
45

C H A P T E R

3
Examples of SAS/ACCESS DATA
Step Programs

Introduction 45
Statements Common to All Examples 45

Performing an Area Sweep 46

Navigating Multiple Set Relationships 50

Using a SAS Data Set as a Transaction File 57

Using Information in a SAS Data Set to Locate Records 62
Supplying Transaction Information and Navigating Set Occurrences 67

Re-establishing Currency on a Record 72

Using RETURN and GET Across Executions of the DATA Step 78

Introduction
This chapter contains several example programs designed to introduce and illustrate

the SAS/ACCESS DATA step interface to CA-IDMS.
All of the examples in this chapter can be executed against the sample EMPLOYEE

database provided by Computer Associates. These examples illustrate syntax and call
formats as well as logic tips for sequential and direct access of DBMS records and
transaction-oriented applications. Each example is described using numbered
comments that correspond to numbered lines of code. The output is shown for each
example, but the log files are not included. For an example of a log file, see
“Introductory Example of a DATA Step Program” on page 5. All of the examples have
several statements in common, as described in the following section.

Statements Common to All Examples
All of the examples in this chapter contain or generate the following statements:

OPTIONS
The $IDMDBUG system option tells the SAS System to write information to the
SAS log regarding call parameter values and the formatted calls submitted to
CA-IDMS. You can use this information to debug your application and to inspect
or verify the DML calls generated by the DATA step interface. Each of the
examples in this chapter begin with an OPTIONS statement that specifies the
$IDMDBUG option, but these OPTIONS statements are commented out with an
asterisk. To execute the OPTIONS statement (and activate the $IDMDBUG
system option), remove the asterisk.

46 Performing an Area Sweep 4 Chapter 3

INFILE
The INFILE statements used in these examples specify a subschema and the
IDMS keyword, which indicates that the task will be accessing CA-IDMS records.
The parameters on the INFILE statements create SAS variables whose values are
used to format DML calls and check error status codes after those calls have been
issued. None of the parameters have default values and, therefore, each variable
must be assigned a valid value or blank before each call. None of the defined
variables are included in the output data set. For specific information on each
INFILE parameter, see “The CA-IDMS INFILE Statement” on page 10.

BIND RECORD
A BIND function call must be issued for each record whose data will be retrieved
during execution of the DATA step. The BIND RECORD statement establishes
addressibility for a named record. In each of these examples, a null INPUT
statement issues a BIND RECORD statement for each record (see “Using the Null
INPUT Statement” on page 34). After the call is issued, the programs check the
status code returned by CA-IDMS to be sure the call was successful. If the call is
successful, the DATA step continues. If the call is unsuccessful, execution
branches to the STATERR label, error information is written to the SAS log, and
the DATA step terminates.

STATERR statements
For each call to CA-IDMS, the examples in this chapter check the status code that
is returned by CA-IDMS. When CA-IDMS returns an unexpected status code,
these examples execute the statements associated with the STATERR label. These
statements

� issue an ERROR message to the SAS log describing the unexpected condition
� reset _ERROR_ to 0 to prevent the contents of the PDV (program data vector)

from being written to the SAS log
� issue a STOP statement to immediately terminate the DATA step.
For more information on dealing with status codes, see “Checking Call Status

Codes” on page 35.

Performing an Area Sweep
This example performs an area sweep of all DEPARTMENT records in the

ORG-DEMO-REGION, and for each DEPARTMENT record, obtains all the EMPLOYEE
records within the DEPT-EMPLOYEE set. An area sweep makes a sequential pass
based on the physical location of a defined area for a specified record type. Records are
accessed using the OBTAIN FIRST and OBTAIN NEXT DML calls. The example
illustrates the concept of flattening out network record occurrences in an owner-member
relationship. Owner (DEPARTMENT) information is repeated for each member
(EMPLOYEE) in the set for observations written to the output SAS data set. The
numbers in the program correspond to the numbered comments following the program.

u *options $idmdbug;
data work.dept_employee;

v infile empss01 idms func=func
record=recname area=iarea sequence=seq
errstat=stat set=inset;

/* BIND records to be accessed */

Examples of SAS/ACCESS DATA Step Programs 4 Performing an Area Sweep 47

if _n_ = 1 then do;
w func = ’BIND’;

recname = ’DEPARTMENT’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

/* OBTAIN FIRST DEPARTMENT record */

x seq = ’FIRST’;
func = ’OBTAIN’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;

end;

/* FIND and OBTAIN NEXT DEPARTMENT record */

y if _n_ ge 2 then do;
func = ’FIND’;
seq = ’OWNER’;
input;
if stat ne ’0000’ then go to staterr;

func = ’OBTAIN’;
seq = ’NEXT’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;
inset = ’ ’;

end;

U input @;
if stat not in (’0000’, ’0307’) then go

to staterr;

/* Stop DATA step when all DEPARTMENT records */
/* have been accessed */

if stat = ’0307’ then do;
error = 0;
stop;

end;

input @1 department_id 4.0
@5 department_name $char45.
@50 department_head 4.0;

48 Performing an Area Sweep 4 Chapter 3

/* OBTAIN EMPLOYEE records in set DEPT- */
/* EMPLOYEE for CURRENT DEPARTMENT */

V seq = ’FIRST’;
recname = ’EMPLOYEE’;
inset = ’DEPT-EMPLOYEE’;
iarea = ’ ’;

do until (stat ne ’0000’);
input @;
if stat not in (’0000’, ’0307’) then go

to staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@75 phone 10.0
@85 status $char2.
@87 ssnumber 9.0
@96 startdate yymmdd6.
@102 termdate 6.0
@108 birthdate yymmdd6.;
output;

seq = ’NEXT’;
end;

end;
W _error_ = 0;

return;

X staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat ;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= iarea= seq=

inset=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.dept_employee;
format startdate birthdate date9.;
title1 ’This is an Area Sweep of the DEPT-

EMPLOYEE Set’;
run;

Examples of SAS/ACCESS DATA Step Programs 4 Performing an Area Sweep 49

u See “Statements Common to All Examples” on page 45 for a
description of the OPTIONS statement.

v See “Statements Common to All Examples” on page 45 for a
description of the INFILE statement.

w See “Statements Common to All Examples” on page 45 for a
description of the BIND RECORD statement.

x For the first iteration of the DATA step, initialize the call
parameters to obtain the FIRST DEPARTMENT record in the
ORG-DEMO-REGION area.

y For subsequent iterations of the DATA step, initialize the call
parameters to find the OWNER of the current EMPLOYEE record so
that the program can obtain the NEXT DEPARTMENT record in the
area. The null INPUT statement forces the call to be generated and
submitted, but no data are returned to the input buffer (see “Using
the Null INPUT Statement” on page 34). The status code returned
by the FIND call is checked before proceeding to the next call.

U The INPUT @; statement holds the contents of the input buffer so
the program can check the status code returned by CA-IDMS. (See
“Holding Records in the Input Buffer” on page 35.) For a successful
call, the next INPUT statement moves DEPARTMENT information
from the input buffer to the named variables in the PDV.

When all records in the area have been accessed, CA-IDMS
returns a 0307 status code (end-of-area). The program then issues a
STOP statement to terminate the DATA step. Because there is no
other end-of-file condition to normally terminate the DATA step, the
STOP statement must be issued to avoid a looping condition.
Because non-blank status codes set the automatic DATA step
variable _ERROR_ to 1, _ERROR_ is reset to 0 to prevent the
contents of the PDV from being written to the SAS log.

V After a DEPARTMENT record has been obtained, issue an OBTAIN
for all EMPLOYEES that occur within the current
DEPT-EMPLOYEE set. The DO UNTIL loop issues OBTAIN calls,
verifies the status code, and moves employee information from the
input buffer to the named variables in the PDV. For each successful
OBTAIN, the INPUT @; statement holds onto the current input
buffer contents until the status code is checked. After all
EMPLOYEE records in the set have been accessed, CA-IDMS
returns a status code of 0307, which terminates the DO UNTIL loop.

W At this point, the STAT variable must have a value of 0307. Because
this code is non-zero, _ERROR_ is reset to 0, which prevents the
contents of the PDV from being written to the SAS log.

X See “Statements Common to All Examples” on page 45 for a
description of the STATERR statements.

Output 3.1 on page 49 shows a portion of the output from this program.

Output 3.1 Performing an Area Sweep

50 Navigating Multiple Set Relationships 4 Chapter 3

This is an Area Sweep of the DEPT-EMPLOYEE Set

department_ department_ employee_
Obs id department_name head id firstname

1 2000 ACCOUNTING AND PAYROLL 11 69 JUNE
2 2000 ACCOUNTING AND PAYROLL 11 100 EDWARD
3 2000 ACCOUNTING AND PAYROLL 11 11 RUPERT
4 2000 ACCOUNTING AND PAYROLL 11 67 MARIANNE
5 2000 ACCOUNTING AND PAYROLL 11 106 DORIS
6 2000 ACCOUNTING AND PAYROLL 11 101 BRIAN
7 3200 COMPUTER OPERATIONS 4 4 HERBERT
8 3200 COMPUTER OPERATIONS 4 32 JANE

Obs lastname street city state zip phone

1 BLOOMER 14 ZITHER TERR LEXINGTON MA 01675 617555554
2 HUTTON 781 CROSS ST MELROSE MA 02176 617665101
3 JENSON 999 HARVEY ST MELROSE MA 02176 617665555
4 KIMBALL 561 LEXINGTON AVE LITTLETON MA 01239 617492121
5 KING 716 MORRIS ST MELROSE MA 02176 617665616
6 NICEMAN 60 FLORENCE AVE MELROSE MA 02176 617665431
7 CRANE 30 HERON AVE KINGSTON NJ 21341 201334143
8 FERNDALE 60 FOREST AVE NEWTON MA 02576 617888811

Obs status ssnumber startdate termdate birthdate

1 40 103955781 880050 500000 60042
2 00 101122333 377090 700000 41030
3 60 102234789 180092 900000 48081
4 20 102277887 878091 900000 49042
5 10 106784551 680081 600000 60091
6 50 103345611 80050 600000 55121
7 30 101677745 177051 400000 42032
8 20 103456789 179090 900000 58011

Navigating Multiple Set Relationships

This example shows how to navigate multiple set relationships and use direct access
methods involving database record keys. The output consists of observations containing
related employee, office, and dental claim information. Observations are only output for
employees that have dental claim record occurrences. To gather the information, the
program performs an area sweep for the DEPARTMENT records and uses the FIND
command to establish currency and navigate the DEPT-EMPLOYEE,
OFFICE-EMPLOYEE, EMP-COVERAGE, and COVERAGE-CLAIMS sets. By accepting
and storing database keys, currency can be re-established on the EMPLOYEE record
after obtaining OFFICE information and prior to gathering COVERAGE and DENTAL
CLAIM information. The numbers in the program correspond to the numbered
comments following the program.

u *options $idmdbug;
data work.dental_records;

drop tempkey;

v infile empss01 idms func=func record=recname
dbkey=dkey errstat=stat sequence=seq
set=inset area=subarea;

Examples of SAS/ACCESS DATA Step Programs 4 Navigating Multiple Set Relationships 51

/* BIND the records to be accessed */

w if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’DEPARTMENT’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’COVERAGE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’DENTAL-CLAIM’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’OFFICE’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* FIND FIRST/NEXT DEPARTMENT record in */
/* area ORG-DEMO-REGION */

x seq = ’NEXT’;
if _n_ = 1 then seq = ’FIRST’;
func = ’FIND’;
recname = ’DEPARTMENT’;
subarea = ’ORG-DEMO-REGION’;
inset = ’ ’;
input;
if stat not in (’0000’, ’0307’) then go to

staterr;

/* STOP DATA step execution if no more */
/* DEPARTMENT records */

y if stat = ’0307’ then do;
error = 0;
stop;

end;

U do until (stat ne ’0000’);

/* OBTAIN NEXT EMPLOYEE record */

52 Navigating Multiple Set Relationships 4 Chapter 3

func = ’OBTAIN’;
seq = ’NEXT’;
recname = ’EMPLOYEE’;
inset = ’DEPT-EMPLOYEE’;
input @;
if stat not in (’0000’,’0307’) then go to

staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@109 birthdate yymmdd6.;

/* ACCEPT DBKEY for current EMPLOYEE and */
/* store in tempkey */

V func = ’ACCEPT’;
seq = ’CURRENT’;
dkey = ’ ’;
inset = ’ ’;
input;
if stat ne ’0000’ then go to staterr;
tempkey=dkey;

/* OBTAIN OFFICE record for current */
/* EMPLOYEE */

W func = ’OBTAIN’;
seq = ’OWNER’;
dkey = ’ ’;
inset = ’OFFICE-EMPLOYEE’;
input @;
if stat ne ’0000’ then go to staterr;
input @1 office_code $char3.

@4 office_street $char20.
@24 office_city $char15.
@39 office_state $char2.
@41 office_zip $char9.;

/* FIND EMPLOYEE using DBKEY stored in */
/* tempkey */

X func = ’FIND’;

Examples of SAS/ACCESS DATA Step Programs 4 Navigating Multiple Set Relationships 53

recname = ’ ’;
dkey = tempkey;
seq = ’ ’;
inset = ’ ’;
input;
if stat ne ’0000’ then go to staterr;

/* FIND FIRST COVERAGE record for */
/* current EMPLOYEE */

at func = ’FIND’;
recname = ’COVERAGE’;
dkey = ’ ’;
seq = ’FIRST’;
inset = ’EMP-COVERAGE’;
input;
if stat ne ’0000’ then go to staterr;

/* OBTAIN LAST DENTAL-CLAIM record */
/* within COVERAGE-CLAIMS */
/* Observations are only OUTPUT for */
/* employees with dental claim records */

ak func = ’OBTAIN’;
recname = ’DENTAL-CLAIM’;
seq = ’LAST’;
inset = ’COVERAGE-CLAIMS’;
input @;
if stat not in (’0000’,’0307’) then go to

staterr;
do while (stat eq ’0000’);

input @1 claim_year $2.
@3 claim_month $2.
@5 claim_day $2.
@7 claim_firstname $10.
@17 claim_lastname $15.
@32 birthyear $2.
@34 birthmonth $2.
@36 birthday $2.
@38 sex $1.
@39 relation $10.
@49 dds_firstname $10.
@59 dds_lastname $15.
@74 ddsstreet $20.
@94 ddscity $15.
@109 ddsstate $2.
@111 ddszip $9.
@120 license $6.
@126 num_procedure ib2.
@131 tooth_number $2.
@133 service_year $2.
@135 service_month $2.

54 Navigating Multiple Set Relationships 4 Chapter 3

@137 service_day $2.
@139 procedure_code $4.
@143 descservice $60.
@203 fee pd5.2;

output;

/* OBTAIN PRIOR DENTAL-CLAIM record */

seq = ’PRIOR’;
input @;

end;

/* When DENTAL-CLAIM records have been */
/* processed, release INPUT buffer and */
/* reset STAT to OBTAIN NEXT EMPLOYEE */

al if stat = ’0307’ then do;
stat = ’0000’;
input;

end;
else go to staterr;

end;
end;

/* When all EMPLOYEEs have been processed, */
/* reset ERROR flag and continue with next */
/* DEPARTMENT */

am _error_ = 0;
return;

an STATERR:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= seq= inset= dkey=

subarea=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.dental_records;
format birthdate date9.;
title1 ’Dental Claim Information’;

run;

u See “Statements Common to All Examples” on page 45 for a
description of the OPTIONS statement.

Examples of SAS/ACCESS DATA Step Programs 4 Navigating Multiple Set Relationships 55

v See “Statements Common to All Examples” on page 45 for a
description of the INFILE statement.

w See “Statements Common to All Examples” on page 45 for a
description of the BIND RECORD statement.

x The first time the DATA step executes, the FIND command locates
the FIRST DEPARTMENT record in the area. For subsequent
DATA step iterations, initialize the call parameters to find the
NEXT DEPARTMENT record in the area. The null INPUT
statement generates and submits the call, but no data are returned
to the input buffer. A SAS IF statement checks the status code
returned by the FIND call.

y As DEPARTMENT records are located, the program checks the
status code returned by CA-IDMS. When all records in the area
have been accessed, CA-IDMS returns a 0307 status code
(end-of-area). The program then issues a STOP statement to
terminate the DATA step. Since there is no other end-of-file
condition to normally terminate the DATA step, the STOP statement
must be issued to avoid a looping condition. Also, non-blank status
codes set the automatic DATA step variable _ERROR_ to 1, so
ERROR is reset to 0, which prevents the contents of the PDV from
being written to the SAS log.

U For the current DEPARTMENT, the program must access all
EMPLOYEE records in the DEPT-EMPLOYEE set. The DO UNTIL
loop executes until the status code that is returned from CA-IDMS is
not equal to 0000. For unexpected status codes, the statements
associated with the STATERR label are executed, and the loop
terminates when the end-of-set status code (0307) is encountered.
An OBTAIN is used to retrieve the EMPLOYEE records. After the
status code is verified to be successful, data are moved from the
input buffer to the PDV by executing the INPUT statement. The
first INPUT @; statement forces the call to be submitted and allows
a returned status code to be checked prior to any attempt to move
data from the input buffer to the PDV. This process eliminates any
possibility of moving invalid data into the PDV and avoids
unnecessary data conversions when the call fails.

V After an EMPLOYEE record has been obtained, the ACCEPT
command takes the record’s database key and stores it in DKEY, the
variable defined by the DBKEY= INFILE parameter. The value is
then stored in a variable called TEMPKEY because the DKEY
variable must be set to blanks to generate the next call correctly. By
saving the record’s database key, the program can re-establish
currency on the EMPLOYEE record after obtaining OWNER
information from the OFFICE record in the OFFICE-EMPLOYEE
set.

W OFFICE records are retrieved by issuing an OBTAIN OWNER
within the OFFICE-EMPLOYEE set. The INPUT @; statement
generates and submits the call. For a successful OBTAIN, OFFICE
information is moved from the held input buffer to the PDV.

X The program is now ready to establish currency back to the
EMPLOYEE record current in the DEPT-EMPLOYEE set. The
database key value stored in TEMPKEY is used to format a FIND

56 Navigating Multiple Set Relationships 4 Chapter 3

DBKEY command. The null INPUT statement submits the call and
the status code is checked to be sure it was successful. Any status
code other than 0000 routes execution to the STATERR label.

at Now current on EMPLOYEE, a FIND is issued to locate the FIRST
COVERAGE record in the EMP-COVERAGE set. For any status
code not equal to 0000, execution is routed to the STATERR label.

ak The goal is to process all the DENTAL-CLAIM records in the
COVERAGE-CLAIMS set for the current COVERAGE record. An
OBTAIN LAST is submitted by the INPUT @; statement, and if
DENTAL-CLAIM records exist in the set, then the subsequent
INPUT statement maps the returned data from the input buffer to
the PDV. At this point, a complete observation–one containing
EMPLOYEE, OFFICE and DENTAL-CLAIM data–is output to the
SAS data set. The sequence variable SEQ is assigned a value of
PRIOR so that subsequent iterations of the DO WHILE loop submit
an OBTAIN PRIOR call. The DO WHILE continues executing until
the OBTAIN PRIOR returns a status code not equal to 0000.

al If the status code indicates end-of-set (0307) then the status variable
is reset to 0000. The assignment is done to allow the DO UNTIL
loop (see U) to continue executing and issuing OBTAIN calls for
employees in the current department. The null INPUT statement is
issued to release the buffer held by the INPUT @; statement within
the DO WHILE loop. In this example, because there was a held
buffer, the null INPUT statement does not attempt to generate and
submit a DML call. The buffer must be released so the next DML
call, the OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE,
can be generated. For any other status code, execution branches to
the STATERR label.

am At this point, the STAT variable must have a value of 0307. Since
this code is non-zero, _ERROR_ is reset to 0, which prevents the
contents of the PDV from being written to the SAS log.

an See “Statements Common to All Examples” on page 45 for a
description of the STATERR statements.

Output 3.2 on page 56 shows a portion of the output from this program.

Output 3.2 Navigating Multiple Set Relationships

Examples of SAS/ACCESS DATA Step Programs 4 Using a SAS Data Set as a Transaction File 57

Dental Claim Information

employee_
Obs id firstname lastname street city state zip

1 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ 21341
2 30 HENRIETTA HENDON 16 HENDON DR WELLESLEY MA 02198

office_
Obs phone status ssnumber birthdate code office_street

1 2013341433 01 016777451 420321 001 20 W BLOOMFIELD ST
2 6178881212 01 011334444 331006 002 567 BOYLSTON ST

office_ office_ claim_ claim_ claim_ claim_ claim_
Obs office_city state zip year month day firstname lastname

1 SPRINGFIELD MA 02076 80 10 04 JESSICA CRANE
2 BOSTON MA 02243 77 05 23 HELOISE HENDON

dds_ dds_
Obs birthyear birthmonth birthday sex relation firstname lastname

1 57 01 11 F WIFE DR PEPPER
2 68 03 15 F DAUGHTER SAL SARDONICUS

num_ tooth_
Obs ddsstreet ddscity ddsstate ddszip license procedure number

1 78 COLA RD PRINCETON NJ 01762 877073 2 08
2 402 NATURE’S WAY NEEDHAM MA 02243 459631 1 14

service_ service_ service_ procedure_
Obs year month day code descservice fee

1 80 09 16 0076 FILLING 14
2 77 05 02 0076 FILLING 14

Using a SAS Data Set as a Transaction File

This example illustrates how to use an input SAS data set as a transaction file to
supply parameter values for direct access DML calls. These calls obtain CA-IDMS
records using CALC key values. The transaction data set WORK.EMP supplies CALC
key values for EMPLOYEE records. The program then accesses EMPOSITION records
in the EMP-EMPOSITION set to create an output SAS data set that contains all of the
position information for the employees named in WORK.EMP. The DATA step
terminates after all observations from WORK.EMP have been read. The numbers in
the program correspond to the numbered comments following the program.

u *options $idmdbug;

v data work.emp;
input id $4.;

datalines;
0471
0301
0004
0091
1002

58 Using a SAS Data Set as a Transaction File 4 Chapter 3

;
data work.emp_empos;

drop id chkrec nxtrec;
length chkrec $ 29;

w infile empss01 idms func=func record=recname
ikeylen=keyl errstat=stat sequence=seq
set=inset ikey=ckey dbkey=dkey;

/* BIND the records to be accessed */

x if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’EMPOSITION’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* OBTAIN EMPLOYEE records using CALC key */
/* from EMP data set */

y set work.emp;
func = ’OBTAIN’;
ckey = id;
keyl = 4;
recname = ’EMPLOYEE’;
input @;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 emp_start yymmdd6.
@103 emp_term 6.0
@109 birthdate yymmdd6.;

/* OBTAIN LAST EMPOSITION record in */
/* EMP-EMPOSITION set */

U func = ’OBTAIN’;

Examples of SAS/ACCESS DATA Step Programs 4 Using a SAS Data Set as a Transaction File 59

seq = ’LAST’;
ckey = ’ ’;
keyl = 0;
dkey = ’ ’;
recname = ’EMPOSITION’;
inset = ’EMP-EMPOSITION’;
input @;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

chkrec = put(employee_id,z4.) ||firstname ||
lastname;

/* Process all EMPOSITION records for */
/* current EMPLOYEE */

V do until (nxtrec = chkrec);
input @1 pos_start yymmdd6.

@7 pos_finish 6.0
@13 salarygrade 2.0
@15 salary pd5.2
@20 bonus pd2.0
@22 commission pd2.0
@24 overtime pd2.0;

output;

/* ACCEPT CURRENCY for PRIOR record in */
/* EMP-EMPOSITION set */

W func = ’ACCEPT’;
dkey = ’ ’;
seq = ’PRIOR ’;
recname = ’ ’;
inset = ’EMP-EMPOSITION’;
input;
if stat eq ’0000’ then do;

/* OBTAIN current record using the DBKEY */

X func = ’OBTAIN’;
seq = ’ ’;
inset = ’ ’;
input @1 nxtrec $29. @;
if stat ne ’0000’ then go to staterr;
end;

end;
end;

at else do;
put ’WARNING: No EMPOSITION record for

EMPID= ’ id;

60 Using a SAS Data Set as a Transaction File 4 Chapter 3

put ’WARNING: Execution continues with
next EMPID.’;

error = 0;
end;

end;
else do;

put ’WARNING: No EMPLOYEE record for EMPID= ’
id;

put ’WARNING: Execution continues with next
EMPID.’;

error = 0;
end;

return;

ak staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= ckey= seq= inset=

keyl= dkey=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.emp_empos;
format emp_start birthdate pos_start

date9. salary dollar12.2
title1 ’Positions Held by Specified

Employees’;
title2 ’Listed in Ascending Order by

Initdate/Termdate’;
run;

u See “Statements Common to All Examples” on page 45 for a
description of the OPTIONS statement.

v This DATA step execution creates the transaction data set
WORK.EMP. The 4-byte character variable ID contains CALC key
values that will be used to access EMPLOYEE records directly by
employee ID.

w See “Statements Common to All Examples” on page 45 for a
description of the INFILE statement.

x See “Statements Common to All Examples” on page 45 for a
description of the BIND RECORD statement.

y An observation is read from WORK.EMP, and the current ID value
is used as a CALC key for obtaining the EMPLOYEE. The length of
the CALC key is specified with the IKEYLEN= variable KEYL. The
INPUT @; statement submits the call and places a hold on the input
buffer so that the status code can be checked. For any unexpected
status code, execution branches to the STATERR label. A status code

Examples of SAS/ACCESS DATA Step Programs 4 Using a SAS Data Set as a Transaction File 61

of 0000 directs execution to the INPUT statement which maps data
from the held input buffer to the PDV and then releases the buffer.

U The program now attempts to obtain EMPOSITION records in the
order of oldest (LAST) to most current (FIRST). First, an OBTAIN
LAST call is issued for the EMPOSITION record in set
EMP-EMPOSITION. The INPUT @; statement submits the call and
holds the buffer so the status code can be checked. Execution
branches to the STATERR label for any unexpected status code. For
status code 0000, a variable called CHKREC is assigned a value
that is composed of the current employee’s CALC key, first name,
and last name. CHKREC is used in the condition of the DO UNTIL
loop described in the next step.

V The DO UNTIL loop navigates the EMP-EMPOSITION set
occurrences in reverse order. The condition on a DO UNTIL loop is
evaluated at the bottom of the loop after the statements in the loop
have been executed (see X).

The input buffer already contains an EMPOSITION record. The
INPUT statement maps EMPOSITION data from the held buffer
into the variables in the PDV. At this point, a complete observation
exists and is output to the WORK.EMP_EMPOS data set. No
observation is written when no EMPOSITION records exist for a
specified employee.

W To move in reverse order, the ACCEPT PRIOR call is generated and
issued within the EMP-EMPOSITION set to return the database
key of the prior record in the current set occurrence. The database
key is stored in the variable defined by the DBKEY= parameter on
the INFILE statement, DKEY. The null INPUT statement submits
the call. For any status code not equal to 0000, execution branches
to the STATERR label.

X For a successful ACCEPT call, an OBTAIN is issued using the
database key stored in DKEY. Using this method to navigate the set
implies that no end-of-set status code is set. To determine whether
an end-of-set condition exists, the INPUT statement submits the
OBTAIN, moves the first 29 bytes of data into a character variable
called NXTREC and places a hold on the buffer contents. For a
successful OBTAIN, execution resumes with the evaluation of the
DO UNTIL condition. If CHKREC equals NXTREC, then the
program is current on the EMPLOYEE (owner of the set) so the loop
terminates. If the variables are not equal, then the record in the
buffer is an EMPOSITION record, so data are moved into the PDV
from the input buffer, and another observation is output for the
current employee.

at This group of statements allows execution to continue when either
no EMPOSITION records exist for the specified employee or no
EMPLOYEE record exists for the CALC value specified in the
transaction data set. In both cases, informative WARNING messages
are written to the SAS log, and _ERROR_ is reset to 0, which
prevents the contents of the PDV from being written to the SAS log.

ak See “Statements Common to All Examples” on page 45 for a
description of the STATERR statements.

Output 3.3 on page 62 shows a portion of the output from this program.

62 Using Information in a SAS Data Set to Locate Records 4 Chapter 3

Output 3.3 Using a SAS Data Set as a Transaction File

Positions Held by Specifed Employees
Listed in Ascending Order by Initdate/Termdate

employee_
Obs id firstname lastname street city state

1 471 THEMIS PAPAZEUS 234 TRANSWORLD ST NORTHBORO MA
2 471 THEMIS PAPAZEUS 234 TRANSWORLD ST NORTHBORO MA
3 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
4 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
5 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
6 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
7 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
8 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
9 91 MADELINE ORGRATZI 67 RAINBOW DR KENDON MA

Obs zip phone status ssnumber emp_start emp_term birthdate pos_start

1 03256 6174561277 01 022887770 07SEP1978 0 04MAR1935 07SEP1978
2 03256 6174561277 01 022887770 07SEP1978 0 04MAR1935 01JAN1982
3 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1975
4 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1977
5 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1980
6 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 14MAY1977
7 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 15NOV1979
8 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 14MAY1982
9 06182 6174311919 01 231067878 10OCT1980 0 16OCT1951 10OCT1980

pos_
Obs finish salarygrade salary bonus commission overtime

1 811231 72 $90,000.00 10 0 0
2 0 82 $100,000.00 10 0 0
3 770202 52 $39,000.00 7 0 0
4 800202 52 $45,000.00 7 0 0
5 0 53 $54,500.00 7 0 0
6 791114 71 $60,000.00 10 0 0
7 820513 71 $70,000.00 10 0 0
8 0 71 $75,000.00 10 0 0
9 0 43 $39,000.00 7 0 0

Using Information in a SAS Data Set to Locate Records
This example, like the previous example, uses the information stored in a SAS data

set to locate records in the CA-IDMS database. In this case, not only do the observations
in the transaction data set WORK.OFFICE provide CALC information for the OFFICE
record, they supply sort key information as well for the EMPLOYEE record. Therefore,
the program uses both pieces of information to locate a specific occurrence of the
OFFICE record, followed by a specific occurrence of the EMPLOYEE record in the
OFFICE-EMPLOYEE set occurrence. If any of the transaction information is incorrect,
a WARNING message is issued and no observation is output to WORK.EMP. The
numbers in the program correspond to the numbered comments following the program.

u *options $idmdbug;

v data work.office;
input offkey $3. emp $25.;
datalines;

Examples of SAS/ACCESS DATA Step Programs 4 Using Information in a SAS Data Set to Locate Records 63

001GARFIELD JENNIFER
002BLOOMER JUNE
005JOE SMITH
008WAGNER RICHARD
010ANDALE ROY
;
data work.emp;

drop offkey emp;

w infile empss01 idms func=func record=recname
ikey=ckey ikeylen=keyl errstat=stat
sequence=seq set=inset sortfld=skey;

/* BIND the records to be accessed */

x if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’OFFICE’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* OBTAIN OFFICE record based on CALC key */

y set work.office;
func = ’OBTAIN’;
ckey = offkey;
keyl = 3;
recname = ’OFFICE’;
inset = ’ ’;
skey = ’ ’;
input @;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

input @1 office_code $char3.
@4 office_street $char20.
@24 office_city $char15.
@39 office_state $char2.
@41 office_zip $char9.
@50 officephone1 9.0
@59 officephone2 9.0
@68 officephone3 9.0
@77 areacode $char3.
@80 speeddial $char3.;

/* FIND EMPLOYEE record within set */

64 Using Information in a SAS Data Set to Locate Records 4 Chapter 3

/* using SORT key */

U func = ’FIND’;
skey = emp;
ckey = ’ ’;
keyl = 25;
recname = ’EMPLOYEE’;
inset = ’OFFICE-EMPLOYEE ’;
input;
if stat not in (’0000’, ’0326’) then

go to staterr;
if stat = ’0000’ then do;

/* OBTAIN CURRENT record */

V func = ’OBTAIN’;
seq = ’CURRENT’;
skey = ’ ’;
keyl = 0;
inset = ’ ’;
input @;
if stat ne ’0000’ then go to staterr;
input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate yymmdd6.
@103 termdate 6.0
@109 birthdate yymmdd6.;

output;
end;

W else do;
put ’WARNING: No EMPLOYEE record for

SORT key= ’ emp ’.’;
put ’WARNING: Execution continues with

next OFFICE CALC.’;
put;
error = 0;

end;
end;
else do;

put ’WARNING: No OFFICE record for CALC
key= ’offkey ’.’;

put ’WARNING: Execution continues with
next OFFICE CALC.’;

put;

Examples of SAS/ACCESS DATA Step Programs 4 Using Information in a SAS Data Set to Locate Records 65

error = 0;
end;

return;

X STATERR:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= ckey= keyl= seq=

inset= skey=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.emp;
format startdate birthdate date9.;
title1 ’Office and Employee Information’;
title2 ’as Specified in Transaction Data Set’;

run;

u See “Statements Common to All Examples” on page 45 for a
description of the OPTIONS statement.

v This DATA step execution creates the transaction data set
WORK.OFFICE. The 3-byte character variable OFFKEY contains
CALC key values that will be used to access OFFICE records
directly by office code. The 25-byte character variable EMP contains
SORT key values that will be used to access EMPLOYEE records
directly using the EMP-NAME-NDX.

w See “Statements Common to All Examples” on page 45 for a
description of the INFILE statement.

x See “Statements Common to All Examples” on page 45 for a
description of the BIND RECORD statement.

y An observation is read from WORK.OFFICE, and the current
OFFKEY value is used as a CALC value to obtain the OFFICE
record. The length of the CALC key is specified by the IKEYLEN=
variable KEYL. The INPUT @; statement submits the call and
places a hold on the input buffer so that the status code can be
checked. Any unexpected status code branches execution to the
STATERR label. A status code of 0000 directs execution to the
INPUT statement, which maps data from the held input buffer to
the PDV, then releases the buffer.

U The program must now locate a specific occurrence of EMPLOYEE
within the current OFFICE-EMPLOYEE set. A FIND EMPLOYEE
WITHIN OFFICE-EMPLOYEE call is generated using the sort key
information in the EMP variable read from WORK.OFFICE. The
sort key length is set to 25. (The previous length of 3 applied to the
OFFICE CALC key.) The null INPUT statement submits the call
but does not place a hold on the buffer. FIND does not return any
data. For any unexpected status code, execution branches to the

66 Using Information in a SAS Data Set to Locate Records 4 Chapter 3

STATERR label. If the FIND is successful, execution continues with
the next DML call.

V Having successfully located the EMPLOYEE using the supplied
index value, an OBTAIN CURRENT call is generated so that
EMPLOYEE record information can be accessed by the program.
SKEY is set to blank and KEYL is set to 0 so that their values are
not used for the OBTAIN call. The INPUT @; statement submits the
generated call and places a hold on the input buffer so that the
status code can be checked. Any status code not equal to 0000
routes execution to the STATERR label. For a successful OBTAIN,
the INPUT statement maps EMPLOYEE record data from the input
buffer to the specified variables in the PDV and releases the input
buffer. At this point, the OUTPUT statement writes an observation
to the output data set. Only observations that contain both office
and employee information are output.

W This group of statements allows execution to continue when either
no EMPLOYEE record exists for the specified sort key value or no
OFFICE record exists for the specified CALC value from
WORK.OFFICE. In both cases, informative WARNING messages are
written to the SAS log and _ERROR_ is reset to 0, which prevents
the contents of the PDV from being written to the SAS log.

X See “Statements Common to All Examples” on page 45 for a
description of the STATERR statements.

Output 3.4 on page 66 shows a portion of the output from this program.

Output 3.4 Locating Records

Examples of SAS/ACCESS DATA Step Programs 4 Supplying Transaction Information and Navigating Set Occurrences 67

Office and Employee Information
as Specified in Transaction Data Set

office_ office_ office_
Obs code office_street office_city state zip officephone1

1 001 20 W BLOOMFIELD ST SPRINGFIELD MA 02076 369772100
2 002 567 BOYLSTON ST BOSTON MA 02243 956237795
3 008 910 E NORTHSOUTH AVE WESTON MA 02371 367919136

employee_
Obs officephone2 officephone3 areacode speeddial id firstname

1 0 0 3 JENNIFER
2 625719562 398000000 69 JUNE
3 792923671 327000000 458 RICHARD

Obs lastname street city state zip phone status

1 GARFIELD 110A FIRTH ST STONEHAM MA 02928 6173321967 01
2 BLOOMER 14 ZITHER TERR LEXINGTON MA 01675 6175555544 01
3 WAGNER 677 GERMANY LN NATICK MA 02178 6174321109 01

Obs ssnumber startdate termdate birthdate

1 021994516 21JAN1977 0 18AUG1945
2 039557818 05MAY1980 0 25APR1960
3 011776663 07JUN1978 0 04MAR1934

Supplying Transaction Information and Navigating Set Occurrences

This example introduces alternate techniques for supplying transaction information
and for navigating set occurrences. It also uses program logic to subset records that are
accessed to produce output which meets specified criteria. A macro variable supplies
the transaction information that produces the subset of employee data. An OBTAIN
Nth EMPLOYEE WITHIN DEPT-EMPLOYEE call is used to navigate the current set
occurrence.

Using macro variables is one tool for providing transaction information. SAS data set
variables have been used in previous examples; another method might make use of an
SCL variable. The numbers in the program correspond to the numbered comments
following the program.

u *options $idmdbug;

v %let hireyear = 1977;

data work.emp;
format initdate date9.;
drop i;

w infile empss01 idms func=func record=recname
area=subarea errstat=stat sequence=seq
set=inset;

/* BIND records to be accessed */

68 Supplying Transaction Information and Navigating Set Occurrences 4 Chapter 3

x if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’DEPARTMENT’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* FIND FIRST/NEXT DEPARTMENT record in AREA */

y seq = ’NEXT’;
if _n_ = 1 then seq = ’FIRST’;
func = ’FIND’;
recname = ’DEPARTMENT’;
subarea = ’ORG-DEMO-REGION’;
inset = ’ ’;
input;
if stat not in (’0000’, ’0307’) then go

to staterr;

/* STOP DATA step execution if no more */
/* DEPARTMENT records */

U if stat = ’0307’ then do;
error = 0;
stop;

end;

/* OBTAIN nth EMPLOYEE within
DEPT-EMPLOYEE */

V i=0;
do until (stat ne ’0000’);

i + 1;
func = ’OBTAIN’;
seq = trim(left(put(i,8.)));
recname = ’EMPLOYEE’;
inset = ’DEPT-EMPLOYEE’;
subarea = ’ ’;
input @;
if stat not in (’0000’, ’0307’) then

go to staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@97 initdate yymmdd6.;

Examples of SAS/ACCESS DATA Step Programs 4 Supplying Transaction Information and Navigating Set Occurrences 69

/* For employees hired in 1977 FIND */
/* CURRENT DEPARTMENT */

W if year(initdate) = &hireyear then do;
func = ’FIND’;
seq = ’CURRENT’;
recname = ’DEPARTMENT’;
inset = ’ ’;
input;
if stat ne ’0000’ then go to staterr;

/* OBTAIN CURRENT DEPARTMENT info */
/* and OUTPUT */

X func = ’OBTAIN’;
seq = ’CURRENT’;
recname = ’ ’;
input @;
if stat ne ’0000’ then go to staterr;
input @1 department_id 4.0

@5 department_name $char45.;
output;

end;
end;

end;
at _error_ = 0;

return;

ak staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= subarea= seq=

inset=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.emp;
title "Departments that Hired Employees in

&hireyear";
run;

u See “Statements Common to All Examples” on page 45 for a
description of the OPTIONS statement.

v The %LET statement assigns the value 1977 to a newly defined
macro variable called HIREYEAR. This macro variable is used to
supply subset criteria as part of the condition on the IF statement in
step V.

70 Supplying Transaction Information and Navigating Set Occurrences 4 Chapter 3

w See “Statements Common to All Examples” on page 45 for a
description of the INFILE statement.

x See “Statements Common to All Examples” on page 45 for a
description of the BIND RECORD statement.

y On the first DATA step iteration, the FIND command locates the
FIRST DEPARTMENT record in the area. For subsequent DATA
step iterations, initialize the call parameters to find the NEXT
DEPARTMENT record in the area. The null INPUT statement
generates and submits the call, but no data are returned to the
input buffer. The IF statement checks the status code returned by
the FIND call.

U As DEPARTMENT records are located, the program checks the
status code returned by CA-IDMS. When all records in the area
have been accessed, CA-IDMS returns a 0307 status code
(end-of-area). The program then issues a STOP statement to
terminate the DATA step. Since there is no other end-of-file
condition to normally terminate the DATA step, the STOP statement
must be issued to avoid a looping condition. Also, non-blank status
codes set the automatic DATA step variable _ERROR_ to 1.
ERROR is reset to 0, which prevents the contents of the PDV from
being written to the SAS log.

V At this point, the program has currency on a DEPARTMENT record
and needs to navigate the current occurrence of the
DEPT-EMPLOYEE set. The DO UNTIL loop generates an OBTAIN
Nth EMPLOYEE call for each EMPLOYEE record in the set. Valid
N values are generated using the loop counter variable i and the
PUT, LEFT, and TRIM functions. The N values are stored in the
variable SEQ.

The INPUT @; statement submits the call and places a hold on
the input buffer while the status code is checked. For any
unexpected status codes, execution branches to the STATERR label.
For a successful OBTAIN Nth call, the INPUT statement maps
employee information from the input buffer to the specified variables
in the PDV and releases the input buffer.

The DO UNTIL loop terminates when CA-IDMS returns an
end-of-set status code (0307).

W The program now evaluates the condition in the IF statement and
enters the DO-END block of code only if the employee INITDATE
indicates a hire year of 1977. The %LET statement assigned the
value 1977 to macro variable &HIREYEAR before the DATA step
executed (see v). This variable was resolved when the DATA step
was compiled. If the year portion of the employee INITDATE is
1977, then a FIND CURRENT DEPARTMENT is generated to
obtain the owner of the current EMPLOYEE record. The null
INPUT statement submits the call but does not place a hold on the
input buffer because FIND does not return any data. If the FIND
returns any status code other than 0000, execution branches to label
STATERR.

X After the owner DEPARTMENT record is located, an OBTAIN
CURRENT is generated to request that the DEPARTMENT record
be placed into the input buffer. The INPUT @; statement submits

Examples of SAS/ACCESS DATA Step Programs 4 Supplying Transaction Information and Navigating Set Occurrences 71

the call and places a hold on the input buffer while the status is
checked. For any status code other than 0000, execution branches to
the STATERR label. For a successful OBTAIN call, the INPUT
statement maps department information from the input buffer to
the specified variables in the PDV and releases the input buffer. The
OUTPUT statement writes the current observation to data set
WORK.EMP. To avoid unnecessary input/output for departments
that contain no employees with a hire year of 1977, the program
postpones the OBTAIN of DEPARTMENT until the EMPLOYEE
qualification criteria have been met. If you anticipate that many
employees across multiple departments were hired in &HIREYEAR,
then you could either OBTAIN DEPARTMENT before navigating the
DEPT-EMPLOYEE set or add additional logic to OBTAIN
CURRENT only once for the current set occurrence.

at At this point, the STAT variable must have a value of 0307. Since
this code is non-zero, _ERROR_ is reset to 0, which prevents the
contents of the PDV from being written to the SAS log.

ak See “Statements Common to All Examples” on page 45 for a
description of the STATERR statements.

Output 3.5 on page 71 shows a portion of the output from this program.

Output 3.5 Supplying Transaction Information

72 Re-establishing Currency on a Record 4 Chapter 3

Departments that Hired Employees in 1977

d
e

d p
e a

e p r
m a t
p f r m

i l i l t e
n o r a m n
i y s s e t
t e t t n _
d e n n t n

O a _ a a _ a
b t i m m i m
s e d e e d e

1 07SEP1977 100 EDWARD HUTTON 2000 ACCOUNTING AND PAYROLL
2 14MAY1977 4 HERBERT CRANE 3200 COMPUTER OPERATIONS
3 04MAR1977 371 BETH CLOUD 5300 BLUE SKIES
4 01DEC1977 457 HARRY ARM 5100 BRAINSTORMING
5 23MAR1977 51 CYNTHIA JOHNSON 1000 PERSONNEL
6 14DEC1977 119 CHARLES BOWER 4000 PUBLIC RELATIONS
7 07JUL1977 158 JOCK JACKSON 4000 PUBLIC RELATIONS
8 08SEP1977 149 LAURA PENMAN 4000 PUBLIC RELATIONS
9 21JAN1977 3 JENNIFER GARFIELD 3100 INTERNAL SOFTWARE

Re-establishing Currency on a Record

This example illustrates how a program can re-establish currency on a record to
complete set navigation after accessing a record that is not contained in the current set
occurrence.

In this example, a transaction SAS data set, WORK.EMPLOYEE, supplies a CALC
key value for the OBTAIN of an EMPLOYEE record. COVERAGE records are then
obtained within the current EMP-COVERAGE set occurrence. PLANCODE values from
employee COVERAGE records provide links to INSURANCE-PLAN records through a
CALC key. Once current on INSURANCE-PLAN, the program gathers data and uses a
stored database key to return to the current COVERAGE record. At that point, the
next COVERAGE record in the current set occurrence of EMP-COVERAGE can be
obtained. The output data set consists of observations which contain employee,
coverage, and related insurance plan data. The numbers in the program correspond to
the numbered comments following the program.

u *options $idmdbug;

v data work.employee;
input empnum $4.;

datalines;
0007
0471
0000
0301
0004
;

data work.empplan;
drop covdbkey empnum;

Examples of SAS/ACCESS DATA Step Programs 4 Re-establishing Currency on a Record 73

w infile empss01 idms func=func record=recname
ikey=ckey ikeylen=keyl errstat=stat
sequence=seq set=inset area=subarea
dbkey=dkey;

/* BIND records to be accessed */

x if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’INSURANCE-PLAN’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’COVERAGE ;
input;
if stat ne ’0000’ then go to staterr;

end;

/* OBTAIN EMPLOYEE record using CALC key */
/* value */

y set work.employee;
func = ’OBTAIN’;
seq = ’ ’;
inset = ’ ’;
ckey = empnum;
keyl = 4;
recname = ’EMPLOYEE’;
input @;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.;

/* OBTAIN COVERAGE records for EMPLOYEE */

U seq = ’FIRST’;
do while (stat = ’0000’);

func = ’OBTAIN’;
keyl = 0;
ckey = ’ ’;
dkey = ’ ’;
recname = ’COVERAGE’;
inset = ’EMP-COVERAGE’;

74 Re-establishing Currency on a Record 4 Chapter 3

input @;
if stat not in (’0000’, ’0307’) then go

to staterr;
if stat = ’0000’ then do;

input @13 type $1.
@14 plancode $3.;

/* ACCEPT CURRENT database key */

V func = ’ACCEPT’;
seq = ’CURRENT’;
dkey = ’ ’;
input;
if stat ne ’0000’ then go to staterr;
covdbkey = dkey;

/* FIND INSURANCE-PLAN using CALC */

W func = ’FIND’;
ckey = plancode;
keyl = 3;
seq = ’ ’;
recname = ’INSURANCE-PLAN’;
inset = ’ ’;
dkey = ’ ’;
input;
if stat ne ’0000’ then go to

staterr;

/* OBTAIN CURRENT INSURANCE-PLAN */
/* record */

X func = ’OBTAIN’;
seq = ’CURRENT’;
ckey = ’ ’;
keyl = 0;
recname = ’ ’;
subarea = ’ ’;
input @;
if stat ne ’0000’ then go to staterr;
input @4 company_name $45.

@105 group_number 6.0
@111 plndeduc PD5.2
@116 maxlfcst PD5.2
@121 famlycst PD5.2
@126 depcost PD5.2;

output;

/* FIND COVERAGE using stored */
/* database key */

Examples of SAS/ACCESS DATA Step Programs 4 Re-establishing Currency on a Record 75

at func = ’FIND’;
seq = ’ ’;
recname = ’COVERAGE’;
dkey = covdbkey;
input;
if stat ne ’0000’ then go to staterr;
seq = ’NEXT’;

end;
end;

end;

ak else do;
put ’WARNING: No EMPLOYEE record for CALC=

’ckey;
put ’WARNING: Execution continues with next

EMPLOYEE.’;
error = 0;

end;

al _error_ = 0;
return;

am staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= ckey= keyl= seq=

inset= subarea= dkey=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.empplan;
title ’Employee Coverage and Plan Record

Information’;
run;

u See “Statements Common to All Examples” on page 45 for a
description of the OPTIONS statement.

v This DATA step execution creates the transaction data set
WORK.EMPLOYEE. The 4-byte character variable EMPNUM
contains CALC key values that will be used to access EMPLOYEE
records directly by employee id.

w See “Statements Common to All Examples” on page 45 for a
description of the INFILE statement.

x See “Statements Common to All Examples” on page 45 for a
description of the BIND RECORD statement.

76 Re-establishing Currency on a Record 4 Chapter 3

y The current EMPNUM value from WORK.EMPLOYEE is used as a
CALC key to obtain an EMPLOYEE record from the database.
KEYL specifies the length of the CALC key. The INPUT @;
statement submits the call and places a hold on the input buffer so
that the status code can be checked. For any unexpected status
code, execution branches to the STATERR label. If the status code is
0000, the INPUT statement maps data from the input buffer to the
PDV and then releases the buffer.

U The DO WHILE loop obtains COVERAGE records for the current
employee in the EMP-COVERAGE set. When all COVERAGE
records in the set have been obtained, the status code is set to 0307,
and the loop terminates. At that point, the DATA step obtains the
next EMPLOYEE as specified by the CALC value read from
WORK.EMPLOYEE. The INPUT @; statement submits the OBTAIN
FIRST/NEXT call and places a hold on the input buffer while the
status code is checked. For any unexpected status codes, execution
branches to the STATERR label. For a successful OBTAIN call, the
INPUT statement maps coverage information from the input buffer
to the specified variables in the PDV and releases the input buffer.
The PLANCODE variable now contains a CALC key value that can
be used to directly access related INSURANCE-PLAN record
information.

V The next DML call generated is an ACCEPT CURRENT, which
takes the current database key of the COVERAGE record and stores
it in the variable defined by the DBKEY= INFILE parameter,
DKEY. The null INPUT statement submits the ACCEPT call but
does not place a hold on the input buffer because ACCEPT returns
no data. For any status code other than 0000, execution branches to
the STATERR label. For a successful ACCEPT call, the value
returned to DKEY is moved into variable COVDBKEY to be used in
a later call. By storing the database key of this record for later use,
the program can regain currency on the record.

W Now that the database key of the COVERAGE record is stored, a
FIND call is generated to locate and establish currency on the
related INSURANCE-PLAN record. The FIND call uses the CALC
value stored in PLANCODE. To issue this call, the DKEY field is set
to blank. The null INPUT statement submits the call to CA-IDMS
but no hold is placed on the input buffer because FIND does not
return data. For any status code other than 0000, execution
branches to the STATERR label.

X After the INSURANCE-PLAN record has been successfully located,
an OBTAIN CURRENT call is generated to request that the record
be retrieved. The INPUT @; statement submits the generated call
and places a hold on the input buffer so that the returned status
code can be checked. For any status code other than 0000, execution
branches to the STATERR label. For a successful OBTAIN, the
INPUT statement maps INSURANCE-PLAN data from the input
buffer to the specified variables in the PDV. At this point, an
observation is written to output data set WORK.EMPPLAN that
contains related EMPLOYEE, COVERAGE, and
INSURANCE-PLAN information.

at Currency must be re-established on the COVERAGE record so that
the DO WHILE loop can obtain the NEXT COVERAGE record in the

Examples of SAS/ACCESS DATA Step Programs 4 Re-establishing Currency on a Record 77

current set occurrence of EMP-COVERAGE. A FIND call is
generated using the stored database key in COVDBKEY. This call
locates the correct COVERAGE record occurrence. The null INPUT
statement submits the generated call, but no hold is placed on the
input buffer since FIND establishes a position in the database
rather than returning data. For any status code other than 0000,
execution branches to the STATERR label. If the FIND is successful,
currency has been re-established, and SEQ is assigned a value of
NEXT to generate OBTAIN NEXT COVERAGE.

ak This group of statements allows execution to continue when no
EMPLOYEE record exists for the CALC value specified in the
transaction data set. In this case, an informative WARNING
message is written to the SAS log and _ERROR_ is reset to 0, which
prevents the contents of the PDV from being written to the SAS log.

al At this point, the STAT variable must have a value of 0307, which
indicates that all COVERAGE records for the specified EMPLOYEE
have been accessed. Since this code is non-zero, _ERROR_ is reset to
0, which prevents the contents of the PDV from being written to the
SAS log.

am See “Statements Common to All Examples” on page 45 for a
description of the STATERR statements.

Output 3.6 on page 77 shows a portion of the output from this program.

Output 3.6 Re-establishing Currency on a Record

78 Using RETURN and GET Across Executions of the DATA Step 4 Chapter 3

Employee Coverage and Plan Record Information

employee_
Obs id firstname lastname type plancode

1 7 MONTE BANK F 004
2 471 THEMIS PAPAZEUS F 003
3 471 THEMIS PAPAZEUS F 002
4 471 THEMIS PAPAZEUS M 001
5 301 BURT LANCHESTER D 004
6 301 BURT LANCHESTER F 003
7 301 BURT LANCHESTER F 002
8 301 BURT LANCHESTER M 001
9 4 HERBERT CRANE F 004

10 4 HERBERT CRANE F 003
11 4 HERBERT CRANE M 001

group_
Obs company_name number

1 TEETH R US 545598
2 HOLISTIC GROUP HEALTH ASSOCIATION 329471
3 HOMOSTASIS HEALTH MAINTENANCE PROGRAM 952867
4 PROVIDENTIAL LIFE INSURANCE 347815
5 TEETH R US 545598
6 HOLISTIC GROUP HEALTH ASSOCIATION 329471
7 HOMOSTASIS HEALTH MAINTENANCE PROGRAM 952867
8 PROVIDENTIAL LIFE INSURANCE 347815
9 TEETH R US 545598

10 HOLISTIC GROUP HEALTH ASSOCIATION 329471
11 PROVIDENTIAL LIFE INSURANCE 347815

Obs plndeduc maxlfcst famlycst depcost

1 50 0 5000 1000
2 200 0 200 200
3 0 0 900000 100000
4 0 100000 0 0
5 50 0 5000 1000
6 200 0 200 200
7 0 0 900000 100000
8 0 100000 0 0
9 50 0 5000 1000

10 200 0 200 200
11 0 100000 0 0

Using RETURN and GET Across Executions of the DATA Step

This example contains two separate DATA steps and demonstrates the use of the
RETURN and GET calls across executions of the DATA step. The first DATA step
creates an output data set containing index values from EMP-NAME-NDX. The
RETURN command is used to navigate the index set. The index values stored in
WORK.EMPSRTKY are used to locate EMPLOYEE records in the second DATA step.
Once a record is located, a GET call moves the record data to the input buffer. The
numbers in the program correspond to the numbered comments following the program.

u *options $idmdbug;
data work.empsrtky;

length namekey $ 25;
keep namekey;

Examples of SAS/ACCESS DATA Step Programs 4 Using RETURN and GET Across Executions of the DATA Step 79

v infile empss01 idms func=func sequence=seq
dbkey=dkey sortfld=skey errstat=stat
set=inset;

/* RETURN EMP-NAME-NDX key values to store */
/* in EMPSRTKY data set */

w func = ’RETURN’;
seq = ’FIRST’;
inset = ’EMP-NAME-NDX’;
skey = ’ ’;
dkey = ’ ’;

x do until (stat ne ’0000’);
input;
if stat not in (’0000’, ’1707’) then go to

staterr;
if stat = ’0000’ then do;

namekey = skey;
output;
dkey = ’ ’;
skey = ’ ’;
seq = ’NEXT’;

end;
end;

y _error_ = 0;
stop;

U staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat ;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ seq= inset= dkey= skey=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.empsrtky;
title1 ’This is a List of Index Entries from

EMP-NAME-NDX’;
run;

data work.employee;
drop namekey;

V infile empss01 idms func=func sortfld=skey
ikeylen=keyl errstat=stat set=inset
record=recname;

80 Using RETURN and GET Across Executions of the DATA Step 4 Chapter 3

/* BIND the record to be accessed */

W if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* Read NAMEKEY values from EMPSRTKY and */
/* FIND EMPLOYEE using the EMP-NAME-NDX */

X set work.empsrtky;
func = ’FIND’;
recname = ’EMPLOYEE’;
inset = ’EMP-NAME-NDX’;
skey = namekey;
keyl = 25;
input;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

func = ’GET’;
recname = ’ ’;
inset = ’ ’;
skey = ’ ’;
keyl = 0;
input @;
if stat ne ’0000’ then go to staterr;
input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate yymmdd6.
@103 termdate 6.0
@109 birthdate yymmdd6.;

output;
end;

at else do;
put @1 ’WARNING: No EMPLOYEE record with

name = ’ namekey;
put @1 ’WARNING: Execution continues with

next NAMEKEY’;
error = 0;

end;
return;

Examples of SAS/ACCESS DATA Step Programs 4 Using RETURN and GET Across Executions of the DATA Step 81

ak staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat ;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ inset= skey= keyl= recname=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.employee;
format startdate birthdate date9.
title1 ’This is a List of Employee Information

Obtained’;
title2 ’Using a Transaction Data Set

Containing Name Index Values’;
run;

u See “Statements Common to All Examples” on page 45 for a
description of the OPTIONS statement.

v See “Statements Common to All Examples” on page 45 for a
description of the INFILE statement.

w Parameter values are initialized to generate the RETURN
CURRENCY SET call for the entries in the EMP-NAME-NDX index
set. The SKEY and DKEY variables are set to blank and will be
assigned the sort key and database key values returned from the
call.

x In the DO UNTIL loop, the null INPUT statement submits the
generated RETURN CURRENCY SET FIRST/NEXT call. The call
returns sort key and database key values to the SKEY and DKEY
variables. For any unexpected status code, execution branches to the
STATERR label. For a successful call, the SKEY value is assigned to
NAMEKEY, the current NAMEKEY is written to
WORK.EMPSRTKY, SKEY and DKEY variables are reset to blank,
and SEQ is set to NEXT. The next iteration of the DO UNTIL loop
will return the next index entry.

The DO UNTIL loop executes as long as STAT equals 0000. When
the index set has been traversed and all sort values returned and
stored in output data set WORK.EMPSRTKY, CA-IDMS returns a
1707 status code, which terminates the loop.

y When the DO UNTIL loop terminates, _ERROR_ is reset to 0, which
prevents the contents of the PDV from being written to the SAS log.
The index set is traversed in the DO UNTIL loop during the first
DATA step iteration, so a STOP statement is used to prevent the
DATA step from executing again. Without the STOP statement, the
DATA step would loop endlessly, traversing the same index set once
for each iteration.

U See “Statements Common to All Examples” on page 45 for a
description of the STATERR statements.

82 Using RETURN and GET Across Executions of the DATA Step 4 Chapter 3

V See “Statements Common to All Examples” on page 45 for a
description of the INFILE statement.

W See “Statements Common to All Examples” on page 45 for a
description of the BIND RECORD statement.

X The WORK.EMPSRTKY data set, which was created in the first
DATA step, serves as a transaction data set. Each interation of this
DATA step reads a new sort key value, NAMEKEY, and uses it to
locate an EMPLOYEE record via the EMP-NAME-NDX. The DATA
step terminates when all observations have been read from
WORK.EMPSRTKY. To gather employee information, INFILE
parameter variables are initialized to generate the FIND
EMPLOYEE WITHIN EMP-NAME-NDX call using the supplied sort
key from NAMEKEY. The IKEYLEN= parameter variable KEYL is
set to 25 to indicate the sort key length. The null INPUT statement
submits the FIND call but places no hold on the input buffer
because no record data are returned. For any unexpected status
code, execution branches to the STATERR label. For a successful
FIND, a GET call is generated to request that the record data be
retrieved. The INPUT @; statement submits the GET call and
places a hold on the input buffer so the status code can be checked.
Any status code not equal to 0000 branches execution to the
STATERR label. If the GET call is successful, the INPUT statement
maps EMPLOYEE data from the input buffer to the specified
variables in the PDV. The contents of the PDV are then written as
an observation to output data set WORK.EMPLOYEE.

at This group of statements allows execution to continue when no
EMPLOYEE record exists for the sort key value specified in the
transaction data set. In this case, an informative WARNING
message is written to the SAS log and _ERROR_ is reset to 0, which
prevents the contents of the PDV from being written to the SAS log.

ak See “Statements Common to All Examples” on page 45 for a
description of the STATERR statements.

Output 3.7 on page 82 shows a portion of the output from this program.

Output 3.7 Using RETURN and GET

Examples of SAS/ACCESS DATA Step Programs 4 Using RETURN and GET Across Executions of the DATA Step 83

This is a List of Index Entries from EMP-NAME-NDX

Obs namekey

1 ANDALE ROY
2 ANGELO MICHAEL
3 ARM HARRY
4 BANK MONTE
5 BLOOMER JUNE
6 BOWER CHARLES
7 BREEZE C.
8 CLOTH TERRY
9 CLOUD BETH

10 CRANE HERBERT
11 CROW CAROLYN
12 DONOVAN ALAN
13 DOUGH JANE
14 FERNDALE JANE

This is a List of Employee Information Obtained
Using a Transaction Data Set Containing Name Index Values

employee_
Obs id firstname lastname street city state

1 466 ROY ANDALE 44 TRIGGER RD FRAMINGHAM MA
2 120 MICHAEL ANGELO 507 CISTINE DR WELLESLEY MA
3 457 HARRY ARM 77 SUNSET STRIP NATICK MA
4 7 MONTE BANK 45 EAST GROVE DR HANIBAL MA
5 69 JUNE BLOOMER 14 ZITHER TERR LEXINGTON MA
6 119 CHARLES BOWER 30 RALPH ST WELLESLEY MA
7 467 C. BREEZE 200 NIGHTINGALE ST FRAMINGHAM MA
8 479 TERRY CLOTH 5 ASPHALT ST EASTON MA
9 371 BETH CLOUD 3456 PINKY LN NATICK MA

10 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
11 334 CAROLYN CROW 891 SUMMER ST WESTWOOD MA
12 366 ALAN DONOVAN 6781 CORNWALL AVE MELROSE MA
13 24 JANE DOUGH 15 LOCATION DR NEWTON MA
14 32 JANE FERNDALE 60 FOREST AVE NEWTON MA

Obs zip phone status ssnumber startdate termdate birthdate

1 03461 6175541108 03 027601115 15JUN1978 0 04MAR1960
2 01568 6178870235 01 127675593 08SEP1979 0 05APR1957
3 02178 6174320923 05 028770147 01DEC1977 0 05APR1934
4 02415 6173321933 01 022446676 30APR1978 0 01JAN1950
5 01675 6175555544 01 039557818 05MAY1980 0 25APR1960
6 01568 6178841212 01 092345812 14DEC1977 0 04MAR1939
7 03461 6175542387 01 111556692 02JUN1979 0 04MAY1934
8 05491 6177738398 01 028701666 02NOV1979 0 04MAR1945
9 02178 6174321212 01 326710472 04MAR1977 0 09SEP1945

10 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942
11 02090 6173291776 01 023980110 17JUN1979 0 03APR1944
12 02176 6176655412 01 025503622 10OCT1981 0 17NOV1951
13 02456 6174458155 01 022337878 08AUG1976 0 29MAR1951
14 02576 6178888112 01 034567891 09SEP1979 0 17JAN1958

84 Using RETURN and GET Across Executions of the DATA Step 4 Chapter 3

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS ® Interface to CA-IDMS Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. pp. 104.

SAS/ACCESS® Interface to CA-IDMS Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–547–7
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

