
Chapter 11
Nonlinear Optimization Examples

Chapter Table of Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Global Versus Local Optima . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Kuhn-Tucker Conditions .. . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Definition of Return Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Objective Function and Derivatives . . . . . . . . . . . . . . . . . . . . . . . 309
Finite Difference Approximations of Derivatives . . . . . . . . . . . . . . . 314
Parameter Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Options Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Termination Criteria . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Control Parameters Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Printing the Optimization History . . . . . . . . . . . . . . . . . . . . . . . 334

NONLINEAR OPTIMIZATION EXAMPLES . . . . . . . . . . . . . . . . 336
Example 11.1 Chemical Equilibrium. . . . . . . . . . . . . . . . . . . . . . 336
Example 11.2 Network Flow and Delay . . . . . . . . . . . . . . . . . . . . 340
Example 11.3 Compartmental Analysis . . . . . . . . . . . . . . . . . . . . 343
Example 11.4 MLEs for Two-Parameter Weibull Distribution. . . . . . . . . 353
Example 11.5 Profile-Likelihood-Based Confidence Intervals. . . . . . . . . 355
Example 11.6 Survival Curve for Interval Censored Data . . . . . . . . . . . 357
Example 11.7 A Two-Equation Maximum Likelihood Problem . . .. . . . . 363
Example 11.8 Time-Optimal Heat Conduction .. . . . . . . . . . . . . . . . 367

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371



296 � Chapter 11. Nonlinear Optimization Examples

SAS OnlineDoc: Version 8



Chapter 11
Nonlinear Optimization Examples

Overview

The IML procedure offers a set of optimization subroutines for minimizing or max-
imizing a continuous nonlinear functionf = f(x) of n parameters, wherex =
(x1; : : : ; xn)

T . The parameters can be subject to boundary constraints and linear
or nonlinear equality and inequality constraints. The following set of optimization
subroutines is available:

NLPCG Conjugate Gradient Method
NLPDD Double Dogleg Method
NLPNMS Nelder-Mead Simplex Method
NLPNRA Newton-Raphson Method
NLPNRR Newton-Raphson Ridge Method
NLPQN (Dual) Quasi-Newton Method
NLPQUA Quadratic Optimization Method
NLPTR Trust-Region Method

The following subroutines are provided for solving nonlinear least-squares problems:

NLPLM Levenberg-Marquardt Least-Squares Method
NLPHQN Hybrid Quasi-Newton Least-Squares Methods

A least-squares problem is a special form of minimization problem where the objec-
tive function is defined as a sum of squares of other (nonlinear) functions.

f(x) =
1

2
ff21 (x) + � � �+ f2m(x)g

Least-squares problems can usually be solved more efficiently by the least-squares
subroutines than by the other optimization subroutines.

The following subroutines are provided for the related problems of computing finite
difference approximations for first- and second-order derivatives and of determining
a feasible point subject to boundary and linear constraints:

NLPFDD Approximate Derivatives by Finite Differences
NLPFEA Feasible Point Subject to Constraints

Each optimization subroutine works iteratively. If the parameters are subject only
to linear constraints, all optimization and least-squares techniques arefeasible-point
methods; that is, they move from feasible pointx(k) to a better feasible pointx(k+1)

by a step in the search directions(k), k = 1; 2; 3; : : :. If you do not provide a feasible
starting pointx(0), the optimization methods call the algorithm used in the NLPFEA
subroutine, which tries to compute a starting point that is feasible with respect to the
boundary and linear constraints.
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The NLPNMS and NLPQN subroutines permit nonlinear constraints on parameters.
For problems with nonlinear constraints, these subroutines do not use a feasible-
point method; instead, the algorithms begin with whatever starting point you specify,
whether feasible or infeasible.

Each optimization technique requires a continuous objective functionf = f(x) and
all optimization subroutines except the NLPNMS subroutine require continuous first-
order derivatives of the objective functionf . If you do not provide the derivatives of
f , they are approximated by finite difference formulas. You can use the NLPFDD
subroutine to check the correctness of analytical derivative specifications.

Most of the results obtained from the IML procedure optimization and least-squares
subroutines can also be obtained by using the NLP procedure in the SAS/OR product.

The advantages of the IML procedure are as follows:

� You can use matrix algebra to specify the objective function, nonlinear con-
straints, and their derivatives in IML modules.

� The IML procedure offers several subroutines that can be used to specify the
objective function or nonlinear constraints, many of which would be very dif-
ficult to write for the NLP procedure.

� You can formulate your own termination criteria by using the"ptit" module
argument.

The advantages of the NLP procedure are as follows:

� Although identical optimization algorithms are used, the NLP procedure can
be much faster because of the interactive and more general nature of the IML
product.

� Analytic first- and second-order derivatives can be computed with a special
compiler.

� Additional optimization methods are available in the NLP procedure that do
not fit into the framework of this package.

� Data set processing is much easier than in the IML procedure. You can save
results in output data sets and use them in following runs.

� The printed output contains more information.
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Getting Started

Unconstrained Rosenbrock Function
The Rosenbrock function is defined as

f(x) =
1

2
f100(x2 � x21)

2 + (1� x1)
2g

=
1

2
ff21 (x) + f22 (x)g; x = (x1; x2)

The minimum function valuef� = f(x�) = 0 is at the pointx� = (1; 1).

The following code calls the NLPTR subroutine to solve the optimization problem:

proc iml;
title ’Test of NLPTR subroutine: Gradient Specified’;
start F_ROSEN(x);

y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;

start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);

finish G_ROSEN;

x = {-1.2 1.};
optn = {0 2};
call nlptr(rc,xres,"F_ROSEN",x,optn) grd="G_ROSEN";
quit;

The NLPTR is a trust-region optimization method. The F–ROSEN module repre-
sents the Rosenbrock function, and the G–ROSEN module represents its gradient.
Specifying the gradient can reduce the number of function calls by the optimization
subroutine. The optimization begins at the initial pointx = (�1:2; 1). For more
information on the NLPTR subroutine and its arguments, see the section “NLPTR
Call” on page 667. For details on the options vector, which is given by the OPTN
vector in the preceding code, see the section “Options Vector” on page 319.

A portion of the output produced by the NLPTR subroutine is shown in Figure 11.1
on page 300.
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Trust Region Optimization

Without Parameter Scaling
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient 107.8 Radius 1
Element

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 0 2.36594 9.7341 2.3189 0 1.000
2 0 5 0 2.05926 0.3067 5.2875 0.385 1.526
3 0 8 0 1.74390 0.3154 5.9934 0 1.086
.
.
.

22 0 31 0 1.3128E-16 6.96E-10 1.977E-7 0 0.00314

Optimization Results

Iterations 22 Function Calls 32
Hessian Calls 23 Active Constraints 0
Objective Function 1.312814E-16 Max Abs Gradient 1.9773384E-7

Element
Lambda 0 Actual Over Pred 0

Change
Radius 0.003140192

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 1.000000 0.000000198
2 X2 1.000000 -0.000000105

Value of Objective Function = 1.312814E-16

Figure 11.1. NLPTR Solution to the Rosenbrock Problem

Sincef(x) = 1
2ff21 (x) + f22 (x)g, you can also use least-squares techniques in this

situation. The following code calls the NLPLM subroutine to solve the problem. The
output is shown in Figure??on page??.

proc iml;
title ’Test of NLPLM subroutine: No Derivatives’;
start F_ROSEN(x);

y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];

return(y);
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finish F_ROSEN;

x = {-1.2 1.};
optn = {2 2};
call nlplm(rc,xres,"F_ROSEN",x,optn);
quit;

The Levenberg-Marquardt least-squares method, which is the method used by the
NLPLM subroutine, is a modification of the trust-region method for nonlinear least-
squares problems. The F–ROSEN module represents the Rosenbrock function. Note
that for least-squares problems, them functionsf1(x); : : : ; fm(x) are specified as
elements of a vector; this is different from the manner in whichf(x) is specified
for the other optimization techniques. No derivatives are specified in the preceding
code, so the NLPLM subroutine computes finite difference approximations. For more
information on the NLPLM subroutine, see the section “NLPLM Call” on page 645.

Constrained Betts Function
The linearly constrained Betts function (Hock & Schittkowski 1981) is defined as

f(x) = 0:01x21 + x22 � 100

with boundary constraints

2 � x1 � 50

�50 � x2 � 50

and linear constraint

10x1 � x2 � 10

The following code calls the NLPCG subroutine to solve the optimization problem.
The infeasible initial pointx0 = (�1;�1) is specified, and a portion of the output is
shown in Figure 11.2.

proc iml;
title ’Test of NLPCG subroutine: No Derivatives’;
start F_BETTS(x);

f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 2};
call nlpcg(rc,xres,"F_BETTS",x,optn,con);
quit;
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The NLPCG subroutine performs conjugate gradient optimization. It requires only
function and gradient calls. The F–BETTS module represents the Betts function,
and since no module is defined to specify the gradient, first-order derivatives are
computed by finite difference approximations. For more information on the NLPCG
subroutine, see the section “NLPCG Call” on page 634. For details on the constraint
matrix, which is represented by the CON matrix in the preceding code, see the section
“Parameter Constraints” on page 317.

NOTE: Initial point was changed to be feasible for boundary and
linear constraints.

Optimization Start
Parameter Estimates

Gradient Lower
Objective Bound

N Parameter Estimate Function Constraint

1 X1 6.800000 0.136000 2.000000
2 X2 -1.000000 -2.000000 -50.000000

Optimization Start
Parameter Estimates

Upper
Bound

Constraint

50.000000
50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Conjugate-Gradient Optimization

Automatic Restart Update (Powell, 1977; Beale, 1972)
Gradient Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Figure 11.2. NLPCG Solution to Betts Problem
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Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient 2
Element

Max Abs Slope
Rest Func Act Objective Obj Fun Gradient Step Search

Iter arts Calls Con Function Change Element Size Direc

1 0 3 0 -99.54682 1.0092 0.1346 0.502 -4.018
2 1 7 1 -99.96000 0.4132 0.00272 34.985 -0.0182
3 2 9 1 -99.96000 1.851E-6 0 0.500 -74E-7

Optimization Results

Iterations 3 Function Calls 10
Gradient Calls 9 Active Constraints 1
Objective Function -99.96 Max Abs Gradient 0

Element
Slope of Search -7.398365E-6
Direction

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 -1.24028E-10 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

[1] 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

Figure 11.2. (continued)

Since the initial point(�1;�1) is infeasible, the subroutine first computes a feasible
starting point. Convergence is achieved after three iterations, and the optimal point is
given to bex� = (2; 0) with an optimal function value off� = f(x�) = �99:96. For
more information on the printed output, see the section “Printing the Optimization
History” on page 334.

Rosen-Suzuki Problem
The Rosen-Suzuki problem is a function of four variables with three nonlinear con-
straints on the variables. It is taken from Problem 43 of Hock and Schittkowski
(1981). The objective function is

f(x) = x21 + x22 + 2x23 + x24 � 5x1 � 5x2 � 21x3 + 7x4

SAS OnlineDoc: Version 8
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The nonlinear constraints are

0 � 8� x21 � x22 � x23 � x24 � x1 + x2 � x3 + x4

0 � 10 � x21 � 2x22 � x23 � 2x24 + x1 + x4

0 � 5� 2x21 � x22 � x23 � 2x1 + x2 + x4

Since this problem has nonlinear constraints, only the NLPQN and NLPNMS sub-
routines are available to perform the optimization. The following code solves the
problem with the NLPQN subroutine:

proc iml;
start F_HS43(x);

f = x*x‘ + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
return(f);

finish F_HS43;
start C_HS43(x);

c = j(3,1,0.);
c[1] = 8 - x*x‘ - x[1] + x[2] - x[3] + x[4];
c[2] = 10 - x*x‘ - x[2]*x[2] - x[4]*x[4] + x[1] + x[4];
c[3] = 5 - 2.*x[1]*x[1] - x[2]*x[2] - x[3]*x[3]

- 2.*x[1] + x[2] + x[4];
return(c);

finish C_HS43;
x = j(1,4,1);
optn= j(1,11,.); optn[2]= 3; optn[10]= 3; optn[11]=0;
call nlpqn(rc,xres,"F_HS43",x,optn) nlc="C_HS43";

The F–HS43 module specifies the objective function, and the C–HS43 module speci-
fies the nonlinear constraints. The OPTN vector is passed to the subroutine as theopt
input argument. See the section “Options Vector” on page 319 for more information.
The value of OPTN[10] represents the total number of nonlinear constraints, and the
value of OPTN[11] represents the number of equality constraints. In the preceding
code, OPTN[10]=3 and OPTN[11]=0, which indicate that there are three constraints,
all of which are inequality constraints. In the subroutine calls, instead of separating
missing input arguments with commas, you can specify optional arguments with key-
words, as in the CALL NLPQN statement in the preceding code. For details on the
CALL NLPQN statement, see the section “NLPQN Call” on page 658.

The initial point for the optimization procedure isx = (1; 1; 1; 1), and the optimal
point isx� = (0; 1; 2;�1), with an optimal function value off(x�) = �44. Part of
the output produced is shown in Figure 11.3 on page 305.
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Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Gradient Computed by Finite Differences
Jacobian Nonlinear Constraints Computed by Finite Differences

Parameter Estimates 4
Nonlinear Constraints 3

Optimization Start

Objective Function -19 Maximum Constraint 0
Violation

Maximum Gradient of 17
the Lagran Func

Maximum
Maximum Grad

Con- Element
straint Predicted of the

Rest Func Objective Viola- Function Step Lagran
Iter arts Calls Function tion Reduction Size Func

1 0 2 -41.88007 1.8988 13.6803 1.000 5.647
2 0 3 -48.83264 3.0280 9.5464 1.000 5.041
3 0 4 -45.33515 0.5452 2.6179 1.000 1.061
4 0 5 -44.08667 0.0427 0.1732 1.000 0.0297
5 0 6 -44.00011 0.000099 0.000218 1.000 0.00906
6 0 7 -44.00001 2.573E-6 0.000014 1.000 0.00219
7 0 8 -44.00000 9.118E-8 5.097E-7 1.000 0.00022

Figure 11.3. Solution to the Rosen-Suzuki Problem by the NLPQN Subroutine

SAS OnlineDoc: Version 8
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Optimization Results

Iterations 7 Function Calls 9
Gradient Calls 9 Active Constraints 2
Objective Function -44.00000026 Maximum Constraint 9.1176306E-8

Violation
Maximum Projected 0.0002265341 Value Lagrange -44
Gradient Function
Maximum Gradient of 0.00022158 Slope of Search -5.097332E-7
the Lagran Func Direction

FCONV2 convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range.

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 X1 -0.000001248 -5.000002 -0.000012804
2 X2 1.000027 -2.999945 0.000222
3 X3 1.999993 -13.000027 -0.000054166
4 X4 -1.000003 4.999995 -0.000020681

Value of Objective Function = -44.00000026

Value of Lagrange Function = -44

Figure 11.3. (continued)

In addition to the standard iteration history, the NLPQN subroutine includes the fol-
lowing information for problems with nonlinear constraints:

� conmaxis the maximum value of all constraint violations.

� pred is the value of the predicted function reduction used with the GTOL and
FTOL2 termination criteria.

� alfa is the step size� of the quasi-Newton step.

� lfgmaxis the maximum element of the gradient of the Lagrange function.
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Details

Global Versus Local Optima

All the IML optimization algorithms converge toward local rather than global optima.
The smallest local minimum of an objective function is called the global minimum,
and the largest local maximum of an objective function is called the global maximum.
Hence, the subroutines may occasionally fail to find the global optimum. Suppose
you have the function,f(x) = 1

27 (3x
4
1� 28x31 +84x21� 96x1 +64)+x22, which has

a local minimum atf(1; 0) = 1 and a global minimum at the pointf(4; 0) = 0.

The following statements use two calls of the NLPTR subroutine to minimize the
preceding function. The first call specifies the initial pointxa = (0:5; 1:5), and
the second call specifies the initial pointxb = (3; 1). The first call finds the local
optimumx� = (1; 0), and the second call finds the global optimumx� = (4; 0).

proc iml;
start F_GLOBAL(x);

f=(3*x[1]**4-28*x[1]**3+84*x[1]**2-96*x[1]+64)/27 + x[2]**2;
return(f);

finish F_GLOBAL;
xa = {.5 1.5};
xb = {3 -1};
optn = {0 2};
call nlptr(rca,xra,"F_GLOBAL",xa,optn);
call nlptr(rcb,xrb,"F_GLOBAL",xb,optn);
print xra xrb;

One way to find out whether the objective function has more than one local optimum
is to run various optimizations with a pattern of different starting points.

For a more mathematical definition of optimality, refer to theKuhn-Tucker theorem
in standard optimization literature. Using a rather nonmathematical language, a local
minimizerx� satisfies the following conditions:

� There exists a small, feasible neighborhood ofx� that does not contain any
pointx with a smaller function valuef(x) < f(x�).

� The vector of first derivatives (gradient)g(x�) = rf(x�) of the objective
functionf (projected toward the feasible region) at the pointx� is zero.

� The matrix of second derivativesG(x�) = r2f(x�) (Hessian matrix) of the
objective functionf (projected toward the feasible region) at the pointx� is
positive definite.

A local maximizer has the largest value in a feasible neighborhood and a negative
definite Hessian.

The iterative optimization algorithm terminates at the pointxt, which should be in
a small neighborhood (in terms of a user-specified termination criterion) of a local
optimizerx�. If the pointxt is located on one or more active boundary or general
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linear constraints, the local optimization conditions are valid only for the feasible
region. That is,

� the projected gradient,ZT g(xt), must be sufficiently small

� the projected Hessian,ZTG(xt)Z, must be positive definite for minimization
problems or negative definite for maximization problems

If there aren active constraints at the pointxt, the nullspaceZ has zero columns
and the projected Hessian has zero rows and columns. A matrix with zero rows and
columns is considered positive as well as negative definite.

Kuhn-Tucker Conditions

The nonlinear programming (NLP) problem with one objective functionf andm
constraint functionsci, which are continuously differentiable, is defined as follows:

minimizef(x); x 2 Rn; subject to

ci(x) = 0; i = 1; : : : ;me

ci(x) � 0; i = me + 1; : : : ;m

In the preceding notation,n is the dimension of the functionf(x), andme is the
number of equality constraints. The linear combination of objective and constraint
functions

L(x; �) = f(x)�
mX
i=1

�ici(x)

is theLagrange function,and the coefficients�i are theLagrange multipliers.

If the functionsf and ci are twice differentiable, the pointx� is an isolated local
minimizerof the NLP problem, if there exists a vector�� = (��1; : : : ; �

�
m) that meets

the following conditions:

� Kuhn-Tucker conditions

ci(x
�) = 0; i = 1; : : : ;me

ci(x
�) � 0; ��i � 0; ��i ci(x

�) = 0; i = me + 1; : : : ;m
rxL(x

�; ��) = 0

� Second-order condition

Each nonzero vectory 2 Rn with

yTrxci(x
�) = 0i = 1; : : : ;me; and8i 2me + 1; : : : ;m;��i > 0

satisfies

yTr2
xL(x

�; ��)y > 0

In practice, you cannot expect that the constraint functionsci(x
�) will vanish within

machine precision, and determining the set of active constraints at the solutionx�

may not be simple.
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Definition of Return Codes

The return code, which is represented by the output parameterrc in the optimiza-
tion subroutines, indicates the reason for optimization termination. A positive value
indicates successful termination, while a negative value indicates unsuccessful ter-
mination. Table 11.1 gives the reason for termination associated with each return
code.

Table 11.1. Summary of Return Codes

rc Reason for Optimization Termination
1 ABSTOL criterion satisfied (absolute F convergence)
2 ABSFTOL criterion satisfied (absolute F convergence)
3 ABSGTOL criterion satisfied (absolute G convergence)
4 ABSXTOL criterion satisfied (absolute X convergence)
5 FTOL criterion satisfied (relative F convergence)
6 GTOL criterion satisfied (relative G convergence)
7 XTOL criterion satisfied (relative X convergence)
8 FTOL2 criterion satisfied (relative F convergence)
9 GTOL2 criterion satisfied (relative G convergence)
10 n linear independent constraints are active atxr and none of them could be

released to improve the function value
-1 objective function cannot be evaluated at starting point
-2 derivatives cannot be evaluated at starting point
-3 objective function cannot be evaluated during iteration
-4 derivatives cannot be evaluated during iteration
-5 optimization subroutine cannot improve the function value (this is a very

general formulation and is used for various circumstances)
-6 there are problems in dealing with linearly dependent active constraints

(changing the LCSING value in thepar vector can be helpful)
-7 optimization process stepped outside the feasible region and the algorithm

to return inside the feasible region was not successful (changing the LCEPS
value in thepar vector can be helpful)

-8 either the number of iterations or the number of function calls is larger than
the prespecified values in thetc vector (MAXIT and MAXFU)

-9 this return code is temporarily not used (it is used in PROC NLP indicating
that more CPU than a prespecified value was used)

-10 a feasible starting point cannot be computed

Objective Function and Derivatives

The input argumentfun refers to an IML module that specifies a function that returns
f , a vector of lengthm for least-squares subroutines or a scalar for other optimization
subroutines. The returnedf contains the values of the objective function (or the least-
squares functions) at the pointx. Note that for least-squares problems, you must
specify the number of function values,m, with the first element of theopt argument
to allocate memory for the return vector. All the modules that you can specify as
input arguments ("fun", "grd", "hes", "jac", "nlc", "jacnlc", and"ptit" ) allow only a
single input argument,x, which is the parameter vector. Using the GLOBAL clause,

SAS OnlineDoc: Version 8



310 � Chapter 11. Nonlinear Optimization Examples

you can provide more input arguments for these modules. Refer to the middle of the
section, "Compartmental Analysis" for an example.

All the optimization algorithms assume thatf is continuous inside the feasible region.
For nonlinearly constrained optimization, this is also required for points outside the
feasible region. Sometimes the objective function cannot be computed for all points
of the specified feasible region; for example, the function specification may contain
the SQRT or LOG function, which cannot be evaluated for negative arguments. You
must make sure that the function and derivatives of the starting point can be evaluated.
There are two ways to prevent large steps into infeasible regions of the parameter
space during the optimization process:

� The preferred way is to restrict the parameter space by introducing more
boundary and linear constraints. For example, the boundary constraint
xj >= 1E�10 prevents infeasible evaluations oflog(xj). If the function mod-
ule takes the square root or the log of an intermediate result, you can use non-
linear constraints to try to avoid infeasible function evaluations. However, this
may not ensure feasibility.

� Sometimes the preferred way is difficult to practice, in which case the function
module may return a missing value. This may force the optimization algorithm
to reduce the step length or the radius of the feasible region.

All the optimization techniques except the NLPNMS subroutine require continuous
first-order derivatives of the objective functionf . The NLPTR, NLPNRA, and NLP-
NRR techniques also require continuous second-order derivatives. If you do not
provide the derivatives with the IML modules"grd", "hes", or "jac", they are au-
tomatically approximated by finite difference formulas. Approximating first-order
derivatives by finite differences usually requiresn additional calls of the function
module. Approximating second-order derivatives by finite differences using only
function calls can be extremely computationally expensive. Hence, if you decide
to use the NLPTR, NLPNRA, or NLPNRR subroutines, you should specify at least
analytical first-order derivatives. Then, approximating second-order derivatives by
finite differences requires onlyn or 2n additional calls of the function and gradient
modules.

For all input and output arguments, the subroutines assume that

� the number of parametersn corresponds to the number of columns. For exam-
ple,x, the input argument to the modules, andg, the output argument returned
by the"grd" module, are row vectors withn entries, andG, the Hessian matrix
returned by the"hes"module, must be a symmetricn� n matrix.

� the number of functions,m, corresponds to the number of rows. For example,
the vectorf returned by the"fun" module must be a column vector withm
entries, and in least-squares problems, the Jacobian matrixJ returned by the
"jac" module must be anm� n matrix.

You can verify your analytical derivative specifications by computing finite differ-
ence approximations of the derivatives off with the NLPFDD subroutine. For most
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applications, the finite difference approximations of the derivatives will be very pre-
cise. Occasionally, difficult objective functions and zerox coordinates will cause
problems. You can use thepar argument to specify the number of accurate digits in
the evaluation of the objective function; this defines the step sizeh of the first- and
second-order finite difference formulas. See the section “Finite Difference Approxi-
mations of Derivatives” on page 314.

Note: For some difficult applications, the finite difference approximations of deriva-
tives that are generated by default may not be precise enough to solve the optimization
or least-squares problem. In such cases, you may be able to specify better derivative
approximations by using a better approximation formula. You can submit your own
finite difference approximations using the IML modules"grd", "hes", "jac", or "jac-
nlc". See Example 11.3 on page 343 for an illustration.

In many applications, calculations used in the computation off can help compute
derivatives at the same point efficiently. You can save and reuse such calculations with
the GLOBAL clause. As with many other optimization packages, the subroutines
perform calls of the"grd", "hes", or "jac" modules only after a call of the"fun"
module.

The following statements specify modules for the function, gradient, and Hessian
matrix of the Rosenbrock problem:

proc iml;
start F_ROSEN(x);

y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;

start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);

finish G_ROSEN;

start H_ROSEN(x);
h = j(2,2,0.);
h[1,1] = -200.*(x[2] - 3.*x[1]*x[1]) + 1.;
h[2,2] = 100.;
h[1,2] = -200. * x[1];
h[2,1] = h[1,2];
return(h);

finish H_ROSEN;

The following statements specify a module for the Rosenbrock function when con-
sidered as a least-squares problem. They also specify the Jacobian matrix of the
least-squares functions.
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proc iml;
start F_ROSEN(x);

y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];

return(y);
finish F_ROSEN;

start J_ROSEN(x);
jac = j(2,2,0.);
jac[1,1] = -20. * x[1]; jac[1,2] = 10.;
jac[2,1] = -1.; jac[2,2] = 0.;
return(jac);

finish J_ROSEN;

Diagonal or Sparse Hessian Matrices
In the unconstrained or only boundary constrained case, the NLPNRA algorithm can
take advantage of diagonal or sparse Hessian matrices submitted by the"hes"module.
If the Hessian matrixG of the objective functionf has a large proportion of zeros, you
may save computer time and memory by specifying a sparse Hessian of dimension
nn� 3 rather than a densen�n Hessian. Each of thenn rows(i; j; g) of the matrix
returned by the sparse Hessian module defines a nonzero elementgij of the Hessian
matrix. The row and column location is given byi andj, andg gives the nonzero
value. During the optimization process, only the valuesg can be changed in each call
of the Hessian module"hes"; the sparsity structure(i; j) must be kept the same. That
means that some of the valuesg can be zero for particular values ofx. To allocate
sufficient memory before the first call of the Hessian module, you must specify the
number of rows,nn, by setting the ninth element of theopt argument.

Example 22 of Moré, Garbow, and Hillstrom (1981) illustrates the sparse Hessian
module input. The objective function, which is the Extended Powell’s Singular Func-
tion, forn = 40 is a least-squares problem:

f(x) =
1

2
ff21 (x) + � � �+ f2m(x)g

with

f4i�3(x) = x4i�3 + 10x4i�2

f4i�2(x) =
p
5(x4i�1 � x4i)

f4i�1(x) = (x4i�2 � 2x4i�1)
2

f4i(x) =
p
10(x4i�3 � x4i)

2

The function and gradient modules are

start f_nlp22(x);
n=ncol(x);
f = 0.;
do i=1 to n-3 by 4;

SAS OnlineDoc: Version 8



Objective Function and Derivatives � 313

f1 = x[i] + 10. * x[i+1];
r2 = x[i+2] - x[i+3];
f2 = 5. * r2;
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
f = f + f1 * f1 + r2 * f2 + f3 * f3 + r4 * r4 * f4;

end;
f = .5 * f;
return(f);

finish f_nlp22;

start g_nlp22(x);
n=ncol(x);
g = j(1,n,0.);

do i=1 to n-3 by 4;
f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
g[i] = f1 + 2. * r4 * f4;
g[i+1] = 10. * f1 + 2. * r3 * f3;
g[i+2] = f2 - 4. * r3 * f3;
g[i+3] = -f2 - 2. * r4 * f4;

end;
return(g);

finish g_nlp22;

You can specify the sparse Hessian with the following module:

start hs_nlp22(x);
n=ncol(x);
nnz = 8 * (n / 4);
h = j(nnz,3,0.);
j = 0;
do i=1 to n-3 by 4;

f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
j= j + 1; h[j,1] = i; h[j,2] = i;
h[j,3] = 1. + 4. * f4;
h[j,3] = h[j,3] + 2. * f4;
j= j+1; h[j,1] = i; h[j,2] = i+1;
h[j,3] = 10.;
j= j+1; h[j,1] = i; h[j,2] = i+3;
h[j,3] = -4. * f4;
h[j,3] = h[j,3] - 2. * f4;

SAS OnlineDoc: Version 8



314 � Chapter 11. Nonlinear Optimization Examples

j= j+1; h[j,1] = i+1; h[j,2] = i+1;
h[j,3] = 100. + 4. * f3;
h[j,3] = h[j,3] + 2. * f3;
j= j+1; h[j,1] = i+1; h[j,2] = i+2;
h[j,3] = -8. * f3;
h[j,3] = h[j,3] - 4. * f3;
j= j+1; h[j,1] = i+2; h[j,2] = i+2;
h[j,3] = 5. + 16. * f3;
h[j,3] = h[j,3] + 8. * f3;
j= j+1; h[j,1] = i+2; h[j,2] = i+3;
h[j,3] = -5.;
j= j+1; h[j,1] = i+3; h[j,2] = i+3;
h[j,3] = 5. + 4. * f4;
h[j,3] = h[j,3] + 2. * f4;

end;
return(h);

finish hs_nlp22;

n = 40;
x = j(1,n,0.);
do i=1 to n-3 by 4;

x[i] = 3.; x[i+1] = -1.; x[i+3] = 1.;
end;
opt = j(1,11,.); opt[2]= 3; opt[9]= 8 * (n / 4);
call nlpnra(xr,rc,"f_nlp22",x,opt) grd="g_nlp22" hes="hs_nlp22";

Note: If the sparse form of Hessian defines a diagonal matrix (that is,i = j in all nn
rows), the NLPNRA algorithm stores and processes a diagonal matrixG. If you do
not specify any general linear constraints, the NLPNRA subroutine uses only ordern
memory.

Finite Difference Approximations of Derivatives

If the optimization technique needs first- or second-order derivatives and you do not
specify the corresponding IML modules"grd", "hes", "jac", or "jacnlc", the deriva-
tives are approximated by finite difference formulas using only calls of the module
"fun". If the optimization technique needs second-order derivatives and you specify
the"grd" module but not the"hes"module, the subroutine approximates the second-
order derivatives by finite differences usingn or 2n calls of the"grd" module.

The eighth element of theoptargument specifies the type of finite difference approx-
imation used to compute first- or second-order derivatives and whether the finite dif-
ference intervals,h, should be computed by an algorithm of Gill, Murray, Saunders,
and Wright (1983). The value ofopt[8] is a two-digit integer,ij.

� If opt[8] is missing orj = 0, the fast but not very precise forward difference
formulas are used; ifj 6= 0, the numerically more expensive central difference
formulas are used.

� If opt[8] is missing ori 6= 1; 2; or 3, the finite difference intervalsh are based
only on the information ofpar[8] or par[9], which specifies the number of
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accurate digits to use in evaluating the objective function and nonlinear con-
straints, respectively. Ifi = 1; 2; or 3, the intervals are computed with an
algorithm by Gill, Murray, Saunders, and Wright (1983). Fori = 1, the inter-
val is based on the behavior of the objective function; fori = 2, the interval
is based on the behavior of the nonlinear constraint functions; and fori = 3,
the interval is based on the behavior of both the objective function and the
nonlinear constraint functions.

Forward Difference Approximations

� First-order derivatives:n additional function calls are needed.

gi =
@f

@xi
=

f(x+ hiei)� f(x)

hi

� Second-order derivatives based on function calls only, when the"grd" module
is not specified (Dennis and Schnabel 1983): for a dense Hessian matrix,n+
n2=2 additional function calls are needed.

@2f

@xi@xj
=

f(x+ hiei + hjej)� f(x+ hiei)� f(x+ hjej) + f(x)

hihj

� Second-order derivatives based on gradient calls, when the"grd" module is
specified (Dennis and Schnabel 1983):n additional gradient calls are needed.

@2f

@xi@xj
=

gi(x+ hjej)� gi(x)

2hj
+
gj(x+ hiei)� gj(x)

2hi

Central Difference Approximations

� First-order derivatives:2n additional function calls are needed.

gi =
@f

@xi
=

f(x+ hiei)� f(x� hiei)

2hi

� Second-order derivatives based on function calls only, when the"grd" module
is not specified (Abramowitz and Stegun 1972): for a dense Hessian matrix,
2n+ 2n2 additional function calls are needed.

@2f

@x2i
=

�f(x+ 2hiei) + 16f(x+ hiei)� 30f(x) + 16f(x� hiei)� f(x� 2hiei)

12h2i

@2f

@xi@xj

=
f(x+ hiei + hjej)� f(x+ hiei � hjej)� f(x� hiei + hjej) + f(x� hiei � hjej)

4hihj

� Second-order derivatives based on gradient calls, when the"grd" module is
specified:2n additional gradient calls are needed.

@2f

@xi@xj
=

gi(x+ hjej)� gi(x� hjej)

4hj
+
gj(x+ hiei)� gj(x� hiei)

4hi
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The step sizeshj , j = 1; : : : ; n, are defined as follows:

� For the forward-difference approximation of first-order derivatives using only
function calls and for second-order derivatives using only gradient calls,
hj = 2

p
�j(1 + jxj j).

� For the forward-difference approximation of second-order derivatives using
only function calls and for central-difference formulas,hj = 3

p
�j(1 + jxj j).

If the algorithm of Gill, Murray, Saunders, and Wright (1983) is not used to compute
�j , a constant value� = �j is used depending on the value ofpar[8].

� If the number of accurate digits is specified bypar[8] = k1, then� is set to
10�k1 .

� If par[8] is not specified,� is set to the machine precision,�.

If central difference formulas are not specified, the optimization algorithm will
switch automatically from the forward-difference formula to a corresponding central-
difference formula during the iteration process if one of the following two criteria is
satisfied:

� The absolute maximum gradient element is less than or equal to 100 times the
ABSGTOL threshold.

� The term on the left of the GTOL criterion is less than or equal to
max(1E�6, 100�GTOL threshold). The 1E�6 ensures that the switch is
performed even if you set the GTOL threshold to zero.

The algorithm of Gill, Murray, Saunders, and Wright (1983) that computes the finite
difference intervalshj can be very expensive in the number of function calls it uses. If
this algorithm is required, it is performed twice, once before the optimization process
starts and once after the optimization terminates.

Many applications need considerably more time for computing second-order deriva-
tives than for computing first-order derivatives. In such cases, you should use a quasi-
Newton or conjugate gradient technique.

If you specify a vector,c, ofnc nonlinear constraints with the “nlc” module but you do
not specify the “jacnlc” module, the first-order formulas can be used to compute finite
difference approximations of thenc�n Jacobian matrix of the nonlinear constraints.

(rci) =
�
@ci
@xj

�
; i = 1; : : : ; nc; j = 1; : : : ; n

You can specify the number of accurate digits in the constraint evaluations with
par[9]. This specification also defines the step sizeshj , j = 1; : : : ; n.

Note: If you are not able to specify analytic derivatives and if the finite-difference
approximations provided by the subroutines are not good enough to solve your opti-
mization problem, you may be able to implement better finite-difference approxima-
tions with the “grd”, “ hes”, “ jac”, and “jacnlc” module arguments.
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Parameter Constraints

You can specify constraints in the following ways:

� The matrix input argument “blc” enables you to specify boundary and general
linear constraints.

� The IML module input argument “nlc” enables you to specify general con-
straints, particularly nonlinear constraints.

Specifying the BLC Matrix
The input argument “blc” specifies ann1 � n2 constraint matrix, wheren1 is two
more than the number of linear constraints, andn2 is given by

n2 =

�
n if 1 � n1 � 2
n+ 2 if n1 > 2

The first two rows define lower and upper bounds for then parameters, and the re-
mainingc = n1 � 2 rows define general linear equality and inequality constraints.
Missing values in the first row (lower bounds) substitute for the largest negative float-
ing point value, and missing values in the second row (upper bounds) substitute for
the largest positive floating point value. Columnsn + 1 andn + 2 of the first two
rows are not used.

The following c rows of the “blc” argument specifyc linear equality or inequality
constraints:

nX
j=1

aijxj (� j = j �) bi; i = 1; : : : ; c

Each of thesec rows contains the coefficientsaij in the firstn columns. Columnn+1
specifies the kind of constraint, as follows:

� blc[n+ 1] = 0 indicates an equality constraint.

� blc[n+ 1] = 1 indicates a� inequality constraint.

� blc[n+ 1] = �1 indicates a� inequality constraint.

Columnn+ 2 specifies the right-hand side,bi. A missing value in any of these rows
corresponds to a value of zero.

For example, suppose you have a problem with the following constraints onx1,x2,
x3, x4:

2 � x1 � 100
x2 � 40

0 � x4
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4x1 + 3x2 � x3 � 30
x2 + 6x4 � 17

x1 � x2 = 8

The following statements specify the matrix CON, which can be used as the “blc”
argument to specify the preceding constraints:

proc iml;
con = { 2 . . 0 . . ,

100 40 . . . . ,
4 3 -1 . -1 30 ,
. 1 . 6 1 17 ,
1 -1 . . 0 8 };

Specifying the NLC and JACNLC Modules
The input argument “nlc” specifies an IML module that returns a vector,c, of length
nc, with the values,ci, of thenc linear or nonlinear constraints

ci(x) = 0; i = 1; : : : ; nec;

ci(x) � 0; i = nec+ 1; : : : ; nc;

for a given input parameter pointx.

Note: You must specify the number of equality constraints,nec, and the total number
of constraints,nc, returned by the “nlc” module to allocate memory for the return
vector. You can do this with theopt[11] andopt[10] arguments, respectively.

For example, consider the problem of minimizing the objective function
f(x1; x2) = x1x2 in the interior of the unit circle,x21 + x22 � 1. The constraint
can also be written asc1(x) = 1 � x21 � x22 � 0. The following statements specify
modules for the objective and constraint functions and call the NLPNMS subroutine
to solve the minimization problem:

proc iml;
start F_UC2D(x);

f = x[1] * x[2];
return(f);

finish F_UC2D;

start C_UC2D(x);
c = 1. - x * x‘;
return(c);

finish C_UC2D;

x = j(1,2,1.);
optn= j(1,10,.); optn[2]= 3; optn[10]= 1;
CALL NLPNMS(rc,xres,"F_UC2D",x,optn) nlc="C_UC2D";

To avoid typing multiple commas, you can specify the “nlc” input argument with a
keyword, as in the preceding code. The number of elements of the return vector is
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specified by OPTN[10] = 1. There is a missing value in OPTN[11], so the subroutine
assumes there are zero equality constraints.

The NLPQN algorithm uses thenc� n Jacobian matrix of first-order derivatives

(rxci(x)) =

�
@ci
@xj

�
; i = 1; : : : ; nc; j = 1; : : : ; n

of thenc equality and inequality constraints,ci, for each point passed during the it-
eration. You can use the “jacnlc” argument to specify an IML module that returns
the Jacobian matrixJC. If you specify the “nlc” module without using the “jac-
nlc” argument, the subroutine uses finite difference approximations of the first-order
derivatives of the constraints.

Note: The COBYLA algorithm in the NLPNMS subroutine and the NLPQN sub-
routine are the only optimization techniques that enable you to specify nonlinear
constraints with the “nlc” input argument.

Options Vector

The options vector, represented by the"opt" argument, enables you to specify a vari-
ety of options, such as the amount of printed output or particular update or line-search
techniques. Table 11.2 gives a summary of the available options.
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Table 11.2. Summary of the Elements of the Options Vector

Index Description
1 specifies minimization, maximization, or the number of least-squares

functions
2 specifies the amount of printed output
3 NLPDD, NLPLM, NLPNRA, NLPNRR, NLPTR: specifies the scaling

of the Hessian matrix (HESCAL)
4 NLPCG, NLPDD, NLPHQN, NLPQN: specifies the update technique

(UPDATE)
5 NLPCG, NLPHQN, NLPNRA, NLPQN (with no nonlinear constraints):

specifies the line-search technique (LIS)
6 NLPHQN: specifies version of hybrid algorithm (VERSION)

NLPQN with nonlinear constraints: specifies version of� update
7 NLPDD, NLPHQN, NLPQN: specifies initial Hessian matrix (INHES-

SIAN)
8 Finite Difference Derivatives: specifies type of differences and how to

compute the difference interval
9 NLPNRA: specifies the number of rows returned by the sparse Hessian

module
10 NLPNMS, NLPQN: specifies the total number of constraints returned by

the"nlc" module
11 NLPNMS, NLPQN: specifies the number of equality constraints returned

by the"nlc" module

The following list contains detailed explanations of the elements of the options vec-
tor:

� opt[1]
indicates whether the problem is minimization or maximization. The default,
opt[1] = 0, specifies a minimization problem, andopt[1] = 1 specifies a maxi-
mization problem. For least-squares problems,opt[1] = m specifies the num-
ber of functions or observations, which is the number of values returned by the
"fun" module. This information is necessary to allocate memory for the return
vector of the"fun" module.

� opt[2]
specifies the amount of output printed by the subroutine. The higher the value
of opt[2], the more printed output is produced. The following table indicates
the specific items printed for each value.
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Value of opt[2] Printed Output
0 No printed output is produced. This is the default.
1 The summaries for optimization start and termination are

produced, as well as the iteration history.
2 The initial and final parameter estimates are also printed.
3 The values of the termination criteria and other control pa-

rameters are also printed.
4 The parameter vector,x, is also printed after each iteration.
5 The gradient vector,g, is also printed after each iteration.

� opt[3]
selects a scaling for the Hessian matrix,G. This option is relevant only for the
NLPDD, NLPLM, NLPNRA, NLPNRR, and NLPTR subroutines. Ifopt[3] 6=
0, the first iteration and each restart iteration set the diagonal scaling matrix

D
(0) = diag(d(0)i ), where

d
(0)
i =

q
max(jG(0)

i;i j; �)

andG(0)
i;i are the diagonal elements of the Hessian matrix, and� is the ma-

chine precision. The diagonal scaling matrixD(0) = diag(d(0)i ) is updated as
indicated in the following table.

Value of opt[3] Scaling Update
0 No scaling is done.
1 Moré (1978) scaling update:

d
(k+1)
i = max

�
d
(k)
i ;

q
max(jG(k)

i;i j; �)
�

2 Dennis, Gay, and Welsch (1981) scaling update:

d
(k+1)
i = max

�
0:6 � d(k)i ;

q
max(jG(k)

i;i j; �)
�

3 di is reset in each iteration:d(k+1)i =
q

max(jG(k)
i;i j; �)

For the NLPDD, NLPNRA, NLPNRR, and NLPTR subroutines, the default is
opt[3] = 0; for the NLPLM subroutine, the default isopt[3] = 1.

� opt[4]
defines the update technique for (dual) quasi-Newton and conjugate gradi-
ent techniques. This option applies to the NLPCG, NLPDD, NLPHQN, and
NLPQN subroutines. For the NLPCG subroutine, the following update tech-
niques are available.
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Value of opt[4] Update Method for NLPCG
1 automatic restart method of Powell (1977) and Beale

(1972). This is the default.
2 Fletcher-Reeves update (Fletcher 1987)
3 Polak-Ribiere update (Fletcher 1987)
4 Conjugate-descent update of Fletcher (1987)

For the unconstrained or linearly constrained NLPQN subroutine, the following
update techniques are available.

Value of opt[4] Update Method for NLPQN
1 dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS)

update of the Cholesky factor of the Hessian matrix. This is
the default.

2 dual Davidon, Fletcher, and Powell (DDFP) update of the
Cholesky factor of the Hessian matrix

3 original Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
update of the inverse Hessian matrix

4 original Davidon, Fletcher, and Powell (DFP) update of the
inverse Hessian matrix

For the NLPQN subroutine used with the"nlc" module and for the NLPDD
and NLPHQN subroutines, only the first two update techniques in the second
table are available.

� opt[5]
defines the line-search technique for the unconstrained or linearly constrained
NLPQN subroutine, as well as the NLPCG, NLPHQN, and NLPNRA subrou-
tines. Refer to Fletcher (1987) for an introduction to line-search techniques.
The following table describes the available techniques.
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Value of opt[5] Line-Search Method
1 This method needs the same number of function and gradient calls

for cubic interpolation and cubic extrapolation; it is similar to a
method used by the Harwell subroutine library.

2 This method needs more function than gradient calls for quadratic
and cubic interpolation and cubic extrapolation; it is implemented
as shown in Fletcher (1987) and can be modified to exact line
search with thepar[6] argument (see the “Control Parameters
Vector” section on page 332). This is the default for the NLPCG,
NLPNRA, and NLPQN subroutines.

3 This method needs the same number of function and gradient calls
for cubic interpolation and cubic extrapolation; it is implemented
as shown in Fletcher (1987) and can be modified to exact line
search with thepar[6] argument.

4 This method needs the same number of function and gradient calls
for stepwise extrapolation and cubic interpolation.

5 This method is a modified version of theopt[5]=4 method.

6 This method is the golden section line search of Polak (1971),
which uses only function values for linear approximation.

7 This method is the bisection line search of Polak (1971), which
uses only function values for linear approximation.

8 This method is the Armijo line-search technique of Polak (1971),
which uses only function values for linear approximation.

For the NLPHQN least-squares subroutine, the default is a special line-search
method that is based on an algorithm developed by Lindström and Wedin
(1984). Although it needs more memory, this method sometimes works bet-
ter with large least-squares problems.

� opt[6]
is used only for the NLPHQN subroutine and the NLPQN subroutine with
nonlinear constraints.

In the NLPHQN subroutine, it defines the criterion for the decision of the hy-
brid algorithm to step in a Gauss-Newton or a quasi-Newton search direction.
You can specify one of the three criteria that correspond to the methods of
Fletcher and Xu (1987). The methods are HY1 (opt[6]=1), HY2 (opt[6]=2),
and HY3 (opt[6]=2), and the default is HY2.

In the NLPQN subroutine with nonlinear constraints, it defines the version of
the algorithm used to update the vector� of the Lagrange multipliers. The
default isopt[6]=2, which specifies the approach of Powell (1982a,b). You can
specify the approach of Powell (1978b) withopt[6]=1.

� opt[7]
defines the type of start matrix,G(0), used for the Hessian approximation. This
option applies only to the NLPDD, NLPHQN, and NLPQN subroutines. If
opt[7]=0, which is the default, the quasi-Newton algorithm starts with a multi-
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ple of the identity matrix where the scalar factor depends onpar[10]; otherwise,
it starts with the Hessian matrix computed at the starting pointx(0).

� opt[8]
defines the type of finite difference approximation used to compute first- or
second-order derivatives and whether the finite difference intervals,h, should
be computed using an algorithm of Gill, Murray, Saunders, and Wright (1983).
The value ofopt[8] is a two-digit integer,ij.

If opt[8] is missing orj = 0, the fast but not very precise for-
ward difference formulas are used; ifj 6= 0, the numerically
more expensive central difference formulas are used.

If opt[8] is missing ori 6= 1; 2; or 3, the finite difference
intervalsh are based only on the information ofpar[8] or
par[9], which specifies the number of accurate digits to
use in evaluating the objective function and nonlinear con-
straints, respectively. Ifi = 1; 2; or 3, the intervals are
computed with an algorithm by Gill, Murray, Saunders, and
Wright (1983). Fori = 1, the interval is based on the be-
havior of the objective function; fori = 2, the interval is
based on the behavior of the nonlinear constraint functions;
and fori = 3, the interval is based on the behavior of both
the objective function and the nonlinear constraint functions.

The algorithm of Gill, Murray, Saunders, and Wright (1983) that computes the
finite difference intervalshj can be very expensive in the number of function
calls it uses. If this algorithm is required, it is performed twice, once before
the optimization process starts and once after the optimization terminates. See
the “Finite Difference Approximations of Derivatives” section on page 314 for
details.

� opt[9]
indicates that the Hessian module"hes" returns a sparse definition of the Hes-
sian, in the form of annn� 3 matrix instead of the default densen�n matrix.
If opt[9] is zero or missing, the Hessian module must return a densen�n ma-
trix. If you specifyopt[9] = nn, the module must return a sparsenn� 3 table.
See the “Objective Function and Derivatives” section on page 309 for more
details. This option applies only to the NLPNRA algorithm. If the dense spec-
ification contains a large proportion of analytical zero derivatives, the sparse
specification may save memory and computer time.

� opt[10]
specifies the total number of nonlinear constraints returned by the"nlc" mod-
ule. If you specifync nonlinear constraints with the"nlc" argument module,
you must specifyopt[10] = nc to allocate memory for the return vector.
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� opt[11]
specifies the number of nonlinear equality constraints returned by the"nlc"
module. If the firstnec constraints are equality constraints, you must specify
opt[11] = nec. The default value isopt[11] = 0.

Termination Criteria

The input argumenttc specifies a vector of bounds corresponding to a set of termina-
tion criteria that are tested in each iteration. If you do not specify an IML module with
the"ptit" argument, these bounds determine when the optimization process stops.

If you specify the"ptit" argument, the"tc" argument is ignored. The module specified
by the"ptit" argument replaces the subroutine that is used by default to test the ter-
mination criteria. The module is called in each iteration with the current location,x,
and the value,f , of the objective function atx. The module must give a return code,
rc, that decides whether the optimization process is to be continued or terminated.
As long as the module returnsrc = 0, the optimization process continues. When the
module returnsrc 6= 0, the optimization process stops.

If you use thetc vector, the optimization techniques stop the iteration process when at
least one of the corresponding set of termination criteria are satisfied. Table 11.3 and
Table 11.4 indicate the criterion associated with each element of thetc vector. There
is a default for each criterion, and if you specify a missing value for the corresponding
element of thetc vector, the default value is used. You can avoid termination with
respect to the ABSFTOL, ABSGTOL, ABSXTOL, FTOL, FTOL2, GTOL, GTOL2,
and XTOL criteria by specifying a value of zero for the corresponding element of the
tc vector.

Table 11.3. Termination Criteria for the NLPNMS Subroutine

Index Description
1 maximum number of iterations (MAXIT)
2 maximum number of function calls (MAXFU)
3 absolute function criterion (ABSTOL)
4 relative function criterion (FTOL)
5 relative function criterion (FTOL2)
6 absolute function criterion (ABSFTOL)
7 FSIZE value used in FTOL criterion
8 relative parameter criterion (XTOL)
9 absolute parameter criterion (ABSXTOL)
9 size of final trust-region radius� (COBYLA algorithm)
10 XSIZE value used in XTOL criterion
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Table 11.4. Termination Criteria for Other Subroutines

Index Description
1 maximum number of iterations (MAXIT)
2 maximum number of function calls (MAXFU)
3 absolute function criterion (ABSTOL)
4 relative gradient criterion (GTOL)
5 relative gradient criterion (GTOL2)
6 absolute gradient criterion (ABSGTOL)
7 relative function criterion (FTOL)
8 predicted function reduction criterion (FTOL2)
9 absolute function criterion (ABSFTOL)
10 FSIZE value used in GTOL and FTOL criterion
11 relative parameter criterion (XTOL)
12 absolute parameter criterion (ABSXTOL)
13 XSIZE value used in XTOL criterion

Criteria Used by All Techniques
The following list indicates the termination criteria that are used with all the opti-
mization techniques:

� tc[1]
specifies the maximum number of iterations in the optimization process
(MAXIT). The default values are

NLPNMS: MAXIT=1000
NLPCG: MAXIT=400
Others: MAXIT=200

� tc[2]
specifies the maximum number of function calls in the optimization process
(MAXFU). The default values are

NLPNMS: MAXFU=3000
NLPCG: MAXFU=1000
Others: MAXFU=500

� tc[3]
specifies the absolute function convergence criterion (ABSTOL). For mini-
mization, termination requiresf (k) = f(x(k)) � ABSTOL, while for maxi-
mization, termination requiresf (k) = f(x(k)) � ABSTOL. The default values
are the negative and positive square roots of the largest double precision value,
for minimization and maximization, respectively.

These criteria are useful when you want to divide a time-consuming optimization
problem into a series of smaller problems.
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Termination Criteria for NLPNMS
Since the Nelder-Mead simplex algorithm does not use derivatives, no termination
criteria are available that are based on the gradient of the objective function.

When the NLPNMS subroutine implements Powell’s COBYLA algorithm, it uses
only one criterion other than the three used by all the optimization techniques. The
COBYLA algorithm is a trust-region method that sequentially reduces the radius,�,
of a spheric trust region from the start radius,�beg, which is controlled with thepar[2]
argument, to the final radius,�end, which is controlled with thetc[9] argument. The
default value fortc[9] is �end =1E�4. Convergence to small values of�end may
take many calls of the function and constraint modules and may result in numerical
problems.

In addition to the criteria used by all techniques, the original Nelder-Mead simplex
algorithm uses several other termination criteria, which are described in the following
list:

� tc[4]
specifies the relative function convergence criterion (FTOL). Termination re-
quires a small relative difference between the function values of the vertices in
the simplex with the largest and smallest function values.

jf (k)hi � f
(k)
lo j

max(jf (k)hi )j;FSIZE)
� FTOL

whereFSIZE is defined bytc[7]. The default value istc[4] = 10�FDIGITS,
where FDIGITS is controlled by thepar[8] argument. Thepar[8] argument
has a default value oflog10(�), where� is the machine precision. Hence, the
default value forFTOL is �.

� tc[5]
specifies another relative function convergence criterion (FTOL2). Termination
requires a small standard deviation of the function values of then+ 1 simplex

verticesx(k)0 ; : : : ; x
(k)
n .s

1

n+ 1

X
l

(f(x
(k)
l )� f(x(k)))2 � FTOL2

wheref(x(k)) = 1
n+1

P
l f(x

(k)
l ). If there area active boundary constraints

atx(k), the mean and standard deviation are computed only for then+ 1 � a
unconstrained vertices. The default istc[5] =1E�6.

� tc[6]
specifies the absolute function convergence criterion (ABSFTOL). Termination
requires a small absolute difference between the function values of the vertices
in the simplex with the largest and smallest function values.

jf (k)hi � f
(k)
lo j � ABSFTOL
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The default istc[6] = 0.

� tc[7]
specifies the FSIZE value used in the FTOL termination criterion. The default
is tc[7] = 0.

� tc[8]
specifies the relative parameter convergence criterion (XTOL). Termination
requires a small relative parameter difference between the vertices with the
largest and smallest function values.

maxj jxloj � xhij j
max(jxloj j; jxhij j;XSIZE)

� XTOL

The default istc[8] =1E�8.

� tc[9]
specifies the absolute parameter convergence criterion (ABSXTOL). Termina-
tion requires either a small length,�(k), of the vertices of a restart simplex or a
small simplex size,�(k).

�(k) � ABSXTOL

�(k) � ABSXTOL

where�(k) is defined as the L1 distance of the simplex vertex with the smallest

function value,y(k), to the othern simplex points,x(k)l 6= y.

�(k) =
X
xl 6=y

k x(k)l � y(k) k1

The default istc[9] =1E�8.

� tc[10]
specifies the XSIZE value used in the XTOL termination criterion. The default
is tc[10] = 0.

Termination Criteria for Unconstrained and Linearly Constrained Techniques

� tc[4]
specifies the relative gradient convergence criterion (GTOL). For all techniques
except the NLPCG subroutine, termination requires that the normalized pre-
dicted function reduction is small.

g(x(k))T [G(k)]�1g(x(k))

max(jf(x(k))j;FSIZE)
� GTOL
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whereFSIZEis defined bytc[10]. For the NLPCG technique (where a reliable
Hessian estimate is not available),

k g(x(k)) k22 k s(x(k)) k2
k g(x(k))� g(x(k�1)) k2 max(jf(x(k))j;FSIZE)

� GTOL

is used. The default istc[4] =1E�8.

� tc[5]
specifies another relative gradient convergence criterion (GTOL2). This crite-
rion is used only by the NLPLM subroutine.

max
j

jgj(x(k))jq
f(x(k))G

(k)
j;j

� GTOL2

The default istc[5]=0.

� tc[6]
specifies the absolute gradient convergence criterion (ABSGTOL). Termina-
tion requires that the maximum absolute gradient element be small.

max
j
jgj(x(k))j � ABSGTOL

The default istc[6] =1E�5.

� tc[7]
specifies the relative function convergence criterion (FTOL). Termination re-
quires a small relative change of the function value in consecutive iterations.

jf(x(k))� f(x(k�1))j
max(jf(x(k�1))j; FSIZE)

� FTOL

whereFSIZE is defined bytc[10]. The default istc[7] = 10�FDIGITS, where
FDIGITS is controlled by thepar[8] argument. Thepar[8] argument has a
default value oflog10(�), where� is the machine precision. Hence, the default
for FTOL is �.

� tc[8]
specifies another function convergence criterion (FTOL2). For least-squares
problems, termination requires a small predicted reduction of the objective
function,df (k) � f(x(k))�f(x(k)+s(k)). The predicted reduction is computed
by approximating the objective function by the first two terms of the Taylor se-
ries and substituting the Newton step,s(k) = �G(k)�1g(k), as follows:

df (k) = �g(k)T s(k) � 1

2
s(k)TG(k)s(k)

= �1

2
s(k)T g(k)

� FTOL2
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The FTOL2 criterion is the unscaled version of the GTOL criterion. The default
is tc[8]=0.

� tc[9]
specifies the absolute function convergence criterion (ABSFTOL). Termination
requires a small change of the function value in consecutive iterations.

jf(x(k�1))� f(x(k))j � ABSFTOL

The default istc[9]=0.

� tc[10]
specifies the FSIZE value used in the GTOL and FTOL termination criteria.
The default istc[10]=0.

� tc[11]
specifies the relative parameter convergence criterion (XTOL). Termination re-
quires a small relative parameter change in consecutive iterations.

maxj jx(k)j � x
(k�1)
j j

max(jx(k)j j; jx(k�1)j j;XSIZE)
� XTOL

The default istc[11]=0.

� tc[12]
specifies the absolute parameter convergence criterion (ABSXTOL). Termina-
tion requires a small Euclidean distance between parameter vectors in consec-
utive iterations.

k x(k) � x(k�1) k2� ABSXTOL

The default istc[12]=0.

� tc[13]
specifies the XSIZE value used in the XTOL termination criterion. The default
is tc[13]=0.

Termination Criteria for Nonlinearly Constrained Techniques
The only algorithm available for nonlinearly constrained optimization other than the
NLPNMS subroutine is the NLPQN subroutine, when you specify the"nlc" module
argument. This method, unlike the other optimization methods, does not monotoni-
cally reduce the value of the objective function or some kind of merit function that
combines objective and constraint functions. Instead, the algorithm uses the watch-
dog technique with backtracking of Chamberlain and others (1982). Therefore, no
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termination criteria are implemented that are based on the valuesx or f in consecu-
tive iterations. In addition to the criteria used by all optimization techniques, there are
three other termination criteria available; these are based on the Lagrange function

L(x; �) = f(x)�
mX
i=1

�ici(x)

and its gradient

rxL(x; �) = g(x) �
mX
i=1

�irxci(x)

wherem denotes the total number of constraints,g = g(x) is the gradient of the
objective function, and� is the vector of Lagrange multipliers. The Kuhn-Tucker
conditions require that the gradient of the Lagrange function is zero at the optimal
point (x�; ��), as follows:

rxL(x
�; ��) = 0

� tc[4]
specifies the GTOL criterion, which requires that the normalized predicted
function reduction be small.

jg(x(k))s(x(k))j+Pm
i=1 j�ici(x(k))j

max(jf(x(k))j;FSIZE)
� GTOL

whereFSIZEis defined by thetc[10] argument. The default istc[4] =1E�8.

� tc[6]
specifies the ABSGTOL criterion, which requires that the maximum absolute
gradient element of the Lagrange function be small.

max
j
jfrxL(x

(k); �(k))gj j � ABSGTOL

The default istc[6] =1E�5.

� tc[8]
specifies the FTOL2 criterion, which requires that the predicted function re-
duction be small.

jg(x(k))s(x(k))j+
mX
i=1

j�icij � FTOL2:

The default istc[8] =1E�6. This is the criterion used by the programs VM-
CWD and VF02AD of Powell (1982b).
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Control Parameters Vector

For all optimization and least-squares subroutines, the input argumentpar specifies
a vector of parameters that control the optimization process. For the NLPFDD and
NLPFEA subroutines, thepar argument is defined differently. For each element of the
par vector there exists a default value, and if you specify a missing value, the default
is used. Table 11.5 summarizes the uses of thepar argument for the optimization and
least-squares subroutines.

Table 11.5. Summary of the Control Parameters Vector

Index Description
1 specifies the singularity criterion (SINGULAR)
2 specifies the initial step length or trust-region radius
3 specifies the range for active (violated) constraints (LCEPS)
4 specifies the Lagrange multiplier threshold for constraints (LCDEACT)
5 specifies a criterion to determine linear dependence of constraints (LCS-

ING)
6 specifies the required accuracy of the line-search algorithms (LSPRECI-

SION)
7 reduces the line-search step size in successive iterations (DAMPSTEP)
8 specifies the number of accurate digits used in evaluating the objective

function (FDIGITS)
9 specifies the number of accurate digits used in evaluating the nonlinear

constraints (CDIGITS)
10 specifies a scalar factor for the diagonal of the initial Hessian (DIAHES)

� par[1]
specifies the singularity criterion for the decomposition of the Hessian matrix
(SINGULAR). The value must be between zero and one, and the default is
par[1] =1E�8.

� par[2]
specifies different features depending on the subroutine in which it is used.
In the NLPNMS subroutine, it defines the size of the start simplex. For the
original Nelder-Mead simplex algorithm, the default value ispar[2] = 1; for
the COBYLA algorithm, the default ispar[2] = 0:5. In the NLPCG, NLPQN,
and NLPHQN subroutines, thepar[2] argument specifies an upper bound for
the initial step length for the line search during the first five iterations. The
default initial step length ispar[2] = 1. In the NLPTR, NLPDD, and NLPLM
subroutines, thepar[2] argument specifies a factor for the initial trust-region
radius,�. For highly nonlinear functions, the default step length or trust-
region radius can result in arithmetic overflows. In that case, you can specify
stepwise decreasing values ofpar[2], such aspar[2]=1E�1, par[2]=1E�2,
par[2]=1E�4, until the subroutine starts to iterate successfully.
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� par[3]
specifies the range (LCEPS) for active and violated linear constraints. The
ith constraint is considered an active constraint if the pointx(k) satisfies the
condition������

nX
j=1

aijx
(k)
j � bi

������ � LCEPS(jbij+ 1)

whereLCEPSis the value ofpar[3] andaij andbi are defined as in the section
“Parameter Constraints” on page 317. Otherwise, the constrainti is either an
inactive inequality or a violated inequality or equality constraint. The default is
par[3] =1E�8. During the optimization process, the introduction of rounding
errors can force the subroutine to increase the value ofpar[3] by a power of 10,
but the value will never become larger than 1E�3.

� par[4]
specifies a threshold (LCDEACT) for the Lagrange multiplier that decides
whether an active inequality constraint must remain active or can be deac-
tivated. For maximization,par[4] must be positive, and for minimization,
par[4] must be negative. The default is

par[4] = �min
�
0:01;max

�
0:1 � ABSGTOL; 0:001 � gmax(k)

��
where the positive value is for maximization and the negative value is for mini-
mization.ABSGTOLis the value of the absolute gradient criterion, andgmax(k)

is the maximum absolute element of the gradient,g(k), or the projected gradi-
ent,ZT g(k).

� par[5]
specifies a criterion (LCSING) used in the update of the QR decomposition
that decides whether an active constraint is linearly dependent on a set of other
active constraints. The default ispar[5] =1E�8. As the value ofpar[5] in-
creases, more active constraints are recognized as being linearly dependent. If
the value ofpar[5] is larger than0:1, it is reset to0:1, and if it is negative, it is
reset to zero.

� par[6]
specifies the degree of accuracy (LSPRECISION) that should be obtained by
the second or third line-search algorithm. This argument can be used with the
NLPCG, NLPHQN, and NLPNRA algorithms and with the NLPQN algorithm
if the "nlc" argument is specified. Usually, an imprecise line search is compu-
tationally inexpensive and successful, but for more difficult optimization prob-
lems, a more precise and time consuming line search may be necessary. Refer
to Fletcher (1987) for details. If you have numerical problems, you should de-
crease the value of thepar[6] argument to obtain a more precise line search.
The default values are given in the following table.
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Subroutine Update Method Default value
NLPCG All par[6] = 0.1
NLPHQN DBFGS par[6] = 0.1
NLPHQN DDFP par[6] = 0.06
NLPNRA No update par[6] = 0.9
NLPQN BFGS, DBFGS par[6] = 0.4
NLPQN DFP, DDFP par[6] = 0.06

� par[7]
specifies a scalar factor (DAMPSTEP) that can be used to reduce the step size
in each of the first five iterations. In each of these iterations, the starting step
size,�(0), can be no larger than the value ofpar[7] times the step size obtained
by the line-search algorithm in the previous iteration. Ifpar[7] is missing or
ifpar[7]=0, which is the default, the starting step size in iterationt is computed
as a function of the function change from the former iteration,f (t�1) � f (t).
If the computed value is outside the interval[0:1; 10:0], it is moved to the next
endpoint. You can further restrict the starting step size in the first five iterations
with thepar[2] argument.

� par[8]
specifies the number of accurate digits (FDIGITS) used to evaluate the objec-
tive function. The default is� log10(�), where� is the machine precision, and
fractional values are permitted. This value is used to compute the step sizeh
for finite difference derivatives and the default value for the FTOL termination
criterion.

� par[9]
specifies the number of accurate digits (CDIGITS) used to evaluate the nonlin-
ear constraint functions of the"nlc" module. The default is� log10(�), where�
is the machine precision, and fractional values are permitted. The value is used
to compute the step sizeh for finite difference derivatives. If first-order deriva-
tives are specified by the"jacnlc" module, thepar[9] argument is ignored.

� par[10]
specifies a scalar factor (DIAHES) for the diagonal of the initial Hessian
approximation. This argument is available in the NLPDD, NLPHQN, and
NLPQN subroutines. If theopt[7] argument is not specified, the initial Hessian
approximation is a multiple of the identity matrix determined by the magni-
tude of the initial gradientg(x(0)). The value of thepar[10] argument is used
to specifypar[10] � I for the initial Hessian in the quasi-Newton algorithm.

Printing the Optimization History

Each optimization and least-squares subroutine prints the optimization history, as
long asopt[2] � 1 and you do not specify the"ptit" module argument. You can
use this output to check for possible convergence problems. If you specify the"ptit"

SAS OnlineDoc: Version 8



Printing the Optimization History � 335

argument, you can enter a print command inside the module, which is called at each
iteration.

The amount of information printed depends on theopt[2] argument. See the section
“Options Vector” on page 319.

The output consists of three main parts:

� Optimization Start Output
The following information about the initial state of the optimization can be
printed:

– the number of constraints that are active at the starting point, or, more
precisely, the number of constraints that are currently members of the
working set. If this number is followed by a plus sign (+), there are more
active constraints, at least one of which is temporarily released from the
working set due to negative Lagrange multipliers.

– the value of the objective function at the starting point

– the value of the largest absolute (projected) gradient element

– the initial trust-region radius for the NLPTR and NLPLM subroutines

� General Iteration History
In general, the iteration history consists of one line of printed output for each it-
eration, with the exception of the Nelder-Mead simplex method. The NLPNMS
subroutine prints a line only after several internal iterations because some of the
termination tests are time-consuming compared to the simplex operations and
because the subroutine typically uses many iterations.

The iteration history always includes the following columns:

– iter is the iteration number.

– nrestis the number of iteration restarts.

– nfun is the number of function calls.

– act is the number of active constraints.

– optcrit is the value of the optimization criterion.

– difcrit is the difference between adjacent function values.

– maxgrad is the maximum of the absolute (projected) gradient compo-
nents.

An apostrophe trailing the number of active constraints indicates that at least
one of the active constraints was released from the active set due to a significant
Lagrange multiplier.

Some subroutines print additional information at each iteration; for details see
the entry corresponding to each subroutine in the “Nonlinear Optimization and
Related Subroutines” section on page 631.

� Optimization Result Output
The output ends with the following information about the optimization result:

– the number of constraints that are active at the final point, or more pre-
cisely, the number of constraints that are currently members of the work-
ing set. When this number is followed by a plus sign (+), there are more
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active constraints, at least one of which is temporarily released from the
working set due to negative Lagrange multipliers.

– the value of the objective function at the final point

– the value of the largest absolute (projected) gradient element

Nonlinear Optimization Examples

Example 11.1. Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming. It
appeared originally in Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals that
satisfy the mixture’s chemical equilibrium state. The second law of thermodynamics
implies that at a constant temperature and pressure, a mixture of chemicals satisfies
its chemical equilibrium state when the free energy of the mixture is reduced to a
minimum. Therefore, the composition of the chemicals satisfying its chemical equi-
librium state can be found by minimizing the free energy of the mixture.

The following notation is used in this problem:

m number of chemical elements in the mixture
n number of compounds in the mixture
xj number of moles for compoundj, j = 1; : : : ; n
s total number of moles in the mixture,s =

Pn
i=1 xj

aij number of atoms of elementi in a molecule of compoundj
bi atomic weight of elementi in the mixturei = 1; : : : ; n

The constraints for the mixture are as follows. Each of the compounds must have a
nonnegative number of moles.

xj � 0; j = 1; : : : ; n

There is a mass balance relationship for each element. Each relation is given by a
linear equality constraint.

nX
j=1

aijxj = bi; i = 1; : : : ;m

The objective function is the total free energy of the mixture.

f(x) =
nX

j=1

xj

h
cj + ln

�xj
s

�i
where

cj =

�
F 0

RT

�
j

+ ln(P )
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and
�
F 0=RT

�
j

is the model standard free energy function for thejth compound. The

value of
�
F 0=RT

�
j

is found in existing tables.P is the total pressure in atmospheres.

The problem is to determine the parametersxj that minimize the objective function
f(x) subject to the nonnegativity and linear balance constraints. To illustrate this,
consider the following situation. Determine the equilibrium composition of com-
pound 1

2N2H4 +
1
2O2 at temperatureT = 3500�K and pressureP = 750 psi. The

following table gives a summary of the information necessary to solve the problem.

aij
i=1 i=2 i=3

j Compound (F 0=RT )j cj H N O
1 H �10:021 �6:089 1
2 H2 �21:096 �17:164 2
3 H2O �37:986 �34:054 2 1
4 N �9:846 �5:914 1
5 N2 �28:653 �24:721 2
6 NH �18:918 �14:986 1 1
7 NO �28:032 �24:100 1 1
8 O �14:640 �10:708 1
9 O2 �30:594 �26:662 2

10 OH �26:111 �22:179 1 1

The following statements solve the minimization problem:

proc iml;
c = { -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179 };
start F_BRACK(x) global(c);

s = x[+];
f = sum(x # (c + log(x / s)));
return(f);

finish F_BRACK;

con = { . . . . . . . . . . . . ,
. . . . . . . . . . . . ,
1. 2. 2. . . 1. . . . 1. 0. 2. ,
. . . 1. 2. 1. 1. . . . 0. 1. ,
. . 1. . . . 1. 1. 2. 1. 0. 1. };

con[1,1:10] = 1.e-6;

x0 = j(1,10, .1);
optn = {0 3};

title ’NLPTR subroutine: No Derivatives’;
call nlptr(xres,rc,"F_BRACK",x0,optn,con);

TheF- BRACKmodule specifies the objective function,f(x). The matrix CON spec-
ifies the constraints. The first row gives the lower bound for each parameter, and to
prevent the evaluation of thelog(x) function for values ofx that are too small, the
lower bounds are set here to 1E�6. The following three rows contain the three linear
equality constraints.
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The starting point, which must be given to specify the number of parameters, is rep-
resented by X0. The first element of the OPTN vector specifies a minimization prob-
lem, and the second element specifies the amount of printed output.

The CALL NLPTR statement runs trust-region minimization. In this case, since no
analytic derivatives are specified, theF- BRACKmodule is used to generate finite
difference approximations for the gradient vector and Hessian matrix.

The output is shown in the following figures. The iteration history does not show any
problems.

Optimization Start

Active Constraints 3 Objective Function -45.05516448
Max Abs Gradient 4.4710303342 Radius 1
Element

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 3’ -47.33413 2.2790 4.3613 2.456 1.000
2 0 3 3’ -47.70051 0.3664 7.0044 0.908 0.418
3 0 4 3 -47.73117 0.0307 5.3051 0 0.359
4 0 5 3 -47.73426 0.00310 3.7015 0 0.118
5 0 6 3 -47.73982 0.00555 2.3054 0 0.0169
6 0 7 3 -47.74846 0.00864 1.3029 90.184 0.00476
7 0 9 3 -47.75796 0.00950 0.5073 0 0.0134
8 0 10 3 -47.76094 0.00297 0.0988 0 0.0124
9 0 11 3 -47.76109 0.000155 0.00447 0 0.0111

10 0 12 3 -47.76109 3.385E-7 0.000011 0 0.00332

Optimization Results

Iterations 10 Function Calls 13
Hessian Calls 11 Active Constraints 3
Objective Function -47.76109086 Max Abs Gradient 7.3901293E-6

Element
Lambda 0 Actual Over Pred 0

Change
Radius 0.0033214552

The output lists the optimal parameters with the gradient.
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Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.040668 -9.785055
2 X2 0.147730 -19.570111
3 X3 0.783154 -34.792170
4 X4 0.001414 -12.968920
5 X5 0.485247 -25.937841
6 X6 0.000693 -22.753976
7 X7 0.027399 -28.190992
8 X8 0.017947 -15.222060
9 X9 0.037314 -30.444119

10 X10 0.096871 -25.007115

Value of Objective Function = -47.76109086

The three equality constraints are satisfied at the solution.

Linear Constraints Evaluated at Solution

[1] ACT -3.053E-16 = -2.0000 + 1.0000 * X1 + 2.0000 * X2
+ 2.0000 * X3 + 1.0000 * X6 + 1.0000 * X10

[2] ACT -1.735E-17 = -1.0000 + 1.0000 * X4 + 2.0000 * X5
+ 1.0000 * X6 + 1.0000 * X7

[3] ACT -1.527E-16 = -1.0000 + 1.0000 * X3 + 1.0000 * X7
+ 1.0000 * X8 + 2.0000 * X9 + 1.0000 * X10

The Lagrange multipliers and the projected gradient are also printed. The elements
of the projected gradient must be small to satisfy a first-order optimality condition.

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Linear EC [1] -9.785055
Linear EC [2] -12.968922
Linear EC [3] -15.222061

Projected Gradient

Free Projected
Dimension Gradient

1 0.000000328
2 -9.703359E-8
3 3.2183113E-8
4 -0.000007390
5 -0.000005172
6 -0.000005669
7 -0.000000937
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Example 11.2. Network Flow and Delay

The following example is taken from the user’s guide of the GINO program (Lieb-
man, Lasdon, Schrage, and Waren 1986). A simple network of five roads (arcs) can
be illustrated by a path diagram.

The five roads connect four intersections illustrated by numbered nodes. Each minute,
F vehicles enter and leave the network. The parameterxij refers to the flow from
nodei to nodej. The requirement that traffic that flows into each intersectionj must
also flow out is described by the linear equality constraint

X
i

xij =
X
i

xji ; j = 1; : : : ; n

In general, roads also have an upper limit on the number of vehicles that can be han-
dled per minute. These limits, denotedcij, can be enforced by boundary constraints:

0 � xij � cij

The goal in this problem is to maximize the flow, which is equivalent to maximizing
the objective functionf(x), wheref(x) is

f(x) = x24 + x34

The boundary constraints are

0 � x12; x32; x34 � 10

0 � x13; x24 � 30

and the flow constraints are

x13 = x32 + x34

x24 = x12 + x32

x12 + x13 = x24 + x34

The three linear equality constraints are linearly dependent. One of them is deleted
automatically by the optimization subroutine. The following notation is used in this
example:

X1 = x12; X2 = x13; X3 = x32; X4 = x24; X5 = x34

Even though the NLPCG subroutine is used, any other optimization subroutine would
also solve this small problem.
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proc iml;
title ’Maximum Flow Through a Network’;
start MAXFLOW(x);

f = x[4] + x[5];
return(f);

finish MAXFLOW;

con = { 0. 0. 0. 0. 0. . . ,
10. 30. 10. 30. 10. . . ,

0. 1. -1. 0. -1. 0. 0. ,
1. 0. 1. -1. 0. 0. 0. ,
1. 1. 0. -1. -1. 0. 0. };

x = j(1,5, 1.);
optn = {1 3};
call nlpcg(xres,rc,"MAXFLOW",x,optn,con);

The optimal solution is shown in the following output.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 10.000000 0 Upper BC
2 X2 10.000000 0
3 X3 10.000000 1.000000 Upper BC
4 X4 20.000000 1.000000
5 X5 -1.11022E-16 0 Lower BC

Value of Objective Function = 30

Finding the maximum flow through a network is equivalent to solving a simple linear
optimization problem, and for large problems, the LP procedure or the NETFLOW
procedure of the SAS/OR product can be used. On the other hand, finding a traffic
pattern that minimizes the total delay to moveF vehicles per minute from node 1 to
node 4 includes nonlinearities that need nonlinear optimization techniques. As traffic
volume increases, speed decreases. Lettij be the travel time on arc(i; j) and assume
that the following formulas describe the travel time as decreasing functions of the
amount of traffic:

t12 = 5 + 0:1x12=(1� x12=10)

t13 = x13=(1 � x13=30)

t32 = 1 + x32=(1� x32=10)

t24 = x24=(1 � x24=30)

t34 = 5 + x34=(1� x34=10)
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These formulas use the road capacities (upper bounds), and you can assume that
F = 5 vehicles per minute have to be moved through the network. The objective is
now to minimize

f = f(x) = t12x12 + t13x13 + t32x32 + t24x24 + t34x34

The constraints are

0 � x12; x32; x34 � 10

0 � x13; x24 � 30

x13 = x32 + x34

x24 = x12 + x32

x24 + x34 = F = 5

In the following code, the NLPNRR subroutine is used to solve the minimization
problem:

proc iml;
title ’Minimize Total Delay in Network’;
start MINDEL(x);

t12 = 5. + .1 * x[1] / (1. - x[1] / 10.);
t13 = x[2] / (1. - x[2] / 30.);
t32 = 1. + x[3] / (1. - x[3] / 10.);
t24 = x[4] / (1. - x[4] / 30.);
t34 = 5. + .1 * x[5] / (1. - x[5] / 10.);
f = t12*x[1] + t13*x[2] + t32*x[3] + t24*x[4] + t34*x[5];
return(f);

finish MINDEL;

con = { 0. 0. 0. 0. 0. . . ,
10. 30. 10. 30. 10. . . ,

0. 1. -1. 0. -1. 0. 0. ,
1. 0. 1. -1. 0. 0. 0. ,
0. 0. 0. 1. 1. 0. 5. };

x = j(1,5, 1.);
optn = {0 3};
call nlpnrr(xres,rc,"MINDEL",x,optn,con);

The optimal solution is shown in the following output.
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Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.500001 5.777778
2 X2 2.499999 5.702478
3 X3 5.551115E-17 1.000000 Lower BC
4 X4 2.500001 5.702481
5 X5 2.499999 5.777778

Value of Objective Function = 40.303030303

The active constraints and corresponding Lagrange multiplier estimates (costs) are
shown in the following output.

Linear Constraints Evaluated at Solution

[1] ACT 0 = 0 + 1.0000 * X2 - 1.0000 * X3 - 1.0000 * X5

[2] ACT 4.4409E-16 = 0 + 1.0000 * X1 + 1.0000 * X3 - 1.0000 * X4

[3] ACT 0 = -5.0000 + 1.0000 * X4 + 1.0000 * X5

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Lower BC X3 0.924702
Linear EC [1] 5.702479
Linear EC [2] 5.777777
Linear EC [3] 11.480257

Example 11.3. Compartmental Analysis

Numerical Considerations
An important class of nonlinear models involves a dynamic description of the re-
sponse rather than an explicit description. These models arise often in chemical ki-
netics, pharmacokinetics, and ecological compartmental modeling. Two examples
are presented in this section. Refer to Bates and Watts (1988) for a more general
introduction to the topic.

In this class of problems, function evaluations, as well as gradient evaluations, are
not done in full precision. Evaluating a function involves the numerical solution of
a differential equation with some prescribed precision. Therefore, two choices exist
for evaluating first- and second-order derivatives:

� differential equation approach

� finite difference approach
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In the differential equation approach, the components of the Hessian and the gradient
are written as a solution of a system of differential equations that can be solved si-
multaneously with the original system. However, the size of a system of differential
equations,n, would suddenly increase ton2+2n. This huge increase makes the finite
difference approach an easier one.

With the finite difference approach, a very delicate balance of all the precision re-
quirements of every routine must exist. In the examples that follow, notice the rela-
tive levels of precision that are imposed on different modules. Since finite differences
are used to compute the first- and second-order derivatives, it is incorrect to set the
precision of the ODE solver at a coarse level because that would render the numerical
estimation finite difference worthless.

A coarse computation of the solution of the differential equation cannot be accom-
panied by very fine computation of the finite difference estimates of the gradient and
the Hessian. That is, you cannot set the precision of the differential equation solver
to be 1E�4 and perform the finite difference estimation with a precision of 1E�10.
In addition, this precision must be well-balanced with the termination criteria im-
posed on the optimization process.

In general, if the precision of the function evaluation isO(�), the gradient should
be computed by finite differencesO(

p
�), and the Hessian should be computed with

finite differencesO(�
1

3 ). �

Diffusion of Tetracycline
Consider the concentration of tetracycline hydrochloride in blood serum. The tetra-
cycline is administered to a subject orally, and the concentration of the tetracycline
in the serum is measured. The biological system to be modeled will consist of two
compartments: a gut compartment in which tetracycline is injected and a blood com-
partment that absorbs the tetracycline from the gut compartment for delivery to the
body. Let
1(t) and
2(t) be the concentrations at timet in the gut and the serum,
respectively. Let�1 and �2 be the transfer parameters. The model is depicted as
follows.

Gut Compartment (Source)
Chemical is introduced

Concentration
1(t)
-

Blood Compartment (Sink)
Chemical is absorbed
Concentration
2(t)

?

�1

�2

The rates of flow of the drug are described by the following pair of ordinary differen-
tial equations:

d
1(t)

dt
= ��1
1(t)

d
2(t)

dt
= �1
1(t)� �2
2(t)

�In Release 6.09 and in later releases, you can specify the step sizeh in the finite difference formulas.
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The initial concentration of the tetracycline in the gut is unknown, and while the
concentration in the blood can be measured at all times, initially it is assumed to be
zero. Therefore, for the differential equation, the initial conditions will be given by


1(0) = �3


2(0) = 0

Also, a nonnegativity constraint is imposed on the parameters�1, �2, and�3, although
for numerical purposes, you may need to use a small value instead of zero for these
bounds (such as 1E�7).

Supposeyi is the observed serum concentration at timeti. The parameters are esti-
mated by minimizing the sum of squares of the differences between the observed and
predicted serum concentrations:X

i

(yi � 
2(ti))
2

The following IML program illustrates how to combine the NLPDD subroutine and
the ODE subroutine to estimate the parameters(�1; �2; �3) of this model. The input
data are the measurement time and the concentration of the tetracycline in the blood.
For more information on the ODE call, see the “ODE Call” section on page 670.

data tetra;
input t c @@;
datalines;

1 0.7 2 1.2 3 1.4 4 1.4 6 1.1
8 0.8 10 0.6 12 0.5 16 0.3

;

proc iml;
use tetra;
read all into tetra;
start f(theta) global(thmtrx,t,h,tetra,eps);

thmtrx = ( -theta[1] || 0 ) //
( theta[1] || -theta[2] );

c = theta[3]//0 ;
t = 0 // tetra[,1];
call ode( r1, "der",c , t, h) j="jac" eps=eps;
f = ssq((r1[2,])‘-tetra[,2]);
return(f);

finish;

start der(t,x) global(thmtrx);
y = thmtrx*x;
return(y);

finish;

start jac(t,x) global(thmtrx);
y = thmtrx;
return(y);
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finish;

h = {1.e-14 1. 1.e-5};
opt = {0 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-8;
par = { 1.e-13 . 1.e-10 . . . . };
con = j(1,3,0.);
itheta = { .1 .3 10};
eps = 1.e-11;

call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The output from the optimization process is shown in Output 11.3.1.
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Output 11.3.1. Printed Output for Tetracycline Diffusion Problem

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint

1 X1 0.100000 76.48208 0 .
2 X2 0.300000 -48.32095 0 .
3 X3 10.000000 1.66610 0 .

Value of Objective Function = 4.1469872335

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 3
Lower Bounds 3
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 4.1469872326
Max Abs Gradient 76.543381 Radius 1
Element

Max Abs Slope
Rest Func Act Objective Obj Fun Gradient Search

Iter arts Calls Con Function Change Element Lambda Direc

1 0 5 0 3.12117 1.0258 124.3 67.129 -8.023
2 0 6 0 0.89524 2.2259 14.1471 1.885 -5.021
3 0 7 0 0.32333 0.5719 3.7144 1.186 -0.786
.
.
.

31 0 38 0 0.03565 4.24E-11 3.196E-6 0 -18E-12

SAS OnlineDoc: Version 8



348 � Chapter 11. Nonlinear Optimization Examples

Output 11.3.1. (continued)

Optimization Results

Iterations 31 Function Calls 39
Gradient Calls 33 Active Constraints 0
Objective Function 0.035648021 Max Abs Gradient 3.195746E-6

Element

Optimization Results

Slope of Search -1.76538E-11 Radius 1
Direction

GCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.182440 -0.00251
2 X2 0.436010 0.00122
3 X3 6.020476 -0.0001875

Value of Objective Function = 0.0356480211

The differential equation model is linear, and in fact, it can be solved using an eigen-
value decomposition (this is not always feasible without complex arithmetic). Al-
ternately, the availability and the simplicity of the closed form representation of the
solution enables you to replace the solution produced by the ODE routine with the
simpler and faster analytical solution. Closed forms are not expected to be easily
available for nonlinear systems of differential equations, which is why the preceding
solution was introduced.

The closed form of the solution requires a change to the functionf(�). The functions
needed as arguments of the ODE routine, namely theder and jac modules, can be
removed.

start f(th) global(theta,tetra);
theta = th;
vv = v(tetra[,1]);
error = ssq(vv-tetra[,2]);
return(error);

finish;

start v(t) global(theta);
v = theta[3]*theta[1]/(theta[2]-theta[1])*

(exp(-theta[1]*t)-exp(-theta[2]*t));
return(v);

finish;
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call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates, which are shown in Output 11.3.2, are close to those ob-
tained by the first solution.

Output 11.3.2. Second Set of Parameter Estimates for Tetracycline Diffusion

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.183025 -0.000003196
2 X2 0.434482 0.000002274
3 X3 5.995241 -0.000001035

Value of Objective Function = 0.0356467763

Because of the nature of the closed form of the solution, you may want to add an
additional constraint to guarantee that�2 6= �1 at any time during the optimization.
This will prevent a possible division by0 or a value near0 in the execution of thev(�)
function. For example, you might add the constraint

�2 � �1 � 10�7

Chemical Kinetics of Pyrolysis of Oil Shale
Pyrolysis is a chemical change effected by the action of heat, and this example con-
siders the pyrolysis of oil shale described in Ziegel and Gorman (1980). Oil shale
contains organic material that is bonded to the rock. To extract oil from the rock,
heat is applied, and the organic material is decomposed into oil, bitumen, and other
by-products. The model is given by

d
1(t)

dt
= �(�1 + �4)
1(t)�(t; �5)

d
2(t)

dt
= [�1
1(t)� (�2 + �3)
2(t)]�(t; �5)

d
3(t)

dt
= [�4
1(t) + �2
2(t)]�(t; �5)

with the initial conditions


1(t) = 100; 
2(t) = 0; 
3(t) = 0

A dead time is assumed to exist in the process. That is, no change occurs up to time
�5. This is controlled by the indicator function�(t; �5), which is given by

�(t; �5) =

�
0 if t < �5
1 if t � �5
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where�5 � 0. Only one of the cases in Ziegel and Gorman (1980) is analyzed in
this report, but the others can be handled in a similar manner. The following IML
program illustrates how to combine the NLPQN subroutine and the ODE subroutine
to estimate the parameters�i in this model:

data oil ( drop=temp);
input temp time bitumen oil;
datalines;

673 5 0. 0.
673 7 2.2 0.
673 10 11.5 0.7
673 15 13.7 7.2
673 20 15.1 11.5
673 25 17.3 15.8
673 30 17.3 20.9
673 40 20.1 26.6
673 50 20.1 32.4
673 60 22.3 38.1
673 80 20.9 43.2
673 100 11.5 49.6
673 120 6.5 51.8
673 150 3.6 54.7
;

proc iml;
use oil;
read all into a;

/****************************************************************/
/* The INS function inserts a value given by FROM into a vector */
/* given by INTO, sorts the result, and posts the global matrix */
/* that can be used to delete the effects of the point FROM. */
/****************************************************************/

start ins(from,into) global(permm);
in = into // from;
x = i(nrow(in));
permm = inv(x[rank(in),]);
return(permm*in);

finish;

start der(t,x) global(thmtrx,thet);
y = thmtrx*x;
if ( t <= thet[5] ) then y = 0*y;
return(y);

finish;

start jac(t,x) global(thmtrx,thet);
y = thmtrx;
if ( t <= thet[5] ) then y = 0*y;
return(y);

finish;

start f(theta) global(thmtrx,thet,time,h,a,eps,permm);
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thet = theta;
thmtrx = (-(theta[1]+theta[4]) || 0 || 0 )//

(theta[1] || -(theta[2]+theta[3]) || 0 )//
(theta[4] || theta[2] || 0 );

t = ins( theta[5],time);
c = { 100, 0, 0};
call ode( r1, "der",c , t , h) j="jac" eps=eps;

/* send the intermediate value to the last column */
r = (c ||r1) * permm;
m = r[2:3,(2:nrow(time))];
mm = m‘- a[,2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));

finish;

opt = {0 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-7;
par = { 1.e-13 . 1.e-10 . . . .};
con = j(1,5,0.);
h = {1.e-14 1. 1.e-5};
time = (0 // a[,1]);
eps = 1.e-5;
itheta = { 1.e-3 1.e-3 1.e-3 1.e-3 1.};

call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates are shown in Output 11.3.3.

Output 11.3.3. Parameter Estimates for Oil Shale Pyrolysis

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.013692 150.14987
2 X2 0.012939 248.78071
3 X3 0.016303 -144.46645
4 X4 0.006638 -318.57862
5 X5 1.044177 -3.16737

Value of Objective Function = 85.597262124

Again, compare the solution using the approximation produced by the ODE subrou-
tine to the solution obtained through the closed form of the given differential equa-
tion. Impose the following additional constraint to avoid a possible division by0
when evaluating the function:

�2 + �3 � �1 � �4 � 10�7

SAS OnlineDoc: Version 8



352 � Chapter 11. Nonlinear Optimization Examples

The closed form of the solution requires a change in the functionf(�). The functions
needed as arguments of the ODE routine, namely theder andjac modules, can be
removed.

start f(thet) global(time,a);
do i = 1 to nrow(time);

t = time[i];
v1 = 100;
if ( t >= thet[5] ) then

v1 = 100*ev(t,thet[1],thet[4],thet[5]);
v2 = 0;
if ( t >= thet[5] ) then

v2 = 100*thet[1]/(thet[2]+thet[3]-thet[1]-thet[4])*
(ev(t,thet[1],thet[4],thet[5])-

ev(t,thet[2],thet[3],thet[5]));
v3 = 0;
if ( t >= thet[5] ) then

v3 = 100*thet[4]/(thet[1]+thet[4])*
(1. - ev(t,thet[1],thet[4],thet[5])) +
100*thet[1]*thet[2]/(thet[2]+thet[3]-thet[1]-thet[4])*(
(1.-ev(t,thet[1],thet[4],thet[5]))/(thet[1]+thet[4]) -
(1.-ev(t,thet[2],thet[3],thet[5]))/(thet[2]+thet[3]) );

y = y // (v1 || v2 || v3);
end;
mm = y[,2:3]-a[,2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));

finish;

start ev(t,a,b,c);
return(exp(-(a+b)*(t-c)));

finish;

con = { 0. 0. 0. 0. . . . ,
. . . . . . . ,

-1 1 1 -1 . 1 1.e-7 };
time = a[,1];
par = { 1.e-13 . 1.e-10 . . . .};
itheta = { 1.e-3 1.e-3 1.e-2 1.e-3 1.};

call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates are shown in Output 11.3.4.

Output 11.3.4. Second Set of Parameter Estimates for Oil Shale Pyrolysis

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.017178 -0.005291
2 X2 0.008912 0.002413
3 X3 0.020007 -0.000520
4 X4 0.010494 -0.002890
5 X5 7.771534 0.000003217

Value of Objective Function = 20.689350642SAS OnlineDoc: Version 8
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Example 11.4. MLEs for Two-Parameter Weibull Distribution

This example considers a data set given in Lawless (1982). The data are the number
of days it took rats painted with a carcinogen to develop carcinoma. The last two
observations are censored. Maximum likelihood estimates (MLEs) and confidence
intervals for the parameters of the Weibull distribution are computed. In the following
code, the data set is given in the vector CARCIN, and the variables P and M give the
total number of observations and the number of uncensored observations. The setD
represents the indices of the observations.

proc iml;
carcin = { 143 164 188 188 190 192 206

209 213 216 220 227 230 234
246 265 304 216 244 };

p = ncol(carcin); m = p - 2;

The three-parameter Weibull distribution uses three parameters: a scale parameter,
a shape parameter, and a location parameter. This example computes MLEs and
corresponding 95% confidence intervals for the scale parameter,�, and the shape
parameter,c, for a constant value of the location parameter,� = 0. The program can
be generalized to estimate all three parameters. Note that Lawless (1982) denotes�,
c, and� by �, �, and�, respectively.

The observed likelihood function of the three-parameter Weibull distribution is

L(�; �; c) =
cm

�m

Y
i2D

�
ti � �

�

�c�1 pY
i=1

exp

�
�
�
ti � �

�

�c�

and the log likelihood,̀(�; �; c) = logL(�; �; c), is

`(�; �; c) = m log c�mc log � + (c� 1)
X
i2D

log(ti � �)�
pX

i=1

�
ti � �

�

�c

The log-likelihood function,̀ (�; �; c), for � = 0 is the objective function to be max-
imized to obtain the MLEs(�̂; ĉ):

start f_weib2(x) global(carcin,thet);
/* x[1]=sigma and x[2]=c */
p = ncol(carcin); m = p - 2;
sum1 = 0.; sum2 = 0.;
do i = 1 to p;

temp = carcin[i] - thet;
if i <= m then sum1 = sum1 + log(temp);
sum2 = sum2 + (temp / x[1])##x[2];

end;
f = m*log(x[2]) - m*x[2]*log(x[1]) + (x[2]-1)*sum1 - sum2;
return(f);

finish f_weib2;
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The derivatives of̀ with respect to the parameters�, �, andc are given in Lawless
(1982). The following code specifies a gradient module, which computes@`=@� and
@`=@c:

start g_weib2(x) global(carcin,thet);
/* x[1]=sigma and x[2]=c */
p = ncol(carcin); m = p - 2;
g = j(1,2,0.);
sum1 = 0.; sum2 = 0.; sum3 = 0.;
do i = 1 to p;

temp = carcin[i] - thet;
if i <= m then sum1 = sum1 + log(temp);
sum2 = sum2 + (temp / x[1])##x[2];
sum3 = sum3 + ((temp / x[1])##x[2]) * (log(temp / x[1]));

end;
g[1] = -m * x[2] / x[1] + sum2 * x[2] / x[1];
g[2] = m / x[2] - m * log(x[1]) + sum1 - sum3;
return(g);

finish g_weib2;

The MLEs are computed by maximizing the objective function with the trust-region
algorithm in the NLPTR subroutine. The following code specifies starting values for
the two parameters,c = � = 0:5, and to avoid infeasible values during the opti-
mization process, it imposes lower bounds ofc; � >= 10�6. The optimal parameter
values are saved in the variable XOPT, and the optimal objective function value is
saved in the variable FOPT.

n = 2; thet = 0.;
x0 = j(1,n,.5);
optn = {1 2};
con = { 1.e-6 1.e-6 ,

. . };
call nlptr(rc,xres,"f_weib2",x0,optn,con,,,,"g_weib2");
/*--- Save result in xopt, fopt ---*/
xopt = xres‘; fopt = f_weib2(xopt);

The results shown in Output 11.4.1 are the same as those given in Lawless (1982).

Output 11.4.1. Parameter Estimates for Carcinogen Data

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 234.318611 1.3363283E-9
2 X2 6.083147 -7.850915E-9

Value of Objective Function = -88.23273515

The following code computes confidence intervals based on the asymptotic normal
distribution. These will be compared with the profile-likelihood-based confidence
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intervals computed in the next example. The diagonal of the inverse Hessian (as
calculated by the NLPFDD subroutine) is used to calculate the standard error.

call nlpfdd(f,g,hes2,"f_weib2",xopt,,"g_weib2");
hin2 = inv(hes2);
/* quantile of normal distribution */
prob = .05;
noqua = probit(1. - prob/2);
stderr = sqrt(abs(vecdiag(hin2)));
xlb = xopt - noqua * stderr;
xub = xopt + noqua * stderr;
print "Normal Distribution Confidence Interval";
print xlb xopt xub;

Output 11.4.2. Confidence Interval Based on Normal Distribution

Normal Distribution Confidence Interval

XLB XOP2 XUB

215.41298 234.31861 253.22425
3.9894574 6.0831471 8.1768368

Example 11.5. Profile-Likelihood-Based Confidence Intervals

This example calculates confidence intervals based on the profile likelihood for the
parameters estimated in the previous example. The following introduction on profile-
likelihood methods is based on the paper of Venzon and Moolgavkar (1988).

Let �̂ be the maximum likelihood estimate (MLE) of a parameter vector�0 2 Rn and
let `(�) be the log-likelihood function defined for parameter values� 2 � � Rn.

The profile-likelihood method reduces̀(�) to a function of a single parameter of
interest,� = �j , where� = (�1; : : : ; �j ; : : : ; �n)

0, by treating the others as nuisance
parameters and maximizing over them. The profile likelihood for� is defined as

~̀
j(�) = max

�2�j(�)
`(�)

where�j(�) = f� 2 � : �j = �g. Define the complementary parameter set
! = (�1; : : : ; �j�1; �j+1; : : : ; �n)

0 and!̂(�) as the optimizer of~̀j(�) for each value
of �. Of course, the maximum of function~̀j(�) is located at� = �̂j. The profile-
likelihood-based confidence interval for parameter�j is defined as

f� : `(�̂)� ~̀
j(�) � 1

2
q1(1� �)g

whereq1(1 � �) is the (1 � �)th quantile of the�2 distribution with one degree
of freedom. The points(�l; �u) are the endpoints of the profile-likelihood-based
confidence interval for parameter� = �j. The points�l and�u can be computed
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as the solutions of a system ofn nonlinear equationsfi(x) in n parameters, where
x = (�; !):

�
`(�)� `�

@`
@! (�)

�
= 0

where`� is the constant threshold̀� = `(�̂) � 1
2q1(1 � �). The first of thesen

equations defines the locations�l and�u where the functioǹ (�) cuts `�, and the
remainingn�1 equations define the optimality of then�1 parameters in!. Jointly,
the n equations define the locations�l and �u where the function~̀j(�) cuts the
constant threshold̀�, which is given by the roots of~̀j(�) � `�. Assuming that the
two solutionsf�l; �ug exist (they do not if the quantileq1(1 � �) is too large), this
system ofn nonlinear equations can be solved by minimizing the sum of squares of
then functionsfi(�; !):

F =
1

2

nX
i=1

f2i (�; !)

For a solution of the system ofn nonlinear equations to exist, the minimum value of
the convex functionF must be zero.

The following code defines the module for the system ofn = 2 nonlinear equations
to be solved:

start f_plwei2(x) global(carcin,ipar,lstar);
/* x[1]=sigma, x[2]=c */
like = f_weib2(x);
grad = g_weib2(x);
grad[ipar] = like - lstar;
return(grad‘);

finish f_plwei2;

The following code implements the Levenberg-Marquardt algorithm with the
NLPLM subroutine to solve the system of two equations for the left and right
endpoints of the interval. The starting point is the optimizer(�̂; ĉ), as computed in
the previous example, moved toward the left or right endpoint of the interval by an
initial step (refer to Venzon and Moolgavkar 1988). This forces the algorithm to
approach the specified endpoint.

/* quantile of chi**2 distribution */
chqua = cinv(1-prob,1); lstar = fopt - .5 * chqua;
optn = {2 0};
do ipar = 1 to 2;
/* Compute initial step: */
/* Choose (alfa,delt) to go in right direction */
/* Venzon & Moolgavkar (1988), p.89 */

if ipar=1 then ind = 2; else ind = 1;
delt = - inv(hes2[ind,ind]) * hes2[ind,ipar];
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alfa = - (hes2[ipar,ipar] - delt‘ * hes2[ind,ipar]);
if alfa > 0 then alfa = .5 * sqrt(chqua / alfa);
else do;

print "Bad alpha";
alfa = .1 * xopt[ipar];

end;
if ipar=1 then delt = 1 || delt;

else delt = delt || 1;

/* Get upper end of interval */
x0 = xopt + (alfa * delt)‘;

/* set lower bound to optimal value */
con2 = con; con2[1,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xub[ipar] = xres[ipar];

else xub[ipar] = .;

/* Get lower end of interval */
x0 = xopt - (alfa * delt)‘;

/* reset lower bound and set upper bound to optimal value */
con2[1,ipar] = con[1,ipar]; con2[2,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xlb[ipar] = xres[ipar];

else xlb[ipar] = .;
end;
print "Profile-Likelihood Confidence Interval";
print xlb xopt xub;

The results, shown in Output 11.5.1, are close to the results shown in Output 11.4.2.

Output 11.5.1. Confidence Interval Based on Profile Likelihood

Profile-Likelihood Confidence Interval

XLB XOP2 XUB

215.1963 234.31861 255.2157
4.1344126 6.0831471 8.3063797

Example 11.6. Survival Curve for Interval Censored Data

In some studies, subjects are assessed only periodically for outcomes or responses
of interest. In such situations, the occurrence times of these events are not observed
directly; instead they are known to have occurred within some time interval. The
times of occurrence of these events are said to beinterval censored. A first step in
the analysis of these interval censored data is the estimation of the distribution of the
event occurrence times.

In a study with n subjects, denote the raw interval censored observations by
f(Li; Ri] : 1 � i � ng. For theith subject, the event occurrence timeTi lies in
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(Li; Ri], whereLi is the last assessment time at which there was no evidence of the
event, andRi is the earliest time when a positive assessment was noted (if it was
observed at all). If the event does not occur before the end of the study,Ri is given a
value larger than any assessment time recorded in the data.

A set of nonoverlapping time intervalsIj = (qj ; pj ]; 1 � j � m is generated over
which the survival curveS(t) = Pr[T > t] is estimated. Refer to Peto (1973) and
Turnbull (1976) for details. Assuming the independence ofTi and(Li; Ri], and also
independence across subjects, the likelihood of the datafTi 2 (Li; Ri]; 1 � i � ng
can be constructed in terms of the pseudo-parameters�j = Pr[Ti 2 Ij ]; 1 � i � m.
The conditional likelihood of� = (�1; : : : ; �m) is

L(�) =

nY
i=1

0@ mX
j=1

xij�j

1A
wherexij is 1 or 0 according to whetherIj is a subset of(Li; Ri]. The maximum
likelihood estimates,̂�j; 1 � j � m, yield an estimator̂S(t) of the survival function
S(t), which is given by

Ŝ(t) =

8<:
1 t � q1Pm

i=j+1 �̂i pj � t � qj+1; 1 � j � m� 1

0 t � pm

Ŝ(t) remains undefined in the intervals(qj; pj) where the function may decrease in an

arbitrary way. The asymptotic covariance matrix ofb� is obtained by inverting the es-
timated matrix of second partial derivatives of the negative log likelihood (Peto 1973,
Turnbull 1976). You can then compute the standard errors of the survival function
estimators by the delta method and approximate the confidence intervals for survival
function by using normal distribution theory.

The following code estimates the survival curve for interval censored data. As an
illustration, consider an experiment to study the onset of a special kind of palpable
tumor in mice. Forty mice exposed to a carcinogen were palpated for the tumor every
two weeks. The times to the onset of the tumor are interval censored data. These
data are contained in the data set CARCIN. The variable L represents the last time
the tumor was not yet detected, and the variable R represents the first time the tumor
was palpated. Three mice died tumor free, and one mouse was tumor free by the end
of the 48-week experiment. The times to tumor for these four mice were considered
right censored, and they were given an R value of 50 weeks.

data carcin;
input id l r @@;
datalines;
1 20 22 11 30 32 21 22 24 31 34 36
2 22 24 12 32 34 22 22 24 32 34 36
3 26 28 13 32 34 23 28 30 33 36 38
4 26 28 14 32 34 24 28 30 34 38 40
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5 26 28 15 34 36 25 32 34 35 38 40
6 26 28 16 36 38 26 32 34 36 42 44
7 28 30 17 42 44 27 32 34 37 42 44
8 28 30 18 30 50 28 32 34 38 46 48
9 30 32 19 34 50 29 32 34 39 28 50

10 30 32 20 20 22 30 32 34 40 48 50
;

proc iml;
use carcin;
read all var{l r};
nobs= nrow(l);

/*********************************************************
construct the nonoverlapping intervals (Q,P) and
determine the number of pseudo-parameters (NPARM)

*********************************************************/
pp= unique(r); npp= ncol(pp);
qq= unique(l); nqq= ncol(qq);
q= j(1,npp, .);
do;

do i= 1 to npp;
do j= 1 to nqq;

if ( qq[j] < pp[i] ) then q[i]= qq[j];
end;
if q[i] = qq[nqq] then goto lab1;

end;
lab1:
end;

if i > npp then nq= npp;
else nq= i;
q= unique(q[1:nq]);
nparm= ncol(q);
p= j(1,nparm, .);
do i= 1 to nparm;

do j= npp to 1 by -1;
if ( pp[j] > q[i] ) then p[i]= pp[j];

end;
end;

/********************************************************
generate the X-matrix for the likelihood

********************************************************/
_x= j(nobs, nparm, 0);
do j= 1 to nparm;

_x[,j]= choose(l <= q[j] & p[j] <= r, 1, 0);
end;

/********************************************************
log-likelihood function (LL)

********************************************************/
start LL(theta) global(_x,nparm);

xlt= log(_x * theta‘);
f= xlt[+];

SAS OnlineDoc: Version 8



360 � Chapter 11. Nonlinear Optimization Examples

return(f);
finish LL;

/********************************************************
gradient vector (GRAD)

*******************************************************/
start GRAD(theta) global(_x,nparm);

g= j(1,nparm,0);
tmp= _x # (1 / (_x * theta‘) );
g= tmp[+,];
return(g);

finish GRAD;

/*************************************************************
estimate the pseudo-parameters using quasi-newton technique

*************************************************************/
/* options */
optn= {1 2};

/* constraints */
con= j(3, nparm + 2, .);
con[1, 1:nparm]= 1.e-6;
con[2:3, 1:nparm]= 1;
con[3,nparm + 1]=0;
con[3,nparm + 2]=1;

/* initial estimates */
x0= j(1, nparm, 1/nparm);

/* call the optimization routine */
call nlpqn(rc,rx,"LL",x0,optn,con,,,,"GRAD");

/*************************************************************
survival function estimate (SDF)

************************************************************/
tmp1= cusum(rx[nparm:1]);
sdf= tmp1[nparm-1:1];

/*************************************************************
covariance matrix of the first nparm-1 pseudo-parameters (SIGMA2)

*************************************************************/
mm= nparm - 1;
_x= _x - _x[,nparm] * (j(1, mm, 1) || {0});
h= j(mm, mm, 0);
ixtheta= 1 / (_x * ((rx[,1:mm]) || {1})‘);
if _zfreq then

do i= 1 to nobs;
rowtmp= ixtheta[i] # _x[i,1:mm];
h= h + (_freq[i] # (rowtmp‘ * rowtmp));

end;
else do i= 1 to nobs;

rowtmp= ixtheta[i] # _x[i,1:mm];
h= h + (rowtmp‘ * rowtmp);
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end;
sigma2= inv(h);

/*************************************************************
standard errors of the estimated survival curve (SIGMA3)

*************************************************************/
sigma3= j(mm, 1, 0);
tmp1= sigma3;
do i= 1 to mm;

tmp1[i]= 1;
sigma3[i]= sqrt(tmp1‘ * sigma2 * tmp1);

end;

/*************************************************************
95% confidence limits for the survival curve (LCL,UCL)

*************************************************************/
/* confidence limits */

tmp1= probit(.975);
*print tmp1;
tmp1= tmp1 * sigma3;
lcl= choose(sdf > tmp1, sdf - tmp1, 0);
ucl= sdf + tmp1;
ucl= choose( ucl > 1., 1., ucl);

/*************************************************************
print estimates of pseudo-parameters

*************************************************************/
reset center noname;
q= q‘;
p= p‘;
theta= rx‘;
print ,"Parameter Estimates", ,q[colname={q}] p[colname={p}]

theta[colname={theta} format=12.7],;

/*************************************************************
print survival curve estimates and confidence limits

*************************************************************/
left= {0} // p;
right= q // p[nparm];
sdf= {1} // sdf // {0};
lcl= {.} // lcl //{.};
ucl= {.} // ucl //{.};
print , "Survival Curve Estimates and 95% Confidence Intervals", ,

left[colname={left}] right[colname={right}]
sdf[colname={estimate} format=12.4]
lcl[colname={lower} format=12.4]
ucl[colname={upper} format=12.4];

The iteration history produced by the NLPQN subroutine is shown in Output 11.6.1
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Output 11.6.1. Iteration History for the NLPQN Subroutine

Dual Quasi-Newton Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Parameter Estimates 12
Lower Bounds 12
Upper Bounds 12
Linear Constraints 1

Optimization Start

Active Constraints 1 Objective Function -93.3278404
Max Abs Gradient Element 65.361558529

Objective Max Abs
Func. Active Objective Function Gradient Step

Iter Rest Calls Constr. Function Change Element Size Slope

1 0 3 1 -88.51201 4.8158 16.6594 0.0256 -305.2
2 0 4 1 -87.42665 1.0854 10.8769 1.000 -2.157
3 0 5 1 -87.27408 0.1526 5.4965 1.000 -0.366
4 0 7 1 -87.17314 0.1009 2.2856 2.000 -0.113
5 0 8 1 -87.16611 0.00703 0.3444 1.000 -0.0149
6 0 10 1 -87.16582 0.000287 0.0522 1.001 -0.0006
7 0 12 1 -87.16581 9.128E-6 0.00691 1.133 -161E-7
8 0 14 1 -87.16581 1.712E-7 0.00101 1.128 -303E-9

Optimization Results

Iterations 8 Function Calls 15
Gradient Calls 11 Active Constraints 1
Objective Function -87.16581343 Max Abs Gradient Element 0.0010060788
Slope of Search Direction -3.033154E-7

NOTE:GCONV convergence criterion satisfied.
NOTE: At least one element of the (projected) gradient is greater than 1e-3.

The estimates of the pseudo-parameter for the nonoverlapping intervals are shown in
Output 11.6.2.

Output 11.6.2. Estimates for the Probability of Event Occurrence

Parameter Estimates

Q P THETA

20 22 0.0499997
22 24 0.0749988
26 28 0.0999978
28 30 0.1033349
30 32 0.0806014
32 34 0.2418023
34 36 0.0873152
36 38 0.0582119
38 40 0.0582119
42 44 0.0873152
46 48 0.0291055
48 50 0.0291055
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The survival curve estimates and confidence intervals are displayed in Output 11.6.3.

Output 11.6.3. Survival Estimates and Confidence Intervals

Survival Curve Estimates and 95% Confidence Intervals

LEFT RIGHT ESTIMATE LOWER UPPER

0 20 1.0000 . .
22 22 0.9500 0.8825 1.0000
24 26 0.8750 0.7725 0.9775
28 28 0.7750 0.6456 0.9044
30 30 0.6717 0.5252 0.8182
32 32 0.5911 0.4363 0.7458
34 34 0.3493 0.1973 0.5013
36 36 0.2619 0.1194 0.4045
38 38 0.2037 0.0720 0.3355
40 42 0.1455 0.0293 0.2617
44 46 0.0582 0.0000 0.1361
48 48 0.0291 0.0000 0.0852
50 50 0.0000 . .

In this program, the quasi-Newton technique is used to maximize the likelihood func-
tion. You can replace the quasi-Newton routine by other optimization routines, such
as the NLPNRR subroutine, which performs Newton-Raphson ridge optimization, or
the NLPCG subroutine, which performs conjugate gradient optimization. Depending
on the number of parameters and the number of observations, these optimization rou-
tines do not perform equally well. For survival curve estimation, the quasi-Newton
technique seems to work fairly well since the number of parameters to be estimated
is usually not too large.

Example 11.7. A Two-Equation Maximum Likelihood Problem

This example and notation are taken from Bard (1974). A two-equation model is used
to fit U.S. production data for the years 1909-1949, wherez1 is capital input,z2 is
labor input,z3 is real output,z4 is time in years (with 1929 as the origin), andz5 is
the ratio of price of capital services to wage scale.

proc iml;
z={ 1.33135 0.64629 0.4026 -20 0.24447,

1.39235 0.66302 0.4084 -19 0.23454,
1.41640 0.65272 0.4223 -18 0.23206,
1.48773 0.67318 0.4389 -17 0.22291,
1.51015 0.67720 0.4605 -16 0.22487,
1.43385 0.65175 0.4445 -15 0.21879,
1.48188 0.65570 0.4387 -14 0.23203,
1.67115 0.71417 0.4999 -13 0.23828,
1.71327 0.77524 0.5264 -12 0.26571,
1.76412 0.79465 0.5793 -11 0.23410,
1.76869 0.71607 0.5492 -10 0.22181,
1.80776 0.70068 0.5052 -9 0.18157,
1.54947 0.60764 0.4679 -8 0.22931,
1.66933 0.67041 0.5283 -7 0.20595,
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1.93377 0.74091 0.5994 -6 0.19472,
1.95460 0.71336 0.5964 -5 0.17981,
2.11198 0.75159 0.6554 -4 0.18010,
2.26266 0.78838 0.6851 -3 0.16933,
2.33228 0.79600 0.6933 -2 0.16279,
2.43980 0.80788 0.7061 -1 0.16906,
2.58714 0.84547 0.7567 0 0.16239,
2.54865 0.77232 0.6796 1 0.16103,
2.26042 0.67880 0.6136 2 0.14456,
1.91974 0.58529 0.5145 3 0.20079,
1.80000 0.58065 0.5046 4 0.18307,
1.86020 0.62007 0.5711 5 0.18352,
1.88201 0.65575 0.6184 6 0.18847,
1.97018 0.72433 0.7113 7 0.20415,
2.08232 0.76838 0.7461 8 0.18847,
1.94062 0.69806 0.6981 9 0.17800,
1.98646 0.74679 0.7722 10 0.19979,
2.07987 0.79083 0.8557 11 0.21115,
2.28232 0.88462 0.9925 12 0.23453,
2.52779 0.95750 1.0877 13 0.20937,
2.62747 1.00285 1.1834 14 0.19843,
2.61235 0.99329 1.2565 15 0.18898,
2.52320 0.94857 1.2293 16 0.17203,
2.44632 0.97853 1.1889 17 0.18140,
2.56478 1.02591 1.2249 18 0.19431,
2.64588 1.03760 1.2669 19 0.19492,
2.69105 0.99669 1.2708 20 0.17912 };

The two-equation model in five parametersc1; : : : ; c5 is

g1 = c110
c2z4 [c5z

�c4
1 + (1� c5)z

�c4
2 ]�c3=c4 � z3 = 0

g2 = [
c5

1� c5
]

�
z1
z2

��1�c4

� z5 = 0

where the variablesz1 andz2 are considered dependent (endogenous) and the vari-
ablesz3, z4, andz5 are considered independent (exogenous).

Differentiation of the two equationsg1 andg2 with respect to the endogenous vari-
ablesz1 andz2 yields the Jacobian matrix@gi=@zj for i = 1; 2 andj = 1; 2, wherei
corresponds to rows (equations) andj corresponds to endogenous variables (refer to
Bard 1974). You must consider parameter sets for which the elements of the Jacobian
and the logarithm of the determinant cannot be computed. In such cases, the function
module must return a missing value.

start fiml(pr) global(z);
c1 = pr[1]; c2 = pr[2]; c3 = pr[3]; c4 = pr[4]; c5 = pr[5];

/* 1. Compute Jacobian */
lndet = 0 ;
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do t= 1 to 41;
j11 = (-c3/c4) * c1 * 10 ##(c2 * z[t,4]) * (-c4) * c5 *

z[t,1]##(-c4-1) * (c5 * z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4))##(-c3/c4 -1);

j12 = (-c3/c4) * (-c4) * c1 * 10 ##(c2 * z[t,4]) * (1-c5) *
z[t,2]##(-c4-1) * (c5 * z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4))##(-c3/c4 -1);

j21 = (-1-c4)*(c5/(1-c5))*z[t,1]##( -2-c4)/ (z[t,2]##(-1-c4));
j22 = (1+c4)*(c5/(1-c5))*z[t,1]##( -1-c4)/ (z[t,2]##(-c4));

j = (j11 || j12 ) // (j21 || j22) ;
if any(j = .) then detj = 0.;

else detj = det(j);
if abs(detj) < 1.e-30 then do;

print t detj j;
return(.);

end;
lndet = lndet + log(abs(detj));

end;

Assuming that the residuals of the two equations are normally distributed, the likeli-
hood is then computed as in Bard (1974). The following code computes the logarithm
of the likelihood function:

/* 2. Compute Sigma */
sb = j(2,2,0.);
do t= 1 to 41;

eq_g1 = c1 * 10##(c2 * z[t,4]) * (c5*z[t,1]##(-c4)
+ (1-c5)*z[t,2]##(-c4))##(-c3/c4) - z[t,3];

eq_g2 = (c5/(1-c5)) * (z[t,1] / z[t,2])##(-1-c4) - z[t,5];
resid = eq_g1 // eq_g2;
sb = sb + resid * resid‘;

end;
sb = sb / 41;

/* 3. Compute log L */
const = 41. * (log(2 * 3.1415) + 1.);
lnds = 0.5 * 41 * log(det(sb));
logl = const - lndet + lnds;
return(logl);

finish fiml;

There are potential problems in computing the power and log functions for an un-
restricted parameter set. As a result, optimization algorithms that use line search
will fail more often than algorithms that restrict the search area. For that reason,
the NLPDD subroutine is used in the following code to maximize the log-likelihood
function:

pr = j(1,5,0.001);
optn = {0 2};
tc = {. . . 0};
call nlpdd(rc, xr,"fiml", pr, optn,,tc);
print "Start" pr, "RC=" rc, "Opt Par" xr;
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Part of the iteration history is shown in Output 11.7.1.

Output 11.7.1. Iteration History for Two-Equation ML Problem

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 5

Optimization Start

Active Constraints 0 Objective Function 909.72691311
Max Abs Gradient Element 41115.729089 Radius 1

Objective Max Abs
Func. Active Obj. Function Gradient

Iter Rest Calls Constr. Func. Change Element Lambda Slope

1 0 2 0 85.24836 824.5 3676.4 711.8 -71032
2 0 7 0 45.14682 40.1015 3382.0 2881.2 -29.683
3 0 10 0 43.46797 1.6788 208.4 95.020 -3.348

35 0 64 0 -110.77858 5.68E-14 0.000111 41.795 -34E-17
36 1 101 0 -110.77858 5.68E-14 0.000119 4E12 -32E-20
36 2 145 0 -110.77858 0 0.000119 3.2E16 -46E-24

Optimization Results

Iterations 36 Function Calls 146
Gradient Calls 41 Active Constraints 0
Objective Function -110.7785811 Max Abs Gradient Element 0.0001186267
Slope of Search Direction -4.55096E-23 Radius 3.771173E-19

The results are very close to those reported by Bard (1974). Bard also reports different
approaches to the same problem that can lead to very different MLEs.

Output 11.7.2. Parameter Estimates

Parameter Estimates
Gradient
Objective

N Parameter Estimate Function

1 X1 0.583884 -0.000004817
2 X2 0.005882 0.000011377
3 X3 1.362817 -0.000003229
4 X4 0.475091 -0.000018103
5 X5 0.447072 0.000119

Value of Objective Function = -110.7785811
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Example 11.8. Time-Optimal Heat Conduction

This example illustrates a nontrivial application of the NLPQN algorithm that re-
quires nonlinear constraints, which are specified by thenlc module. The example
is listed as problem 91 in Hock & Schittkowski (1981). The problem describes a
time-optimal heating process minimizing the simple objective function

f(x) =

nX
j=1

x2j

subjected to a rather difficult inequality constraint:

c(x) = 10�4 � h(x) � 0

whereh(x) is defined as

h(x) =

Z 1

0

 
30X
i=1

�i(s)�i(x)� k0(s)

!2

ds

�i(s) = �2iAi cos(�is)

�i(x) = ��2i

24exp
0@��2i nX

j=1

x2j

1A� 2 exp

0@��2i nX
j=2

x2j

1A+ � � �

+ (�1)n�12 exp
���2ix2n�+ (�1)n

35
k0(s) = 0:5(1 � s2)

Ai =
2 sin�i

�i + sin�i cos�i
;

� = (�1; : : : ; �30)
0 , where�i tan(�i) = 1

The gradient of the objective functionf , g(x) = 2x, is easily supplied to the NLPQN
subroutine. However, the analytical derivatives of the constraint are not used; instead,
finite difference derivatives are computed.

In the following code, the vector MU represents the first 30 positive values�i that
satisfy�i tan(�i) = 1:

proc iml;
mu = { 8.6033358901938E-01 , 3.4256184594817E+00 ,

6.4372981791719E+00 , 9.5293344053619E+00 ,
1.2645287223856E+01 , 1.5771284874815E+01 ,
1.8902409956860E+01 , 2.2036496727938E+01 ,
2.5172446326646E+01 , 2.8309642854452E+01 ,
3.1447714637546E+01 , 3.4586424215288E+01 ,
3.7725612827776E+01 , 4.0865170330488E+01 ,
4.4005017920830E+01 , 4.7145097736761E+01 ,
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5.0285366337773E+01 , 5.3425790477394E+01 ,
5.6566344279821E+01 , 5.9707007305335E+01 ,
6.2847763194454E+01 , 6.5988598698490E+01 ,
6.9129502973895E+01 , 7.2270467060309E+01 ,
7.5411483488848E+01 , 7.8552545984243E+01 ,
8.1693649235601E+01 , 8.4834788718042E+01 ,
8.7975960552493E+01 , 9.1117161394464E+01 };

The vectorA = (A1; : : : ; A30)
0 depends only on� and is computed only once, before

the optimization starts:

nmu = nrow(mu);
a = j(1,nmu,0.);
do i = 1 to nmu;

a[i] = 2*sin(mu[i]) / (mu[i] + sin(mu[i])*cos(mu[i]));
end;

The constraint is implemented with the QUAD subroutine, which performs numerical
integration of scalar functions in one dimension. The subroutine calls the module
fquad that supplies the integrand forh(x). For details on the QUAD call, see the
“QUAD Call” section on page 697.

/* This is the integrand used in h(x) */
start fquad(s) global(mu,rho);

z = (rho * cos(s*mu) - 0.5*(1. - s##2))##2;
return(z);

finish;

/* Obtain nonlinear constraint h(x) */
start h(x) global(n,nmu,mu,a,rho);

xx = x##2;
do i= n-1 to 1 by -1;

xx[i] = xx[i+1] + xx[i];
end;
rho = j(1,nmu,0.);
do i=1 to nmu;

mu2 = mu[i]##2;
sum = 0; t1n = -1.;
do j=2 to n;

t1n = -t1n;
sum = sum + t1n * exp(-mu2*xx[j]);

end;
sum = -2*sum + exp(-mu2*xx[1]) + t1n;
rho[i] = -a[i] * sum;

end;
aint = do(0,1,.5);
call quad(z,"fquad",aint) eps=1.e-10;
v = sum(z);
return(v);

finish;

SAS OnlineDoc: Version 8



Example 11.8. Time-Optimal Heat Conduction � 369

The modules for the objective function, its gradient, and the constraintc(x) � 0 are
given in the following code:

/* Define modules for NLPQN call: f, g, and c */
start F_HS88(x);

f = x * x‘;
return(f);

finish F_HS88;

start G_HS88(x);
g = 2 * x;
return(g);

finish G_HS88;

start C_HS88(x);
c = 1.e-4 - h(x);
return(c);

finish C_HS88;

The number of constraints returned by the"nlc" module is defined byopt[10] = 1.
The ABSGTOL termination criterion (maximum absolute value of the gradient of the
Lagrange function) is set bytc[6] = 1E�4.

print ’Hock & Schittkowski Problem #91 (1981) n=5, INSTEP=1’;
opt = j(1,10,.);
opt[2]=3;
opt[10]=1;
tc = j(1,12,.);
tc[6]=1.e-4;
x0 = {.5 .5 .5 .5 .5};
n = ncol(x0);
call nlpqn(rc,rx,"F_HS88",x0,opt,,tc) grd="G_HS88" nlc="C_HS88";

Part of the iteration history and the parameter estimates are shown in Output 11.8.1.
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Output 11.8.1. Iteration History and Parameter Estimates

Dual Quasi-Newton Optimization
Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Jacobian Nonlinear Constraints Computed by Finite Differences

Parameter Estimates 5
Nonlinear Constraints 1

Optimization Start

Objective Function 1.25 Max Constr. Violation 0.0952775105
Max Grad of the Lagran Func 1.1433393372

Maximum
Gradient

Element
Max. Pred. of the

Func. Obj. Constr. Func. Step Lagrange
Iter Rest Calls Func. Viol. Red. Size Function

1 0 3 0.81165 0.0869 1.7562 0.100 1.325
2 0 4 0.18232 0.1175 0.6220 1.000 1.207
3* 0 5 0.34567 0.0690 0.9321 1.000 0.639
4 0 6 0.77700 0.0132 0.3498 1.000 1.329
.
.
.

21 0 30 1.36266 8.02E-12 1.079E-6 1.000 0.00009

Optimization Results

Iterations 21 Function Calls 31
Grad. Calls 23 Active Constraints 1
Obj. Func. 1.3626568064 Max. Constr. Viol. 8.017286E-12
Max. Proj. Grad. 0.000096451 Value Lagrange Function 1.3626568149
Max. Grad. of the Lagran Func 0.0000887635 Slope -1.079452E-6

NOTE: ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 X1 0.860296 1.720593 0.000030988
2 X2 -0.000002262 -0.000004524 -0.000015387
3 X3 0.643468 1.286936 0.000021570
4 X4 -0.456614 -0.913227 0.000088763
5 X5 0.000000904 0.000001807 0.000077409

Value of Objective Function = 1.3626568064
Value of Lagrange Function = 1.3626568149

Problems 88 to 92 of Hock and Schittkowski (1981) specify the same optimization
problem forn = 2 ton = 6. You can solve any of these problems with the preceding
code by submitting a vector of lengthn as the initial estimate,x0.
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