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Chapter 10
Time Series Analysis and Control

Examples

Overview

This chapter describes SAS/IML subroutines related to time series analysis includ-
ing the TIMSAC subroutines adapted from parts of theTIM e SeriesAnalysis and
Control package developed by the Institute of Statistical Mathematics (ISM) in Japan,
and routines for Kalman filtering and smoothing.

Time Series Analysis and Control Subroutines

This section describes a collection of SAS/IML subroutines for time series analysis.
These subroutines are an adaptation of parts of theTIM eSeriesAnalysis andControl
(TIMSAC) package developed by the Institute of Statistical Mathematics (ISM) in
Japan.

Selected routines from the TIMSAC package from ISM were converted by SAS In-
stitute staff into SAS/IML routines under an agreement between SAS Institute and
ISM. Credit for authorship of these TIMSAC SAS/IML routines goes to ISM, which
has agreed to make them available to SAS users without charge.

There are four packages of TIMSAC programs. See the section “ISM TIMSAC
Packages” on page 270 for more information on the TIMSAC package produced
by ISM. Since these SAS/IML time series analysis subroutines are adapted from the
corresponding FORTRAN subroutines in the TIMSAC package produced by ISM,
they are collectively referred to as “the TIMSAC subroutines” in this chapter.

The subroutines analyze and forecast univariate and multivariate time series data. The
nonstationary time series and seasonal adjustment models can also be analyzed by us-
ing the Interactive Matrix Language TIMSAC subroutines. These subroutines contain
the Bayesian modeling of seasonal adjustment and changing spectrum estimation.

Discrete time series modeling has been widely used to analyze dynamic systems in
economics, engineering, and statistics. The Box-Jenkins and Box-Tiao approaches
are classical examples of unified time series analysis through identification, estima-
tion, and forecasting (or control). The ARIMA procedure in the SAS/ETS product
uses these approaches. Bayesian methods are being increasingly applied despite the
controversial issues involved in choosing a prior distribution.

The fundamental idea of the Bayesian method is that uncertainties can be explained
by probabilities. If there is a class model(
) consisting of sets of member models
(!), you can describe the uncertainty of
 using a prior distribution of!. The mem-
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ber model! is directly related to model parameters. Let the prior probability density
function bep(!). When you observe the datay that is generated from the model
,
the data distribution is described asp(Y j!) given the unknown! with a prior proba-
bility densityp(!), where the functionp(Y j!) is the usual likelihood function. Then
the posterior distribution is the updated prior distribution given the sample informa-
tion. The posterior probability density function is proportional toobserved likelihood
function� prior density function.

The IML TIMSAC subroutines contain various time series analysis and Bayesian
models. Most of the subroutines are based on the minimum Akaike Information
Criterion (AIC) or on the minimum ABIC method to determine the best model among
alternative models. The TSBAYSEA subroutine is a typical example of Bayesian
modeling. The following subroutines are supported:

TSBAYSEA Bayesian seasonal adjustment modeling

TSDECOMP time series decomposition analysis

TSMLOCAR locally stationary univariate AR model fitting

TSMLOMAR locally stationary multivariate AR model fitting

TSMULMAR multivariate AR model fitting

TSPERARS periodic AR model fitting

TSPRED ARMA model forecasting and forecast error variance

TSROOT polynomial roots or ARMA coefficients computation

TSTVCAR time-varying coefficient AR model estimation

TSUNIMAR univariate AR model fitting

For univariate and multivariate autoregressive model estimation, the least squares
method is used. The least squares estimate is an approximate maximum likelihood
estimate if error disturbances are assumed to be Gaussian. The least squares compu-
tation is performed by using the Householder transformation method. See the section,
"Least Squares and Householder Transformation", for details.

The TSUNIMAR and TSMULMAR subroutines estimate the autoregressive mod-
els and select the appropriate AR order automatically by using the minimum AIC
method. The TSMLOCAR and TSMLOMAR subroutines analyze the nonstationary
time series data. The Bayesian time-varying AR coefficient model (TSTVCAR) of-
fers another nonstationary time series analysis method. The state space and Kalman
filter method is systematically applied to the smoothness priors models (TSDECOMP
and TSTVCAR), which have stochastically perturbed difference equation constraints.
The TSBAYSEA subroutine provides a way of handling Bayesian seasonal adjust-
ment, and it can be an alternative to the SAS/ETS X-11 procedure. The TSBAYSEA
subroutine employs the smoothness priors idea through constrained least squares esti-
mation, while the TSDECOMP and TSTVCAR subroutines estimate the smoothness
tradeoff parameters using the state space model and Kalman filter recursive computa-
tion. The TSPRED subroutine computes the one-step or multi-step predicted values
of the ARMA time series model. In addition, the TSPRED subroutine computes
forecast error variances and impulse response functions. The TSROOT subroutine
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computes the AR and MA coefficients given the characteristic roots of the polyno-
mial equation and the characteristic roots for the AR or MA model.

Getting Started

Minimum AIC Model Selection
The time series model is automatically selected using the AIC. The TSUNIMAR call
estimates the univariate autoregressive model and computes the AIC. You need to
specify the maximum lag or order of the AR process with the MAXLAG= option or
put the maximum lag as the sixth argument of the TSUNIMAR call.

proc iml;
y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411

2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907
3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
3.000 3.201 3.424 3.531 };

call tsunimar(arcoef,ev,nar,aic) data=y opt={-1 1} print=1
maxlag=20;

You can also invoke the TSUNIMAR call as follows:

call tsunimar(arcoef,ev,nar,aic,y,20,{-1 1},,1);

The optional arguments can be omitted. In this example, the argument MISSING is
omitted, and thus the default option (MISSING=0) is used. The summary table of
the minimum AIC method is displayed in Figure 10.1 and Figure 10.2. The final
estimates are given in Figure 10.3.
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ORDER INNOVATION VARIANCE
M V(M) AIC(M)
0 0.31607294 -108.26753229
1 0.11481982 -201.45277331
2 0.04847420 -280.51201122
3 0.04828185 -278.88576251
4 0.04656506 -280.28905616
5 0.04615922 -279.11190502
6 0.04511943 -279.25356641
7 0.04312403 -281.50543541
8 0.04201118 -281.96304075
9 0.04128036 -281.61262868

10 0.03829179 -286.67686828
11 0.03318558 -298.13013264
12 0.03255171 -297.94298716
13 0.03247784 -296.15655602
14 0.03237083 -294.46677874
15 0.03234790 -292.53337704
16 0.03187416 -291.92021487
17 0.03183282 -290.04220196
18 0.03126946 -289.72064823
19 0.03087893 -288.90203735
20 0.02998019 -289.67854830

Figure 10.1. Minimum AIC Table - I

AIC(M)-AICMIN (truncated at 40.0)
0 10 20 30 40

M AIC(M)-AICMIN +---------+---------+---------+---------+
0 189.862600 | .
1 96.677359 | .
2 17.618121 | * |
3 19.244370 | * |
4 17.841076 | * |
5 19.018228 | * |
6 18.876566 | * |
7 16.624697 | * |
8 16.167092 | * |
9 16.517504 | * |

10 11.453264 | * |
11 0 * |
12 0.187145 * |
13 1.973577 | * |
14 3.663354 | * |
15 5.596756 | * |
16 6.209918 | * |
17 8.087931 | * |
18 8.409484 | * |
19 9.228095 | * |
20 8.451584 | * |

+---------+---------+---------+---------+

Figure 10.2. Minimum AIC Table - II

The minimum AIC order is selected as 11. Then the coefficients are estimated as in
Figure 10.3. Note that the first 20 observations are used as presample values.
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..........................M A I C E.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.181322 .

. 2 -0.551571 .

. 3 0.231372 .

. 4 -0.178040 .

. 5 0.019874 .

. 6 -0.062573 .

. 7 0.028569 .

. 8 -0.050710 .

. 9 0.199896 .

. 10 0.161819 .

. 11 -0.339086 .

. .

. .

. AIC = -298.1301326 .

. Innovation Variance = 0.033186 .

. .

. .

. INPUT DATA START = 21 FINISH = 114 .

................................................................

Figure 10.3. Minimum AIC Estimation

You can estimate the AR(11) model directly by specifying OPT=f�10g and using the
first 11 observations as presample values. The AR(11) estimates shown in Figure 10.4
are different from the minimum AIC estimates in Figure 10.3 because the samples are
slightly different.

call tsunimar(arcoef,ev,nar,aic,y,11,{-1 0},,1);

..........................M A I C E.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.149416 .

. 2 -0.533719 .

. 3 0.276312 .

. 4 -0.326420 .

. 5 0.169336 .

. 6 -0.164108 .

. 7 0.073123 .

. 8 -0.030428 .

. 9 0.151227 .

. 10 0.192808 .

. 11 -0.340200 .

. .

. .

. AIC = -318.7984105 .

. Innovation Variance = 0.036563 .

. .

. .

. INPUT DATA START = 12 FINISH = 114 .

................................................................

Figure 10.4. AR(11) Estimation
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The minimum AIC procedure can also be applied to the vector autoregressive (VAR)
model using the TSMULMAR subroutine. See the section “Multivariate Time Series
Analysis” on page 259 for details. Three variables are used as input. The maximum
lag is specified as 10.

data one;
input invest income consum @@;

datalines;
. . . data lines omitted . . .

;
proc iml;

use one;
read all into y var{invest income consum};
mdel = 1;
maice = 2;
misw = 0; /* instantaneous modeling ? */
opt = mdel || maice || misw;
maxlag = 10;
miss = 0;
print = 1;
call tsmulmar(arcoef,ev,nar,aic,y,maxlag,opt,miss,print);

The VAR(3) model minimizes the AIC and was selected as an appropriate model
(see Figure 10.5). However, AICs of the VAR(4) and VAR(5) models show little
difference from VAR(3). You can also choose VAR(4) or VAR(5) as an appropriate
model in the context of minimum AIC since this AIC difference is much less than 1.

ORDER INNOVATION VARIANCE
M LOG(|V(M)|) AIC(M)
0 25.98001095 2136.36089828
1 15.70406486 1311.73331883
2 15.48896746 1312.09533158
3 15.18567834 1305.22562428
4 14.96865183 1305.42944974
5 14.74838535 1305.36759889
6 14.60269347 1311.42086432
7 14.54981887 1325.08514729
8 14.38596333 1329.64899297
9 14.16383772 1329.43469312

10 13.85377849 1322.00983656

AIC(M)-AICMIN (truncated at 40.0)
0 10 20 30 40

M AIC(M)-AICMIN +---------+---------+---------+---------+
0 831.135274 | .
1 6.507695 | * |
2 6.869707 | * |
3 0 * |
4 0.203825 * |
5 0.141975 * |
6 6.195240 | * |
7 19.859523 | * |
8 24.423369 | * |
9 24.209069 | * |

10 16.784212 | * |
+---------+---------+---------+---------+

Figure 10.5. VAR Model Selection

SAS OnlineDoc: Version 8



Getting Started � 229

The TSMULMAR subroutine estimates the instantaneous response model with diag-
onal error variance. See the section “Multivariate Time Series Analysis” on page 259
for details on the instantaneous response model. Therefore, it is possible to select the
minimum AIC model independently for each equation. The best model is selected by
specifying MAXLAG=5.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=5
opt={1 1 0} print=1;

----- INNOVATION VARIANCE MATRIX -----
256.643750 29.803549 76.846777

29.803549 228.973407 119.603867
76.846777 119.603867 134.217637

----- AR-COEFFICIENTS -----
LAG VAR = 1 VAR = 2 VAR = 3

1 0.825740 0.251480 0
0.095892 1.005709 0
0.032098 0.354435 0.469893

2 0.044719 -0.201035 0
0.005193 -0.023346 0
0.116986 -0.060196 0.048332

3 0.186783 0 0
0.021691 0 0

-0.117786 0 0.350037

4 0.154111 0 0
0.017897 0 0
0.046145 0 -0.191437

5 -0.389644 0 0
-0.045249 0 0
-0.116671 0 0

AIC = 1347.619775

Figure 10.6. Model Selection via Instantaneous Response Model

You can print the intermediate results of the minimum AIC procedure using the
PRINT=2 option.

Note that the AIC value depends on the MAXLAG=lag option and the number of
parameters estimated. The minimum AIC VAR estimation procedure (MAICE=2)
uses the following AIC formula:

(T � lag) log(j�̂j) + 2(p� n2 + n� intercept)

wherep is the order of then-variate VAR process, andintercept=1 if the intercept is
specified; otherwise,intercept=0. When you use the MAICE=1 or MAICE=0 option,
AIC is computed as the sum of AIC for each response equation. Therefore, there is
an AIC difference ofn(n � 1) since the instantaneous response model contains the
additionaln(n� 1)=2 response variables as regressors.
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The following code estimates the instantaneous response model. The results are
shown in Figure 10.7.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 0 0};

print aic nar;
print arcoef;

AIC NAR

1403.0762 3

ARCOEF

4.8245814 5.3559216 17.066894
0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672

-0.059195 -0.298777 0.1629818
0.1128625 -0.044039 -0.088186
0.1684932 -0.025847 -0.025671
0.0637227 -0.196504 0.0695746

-0.226559 0.0532467 -0.099808
-0.303697 -0.139022 0.2576405

Figure 10.7. AIC from Instantaneous Response Model

The following code estimates the VAR model. The results are shown in Figure 10.8.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 2 0};

print aic nar;
print arcoef;

AIC NAR

1397.0762 3

ARCOEF

4.8245814 5.3559216 17.066894
0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672

-0.059195 -0.298777 0.1629818
0.1128625 -0.044039 -0.088186
0.1684932 -0.025847 -0.025671
0.0637227 -0.196504 0.0695746

-0.226559 0.0532467 -0.099808
-0.303697 -0.139022 0.2576405

Figure 10.8. AIC from VAR Model

The AIC computed from the instantaneous response model is greater than that ob-
tained from the VAR model estimation by 6. There is a discrepancy between Figure
10.8 and Figure 10.5 because different observations are used for estimation.
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Nonstationary Data Analysis
This example shows how to manage nonstationary data using TIMSAC calls. In
practice, time series are considered to be stationary when the expected values of first
and second moments of the series do not change over time. This weak or covariance
stationarity can be modeled using the TSMLOCAR, TSMLOMAR, TSDECOMP,
and TSTVCAR subroutines.

First, the locally stationary model is estimated. The whole series (1000 observations)
is divided into three blocks of size 300 and one block of size 90, and the minimum
AIC procedure is applied to each block of the data set. See the “Nonstationary Time
Series” section on page 256 for more details.

data one;
input y @@;

datalines;
. . . data lines omitted . . .

;

proc iml;
use one;
read all var{y};

mdel = -1;
lspan = 300; /* local span of data */
maice = 1;
opt = mdel || lspan || maice;
call tsmlocar(arcoef,ev,nar,aic,first,last)

data=y maxlag=10 opt=opt print=2;

Estimation results are displayed with the graphs of power spectrum(log 10(fY Y (g))),
wherefY Y (g) is a rational spectral density function. See the “Spectral Analysis”
section on page 261. As the first block and the second block do not have any sizable
difference, the pooled model (AIC=45.892) is selected instead of the moving model
(AIC=46.957) in Figure 10.10. However, you can notice a slight change in the shape
of the spectrum of the third block of the data (observations 611 through 910). See
Figure 10.11 on page 234 and Figure 10.13 on page 236 for comparison. The moving
model is selected since the AIC (106.830) of the moving model is smaller than that
of the pooled model (108.867).
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INITIAL LOCAL MODEL: N_CURR = 300
NAR_CURR = 8

AIC = 37.583203

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.605717 .

. 2 -1.245350 .

. 3 1.014847 .

. 4 -0.931554 .

. 5 0.394230 .

. 6 -0.004344 .

. 7 0.111608 .

. 8 -0.124992 .

. .

. .

. AIC = 37.5832030 .

. Innovation Variance = 1.067455 .

. .

. .

. INPUT DATA START = 11 FINISH = 310 .

................................................................

Figure 10.9. Locally Stationary Model for First Block
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--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 300, N_CURR = 300)
NAR_CURR = 7

AIC = 46.957398
CONSTANT MODEL: N_POOLED = 600

NAR_POOLED = 8
AIC = 45.892350

***** CONSTANT MODEL ADOPTED *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.593890 .

. 2 -1.262379 .

. 3 1.013733 .

. 4 -0.926052 .

. 5 0.314480 .

. 6 0.193973 .

. 7 -0.058043 .

. 8 -0.078508 .

. .

. .

. AIC = 45.8923501 .

. Innovation Variance = 1.047585 .

. .

. .

. INPUT DATA START = 11 FINISH = 610 .

................................................................

Figure 10.10. Locally Stationary Model Comparison
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POWER SPECTRAL DENSITY
20.00+

|
|
|
|
| XXXX
XXX XX XXX
| XXXX
| X
|

10.00+
| X
|
| X
|
| X XX
| X
| X X
|
| X X X

0+ X
| X X X
| XX XX
| XXXX X
|
| X
| X
|
| X
| X

-10.0+ X
| XX
| XX
| XX
| XXX
| XXXXXX
|
|
|
|

-20.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.11. Power Spectrum for First and Second Blocks
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--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 600, N_CURR = 300)
NAR_CURR = 7

AIC = 106.829869
CONSTANT MODEL: N_POOLED = 900

NAR_POOLED = 8
AIC = 108.867091

*************************************
***** *****
***** NEW MODEL ADOPTED *****
***** *****
*************************************

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.648544 .

. 2 -1.201812 .

. 3 0.674933 .

. 4 -0.567576 .

. 5 -0.018924 .

. 6 0.516627 .

. 7 -0.283410 .

. .

. .

. AIC = 60.9375188 .

. Innovation Variance = 1.161592 .

. .

. .

. INPUT DATA START = 611 FINISH = 910 .

................................................................

Figure 10.12. Locally Stationary Model for Third Block
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POWER SPECTRAL DENSITY
20.00+ X

| X
| X
| X
| XXX
| XXXXX
| XX
XX X
|
|

10.00+ X
|
|
| X
|
| X
| X
| X X
| X
| X X

0+ X X X
| X
| X XX X
| XXXXXX
| X
|
| X
|
| X
| X

-10.0+ X
| XX
| XX XXXXX
| XXXXXXX
|
|
|
|
|
|

-20.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.13. Power Spectrum for Third Block

Finally, the moving model is selected since there is a structural change in the last
block of data (observations 911 through 1000). The final estimates are stored in vari-
ables ARCOEF, EV, NAR, AIC, FIRST, and LAST. The final estimates and spectrum
are given in Figure 10.14 and Figure 10.15, respectively. The power spectrum of the
final model (Figure 10.15) is significantly different from that of the first and second
blocks (see Figure 10.11).
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--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 300, N_CURR = 90)
NAR_CURR = 6

AIC = 139.579012
CONSTANT MODEL: N_POOLED = 390

NAR_POOLED = 9
AIC = 167.783711

*************************************
***** *****
***** NEW MODEL ADOPTED *****
***** *****
*************************************

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.181022 .

. 2 -0.321178 .

. 3 -0.113001 .

. 4 -0.137846 .

. 5 -0.141799 .

. 6 0.260728 .

. .

. .

. AIC = 78.6414932 .

. Innovation Variance = 2.050818 .

. .

. .

. INPUT DATA START = 911 FINISH = 1000 .

................................................................

Figure 10.14. Locally Stationary Model for Last Block
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POWER SPECTRAL DENSITY
30.00+

|
|
|
|
| X
|
| X
|
|

20.00+ X
|
|
| X X
|
| X
XXX X
| XXXXX X
|
|

10.00+ X
|
| X
|
| X
|
| X
| X
| X
| XX

0+ XX XXXXXX
| XXXXXX XX
| XX
| XX XX
| XX XXXX
| XXXXXXXXX
|
|
|
|

-10.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.15. Power Spectrum for Last Block

The multivariate analysis for locally stationary data is a straightforward extension of
the univariate analysis. The bivariate locally stationary VAR models are estimated.
The selected model is the VAR(7) process with some zero coefficients over the last
block of data. There seems to be a structural difference between observations from
11 to 610 and those from 611 to 896.

proc iml;
rudder = {. . . data lines omitted . . .};
yawing = {. . . data lines omitted . . .};

y = rudder‘ || yawing‘;
c = {0.01795 0.02419};

/*-- calibration of data --*/
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y = y # (c @ j(n,1,1));
mdel = -1;
lspan = 300; /* local span of data */
maice = 1;
call tsmlomar(arcoef,ev,nar,aic,first,last) data=y maxlag=10

opt = (mdel || lspan || maice) print=1;

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 600, N_CURR = 286)
NAR_CURR = 7

AIC = -823.845234
CONSTANT MODEL: N_POOLED = 886

NAR_POOLED = 10
AIC = -716.818588

*************************************
***** *****
***** NEW MODEL ADOPTED *****
***** *****
*************************************

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients .

. .

. 1 0.932904 -0.130964 .

. -0.024401 0.599483 .

. 2 0.163141 0.266876 .

. -0.135605 0.377923 .

. 3 -0.322283 0.178194 .

. 0.188603 -0.081245 .

. 4 0.166094 -0.304755 .

. -0.084626 -0.180638 .

. 5 0 0 .

. 0 -0.036958 .

. 6 0 0 .

. 0 0.034578 .

. 7 0 0 .

. 0 0.268414 .

. .

. .

. AIC = -114.6911872 .

. .

. Innovation Variance .

. .

. 1.069929 0.145558 .

. 0.145558 0.563985 .

. .

. .

. INPUT DATA START = 611 FINISH = 896 .

................................................................

Figure 10.16. Locally Stationary VAR Model Analysis

Consider the time series decomposition

yt = Tt + St + ut + �t
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whereTt andSt are trend and seasonal components, respectively, andut is a station-
ary AR(p) process. The annual real GNP series is analyzed under second difference
stochastic constraints on the trend component and the stationary AR(2) process.

Tt = 2Tt�1 � Tt�2 + w1t

ut = �1ut�1 + �2ut�2 + w2t

The seasonal component is ignored if you specify SORDER=0. Therefore, the fol-
lowing state space model is estimated:

yt = Hzt + �t

zt = Fzt�1 +wt

where

H =
�
1 0 1 0

�

F =

2
664

2 �1 0 0
1 0 0 0
0 0 �1 �2
0 0 1 0

3
775

zt = (Tt; Tt�1; ut; ut�1)
0

wt = (w1t; 0; w2t; 0)
0 �

0
BB@0;

2
664
�21 0 0 0
0 0 0 0
0 0 �22 0
0 0 0 0

3
775
1
CCA

The parameters of this state space model are�21 , �22 , �1, and�2.

proc iml;
y = { 116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3

135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5
179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2
141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2
263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7
324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1
452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1
617.8 658.1 675.2 706.6 724.7 };

y = y‘; /*-- convert to column vector --*/
mdel = 0;
trade = 0;
tvreg = 0;
year = 0;
period= 0;
log = 0;
maxit = 100;
update = .; /* use default update method */
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line = .; /* use default line search method */
sigmax = 0; /* no upper bound for variances */
back = 100;
opt = mdel || trade || year || period || log || maxit ||

update || line || sigmax || back;
call tsdecomp(cmp,coef,aic) data=y order=2 sorder=0 nar=2

npred=5 opt=opt icmp={1 3} print=1;

The estimated parameters are printed when you specify the PRINT= option. In Figure
10.17, the estimated variances are printed under the title of TAU2(I), showing that
�̂21 = 2:915 and�̂22 = 113:9577. The AR coefficient estimates arê�1 = 1:397 and
�̂2 = �0:595. These estimates are also stored in the output matrix COEF.

<<< Final Estimates >>>

--- PARAMETER VECTOR ---

1.607426E-01 6.283837E+00 8.761628E-01 -5.94879E-01

--- GRADIENT ---

3.385021E-04 5.760929E-06 3.029534E-04 -1.18396E-04

LIKELIHOOD = -249.937193 SIG2 = 18.135052
AIC = 509.874385

I TAU2(I) AR(I) PARCOR(I)
1 2.915075 1.397374 0.876163
2 113.957712 -0.594879 -0.594879

Figure 10.17. Nonstationary Time Series and State Space Modeling

The trend and stationary AR components are estimated using the smoothing method,
and out-of-sample forecasts are computed using a Kalman filter prediction algorithm.
The trend and AR components are stored in the matrix CMP since the ICMP={1 3}
option is specified. The last 10 observations of the original series Y and the last 15
observations of two components are shown in Figure 10.18. Note that the first column
of CMP is the trend component and the second column is the AR component. The
last 5 observations of the CMP matrix are out-of-sample forecasts.
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Y CMP

487.7 514.01142 -26.94343
497.2 532.62744 -32.48673
529.8 552.02402 -24.46593
551 571.90122 -20.15113
581.1 592.31944 -10.58647
617.8 613.21855 5.2504354
658.1 634.43665 20.799209
675.2 655.70431 22.161597
706.6 677.2125 27.927978
724.7 698.72364 25.957961

720.23478 19.659202
741.74592 12.029403
763.25707 5.1147232
784.76821 -0.00886
806.27935 -3.055023

Figure 10.18. Smoothed and Predicted Values of Two Components

Seasonal Adjustment
Consider the simple time series decomposition

yt = Tt + St + �t

The TSBAYSEA subroutine computes seasonally adjusted series by estimating the
seasonal component. The seasonally adjusted series is computed asy�t = yt � Ŝt.
The details of the adjustment procedure are given in the section “Bayesian Seasonal
Adjustment” on page 254.

The monthly labor force series (1972�1978) are analyzed. You do not need to spec-
ify the options vector if you want to use the default options. However, you should
change OPT[2] when the data frequency is not monthly (OPT[2]=12). The NPRED=
option produces the multistep forecasts for the trend and seasonal components. The
stochastic constraints are specified as ORDER=2 and SORDER=1.

Tt = 2Tt�1 � Tt�2 + w1t

St = �St�1 � � � � � St�11 + w2t

The seasonal components are shown in Figure 10.19 on page 243, and the adjusted
series are shown in Figure 10.20 on page 243. The estimated spectral density function
of the irregular serieŝ�t is shown in Figure 10.21 on page 244.

proc iml;
y =

{ 5447 5412 5215 4697 4344 5426
5173 4857 4658 4470 4268 4116
4675 4845 4512 4174 3799 4847
4550 4208 4165 3763 4056 4058
5008 5140 4755 4301 4144 5380
5260 4885 5202 5044 5685 6106
8180 8309 8359 7820 7623 8569
8209 7696 7522 7244 7231 7195
8174 8033 7525 6890 6304 7655
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7577 7322 7026 6833 7095 7022
7848 8109 7556 6568 6151 7453
6941 6757 6437 6221 6346 5880 };

y = y‘;

call tsbaysea(trend,season,series,adj,abic)
data=y order=2 sorder=1 npred=12 print=2;

print trend season series adj abic;

Seasonal Component
576.866752 612.796066 324.020037 -198.760111

-572.556158 493.248873 218.901469 -126.976886
-223.927593 -440.622170 -345.477541 -339.527540

567.417780 649.108143 315.457702 -195.764740
-567.242588 503.917031 226.829019 -142.216380
-209.010499 -511.275202 -344.187789 -365.761124

647.626707 686.576003 324.601881 -242.421270
-582.439797 516.512576 248.795247 -160.227108
-212.583209 -538.237178 -364.306967 -416.965872

749.318446 705.520212 361.245687 -273.971547
-617.748290 506.336574 239.146930 -132.685481
-254.706508 -510.461942 -348.035057 -391.992877

711.125340 748.595903 367.983922 -290.532690
-700.824658 519.764643 242.638512 -73.786428
-288.809493 -509.321443 -302.485088 -397.322723

650.134120 800.460271 395.841362 -340.552541
-719.314201 553.049123 201.955997 -54.527951
-295.332122 -487.701411 -266.216231 -440.347213

650.770701 800.937334 396.198661 -340.285229
-719.114602 553.197644 202.065816 -54.447682
-295.274714 -487.662081 -266.191701 -440.335439
*** Last 12 Values Are Forecasted ***

Figure 10.19. Seasonal Component Estimates and Forecasts

Adjusted = Data - Seasonal - Trading_Day_Comp - OCF

4870.133248 4799.203934 4890.979963 4895.760111
4916.556158 4932.751127 4954.098531 4983.976886
4881.927593 4910.622170 4613.477541 4455.527540
4107.582220 4195.891857 4196.542298 4369.764740
4366.242588 4343.082969 4323.170981 4350.216380
4374.010499 4274.275202 4400.187789 4423.761124
4360.373293 4453.423997 4430.398119 4543.421270
4726.439797 4863.487424 5011.204753 5045.227108
5414.583209 5582.237178 6049.306967 6522.965872
7430.681554 7603.479788 7997.754313 8093.971547
8240.748290 8062.663426 7969.853070 7828.685481
7776.706508 7754.461942 7579.035057 7586.992877
7462.874660 7284.404097 7157.016078 7180.532690
7004.824658 7135.235357 7334.361488 7395.786428
7314.809493 7342.321443 7397.485088 7419.322723
7197.865880 7308.539729 7160.158638 6908.552541
6870.314201 6899.950877 6739.044003 6811.527951
6732.332122 6708.701411 6612.216231 6320.347213

Figure 10.20. Seasonally Adjusted Series
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I Rational 0.0 10.0 20.0 30.0 40.0 50.0 60.0
Spectrum +---------+---------+---------+---------+---------+---------+

0 1.366798E+00 |* ===>X
1 1.571261E+00 |*
2 2.414836E+00 | *
3 5.151906E+00 | *
4 1.634887E+01 | *
5 8.085674E+01 | *
6 3.805530E+02 | *
7 8.082536E+02 | *
8 6.366350E+02 | *
9 3.479435E+02 | *

10 3.872650E+02 | * ===>X
11 1.264805E+03 | *
12 1.726138E+04 | *
13 1.559041E+03 | *
14 1.276516E+03 | *
15 3.861089E+03 | *
16 9.593184E+03 | *
17 3.662145E+03 | *
18 5.499783E+03 | *
19 4.443303E+03 | *
20 1.238135E+03 | * ===>X
21 8.392131E+02 | *
22 1.258933E+03 | *
23 2.932003E+03 | *
24 1.857923E+03 | *
25 1.171437E+03 | *
26 1.611958E+03 | *
27 4.822498E+03 | *
28 4.464961E+03 | *
29 1.951547E+03 | *
30 1.653182E+03 | * ===>X
31 2.308152E+03 | *
32 5.475758E+03 | *
33 2.349584E+04 | *
34 5.266969E+03 | *
35 2.058667E+03 | *
36 2.215595E+03 | *
37 8.181540E+03 | *
38 3.077329E+03 | *
39 7.577961E+02 | *
40 5.057636E+02 | * ===>X
41 7.312090E+02 | *
42 3.131377E+03 | * ===>T
43 8.173276E+03 | *
44 1.958359E+03 | *
45 2.216458E+03 | *
46 4.215465E+03 | *
47 9.659340E+02 | *
48 3.758466E+02 | *
49 2.849326E+02 | *
50 3.617848E+02 | * ===>X
51 7.659839E+02 | *
52 3.191969E+03 | *
53 1.768107E+04 | *
54 5.281385E+03 | *
55 2.959704E+03 | *
56 3.783522E+03 | *
57 1.896625E+04 | *
58 1.041753E+04 | *
59 2.038940E+03 | *
60 1.347568E+03 | * ===>X

X: If peaks (troughs) appear at these frequencies, try lower (higher) values
of rigid and watch ABIC

T: If a peaks appears here try trading-day adjustment

Figure 10.21. Spectrum of Irregular Component
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Miscellaneous Time Series Analysis Tools
The forecast values of multivariate time series are computed using the TSPRED call.
In this example, the multistep ahead forecasts are produced from the VARMA(2,1)
estimates. Since the VARMA model is estimated using the mean deleted series, you
should specify the CONSTANT=�1 option. You need to provide the original series
instead of the mean deleted series to get the correct predictions. The forecast variance
MSE and the impulse response function IMPULSE are also produced.

The VARMA(p; q) model is written

yt +

pX
i=1

Aiyt�i = �t +

qX
i=1

Mi�t�i

Then the COEF matrix is constructed by stacking matricesA1; : : : ;Ap;M1; : : : ;Mq.

proc iml;
c = { 264 235 239 239 275 277 274 334 334 306

308 309 295 271 277 221 223 227 215 223
241 250 270 303 311 307 322 335 335 334
309 262 228 191 188 215 215 249 291 296 };

f = { 690 690 688 690 694 702 702 702 700 702
702 694 708 702 702 708 700 700 702 694
698 694 700 702 700 702 708 708 710 704
704 700 700 694 702 694 710 710 710 708 };

t = { 1152 1288 1288 1288 1368 1456 1656 1496 1744 1464
1560 1376 1336 1336 1296 1296 1280 1264 1280 1272
1344 1328 1352 1480 1472 1600 1512 1456 1368 1280
1224 1112 1112 1048 1176 1064 1168 1280 1336 1248 };

p = { 254.14 253.12 251.85 250.41 249.09 249.19 249.52 250.19
248.74 248.41 249.95 250.64 250.87 250.94 250.96 251.33
251.18 251.05 251.00 250.99 250.79 250.44 250.12 250.19
249.77 250.27 250.74 250.90 252.21 253.68 254.47 254.80
254.92 254.96 254.96 254.96 254.96 254.54 253.21 252.08 };

y = c‘ || f‘ || t‘ || p‘;
ar = { .82028 -.97167 .079386 -5.4382,

-.39983 .94448 .027938 -1.7477,
-.42278 -2.3314 1.4682 -70.996,

.031038 -.019231 -.0004904 1.3677,
-.029811 .89262 -.047579 4.7873,

.31476 .0061959 -.012221 1.4921,

.3813 2.7182 -.52993 67.711,
-.020818 .01764 .00037981 -.38154 };

ma = { .083035 -1.0509 .055898 -3.9778,
-.40452 .36876 .026369 -.81146,

.062379 -2.6506 .80784 -76.952,

.03273 -.031555 -.00019776 -.025205 };
coef = ar // ma;
ev = { 188.55 6.8082 42.385 .042942,

6.8082 32.169 37.995 -.062341,
42.385 37.995 5138.8 -.10757,
.042942 -.062341 -.10757 .34313 };
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nar = 2; nma = 1;
call tspred(forecast,impulse,mse,y,coef,nar,nma,ev,

5,nrow(y),-1);

OBSERVED PREDICTED
Y1 Y2 P1 P2

264 690 269.950 700.750
235 690 256.764 691.925
239 688 239.996 693.467
239 690 242.320 690.951
275 694 247.169 693.214
277 702 279.024 696.157
274 702 284.041 700.449
334 702 286.890 701.580
334 700 321.798 699.851
306 702 330.355 702.383
308 702 297.239 700.421
309 694 302.651 701.928
295 708 294.570 696.261
271 702 283.254 703.936
277 702 269.600 703.110
221 708 270.349 701.557
223 700 231.523 705.438
227 700 233.856 701.785
215 702 234.883 700.185
223 694 229.156 701.837
241 698 235.054 697.060
250 694 249.288 698.181
270 700 257.644 696.665
303 702 272.549 699.281
311 700 301.947 701.667
307 702 306.422 700.708
322 708 304.120 701.204
335 708 311.590 704.654
335 710 320.570 706.389
334 704 315.127 706.439
309 704 311.083 703.735
262 700 288.159 702.801
228 700 251.352 700.805
191 694 226.749 700.247
188 702 199.775 696.570
215 694 202.305 700.242
215 710 222.951 696.451
249 710 226.553 704.483
291 710 259.927 707.610
296 708 291.446 707.861

293.899 707.430
293.477 706.933
292.564 706.190
290.313 705.384
286.559 704.618

Figure 10.22. Multivariate ARMA Prediction

The first 40 forecasts are one-step predictions. The last observation is the five-step
forecast values of variables C and F. You can construct the confidence interval for
these forecasts using the mean square error matrix, MSE. See the “Multivariate Time
Series Analysis” section on page 259 for more details on impulse response functions
and the mean square error matrix.
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The TSROOT call computes the polynomial roots of the AR and MA equations.
When the AR(p) process is written

yt =

pX
i=1

�iyt�i + �t

you can specify the following polynomial equation:

zp �
pX

i=1

�iz
p�i = 0

When allp roots of the preceding equation are inside the unit circle, the AR(p) pro-
cess is stationary. The MA(q) process is invertible if the following polynomial equa-
tion has all roots inside the unit circle:

zq +

qX
i=1

�iz
q�i = 0

where�i are the MA coefficients. For example, the best AR model is selected and
estimated by the TSUNIMAR subroutine (see Figure 10.23). You can obtain the roots
of the preceding equation by calling the TSROOT call. Since the TSROOT call can
handle the complex AR or MA coefficients, note that you should add zero imaginary
coefficients for the second column of the MATIN matrix for real coefficients.

proc iml;
y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411

2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907
3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
3.000 3.201 3.424 3.531 };

call tsunimar(ar,v,nar,aic) data=y maxlag=5
opt=({-1 1}) print=1;

/*-- set up complex coefficient matrix --*/
ar_cx = ar || j(nrow(ar),1,0);
call tsroot(root) matin=ar_cx nar=nar

nma=0 print=1;

In Figure 10.24, the roots and their lengths from the origin are shown. The roots are
also stored in the matrix ROOT. All roots are within the unit circle, while the mod
values of the fourth and fifth roots appear to be sizable (0.9194).
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..........................M A I C E.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.300307 .

. 2 -0.723280 .

. 3 0.242193 .

. 4 -0.378757 .

. 5 0.137727 .

. .

. .

. AIC = -318.6137704 .

. Innovation Variance = 0.049055 .

. .

. .

. INPUT DATA START = 6 FINISH = 114 .

................................................................

Figure 10.23. Minimum AIC AR Estimation

I Real Imaginary MOD(Z) ATAN(I/R) Degree

1 -0.29755 0.55991 0.6341 2.0593 117.9869
2 -0.29755 -0.55991 0.6341 -2.0593 -117.9869
3 0.40529 0 0.4053 0 0
4 0.74505 0.53866 0.9194 0.6260 35.8660
5 0.74505 -0.53866 0.9194 -0.6260 -35.8660

Figure 10.24. Roots of AR Characteristic Polynomial Equation

The TSROOT call can also recover the polynomial coefficients if the roots are given
as an input. You should specify the QCOEF=1 option when you want to compute the
polynomial coefficients instead of polynomial roots. You can compare the result with
the preceding output of the TSUNIMAR call.

call tsroot(ar_cx) matin=root nar=nar qcoef=1
nma=0 print=1;

I AR(real) AR(imag)

1 1.30031 0
2 -0.72328 1.11022E-16
3 0.24219 1.66533E-16
4 -0.37876 -2.7756E-17
5 0.13773 0

Figure 10.25. Polynomial Coefficients
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Syntax

For details on the syntax of TIMSAC subroutines, see the individual entries in the
reference library in Chapter 17, “Language Reference.”

TIMSAC routines are controlled by the following statements:

CALL TSBAYSEA( trend, season, series, adjust, abic, data
<,order, sorder, rigid, npred, opt, cntl, print>);

CALL TSDECOMP( comp, est, aic, data, <,xdata, order, sorder,
nar, npred, init, opt, icmp, print>);

CALL TSMLOCAR( arcoef, ev, nar, aic, start, finish, data
<,maxlag, opt, missing, print>);

CALL TSMLOMAR( arcoef, ev, nar, aic, start, finish, data
<,maxlag, opt, missing, print>);

CALL TSMULMAR( arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);

CALL TSPEARS( arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);

CALL TSPRED( forecast, impulse, mse, data, coef, nar, nma
<,ev, npred, start, constant>);

CALL TSROOT( matout, matin, nar, nma, <,qcoef, print>);

CALL TSTVCAR( arcoef, variance, est, aic, data
<,nar, init, opt, outlier, print>);

CALL TSUNIMAR( arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);
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Details

This section presents an introductory description of the important topics that are di-
rectly related to TIMSAC IML subroutines. The computational details, including
algorithms, are described in the “Computational Details” section on page 264. A de-
tailed explanation of each subroutine is not given; instead, basic ideas and common
methodologies for all subroutines are described first and are followed by more tech-
nical details. Finally, missing values are discussed in the section “Missing Values”
on page 269.

Minimum AIC Procedure
The AIC statistic is widely used to select the best model among alternative parametric
models. The minimum AIC model selection procedure can be interpreted as a max-
imization of the expected entropy (Akaike 1981). The entropy of a true probability
density function (PDF)' with respect to the fitted PDFf is written as

B('; f) = �I('; f)

whereI('; f) is a Kullback-Leibler information measure, which is defined as

I('; f) =

Z �
log

�
'(z)

f(z)

��
'(z)dz

where the random variableZ is assumed to be continuous. Therefore,

B('; f) = EZ log f(Z)� EZ log'(Z)

whereB('; f) � 0 and EZ denotes the expectation concerning the random variable
Z. B('; f) = 0 if and only if ' = f (a.s.). The larger the quantity EZ log f(Z),
the closer the functionf is to the true PDF'. Given the datay = (y1; : : : ; yT )

0 that
has the same distribution as the random variableZ, let the likelihood function of the
parameter vector� be

QT
t=1 f(ytj�). Then the average of the log likelihood function

1
T

PT
t=1 log f(ytj�) is an estimate of the expected value oflog f(Z). Akaike (1981)

derived the alternative estimate of EZ log f(Z) by using the Bayesian predictive like-
lihood. The AIC is the bias-corrected estimate of�2TEZ log f(Zj�̂), where�̂ is the
maximum likelihood estimate.

AIC = �2(maximum log likelihood) + 2(number of free parameters)

Let � = (�1; : : : ; �K)
0 be aK� 1 parameter vector that is contained in the parameter

space�K . Given the datay, the log likelihood function is

`(�) =
TX
t=1

log f(ytj�)

Suppose the probability density functionf(yj�) has the true PDF'(y) = f(yj�0),
where the true parameter vector�0 is contained in�K . Let �̂K be a maximum
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likelihood estimate. The maximum of the log likelihood function is denoted as
`(�̂K) = max�2�K

`(�). The expected log likelihood function is defined by

`�(�) = TEZ log f(Zj�)

The Taylor series expansion of the expected log likelihood function around the true
parameter�0 gives the following asymptotic relationship:

`�(�)
A
= `�(�0) + T (� � �0)0EZ

@ log f(Zj�0)
@�

� T

2
(� � �0)0I(�0)(� � �0)

whereI(�0) is the information matrix and
A
= stands for asymptotic equality. Note

that @ log f(zj�
0)

@� = 0 sincelog f(zj�) is maximized at�0. By substituting�̂K , the
expected log likelihood function can be written as

`�(�̂K)
A
= `�(�0)� T

2
(�̂K � �0)0I(�0)(�̂K � �0)

The maximum likelihood estimator is asymptotically normally distributed under the
regularity conditions

p
TI(�0)1=2(�̂K � �0)

d! N(0; IK)

Therefore,

T (�̂K � �0)0I(�0)(�̂K � �0)
a� �2K

The mean expected log likelihood function,`�(K) = EY `
�(�̂K), becomes

`�(K)
A
= `�(�0)� K

2

When the Taylor series expansion of the log likelihood function around�̂K is used,
the log likelihood functioǹ (�) is written

`(�)
A
= `(�̂K) + (� � �̂K)

0 @`(�)

@�

����
�̂K

+
1

2
(� � �̂K)

0 @
2`(�)

@�@�0

����
�̂K

(� � �̂K)

Since `(�̂K) is the maximum log likelihood function,@`(�)@�

���
�̂K

= 0. Note that

plim

�
� 1

T
@2`(�)
@�@�0

���
�̂K

�
= I(�0) if the maximum likelihood estimator̂�K is a con-

sistent estimator of�. Replacing� with the true parameter�0 and taking expectations
with respect to the random variableY ,

EY `(�
0)

A
= EY `(�̂K)� K

2
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Consider the following relationship:

`�(�0) = TEZ log f(Zj�0)

= EY

TX
t=1

log f(Ytj�0)

= EY `(�
0)

From the previous derivation,

`�(K)
A
= `�(�0)� K

2

Therefore,

`�(K)
A
= EY `(�̂K)�K

The natural estimator for EY `(�̂K) is `(�̂K). Using this estimator, you can write the
mean expected log likelihood function as

`�(K)
A
= `(�̂K)�K

Consequently, the AIC is defined as an asymptotically unbiased estimator of
�2(mean expected log likelihood)

AIC(K) = �2`(�̂K) + 2K

In practice, the previous asymptotic result is expected to be valid in finite samples
if the number of free parameters does not exceed2

p
T and the upper bound of the

number of free parameters isT2 . It is worth noting that the amount of AIC is not
meaningful in itself, since this value is not the Kullback-Leibler information measure.
The difference of AIC values can be used to select the model. The difference of the
two AIC values is considered insignificant if it is far less than 1. It is possible to find
a better model when the minimum AIC model contains many free parameters.

Smoothness Priors Modeling
Consider the time seriesyt:

yt = f(t) + �t

wheref(t) is an unknown smooth function and�t is aniid random variable with zero
mean and positive variance�2. Whittaker (1923) provides the solution, which bal-
ances a tradeoff between closeness to the data and thekth order difference equation.
For a fixed value of� andk, the solutionf̂ satisfies

min
f

TX
t=1

n
[yt � f(t)]2 + �2[rkf(t)]2

o
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whererk denotes thekth order difference operator. The value of� can be viewed
as the smoothness tradeoff measure. Akaike (1980a) proposed the Bayesian posterior
PDF to solve this problem.

`(f) = exp

(
� 1

2�2

TX
t=1

[yt � f(t)]2

)
exp

(
� �2

2�2

TX
t=1

[rkf(t)]2

)

Therefore, the solution can be obtained when the function`(f) is maximized.

Assume that time series is decomposed as follows:

yt = Tt + St + �t

whereTt denotes the trend component andSt is the seasonal component. The trend
component follows thekth order stochastically perturbed difference equation.

rkTt = w1t; w1t � N(0; �21 )

For example, the polynomial trend component fork = 2 is written as

Tt = 2Tt�1 � Tt�2 + w1t

To accommodate regular seasonal effects, the stochastic seasonal relationship is used.

L�1X
i=0

St�i = w2t; w2t � N(0; �22 )

whereL is the number of seasons within a period. In the context of Whittaker and
Akaike, the smoothness priors problem can be solved by the maximization of

`(f) = exp

"
� 1

2�2

TX
t=1

(yt � Tt � St)
2

#
exp

"
� �21
2�2

TX
t=1

(rkTt)
2

#

� exp

2
4� �22

2�2

TX
t=1

 
L�1X
i=0

St�i

!2
3
5

The values of hyperparameters,�21 and�22 , refer to a measure of uncertainty of prior
information. For example, the large value of�21 implies a relatively smooth trend

component. The ratio�
2

i

�2 (i = 1; 2) can be considered as a signal-to-noise ratio.

Kitagawa and Gersch (1984) use the Kalman filter recursive computation for the like-
lihood of the tradeoff parameters. The hyperparameters are estimated by combining
the grid search and optimization method. The state space model and Kalman filter
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recursive computation are discussed in the section, "State Space and Kalman Filter
Method".

Bayesian Seasonal Adjustment
Seasonal phenomena are frequently observed in many economic and business time
series. For example, consumption expenditure might have strong seasonal variations
because of Christmas spending. The seasonal phenomena are repeatedly observed
after a regular period of time. The number of seasons within a period is defined as the
smallest time span for this repetitive observation. Monthly consumption expenditure
shows a strong increase during the Christmas season, with 12 seasons per period.

There are three major approaches to seasonal time series: the regression model, the
moving average model, and the seasonal ARIMA model.

Regression Model
Let the trend component beTt =

Pm�

i=1 �iUit and the seasonal component be
St =

Pm�

j=1 �jVjt. Then the additive time series can be written as the regression
model

yt =

m�X
i=1

�iUit +

m�X
j=1

�jVjt + �t

In practice, the trend component can be written as them�th order polynomial, such
as

Tt =

m�X
i=0

�it
i

The seasonal component can be approximated by the seasonal dummies(Djt)

St =

L�1X
j=1

�jDjt

whereL is the number of seasons within a period. The least squares method is applied
to estimate parameters�i and�j .

The seasonally adjusted series is obtained by subtracting the estimated seasonal com-
ponent from the original series. Usually, the error term�t is assumed to be white
noise, while sometimes the autocorrelation of the regression residuals needs to be al-
lowed. However, the regression method is not robust to the regression function type,
especially at the beginning and end of the series.

Moving Average Model
If you assume that the annual sum of a seasonal time series has small seasonal fluc-
tuations, the nonseasonal componentNt = Tt + �t can be estimated by using the
moving average method.

N̂t =

mX
i=�m

�iyt�i
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wherem is the positive integer and�i is the symmetric constant such that�i = ��i
and

Pm
i=�m �i = 1.

When the data are not available, either an asymmetric moving average is used, or the
forecast data is augmented to use the symmetric weight. The X-11 procedure is a
complex modification of this moving average method.

Seasonal ARIMA Model
The regression and moving average approaches assume that the seasonal component
is deterministic and independent of other nonseasonal components. The time series
approach is used to handle the stochastic trend and seasonal components.

The general ARIMA model can be written

mY
j=1

�j(B)
kY
i=1

(1�Bsi)di ~yt = �0 +

qY
i=1

�i(B)�t

whereB is the backshift operator and

�j(B) = 1� �1B � � � � � �jB
pj

�i(B) = 1� �1B � � � � � �iB
qi

and ~yt = yt � E(Yt) if di = 0; otherwise,~yt = yt. The power ofB, si, can be
considered as a seasonal factor. Specifically, the Box-Jenkins multiplicative seasonal
ARIMA (p; d; q)(P;D;Q)s model is written as

�p(B)�P (B
s)(1 �B)d(1�Bs)D~yt = �q(B)�Q(B

s)�t

ARIMA modeling is appropriate for particular time series and requires burdensome
computation.

The TSBAYSEA subroutine combines the simple characteristics of the regression
approach and time series modeling. The TSBAYSEA and X-11 procedures use the
model-based seasonal adjustment. The symmetric weights of the standard X-11 op-
tion can be approximated by using the integrated MA form

(1�B)(1�B12)yt = �(B)�t

With a fixed value�, the TSBAYSEA subroutine is approximated as

(1� �B)(1�B)(1�B12)yt = �(B)�t

The subroutine is flexible enough to handle trading day or leap year effects, the shift
of the base observation, and missing values. The TSBAYSEA-type modeling ap-
proach has some advantages: it clearly defines the statistical model of the time series;
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modification of the basic model can be an efficient method of choosing a particu-
lar procedure for the seasonal adjustment of a given time series; and the use of the
concept of the likelihood provides a minimum AIC model selection approach.

Nonstationary Time Series
The subroutines TSMLOCAR, TSMLOMAR, and TSTVCAR are used to analyze
nonstationary time series models. The AIC statistic is extensively used to analyze the
locally stationary model.

Locally Stationary AR Model
When the time series is nonstationary, the TSMLOCAR (univariate) and TSMLO-
MAR (multivariate) subroutines can be employed. The whole span of the series is di-
vided into locally stationary blocks of data, and then the TSMLOCAR and TSMLO-
MAR subroutines estimate a stationary AR model by using the least squares method
on this stationary block. The homogeneity of two different blocks of data is tested
using the AIC.

Given a set of datafy1; : : : ; yT g, the data can be divided intok blocks of sizes
t1; : : : ; tk, wheret1 + � � � + tk = T , andk and ti are unknown. The locally sta-
tionary model is fitted to the data

yt = �i0 +

piX
j=1

�ijyt�j + �it

where

Ti�1 =
i�1X
j=1

tj < t � Ti =
iX

j=1

tj; for i = 1; : : : ; k

where�it is a Gaussian white noise withE�it = 0 andE(�it)
2 = �2i . Therefore, the log

likelihood function of the locally stationary series is

` = �1

2

kX
i=1

2
4ti log(2��2i ) + 1

�2i

TiX
t=Ti�1+1

0
@yt � �i0 �

piX
j=1

�ijyt�j

1
A

23
5

Given�ij , j = 0; : : : ; pi, the maximum of the log likelihood function is attained at

�̂2i =
1

ti

TiX
t=Ti�1+1

0
@yt � �̂i0 �

piX
j=1

�̂ijyt�j

1
A

2

The concentrated log likelihood function is given by

`� = �T
2
[1 + log(2�)] � 1

2

kX
i=1

ti log(�̂
2
i )
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Therefore, the maximum likelihood estimates,�̂ij and�̂2i , are obtained by minimizing
the following local SSE:

SSE =

TiX
t=Ti�1+1

0
@yt � �̂i0 �

piX
j=1

�̂ijyt�j

1
A

2

The least squares estimation of the stationary model is explained in the section, "Least
Squares and Householder Transformation".

The AIC for the locally stationary model over the pooled data is written as

kX
i=1

ti log(�̂
2
i ) + 2

kX
i=1

(pi + intercept+ 1)

where intercept= 1 if the intercept term(�i0) is estimated; otherwise,intercept=
0. The number of stationary blocks (k), the size of each block (ti), and the order of
the locally stationary model is determined by the AIC. Consider the autoregressive
model fitted over the block of data,fy1; : : : ; yT g, and let this modelM1 be an AR(p1)
process. When additional data,fyT+1; : : : ; yT+T1g, are available, a new modelM2,
an AR(p2) process, is fitted over this new data set, assuming that these data are inde-
pendent of the previous data. Then AICs for modelsM1 andM2 are defined as

AIC1 = T log(�21) + 2(p1 + intercept+ 1)

AIC2 = T1 log(�
2
2) + 2(p2 + intercept+ 1)

The joint model AIC forM1 andM2 is obtained by summation

AICJ = AIC1 +AIC2

When the two data sets are pooled and estimated over the pooled data set,
fy1; : : : ; yT+T1g, the AIC of the pooled model is

AICA = (T + T1) log(�̂
2
A) + 2(pA + intercept+ 1)

where�2A is the pooled error variance andpA is the order chosen to fit the pooled data
set.

Decision

� If AICJ < AICA, switch to the new model, since there is a change in the
structure of the time series.

� If AICJ � AICA, pool the two data sets, since two data sets are considered to
be homogeneous.
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If new observations are available, repeat the preceding steps to determine the homo-
geneity of the data. The basic idea of locally stationary AR modeling is that, if the
structure of the time series is not changed, you should use the additional information
to improve the model fitting, but you need to follow the new structure of the time
series if there is any change.

Time-Varying AR Coefficient Model
Another approach to nonstationary time series, especially those that are nonstationary
in the covariance, is time-varying AR coefficient modeling. When the time series
is nonstationary in the covariance, the problem in modeling this series is related to
an efficient parameterization. It is possible for a Bayesian approach to estimate the
model with a large number of implicit parameters of the complex structure by using
a relatively small number of hyperparameters.

The TSTVCAR subroutine uses smoothness priors by imposing stochastically per-
turbed difference equation constraints on each AR coefficient and frequency response
function. The variance of each AR coefficient distribution constitutes a hyperparam-
eter included in the state space model. The likelihood of these hyperparameters is
computed by the Kalman filter recursive algorithm.

The time-varying AR coefficient model is written

yt =

mX
i=1

�ityt�i + �t

where time-varying coefficients�it are assumed to change gradually with time. The
following simple stochastic difference equation constraint is imposed on each coeffi-
cient:

rk�it = wit; wit � N(0; �2); i = 1; : : : ;m

The frequency response function of the AR process is written

A(f) = 1�
mX
j=1

�jt exp(�2�jif)

The smoothness of this function can be measured by thekth derivative smoothness
constraint,

Rk =

Z 1=2

�1=2

����dkA(f)dfk

����
2

df = (2�)2k
mX
j=1

j2k�2jt

Then the TSTVCAR call imposes zero and second derivative smoothness constraints.
The time-varying AR coefficients are the solution of the following constrained least
squares:

TX
t=1

 
yt �

mX
i=1

�ityt�i

!2

+ �2
TX
t=1

mX
i=1

�
rk�it

�2
+ �2

TX
t=1

mX
i=1

i2�2it + �2
TX
t=1

mX
i=1

�2it
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where�2, �2, and�2 are hyperparameters of the prior distribution.

Using a state space representation, the model is

xt = Fxt�1 +Gwt

yt = Htxt + �t

where

xt = (�1t; : : : ; �mt; : : : ; �1;t�k+1; : : : ; �m;t�k+1)
0

Ht = (yt�1; : : : ; yt�m; : : : ; 0; : : : ; 0)

wt = (w1t; : : : ; wmt)
0

k = 1 : F = Im G = Im

k = 2 : F =

�
2Im �Im
Im 0

�
G =

�
Im
0

�

k = 3 : F =

2
4 3Im �3Im Im
Im 0 0
0 Im 0

3
5 G =

2
4 Im0

0

3
5

�
wt

�t

�
� N

�
0;

�
�2I 0
0 �2

��

The computation of the likelihood function is straightforward. See the section, "State
Space and Kalman Filter Method" for the computation method.

Multivariate Time Series Analysis
The subroutines TSMULMAR, TSMLOMAR, and TSPRED analyze multivariate
time series. The periodic AR model, TSPEARS, can also be estimated by using a vec-
tor AR procedure, since the periodic AR series can be represented as the covariance-
stationary vector autoregressive model.

The stationary vector AR model is estimated and the order of the model (or each
variable) is automatically determined by the minimum AIC procedure. The stationary
vector AR model is written

yt = A0 +A1yt�1 + � � �+Apyt�p + �t

�t � N(0;�)

Using theLDL0 factorization method, the error covariance is decomposed as

� = LDL0

whereL is a unit lower triangular matrix andD is a diagonal matrix. Then the
instantaneous response model is defined as

Cyt = A
�
0 +A

�
1yt�1 + � � �+A�

pyt�p + ��t

whereC = L�1, A�
i = L�1Ai for i = 0; 1; : : : ; p, and��t = L�1�t. Each equa-

tion of the instantaneous response model can be estimated independently, since its
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error covariance matrix has a diagonal covariance matrixD. Maximum likelihood
estimates are obtained through the least squares method when the disturbances are
normally distributed and the presample values are fixed.

The TSMULMAR call estimates the instantaneous response model. The VAR co-
efficients are computed using the relationship between the VAR and instantaneous
models.

The general VARMA model can be transformed as an infinite order MA process
under certain conditions.

yt = �+ �t +

1X
m=1

	m�t�m

In the context of the VAR(p) model, the coefficient	m can be interpreted as the
m-lagged response of a unit increase in the disturbances at timet.

	m =
@yt+m
@�0t

The lagged response on the one-unit increase in the orthogonalized disturbances��t is
denoted

@yt+m
@��jt

=
@E(yt+mjyjt; yj�1;t; : : : ;Xt)

@yjt
= 	mLj

where Lj is the jth column of the unit triangular matrixL and Xt =
[yt�1; : : : ;yt�p]. When you estimate the VAR model using the TSMULMAR
call, it is easy to compute this impulse response function.

The MSE of them-step prediction is computed as

E(yt+m � yt+mjt)(yt+m � yt+mjt)0 = �+	1�	
0
1 + � � �+	m�1�	

0
m�1

Note that�t = L��t . Then the covariance matrix of�t is decomposed

� =
nX
i=1

LiL
0
idii

wheredii is theith diagonal element of the matrixD andn is the number of variables.
The MSE matrix can be written

nX
i=1

dii
�
LiL

0
i +	1LiL

0
i	

0
1 + � � �+	m�1LiL

0
i	

0
m�1

�

Therefore, the contribution of theith orthogonalized innovation to the MSE is

Vi = dii
�
LiL

0
i +	1LiL

0
i	

0
1 + � � �+	m�1LiL

0
i	

0
m�1

�
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Theith forecast error variance decomposition is obtained from diagonal elements of
the matrixVi.

The nonstationary multivariate series can be analyzed by the TSMLOMAR subrou-
tine. The estimation and model identification procedure is analogous to the univariate
nonstationary procedure, which is explained in the “Nonstationary Time Series” sec-
tion on page 256.

A time seriesyt is periodically correlated with periodd if Eyt = Eyt+d andEysyt =
Eys+dyt+d. Let yt be autoregressive of periodd with AR orders(p1; : : : ; pd), that is,

yt =

ptX
j=1

�jtyt�j + �t

where�t is uncorrelated with mean zero andE�2t = �2t , pt = pt+d, �2t = �2t+d, and
�jt = �j;t+d(j = 1; : : : ; pt). Define the new variable such thatxjt = yj+d(t�1).
The vector series,xt = (x1t; : : : ; xdt)

0, is autoregressive of orderp, wherep =
maxj int((pj � j)=d) + 1. The TSPEARS subroutine estimates the periodic autore-
gressive model using minimum AIC vector AR modeling.

The TSPRED subroutine computes the one-step or multistep forecast of the mul-
tivariate ARMA model if the ARMA parameter estimates are provided. In addi-
tion, the subroutine TSPRED produces the (intermediate and permanent) impulse
response function and performs forecast error variance decomposition for the vector
AR model.

Spectral Analysis
The autocovariance function of the random variableYt is defined as

CY Y (k) = E(Yt+kYt)

whereEYt = 0. When the real valued processYt is stationary and its autocovariance
is absolutely summable, the population spectral density function is obtained using the
Fourier transform of the autocovariance function

f(g) =
1

2�

1X
k=�1

CY Y (k) exp(�igk) � � � g � �

wherei =
p�1 andCY Y (k) is the autocovariance function such thatP1

k=�1 jCY Y (k)j <1.

Consider the autocovariance generating function


(z) =

1X
k=�1

CY Y (k)z
k

whereCY Y (k) = CY Y (�k) andz is a complex scalar. The spectral density function
can be represented as

f(g) =
1

2�

(exp(�ig))
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The stationary ARMA(p; q) process is denoted:

�(B)yt = �(B)�t �t � (0; �2)

where�(B) and �(B) do not have common roots. Note that the autocovariance
generating function of the linear processyt =  (B)�t is given by


(B) = �2 (B) (B�1)

For the ARMA(p; q) process, (B) = �(B)
�(B) . Therefore, the spectral density function

of the stationary ARMA(p; q) process becomes

f(g) =
�2

2�

���� �(exp(�ig))�(exp(ig))�(exp(�ig))�(exp(ig))

����
2

The spectral density function of a white noise is a constant.

f(g) =
�2

2�

The spectral density function of the AR(1) process(�(B) = 1� �1B) is given by

f(g) =
�2

2�(1 � �1 cos(g) + �21)

The spectrum of the AR(1) process has its minimum atg = 0 and its maximum at
g = �� if �1 < 0, while the spectral density function attains its maximum atg = 0
and its minimum atg = ��, if �1 > 0. When the series is positively autocorrelated,
its spectral density function is dominated by low frequencies. It is interesting to
observe that the spectrum approaches�2

4�
1

1�cos(g) as�1 ! 1. This relationship shows
that the series is difference-stationary if its spectral density function has a remarkable
peak near 0.

The spectrum of AR(2) process(�(B) = 1� �1B � �2B
2) equals

f(g) =
�2

2�

1�
�4�2

h
cos(g) + �1(1��2)

4�2

i2
+

(1+�2)2(4�2+�21)
4�2

�

Refer to Anderson (1971) for details of the characteristics of this spectral density
function of the AR(2) process.

In practice, the population spectral density function cannot be computed. There are
many ways of computing the sample spectral density function. The TSBAYSEA and
TSMLOCAR calls compute the power spectrum using AR coefficients and the white
noise variance.
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The power spectral density function ofYt is derived using the Fourier transformation
of CY Y (k).

fY Y (g) =
1X

k=�1

exp(�2�igk)CY Y (k); �1

2
� g � 1

2

wherei =
p�1 andg denotes frequency. The autocovariance function can also be

written as

CY Y (k) =

Z 1=2

�1=2
exp(2�igk)fY Y (g)dg

Consider the following stationary AR(p) process:

yt �
pX

i=1

�iyt�i = �t

where�t is a white noise with mean zero and constant variance�2.

The autocovariance function of white noise�t equals

C��(k) = �k0�
2

where�k0 = 1 if k = 0; otherwise,�k0 = 0. Therefore, the power spectral density of
the white noise isf��(g) = �2,�1

2 � g � 1
2 . Note that, with�0 = �1,

C��(k) =

pX
m=0

pX
n=0

�m�nCY Y (k �m+ n)

Using the following autocovariance function ofYt,

CY Y (k) =

Z 1=2

�1=2
exp(2�igk)fY Y (g)dg

the autocovariance function of the white noise is denoted as

C��(k) =

pX
m=0

pX
n=0

�m�n

Z 1=2

�1=2
exp(2�ig(k �m+ n))fY Y (g)dg

=

Z 1=2

�1=2
exp(2�igk)

�����1�
pX

m=1

�m exp(�2�igm)

�����
2

fY Y (g)dg

On the other hand, another formula of theC��(k) gives

C��(k) =

Z 1=2

�1=2
exp(2�igk)f��(g)dg
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Therefore,

f��(g) =

�����1�
pX

m=1

�m exp(�2�igm)

�����
2

fY Y (g)

Sincef��(g) = �2, the rational spectrum ofYt is

fY Y (g) =
�2

j1�Pp
m=1 �m exp(�2�igm)j2

To compute the power spectrum, estimated values of white noise variance�̂2 and AR
coefficients�̂m are used. The order of the AR process can be determined by using
the minimum AIC procedure.

Computational Details
Least Squares and Householder Transformation

Consider the univariate AR(p) process

yt = �0 +

pX
i=1

�iyt�i + �t

Define the design matrixX.

X =

2
64

1 yp � � � y1
...

...
. ..

...
1 yT�1 � � � yT�p

3
75

Let y = (yp+1; : : : ; yn)
0. The least squares estimate,â = (X0X)�1X0y, is the

approximation to the maximum likelihood estimate ofa = (�0; �1; : : : ; �p) if �t is
assumed to be Gaussian error disturbances. CombiningX andy as

Z = [X
...y]

theZmatrix can be decomposed as

Z = QU = Q

�
R w1

0 w2

�

whereQ is an orthogonal matrix andR is an upper triangular matrix,w1 =
(w1; : : : ; wp+1)

0, andw2 = (wp+2; 0; : : : ; 0)
0.

Q0y =

2
6664

w1

w2
...

wT�p

3
7775

SAS OnlineDoc: Version 8



Details � 265

The least squares estimate using Householder transformation is computed by solving
the linear system

Ra = w1

The unbiased residual variance estimate is

�̂2 =
1

T � p

T�pX
i=p+2

w2
i =

w2
p+2

T � p

and

AIC = (T � p) log(�̂2) + 2(p+ 1)

In practice, least squares estimation does not require the orthogonal matrixQ. The
TIMSAC subroutines compute the upper triangular matrix without computing the
matrixQ.

Bayesian Constrained Least Squares
Consider the additive time series model

yt = Tt + St + �t; �t � N(0; �2)

Practically, it is not possible to estimate parametersa = (T1; : : : ; TT ; S1; : : : ; ST )
0,

since the number of parameters exceeds the number of available observations. Let
rm
L denote the seasonal difference operator withL seasons and degree ofm; that is,

rm
L = (1�BL)m. Suppose thatT = L � n. Some constraints on the trend and sea-

sonal components need to be imposed such that the sum of squares ofrkTt, rm
L St,

and(
PL�1

i=0 St�i) is small. The constrained least squares estimates are obtained by
minimizing

TX
t=1

n
(yt � Tt � St)

2 + d2
h
s2(rkTt)

2 + (rm
L St)

2 + z2(St + � � �+ St�L+1)
2
io

Using matrix notation,

(y �Ma)0(y �Ma) + (a� a0)0D0D(a� a0)

whereM = [IT
... IT ], y = (y1; : : : ; yT )

0, anda0 is the initial guess ofa. The matrix
D is a 3T � 2T control matrix in which structure varies according to the order of
differencing in trend and season.

D = d

2
4 Em 0

zF 0

0 sGk

3
5
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where

Em = Cm 
 IL; m = 1; 2; 3

F =

2
66664

1 0 � � � 0

1 1
. ..

...
...

. .. . .. 0
1 � � � 1 1

3
77775
T�T

G1 =

2
6666664

1 0 0 � � � 0
�1 1 0 � � � 0

0 �1 1
. . .

...
...

. . .
. ..

. . . 0
0 � � � 0 �1 1

3
7777775
T�T

G2 =

2
666666664

1 0 0 0 � � � 0
�2 1 0 0 � � � 0
1 �2 1 0 � � � 0

0 1 �2 1
. . .

...
...

. . . . . . . . . . . . 0
0 � � � 0 1 �2 1

3
777777775
T�T

G3 =

2
66666666664

1 0 0 0 0 � � � 0
�3 1 0 0 0 � � � 0
3 �3 1 0 0 � � � 0

�1 3 �3 1 0 � � � 0

0 �1 3 �3 1
. . .

...
...

. . . . . . . .. . . . . . . 0
0 � � � 0 �1 3 �3 1

3
77777777775
T�T

Then� n matrixCm has the same structure as the matrixGm, andIL is theL�L
identity matrix. The solution of the constrained least squares method is equivalent to
that of maximizing the following function

L(a) = exp

�
� 1

2�2
(y �Ma)0(y �Ma)

�
exp

�
� 1

2�2
(a� a0)0D0D(a� a0)

�

Therefore, the PDF of the datay is

f(yj�2;a) =
�

1

2�

�T=2� 1

�

�T

exp

�
� 1

2�2
(y �Ma)0(y �Ma)

�

The prior PDF of the parameter vectora is

�(ajD; �2;a0) =
�

1

2�

�T � 1

�

�2T

jD0Dj exp
�
� 1

2�2
(a� a0)0D0D(a� a0)

�
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When the constantd is known, the estimatêa of a is the mean of the posterior dis-
tribution, where the posterior PDF of the parametera is proportional to the function
L(a). It is obvious that̂a is the minimizer ofkg(ajd)k2 = (~y � ~Da)0(~y � ~Da),
where

~y =

�
y

Da0

�

~D =

�
M

D

�

The value ofd is determined by the minimum ABIC procedure. The ABIC is defined
as

ABIC = T log

�
1

T
kg(ajd)k2

�
+ 2flog[det(D0D+M0M)]� log[det(D0D)]g

State Space and Kalman Filter Method
In this section, the mathematical formulas for state space modeling are introduced.
The Kalman filter algorithms are derived from the state space model. As an example,
the state space model of the TSDECOMP subroutine is formulated.

Define the following state space model:

xt = Fxt�1 +Gwt

yt = Htxt + �t

where�t � N(0; �2) andwt � N(0;Q). If the observations,(y1; : : : ; yT ), and the
initial conditions,x0j0 andP0j0, are available, the one-step predictor(xtjt�1) of the
state vectorxt and its mean square error (MSE) matrixPtjt�1 are written as

xtjt�1 = Fxt�1jt�1

Ptjt�1 = FPt�1jt�1F
0 +GQG0

Using the current observation, the filtered value ofxt and its variancePtjt are up-
dated.

xtjt = xtjt�1 +Ktet

Ptjt = (I�KtHt)Ptjt�1

whereet = yt � Htxtjt�1 andKt = Ptjt�1H
0
t[HtPtjt�1H

0
t + �2I]�1. The log-

likelihood function is computed as

` = �1

2

TX
t=1

log(2�vtjt�1)�
TX
t=1

e2t
2vtjt�1
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wherevtjt�1 is the conditional variance of the one-step prediction erroret.

Consider the additive time series decomposition

yt = Tt + St + TDt + ut + x
0
t�t + �t

wherext is a(K � 1) regressor vector and�t is a(K � 1) time-varying coefficient
vector. Each component has the following constraints:

rkTt = w1t; w1t � N(0; �21 )

rm
L St = w2t; w2t � N(0; �22 )

ut =

pX
i=1

�iut�i + w3t; w3t � N(0; �23 )

�jt = �j;t�1 + w3+j;t; w3+j;t � N(0; �23+j); j = 1; � � � ;K
7X

i=1


itTDt(i) =
6X

i=1


it(TDt(i)� TDt(7))


it = 
i;t�1

whererk = (1 � B)k andrm
L = (1 � BL)m. The AR componentut is assumed

to be stationary. The trading day componentTDt(i) represents the number of theith
day of the week in timet. If k = 3; p = 3;m = 1, andL = 12 (monthly data),

Tt = 3Tt�1 � 3Tt�2 + Tt�3 + w1t

11X
i=0

St�i = w2t

ut =

3X
i=1

�iut�i + w3t

The state vector is defined as

xt = (Tt; Tt�1; Tt�2; St; : : : ; St�11; ut; ut�1; ut�2; 
1t; : : : ; 
6t)
0

The matrixF is

F =

2
664
F1 0 0 0
0 F2 0 0
0 0 F3 0
0 0 0 F4

3
775

where

F1 =

2
4 3 �3 1

1 0 0
0 1 0

3
5
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F2 =

� �10 �1
I10 0

�

F3 =

2
4 �1 �2 �3

1 0 0
0 1 0

3
5

F4 = I6

10 = (1; 1; : : : ; 1)

The matrixG can be denoted as

G =

2
6666666666664

g1 0 0
0 g2 0
0 0 g3
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

3
7777777777775

where

g1 = g3 =
�
1 0 0

�0
g2 =

�
1 0 0 0 0 0

�0
Finally, the matrixHt is time-varying,

Ht =
�
1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 h0t

�
where

ht =
�
Dt(1) Dt(2) Dt(3) Dt(4) Dt(5) Dt(6)

�0
Dt(i) = TDt(i) � TDt(7); i = 1; : : : ; 6

Missing Values
The TIMSAC subroutines skip any missing values at the beginning of the data set.
When the univariate and multivariate AR models are estimated via least squares
(TSMLOCAR, TSMLOMAR, TSUNIMAR, TSMULMAR, and TSPEARS), there
are three options available; that is, MISSING=0, MISSING=1, or MISSING=2.
When the MISSING=0 (default) option is specified, the first contiguous observa-
tions with no missing values are used. The MISSING=1 option specifies that only
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nonmissing observations should be used by ignoring the observations with missing
values. If the MISSING=2 option is specified, the missing values are filled with the
sample mean. The least squares estimator with the MISSING=2 option is biased in
general.

The BAYSEA subroutine assumes the same prior distribution of the trend and sea-
sonal components that correspond to the missing observations. A modification is
made to skip the components of the vectorg(ajd) that correspond to the missing ob-
servations. The vectorg(ajd) is defined in the section, "Bayesian Constrained Least
Squares". In addition, the TSBAYSEA subroutine considers outliers as missing val-
ues. The TSDECOMP and TSTVCAR subroutines skip the Kalman filter updating
equation when the current observation is missing.

ISM TIMSAC Packages
A description of each TIMSAC package follows. Each description includes a list of
the programs provided in the TIMSAC version.

TIMSAC-72
analyzes and controls the feedback systems (for example, cement kiln process).
Univariate- and multivariate-AR models are employed in this original TIMSAC pack-
age. The final prediction error (FPE) criterion is used for model selection.

� AUSPEC estimates the power spectrum by the Blackman-Tukey procedure.

� AUTCOR computes autocovariance and autocorrelation.

� DECONV computes the impulse response function.

� FFTCOR computes autocorrelation and crosscorrelation via the fast Fourier
transform.

� FPEAUT computes AR coefficients and FPE for the univariate AR model.

� FPEC computes AR coefficients and FPE for the control system or multivariate
AR model.

� MULCOR computes multiple covariance and correlation.

� MULNOS computes relative power contribution.

� MULRSP estimates the rational spectrum for multivariate data.

� MULSPE estimates the cross spectrum by Blackman-Tukey procedure.

� OPTDES performs optimal controller design.

� OPTSIM performs optimal controller simulation.

� RASPEC estimates the rational spectrum for univariate data.

� SGLFRE computes the frequency response function.

� WNOISE performs white noise simulation.

TIMSAC-74
estimates and forecasts the univariate and multivariate ARMA models by fitting the
canonical Markovian model. A locally stationary autoregressive model is also ana-
lyzed. Akaike’s information criterion (AIC) is used for model selection.
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� AUTARM performs automatic univariate ARMA model fitting.

� BISPEC computes bispectrum.

� CANARM performs univariate canonical correlation analysis.

� CANOCA performs multivariate canonical correlation analysis.

� COVGEN computes the covariance from gain function.

� FRDPLY plots the frequency response function.

� MARKOV performs automatic multivariate ARMA model fitting.

� NONST estimates the locally stationary AR model.

� PRDCTR performs ARMA model prediction.

� PWDPLY plots the power spectrum.

� SIMCON performs optimal controller design and simulation.

� THIRMO computes the third-order moment.

TIMSAC-78
uses the Householder transformation to estimate the time series models. This package
also contains Bayesian modeling and the exact maximum likelihood estimation of
the ARMA model. Minimum AIC or Akaike Bayesian Information Criterion (ABIC)
modeling is extensively used.

� BLOCAR estimates the locally stationary univariate AR model using the
Bayesian method.

� BLOMAR estimates the locally stationary multivariate AR model using the
Bayesian method.

� BSUBST estimates the univariate subset regression model using the Bayesian
method.

� EXSAR estimates the univariate AR model using the exact maximum likeli-
hood method.

� MLOCAR estimates the locally stationary univariate AR model using the min-
imum AIC method.

� MLOMAR estimates the locally stationary multivariate AR model using the
minimum AIC method.

� MULBAR estimates the multivariate AR model using the Bayesian method.

� MULMAR estimates the multivariate AR model using the minimum AIC
method.

� NADCON performs noise adaptive control.

� PERARS estimates the periodic AR model using the minimum AIC method.

� UNIBAR estimates the univariate AR model using the Bayesian method.

� UNIMAR estimates the univariate AR model using the minimum AIC method.

� XSARMA estimates the univariate ARMA model using the exact maximum
likelihood method.
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In addition, the following test subroutines are available: TSSBST, TSWIND, TS-
ROOT, TSTIMS, and TSCANC.

TIMSAC-84
contains the Bayesian time series modeling procedure, the point process data analysis,
and the seasonal adjustment procedure.

� ADAR estimates the amplitude dependent AR model.

� BAYSEA performs Bayesian seasonal adjustments.

� BAYTAP performs Bayesian tidal analysis.

� DECOMP performs time series decomposition analysis using state space mod-
eling.

� EPTREN estimates intensity rates of either the exponential polynomial or ex-
ponential Fourier series of the nonstationary Poisson process model.

� LINLIN estimates linear intensity models of the self-exciting point process
with another process input and with cyclic and trend components.

� LINSIM performs simulation of the point process estimated by the subroutine
LINLIN.

� LOCCAR estimates the locally constant AR model.

� MULCON performs simulation, control, and prediction of the multivariate AR
model.

� NONSPA performs nonstationary spectrum analysis using the minimum
Bayesian AIC procedure.

� PGRAPH performs graphical analysis for point process data.

� PTSPEC computes periodograms of point process data with significant bands.

� SIMBVH performs simulation of bivariate Hawkes’ mutually exciting point
process.

� SNDE estimates the stochastic nonlinear differential equation model.

� TVCAR estimates the time-varying AR coefficient model using state space
modeling.

Refer to Kitagawa and Akaike (1981) and Ishiguro (1987) for more information about
TIMSAC programs.
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Example 10.1. VAR Estimation and Variance Decomposition

In this example, a VAR model is estimated and forecast. The VAR(3) model is esti-
mated using investment, durable consumption, and consumption expenditures. The
data are found in the appendix to Lutkepohl (1991). The stationary VAR(3) process
is specified as

yt = A0 +A1yt�1 +A2yt�2 +A3yt�3 + �t

The matrix ARCOEF contains the AR coefficients (A1,A2, andA3), and the matrix
EV contains error covariance estimates. An intercept vectorA0 is included in the
first row of the matrix ARCOEF if OPT[1]=1 is specified.

data one;
input invest income consum @@;

datalines;
180 451 415 179 465 421 185 485 434 192 493 448
211 509 459 202 520 458 207 521 479 214 540 487
231 548 497 229 558 510 234 574 516 237 583 525
206 591 529 250 599 538 259 610 546 263 627 555
264 642 574 280 653 574 282 660 586 292 694 602
286 709 617 302 734 639 304 751 653 307 763 668
317 766 679 314 779 686 306 808 697 304 785 688
292 794 704 275 799 699 273 799 709 301 812 715
280 837 724 289 853 746 303 876 758 322 897 779
315 922 798 339 949 816 364 979 837 371 988 858
375 1025 881 432 1063 905 453 1104 934 460 1131 968
475 1137 983 496 1178 1013 494 1211 1034 498 1256 1064
526 1290 1101 519 1314 1102 516 1346 1145 531 1385 1173
573 1416 1216 551 1436 1229 538 1462 1242 532 1493 1267
558 1516 1295 524 1557 1317 525 1613 1355 519 1642 1371
526 1690 1402 510 1759 1452 519 1756 1485 538 1780 1516
549 1807 1549 570 1831 1567 559 1873 1588 584 1897 1631
611 1910 1650 597 1943 1685 603 1976 1722 619 2018 1752
635 2040 1774 658 2070 1807 675 2121 1831 700 2132 1842
692 2199 1890 759 2253 1958 782 2276 1948 816 2318 1994
844 2369 2061 830 2423 2056 853 2457 2102 852 2470 2121
833 2521 2145 860 2545 2164 870 2580 2206 830 2620 2225
801 2639 2235 824 2618 2237 831 2628 2250 830 2651 2271

;
proc iml;

use one;
read all into y var{invest income consum};
mdel = 1;
maice = 0;
misw = 0; /*-- instantaneous modeling ? --*/
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw) print=1;

To obtain the unit triangular matrixL�1 and diagonal matrixDt, you need to estimate
the instantaneous response model. When you specify the OPT[3]=1 option, the first
row of the output matrix EV contains error variances of the instantaneous response
model, while the unit triangular matrix is in the second through the fifth rows. See
Output 10.1.1 on page 274.
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misw = 1;
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw) print=1;
print ev;

Output 10.1.1. Error Variance and Unit Triangular Matrix

EV

295.21042 190.94664 59.361516
1 0 0

-0.02239 1 0
-0.256341 -0.500803 1

In Output 10.1.2 on page 274 and Output 10.1.3 on page 275, you can see the rela-
tionship between the instantaneous response model and the VAR model. The VAR
coefficients are computed asAi = LA�

i (i = 0; 1; 2; 3), whereA�
i is a coefficient

matrix of the instantaneous model. For example, you can verify this result using the
first lag coefficient matrix(A1).

2
4 0:886 0:340 �0:014

0:168 1:050 0:107
0:089 0:459 0:447

3
5 =

2
4 1:000 0 0
�0:022 1:000 0
�0:256 �0:501 1:000

3
5
�1 2
4 0:886 0:340 �0:014

0:149 1:043 0:107
�0:222 �0:154 0:397

3
5

Output 10.1.2. VAR Estimates

----- AR-COEFFICIENTS -----
LAG VAR = 1 VAR = 2 VAR = 3

1 0.885593 0.340174 -0.014398
0.168452 1.050262 0.107064
0.089103 0.459157 0.447367

2 -0.059195 -0.298777 0.162982
0.112862 -0.044039 -0.088186
0.168493 -0.025847 -0.025671

3 0.063723 -0.196504 0.069575
-0.226559 0.053247 -0.099808
-0.303697 -0.139022 0.257641
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Output 10.1.3. Instantaneous Response Model Estimates

----- AR -----

0.885593 0.340174 -0.014398
0.148624 1.042645 0.107386

-0.222272 -0.154018 0.397440

-0.059195 -0.298777 0.162982
0.114188 -0.037349 -0.091835
0.127145 0.072796 -0.023287

0.063723 -0.196504 0.069575
-0.227986 0.057646 -0.101366
-0.206570 -0.115316 0.289790

When the VAR estimates are available, you can forecast the future values using the
TSPRED call. As a default, the one-step predictions are produced until the START=
point is reached. The NPRED=h option specifies how far you want to predict. The
prediction error covariance matrix MSE containsh mean square error matrices. The
output matrix IMPULSE contains the estimate of the coefficients(	i) of the infinite
MA process. The following IML code estimates the VAR(3) model and performs
10-step-ahead prediction.

mdel = 1;
maice = 0;
misw = 0;
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw);
call tspred(forecast,impulse,mse,y,arcoef,nar,0,ev)

npred=10 start=nrow(y) constant=mdel;
print impulse;

The lagged effects of a unit increase in the error disturbances are included in the
matrix IMPULSE. For example,

@yt+2
@�0t

=

2
4 0:781100 0:353140 0:180211

0:448501 1:165474 0:069731
0:364611 0:692111 0:222342

3
5

Output 10.1.4 on page 276 displays the first 15 rows of the matrix IMPULSE.
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Output 10.1.4. Moving Average Coefficients: MA(0)�MA(4)

IMPULSE

1 0 0
0 1 0
0 0 1

0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
0.7810999 0.3531397 0.1802109
0.4485013 1.1654737 0.0697311
0.3646106 0.6921108 0.2223425
0.8145483 0.243637 0.2914643
0.4997732 1.3625363 0.018202
0.2775237 0.7555914 0.3885065
0.7960884 0.2593068 0.260239
0.5275069 1.4134792 0.0335483
0.267452 0.8659426 0.3190203

In addition, you can compute the lagged response on the one-unit increase in the
orthogonalized disturbances��t .

@yt+m
@��jt

=
@E(yt+mjyjt; yj�1;t; : : : ;Xt)

@yjt
= 	mLj

When the error matrix EV is obtained from the instantaneous response model, you
need to convert the matrix IMPULSE. The first 15 rows of the matrix ORTH–IMP
are shown in Output 10.1.5 on page 276. Note that the matrix constructed from the
last three rows of EV become the matrixL�1.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 0 1};

lmtx = inv(ev[2:nrow(ev),]);
orth_imp = impulse * lmtx;
print orth_imp;

Output 10.1.5. Transformed Moving Average Coefficients

ORTH_IMP

1 0 0
0.0223902 1 0
0.267554 0.5008031 1
0.889357 0.3329638 -0.014398
0.2206132 1.1038799 0.107064
0.219079 0.6832001 0.4473672
0.8372229 0.4433899 0.1802109
0.4932533 1.2003953 0.0697311
0.4395957 0.8034606 0.2223425
0.8979858 0.3896033 0.2914643
0.5254106 1.3534206 -0.018202
0.398388 0.9501566 0.3885065
0.8715223 0.3896353 0.260239
0.5681309 1.4302804 0.0335483
0.3721958 1.025709 0.3190203
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You can verify the result for the case of

@yt+2
@��2t

=
@E(yt+2jy2t; y1t; : : : ;Xt)

@y2t
= 	2L2

using the simple computation

2
4 0:443390

1:200395
0:803461

3
5 =

2
4 0:781100 0:353140 0:180211

0:448501 1:165474 0:069731
0:364611 0:692111 0:222342

3
5
2
4 0:000000

1:000000
0:500803

3
5

The contribution of theith orthogonalized innovation to the mean square error matrix
of the 10-step forecast is computed using the formula

dii[LiL
0
i +	1LiL

0
i	

0
1 + � � �+	9LiL

0
i	

0
9]

In Output 10.1.6 on page 277, diagonal elements of each decomposed MSE matrix
are displayed as the matrix CONTRIB as well as those of the MSE matrix (VAR).

mse1 = j(3,3,0);
mse2 = j(3,3,0);
mse3 = j(3,3,0);
do i = 1 to 10;

psi = impulse[(i-1)*3+1:3*i,];
mse1 = mse1 + psi*lmtx[,1]*lmtx[,1]‘*psi‘;
mse2 = mse2 + psi*lmtx[,2]*lmtx[,2]‘*psi‘;
mse3 = mse3 + psi*lmtx[,3]*lmtx[,3]‘*psi‘;

end;
mse1 = ev[1,1]#mse1;
mse2 = ev[1,2]#mse2;
mse3 = ev[1,3]#mse3;
contrib = vecdiag(mse1) || vecdiag(mse2) || vecdiag(mse3);
var = vecdiag(mse[28:30,]);
print contrib var;

Output 10.1.6. Orthogonal Innovation Contribution

CONTRIB VAR

1879.3774 238.08543 46.247569 2163.7104
935.54383 3636.8824 1.5546701 4573.9809
452.67794 1916.1676 97.660432 2466.506

The investment innovation contribution to its own variable is 1879.3774, and the
income innovation contribution to the consumption expenditure is 1916.1676. It is
easy to understand the contribution of innovations in theith variable to MSE when
you compute the innovation account. In Output 10.1.7 on page 278, innovations in
the first variable (investment) explain 20.45% of the error variance of the second
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variable (income), while the innovations in the second variable explain 79.5% of its
own error variance. It is straightforward to construct the general multistep forecast
error variance decomposition.

account = contrib * 100 / (var@j(1,3,1));
print account;

Output 10.1.7. Innovation Account

ACCOUNT

86.859008 11.003572 2.1374196
20.453602 79.512409 0.0339894
18.353004 77.687531 3.9594646
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Kalman Filter Subroutines

This section describes a collection of Kalman filtering and smoothing subroutines for
time series analysis; immediately following are three examples using Kalman filtering
subroutines. The state space model is a method for analyzing a wide range of time
series models. When the time series is represented by the state space model (SSM),
the Kalman filter is used for filtering, prediction, and smoothing of the state vector.
The state space model is composed of the measurement and transition equations. The
measurement (or observation) equation can be written

yt = bt +Htzt + �t

wherebt is anNy � 1 vector,Ht is anNy �Nz matrix, the sequence of observation
noise�t is independent,zt is anNz � 1 state vector, andyt is anNy � 1 observed
vector.

The transition (or state) equation is denoted as a first-order Markov process of the
state vector.

zt+1 = at + Ftzt + �t

whereat is anNz � 1 vector,Ft is anNz � Nz transition matrix, and the sequence
of transition noise�t is independent. This equation is often called ashifted transition
equationbecause the state vector is shifted forward one time period. The transition
equation can also be denoted using an alternative specification

zt = at + Ftzt�1 + �t

There is no real difference between the shifted transition equation and this alternative
equation if the observation noise and transition equation noise are uncorrelated, that
is,E(�t�0t) = 0. It is assumed that

E(�t�
0
s) = Vt�ts

E(�t�
0
s) = Rt�ts

E(�t�
0
s) = Gt�ts

where

�ts =

�
1 if t = s
0 if t 6= s

De Jong (1991a) proposed a diffuse Kalman filter that can handle an arbitrarily large
initial state covariance matrix. The diffuse initial state assumption is reasonable if
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you encounter the case of parameter uncertainty or SSM nonstationarity. The SSM
of the diffuse Kalman filter is written

yt = Xt� +Htzt + �t

zt+1 = Wt� + Ftzt + �t

z0 = a+A�

� = b+B�

where� is a random variable with a mean of� and a variance of�2�. When�!1,
the SSM is said to be diffuse.

The following IML Kalman filter calls are supported:

KALCVF performs covariance filtering and prediction

KALCVS performs fixed-interval smoothing

KALDFF performs diffuse covariance filtering and prediction

KALDFS performs diffuse fixed-interval smoothing

The KALCVF call computes the one-step predictionzt+1jt and the filtered estimate
ztjt, together with their covariance matricesPt+1jt andPtjt, using forward recur-
sions. You can obtain thek-step predictionzt+kjt and its covariance matrixPt+kjt

with the KALCVF call. The KALCVS call uses backward recursions to compute the
smoothed estimateztjT and its covariance matrixPtjT when there areT observations
in the complete data.

The KALDFF call produces one-step prediction of the state and the unobserved ran-
dom vector� as well as their covariance matrices. The KALDFS call computes the
smoothed estimateztjT and its covariance matrixPtjT .

See Chapter 17, “Language Reference,” for more information about Kalman filtering
subroutines.

Example 10.2. Kalman Filtering: Likelihood Function
Evaluation

In this example, the log likelihood function of the SSM is computed using prediction
error decomposition. The annual real GNP series,yt, can be decomposed as

yt = �t + �t

where�t is a trend component and�t is a white noise error with�t � (0; �2� ). Refer
to Nelson and Plosser (1982) for more details on these data. The trend component is
assumed to be generated from the following stochastic equations:

�t = �t�1 + �t�1 + �1t

�t = �t�1 + �2t

SAS OnlineDoc: Version 8



Example 10.2. Kalman Filtering: Likelihood Function Evaluation � 281

where�1t and�2t are independent white noise disturbances with�1t � (0; �2�1) and
�2t � (0; �2�2 ).

It is straightforward to construct the SSM of the real GNP series.

yt = Hzt + �t

zt = Fzt�1 + �t

where

H = (1; 0)

F =

�
1 1
0 1

�

zt = (�t; �t)
0

�t = (�1t; �2t)
0

Var

��
�t
�0t

��
=

2
4 �2� 0 0

0 �2�1 0

0 0 �2�2

3
5

When the observation noise�t is normally distributed, the average log likelihood
function of the SSM is

` =
1

T

TX
t=1

`t

`t = �Ny

2
log(2�) � 1

2
log(jCtj)� 1

2
�̂0tC

�1
t �̂t

whereCt is the mean square error matrix of the prediction error�̂t, such thatCt =
HPtjt�1H

0 +Rt.

The LIK module computes the average log likelihood function. First, the average log
likelihood function is computed using the default initial values: Z0=0 and VZ0=106I.
The second call of module LIK produces the average log likelihood function with
the given initial conditions: Z0=0 and VZ0=10�3I. You can notice a sizable differ-
ence between the uncertain initial condition (VZ0=106I) and the almost deterministic
initial condition (VZ0=10�3I) in Output 10.2.1.

Finally, the first 15 observations of one-step predictions, filtered values, and real GNP
series are produced under the moderate initial condition (VZ0=10I). The data are the
annual real GNP for the years 1909 to 1969.

title ’Likelihood Evaluation of SSM’;
title2 ’DATA: Annual Real GNP 1909-1969’;
data gnp;

input y @@;
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datalines;
116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3
135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5
179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2
141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2
263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7
324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1
452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1
617.8 658.1 675.2 706.6 724.7
;

proc iml;
start lik(y,a,b,f,h,var,z0,vz0);

nz = nrow(f);
n = nrow(y);
k = ncol(y);
const = k*log(8*atan(1));
if ( sum(z0 = .) | sum(vz0 = .) ) then

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
else

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);
et = y - pred*h‘;
sum1 = 0;
sum2 = 0;
do i = 1 to n;

vpred_i = vpred[(i-1)*nz+1:i*nz,];
et_i = et[i,];
ft = h*vpred_i*h‘ + var[nz+1:nz+k,nz+1:nz+k];
sum1 = sum1 + log(det(ft));
sum2 = sum2 + et_i*inv(ft)*et_i‘;

end;
return(-const-.5*(sum1+sum2)/n);

finish;

start main;
use gnp;
read all var {y};

f = {1 1, 0 1};
h = {1 0};
a = j(nrow(f),1,0);
b = j(nrow(h),1,0);
var = diag(j(1,nrow(f)+ncol(y),1e-3));
/*-- initial values are computed --*/
z0 = j(1,nrow(f),.);
vz0 = j(nrow(f),nrow(f),.);
logl = lik(y,a,b,f,h,var,z0,vz0);
print ’No initial values are given’, logl;
/*-- initial values are given --*/
z0 = j(1,nrow(f),0);
vz0 = 1e-3#i(nrow(f));
logl = lik(y,a,b,f,h,var,z0,vz0);
print ’Initial values are given’, logl;
z0 = j(1,nrow(f),0);
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vz0 = 10#i(nrow(f));
call kalcvf(pred,vpred,filt,vfilt,y,1,a,f,b,h,var,z0,vz0);
print y pred filt;

finish;
run;

Output 10.2.1. Average Log Likelihood of SSM

Likelihood Evaluation of SSM
DATA: Annual Real GNP 1909-1969

No initial values are given

LOGL

-26314.66

Initial values are given

LOGL

-91884.41

Output 10.2.2 shows the observed data, the predicted state vectors, and the filtered
state vectors for the first 16 observations.

Output 10.2.2. Filtering and One-Step Prediction

Y PRED FILT

116.8 0 0 116.78832 0
120.1 116.78832 0 120.09967 3.3106857
123.2 123.41035 3.3106857 123.22338 3.1938303
130.2 126.41721 3.1938303 129.59203 4.8825531
131.4 134.47459 4.8825531 131.93806 3.5758561
125.6 135.51391 3.5758561 127.36247 -0.610017
124.5 126.75246 -0.610017 124.90123 -1.560708
134.3 123.34052 -1.560708 132.34754 3.0651076
135.2 135.41265 3.0651076 135.23788 2.9753526
151.8 138.21324 2.9753526 149.37947 8.7100967
146.4 158.08957 8.7100967 148.48254 3.7761324
139 152.25867 3.7761324 141.36208 -1.82012
127.8 139.5419 -1.82012 129.89187 -6.776195
147 123.11568 -6.776195 142.74492 3.3049584
165.9 146.04988 3.3049584 162.36363 11.683345
165.5 174.04698 11.683345 167.02267 8.075817

Example 10.3. Kalman Filtering: Estimating an SSM Using
the EM Algorithm

This example estimates the normal SSM of the mink-muskrat data using the EM al-
gorithm. The mink-muskrat series are detrended. Refer to Harvey (1989) for details
of this data set. Since this EM algorithm uses filtering and smoothing, you can learn
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how to use the KALCVF and KALCVS calls to analyze the data. Consider the bi-
variate SSM:

yt = Hzt + �t

zt = Fzt�1 + �t

whereH is a2� 2 identity matrix, the observation noise has a time invariant covari-
ance matrixR, and the covariance matrix of the transition equation is also assumed
to be time invariant. The initial statez0 has mean� and covariance�. For estimation,
the� matrix is fixed as

�
0:1 0:0
0:0 0:1

�

while the mean vector� is updated by the smoothing procedure such that�̂ = z0jT .
Note that this estimation requires an extra smoothing step since the usual smoothing
procedure does not producezT j0.

The EM algorithm maximizes the expected log likelihood function given the current
parameter estimates. In practice, the log likelihood function of the normal SSM is
evaluated while the parameters are updated using the M-step of the EM maximization

Fi+1 = St(1)[St�1(0)]
�1

Vi+1 =
1

T

�
St(0)� St(0)[St�1(0)]�1S0t(1)

�
Ri+1 =

1

T

TX
t=1

�
(yt �HztjT )(yt �HztjT )0 +HPtjTH

0
�

�i+1 = z0jT

where the indexi represents the current iteration number, and

St(0) =

TX
t=1

(PtjT + ztjT z
0
tjT );

St(1) =
TX
t=1

(Pt;t�1jT + ztjT z
0
t�1jT )

It is necessary to compute the value ofPt;t�1jT recursively such that

Pt�1;t�2jT = Pt�1jt�1P
�0
t�2 +P

�
t�1(Pt;t�1jT � FPt�1jt�1)P

�0
t�2

whereP�t = PtjtF
0P�t+1jt and the initial valuePT;T�1jT is derived using the formula

PT;T�1jT =
�
I�Ptjt�1H

0(HPtjt�1H
0 +R)H

�
FPT�1jT�1
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Note that the initial value of the state vector is updated for each iteration

z1j0 = F�i

P1j0 = Fi�Fi0 +Vi

The objective function value is computed as�2` in the IML module LIK. The log-
likelihood function is written

` = �1

2

TX
t=1

log(jCtj)� 1

2

TX
t=1

(yt �Hztjt�1)C�1
t (yt �Hztjt�1)0

whereCt = HPtjt�1H
0 +R.

The iteration history is shown in Output 10.3.1. As shown in Output 10.3.2, the
eigenvalues ofF are within the unit circle, which indicates that the SSM is station-
ary. However, the muskrat series (Y1) is reported to be difference stationary. The
estimated parameters are almost identical to those of the VAR(1) estimates. Refer
to Harvey (1989, p. 469). Finally, multistep forecasts ofyt are computed using the
KALCVF call.

call kalcvf(pred,vpred,filt,vfilt,y,15,a,f,b,h,var,z0,vz0);

The predicted values of the state vectorzt and their standard errors are shown in
Output 10.3.3.

title ’SSM Estimation using EM Algorithm’;
data one;

input y1 y2 @@;
datalines;

/*. . . data lines omitted . . .*/
;

proc iml;
start lik(y,pred,vpred,h,rt);

n = nrow(y);
nz = ncol(h);
et = y - pred*h‘;
sum1 = 0;
sum2 = 0;
do i = 1 to n;

vpred_i = vpred[(i-1)*nz+1:i*nz,];
et_i = et[i,];
ft = h*vpred_i*h‘ + rt;
sum1 = sum1 + log(det(ft));
sum2 = sum2 + et_i*inv(ft)*et_i‘;

end;
return(sum1+sum2);

finish;

start main;
use one;
read all into y var {y1 y2};
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/*-- mean adjust series --*/
t = nrow(y);
ny = ncol(y);
nz = ny;
f = i(nz);
h = i(ny);

/*-- observation noise variance is diagonal --*/
rt = 1e-5#i(ny);

/*-- transition noise variance --*/
vt = .1#i(nz);
a = j(nz,1,0);
b = j(ny,1,0);
myu = j(nz,1,0);
sigma = .1#i(nz);
converge = 0;
do iter = 1 to 100 while( converge = 0 );

/*--- construct big cov matrix --*/
var = ( vt || j(nz,ny,0) ) //

( j(ny,nz,0) || rt );

/*-- initial values are changed --*/
z0 = myu‘ * f‘;
vz0 = f * sigma * f‘ + vt;

/*-- filtering to get one-step prediction and filtered value --*/
call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);

/*-- smoothing using one-step prediction values --*/
call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);

/*-- compute likelihood values --*/
logl = lik(y,pred,vpred,h,rt);

/*-- store old parameters and function values --*/
myu0 = myu;
f0 = f;
vt0 = vt;
rt0 = rt;
logl0 = logl;
itermat = itermat // ( iter || logl0 || shape(f0,1) || myu0‘ );

/*-- obtain P*(t) to get P_T_0 and Z_T_0 --*/
/*-- these values are not usually needed --*/
/*-- See Harvey (1989 p154) or Shumway (1988, p177) --*/
jt1 = sigma * f‘ * inv(vpred[1:nz,]);
p_t_0 = sigma + jt1*(vsm[1:nz,] - vpred[1:nz,])*jt1‘;
z_t_0 = myu + jt1*(sm[1,]‘ - pred[1,]‘);
p_t1_t = vpred[(t-1)*nz+1:t*nz,];
p_t1_t1 = vfilt[(t-2)*nz+1:(t-1)*nz,];
kt = p_t1_t*h‘*inv(h*p_t1_t*h‘+rt);

/*-- obtain P_T_TT1. See Shumway (1988, p180) --*/
p_t_ii1 = (i(nz)-kt*h)*f*p_t1_t1;
st0 = vsm[(t-1)*nz+1:t*nz,] + sm[t,]‘*sm[t,];
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st1 = p_t_ii1 + sm[t,]‘*sm[t-1,];
st00 = p_t_0 + z_t_0 * z_t_0‘;
cov = (y[t,]‘ - h*sm[t,]‘) * (y[t,]‘ - h*sm[t,]‘)‘ +

h*vsm[(t-1)*nz+1:t*nz,]*h‘;
do i = t to 2 by -1;

p_i1_i1 = vfilt[(i-2)*nz+1:(i-1)*nz,];
p_i1_i = vpred[(i-1)*nz+1:i*nz,];
jt1 = p_i1_i1 * f‘ * inv(p_i1_i);
p_i1_i = vpred[(i-2)*nz+1:(i-1)*nz,];
if ( i > 2 ) then

p_i2_i2 = vfilt[(i-3)*nz+1:(i-2)*nz,];
else

p_i2_i2 = sigma;
jt2 = p_i2_i2 * f‘ * inv(p_i1_i);
p_t_i1i2 = p_i1_i1*jt2‘ + jt1*(p_t_ii1 - f*p_i1_i1)*jt2‘;
p_t_ii1 = p_t_i1i2;
temp = vsm[(i-2)*nz+1:(i-1)*nz,];
sm1 = sm[i-1,]‘;
st0 = st0 + ( temp + sm1 * sm1‘ );
if ( i > 2 ) then

st1 = st1 + ( p_t_ii1 + sm1 * sm[i-2,]);
else st1 = st1 + ( p_t_ii1 + sm1 * z_t_0‘);
st00 = st00 + ( temp + sm1 * sm1‘ );
cov = cov + ( h * temp * h‘ +

(y[i-1,]‘ - h * sm1)*(y[i-1,]‘ - h * sm1)‘ );
end;

/*-- M-step: update the parameters --*/
myu = z_t_0;
f = st1 * inv(st00);
vt = (st0 - st1 * inv(st00) * st1‘)/t;
rt = cov / t;

/*-- check convergence --*/
if ( max(abs((myu - myu0)/(myu0+1e-6))) < 1e-2 &

max(abs((f - f0)/(f0+1e-6))) < 1e-2 &
max(abs((vt - vt0)/(vt0+1e-6))) < 1e-2 &
max(abs((rt - rt0)/(rt0+1e-6))) < 1e-2 &
abs((logl-logl0)/(logl0+1e-6)) < 1e-3 ) then

converge = 1;
end;

reset noname;
colnm = {’Iter’ ’-2*log L’ ’F11’ ’F12’ ’F21’ ’F22’

’MYU11’ ’MYU22’};
print itermat[colname=colnm format=8.4];
eval = teigval(f0);
colnm = {’Real’ ’Imag’ ’MOD’};
eval = eval || sqrt((eval#eval)[,+]);
print eval[colname=colnm];
var = ( vt || j(nz,ny,0) ) //

( j(ny,nz,0) || rt );

/*-- initial values are changed --*/
z0 = myu‘ * f‘;
vz0 = f * sigma * f‘ + vt;
free itermat;
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/*-- multistep prediction --*/
call kalcvf(pred,vpred,filt,vfilt,y,15,a,f,b,h,var,z0,vz0);
do i = 1 to 15;

itermat = itermat // ( i || pred[t+i,] ||
sqrt(vecdiag(vpred[(t+i-1)*nz+1:(t+i)*nz,]))‘ );

end;
colnm = {’n-Step’ ’Z1_T_n’ ’Z2_T_n’ ’SE_Z1’ ’SE_Z2’};
print itermat[colname=colnm];

finish;
run;

Output 10.3.1. Iteration History

SSM Estimation using EM Algorithm

Iter -2*log L F11 F12 F21 F22 MYU11 MYU22

1.0000 -154.010 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
2.0000 -237.962 0.7952 -0.6473 0.3263 0.5143 0.0530 0.0840
3.0000 -238.083 0.7967 -0.6514 0.3259 0.5142 0.1372 0.0977
4.0000 -238.126 0.7966 -0.6517 0.3259 0.5139 0.1853 0.1159
5.0000 -238.143 0.7964 -0.6519 0.3257 0.5138 0.2143 0.1304
6.0000 -238.151 0.7963 -0.6520 0.3255 0.5136 0.2324 0.1405
7.0000 -238.153 0.7962 -0.6520 0.3254 0.5135 0.2438 0.1473
8.0000 -238.155 0.7962 -0.6521 0.3253 0.5135 0.2511 0.1518
9.0000 -238.155 0.7962 -0.6521 0.3253 0.5134 0.2558 0.1546

10.0000 -238.155 0.7961 -0.6521 0.3253 0.5134 0.2588 0.1565

Output 10.3.2. Eigenvalues of F Matrix

Real Imag MOD

0.6547534 0.438317 0.7879237
0.6547534 -0.438317 0.7879237

Output 10.3.3. Multistep Prediction

n-Step Z1_T_n Z2_T_n SE_Z1 SE_Z2

1 -0.055792 -0.587049 0.2437666 0.237074
2 0.3384325 -0.319505 0.3140478 0.290662
3 0.4778022 -0.053949 0.3669731 0.3104052
4 0.4155731 0.1276996 0.4021048 0.3218256
5 0.2475671 0.2007098 0.419699 0.3319293
6 0.0661993 0.1835492 0.4268943 0.3396153
7 -0.067001 0.1157541 0.430752 0.3438409
8 -0.128831 0.0376316 0.4341532 0.3456312
9 -0.127107 -0.022581 0.4369411 0.3465325

10 -0.086466 -0.052931 0.4385978 0.3473038
11 -0.034319 -0.055293 0.4393282 0.3479612
12 0.0087379 -0.039546 0.4396666 0.3483717
13 0.0327466 -0.017459 0.439936 0.3485586
14 0.0374564 0.0016876 0.4401753 0.3486415
15 0.0287193 0.0130482 0.440335 0.3487034
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Example 10.4. Diffuse Kalman Filtering

The nonstationary SSM is simulated to analyze the diffuse Kalman filter call
KALDFF. The transition equation is generated using the following formula:

�
z1t
z2t

�
=

�
1:5 �0:5
1:0 0:0

� �
z1t�1
z2t�1

�
+

�
�1t
0

�

where�1t � N(0; 1). The transition equation is nonstationary since the transition
matrixF has one unit root.

proc iml;
z_1 = 0; z_2 = 0;
do i = 1 to 30;

z = 1.5*z_1 - .5*z_2 + rannor(1234567);
z_2 = z_1;
z_1 = z;
x = z + .8*rannor(1234578);
if ( i > 10 ) then y = y // x;

end;

The KALDFF and KALCVF calls produce one-step prediction, and the result shows
that two predictions coincide after the fifth observation (Output 10.4.1).

t = nrow(y);
h = { 1 0 };
f = { 1.5 -.5, 1 0 };
rt = .64;
vt = diag({1 0});
ny = nrow(h);
nz = ncol(h);
nb = nz;
nd = nz;
a = j(nz,1,0);
b = j(ny,1,0);
int = j(ny+nz,nb,0);
coef = f // h;
var = ( vt || j(nz,ny,0) ) //

( j(ny,nz,0) || rt );
intd = j(nz+nb,1,0);
coefd = i(nz) // j(nb,nd,0);
at = j(t*nz,nd+1,0);
mt = j(t*nz,nz,0);
qt = j(t*(nd+1),nd+1,0);
n0 = -1;
call kaldff(kaldff_p,dvpred,initial,s2,y,0,int,

coef,var,intd,coefd,n0,at,mt,qt);
call kalcvf(kalcvf_p,vpred,filt,vfilt,y,0,a,f,b,h,var);
print kalcvf_p kaldff_p;
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Output 10.4.1. Diffuse Kalman Filtering

Diffuse Kalman Filtering

KALCVF_P KALDFF_P

0 0 0 0
1.441911 0.961274 1.1214871 0.9612746

-0.882128 -0.267663 -0.882138 -0.267667
-0.723156 -0.527704 -0.723158 -0.527706
1.2964969 0.871659 1.2964968 0.8716585
-0.035692 0.1379633 -0.035692 0.1379633
-2.698135 -1.967344 -2.698135 -1.967344
-5.010039 -4.158022 -5.010039 -4.158022
-9.048134 -7.719107 -9.048134 -7.719107
-8.993153 -8.508513 -8.993153 -8.508513
-11.16619 -10.44119 -11.16619 -10.44119
-10.42932 -10.34166 -10.42932 -10.34166
-8.331091 -8.822777 -8.331091 -8.822777
-9.578258 -9.450848 -9.578258 -9.450848
-6.526855 -7.241927 -6.526855 -7.241927
-5.218651 -5.813854 -5.218651 -5.813854

-5.01855 -5.291777 -5.01855 -5.291777
-6.5699 -6.284522 -6.5699 -6.284522

-4.613301 -4.995434 -4.613301 -4.995434
-5.057926 -5.09007 -5.057926 -5.09007

The likelihood function for the diffuse Kalman filter under the finite initial covariance
matrix�� is written

�(y) = �1

2
[y# log(�̂2) +

TX
t=1

log(jDtj)]

wherey(#) is the dimension of the matrix(y01; � � � ;y0T )0. The likelihood function
for the diffuse Kalman filter under the diffuse initial covariance matrix(�� !1) is
computed as�(y) � 1

2 log(jSj), where theS matrix is the upperN� �N� matrix of
Qt. See the section “KALDFF Call” on page 583 for more details on matrix notation.
Output 10.4.2 on page 290 displays the log likelihood and the diffuse log likelihood.

d = 0;
do i = 1 to t;

dt = h*mt[(i-1)*nz+1:i*nz,]*h‘ + rt;
d = d + log(det(dt));

end;
s = qt[(t-1)*(nd+1)+1:t*(nd+1)-1,1:nd];
log_l = -(t*log(s2) + d)/2;
dff_logl = log_l - log(det(s))/2;
print log_l dff_logl;

Output 10.4.2. Diffuse Likelihood Function

Log L -11.42547

Diffuse Log L -9.457596

SAS OnlineDoc: Version 8



References � 291

References

Afifi, A.A. and Elashoff, R.M. (1967), “Missing Observations in Multivariate Statis-
tics II. Point Estimation in Simple Linear Regression,”Journal of the American
Statistical Association, 62, 10�29.

Akaike, H. (1974), “A New Look at Statistical Model Identification,”IEEE Transac-
tions on Automatic Control, 19, 716�723.

Akaike, H. (1977), “On Entropy Maximization Principle,” inApplications of Statis-
tics, ed. P.R. Krishnaiah, Amsterdam: North-Holland Publishing Co., 27�41.

Akaike, H. (1978a), “A Bayesian Analysis of the Minimum AIC Procedure,”Ann.
Inst. Statist. Math., 30, 9�14.

Akaike, H. (1978b), “Time Series Analysis and Control through Parametric Models,”
in Applied Time Series Analysis, ed. D.F. Findley, New York: Academic Press,
1�23.

Akaike, H. (1979), “A Bayesian Extension of the Minimum AIC Procedure of Au-
toregressive Model Fitting,”Biometrika, 66, 237�242.

Akaike, H. (1980a), “Likelihood and the Bayes Procedure,”Bay Statistics, eds. J.M.
Bernardo, M.H. DeGroot, D.V. Lindley, and M. Smith, Valencia, Spain: Univer-
sity Press.

Akaike, H. (1980b), “Seasonal Adjustment by a Bayesian Modeling,”Journal of Time
Series Analysis, 1, 1�13.

Akaike, H. (1981), “Likelihood of a Model and Information Criteria,”Journal of
Econometrics, 16, 3�14.

Akaike, H. (1986), “The Selection of Smoothness Priors for Distributed Lag Estima-
tion,” in Bayesian Inference and Decision Techniques, ed. P. Goel and A. Zellner,
Elsevier Science Publishers, 109�118.

Akaike, H. and Ishiguro, M. (1980), “Trend Estimation with Missing Observations,”
Ann. Inst. Statist. Math., 32, 481�488.

Akaike, H. and Nakagawa, T. (1988),Statistical Analysis and Control of Dynamic
Systems, Tokyo: KTK Scientific Publishers.

Anderson, T.W. (1971),The Statistical Analysis of Time Series, New York: John
Wiley & Sons, Inc.

Brockwell, P.J. and Davis, R.A. (1991),Time Series: Theory and Methods, Second
Edition, New York: Springer-Verlag.

Doan, T.; Litterman, R.; and Sims, C. (1984), “Forecasting and Conditional Projec-
tion using Realistic Prior Distributions,”Econometric Review, 3, 1�100.

Gersch, W. and Kitagawa, G. (1983), “The Prediction of Time Series with Trends and
Seasonalities,”Journal of Business and Economic Statistics, 1, 253�264.

Harvey, A.C. (1989),Forecasting, Structural Time Series Models and the Kalman
Filter, Cambridge: Cambridge University Press.

SAS OnlineDoc: Version 8



292 � Chapter 10. Time Series Analysis and Control Examples

Ishiguro, M. (1984), “Computationally Efficient Implementation of a Bayesian Sea-
sonal Adjustment Procedure,”Journal of Time Series Analysis, 5, 245�253.

Ishiguro, M. (1987), “TIMSAC-84: A New Time Series Analysis and Control Pack-
age,”Proceedings of American Statistical Association: Business and Economic
Section, 33�42.

Jones, R.H. and Brelsford, W.M. (1967), “Time Series with Periodic Structure,”
Biometrika, 54, 403�408.

Kitagawa, G. (1981), “A Nonstationary Time Series Model and its Fitting by a Re-
cursive Filter,”Journal of Time Series Analysis, 2, 103�116.

Kitagawa, G. (1983), “Changing Spectrum Estimation,”Journal of Sound and Vibra-
tion, 89, 433�445.

Kitagawa, G. and Akaike, H. (1978), “A Procedure for the Modeling of Non-
Stationary Time Series,”Ann. Inst. Statist. Math., 30, 351�363.

Kitagawa, G. and Akaike, H. (1981), “On TIMSAC-78,” inApplied Time Series Anal-
ysis II, ed. D.F. Findley, New York: Academic Press, 499�547.

Kitagawa, G. and Akaike, H. (1982), “A Quasi Bayesian Approach to Outlier Detec-
tion,” Ann. Inst. Statist. Math., 34, 389�398.

Kitagawa, G. and Gersch, W. (1984), “A Smoothness Priors-State Space Modeling
of Time Series with Trend and Seasonality,”Journal of the American Statistical
Association, 79, 378�389.

Kitagawa, G. and Gersch, W. (1985a), “A Smoothness Priors Time-Varying AR Coef-
ficient Modeling of Nonstationary Covariance Time Series,”IEEE Transactions
on Automatic Control, 30, 48�56.

Kitagawa, G. and Gersch, W. (1985b), “A Smoothness Priors Long AR
Model Method for Spectral Estimation,”IEEE Transactions on Automatic Con-
trol, 30, 57�65.

Lutkepohl, H. (1991), Introduction to Multiple Time Series Analysis, Berlin:
Springer-Verlag.

Pagano, M. (1978), “On Periodic and Multiple Autoregressions,”The Annals of
Statistics, 6, 1310�1317.

Sakamoto, Y.; Ishiguro, M.; and Kitagawa, G. (1986),Akaike Information Criterion
Statistics, Tokyo: KTK Scientific Publishers.

Shiller, R.J. (1973), “A Distributed Lag Estimator Derived from Smoothness Priors,”
Econometrica, 41, 775�788.

Tamura, Y. H. (1986), “An Approach to the Nonstationary Process Analysis,”Ann.
Inst. Statist. Math., 39, 227�241.

Wei, W.W.S. (1990),Time Series Analysis: Univariate and Multivariate Methods,
Redwood: Addison-Wesley.

Whittaker, E.T. (1923), “On a New Method of Graduation,”Proceedings of the Edin-
borough Mathematical Society, 41, 63�75.

SAS OnlineDoc: Version 8



References � 293

Whittaker, E.T. and Robinson, G. (1944),Calculus of Observation, Fourth Edition,
London: Blackie & Son Limited.

Zellner, A. (1971),An Introduction to Bayesian Inference in Econometrics, New
York: John Wiley & Sons, Inc.

SAS OnlineDoc: Version 8



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–553–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


