Chapter 11
Nonlinear Optimization Examples

Chapter Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERVIEW</td>
<td>297</td>
</tr>
<tr>
<td>GETTING STARTED</td>
<td>299</td>
</tr>
<tr>
<td>DETAILS</td>
<td>307</td>
</tr>
<tr>
<td>Global Versus Local Optima</td>
<td>307</td>
</tr>
<tr>
<td>Kuhn-Tucker Conditions</td>
<td>308</td>
</tr>
<tr>
<td>Definition of Return Codes</td>
<td>309</td>
</tr>
<tr>
<td>Objective Function and Derivatives</td>
<td>309</td>
</tr>
<tr>
<td>Finite Difference Approximations of Derivatives</td>
<td>314</td>
</tr>
<tr>
<td>Parameter Constraints</td>
<td>317</td>
</tr>
<tr>
<td>Options Vector</td>
<td>319</td>
</tr>
<tr>
<td>Termination Criteria</td>
<td>325</td>
</tr>
<tr>
<td>Control Parameters Vector</td>
<td>332</td>
</tr>
<tr>
<td>Printing the Optimization History</td>
<td>334</td>
</tr>
<tr>
<td>NONLINEAR OPTIMIZATION EXAMPLES</td>
<td>336</td>
</tr>
<tr>
<td>Example 11.1 Chemical Equilibrium</td>
<td>336</td>
</tr>
<tr>
<td>Example 11.2 Network Flow and Delay</td>
<td>340</td>
</tr>
<tr>
<td>Example 11.3 Compartmental Analysis</td>
<td>343</td>
</tr>
<tr>
<td>Example 11.4 MLEs for Two-Parameter Weibull Distribution</td>
<td>353</td>
</tr>
<tr>
<td>Example 11.5 Profile-Likelihood-Based Confidence Intervals</td>
<td>355</td>
</tr>
<tr>
<td>Example 11.6 Survival Curve for Interval Censored Data</td>
<td>357</td>
</tr>
<tr>
<td>Example 11.7 A Two-Equation Maximum Likelihood Problem</td>
<td>363</td>
</tr>
<tr>
<td>Example 11.8 Time-Optimal Heat Conduction</td>
<td>367</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>371</td>
</tr>
</tbody>
</table>
Chapter 11. Nonlinear Optimization Examples
Chapter 11
Nonlinear Optimization Examples

Overview

The IML procedure offers a set of optimization subroutines for minimizing or maximizing a continuous nonlinear function $f = f(x)$ of n parameters, where $x = (x_1, \ldots, x_n)^T$. The parameters can be subject to boundary constraints and linear or nonlinear equality and inequality constraints. The following set of optimization subroutines is available:

- **NLPCG**: Conjugate Gradient Method
- **NLPDD**: Double Dogleg Method
- **NLPNMS**: Nelder-Mead Simplex Method
- **NLPNRA**: Newton-Raphson Method
- **NLPNRR**: Newton-Raphson Ridge Method
- **NLPQN**: (Dual) Quasi-Newton Method
- **NLPQUA**: Quadratic Optimization Method
- **NLPTR**: Trust-Region Method

The following subroutines are provided for solving nonlinear least-squares problems:

- **NLPLM**: Levenberg-Marquardt Least-Squares Method
- **NLPHQN**: Hybrid Quasi-Newton Least-Squares Methods

A least-squares problem is a special form of minimization problem where the objective function is defined as a sum of squares of other (nonlinear) functions.

$$f(x) = \frac{1}{2}\left(f_1^2(x) + \cdots + f_m^2(x) \right)$$

Least-squares problems can usually be solved more efficiently by the least-squares subroutines than by the other optimization subroutines.

The following subroutines are provided for the related problems of computing finite difference approximations for first- and second-order derivatives and of determining a feasible point subject to boundary and linear constraints:

- **NLPFDD**: Approximate Derivatives by Finite Differences
- **NLPFEA**: Feasible Point Subject to Constraints

Each optimization subroutine works iteratively. If the parameters are subject only to linear constraints, all optimization and least-squares techniques are *feasible-point methods*; that is, they move from feasible point $x^{(k)}$ to a better feasible point $x^{(k+1)}$ by a step in the search direction $s^{(k)}$, $k = 1, 2, 3, \ldots$. If you do not provide a feasible starting point $x^{(0)}$, the optimization methods call the algorithm used in the NLPFEA subroutine, which tries to compute a starting point that is feasible with respect to the boundary and linear constraints.
The NLPNMS and NLPQN subroutines permit nonlinear constraints on parameters. For problems with nonlinear constraints, these subroutines do not use a feasible-point method; instead, the algorithms begin with whatever starting point you specify, whether feasible or infeasible.

Each optimization technique requires a continuous objective function \(f = f(x) \) and all optimization subroutines except the NLPNMS subroutine require continuous first-order derivatives of the objective function \(f \). If you do not provide the derivatives of \(f \), they are approximated by finite difference formulas. You can use the NLPFDD subroutine to check the correctness of analytical derivative specifications.

Most of the results obtained from the IML procedure optimization and least-squares subroutines can also be obtained by using the NLP procedure in the SAS/OR product.

The advantages of the IML procedure are as follows:

- You can use matrix algebra to specify the objective function, nonlinear constraints, and their derivatives in IML modules.
- The IML procedure offers several subroutines that can be used to specify the objective function or nonlinear constraints, many of which would be very difficult to write for the NLP procedure.
- You can formulate your own termination criteria by using the "ptit" module argument.

The advantages of the NLP procedure are as follows:

- Although identical optimization algorithms are used, the NLP procedure can be much faster because of the interactive and more general nature of the IML product.
- Analytic first- and second-order derivatives can be computed with a special compiler.
- Additional optimization methods are available in the NLP procedure that do not fit into the framework of this package.
- Data set processing is much easier than in the IML procedure. You can save results in output data sets and use them in following runs.
- The printed output contains more information.
Unconstrained Rosenbrock Function

The Rosenbrock function is defined as

\[
f(x) = \frac{1}{2} \left\{ 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \right\}
\]

\[
= \frac{1}{2} \left\{ f_1^2(x) + f_2^2(x) \right\}, \quad x = (x_1, x_2)
\]

The minimum function value \(f^* = f(x^*) = 0 \) is at the point \(x^* = (1, 1) \).

The following code calls the NLPTR subroutine to solve the optimization problem:

```sas
proc iml;
    title 'Test of NLPTR subroutine: Gradient Specified';
    start F_ROSEN(x);
        y2 = 1. - x[1];
        f = .5 * (y1 * y1 + y2 * y2);
        return(f);
    finish F_ROSEN;

    start G_ROSEN(x);
        g = j(1,2,0.);
        g[1] = -200.*x[1] *(x[2]-x[1]*x[1]) - (1.-x[1]);
        g[2] = 100.* (x[2]-x[1]*x[1]);
        return(g);
    finish G_ROSEN;

    x = {-1.2 1.};
    optn = {0 2};
    call nlptr(rc,xres,"F_ROSEN",x,optn) grd="G_ROSEN";
    quit;
```

The NLPTR is a trust-region optimization method. The F_ROSEN module represents the Rosenbrock function, and the G_ROSEN module represents its gradient. Specifying the gradient can reduce the number of function calls by the optimization subroutine. The optimization begins at the initial point \(x = (-1.2, 1) \). For more information on the NLPTR subroutine and its arguments, see the section “NLPTR Call” on page 667. For details on the options vector, which is given by the OPTN vector in the preceding code, see the section “Options Vector” on page 319.

A portion of the output produced by the NLPTR subroutine is shown in Figure 11.1 on page 300.
Trust Region Optimization
Without Parameter Scaling
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2

Optimization Start
Active Constraints 0 Objective Function 12.1
Max Abs Gradient 107.8 Radius 1

<table>
<thead>
<tr>
<th>Iter</th>
<th>Arts</th>
<th>Calls</th>
<th>Con</th>
<th>Rest Func Act</th>
<th>Objective Function</th>
<th>Obj Fun Gradient</th>
<th>Change Element</th>
<th>Lambda</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2.36594</td>
<td>9.7341</td>
<td>2.3189</td>
<td>0</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2.05926</td>
<td>0.3067</td>
<td>5.2875</td>
<td>0.385</td>
<td>1.526</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1.74390</td>
<td>0.3154</td>
<td>5.9934</td>
<td>0</td>
<td>1.086</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>1.3128E-16</td>
<td>6.96E-10</td>
<td>1.977E-7</td>
<td>0</td>
<td>0.00314</td>
<td></td>
</tr>
</tbody>
</table>

Optimization Results
Iterations 22 Function Calls 32
Hessian Calls 23 Active Constraints 0
Objective Function 1.312814E-16 Max Abs Gradient 1.9773384E-7
Lambda 0 Actual Over Pred 0
Radius 0.003140192

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

<table>
<thead>
<tr>
<th>N Parameter</th>
<th>Estimate</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X1</td>
<td>1.000000</td>
<td>0.00000000198</td>
</tr>
<tr>
<td>2 X2</td>
<td>1.000000</td>
<td>-0.00000000105</td>
</tr>
</tbody>
</table>

Value of Objective Function = 1.312814E-16

Figure 11.1. NLPR Solution to the Rosenbrock Problem

Since \(f(x) = \frac{1}{2} \{ f_1^2(x) + f_2^2(x) \} \), you can also use least-squares techniques in this situation. The following code calls the NLPLM subroutine to solve the problem. The output is shown in Figure ?? on page ??.

```sas
proc iml;
    title 'Test of NLPLM subroutine: No Derivatives';
    start F_ROSEN(x);
        y = j(1,2,0.);
        y[2] = 1. - x[1];
        return(y);
```

SAS OnlineDoc™: Version 8
The Levenberg-Marquardt least-squares method, which is the method used by the NLPLM subroutine, is a modification of the trust-region method for nonlinear least-squares problems. The F_ROSEN module represents the Rosenbrock function. Note that for least-squares problems, the \(m \) functions \(f_1(x), \ldots, f_m(x) \) are specified as elements of a vector; this is different from the manner in which \(f(x) \) is specified for the other optimization techniques. No derivatives are specified in the preceding code, so the NLPLM subroutine computes finite difference approximations. For more information on the NLPLM subroutine, see the section “NLPLM Call” on page 645.

Constrained Betts Function

The linearly constrained Betts function (Hock & Schittkowski 1981) is defined as

\[
f(x) = 0.01x_1^2 + x_2^2 - 100
\]

with boundary constraints

\[
2 \leq x_1 \leq 50
\]
\[
-50 \leq x_2 \leq 50
\]

and linear constraint

\[
10x_1 - x_2 \geq 10
\]

The following code calls the NLPCG subroutine to solve the optimization problem. The infeasible initial point \(x^0 = (-1, -1) \) is specified, and a portion of the output is shown in Figure 11.2.
The NLPCG subroutine performs conjugate gradient optimization. It requires only function and gradient calls. The F_BETTS module represents the Betts function, and since no module is defined to specify the gradient, first-order derivatives are computed by finite difference approximations. For more information on the NLPCG subroutine, see the section “NLPCG Call” on page 634. For details on the constraint matrix, which is represented by the CON matrix in the preceding code, see the section “Parameter Constraints” on page 317.

NOTE: Initial point was changed to be feasible for boundary and linear constraints.

<table>
<thead>
<tr>
<th>Optimization Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Estimates</td>
</tr>
<tr>
<td>N Parameter</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Optimization Start
Parameter Estimates
Upper Bound
Constraint
50.000000
50.000000

Value of Objective Function = -98.5376

Linear Constraints
1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Conjugate-Gradient Optimization
Automatic Restart Update (Powell, 1977; Beale, 1972)
Gradient Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Figure 11.2. NLPCG Solution to Betts Problem
Figure 11.2. (continued)

Since the initial point \((-1, -1)\) is infeasible, the subroutine first computes a feasible starting point. Convergence is achieved after three iterations, and the optimal point is given to be \(x^* = (2, 0)\) with an optimal function value of \(f^* = f(x^*) = -99.96\). For more information on the printed output, see the section “Printing the Optimization History” on page 334.

Rosen-Suzuki Problem

The Rosen-Suzuki problem is a function of four variables with three nonlinear constraints on the variables. It is taken from Problem 43 of Hock and Schittkowski (1981). The objective function is

\[
f(x) = x_1^2 + x_2^2 + 2x_3^2 + x_4^2 - 5x_1 - 5x_2 - 21x_3 + 7x_4
\]
The nonlinear constraints are

\[
0 \leq 8 - x_1^2 - x_2^2 - x_3^2 - x_4^2 - x_1 + x_2 - x_3 + x_4 \\
0 \leq 10 - x_1^2 - 2x_2^2 - x_3^2 - 2x_4^2 + x_1 + x_4 \\
0 \leq 5 - 2x_1^2 - x_2^2 - x_3^2 - 2x_1 + x_2 + x_4
\]

Since this problem has nonlinear constraints, only the NLPQN and NLMPMS subroutines are available to perform the optimization. The following code solves the problem with the NLPQN subroutine:

```plaintext
proc iml;
    start F_HS43(x);
        f = x*x' + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
        return(f);
    finish F_HS43;
    start C_HS43(x);
        c = j(3,1,0.);
        return(c);
    finish C_HS43;
    x = j(1,4,1);
    call nlpqn(rc,xres,"F_HS43",x,optn) nlc="C_HS43";
```

The F_HS43 module specifies the objective function, and the C_HS43 module specifies the nonlinear constraints. The OPTN vector is passed to the subroutine as the opt input argument. See the section “Options Vector” on page 319 for more information. The value of OPTN[10] represents the total number of nonlinear constraints, and the value of OPTN[11] represents the number of equality constraints. In the preceding code, OPTN[10]=3 and OPTN[11]=0, which indicate that there are three constraints, all of which are inequality constraints. In the subroutine calls, instead of separating missing input arguments with commas, you can specify optional arguments with keywords, as in the CALL NLPQN statement in the preceding code. For details on the CALL NLPQN statement, see the section “NLPQN Call” on page 658.

The initial point for the optimization procedure is \(x = (1,1,1,1)\), and the optimal point is \(x^* = (0,1,2,-1)\), with an optimal function value of \(f(x^*) = -44\). Part of the output produced is shown in Figure 11.3 on page 305.
Dual Quasi-Newton Optimization

- Modified VMCD Algorithm of Powell (1978, 1982)
- Dual Broyden–Fletcher–Goldfarb–Shanno Update (DBFGS)
- Lagrange Multiplier Update of Powell (1982)
- Gradient Computed by Finite Differences
- Jacobian Nonlinear Constraints Computed by Finite Differences

Optimization Start

<table>
<thead>
<tr>
<th>Objective Function</th>
<th>Maximum Constraint</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-19</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Gradient of the Lagrange Function: 17

<table>
<thead>
<tr>
<th>Iter</th>
<th>Restarts</th>
<th>Calls</th>
<th>Objective Function</th>
<th>Violation Function</th>
<th>Step Lagrange Function Reduction</th>
<th>Size Lagrange Function Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-41.88007</td>
<td>1.8988</td>
<td>13.6803</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>-48.83264</td>
<td>3.0280</td>
<td>9.5464</td>
<td>1.000</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>-45.38515</td>
<td>0.5452</td>
<td>2.6179</td>
<td>1.000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>5</td>
<td>-44.08667</td>
<td>0.0427</td>
<td>0.1732</td>
<td>1.000</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6</td>
<td>-44.00011</td>
<td>0.000099</td>
<td>0.000218</td>
<td>1.000</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>7</td>
<td>-44.00001</td>
<td>2.573E-6</td>
<td>0.000014</td>
<td>1.000</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>8</td>
<td>-44.00000</td>
<td>9.118E-8</td>
<td>5.097E-7</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Figure 11.3. Solution to the Rosen-Suzuki Problem by the NLPQN Subroutine
Chapter 11. Nonlinear Optimization Examples

Optimization Results

<table>
<thead>
<tr>
<th>Iterations</th>
<th>7</th>
<th>Function Calls</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient Calls</td>
<td>9</td>
<td>Active Constraints</td>
<td>2</td>
</tr>
<tr>
<td>Objective Function</td>
<td>-44.00000026</td>
<td>Maximum Constraint</td>
<td>9.1176306E-8</td>
</tr>
<tr>
<td>Maximum Projected</td>
<td>0.0002265341</td>
<td>Value Lagrange</td>
<td>-44</td>
</tr>
<tr>
<td>Gradient</td>
<td>Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Gradient of the Lagran Func</td>
<td>0.00022158</td>
<td>Slope of Search</td>
<td>-5.097332E-7</td>
</tr>
<tr>
<td>Direction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FCONV2 convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range.

Optimization Results

Parameter Estimates

<table>
<thead>
<tr>
<th>N Parameter</th>
<th>Gradient</th>
<th>Gradient</th>
<th>Objective</th>
<th>Lagrange</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X1</td>
<td>-0.000001248</td>
<td>-5.000002</td>
<td>-0.000012804</td>
<td></td>
</tr>
<tr>
<td>2 X2</td>
<td>1.000027</td>
<td>-2.999945</td>
<td>0.000222</td>
<td></td>
</tr>
<tr>
<td>3 X3</td>
<td>1.999993</td>
<td>-13.000027</td>
<td>-0.000054166</td>
<td></td>
</tr>
<tr>
<td>4 X4</td>
<td>-1.000003</td>
<td>4.999995</td>
<td>-0.000020681</td>
<td></td>
</tr>
</tbody>
</table>

Value of Objective Function = -44.00000026

Value of Lagrange Function = -44

Figure 11.3. (continued)

In addition to the standard iteration history, the NLPQN subroutine includes the following information for problems with nonlinear constraints:

- `conmax` is the maximum value of all constraint violations.
- `pred` is the value of the predicted function reduction used with the GTOL and FTOL2 termination criteria.
- `alfa` is the step size α of the quasi-Newton step.
- `lfgmax` is the maximum element of the gradient of the Lagrange function.
Details

Global Versus Local Optima

All the IML optimization algorithms converge toward local rather than global optima. The smallest local minimum of an objective function is called the global minimum, and the largest local maximum of an objective function is called the global maximum. Hence, the subroutines may occasionally fail to find the global optimum. Suppose you have the function,

\[f(x) = \frac{1}{27}(3x_1^4 - 28x_1^3 + 84x_1^2 - 96x_1 + 64) + x_2^2, \]

which has a local minimum at \(f(1,0) = 1 \) and a global minimum at the point \(f(4,0) = 0 \).

The following statements use two calls of the NLPTR subroutine to minimize the preceding function. The first call specifies the initial point \(x_a = (0.5,1.5) \), and the second call specifies the initial point \(x_b = (3,-1) \). The first call finds the local optimum \(x^* = (1,0) \), and the second call finds the global optimum \(x^* = (4,0) \).

```sas
proc iml;
start F_GLOBAL(x);
    f=(3*x[1]**4-28*x[1]**3+84*x[1]**2-96*x[1]+64)/27 + x[2]**2;
    return(f);
finish F_GLOBAL;
xa = {.5 1.5};
xb = {3 -1};
optn = {0 2};
call nlptr(rca,xra,"F_GLOBAL",xa,optn);
call nlptr(rcb,xrb,"F_GLOBAL",xb,optn);
print xra xrb;
```

One way to find out whether the objective function has more than one local optimum is to run various optimizations with a pattern of different starting points.

For a more mathematical definition of optimality, refer to the Kuhn-Tucker theorem in standard optimization literature. Using a rather nonmathematical language, a local minimizer \(x^* \) satisfies the following conditions:

- There exists a small, feasible neighborhood of \(x^* \) that does not contain any point \(x \) with a smaller function value \(f(x) < f(x^*) \).
- The vector of first derivatives (gradient) \(g(x^*) = \nabla f(x^*) \) of the objective function \(f \) (projected toward the feasible region) at the point \(x^* \) is zero.
- The matrix of second derivatives \(G(x^*) = \nabla^2 f(x^*) \) (Hessian matrix) of the objective function \(f \) (projected toward the feasible region) at the point \(x^* \) is positive definite.

A local maximizer has the largest value in a feasible neighborhood and a negative definite Hessian.

The iterative optimization algorithm terminates at the point \(x^t \), which should be in a small neighborhood (in terms of a user-specified termination criterion) of a local optimizer \(x^* \). If the point \(x^t \) is located on one or more active boundary or general
linear constraints, the local optimization conditions are valid only for the feasible region. That is,

- the projected gradient, $Z^T g(x^t)$, must be sufficiently small
- the projected Hessian, $Z^T G(x^t)Z$, must be positive definite for minimization problems or negative definite for maximization problems

If there are n active constraints at the point x^t, the nullspace Z has zero columns and the projected Hessian has zero rows and columns. A matrix with zero rows and columns is considered positive as well as negative definite.

Kuhn-Tucker Conditions

The nonlinear programming (NLP) problem with one objective function f and m constraint functions c_i, which are continuously differentiable, is defined as follows:

$$\text{minimize } f(x), \quad x \in \mathbb{R}^n, \text{ subject to }$$

$$c_i(x) = 0, \quad i = 1, \ldots, m_e$$

$$c_i(x) \geq 0, \quad i = m_e + 1, \ldots, m$$

In the preceding notation, n is the dimension of the function $f(x)$, and m_e is the number of equality constraints. The linear combination of objective and constraint functions

$$L(x, \lambda) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x)$$

is the Lagrange function, and the coefficients λ_i are the Lagrange multipliers.

If the functions f and c_i are twice differentiable, the point x^* is an isolated local minimizer of the NLP problem, if there exists a vector $\lambda^* = (\lambda_1^*, \ldots, \lambda_m^*)$ that meets the following conditions:

- **Kuhn-Tucker conditions**
 $$c_i(x^*) = 0, \quad i = 1, \ldots, m_e$$
 $$c_i(x^*) \geq 0, \quad \lambda_i^* \geq 0, \quad \lambda_i^* c_i(x^*) = 0, \quad i = m_e + 1, \ldots, m$$
 $$\nabla_x L(x^*, \lambda^*) = 0$$

- **Second-order condition**
 Each nonzero vector $y \in \mathbb{R}^n$ with
 $$y^T \nabla_x c_i(x^*) = 0 \quad i = 1, \ldots, m_e, \quad \text{and } \forall i = m_e + 1, \ldots, m; \lambda_i^* > 0$$
 satisfies
 $$y^T \nabla_x^2 L(x^*, \lambda^*) y > 0$$

In practice, you cannot expect that the constraint functions $c_i(x^*)$ will vanish within machine precision, and determining the set of active constraints at the solution x^* may not be simple.
Definition of Return Codes

The return code, which is represented by the output parameter \(rc \) in the optimization subroutines, indicates the reason for optimization termination. A positive value indicates successful termination, while a negative value indicates unsuccessful termination. Table 11.1 gives the reason for termination associated with each return code.

<table>
<thead>
<tr>
<th>(rc)</th>
<th>Reason for Optimization Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABSTOL criterion satisfied (absolute F convergence)</td>
</tr>
<tr>
<td>2</td>
<td>ABSFTOL criterion satisfied (absolute F convergence)</td>
</tr>
<tr>
<td>3</td>
<td>ABSGTOL criterion satisfied (absolute G convergence)</td>
</tr>
<tr>
<td>4</td>
<td>ABSXTOL criterion satisfied (absolute X convergence)</td>
</tr>
<tr>
<td>5</td>
<td>FTOL criterion satisfied (relative F convergence)</td>
</tr>
<tr>
<td>6</td>
<td>GTOL criterion satisfied (relative G convergence)</td>
</tr>
<tr>
<td>7</td>
<td>XTOL criterion satisfied (relative X convergence)</td>
</tr>
<tr>
<td>8</td>
<td>FTOL2 criterion satisfied (relative F convergence)</td>
</tr>
<tr>
<td>9</td>
<td>GTOL2 criterion satisfied (relative G convergence)</td>
</tr>
<tr>
<td>10</td>
<td>(n) linear independent constraints are active at (x_r) and none of them could be released to improve the function value</td>
</tr>
<tr>
<td>-1</td>
<td>objective function cannot be evaluated at starting point</td>
</tr>
<tr>
<td>-2</td>
<td>derivatives cannot be evaluated at starting point</td>
</tr>
<tr>
<td>-3</td>
<td>objective function cannot be evaluated during iteration</td>
</tr>
<tr>
<td>-4</td>
<td>derivatives cannot be evaluated during iteration</td>
</tr>
<tr>
<td>-5</td>
<td>optimization subroutine cannot improve the function value (this is a very general formulation and is used for various circumstances)</td>
</tr>
<tr>
<td>-6</td>
<td>there are problems in dealing with linearly dependent active constraints (changing the LCSING value in the (\text{par}) vector can be helpful)</td>
</tr>
<tr>
<td>-7</td>
<td>optimization process stepped outside the feasible region and the algorithm to return inside the feasible region was not successful (changing the LCEPS value in the (\text{par}) vector can be helpful)</td>
</tr>
<tr>
<td>-8</td>
<td>either the number of iterations or the number of function calls is larger than the prespecified values in the (\text{tc}) vector (MAXIT and MAXFU)</td>
</tr>
<tr>
<td>-9</td>
<td>this return code is temporarily not used (it is used in PROC NLP indicating that more CPU than a prespecified value was used)</td>
</tr>
<tr>
<td>-10</td>
<td>a feasible starting point cannot be computed</td>
</tr>
</tbody>
</table>

Objective Function and Derivatives

The input argument \(\text{fun} \) refers to an IML module that specifies a function that returns \(f \), a vector of length \(m \) for least-squares subroutines or a scalar for other optimization subroutines. The returned \(f \) contains the values of the objective function (or the least-squares functions) at the point \(x \). Note that for least-squares problems, you must specify the number of function values, \(m \), with the first element of the \(\text{opt} \) argument to allocate memory for the return vector. All the modules that you can specify as input arguments ("fun", "grd", "hes", "jac", "nlc", "jacnlc", and "ptit") allow only a single input argument, \(x \), which is the parameter vector. Using the GLOBAL clause,
you can provide more input arguments for these modules. Refer to the middle of the section, "Compartmental Analysis" for an example.

All the optimization algorithms assume that \(f \) is continuous inside the feasible region. For nonlinearly constrained optimization, this is also required for points outside the feasible region. Sometimes the objective function cannot be computed for all points of the specified feasible region; for example, the function specification may contain the SQRT or LOG function, which cannot be evaluated for negative arguments. You must make sure that the function and derivatives of the starting point can be evaluated. There are two ways to prevent large steps into infeasible regions of the parameter space during the optimization process:

- The preferred way is to restrict the parameter space by introducing more boundary and linear constraints. For example, the boundary constraint \(x_j \geq 1 \times 10 \) prevents infeasible evaluations of \(\log(x_j) \). If the function module takes the square root or the log of an intermediate result, you can use nonlinear constraints to try to avoid infeasible function evaluations. However, this may not ensure feasibility.

- Sometimes the preferred way is difficult to practice, in which case the function module may return a missing value. This may force the optimization algorithm to reduce the step length or the radius of the feasible region.

All the optimization techniques except the NLPNMS subroutine require continuous first-order derivatives of the objective function \(f \). The NLPTR, NLPNRA, and NLPNRR techniques also require continuous second-order derivatives. If you do not provide the derivatives with the IML modules "grd", "hes", or "jac", they are automatically approximated by finite difference formulas. Approximating first-order derivatives by finite differences usually requires \(n \) additional calls of the function module. Approximating second-order derivatives by finite differences using only function calls can be extremely computationally expensive. Hence, if you decide to use the NLPTR, NLPNRA, or NLPNRR subroutines, you should specify at least analytical first-order derivatives. Then, approximating second-order derivatives by finite differences requires only \(n \) or \(2n \) additional calls of the function and gradient modules.

For all input and output arguments, the subroutines assume that

- the number of parameters \(n \) corresponds to the number of columns. For example, \(x \), the input argument to the modules, and \(g \), the output argument returned by the "grd" module, are row vectors with \(n \) entries, and \(G \), the Hessian matrix returned by the "hes" module, must be a symmetric \(n \times n \) matrix.

- the number of functions, \(m \), corresponds to the number of rows. For example, the vector \(f \) returned by the "fun" module must be a column vector with \(m \) entries, and in least-squares problems, the Jacobian matrix \(J \) returned by the "jac" module must be an \(m \times n \) matrix.

You can verify your analytical derivative specifications by computing finite difference approximations of the derivatives of \(f \) with the NLPFDD subroutine. For most
applications, the finite difference approximations of the derivatives will be very precise. Occasionally, difficult objective functions and zero \(x \) coordinates will cause problems. You can use the `par` argument to specify the number of accurate digits in the evaluation of the objective function; this defines the step size \(h \) of the first- and second-order finite difference formulas. See the section “Finite Difference Approximations of Derivatives” on page 314.

Note: For some difficult applications, the finite difference approximations of derivatives that are generated by default may not be precise enough to solve the optimization or least-squares problem. In such cases, you may be able to specify better derivative approximations by using a better approximation formula. You can submit your own finite difference approximations using the IML modules "grd", "hes", "jac", or "jac-nlc". See Example 11.3 on page 343 for an illustration.

In many applications, calculations used in the computation of \(f \) can help compute derivatives at the same point efficiently. You can save and reuse such calculations with the `GLOBAL` clause. As with many other optimization packages, the subroutines perform calls of the "grd", "hes", or "jac" modules only after a call of the "fun" module.

The following statements specify modules for the function, gradient, and Hessian matrix of the Rosenbrock problem:

```sas
proc iml;
   start F_ROSEN(x);
     y2 = 1. - x[1];
     f = .5 * (y1 * y1 + y2 * y2);
     return(f);
   finish F_ROSEN;

   start G_ROSEN(x);
     g = j(1,2,0.);
     g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
     g[2] = 100.* (x[2]-x[1]*x[1]);
     return(g);
   finish G_ROSEN;

   start H_ROSEN(x);
     h = j(2,2,0.);
     h[1,1] = -200.*(x[2] - 3.*x[1]*x[1]) + 1.;
     h[2,2] = 100.;
     h[1,2] = -200. * x[1];
     h[2,1] = h[1,2];
     return(h);
   finish H_ROSEN;
```

The following statements specify a module for the Rosenbrock function when considered as a least-squares problem. They also specify the Jacobian matrix of the least-squares functions.
proc iml;
 start F_ROSEN(x);
 y = j(1,2,0.);
 y[2] = 1. - x[1];
 return(y);
 finish F_ROSEN;

 start J_ROSEN(x);
 jac = j(2,2,0.);
 jac[1,1] = -20. * x[1];
 jac[1,2] = 10.;
 jac[2,1] = -1.;
 jac[2,2] = 0.;
 return(jac);
 finish J_ROSEN;

Diagonal or Sparse Hessian Matrices

In the unconstrained or only boundary constrained case, the NLPNRA algorithm can take advantage of diagonal or sparse Hessian matrices submitted by the "hes" module. If the Hessian matrix G of the objective function f has a large proportion of zeros, you may save computer time and memory by specifying a sparse Hessian of dimension $nn \times 3$ rather than a dense $n \times n$ Hessian. Each of the nn rows (i,j,g) of the matrix returned by the sparse Hessian module defines a nonzero element g_{ij} of the Hessian matrix. The row and column location is given by i and j, and g gives the nonzero value. During the optimization process, only the values g can be changed in each call of the Hessian module "hes"; the sparsity structure (i,j) must be kept the same. That means that some of the values g can be zero for particular values of x. To allocate sufficient memory before the first call of the Hessian module, you must specify the number of rows, nn, by setting the ninth element of the opt argument.

Example 22 of Moré, Garbow, and Hillstrom (1981) illustrates the sparse Hessian module input. The objective function, which is the Extended Powell’s Singular Function, for $n = 40$ is a least-squares problem:

$$f(x) = \frac{1}{2} \{ f_1^2(x) + \cdots + f_m^2(x) \}$$

with

$$f_{4i-3}(x) = x_{4i-3} + 10x_{4i-2}$$
$$f_{4i-2}(x) = \sqrt{5}(x_{4i-1} - x_{4i})$$
$$f_{4i-1}(x) = (x_{4i-2} - 2x_{4i-1})^2$$
$$f_{4i}(x) = \sqrt{10}(x_{4i-3} - x_{4i})^2$$

The function and gradient modules are

start f_nlp22(x);
 n=ncol(x);
 f = 0.;
 do i=1 to n-3 by 4;
Objective Function and Derivatives

```plaintext
f1 = x[i] + 10. * x[i+1];
r2 = x[i+2] - x[i+3];
f2 = 5. * r2;
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
f = f + f1 * f1 + r2 * f2 + f3 * f3 + r4 * r4 * f4;
end;
f = .5 * f;
return(f);
finish f_nlp22;

start g_nlp22(x);
n = ncol(x);
g = j(1,n,0.);
do i=1 to n-3 by 4;
   f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
g[i] = f1 + 2. * r4 * f4;
g[i+1] = 10. * f1 + 2. * r3 * f3;
g[i+2] = f2 - 4. * r3 * f3;
g[i+3] = -f2 - 2. * r4 * f4;
end;
return(g);
finish g_nlp22;

You can specify the sparse Hessian with the following module:

```
Chapter 11. Nonlinear Optimization Examples

j= j+1; h[j,1] = i+1; h[j,2] = i+1;

h[j,3] = 100. + 4. * f3;

h[j,3] = h[j,3] + 2. * f3;

j= j+1; h[j,1] = i+1; h[j,2] = i+2;

h[j,3] = -8. * f3;

h[j,3] = h[j,3] - 4. * f3;

j= j+1; h[j,1] = i+2; h[j,2] = i+2;

h[j,3] = 5. + 16. * f3;

h[j,3] = h[j,3] + 8. * f3;

j= j+1; h[j,1] = i+2; h[j,2] = i+3;

h[j,3] = -5.;

j= j+1; h[j,1] = i+3; h[j,2] = i+3;

h[j,3] = 5. + 4. * f4;

h[j,3] = h[j,3] + 2. * f4;

end;

return(h);

finish hs_nlp22;

n = 40;

x = j(1,n,0.);

do i=1 to n-3 by 4;
 x[i] = 3.; x[i+1] = -1.; x[i+3] = 1.;
end;

opt = j(1,11,.) ; opt[2]= 3; opt[9]= 8 * (n / 4);
call nlpnra(xr,rc,"f_nlp22",x,opt) grd="g_nlp22" hes="hs_nlp22";

Note: If the sparse form of Hessian defines a diagonal matrix (that is, \(i = j \) in all \(nn \) rows), the NLPNRRA algorithm stores and processes a diagonal matrix \(G \). If you do not specify any general linear constraints, the NLPNRRA subroutine uses only order \(n \) memory.

Finite Difference Approximations of Derivatives

If the optimization technique needs first- or second-order derivatives and you do not specify the corresponding IML modules "grd", "hes", "jac", or "jacnlc", the derivatives are approximated by finite difference formulas using only calls of the module "fun". If the optimization technique needs second-order derivatives and you specify the "grd" module but not the "hes" module, the subroutine approximates the second-order derivatives by finite differences using \(n \) or \(2n \) calls of the "grd" module.

The eighth element of the opt argument specifies the type of finite difference approximation used to compute first- or second-order derivatives and whether the finite difference intervals, \(h \), should be computed by an algorithm of Gill, Murray, Saunders, and Wright (1983). The value of opt[8] is a two-digit integer, \(ij \).

- If opt[8] is missing or \(j = 0 \), the fast but not very precise forward difference formulas are used; if \(j \neq 0 \), the numerically more expensive central difference formulas are used.
- If opt[8] is missing or \(i \neq 1, 2, \) or 3, the finite difference intervals \(h \) are based only on the information of par[8] or par[9], which specifies the number of...
Central Difference Approximations

Forward Difference Approximations

- First-order derivatives: \(n \) additional function calls are needed.
 \[
g_i = \frac{\partial f}{\partial x_i} = \frac{f(x + h_i e_i) - f(x)}{h_i}
\]

- Second-order derivatives based on function calls only, when the "grd" module is not specified (Dennis and Schnabel 1983): for a dense Hessian matrix, \(n + n^2/2 \) additional function calls are needed.
 \[
 \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{f(x + h_i e_i + h_j e_j) - f(x + h_i e_i) - f(x + h_j e_j) + f(x)}{h_i h_j}
 \]

- Second-order derivatives based on gradient calls, when the "grd" module is specified (Dennis and Schnabel 1983): \(n \) additional gradient calls are needed.
 \[
 \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{g_i(x + h_j e_j) - g_i(x)}{2h_j} + \frac{g_j(x + h_i e_i) - g_j(x)}{2h_i}
 \]

Central Difference Approximations

- First-order derivatives: \(2n \) additional function calls are needed.
 \[
g_i = \frac{\partial f}{\partial x_i} = \frac{f(x + h_i e_i) - f(x - h_i e_i)}{2h_i}
\]

- Second-order derivatives based on function calls only, when the "grd" module is not specified (Abramowitz and Stegun 1972): for a dense Hessian matrix, \(2n + 2n^2 \) additional function calls are needed.
 \[
 \frac{\partial^2 f}{\partial x_i^2} = -\frac{f(x + 2h_i e_i) + 16f(x + h_i e_i) - 30f(x) + 16f(x - h_i e_i) - f(x - 2h_i e_i)}{12h_i^2}
 \]
 \[
 \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{f(x + h_i e_i + h_j e_j) - f(x + h_i e_i - h_j e_j) - f(x - h_i e_i + h_j e_j) + f(x - h_i e_i - h_j e_j)}{4h_i h_j}
 \]

- Second-order derivatives based on gradient calls, when the "grd" module is specified: \(2n \) additional gradient calls are needed.
 \[
 \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{g_i(x + h_j e_j) - g_i(x - h_j e_j)}{4h_j} + \frac{g_j(x + h_i e_i) - g_j(x - h_i e_i)}{4h_i}
 \]
The step sizes $h_j, j = 1, \ldots, n$, are defined as follows:

- For the forward-difference approximation of first-order derivatives using only function calls and for second-order derivatives using only gradient calls, $h_j = \sqrt[2]{\eta_j(1 + |x_j|)}$.
- For the forward-difference approximation of second-order derivatives using only function calls and for central-difference formulas, $h_j = \sqrt[2]{\eta_j(1 + |x_j|)}$.

If the algorithm of Gill, Murray, Saunders, and Wright (1983) is not used to compute η_j, a constant value $\eta = \eta_j$ is used depending on the value of $\text{par}[8]$.

- If the number of accurate digits is specified by $\text{par}[8] = k_1$, then η is set to 10^{-k_1}.
- If $\text{par}[8]$ is not specified, η is set to the machine precision, ϵ.

If central difference formulas are not specified, the optimization algorithm will switch automatically from the forward-difference formula to a corresponding central-difference formula during the iteration process if one of the following two criteria is satisfied:

- The absolute maximum gradient element is less than or equal to 100 times the ABSTOL threshold.
- The term on the left of the GTOL criterion is less than or equal to $\text{max}(1 \times \text{GTOL threshold})$. The $1 \times \text{GTOL}$ ensures that the switch is performed even if you set the GTOL threshold to zero.

The algorithm of Gill, Murray, Saunders, and Wright (1983) that computes the finite difference intervals h_j can be very expensive in the number of function calls it uses. If this algorithm is required, it is performed twice, once before the optimization process starts and once after the optimization terminates.

Many applications need considerably more time for computing second-order derivatives than for computing first-order derivatives. In such cases, you should use a quasi-Newton or conjugate gradient technique.

If you specify a vector, c, of nc nonlinear constraints with the “nlc” module but you do not specify the “jacnlc” module, the first-order formulas can be used to compute finite difference approximations of the $nc \times n$ Jacobian matrix of the nonlinear constraints.

$$(\nabla c_i) = \left(\frac{\partial c_i}{\partial x_j} \right), \quad i = 1, \ldots, nc, \quad j = 1, \ldots, n$$

You can specify the number of accurate digits in the constraint evaluations with $\text{par}[9]$. This specification also defines the step sizes $h_j, j = 1, \ldots, n$.

Note: If you are not able to specify analytic derivatives and if the finite-difference approximations provided by the subroutines are not good enough to solve your optimization problem, you may be able to implement better finite-difference approximations with the “grd”, “hes”, “jac”, and “jacnlc” module arguments.
You can specify constraints in the following ways:

- The matrix input argument “blic” enables you to specify boundary and general linear constraints.
- The IML module input argument “nlec” enables you to specify general constraints, particularly nonlinear constraints.

Specifying the BLC Matrix

The input argument “blic” specifies an \(n_1 \times n_2 \) constraint matrix, where \(n_1 \) is two more than the number of linear constraints, and \(n_2 \) is given by

\[
 n_2 = \begin{cases}
 n & \text{if } 1 \leq n_1 \leq 2 \\
 n + 2 & \text{if } n_1 > 2
 \end{cases}
\]

The first two rows define lower and upper bounds for the \(n \) parameters, and the remaining \(c = n_1 - 2 \) rows define general linear equality and inequality constraints. Missing values in the first row (lower bounds) substitute for the largest negative floating point value, and missing values in the second row (upper bounds) substitute for the largest positive floating point value. Columns \(n + 1 \) and \(n + 2 \) of the first two rows are not used.

The following \(c \) rows of the “blic” argument specify \(c \) linear equality or inequality constraints:

\[
 \sum_{j=1}^{n} a_{ij} x_j \quad (\leq | = | \geq) \; b_i, \quad i = 1, \ldots, c
\]

Each of these \(c \) rows contains the coefficients \(a_{ij} \) in the first \(n \) columns. Column \(n + 1 \) specifies the kind of constraint, as follows:

- \(blic[n + 1] = 0 \) indicates an equality constraint.
- \(blic[n + 1] = 1 \) indicates a \(\geq \) inequality constraint.
- \(blic[n + 1] = -1 \) indicates a \(\leq \) inequality constraint.

Column \(n + 2 \) specifies the right-hand side, \(b_i \). A missing value in any of these rows corresponds to a value of zero.

For example, suppose you have a problem with the following constraints on \(x_1, x_2, x_3, x_4 \):

\[
 \begin{align*}
 2 & \leq x_1 \leq 100 \\
 x_2 & \leq 40 \\
 0 & \leq x_4
 \end{align*}
\]
Chapter 11. Nonlinear Optimization Examples

\[
\begin{align*}
4x_1 + 3x_2 - x_3 & \leq 30 \\
x_2 + 6x_4 & \geq 17 \\
x_1 - x_2 & = 8
\end{align*}
\]

The following statements specify the matrix CON, which can be used as the “blc” argument to specify the preceding constraints:

```plaintext
proc iml;
con = { 2 . . 0 . . ,
        100 40 . . . . ,
        4 3 -1 . -1 30 ,
        . 1 . 6 1 17 ,
        1 -1 . . 0 8 };```

Specifying the NLC and JACNLC Modules

The input argument “nlc” specifies an IML module that returns a vector, \( c \), of length \( nc \), with the values, \( c_i \), of the \( nc \) linear or nonlinear constraints

\[
c_i(x) = 0, \quad i = 1, \ldots, nec, \quad \text{linear or nonlinear constraints}
\]

for a given input parameter point \( x \).

**Note:** You must specify the number of equality constraints, \( nec \), and the total number of constraints, \( nc \), returned by the “nlc” module to allocate memory for the return vector. You can do this with the \( opt[11] \) and \( opt[10] \) arguments, respectively.

For example, consider the problem of minimizing the objective function

\[
f(x_1, x_2) = x_1 x_2 \quad \text{in the interior of the unit circle, } \quad x_1^2 + x_2^2 \leq 1.
\]

The constraint can also be written as

\[
c(x) = 1 - x_1^2 - x_2^2 \geq 0.
\]

The following statements specify modules for the objective and constraint functions and call the NLPNMS subroutine to solve the minimization problem:

```plaintext
proc iml;
start F_UC2D(x);
 f = x[1] * x[2];
 return(f);
finish F_UC2D;

start C_UC2D(x);
 c = 1. - x * x`; return(c);
finish C_UC2D;

x = j(1,2,1.);
optn= j(1,10,.); optn[2]= 3; optn[10]= 1;
CALL NLPNMS(rc,xres,"F_UC2D",x,optn) nlc="C_UC2D";
```

To avoid typing multiple commas, you can specify the “nlc” input argument with a keyword, as in the preceding code. The number of elements of the return vector is
specified by OPTN[10] = 1. There is a missing value in OPTN[11], so the subroutine assumes there are zero equality constraints.

The NLPQN algorithm uses the $nc \times n$ Jacobian matrix of first-order derivatives

$$\nabla_x c_i(x) = \begin{pmatrix} \frac{\partial c_i}{\partial x_j} \end{pmatrix}, \quad i = 1, \ldots, nc, \quad j = 1, \ldots, n$$

of the $nc$ equality and inequality constraints, $c_i$, for each point passed during the iteration. You can use the “jacnlc” argument to specify an IML module that returns the Jacobian matrix $JC$. If you specify the “nlc” module without using the “jacnlc” argument, the subroutine uses finite difference approximations of the first-order derivatives of the constraints.

**Note:** The COBYLA algorithm in the NLPNMS subroutine and the NLPQN subroutine are the only optimization techniques that enable you to specify nonlinear constraints with the “nlc” input argument.

---

**Options Vector**

The options vector, represented by the “opt” argument, enables you to specify a variety of options, such as the amount of printed output or particular update or line-search techniques. Table 11.2 gives a summary of the available options.
Table 11.2. Summary of the Elements of the Options Vector

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>specifies minimization, maximization, or the number of least-squares functions</td>
</tr>
<tr>
<td>2</td>
<td>specifies the amount of printed output</td>
</tr>
<tr>
<td>3</td>
<td>NLPDD, NLPLM, NLPNRA, NLPNRR, NLPRTR: specifies the scaling of the Hessian matrix (HESCAL)</td>
</tr>
<tr>
<td>4</td>
<td>NLPCG, NLPDD, NLPHQN, NLPQN: specifies the update technique (UPDATE)</td>
</tr>
<tr>
<td>5</td>
<td>NLPCG, NLPHQN, NLPNRA, NLPQN: specifies the line-search technique (LIS)</td>
</tr>
<tr>
<td>6</td>
<td>NLPHQN: specifies version of hybrid algorithm (VERSION)</td>
</tr>
<tr>
<td>7</td>
<td>NLPHQN with nonlinear constraints: specifies version of µ update</td>
</tr>
<tr>
<td>8</td>
<td>NLPDD, NLPHQN, NLPQN: specifies initial Hessian matrix (INHESIAN)</td>
</tr>
<tr>
<td>9</td>
<td>Finite Difference Derivatives: specifies type of differences and how to compute the difference interval</td>
</tr>
<tr>
<td>10</td>
<td>NLPNRA: specifies the number of rows returned by the sparse Hessian module</td>
</tr>
<tr>
<td>11</td>
<td>NLPNMS, NLPQN: specifies the total number of constraints returned by the &quot;nlc&quot; module</td>
</tr>
<tr>
<td></td>
<td>NLPNMS, NLPQN: specifies the number of equality constraints returned by the &quot;nlc&quot; module</td>
</tr>
</tbody>
</table>

The following list contains detailed explanations of the elements of the options vector:

- **opt[1]**
  indicates whether the problem is minimization or maximization. The default, $opt[1] = 0$, specifies a minimization problem, and $opt[1] = 1$ specifies a maximization problem. For least-squares problems, $opt[1] = m$ specifies the number of functions or observations, which is the number of values returned by the "fun" module. This information is necessary to allocate memory for the return vector of the "fun" module.

- **opt[2]**
  specifies the amount of output printed by the subroutine. The higher the value of $opt[2]$, the more printed output is produced. The following table indicates the specific items printed for each value.
**Options Vector**

### Options Vector

<table>
<thead>
<tr>
<th>Value of ( \text{opt}[2] )</th>
<th>Printed Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printed output is produced. This is the default.</td>
</tr>
<tr>
<td>1</td>
<td>The summaries for optimization start and termination are produced, as well as the iteration history.</td>
</tr>
<tr>
<td>2</td>
<td>The initial and final parameter estimates are also printed.</td>
</tr>
<tr>
<td>3</td>
<td>The values of the termination criteria and other control parameters are also printed.</td>
</tr>
<tr>
<td>4</td>
<td>The parameter vector, ( x ), is also printed after each iteration.</td>
</tr>
<tr>
<td>5</td>
<td>The gradient vector, ( g ), is also printed after each iteration.</td>
</tr>
</tbody>
</table>

- \( \text{opt}[3] \)

  selects a scaling for the Hessian matrix, \( G \). This option is relevant only for the NLPDD, NLPLM, NLPNRA, NLPNRR, and NLPTR subroutines. If \( \text{opt}[3] \neq 0 \), the first iteration and each restart iteration set the diagonal scaling matrix \( D^{(0)} = \text{diag}(d_i^{(0)}) \), where

  \[
  d_i^{(0)} = \sqrt{\max(|G_{i,i}^{(0)}|, \epsilon)}
  \]

  and \( G_{i,i}^{(0)} \) are the diagonal elements of the Hessian matrix, and \( \epsilon \) is the machine precision. The diagonal scaling matrix \( D^{(0)} = \text{diag}(d_i^{(0)}) \) is updated as indicated in the following table.

<table>
<thead>
<tr>
<th>Value of ( \text{opt}[3] )</th>
<th>Scaling Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No scaling is done.</td>
</tr>
<tr>
<td>1</td>
<td>Moré (1978) scaling update: ( d_i^{(k+1)} = \max \left( d_i^{(k)}, \sqrt{\max(</td>
</tr>
<tr>
<td>2</td>
<td>Dennis, Gay, and Welsch (1981) scaling update: ( d_i^{(k+1)} = \max \left( 0.6 \times d_i^{(k)}, \sqrt{\max(</td>
</tr>
<tr>
<td>3</td>
<td>( d_i ) is reset in each iteration: ( d_i^{(k+1)} = \sqrt{\max(</td>
</tr>
</tbody>
</table>

For the NLPDD, NLPNRA, NLPNRR, and NLPTR subroutines, the default is \( \text{opt}[3] = 0 \); for the NLPLM subroutine, the default is \( \text{opt}[3] = 1 \).

- \( \text{opt}[4] \)

  defines the update technique for (dual) quasi-Newton and conjugate gradient techniques. This option applies to the NLPCG, NLPDD, NLPHQN, and NLPQN subroutines. For the NLPCG subroutine, the following update techniques are available.
Chapter 11. Nonlinear Optimization Examples

Value of \( \text{opt}[4] \)	Update Method for NLPCG
1 | automatic restart method of Powell (1977) and Beale (1972). This is the default.
2 | Fletcher-Reeves update (Fletcher 1987)
3 | Polak-Ribiére update (Fletcher 1987)
4 | Conjugate-descent update of Fletcher (1987)

For the unconstrained or linearly constrained NLPQN subroutine, the following update techniques are available.

Value of \( \text{opt}[4] \)	Update Method for NLPQN
1 | dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update of the Cholesky factor of the Hessian matrix. This is the default.
2 | dual Davidon, Fletcher, and Powell (DDFP) update of the Cholesky factor of the Hessian matrix
3 | original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the inverse Hessian matrix
4 | original Davidon, Fletcher, and Powell (DFP) update of the inverse Hessian matrix

For the NLPQN subroutine used with the "nlc" module and for the NLPDD and NLPHQN subroutines, only the first two update techniques in the second table are available.

- \( \text{opt}[5] \) defines the line-search technique for the unconstrained or linearly constrained NLPQN subroutine, as well as the NLPCG, NLPHQN, and NLPNRA subroutines. Refer to Fletcher (1987) for an introduction to line-search techniques. The following table describes the available techniques.
<table>
<thead>
<tr>
<th>Value of opt[5]</th>
<th>Line-Search Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This method needs the same number of function and gradient calls for cubic interpolation and cubic extrapolation; it is similar to a method used by the Harwell subroutine library.</td>
</tr>
<tr>
<td>2</td>
<td>This method needs more function than gradient calls for quadratic and cubic interpolation and cubic extrapolation; it is implemented as shown in Fletcher (1987) and can be modified to exact line search with the par[6] argument (see the “Control Parameters Vector” section on page 332). This is the default for the NLPCG, NLPNRA, and NLPQN subroutines.</td>
</tr>
<tr>
<td>3</td>
<td>This method needs the same number of function and gradient calls for cubic interpolation and cubic extrapolation; it is implemented as shown in Fletcher (1987) and can be modified to exact line search with the par[6] argument.</td>
</tr>
<tr>
<td>4</td>
<td>This method needs the same number of function and gradient calls for stepwise extrapolation and cubic interpolation.</td>
</tr>
<tr>
<td>5</td>
<td>This method is a modified version of the opt[5]=4 method.</td>
</tr>
<tr>
<td>6</td>
<td>This method is the golden section line search of Polak (1971), which uses only function values for linear approximation.</td>
</tr>
<tr>
<td>7</td>
<td>This method is the bisection line search of Polak (1971), which uses only function values for linear approximation.</td>
</tr>
<tr>
<td>8</td>
<td>This method is the Armijo line-search technique of Polak (1971), which uses only function values for linear approximation.</td>
</tr>
</tbody>
</table>

For the NLPHQN least-squares subroutine, the default is a special line-search method that is based on an algorithm developed by Lindström and Wedin (1984). Although it needs more memory, this method sometimes works better with large least-squares problems.

- **opt[6]**
  is used only for the NLPHQN subroutine and the NLPQN subroutine with nonlinear constraints.

In the NLPHQN subroutine, it defines the criterion for the decision of the hybrid algorithm to step in a Gauss-Newton or a quasi-Newton search direction. You can specify one of the three criteria that correspond to the methods of Fletcher and Xu (1987). The methods are HY1 (opt[6]=1), HY2 (opt[6]=2), and HY3 (opt[6]=2), and the default is HY2.

In the NLPQN subroutine with nonlinear constraints, it defines the version of the algorithm used to update the vector \( \mu \) of the Lagrange multipliers. The default is opt[6]=2, which specifies the approach of Powell (1982a,b). You can specify the approach of Powell (1978b) with opt[6]=1.

- **opt[7]**
  defines the type of start matrix, \( G^{(0)} \), used for the Hessian approximation. This option applies only to the NLPDD, NLPHQN, and NLPQN subroutines. If opt[7]=0, which is the default, the quasi-Newton algorithm starts with a multi-
ple of the identity matrix where the scalar factor depends on \( \text{par}[10] \); otherwise, it starts with the Hessian matrix computed at the starting point \( x^{(0)} \).

- **\text{opt}[8]**

  defines the type of finite difference approximation used to compute first- or second-order derivatives and whether the finite difference intervals, \( h \), should be computed using an algorithm of Gill, Murray, Saunders, and Wright (1983). The value of \( \text{opt}[8] \) is a two-digit integer, \( ij \).

  If \( \text{opt}[8] \) is missing or \( j = 0 \), the fast but not very precise forward difference formulas are used; if \( j \neq 0 \), the numerically more expensive central difference formulas are used.

  If \( \text{opt}[8] \) is missing or \( i \neq 1, 2, \) or \( 3 \), the finite difference intervals \( h \) are based only on the information of \( \text{par}[8] \) or \( \text{par}[9] \), which specifies the number of accurate digits to use in evaluating the objective function and nonlinear constraints, respectively. If \( i = 1, 2, \) or \( 3 \), the intervals are computed with an algorithm by Gill, Murray, Saunders, and Wright (1983). For \( i = 1 \), the interval is based on the behavior of the objective function; for \( i = 2 \), the interval is based on the behavior of the nonlinear constraint functions; and for \( i = 3 \), the interval is based on the behavior of both the objective function and the nonlinear constraint functions.

  The algorithm of Gill, Murray, Saunders, and Wright (1983) that computes the finite difference intervals \( h_{ij} \) can be very expensive in the number of function calls it uses. If this algorithm is required, it is performed twice, once before the optimization process starts and once after the optimization terminates. See the “Finite Difference Approximations of Derivatives” section on page 314 for details.

- **\text{opt}[9]**

  indicates that the Hessian module "hes" returns a sparse definition of the Hessian, in the form of an \( nn \times 3 \) matrix instead of the default dense \( n \times n \) matrix. If \( \text{opt}[9] \) is zero or missing, the Hessian module must return a dense \( n \times n \) matrix. If you specify \( \text{opt}[9] = nn \), the module must return a sparse \( nn \times 3 \) table. See the “Objective Function and Derivatives” section on page 309 for more details. This option applies only to the NLPNRA algorithm. If the dense specification contains a large proportion of analytical zero derivatives, the sparse specification may save memory and computer time.

- **\text{opt}[10]**

  specifies the total number of nonlinear constraints returned by the "nlc" module. If you specify \( nc \) nonlinear constraints with the "nlc" argument module, you must specify \( \text{opt}[10] = nc \) to allocate memory for the return vector.
Termination Criteria

The input argument \( tc \) specifies a vector of bounds corresponding to a set of termination criteria that are tested in each iteration. If you do not specify an IML module with the "ptit" argument, these bounds determine when the optimization process stops.

If you specify the "ptit" argument, the "tc" argument is ignored. The module specified by the "ptit" argument replaces the subroutine that is used by default to test the termination criteria. The module is called in each iteration with the current location, \( x \), and the value, \( f \), of the objective function at \( x \). The module must give a return code, \( rc \), that decides whether the optimization process is to be continued or terminated. As long as the module returns \( rc = 0 \), the optimization process continues. When the module returns \( rc \neq 0 \), the optimization process stops.

If you use the \( tc \) vector, the optimization techniques stop the iteration process when at least one of the corresponding set of termination criteria are satisfied. Table 11.3 and Table 11.4 indicate the criterion associated with each element of the \( tc \) vector. There is a default for each criterion, and if you specify a missing value for the corresponding element of the \( tc \) vector, the default value is used. You can avoid termination with respect to the ABSFTOL, ABSGTOL, ABSXTOL, FTOL, FTOL2, GTOL, GTOL2, and XTOL criteria by specifying a value of zero for the corresponding element of the \( tc \) vector.

Table 11.3. Termination Criteria for the NLPNMS Subroutine

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>maximum number of iterations (MAXIT)</td>
</tr>
<tr>
<td>2</td>
<td>maximum number of function calls (MAXFU)</td>
</tr>
<tr>
<td>3</td>
<td>absolute function criterion (ABSTOL)</td>
</tr>
<tr>
<td>4</td>
<td>relative function criterion (FTOL)</td>
</tr>
<tr>
<td>5</td>
<td>relative function criterion (FTOL2)</td>
</tr>
<tr>
<td>6</td>
<td>absolute function criterion (ABSFTOL)</td>
</tr>
<tr>
<td>7</td>
<td>FSIZE value used in FTOL criterion</td>
</tr>
<tr>
<td>8</td>
<td>relative parameter criterion (XTOL)</td>
</tr>
<tr>
<td>9</td>
<td>absolute parameter criterion (ABSXTOL)</td>
</tr>
<tr>
<td>10</td>
<td>size of final trust-region radius ( \rho ) (COBYLA algorithm)</td>
</tr>
</tbody>
</table>
Chapter 11. Nonlinear Optimization Examples

Table 11.4. Termination Criteria for Other Subroutines

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>maximum number of iterations (MAXIT)</td>
</tr>
<tr>
<td>2</td>
<td>maximum number of function calls (MAXFU)</td>
</tr>
<tr>
<td>3</td>
<td>absolute function criterion (ABSTOL)</td>
</tr>
<tr>
<td>4</td>
<td>relative gradient criterion (GTOL)</td>
</tr>
<tr>
<td>5</td>
<td>relative gradient criterion (GTOL2)</td>
</tr>
<tr>
<td>6</td>
<td>absolute gradient criterion (ABSGTOL)</td>
</tr>
<tr>
<td>7</td>
<td>relative function criterion (FTOL)</td>
</tr>
<tr>
<td>8</td>
<td>predicted function reduction criterion (FTOL2)</td>
</tr>
<tr>
<td>9</td>
<td>absolute function criterion (ABSFTOL)</td>
</tr>
<tr>
<td>10</td>
<td>FSIZE value used in GTOL and FTOL criterion</td>
</tr>
<tr>
<td>11</td>
<td>relative parameter criterion (XTOL)</td>
</tr>
<tr>
<td>12</td>
<td>absolute parameter criterion (ABSXTOL)</td>
</tr>
<tr>
<td>13</td>
<td>XSIZE value used in XTOL criterion</td>
</tr>
</tbody>
</table>

Criteria Used by All Techniques

The following list indicates the termination criteria that are used with all the optimization techniques:

- **tc[1]**
  specifies the maximum number of iterations in the optimization process (MAXIT). The default values are
  - NLPNMS: MAXIT=1000
  - NLPCG: MAXIT=400
  - Others: MAXIT=200

- **tc[2]**
  specifies the maximum number of function calls in the optimization process (MAXFU). The default values are
  - NLPNMS: MAXFU=3000
  - NLPCG: MAXFU=1000
  - Others: MAXFU=500

- **tc[3]**
  specifies the absolute function convergence criterion (ABSTOL). For minimization, termination requires \( f^{(k)} = f(x^{(k)}) \leq \text{ABSTOL} \), while for maximization, termination requires \( f^{(k)} = f(x^{(k)}) \geq \text{ABSTOL} \). The default values are the negative and positive square roots of the largest double precision value, for minimization and maximization, respectively.

These criteria are useful when you want to divide a time-consuming optimization problem into a series of smaller problems.
Termination Criteria for NLPNMS

Since the Nelder-Mead simplex algorithm does not use derivatives, no termination criteria are available that are based on the gradient of the objective function.

When the NLPNMS subroutine implements Powell’s COBYLA algorithm, it uses only one criterion other than the three used by all the optimization techniques. The COBYLA algorithm is a trust-region method that sequentially reduces the radius, \( \rho \), of a spheric trust region from the start radius, \( \rho_{\text{beg}} \), which is controlled with the \( \text{par}[2] \) argument, to the final radius, \( \rho_{\text{end}} \), which is controlled with the \( \text{tc}[9] \) argument. The default value for \( \text{tc}[9] \) is \( \rho_{\text{end}} = 1E^-4 \). Convergence to small values of \( \rho_{\text{end}} \) may take many calls of the function and constraint modules and may result in numerical problems.

In addition to the criteria used by all techniques, the original Nelder-Mead simplex algorithm uses several other termination criteria, which are described in the following list:

- \( \text{tc}[4] \) specifies the relative function convergence criterion (FTOL). Termination requires a small relative difference between the function values of the vertices in the simplex with the largest and smallest function values.

\[
\frac{|f_{h_i}^{(k)} - f_{l_0}^{(k)}|}{\max(|f_{h_i}^{(k)}|, \text{FSIZE})} \leq FTOL
\]

where \( \text{FSIZE} \) is defined by \( \text{tc}[7] \). The default value is \( \text{tc}[4] = 10^{-\text{FDIGITS}} \), where \( \text{FDIGITS} \) is controlled by the \( \text{par}[8] \) argument. The \( \text{par}[8] \) argument has a default value of \( \log_{10}(\epsilon) \), where \( \epsilon \) is the machine precision. Hence, the default value for FTOL is \( \epsilon \).

- \( \text{tc}[5] \) specifies another relative function convergence criterion (FTOL2). Termination requires a small standard deviation of the function values of the \( n + 1 \) simplex vertices \( x_{0}^{(k)}, \ldots, x_{n}^{(k)} \).

\[
\sqrt{\frac{1}{n+1} \sum_{l} (f(x_{l}^{(k)}) - \overline{f(x^{(k)})})^2} \leq FTOL2
\]

where \( \overline{f(x^{(k)})} = \frac{1}{n+1} \sum_{l} f(x_{l}^{(k)}) \). If there are \( a \) active boundary constraints at \( x^{(k)} \), the mean and standard deviation are computed only for the \( n + 1 - a \) unconstrained vertices. The default is \( \text{tc}[5] = 1E^-6 \).

- \( \text{tc}[6] \) specifies the absolute function convergence criterion (ABSFTOL). Termination requires a small absolute difference between the function values of the vertices in the simplex with the largest and smallest function values.

\[
|f_{h_i}^{(k)} - f_{l_0}^{(k)}| \leq ABSFTOL
\]
The default is $tc[6] = 0$.

- **tc[7]**
  specifies the FSIZE value used in the FTOL termination criterion. The default is $tc[7] = 0$.

- **tc[8]**
  specifies the relative parameter convergence criterion (XTOL). Termination requires a small relative parameter difference between the vertices with the largest and smallest function values.

  $$\max_j \frac{|x^{lo}_j - x^{hi}_j|}{\max(|x^{lo}_j|, |x^{hi}_j|, FSIZE)} \leq XTOL$$

  The default is $tc[8] = 1E-8$.

- **tc[9]**
  specifies the absolute parameter convergence criterion (ABSXTOL). Termination requires either a small length, $\alpha^{(k)}$, of the vertices of a restart simplex or a small simplex size, $\delta^{(k)}$.

  $$\alpha^{(k)} \leq ABSXTOL$$
  $$\delta^{(k)} \leq ABSXTOL$$

  where $\delta^{(k)}$ is defined as the L1 distance of the simplex vertex with the smallest function value, $y^{(k)}$, to the other $n$ simplex points, $x^{(k)}_i \neq y$.

  $$\delta^{(k)} = \sum_{x_i \neq y} \| x^{(k)}_i - y^{(k)} \|_1$$

  The default is $tc[9] = 1E-8$.

- **tc[10]**
  specifies the XSIZE value used in the XTOL termination criterion. The default is $tc[10] = 0$.

**Termination Criteria for Unconstrained and Linearly Constrained Techniques**

- **tc[4]**
  specifies the relative gradient convergence criterion (GTOL). For all techniques except the NLPCG subroutine, termination requires that the normalized predicted function reduction is small.

  $$\frac{g(x^{(k)})^T [G^{(k)}]^{-1} g(x^{(k)})}{\max(|f(x^{(k)})|, FSIZE)} \leq GTOL$$
Termination Criteria

Where $FSIZE$ is defined by $tc[10]$. For the NLPCG technique (where a reliable Hessian estimate is not available),

$$\frac{\|g(x^{(k)})\|_2}{\|g(x^{(k)}) - g(x^{(k-1)})\|_2 \max(|f(x^{(k)})|, FSIZE)} \leq GTOL$$

is used. The default is $tc[4] = 1E-8$.

- $tc[5]$ specifies another relative gradient convergence criterion (GTOL2). This criterion is used only by the NLPLM subroutine.

$$\max_j \left| \frac{|g_j(x^{(k)})|}{\sqrt{f(x^{(k)}) G_{jj}^{(k)}}} \right| \leq GTOL2$$

The default is $tc[5] = 0$.

- $tc[6]$ specifies the absolute gradient convergence criterion (ABSGTOL). Termination requires that the maximum absolute gradient element be small.

$$\max_j |g_j(x^{(k)})| \leq ABSGTOL$$

The default is $tc[6] = 1E-5$.

- $tc[7]$ specifies the relative function convergence criterion (FTOL). Termination requires a small relative change of the function value in consecutive iterations.

$$\frac{|f(x^{(k)}) - f(x^{(k-1)})|}{\max(|f(x^{(k-1)})|, FSIZE)} \leq FTOL$$

where $FSIZE$ is defined by $tc[10]$. The default is $tc[7] = 10^{-FDIGITS}$, where FDIGITS is controlled by the $par[8]$ argument. The $par[8]$ argument has a default value of $\log_{10}(\epsilon)$, where $\epsilon$ is the machine precision. Hence, the default for FTOL is $\epsilon$.

- $tc[8]$ specifies another function convergence criterion (FTOL2). For least-squares problems, termination requires a small predicted reduction of the objective function, $df^{(k)} \approx f(x^{(k)}) - f(x^{(k)} + s^{(k)})$. The predicted reduction is computed by approximating the objective function by the first two terms of the Taylor series and substituting the Newton step, $s^{(k)} = -G^{(k)-1}g^{(k)}$, as follows:

$$df^{(k)} = -g^{(k)T} s^{(k)} - \frac{1}{2} s^{(k)T} G^{(k)} s^{(k)}$$

$$= -\frac{1}{2} s^{(k)T} g^{(k)}$$

$$\leq FTOL2$$
Chapter 11. Nonlinear Optimization Examples

The FTOL2 criterion is the unscaled version of the GTOL criterion. The default is $tc[8]=0$.

- **tc[9]** specifies the absolute function convergence criterion ($ABSFTOL$). Termination requires a small change of the function value in consecutive iterations.

\[
|f(x^{(k-1)}) - f(x^{(k)})| \leq ABSFTOL
\]

The default is $tc[9]=0$.

- **tc[10]** specifies the FSIZE value used in the GTOL and FTOL termination criteria. The default is $tc[10]=0$.

- **tc[11]** specifies the relative parameter convergence criterion ($XTOL$). Termination requires a small relative parameter change in consecutive iterations.

\[
\frac{\max_j |x_j^{(k)} - x_j^{(k-1)}|}{\max(|x_j^{(k)}|, |x_j^{(k-1)}|, XSIZE)} \leq XTOL
\]

The default is $tc[11]=0$.

- **tc[12]** specifies the absolute parameter convergence criterion ($ABSXTOL$). Termination requires a small Euclidean distance between parameter vectors in consecutive iterations.

\[
\|x^{(k)} - x^{(k-1)}\|_2 \leq ABSXTOL
\]

The default is $tc[12]=0$.

- **tc[13]** specifies the XSIZE value used in the XTOL termination criterion. The default is $tc[13]=0$.

**Termination Criteria for Nonlinearly Constrained Techniques**

The only algorithm available for nonlinearly constrained optimization other than the NLPNMS subroutine is the NLPQN subroutine, when you specify the "nlc" module argument. This method, unlike the other optimization methods, does not monotonically reduce the value of the objective function or some kind of merit function that combines objective and constraint functions. Instead, the algorithm uses the watchdog technique with backtracking of Chamberlain and others (1982). Therefore, no
termination criteria are implemented that are based on the values \( x \) or \( f \) in consecutive iterations. In addition to the criteria used by all optimization techniques, there are three other termination criteria available; these are based on the Lagrange function

\[
L(x, \lambda) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x)
\]

and its gradient

\[
\nabla_x L(x, \lambda) = g(x) - \sum_{i=1}^{m} \lambda_i \nabla_x c_i(x)
\]

where \( m \) denotes the total number of constraints, \( g = g(x) \) is the gradient of the objective function, and \( \lambda \) is the vector of Lagrange multipliers. The Kuhn-Tucker conditions require that the gradient of the Lagrange function is zero at the optimal point \( (x^*, \lambda^*) \), as follows:

\[
\nabla_x L(x^*, \lambda^*) = 0
\]

- **tc[4]**
  specifies the GTOL criterion, which requires that the normalized predicted function reduction be small.

\[
\frac{|g(x^{(k)}) s(x^{(k)})| + \sum_{i=1}^{m} |\lambda_i c_i(x^{(k)})|}{\max(|f(x^{(k)})|, FSIZE)} \leq GTOL
\]

where \( FSIZE \) is defined by the \( tc[10] \) argument. The default is \( tc[4] = 1E-8 \).

- **tc[6]**
  specifies the ABSGTOL criterion, which requires that the maximum absolute gradient element of the Lagrange function be small.

\[
\max_j |\nabla_x L(x^{(k)}, \lambda^{(k)})_j| \leq ABSGTOL
\]

The default is \( tc[6] = 1E-5 \).

- **tc[8]**
  specifies the FTOL2 criterion, which requires that the predicted function reduction be small.

\[
|g(x^{(k)}) s(x^{(k)})| + \sum_{i=1}^{m} |\lambda_i c_i| \leq FTOL2.
\]

The default is \( tc[8] = 1E-6 \). This is the criterion used by the programs VMCWD and VF02AD of Powell (1982b).
Control Parameters Vector

For all optimization and least-squares subroutines, the input argument par specifies a vector of parameters that control the optimization process. For the NLPFDD and NLPFEA subroutines, the par argument is defined differently. For each element of the par vector there exists a default value, and if you specify a missing value, the default is used. Table 11.5 summarizes the uses of the par argument for the optimization and least-squares subroutines.

Table 11.5. Summary of the Control Parameters Vector

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>specifies the singularity criterion (SINGULAR)</td>
</tr>
<tr>
<td>2</td>
<td>specifies the initial step length or trust-region radius</td>
</tr>
<tr>
<td>3</td>
<td>specifies the range for active (violated) constraints (LCEPS)</td>
</tr>
<tr>
<td>4</td>
<td>specifies the Lagrange multiplier threshold for constraints (LCDEFACT)</td>
</tr>
<tr>
<td>5</td>
<td>specifies a criterion to determine linear dependence of constraints (LCS-ING)</td>
</tr>
<tr>
<td>6</td>
<td>specifies the required accuracy of the line-search algorithms (LSPRECISION)</td>
</tr>
<tr>
<td>7</td>
<td>reduces the line-search step size in successive iterations (DAMPSTEP)</td>
</tr>
<tr>
<td>8</td>
<td>specifies the number of accurate digits used in evaluating the objective function (FDIGITS)</td>
</tr>
<tr>
<td>9</td>
<td>specifies the number of accurate digits used in evaluating the nonlinear constraints (CDIGITS)</td>
</tr>
<tr>
<td>10</td>
<td>specifies a scalar factor for the diagonal of the initial Hessian (DIAHES)</td>
</tr>
</tbody>
</table>

- **par[1]** specifies the singularity criterion for the decomposition of the Hessian matrix (SINGULAR). The value must be between zero and one, and the default is $\text{par}[1] = 1E-8$.

- **par[2]** specifies different features depending on the subroutine in which it is used. In the NLPNMS subroutine, it defines the size of the start simplex. For the original Nelder-Mead simplex algorithm, the default value is $\text{par}[2] = 1$; for the COBYLA algorithm, the default is $\text{par}[2] = 0.5$. In the NLPCG, NLPQN, and NLPHQN subroutines, the $\text{par}[2]$ argument specifies an upper bound for the initial step length for the line search during the first five iterations. The default initial step length is $\text{par}[2] = 1$. In the NLPR, NLPDD, and NLPLM subroutines, the $\text{par}[2]$ argument specifies a factor for the initial trust-region radius, $\Delta$. For highly nonlinear functions, the default step length or trust-region radius can result in arithmetic overflows. In that case, you can specify stepwise decreasing values of $\text{par}[2]$, such as $\text{par}[2]=1E-1$, $\text{par}[2]=1E-2$, $\text{par}[2]=1E-4$, until the subroutine starts to iterate successfully.
• par[3]
specifies the range (LCEPS) for active and violated linear constraints. The 
ith constraint is considered an active constraint if the point $x^{(k)}$ satisfies the 
condition

$$\left| \sum_{j=1}^{n} a_{ij} x_{j}^{(k)} - b_i \right| \leq LCEPS(|b_i| + 1)$$

where LCEPS is the value of par[3] and $a_{ij}$ and $b_i$ are defined as in the section “Parameter Constraints” on page 317. Otherwise, the constraint $i$ is either an inactive inequality or a violated inequality or equality constraint. The default is par[3] = 1E−8. During the optimization process, the introduction of rounding errors can force the subroutine to increase the value of par[3] by a power of 10, but the value will never become larger than 1E−3.

• par[4]
specifies a threshold (LCDEACT) for the Lagrange multiplier that decides 
whether an active inequality constraint must remain active or can be deac-
tivated. For maximization, par[4] must be positive, and for minimization, par[4] must be negative. The default is

$$par[4] = \pm \min \left( 0.01, \max \left( 0.1 \times ABSGTOL, \ 0.001 \times g_{\max}^{(k)} \right) \right)$$

where the positive value is for maximization and the negative value is for mini-
mization. ABSGTOL is the value of the absolute gradient criterion, and $g_{\max}^{(k)}$ is the maximum absolute element of the gradient, $g^{(k)}$, or the projected gradi-
ent, $Z^T g^{(k)}$.

• par[5]
specifies a criterion (LCSING) used in the update of the QR decomposition 
that decides whether an active constraint is linearly dependent on a set of other 
active constraints. The default is par[5] = 1E−8. As the value of par[5] in-
creases, more active constraints are recognized as being linearly dependent. If 
the value of par[5] is larger than 0.1, it is reset to 0.1, and if it is negative, it is 
reset to zero.

• par[6]
specifies the degree of accuracy (LSPRECISION) that should be obtained by 
the second or third line-search algorithm. This argument can be used with the 
NLPCG, NLPHQN, and NLPNRA algorithms and with the NLPQN algorithm 
if the "nlc" argument is specified. Usually, an imprecise line search is computa-
tionally inexpensive and successful, but for more difficult optimization prob-
lems, a more precise and time consuming line search may be necessary. Refer 
to Fletcher (1987) for details. If you have numerical problems, you should de-
crease the value of the par[6] argument to obtain a more precise line search. 
The default values are given in the following table.
<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Update Method</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLP CG</td>
<td>All</td>
<td>$par[6] = 0.1$</td>
</tr>
<tr>
<td>NLP HQN</td>
<td>DBFGS</td>
<td>$par[6] = 0.1$</td>
</tr>
<tr>
<td>NLP HQN</td>
<td>DDFP</td>
<td>$par[6] = 0.06$</td>
</tr>
<tr>
<td>NLP NRA</td>
<td>No update</td>
<td>$par[6] = 0.9$</td>
</tr>
<tr>
<td>NLP QN</td>
<td>BFGS, DBFGS</td>
<td>$par[6] = 0.4$</td>
</tr>
<tr>
<td>NLP QN</td>
<td>DFP, DDFP</td>
<td>$par[6] = 0.06$</td>
</tr>
</tbody>
</table>

- $par[7]$ specifies a scalar factor (DAMPSTEP) that can be used to reduce the step size in each of the first five iterations. In each of these iterations, the starting step size, $\alpha_0$, can be no larger than the value of $par[7]$ times the step size obtained by the line-search algorithm in the previous iteration. If $par[7]$ is missing or if $par[7]=0$, which is the default, the starting step size in iteration $t$ is computed as a function of the function change from the former iteration, $f(t-1) - f(t)$. If the computed value is outside the interval [0.1, 10.0], it is moved to the next endpoint. You can further restrict the starting step size in the first five iterations with the $par[2]$ argument.

- $par[8]$ specifies the number of accurate digits (FDIGITS) used to evaluate the objective function. The default is $-\log_{10}(\epsilon)$, where $\epsilon$ is the machine precision, and fractional values are permitted. This value is used to compute the step size $h$ for finite difference derivatives and the default value for the FTOL termination criterion.

- $par[9]$ specifies the number of accurate digits (CDIGITS) used to evaluate the nonlinear constraint functions of the "nlc" module. The default is $-\log_{10}(\epsilon)$, where $\epsilon$ is the machine precision, and fractional values are permitted. The value is used to compute the step size $h$ for finite difference derivatives. If first-order derivatives are specified by the "jacnlc" module, the $par[9]$ argument is ignored.

- $par[10]$ specifies a scalar factor (DIAHES) for the diagonal of the initial Hessian approximation. This argument is available in the NLPDD, NLP HQN, and NLP QN subroutines. If the $opt[7]$ argument is not specified, the initial Hessian approximation is a multiple of the identity matrix determined by the magnitude of the initial gradient $g(x(0))$. The value of the $par[10]$ argument is used to specify $par[10] \times I$ for the initial Hessian in the quasi-Newton algorithm.

**Printing the Optimization History**

Each optimization and least-squares subroutine prints the optimization history, as long as $opt[2] \geq 1$ and you do not specify the "ptit" module argument. You can use this output to check for possible convergence problems. If you specify the "ptit"
argument, you can enter a print command inside the module, which is called at each iteration.

The amount of information printed depends on the `opt[2]` argument. See the section “Options Vector” on page 319.

The output consists of three main parts:

- **Optimization Start Output**
  The following information about the initial state of the optimization can be printed:
  - the number of constraints that are active at the starting point, or, more precisely, the number of constraints that are currently members of the working set. If this number is followed by a plus sign (+), there are more active constraints, at least one of which is temporarily released from the working set due to negative Lagrange multipliers.
  - the value of the objective function at the starting point
  - the value of the largest absolute (projected) gradient element
  - the initial trust-region radius for the NLPT and NLPLM subroutines

- **General Iteration History**
  In general, the iteration history consists of one line of printed output for each iteration, with the exception of the Nelder-Mead simplex method. The NLPTNMS subroutine prints a line only after several internal iterations because some of the termination tests are time-consuming compared to the simplex operations and because the subroutine typically uses many iterations.
  
  The iteration history always includes the following columns:
  - \textit{iter} is the iteration number.
  - \textit{nrest} is the number of iteration restarts.
  - \textit{nfun} is the number of function calls.
  - \textit{act} is the number of active constraints.
  - \textit{optcrit} is the value of the optimization criterion.
  - \textit{difcrit} is the difference between adjacent function values.
  - \textit{maxgrad} is the maximum of the absolute (projected) gradient components.

  An apostrophe trailing the number of active constraints indicates that at least one of the active constraints was released from the active set due to a significant Lagrange multiplier.

  Some subroutines print additional information at each iteration; for details see the entry corresponding to each subroutine in the “Nonlinear Optimization and Related Subroutines” section on page 631.

- **Optimization Result Output**
  The output ends with the following information about the optimization result:
  - the number of constraints that are active at the final point, or more precisely, the number of constraints that are currently members of the working set. When this number is followed by a plus sign (+), there are more
Chapter 11. Nonlinear Optimization Examples

active constraints, at least one of which is temporarily released from the working set due to negative Lagrange multipliers.
– the value of the objective function at the final point
– the value of the largest absolute (projected) gradient element

Nonlinear Optimization Examples

Example 11.1. Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming. It appeared originally in Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals that satisfy the mixture’s chemical equilibrium state. The second law of thermodynamics implies that at a constant temperature and pressure, a mixture of chemicals satisfies its chemical equilibrium state when the free energy of the mixture is reduced to a minimum. Therefore, the composition of the chemicals satisfying its chemical equilibrium state can be found by minimizing the free energy of the mixture.

The following notation is used in this problem:

- \( m \) number of chemical elements in the mixture
- \( n \) number of compounds in the mixture
- \( x_j \) number of moles for compound \( j \), \( j = 1, \ldots, n \)
- \( s \) total number of moles in the mixture, \( s = \sum_{i=1}^{n} x_j \)
- \( a_{ij} \) number of atoms of element \( i \) in a molecule of compound \( j \)
- \( b_i \) atomic weight of element \( i \) in the mixture, \( i = 1, \ldots, n \)

The constraints for the mixture are as follows. Each of the compounds must have a nonnegative number of moles.

\[ x_j \geq 0, \quad j = 1, \ldots, n \]

There is a mass balance relationship for each element. Each relation is given by a linear equality constraint.

\[ \sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \ldots, m \]

The objective function is the total free energy of the mixture.

\[ f(x) = \sum_{j=1}^{n} x_j \left[ c_j + \ln \left( \frac{x_j}{s} \right) \right] \]

where

\[ c_j = \left( \frac{F^0}{RT} \right)_j + \ln(P) \]
and \((F^0 / RT)_j\) is the model standard free energy function for the \(j^{th}\) compound. The value of \((F^0 / RT)_j\) is found in existing tables. \(P\) is the total pressure in atmospheres.

The problem is to determine the parameters \(x_j\) that minimize the objective function \(f(x)\) subject to the nonnegativity and linear balance constraints. To illustrate this, consider the following situation. Determine the equilibrium composition of compound \(\frac{1}{2}N_2H_4 + \frac{1}{2}O_2\) at temperature \(T = 3500^\circ K\) and pressure \(P = 750 \text{ psi}\). The following table gives a summary of the information necessary to solve the problem.

<table>
<thead>
<tr>
<th>(j)</th>
<th>Compound</th>
<th>((F^0 / RT))</th>
<th>(c_j)</th>
<th>(a_{ij})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(H)</td>
<td>(-10.021)</td>
<td>(-6.089)</td>
<td>1</td>
</tr>
<tr>
<td>(2)</td>
<td>(H_2)</td>
<td>(-21.096)</td>
<td>(-17.164)</td>
<td>2</td>
</tr>
<tr>
<td>(3)</td>
<td>(H_2O)</td>
<td>(-37.986)</td>
<td>(-34.054)</td>
<td>2</td>
</tr>
<tr>
<td>(4)</td>
<td>(N)</td>
<td>(-9.846)</td>
<td>(-5.914)</td>
<td>1</td>
</tr>
<tr>
<td>(5)</td>
<td>(N_2)</td>
<td>(-28.653)</td>
<td>(-24.721)</td>
<td>2</td>
</tr>
<tr>
<td>(6)</td>
<td>(NH)</td>
<td>(-18.918)</td>
<td>(-14.986)</td>
<td>1</td>
</tr>
<tr>
<td>(7)</td>
<td>(NO)</td>
<td>(-28.032)</td>
<td>(-24.100)</td>
<td>1</td>
</tr>
<tr>
<td>(8)</td>
<td>(O)</td>
<td>(-14.640)</td>
<td>(-10.708)</td>
<td>1</td>
</tr>
<tr>
<td>(9)</td>
<td>(O_2)</td>
<td>(-30.594)</td>
<td>(-26.662)</td>
<td>2</td>
</tr>
<tr>
<td>(10)</td>
<td>(OH)</td>
<td>(-26.111)</td>
<td>(-22.179)</td>
<td>1</td>
</tr>
</tbody>
</table>

The following statements solve the minimization problem:

```sas
proc iml;
 c = { -6.089 -17.164 -34.054 -5.914 -24.721
 start F_BRACK(x) global(c);
 s = x[+];
 f = sum(x # (c + log(x / s)));
 return(f);
 finish F_BRACK;

 con = { ,
 ,
 1. 2. 2.. 1. .. 1. 0. 2. ,
 .. 1. 2. 1. 1. .. 0. 1. ,
 .. 1. .. 1. 1. 2. 1. 0. 1. };;
 con[1,1:10] = 1.e-6;

 x0 = j(1,10, .1);
 optn = {0 3};

 title 'NLPTR subroutine: No Derivatives';
 call nlptr(xres,rc,"F_BRACK",x0,optn,con);
```

The \(F_{-BRACK}\) module specifies the objective function, \(f(x)\). The matrix \(CON\) specifies the constraints. The first row gives the lower bound for each parameter, and to prevent the evaluation of the \(log(x)\) function for values of \(x\) that are too small, the lower bounds are set here to \(1E-6\). The following three rows contain the three linear equality constraints.
The starting point, which must be given to specify the number of parameters, is represented by $X_0$. The first element of the OPTN vector specifies a minimization problem, and the second element specifies the amount of printed output.

The CALL NLPTR statement runs trust-region minimization. In this case, since no analytic derivatives are specified, the F_BRACK module is used to generate finite difference approximations for the gradient vector and Hessian matrix.

The output is shown in the following figures. The iteration history does not show any problems.

The output lists the optimal parameters with the gradient.
Example 11.2. Network Flow and Delay

Optimization Results
Parameter Estimates

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>0.040668</td>
<td>-9.785055</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0.147730</td>
<td>-19.570111</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>0.783154</td>
<td>-34.792170</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>0.001414</td>
<td>-12.968920</td>
</tr>
<tr>
<td>5</td>
<td>X5</td>
<td>0.485247</td>
<td>-25.937841</td>
</tr>
<tr>
<td>6</td>
<td>X6</td>
<td>0.000693</td>
<td>-22.753976</td>
</tr>
<tr>
<td>7</td>
<td>X7</td>
<td>0.027399</td>
<td>-28.190992</td>
</tr>
<tr>
<td>8</td>
<td>X8</td>
<td>0.017947</td>
<td>-15.222060</td>
</tr>
<tr>
<td>9</td>
<td>X9</td>
<td>0.037314</td>
<td>-30.444119</td>
</tr>
<tr>
<td>10</td>
<td>X10</td>
<td>0.096871</td>
<td>-25.007115</td>
</tr>
</tbody>
</table>

Value of Objective Function = -47.76109086

The three equality constraints are satisfied at the solution.

Linear Constraints Evaluated at Solution

[1] ACT -3.053E-16 = -2.0000 + 1.0000 * X1 + 2.0000 * X2 + 2.0000 * X3 + 1.0000 * X6 + 1.0000 * X10
[2] ACT -1.735E-17 = -1.0000 + 1.0000 * X4 + 2.0000 * X5 + 1.0000 * X6 + 1.0000 * X7
[3] ACT -1.527E-16 = -1.0000 + 1.0000 * X3 + 1.0000 * X7 + 1.0000 * X8 + 2.0000 * X9 + 1.0000 * X10

The Lagrange multipliers and the projected gradient are also printed. The elements of the projected gradient must be small to satisfy a first-order optimality condition.

First Order Lagrange Multipliers

<table>
<thead>
<tr>
<th>Active Constraint</th>
<th>Lagrange Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear EC [1]</td>
<td>-9.785055</td>
</tr>
<tr>
<td>Linear EC [2]</td>
<td>-12.968922</td>
</tr>
</tbody>
</table>

Projected Gradient

<table>
<thead>
<tr>
<th>Free Dimension</th>
<th>Projected Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000000328</td>
</tr>
<tr>
<td>2</td>
<td>-9.703359E-8</td>
</tr>
<tr>
<td>3</td>
<td>3.2183113E-8</td>
</tr>
<tr>
<td>4</td>
<td>-0.000007390</td>
</tr>
<tr>
<td>5</td>
<td>-0.000005172</td>
</tr>
<tr>
<td>6</td>
<td>-0.000005669</td>
</tr>
<tr>
<td>7</td>
<td>-0.00000937</td>
</tr>
</tbody>
</table>
Example 11.2. Network Flow and Delay

The following example is taken from the user’s guide of the GINO program (Liebman, Lasdon, Schrage, and Waren 1986). A simple network of five roads (arcs) can be illustrated by a path diagram.

The five roads connect four intersections illustrated by numbered nodes. Each minute, \( F \) vehicles enter and leave the network. The parameter \( x_{ij} \) refers to the flow from node \( i \) to node \( j \). The requirement that traffic that flows into each intersection \( j \) must also flow out is described by the linear equality constraint

\[
\sum_i x_{ij} = \sum_i x_{ji}, \quad j = 1, \ldots, n
\]

In general, roads also have an upper limit on the number of vehicles that can be handled per minute. These limits, denoted \( c_{ij} \), can be enforced by boundary constraints:

\[
0 \leq x_{ij} \leq c_{ij}
\]

The goal in this problem is to maximize the flow, which is equivalent to maximizing the objective function \( f(x) \), where \( f(x) \) is

\[
f(x) = x_{24} + x_{34}
\]

The boundary constraints are

\[
\begin{align*}
0 \leq x_{12}, x_{32}, x_{34} & \leq 10 \\
0 \leq x_{13}, x_{24} & \leq 30
\end{align*}
\]

and the flow constraints are

\[
\begin{align*}
x_{13} &= x_{32} + x_{34} \\
x_{24} &= x_{12} + x_{32} \\
x_{12} + x_{13} &= x_{24} + x_{34}
\end{align*}
\]

The three linear equality constraints are linearly dependent. One of them is deleted automatically by the optimization subroutine. The following notation is used in this example:

\[
X_1 = x_{12}, \quad X_2 = x_{13}, \quad X_3 = x_{32}, \quad X_4 = x_{24}, \quad X_5 = x_{34}
\]

Even though the NLPCG subroutine is used, any other optimization subroutine would also solve this small problem.
proc iml;
title 'Maximum Flow Through a Network';
start MAXFLOW(x);
f = x[4] + x[5];
return(f);
finish MAXFLOW;

con = { 0. 0. 0. 0. 0. . ,
       10. 30. 10. 30. 10. . ,
       0. 1. -1. 0. -1. 0. 0. ,
       1. 0. 1. -1. 0. 0. 0. ,
       1. 1. 0. -1. -1. 0. 0. };
x = j(1,5, 1.);
optn = {1 3};
call nlpcg(xres,rc,"MAXFLOW",x,optn,con);

The optimal solution is shown in the following output.

<table>
<thead>
<tr>
<th>Optimization Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Estimates</td>
</tr>
<tr>
<td>Gradient</td>
</tr>
<tr>
<td>Objective</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Value of Objective Function = 30

Finding the maximum flow through a network is equivalent to solving a simple linear optimization problem, and for large problems, the LP procedure or the NETFLOW procedure of the SAS/OR product can be used. On the other hand, finding a traffic pattern that minimizes the total delay to move \( F \) vehicles per minute from node 1 to node 4 includes nonlinearities that need nonlinear optimization techniques. As traffic volume increases, speed decreases. Let \( t_{ij} \) be the travel time on arc \((i,j)\) and assume that the following formulas describe the travel time as decreasing functions of the amount of traffic:

\[
\begin{align*}
    t_{12} &= 5 + 0.1x_{12}/(1-x_{12}/10) \\
    t_{13} &= x_{13}/(1-x_{13}/30) \\
    t_{32} &= 1 + x_{32}/(1-x_{32}/10) \\
    t_{24} &= x_{24}/(1-x_{24}/30) \\
    t_{34} &= 5 + x_{34}/(1-x_{34}/10)
\end{align*}
\]
These formulas use the road capacities (upper bounds), and you can assume that $F = 5$ vehicles per minute have to be moved through the network. The objective is now to minimize

$$f = f(x) = t_{12}x_{12} + t_{13}x_{13} + t_{32}x_{32} + t_{24}x_{24} + t_{34}x_{34}$$

The constraints are

$$
\begin{align*}
0 &\leq x_{12}, x_{32}, x_{34} \leq 10 \\
0 &\leq x_{13}, x_{24} \leq 30 \\

x_{13} &= x_{32} + x_{34} \\
x_{24} &= x_{12} + x_{32} \\
x_{24} + x_{34} &= F = 5
\end{align*}
$$

In the following code, the NLPNRR subroutine is used to solve the minimization problem:

```sas
proc iml;
 title 'Minimize Total Delay in Network';
 start MINDEL(x);
 t12 = 5. + .1 * x[1] / (1. - x[1] / 10.);
 return(f);
 finish MINDEL;

 con = { 0. 0. 0. 0. 0. . . ,
 10. 30. 10. 30. 10. . . ,
 0. 1. -1. 0. -1. 0. 0. ,
 1. 0. 1. -1. 0. 0. 0. ,
 0. 0. 0. 1. 1. 0. 5. };

 x = j(1,5, 1.);
 optn = {0 3};
 call nlpnrr(xres,rc,"MINDEL",x,optn,con);
```

The optimal solution is shown in the following output.
### Example 11.3. Compartmental Analysis

#### Optimization Results

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Objective Estimate</th>
<th>Active Gradient Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>2.500001</td>
<td>5.777778</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>2.499999</td>
<td>5.702478</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>5.551115E-17</td>
<td>1.000000 Lower BC</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>2.500001</td>
<td>5.702481</td>
</tr>
<tr>
<td>5</td>
<td>X5</td>
<td>2.499999</td>
<td>5.777778</td>
</tr>
</tbody>
</table>

Value of Objective Function = 40.303030303

The active constraints and corresponding Lagrange multiplier estimates (costs) are shown in the following output.

#### Linear Constraints Evaluated at Solution

1. \[ ACT \quad 0 = 0 + 1.0000 \times X2 - 1.0000 \times X3 - 1.0000 \times X5 \]
2. \[ ACT \quad 4.4409E-16 = 0 + 1.0000 \times X1 + 1.0000 \times X3 - 1.0000 \times X4 \]
3. \[ ACT \quad 0 = -5.0000 + 1.0000 \times X4 + 1.0000 \times X5 \]

#### First Order Lagrange Multipliers

<table>
<thead>
<tr>
<th>Active Constraint</th>
<th>Lagrange Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower BC</td>
<td>X3</td>
</tr>
<tr>
<td>Linear EC [1]</td>
<td>0.924702</td>
</tr>
<tr>
<td>Linear EC [2]</td>
<td>5.702479</td>
</tr>
<tr>
<td>Linear EC [3]</td>
<td>5.777777</td>
</tr>
<tr>
<td></td>
<td>11.480257</td>
</tr>
</tbody>
</table>

### Example 11.3. Compartmental Analysis

#### Numerical Considerations

An important class of nonlinear models involves a dynamic description of the response rather than an explicit description. These models arise often in chemical kinetics, pharmacokinetics, and ecological compartmental modeling. Two examples are presented in this section. Refer to Bates and Watts (1988) for a more general introduction to the topic.

In this class of problems, function evaluations, as well as gradient evaluations, are not done in full precision. Evaluating a function involves the numerical solution of a differential equation with some prescribed precision. Therefore, two choices exist for evaluating first- and second-order derivatives:

- differential equation approach
- finite difference approach
In the differential equation approach, the components of the Hessian and the gradient are written as a solution of a system of differential equations that can be solved simultaneously with the original system. However, the size of a system of differential equations, \( n \), would suddenly increase to \( n^2 + 2n \). This huge increase makes the finite difference approach an easier one.

With the finite difference approach, a very delicate balance of all the precision requirements of every routine must exist. In the examples that follow, notice the relative levels of precision that are imposed on different modules. Since finite differences are used to compute the first- and second-order derivatives, it is incorrect to set the precision of the ODE solver at a coarse level because that would render the numerical estimation finite difference worthless.

A coarse computation of the solution of the differential equation cannot be accompanied by very fine computation of the finite difference estimates of the gradient and the Hessian. That is, you cannot set the precision of the differential equation solver to be 1E−4 and perform the finite difference estimation with a precision of 1E−10. In addition, this precision must be well-balanced with the termination criteria imposed on the optimization process.

In general, if the precision of the function evaluation is \( O(\varepsilon) \), the gradient should be computed by finite differences \( O(\sqrt{\varepsilon}) \), and the Hessian should be computed with finite differences \( O(\varepsilon^{3/2}) \). *

**Diffusion of Tetracycline**

Consider the concentration of tetracycline hydrochloride in blood serum. The tetracycline is administered to a subject orally, and the concentration of the tetracycline in the serum is measured. The biological system to be modeled will consist of two compartments: a gut compartment in which tetracycline is injected and a blood compartment that absorbs the tetracycline from the gut compartment for delivery to the body. Let \( \gamma_1(t) \) and \( \gamma_2(t) \) be the concentrations at time \( t \) in the gut and the serum, respectively. Let \( \theta_1 \) and \( \theta_2 \) be the transfer parameters. The model is depicted as follows.

![Diagram of diffusion](image)

The rates of flow of the drug are described by the following pair of ordinary differential equations:

\[
\frac{d\gamma_1(t)}{dt} = -\theta_1 \gamma_1(t)
\]
\[
\frac{d\gamma_2(t)}{dt} = \theta_1 \gamma_1(t) - \theta_2 \gamma_2(t)
\]

*In Release 6.09 and in later releases, you can specify the step size \( h \) in the finite difference formulas.
The initial concentration of the tetracycline in the gut is unknown, and while the concentration in the blood can be measured at all times, initially it is assumed to be zero. Therefore, for the differential equation, the initial conditions will be given by

\[
\begin{align*}
\gamma_1(0) &= \theta_3 \\
\gamma_2(0) &= 0
\end{align*}
\]

Also, a nonnegativity constraint is imposed on the parameters \(\theta_1, \theta_2, \text{ and } \theta_3\), although for numerical purposes, you may need to use a small value instead of zero for these bounds (such as \(1E^{-7}\)).

Suppose \(y_i\) is the observed serum concentration at time \(t_i\). The parameters are estimated by minimizing the sum of squares of the differences between the observed and predicted serum concentrations:

\[
\sum_i (y_i - \gamma_2(t_i))^2
\]

The following IML program illustrates how to combine the NLPDD subroutine and the ODE subroutine to estimate the parameters \((\theta_1, \theta_2, \theta_3)\) of this model. The input data are the measurement time and the concentration of the tetracycline in the blood. For more information on the ODE call, see the “ODE Call” section on page 670.

```sas
data tetra;
 input t c @@;
datalines;
 1 0.7 2 1.2 3 1.4 4 1.4 6 1.1
 8 0.8 10 0.6 12 0.5 16 0.3
;
proc iml;
 use tetra;
 read all into tetra;
 start f(theta) global(thmtrx,t,h,tetra,eps);
 thmtrx = (-theta[1] || 0) //
 (theta[1] || -theta[2]);
 c = theta[3] // 0;
 t = 0 // tetra[,1];
 call ode(r1, "der", c , t, h) j="jac" eps=eps;
 f = ssq((r1[2,])-tetra[,2]);
 return(f);
 finish;

 start der(t,x) global(thmtrx);
 y = thmtrx*x;
 return(y);
 finish;

 start jac(t,x) global(thmtrx);
 y = thmtrx;
 return(y);
 finish;
```
finish;

h = {1.e-14 1. 1.e-5};
opt = {0 2 0 1};
tc = repeat(.1,12);
tc[1] = 100;
tc[7] = 1.e-8;
par = {1.e-13 .1.e-10 . . . .};
con = j(1,3,0.);
itheta = {.1 .3 10};
eps = 1.e-11;

call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The output from the optimization process is shown in Output 11.3.1.
### Output 11.3.1. Printed Output for Tetracycline Diffusion Problem

#### Optimization Start

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>Gradient</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Parameter</td>
<td>Estimate</td>
<td>Objective Function</td>
<td>Constraint</td>
</tr>
<tr>
<td>1 X1</td>
<td>0.100000</td>
<td>76.48208</td>
<td>0</td>
</tr>
<tr>
<td>2 X2</td>
<td>0.300000</td>
<td>-48.32095</td>
<td>0</td>
</tr>
<tr>
<td>3 X3</td>
<td>10.000000</td>
<td>1.66610</td>
<td>0</td>
</tr>
</tbody>
</table>

Value of Objective Function = 4.1469872335

#### Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling

Gradient Computed by Finite Differences

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>Lower Bounds</th>
<th>Upper Bounds</th>
</tr>
</thead>
</table>

Optimization Start

Active Constraints 0

Objective Function 4.1469872326

Max Abs Gradient 76.543381

Radius 1

<table>
<thead>
<tr>
<th>Max Abs</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iter</th>
<th>Rest Arts Calls Con</th>
<th>Objective Function</th>
<th>Obj Fun Gradient</th>
<th>Element Lambda Direc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 5 0</td>
<td>3.12117 1.0258 124.3 67.129 -8.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 6 0</td>
<td>0.89524 2.2259 14.1471 1.885 -5.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 7 0</td>
<td>0.32333 0.8719 3.7144 1.186 -0.786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.  .  .  .  .  .  .  .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0 38 0</td>
<td>0.03565 4.24E-11 3.196E-6 0 -18E-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Output 11.3.1. (continued)

<table>
<thead>
<tr>
<th>Optimization Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
</tr>
<tr>
<td>Gradient Calls</td>
</tr>
<tr>
<td>Objective Function</td>
</tr>
</tbody>
</table>

Element

Slope of Search | -1.76538E-11 |
Radius | 1 |

GCONV convergence criterion satisfied.

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Value of Objective Function = 0.0356480211

The differential equation model is linear, and in fact, it can be solved using an eigenvalue decomposition (this is not always feasible without complex arithmetic). Alternately, the availability and the simplicity of the closed form representation of the solution enables you to replace the solution produced by the ODE routine with the simpler and faster analytical solution. Closed forms are not expected to be easily available for nonlinear systems of differential equations, which is why the preceding solution was introduced.

The closed form of the solution requires a change to the function $f(\cdot)$. The functions needed as arguments of the ODE routine, namely the der and jac modules, can be removed.

```sas
start f(th) global(theta,tetra);
 theta = th;
 vv = v(tetra[,1]);
 error = ssq(vv-tetra[,2]);
 return(error);
finish;

start v(t) global(theta);
 v = theta[3]*theta[1]/(theta[2]-theta[1])*
 (exp(-theta[1]*t)-exp(-theta[2]*t));
 return(v);
finish;
```
call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates, which are shown in Output 11.3.2, are close to those obtained by the first solution.

**Output 11.3.2.** Second Set of Parameter Estimates for Tetracycline Diffusion

<table>
<thead>
<tr>
<th>N Parameter</th>
<th>Parameter Estimate</th>
<th>Gradient Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X1</td>
<td>0.183025</td>
<td>-0.000003196</td>
</tr>
<tr>
<td>2 X2</td>
<td>0.434482</td>
<td>0.000002274</td>
</tr>
<tr>
<td>3 X3</td>
<td>5.995241</td>
<td>-0.000001035</td>
</tr>
</tbody>
</table>

Value of Objective Function = 0.0356467763

Because of the nature of the closed form of the solution, you may want to add an additional constraint to guarantee that $\theta_2 \neq \theta_1$ at any time during the optimization. This will prevent a possible division by 0 or a value near 0 in the execution of the $v(\cdot)$ function. For example, you might add the constraint

$$\theta_2 - \theta_1 \geq 10^{-7}$$

**Chemical Kinetics of Pyrolysis of Oil Shale**

Pyrolysis is a chemical change effected by the action of heat, and this example considers the pyrolysis of oil shale described in Ziegel and Gorman (1980). Oil shale contains organic material that is bonded to the rock. To extract oil from the rock, heat is applied, and the organic material is decomposed into oil, bitumen, and other by-products. The model is given by

$$\frac{d\gamma_1(t)}{dt} = -(\theta_1 + \theta_4)\gamma_1(t)i(t, \theta_5)$$
$$\frac{d\gamma_2(t)}{dt} = [\theta_1\gamma_1(t) - (\theta_2 + \theta_3)\gamma_2(t)]i(t, \theta_5)$$
$$\frac{d\gamma_3(t)}{dt} = [\theta_4\gamma_1(t) + \theta_2\gamma_2(t)]i(t, \theta_5)$$

with the initial conditions

$$\gamma_1(t) = 100, \quad \gamma_2(t) = 0, \quad \gamma_3(t) = 0$$

A dead time is assumed to exist in the process. That is, no change occurs up to time $\theta_5$. This is controlled by the indicator function $i(t, \theta_5)$, which is given by

$$i(t, \theta_5) = \begin{cases} 
0 & \text{if } t < \theta_5 \\
1 & \text{if } t \geq \theta_5 
\end{cases}$$
where $\theta_0 \geq 0$. Only one of the cases in Ziegel and Gorman (1980) is analyzed in this report, but the others can be handled in a similar manner. The following IML program illustrates how to combine the NLPQN subroutine and the ODE subroutine to estimate the parameters $\theta_i$ in this model:

```
data oil (drop=temp);
 input temp time bitumen oil;
 datalines;
 673 5 0. 0.
 673 7 2.2 0.
 673 10 11.5 0.7
 673 15 13.7 7.2
 673 20 15.1 11.5
 673 25 17.3 15.8
 673 30 17.3 20.9
 673 40 20.1 26.6
 673 50 20.1 32.4
 673 60 22.3 38.1
 673 80 20.9 43.2
 673100 11.5 49.6
 673120 6.5 51.8
 673150 3.6 54.7
;

proc iml;
 use oil;
 read all into a;

 /***
 /* The INS function inserts a value given by FROM into a vector */
 /* given by INTO, sorts the result, and posts the global matrix */
 /* that can be used to delete the effects of the point FROM. */
 /***/
 start ins(from,into) global(permm);
 in = into // from;
 x = i(nrow(in));
 permm = inv(x[rank(in),]);
 return(permm*in);
 finish;

 start der(t,x) global(thmtrx,thet);
 y = thmtrx*x;
 if (t <= thet[5]) then y = 0*y;
 return(y);
 finish;

 start jac(t,x) global(thmtrx,thet);
 y = thmtrx;
 if (t <= thet[5]) then y = 0*y;
 return(y);
 finish;

 start f(theta) global(thmtrx,thet,time,h,a,eps,permm);
```
thet = theta;
thmtrx = -((theta[1]+theta[4]) || 0 || 0 )//
        (theta[4] || theta[2] || 0 );
t = ins( theta[5],time);
c = {100, 0, 0};
call ode( r1, "der", c , t, h) j="jac" eps=eps;
/* send the intermediate value to the last column */
r = (c || r1) * permm;
m = r[2:3,(2:nrow(time))];
mm = m'- a[,2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));
finish;

opt = {0 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-7;
par = { 1.e-13 . 1.e-10 . . . . };
con = j(1,5,0.);
h = {1.e-14 1. 1.e-5};
time = (0 // a[,1]);
eps = 1.e-5;
itheta = { 1.e-3 1.e-3 1.e-3 1.e-3 1.};
call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates are shown in Output 11.3.3.

**Output 11.3.3.** Parameter Estimates for Oil Shale Pyrolysis

<table>
<thead>
<tr>
<th>N Parameter</th>
<th>Parameter Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X1</td>
<td>0.013692</td>
<td>150.14987</td>
</tr>
<tr>
<td>2 X2</td>
<td>0.012939</td>
<td>248.78071</td>
</tr>
<tr>
<td>3 X3</td>
<td>0.016303</td>
<td>-144.46645</td>
</tr>
<tr>
<td>4 X4</td>
<td>0.006638</td>
<td>-318.57862</td>
</tr>
<tr>
<td>5 X5</td>
<td>1.044177</td>
<td>-3.16737</td>
</tr>
</tbody>
</table>

Value of Objective Function = 85.597262124

Again, compare the solution using the approximation produced by the ODE subroutine to the solution obtained through the closed form of the given differential equation. Impose the following additional constraint to avoid a possible division by 0 when evaluating the function:

\[
\theta_2 + \theta_3 - \theta_1 - \theta_4 \geq 10^{-7}
\]
The closed form of the solution requires a change in the function $f(\cdot)$. The functions needed as arguments of the ODE routine, namely the \texttt{der} and \texttt{jac} modules, can be removed.

\begin{verbatim}
start f(thet) global(time,a);
  do i = 1 to nrow(time);
    t = time[i];
    v1 = 100;
    if ( t >= thet[5] ) then
      v1 = 100*ev(t,thet[1],thet[4],thet[5]);
    v2 = 0;
    if ( t >= thet[5] ) then
          (ev(t,thet[1],thet[4],thet[5])-ev(t,thet[2],thet[3],thet[5]));
    v3 = 0;
    if ( t >= thet[5] ) then
      v3 = 100*thet[4]/(thet[1]+thet[4])*
          (1. - ev(t,thet[1],thet[4],thet[5])) +
            1.-ev(t,thet[1],thet[4],thet[5]))/(thet[1]+thet[4]) -
            (1.-ev(t,thet[2],thet[3],thet[5]))/(thet[2]+thet[3]));
    y = y // (v1 || v2 || v3);
  end;
  mm = y[2:3]-a[2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));
finish;

start ev(t,a,b,c);
  return(exp(-(a+b)*(t-c)));
finish;

con = { 0. 0. 0. 0. . . . ,
        -1 1 1 -1 . 1 e-7 };
time = a[1];
par = { 1.e-13 1.e-10 . . . .};
itheta = { 1.e-3 1.e-3 1.e-2 1.e-3 1.};
call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;
\end{verbatim}

The parameter estimates are shown in Output 11.3.4.

**Output 11.3.4.** Second Set of Parameter Estimates for Oil Shale Pyrolysis

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>0.017178</td>
<td>-0.005291</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0.008912</td>
<td>0.002413</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>0.020007</td>
<td>-0.000520</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>0.010494</td>
<td>-0.002890</td>
</tr>
<tr>
<td>5</td>
<td>X5</td>
<td>7.771534</td>
<td>0.000003217</td>
</tr>
</tbody>
</table>

Value of Objective Function = 20.689350642
Example 11.4. MLEs for Two-Parameter Weibull Distribution

This example considers a data set given in Lawless (1982). The data are the number of days it took rats painted with a carcinogen to develop carcinoma. The last two observations are censored. Maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the Weibull distribution are computed. In the following code, the data set is given in the vector CARCIN, and the variables P and M give the total number of observations and the number of uncensored observations. The set D represents the indices of the observations.

```sas
proc iml;
 carcin = { 143 164 188 188 190 192 206
 209 213 216 220 227 230 234
 246 265 304 216 244 };
 p = ncol(carcin); m = p - 2;
```

The three-parameter Weibull distribution uses three parameters: a scale parameter, a shape parameter, and a location parameter. This example computes MLEs and corresponding 95% confidence intervals for the scale parameter, \( \sigma \), and the shape parameter, \( c \), for a constant value of the location parameter, \( \theta = 0 \). The program can be generalized to estimate all three parameters. Note that Lawless (1982) denotes \( \sigma \), \( c \), and \( \theta \) by \( \alpha \), \( \beta \), and \( \mu \), respectively.

The observed likelihood function of the three-parameter Weibull distribution is

\[
L(\theta, \sigma, c) = \frac{c^m}{\sigma^m} \prod_{i \in D} \left( \frac{t_i - \theta}{\sigma} \right)^{c-1} \prod_{i=1}^{p} \exp \left\{ - \left( \frac{t_i - \theta}{\sigma} \right)^c \right\}
\]

and the log likelihood, \( \ell(\theta, \sigma, c) = \log L(\theta, \sigma, c) \), is

\[
\ell(\theta, \sigma, c) = m \log c - m \log \sigma + (c - 1) \sum_{i \in D} \log(t_i - \theta) - \sum_{i=1}^{p} \left( \frac{t_i - \theta}{\sigma} \right)^c
\]

The log-likelihood function, \( \ell(\theta, \sigma, c) \), for \( \theta = 0 \) is the objective function to be maximized to obtain the MLEs (\( \hat{\sigma}, \hat{c} \)).

```sas
start f_weib2(x) global(carcin,thet);
 /* x[1]=sigma and x[2]=c */
 p = ncol(carcin); m = p - 2;
 sum1 = 0.; sum2 = 0.;
 do i = 1 to p;
 temp = carcin[i] - thet;
 if i <= m then sum1 = sum1 + log(temp);
 sum2 = sum2 + (temp / x[1])**x[2];
 end;
 f = m*log(x[2]) - m*x[2]*log(x[1]) + (x[2]-1)*sum1 - sum2;
 return(f);
finish f_weib2;
```
The derivatives of $\ell$ with respect to the parameters $\theta$, $\sigma$, and $c$ are given in Lawless (1982). The following code specifies a gradient module, which computes $\partial \ell / \partial \theta$, $\partial \ell / \partial \sigma$ and $\partial \ell / \partial c$:

```plaintext
start g_weib2(x) global(carcin,thet);
 /* x[1]=sigma and x[2]=c */
 p = ncol(carcin); m = p - 2;
 g = j(1,2,0.);
 sum1 = 0.; sum2 = 0.; sum3 = 0.;
 do i = 1 to p;
 temp = carcin[i] - thet;
 if i <= m then sum1 = sum1 + log(temp);
 sum2 = sum2 + (temp / x[1])##x[2];
 sum3 = sum3 + ((temp / x[1])##x[2]) * (log(temp / x[1]));
 end;
 g[2] = m / x[2] - m * log(x[1]) + sum1 - sum3;
 return(g);
finish g_weib2;
```

The MLEs are computed by maximizing the objective function with the trust-region algorithm in the NLPTR subroutine. The following code specifies starting values for the two parameters, $c = \sigma = 0.5$, and to avoid infeasible values during the optimization process, it imposes lower bounds of $c, \sigma >= 10^{-6}$. The optimal parameter values are saved in the variable XOPT, and the optimal objective function value is saved in the variable FOPT.

```plaintext
n = 2; thet = 0.;
x0 = j(1,n,.5);
optn = {1 2};
con = { 1.e-6 1.e-6 , 1.e-6, 1.e-6, } ;
call nlptr(rc,xres,\"f_weib2\",x0,optn,con,,,\"g_weib2\") ;
/*---- Save result in xopt, fopt ----*/
xopt = xres`; fopt = f_weib2(xopt);
```

The results shown in Output 11.4.1 are the same as those given in Lawless (1982).

**Output 11.4.1.** Parameter Estimates for Carcinogen Data

<table>
<thead>
<tr>
<th>Optimization Results</th>
<th>Parameter Estimates</th>
<th>Gradient</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Parameter</td>
<td>Estimate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 X1</td>
<td>234.318611</td>
<td>1.3363283E-9</td>
<td></td>
</tr>
<tr>
<td>2 X2</td>
<td>6.083147</td>
<td>-7.850915E-9</td>
<td></td>
</tr>
</tbody>
</table>

Value of Objective Function = -88.23273515

The following code computes confidence intervals based on the asymptotic normal distribution. These will be compared with the profile-likelihood-based confidence...
Example 11.5. Profile-Likelihood-Based Confidence Intervals

Intervals computed in the next example. The diagonal of the inverse Hessian (as calculated by the NLPFDD subroutine) is used to calculate the standard error.

```sas
 call nlpfdd(f,g,hes2,"f_weib2",xopt,,,,"g_weib2");
 hin2 = inv(hes2);
 /* quantile of normal distribution */
 prob = .05;
 noqua = probit(1. - prob/2);
 stderr = sqrt(abs(vecdiag(hin2)));
 xlb = xopt - noqua * stderr;
 xub = xopt + noqua * stderr;
 print "Normal Distribution Confidence Interval";
 print xlb xopt xub;
```

Output 11.4.2. Confidence Interval Based on Normal Distribution

<table>
<thead>
<tr>
<th>XLB</th>
<th>XOP2</th>
<th>XUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>215.41298</td>
<td>234.31861</td>
<td>253.22425</td>
</tr>
<tr>
<td>3.9894574</td>
<td>6.0831471</td>
<td>8.1768368</td>
</tr>
</tbody>
</table>

Example 11.5. Profile-Likelihood-Based Confidence Intervals

This example calculates confidence intervals based on the profile likelihood for the parameters estimated in the previous example. The following introduction on profile-likelihood methods is based on the paper of Venzon and Moolgavkar (1988).

Let \( \hat{\theta} \) be the maximum likelihood estimate (MLE) of a parameter vector \( \theta_0 \in \mathcal{R}^n \) and let \( \ell(\theta) \) be the log-likelihood function defined for parameter values \( \theta \in \Theta \subset \mathcal{R}^n \).

The profile-likelihood method reduces \( \ell(\theta) \) to a function of a single parameter of interest, \( \beta = \theta_j \), where \( \Theta = (\theta_1, \ldots, \theta_j, \ldots, \theta_n)^t \), by treating the others as nuisance parameters and maximizing over them. The profile likelihood for \( \beta \) is defined as

\[
\tilde{\ell}_j(\beta) = \max_{\theta \in \Theta_j(\beta)} \ell(\theta)
\]

where \( \Theta_j(\beta) = \{ \theta \in \Theta : \theta_j = \beta \} \). Define the complementary parameter set \( \omega = (\theta_1, \ldots, \theta_{j-1}, \theta_{j+1}, \ldots, \theta_n)^t \) and \( \omega(\beta) \) as the optimizer of \( \tilde{\ell}_j(\beta) \) for each value of \( \beta \). Of course, the maximum of function \( \tilde{\ell}_j(\beta) \) is located at \( \beta = \hat{\theta}_j \). The profile-likelihood-based confidence interval for parameter \( \theta_j \) is defined as

\[
\{ \beta : \ell(\hat{\theta}) - \tilde{\ell}_j(\beta) \leq \frac{1}{2} q_1(1 - \alpha) \}
\]

where \( q_1(1 - \alpha) \) is the \((1 - \alpha)^{th}\) quantile of the \( \chi^2 \) distribution with one degree of freedom. The points \((\beta_l, \beta_u)\) are the endpoints of the profile-likelihood-based confidence interval for parameter \( \beta = \theta_j \). The points \( \beta_l \) and \( \beta_u \) can be computed...
as the solutions of a system of \( n \) nonlinear equations \( f_i(x) \) in \( n \) parameters, where 
\[ x = (\beta, \omega) \):
\[
\begin{bmatrix}
\ell(\theta) - \ell^* \\
\frac{\partial \ell}{\partial \omega}(\theta)
\end{bmatrix} = 0
\]
where \( \ell^* \) is the constant threshold \( \ell^* = \ell(\hat{\theta}) - \frac{1}{2} q_1(1 - \alpha) \). The first of these \( n \) equations defines the locations \( \beta_l \) and \( \beta_u \) where the function \( \ell(\theta) \) cuts \( \ell^* \), and the remaining \( n - 1 \) equations define the optimality of the \( n - 1 \) parameters in \( \omega \). Jointly, the \( n \) equations define the locations \( \beta_l \) and \( \beta_u \) where the function \( \ell_j(\beta) \) cuts the constant threshold \( \ell^* \), which is given by the roots of \( \ell_j(\beta) - \ell^* \). Assuming that the two solutions \( \{\beta_l, \beta_u\} \) exist (they do not if the quantile \( q_1(1 - \alpha) \) is too large), this system of \( n \) nonlinear equations can be solved by minimizing the sum of squares of the \( n \) functions \( f_i(\beta, \omega) \):
\[
F = \frac{1}{2} \sum_{i=1}^{n} f_i^2(\beta, \omega)
\]
For a solution of the system of \( n \) nonlinear equations to exist, the minimum value of the convex function \( F \) must be zero.

The following code defines the module for the system of \( n = 2 \) nonlinear equations to be solved:

```sas
start f_plwei2(x) global(carcin,ipar,lstar);
 /* x[1]=sigma, x[2]=c */
 like = f_weib2(x);
 grad = g_weib2(x);
 grad[ipar] = like - lstar;
 return(grad');
finish f_plwei2;
```

The following code implements the Levenberg-Marquardt algorithm with the NLPLM subroutine to solve the system of two equations for the left and right endpoints of the interval. The starting point is the optimizer \((\hat{\sigma}, \hat{c})\), as computed in the previous example, moved toward the left or right endpoint of the interval by an initial step (refer to Venzon and Moolgavkar 1988). This forces the algorithm to approach the specified endpoint.

```sas
/* quantile of chi**2 distribution */
chqua = cinv(1-prob,1); lstar = fopt - .5 * chqua;
optn = {2 0};
do ipar = 1 to 2;
/* Compute initial step: */
/* Choose (alfa,delt) to go in right direction */
/* Venzon & Moolgavkar (1988), p.89 */
if ipar=1 then ind = 2; else ind = 1;
delt = - inv(hes2[ind,ind]) * hes2[ind,ipar];
```
Example 11.6. Survival Curve for Interval Censored Data

```sas
alfa = - (hes2[ipar,ipar] - delt' * hes2[ind,ipar]);
if alfa > 0 then alfa = .5 * sqrt(chqua / alfa);
else do;
 print "Bad alpha";
 alfa = .1 * xopt[ipar];
end;
if ipar=1 then delt = 1 | delt;
else delt = delt | 1;
/* Get upper end of interval */
x0 = xopt + (alfa * delt)';
/* set lower bound to optimal value */
con2 = con; con2[1,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xub[ipar] = xres[ipar];
 else xub[ipar] = .;
/* Get lower end of interval */
x0 = xopt - (alfa * delt)';
/* reset lower bound and set upper bound to optimal value */
con2[1,ipar] = con[1,ipar]; con2[2,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xlb[ipar] = xres[ipar];
 else xlb[ipar] = .;
end;
print "Profile-Likelihood Confidence Interval";
print xlb xopt xub;
```

The results, shown in Output 11.5.1, are close to the results shown in Output 11.4.2.

**Output 11.5.1.** Confidence Interval Based on Profile Likelihood

<table>
<thead>
<tr>
<th>XLB</th>
<th>XOP2</th>
<th>XUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>215.1963</td>
<td>234.31861</td>
<td>255.2157</td>
</tr>
<tr>
<td>4.1344126</td>
<td>6.0831471</td>
<td>8.3063797</td>
</tr>
</tbody>
</table>

Example 11.6. Survival Curve for Interval Censored Data

In some studies, subjects are assessed only periodically for outcomes or responses of interest. In such situations, the occurrence times of these events are not observed directly; instead they are known to have occurred within some time interval. The times of occurrence of these events are said to be **interval censored**. A first step in the analysis of these interval censored data is the estimation of the distribution of the event occurrence times.

In a study with \( n \) subjects, denote the raw interval censored observations by \( \{ (L_i, R_i) : 1 \leq i \leq n \} \). For the \( ith \) subject, the event occurrence time \( T_i \) lies in
(L_i, R_i), where L_i is the last assessment time at which there was no evidence of the event, and R_i is the earliest time when a positive assessment was noted (if it was observed at all). If the event does not occur before the end of the study, R_i is given a value larger than any assessment time recorded in the data.

A set of nonoverlapping time intervals I_j = (q_j, p_j], 1 ≤ j ≤ m is generated over which the survival curve S(t) = Pr[T > t] is estimated. Refer to Peto (1973) and Turnbull (1976) for details. Assuming the independence of T_i and (L_i, R_i), and also independence across subjects, the likelihood of the data \{T_i \in (L_i, R_i), 1 ≤ i ≤ n\} can be constructed in terms of the pseudo-parameters \( \theta_j = \text{Pr}[T_1 \in I_j], 1 \leq j \leq m \). The conditional likelihood of \( \theta = (\theta_1, \ldots, \theta_m) \) is

\[
L(\theta) = \prod_{i=1}^{n} \left( \sum_{j=1}^{m} x_{ij} \theta_j \right)
\]

where \( x_{ij} \) is 1 or 0 according to whether \( I_j \) is a subset of \( (L_i, R_i) \). The maximum likelihood estimates, \( \hat{\theta}_j, 1 \leq j \leq m \), yield an estimator \( \hat{S}(t) \) of the survival function \( S(t) \), which is given by

\[
\hat{S}(t) = \begin{cases} 
1 & t \leq q_1 \\
\sum_{i=j+1}^{m} \hat{\theta}_i & p_j \leq t \leq q_{j+1}, \quad 1 \leq j \leq m - 1 \\
0 & t \geq p_m
\end{cases}
\]

\( \hat{S}(t) \) remains undefined in the intervals \( (q_j, p_j) \) where the function may decrease in an arbitrary way. The asymptotic covariance matrix of \( \hat{\theta} \) is obtained by inverting the estimated matrix of second partial derivatives of the negative log likelihood (Peto 1973, Turnbull 1976). You can then compute the standard errors of the survival function estimators by the delta method and approximate the confidence intervals for survival function by using normal distribution theory.

The following code estimates the survival curve for interval censored data. As an illustration, consider an experiment to study the onset of a special kind of palpable tumor in mice. Forty mice exposed to a carcinogen were palpated for the tumor every two weeks. The times to the onset of the tumor are interval censored data. These data are contained in the data set CARCIN. The variable L represents the last time the tumor was not yet detected, and the variable R represents the first time the tumor was palpated. Three mice died tumor free, and one mouse was tumor free by the end of the 48-week experiment. The times to tumor for these four mice were considered right censored, and they were given an R value of 50 weeks.

```sas
data carcin;
 input id l r @@;
 datalines;
1 20 22 11 30 32 21 22 24 31 34 36
2 22 24 12 32 34 22 22 24 32 34 36
3 26 28 13 32 34 23 28 30 33 36 38
4 26 28 14 32 34 24 28 30 34 38 40
```

SAS OnlineDoc™: Version 8
proc iml;
  use carcin;
  read all var(l r);
  nobs= nrow(l);
  /***********************************************************************
   construct the nonoverlapping intervals (Q,P) and 
   determine the number of pseudo-parameters (NPARM)
   ***********************************************************************/
  pp= unique(r); npp= ncol(pp);
  qq= unique(l); nqq= ncol(qq);
  q= j(1,npp, .);
  do;
    do i= 1 to npp;
      do j= 1 to nqq;
        if ( qq[j] < pp[i] ) then q[i]= qq[j];
      end;
      if q[i] = qq[nqq] then goto lab1;
    end;
  lab1:
  end;
  if i > npp then nq= npp;
  else nq= i;
  q= unique(q[1:nq]);
  nparm= ncol(q);
  p= j(1,nparm, .);
  do i= 1 to nparm;
    do j= npp to 1 by -1;
      if ( pp[j] > q[i] ) then p[i]= pp[j];
    end;
  end;
  /***********************************************************************
   generate the X-matrix for the likelihood
   ***********************************************************************
  _x= j(nobs, nparm, 0);
  do j= 1 to nparm;
    _x[,j]= choose(l <= q[j] & p[j] <= r, 1, 0);
  end;
  /***********************************************************************
   log-likelihood function (LL)
   ***********************************************************************
  start LL(theta) global(_x,nparm);
    xlt= log(_x * theta');
    f= xlt[+];
  end;
return(f);
finish LL;

/***************************************************************
gradient vector (GRAD)
***************************************************************
start GRAD(theta) global(_x,nparm);
g= j(1,nparm,0);
tmp= _x # (1 / (_x * theta') );
g= tmp[+,,];
return(g);
finish GRAD;

/***************************************************************
estimate the pseudo-parameters using quasi-newton technique
***************************************************************
/* options */
optn= {1 2};
/* constraints */
con= j(3, nparm + 2, .);
con[1, 1:nparm]= 1.e-6;
con[2:3, 1:nparm]= 1;
con[3,nparm + 1]=0;
con[3,nparm + 2]=1;
/* initial estimates */
x0= j(1, nparm, 1/nparm);
/* call the optimization routine */
call nlpqn(rc,rx,"LL",x0,optn,con,,,"GRAD");

/***************************************************************
survival function estimate (SDF)
***************************************************************
tmpl= cusum(rx[nparm:1]);
sdf= tmpl[nparm-1:1];

/***************************************************************
covariance matrix of the first nparm-1 pseudo-parameters (SIGMA2)
***************************************************************
mm= nparm - 1;
_x= _x - _x[,nparm] * (j(1, mm, 1) || {0});
h= j(mm, mm, 0);
ixtheta= 1 / (_x * ((rx[,1:mm]) || {1})');
if _zfreq then
  do i= 1 to nobs;
    rowtmp= ixtheta[i] # _x[i,1:mm];
    h= h + (_freq[i] # (rowtmp' * rowtmp));
  end;
else do i= 1 to nobs;
  rowtmp= ixtheta[i] # _x[i,1:mm];
  h= h + (rowtmp' * rowtmp);
end;
sigma2= inv(h);

/********************************************
standard errors of the estimated survival curve (SIGMA3)
***************************************************/
sigma3= j(mm, 1, 0);
tmp1= sigma3;
do i= 1 to mm;
   tmp1[i]= 1;
   sigma3[i]= sqrt(tmp1' * sigma2 * tmp1);
end;

/************************************************************
95% confidence limits for the survival curve (LCL,UCL)
******************************************************/
/* confidence limits */
tmp1= probit(.975);
*print tmp1;
tmp1= tmp1 * sigma3;
lcl= choose(sdf > tmp1, sdf - tmp1, 0);
ucl= sdf + tmp1;
ucl= choose( ucl > 1., 1., ucl);

/************************************************************
print estimates of pseudo-parameters
******************************************************/
reset center noname;
q= q';
p= p';
theta= rx';
print ,"Parameter Estimates", ,q[colname=q] p[colname=p]
   theta[colname=theta format=12.7],;

/************************************************************
print survival curve estimates and confidence limits
******************************************************/
left= {0} // p;
right= q // p[n parm];
sdf= {1} // sdf // {0};
lcl= {.} // lcl // {.};
ucl= {.} // ucl // {.};
print ,"Survival Curve Estimates and 95% Confidence Intervals", ,
   left[colname=(left)] right[colname=(right)]
   sdf[colname=(estimate) format=12.4]
   lcl[colname=(lower) format=12.4]
   ucl[colname=(upper) format=12.4];

The iteration history produced by the NLPQN subroutine is shown in Output 11.6.1
Output 11.6.1.  Iteration History for the NLPQN Subroutine

Dual Quasi-Newton Optimization

Parameter Estimates  12
Lower Bounds  12
Upper Bounds  12
Linear Constraints  1

Optimization Start

Active Constraints  1
Objective Function  -93.3278404
Max Abs Gradient Element  65.361558529

<table>
<thead>
<tr>
<th>Iter</th>
<th>Rest</th>
<th>Calls</th>
<th>Func. Active Objective Function</th>
<th>Gradient Change</th>
<th>Element Size</th>
<th>Step Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1 -88.51201 4.8158 16.6594 0.0256 -305.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1 -87.42665 1.0854 10.8769 1.000 -2.157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>1 -87.27408 0.1526 5.4965 1.000 -0.366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>7</td>
<td>1 -87.17314 0.1009 2.2856 2.000 -0.113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>8</td>
<td>1 -87.16611 0.00703 0.3444 1.000 -0.0149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>10</td>
<td>1 -87.16582 0.000287 0.0522 1.001 -0.0006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>12</td>
<td>1 -87.16581 9.128E-6 0.00691 1.133 -161E-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>14</td>
<td>1 -87.16581 1.712E-7 0.00101 1.128 -303E-9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimization Results

Iterations  8  Function Calls  15
Gradient Calls  11  Active Constraints  1
Objective Function  -87.16581343  Max Abs Gradient Element  0.0010060788
Slope of Search Direction  -3.033154E-7

NOTE: GCONV convergence criterion satisfied.
NOTE: At least one element of the (projected) gradient is greater than 1e-3.

The estimates of the pseudo-parameter for the nonoverlapping intervals are shown in Output 11.6.2.

Output 11.6.2.  Estimates for the Probability of Event Occurrence

<table>
<thead>
<tr>
<th>Q</th>
<th>P</th>
<th>THETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>22</td>
<td>0.0499997</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>0.0749988</td>
</tr>
<tr>
<td>26</td>
<td>28</td>
<td>0.0999978</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>0.1033349</td>
</tr>
<tr>
<td>30</td>
<td>32</td>
<td>0.0806014</td>
</tr>
<tr>
<td>32</td>
<td>34</td>
<td>0.2418023</td>
</tr>
<tr>
<td>34</td>
<td>36</td>
<td>0.0873152</td>
</tr>
<tr>
<td>36</td>
<td>38</td>
<td>0.0582119</td>
</tr>
<tr>
<td>38</td>
<td>40</td>
<td>0.0582119</td>
</tr>
<tr>
<td>42</td>
<td>44</td>
<td>0.0873152</td>
</tr>
<tr>
<td>46</td>
<td>48</td>
<td>0.0291055</td>
</tr>
<tr>
<td>48</td>
<td>50</td>
<td>0.0291055</td>
</tr>
</tbody>
</table>
The survival curve estimates and confidence intervals are displayed in Output 11.6.3.

**Output 11.6.3. Survival Estimates and Confidence Intervals**

<table>
<thead>
<tr>
<th>LEFT</th>
<th>RIGHT</th>
<th>ESTIMATE</th>
<th>LOWER</th>
<th>UPPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>0.950</td>
<td>0.8825</td>
<td>1.000</td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>0.875</td>
<td>0.7725</td>
<td>0.9775</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>0.775</td>
<td>0.6456</td>
<td>0.9044</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>0.671</td>
<td>0.5252</td>
<td>0.8182</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>0.591</td>
<td>0.4363</td>
<td>0.7458</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>0.349</td>
<td>0.1973</td>
<td>0.5013</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>0.261</td>
<td>0.1194</td>
<td>0.4045</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>0.203</td>
<td>0.0720</td>
<td>0.3355</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>0.145</td>
<td>0.0293</td>
<td>0.2617</td>
</tr>
<tr>
<td>44</td>
<td>46</td>
<td>0.058</td>
<td>0.0000</td>
<td>0.1361</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>0.029</td>
<td>0.0000</td>
<td>0.0852</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this program, the quasi-Newton technique is used to maximize the likelihood function. You can replace the quasi-Newton routine by other optimization routines, such as the NLPNRR subroutine, which performs Newton-Raphson ridge optimization, or the NLPCG subroutine, which performs conjugate gradient optimization. Depending on the number of parameters and the number of observations, these optimization routines do not perform equally well. For survival curve estimation, the quasi-Newton technique seems to work fairly well since the number of parameters to be estimated is usually not too large.

**Example 11.7. A Two-Equation Maximum Likelihood Problem**

This example and notation are taken from Bard (1974). A two-equation model is used to fit U.S. production data for the years 1909-1949, where \( z_1 \) is capital input, \( z_2 \) is labor input, \( z_3 \) is real output, \( z_4 \) is time in years (with 1929 as the origin), and \( z_5 \) is the ratio of price of capital services to wage scale.

```sas
proc iml;
 z={ 1.33135 0.64629 0.4026 -20 0.24447,
 1.39235 0.66302 0.4084 -19 0.23454,
 1.41640 0.65272 0.4223 -18 0.23206,
 1.48773 0.67318 0.4389 -17 0.22291,
 1.51015 0.67720 0.4605 -16 0.22487,
 1.43385 0.65175 0.4445 -15 0.21879,
 1.48188 0.65570 0.4387 -14 0.23203,
 1.67115 0.71417 0.4999 -13 0.23828,
 1.71327 0.77524 0.5264 -12 0.26571,
 1.76412 0.79465 0.5793 -11 0.23410,
 1.76869 0.71607 0.5492 -10 0.22181,
 1.80776 0.70068 0.5052 -9 0.18157,
 1.54947 0.60764 0.4679 -8 0.22931,
 1.66933 0.67041 0.5283 -7 0.20595,
```
The two-equation model in five parameters \( c_1, \ldots, c_5 \) is

\[
\begin{align*}
g_1 &= c_1 10^{c_2 z_2} [c_5 z_1^{-c_4} + (1 - c_5) z_2^{-c_4}]^{-c_3/c_4} - z_3 = 0 \\
g_2 &= \left( \frac{c_5}{1 - c_5} \right) \left( \frac{z_1}{z_2} \right)^{-1-c_4} - z_5 = 0
\end{align*}
\]

where the variables \( z_1 \) and \( z_2 \) are considered dependent (endogenous) and the variables \( z_3 \), \( z_4 \), and \( z_5 \) are considered independent (exogenous).

Differentiation of the two equations \( g_1 \) and \( g_2 \) with respect to the endogenous variables \( z_1 \) and \( z_2 \) yields the Jacobian matrix \( \partial g_i / \partial z_j \) for \( i = 1, 2 \) and \( j = 1, 2 \), where \( i \) corresponds to rows (equations) and \( j \) corresponds to endogenous variables (refer to Bard 1974). You must consider parameter sets for which the elements of the Jacobian and the logarithm of the determinant cannot be computed. In such cases, the function module must return a missing value.

```sas
start fiml(pr) global(z);
 c1 = pr[1]; c2 = pr[2]; c3 = pr[3]; c4 = pr[4]; c5 = pr[5];
 /* 1. Compute Jacobian */
 lndet = 0 ;
```
Example 11.7. A Two-Equation Maximum Likelihood Problem

do t= 1 to 41;
  j11 = (-c3/c4) * c1 * 10 **(c2 * z[t,4]) * (-c4) * c5 *
          z[t,1]**(-c4-1) * (c5 * z[t,1]**(-c4) + (1-c5) *
          z[t,2]**(-c4))**(-c3/c4 -1);
  j12 = (-c3/c4) * (-c4) * c1 * 10 **(c2 * z[t,4]) * (1-c5) *
          z[t,2]**(-c4-1) * (c5 * z[t,1]**(-c4) + (1-c5) *
          z[t,2]**(-c4))**(-c3/c4 -1);
  j21 = (-1-c4)*(c5/(1-c5))*z[t,1]**( -2-c4)/ (z[t,2]**(-1-c4));
  j22 = (1+c4)*(c5/(1-c5))*z[t,1]**( -1-c4)/ (z[t,2]**(-c4));
  j = (j11 || j12) // (j21 || j22);
  if any(j = .) then detj = 0.;
  else detj = det(j);
  if abs(detj) < 1.e-30 then do;
    print t detj j;
    return(.);
  end;
  lndet = lndet + log(abs(detj));
end;

Assuming that the residuals of the two equations are normally distributed, the likelihood is then computed as in Bard (1974). The following code computes the logarithm of the likelihood function:

/* 2. Compute Sigma */
 sb = j(2,2,0.);
 do t= 1 to 41;
   eq_g1 = c1 * 10**(c2 * z[t,4]) * (c5*z[t,1]**(-c4) + (1-c5)*z[t,2]**(-c4))**(-c3/c4) - z[t,3];
   eq_g2 = (c5/(1-c5)) * (z[t,1] / z[t,2])**(-1-c4) - z[t,5];
   resid = eq_g1 // eq_g2;
   sb = sb + resid * resid';
end;
 sb = sb / 41;

/* 3. Compute log L */
 const = 41. * (log(2 * 3.1415) + 1.);
 lnds = 0.5 * 41 * log(det(sb));
 logl = const - lndet + lnds;
 return(logl);
finish fiml;

There are potential problems in computing the power and log functions for an unrestricted parameter set. As a result, optimization algorithms that use line search will fail more often than algorithms that restrict the search area. For that reason, the NLPDD subroutine is used in the following code to maximize the log-likelihood function:

pr = j(1,5,0.001);
optn = {0 2};
tc = {. . . . 0};
call nlpdd(rc, xr,"fiml", pr, optn,tc);
print "Start" pr, "RC=" rc, "Opt Par" xr;
Part of the iteration history is shown in Output 11.7.1.

**Output 11.7.1.** Iteration History for Two-Equation ML Problem

```
Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Without Parameter Scaling
Gradient Computed by Finite Differences
Parameter Estimates 5

Optimization Start
Active Constraints 0 Objective Function 909.72691311
Max Abs Gradient Element 41115.729089 Radius 1

<table>
<thead>
<tr>
<th>Iter</th>
<th>Rest</th>
<th>Calls</th>
<th>Constr.</th>
<th>Obj. Function</th>
<th>Gradient</th>
<th>Change</th>
<th>Lambda</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>85.24836</td>
<td>824.5</td>
<td>3676.4</td>
<td>711.8</td>
<td>-71032</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>45.14682</td>
<td>40.1015</td>
<td>2881.2</td>
<td>-29.683</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>43.46797</td>
<td>1.6788</td>
<td>95.020</td>
<td>-3.348</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>64</td>
<td>0</td>
<td>-110.77858</td>
<td>5.68E-14</td>
<td>41.795</td>
<td>-34E-17</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>101</td>
<td>0</td>
<td>-110.77858</td>
<td>0</td>
<td>4E12</td>
<td>-32E-20</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>145</td>
<td>0</td>
<td>-110.77858</td>
<td>0</td>
<td>3.2E16</td>
<td>-46E-24</td>
<td></td>
</tr>
</tbody>
</table>

Optimization Results
Iterations 36 Function Calls 146
Gradient Calls 41 Active Constraints 0
Objective Function -110.7785811 Max Abs Gradient Element 0.000119
Slope of Search Direction -4.55096E-23 Radius 3.771173E-19

The results are very close to those reported by Bard (1974). Bard also reports different approaches to the same problem that can lead to very different MLEs.

Output 11.7.2. Parameter Estimates

```
Parameter Estimates

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>0.583884</td>
<td>-0.000004817</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0.005882</td>
<td>0.000011377</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>1.362817</td>
<td>-0.000003229</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>0.475091</td>
<td>-0.000018103</td>
</tr>
<tr>
<td>5</td>
<td>X5</td>
<td>0.447072</td>
<td>0.000119</td>
</tr>
</tbody>
</table>

Value of Objective Function = -110.7785811
```
Example 11.8. Time-Optimal Heat Conduction

This example illustrates a nontrivial application of the NLPQN algorithm that requires nonlinear constraints, which are specified by the \(\text{nlc} \) module. The example is listed as problem 91 in Hock & Schittkowski (1981). The problem describes a time-optimal heating process minimizing the simple objective function

\[
f(x) = \sum_{j=1}^{n} x_j^2
\]

subjected to a rather difficult inequality constraint:

\[
c(x) = 10^{-4} - h(x) \geq 0
\]

where \(h(x) \) is defined as

\[
h(x) = \int_{0}^{1} \left(\sum_{i=1}^{30} \alpha_i(s) \rho_i(x) \right)^2 ds
\]

\[
\alpha_i(s) = \mu_i^2 A_i \cos(\mu_i s)
\]

\[
\rho_i(x) = -\mu_i^2 \left[\exp \left(-\mu_i^2 \sum_{j=1}^{n} x_j^2 \right) - 2 \exp \left(-\mu_i^2 \sum_{j=2}^{n} x_j^2 \right) + \cdots \right]
\]

\[
+ (-1)^{n-12} \exp \left(-\mu_i^2 x_n^2 \right) + (-1)^n \right]
\]

\[
k_0(s) = 0.5(1 - s^2)
\]

\[
A_i = \frac{2 \sin \mu_i}{\mu_i + \sin \mu_i \cos \mu_i},
\]

\[
\mu = (\mu_1, \ldots, \mu_{30})', \text{ where } \mu_i \tan(\mu_i) = 1
\]

The gradient of the objective function \(f, g(x) = 2x \), is easily supplied to the NLPQN subroutine. However, the analytical derivatives of the constraint are not used; instead, finite difference derivatives are computed.

In the following code, the vector \(\text{MU} \) represents the first 30 positive values \(\mu_i \) that satisfy \(\mu_i \tan(\mu_i) = 1 \):

```sas
proc iml;
mu = { 8.6033358901938E-01 , 3.4256184594817E+00 ,
6.4372981791719E+00 , 9.5293344053619E+00 ,
1.2645287223856E+01 , 1.5771284874815E+01 ,
1.890240956860E+01 , 2.2036496727938E+01 ,
2.517246326646E+01 , 2.8309642854452E+01 ,
3.1447714637546E+01 , 3.4586424215288E+01 ,
3.7725612827776E+01 , 4.0865170330488E+01 ,
4.4005017920830E+01 , 4.7145097736761E+01 ,
};
```
The vector $A = (A_1, \ldots, A_{30})'$ depends only on μ and is computed only once, before the optimization starts:

$$
nmu = \text{nrow}(\mu);
\begin{align*}
a & = \text{j}(1,nmu,0.);
d o \ i = 1 \ to \ nmu;
\quad a[i] & = 2*\sin(\mu[i]) / (\mu[i] + \sin(\mu[i])*\cos(\mu[i]));
\end{align*}
$$

The constraint is implemented with the QUAD subroutine, which performs numerical integration of scalar functions in one dimension. The subroutine calls the module fquad that supplies the integrand for $h(x)$. For details on the QUAD call, see the “QUAD Call” section on page 697.

```sas
/* This is the integrand used in $h(x)$ */
start fquad(s) global(mu,rho);
   z = (rho * \cos(s*mu) - 0.5*(1. - s##2))##2;
   return(z);
finish;

/* Obtain nonlinear constraint $h(x)$ */
start h(x) global(n,nmu,mu,a,rho);
   xx = x##2;
   do i= n-1 to 1 by -1;
      xx[i] = xx[i+1] + xx[i];
   end;
   rho = \text{j}(1,nmu,0.);
   do i=1 to nmu;
      mu2 = \mu[i]##2;
      sum = 0; tln = -1.;
      do j=2 to n;
         tln = -tln;
         sum = sum + tln * \exp(-mu2*xx[j]);
      end;
      sum = -2*sum + \exp(-mu2*xx[1]) + tln;
      rho[i] = -a[i] * sum;
   end;
   aint = do(0,1,.5);
   call quad(z,"fquad",aint) eps=1.e-10;
   v = sum(z);
   return(v);
finish;
```
The modules for the objective function, its gradient, and the constraint \(c(x) \geq 0 \) are given in the following code:

```plaintext
/* Define modules for NLPQN call: f, g, and c */
start F_HS88(x);
    f = x * x ';
    return(f);
finish F_HS88;

start G_HS88(x);
    g = 2 * x;
    return(g);
finish G_HS88;

start C_HS88(x);
    c = 1.e-4 - h(x);
    return(c);
finish C_HS88;
```

The number of constraints returned by the "nlc" module is defined by \(\text{opt}[10] = 1 \). The ABSGTOL termination criterion (maximum absolute value of the gradient of the Lagrange function) is set by \(\text{tc}[6] = 1E-4 \).

```plaintext
print 'Hock & Schittkowski Problem #91 (1981) n=5, INSTEP=1';
opt = j(1,10,.);
opt[2]=3;
opt[10]=1;
tc = j(1,12,.);
tc[6]=1.e-4;
x0 = {.5 .5 .5 .5 .5};
n = ncol(x0);
call nlpqn(rc,rx,"F_HS88",x0,opt,,tc) grd="G_HS88" nlc="C_HS88";
```

Part of the iteration history and the parameter estimates are shown in Output 11.8.1.
Output 11.8.1. Iteration History and Parameter Estimates

Dual Quasi-Newton Optimization
Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)
Jacobian Nonlinear Constraints Computed by Finite Differences

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear Constraints</td>
<td>1</td>
</tr>
</tbody>
</table>

Optimization Start

Objective Function 1.25
Max Constr. Violation 0.0952775105
Max Grad of the Lagran Func 1.1433393372

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0.81165</td>
<td>0.0869</td>
<td>1.7562</td>
<td>0.100</td>
<td>1.325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0.18232</td>
<td>0.1175</td>
<td>0.6220</td>
<td>1.000</td>
<td>1.207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3*</td>
<td>0</td>
<td>5</td>
<td>0.34567</td>
<td>0.0690</td>
<td>0.9321</td>
<td>1.000</td>
<td>0.639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0.77700</td>
<td>0.0132</td>
<td>0.3498</td>
<td>1.000</td>
<td>1.329</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>30</td>
<td>1.36266</td>
<td>8.02E-12</td>
<td>1.079E-6</td>
<td>1.000</td>
<td>0.00009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimization Results

Iterations 21
Function Calls 31
Grad. Calls 23
Active Constraints 1

Obj. Func. 1.3626568064
Max. Constr. Viol. 8.017286E-12
Max. Proj. Grad. 0.000096451 Value Lagrange Function 1.3626568149
Max. Grad. of the Lagran Func 0.0000887635 Slope -1.079452E-6

NOTE: ABSGCONV convergence criterion satisfied.

Optimization Results

Parameter Estimates

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Function</th>
<th>Gradient Lagrange Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>0.860296</td>
<td>1.720593</td>
<td>0.000030988</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-0.000002262</td>
<td>-0.000004524</td>
<td>-0.000015387</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>0.643468</td>
<td>1.286936</td>
<td>0.000021570</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-0.456614</td>
<td>-0.913227</td>
<td>0.000088763</td>
</tr>
<tr>
<td>5</td>
<td>X5</td>
<td>0.000000904</td>
<td>0.000001807</td>
<td>0.000077409</td>
</tr>
</tbody>
</table>

Value of Objective Function = 1.3626568064
Value of Lagrange Function = 1.3626568149

Problems 88 to 92 of Hock and Schittkowski (1981) specify the same optimization problem for \(n = 2 \) to \(n = 6 \). You can solve any of these problems with the preceding code by submitting a vector of length \(n \) as the initial estimate, \(x_0 \).
References

