYEE */
/* records; then, if successful */
/* OBTAIN FIRST DEPARTMENT WITHIN AREA */

func1 = ’BIND’;
recname = ’DEPARTMENT’;
input;
if (err ne ’0000’) then go to staterr;
recname = ’EMPLOYEE’;
input;
if (err ne ’0000’) then go to staterr;

/* FIND DEPT record with CALC key 5100 */

func1 = ’FIND’;
recname = ’DEPARTMENT’;
ckey = ’5100’;
keylen = 4;
offset = 0;
input;
if (err ne ’0000’) then go to staterr;

/* Reset the options for the next call */

func1 = ’OBTAIN’;
recname = ’EMPLOYEE’;
ckey = ’ ’;
keylen = 0;
offset = 0;
iseq = ’FIRST’;
iset = ’DEPT-EMPLOYEE’;

do while (err = ’0000’);

/* OBTAIN EMPLOYEE records and test */
/* for success */

input @;
if (err ne ’0307’ and err ne ’0000’) then

go to staterr;
if (err eq ’0307’) then do;

44 Example: Using the Trailing @ and the INPUT with No Arguments 4 Chapter 2

error = 0;
stop;

end;
input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@75 phone 10.0
@85 status $char2.
@87 ssnumber 9.0
@96 startdate 8.0
@104 termdate 8.0
@112 birthdate 8.0;

output;
iseq = ’NEXT’;

end;
staterr:

put @1 ’ERROR: ’ @10 func1 @17
’returned err =’ @37 err ;

stop;
run;
proc print data=work.dept5100;
title1 ’All the EMPLOYEES in the BRAINSTORMING

Department’;
run;

Output 2.5 Employee List

All the EMPLOYEES in the BRAINSTORMING Department

employee_

Obs id firstname lastname street city state zip phone status ssnumber startdate termdate birthdate

1 466 ROY ANDALE 44 TRIGGER RD FRAMINGHAM MA 03461 617554110 80 302760111 578061 500000 60030

2 457 HARRY ARM 77 SUNSET STRIP NATICK MA 02178 617432092 30 502877014 777120 100000 34040

3 467 C. BREEZE 200 NIGHTINGALE ST FRAMINGHAM MA 03461 617554238 70 111155669 279060 200000 34050

4 334 CAROLYN CROW 891 SUMMER ST WESTWOOD MA 02090 617329177 60 102398011 79061 700000 44040

5 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA 01476 617534110 90 112904050 675020 300000 32041

6 15 RENE MAKER 10 DROVER DR BOSTON MA 02123 617452141 40 101067334 378010 200000 45052

7 341 RICHARD MUNYON 17 BLACKHILL DR WESTWOOD MA 02090 617329001 70 111100208 180111 400000 50121

8 458 RICHARD WAGNER 677 GERMANY LN NATICK MA 02178 617432110 90 101177666 378060 700000 34030

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS ® Interface to CA-IDMS Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. pp. 104.

SAS/ACCESS® Interface to CA-IDMS Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–547–7
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

