
Chapter 12
Graphics Examples

Chapter Table of Contents

OVERVIEW . 377

AN INTRODUCTORY GRAPH . 377

DETAILS . 379
Graphics Segments . 379
Segment Attributes. 380
Coordinate Systems . 380
Windows and Viewports . 383
Clipping Your Graphs . 392
Common Arguments . 393

GRAPHICS EXAMPLES . 394
Example 12.1 Scatter Plot Matrix . .. 395
Example 12.2 Train Schedule . 402
Example 12.3 Fisher’s Iris Data . .. 403

376 � Chapter 12. Graphics Examples

SAS OnlineDoc: Version 8

Chapter 12
Graphics Examples

Overview

SAS/IML software provides you with a powerful set of graphics commands (called
graphics primitives) from which to create customized displays. Several basic com-
mands are GDRAW (for drawing a line), GPOINT (for plotting points), and GPOLY
(for drawing a polygon). With each primitive, you can associate a set of attributes
such as color or line style.

In this chapter you learn about

� plotting simple two-dimensional plots

� naming and saving a graph

� changing attributes such as color and line style

� specifying the location and scale of your graph

� adding axes and text

SAS/IML graphics commands depend on the libraries and device drivers distributed
with SAS/GRAPH software, and they do not work unless you have SAS/GRAPH
software.

An Introductory Graph

Suppose that you have data for ACME Corporation’s stock price and you want a
simple PRICE� DAY graph to see the overall trend of the stock’s price. The data
are as follows.

378 � Chapter 12. Graphics Examples

Day Price
0 43.75
5 48.00

10 59.75
15 75.5
20 59.75
25 71.50
30 70.575
35 61.125
40 79.50
45 72.375
50 67.00
55 54.125
60 58.750
65 43.625
70 47.125
75 45.50

To graph a scatter plot of these points, enter the following statements. These state-
ments generate Figure 12.1.

proc iml; /* invoke IML */
call gstart; /* start graphics */
xbox={0 100 100 0};
ybox={0 0 100 100};
day=do(0,75,5); /* initialize day */
price={43.75,48,59.75,75.5, /* initialize price */

59.75,71.5,70.575,
61.125,79.5,72.375,67,
54.125,58.75,43.625,
47.125,45.50};

call gopen; /* start new graph */
call gpoly(xbox,ybox); /* draw a box around plot */
call gpoint(day,price); /* plot the points */
call gshow; /* display the graph */

SAS OnlineDoc: Version 8

Graphics Segments � 379

Figure 12.1. Scatter plot

Note that the GSTART statement initializes the graphics session. It usually needs to
be called only once. Next, you enter the data matrices. Then you open a graphics
segment (that is, begin a new graph) with the GOPEN command. The GPOINT com-
mand draws the scatter plot of points of DAY versus PRICE. The GSHOW command
displays the graph.

Notice also that, for this example, thex coordinate of the data is DAY and that0 �

DAY � 100. They coordinate is PRICE, which ranges from0 � PRICE� 100. For
this example, the ranges are this way because the IML default ranges are from 0 to
100 on both thex andy axes. Later on you learn how to change the default ranges for
the axes with the GWINDOW statement so that you can handle data with any range
of values.

Of course, this graph is quite simple. By the end of this chapter, you will know how
to add axes and titles, to scale axes, and to connect the points with lines.

Details

Graphics Segments

A graph is saved in what is called a graphics segment. Agraphics segmentis simply
a collection of primitives and their associated attributes that creates a graph.

Each time you create a new segment, it is named and stored in a SAS graphics catalog
called WORK.GSEG. If you want to store your graphics segments in a permanent
SAS catalog, do this with options to the GSTART call. You can name the segments
yourself in the GOPEN statement, or you can let the IML procedure automatically

SAS OnlineDoc: Version 8

380 � Chapter 12. Graphics Examples

generate a segment name. In this way, graphics segments that are used several times
can be included in subsequent graphs by using the GINCLUDE command with the
segment name. You can also manage and replay a segment using the GREPLAY
procedure as well as replay it in another IML session with the GSHOW command.

To name a segment, include the name as an argument to the GOPEN statement. For
example, to begin a new segment and name it STOCK1, use the statement

call gopen("stock1");

For more information about SAS catalogs and graphics, refer to the chapter on graph-
ics inSAS/GRAPH Software: Reference.

Segment Attributes

A set of attributes is initialized for each graphics segment. These attributes are color,
line style, line thickness, fill pattern, font, character height, and aspect ratio. You can
change any of these attributes for a graphics segment by using the GSET command.
Some IML graphics commands take optional attribute arguments. The values of these
arguments affect only the graphics output associated with the call.

The IML graphics subsystem uses the same conventions that SAS/GRAPH software
uses in setting the default attributes. It also uses the options set in the GOPTIONS
statement when applicable. The SAS/IML default values for the GSET command are
given by their corresponding GOPTIONS default values. To change the default, you
need to issue a GOPTIONS statement. The GOPTIONS statement can also be used
to set graphics options not available through the GSET command (for example, the
ROTATE option).

For more information about GOPTIONS, refer to the chapter on the GOPTIONS
statement inSAS/GRAPH Software: Reference.

Coordinate Systems

Each IML graph is associated with two independent cartesian coordinate systems, a
world coordinate systemand anormalized coordinate system.

Understanding World Coordinates
Theworld coordinate systemis the coordinate system defined by your data. Because
these coordinates help define objects in the data’s two-dimensional world, these are
referred to asworld coordinates. For example, suppose that you have a data set
containing heights and weights and that you are interested in plotting height versus
weight. Your data induces a world coordinate system in which each point(x; y)

represents a pair of data values (height,weight). The world could be defined by the
observed ranges of heights and weights, or it could be enlarged to include a range of
all reasonable values for heights and weights.

Now consider a more realistic example of the stock price data for ACME Corporation.
Suppose that the stock price data were actually the year end prices of ACME stock
for the years 1971 through 1986, as follows.

SAS OnlineDoc: Version 8

Coordinate Systems � 381

YEAR PRICE
71 123.75
72 128.00
73 139.75
74 155.50
75 139.75
76 151.50
77 150.375
78 149.125
79 159.50
80 152.375
81 147.00
82 134.125
83 138.75
84 123.625
85 127.125
86 125.500

The actual range of YEAR is from 71 to 86, and the range of PRICE is from $123.625
to $159.50. These are the ranges in world coordinate space for the stock data. Of
course, you could say that the range for PRICE could start at $0 and range upwards
to, for example, $200. Or, if you were interested only in prices during the 80s, you
could say the range for PRICE is from $123.625 to $152.375. As you see, it all
depends on how you want to define your world.

Figure 12.2 shows a graph of the stock data with the world defined as the actual data
given. The corners of the rectangle give the actual boundaries for this data.

SAS OnlineDoc: Version 8

382 � Chapter 12. Graphics Examples

Figure 12.2. World Coordinates

Understanding Normalized Coordinates
The normalized coordinate systemis defined relative to your display device, usu-
ally a monitor or plotter. It is always defined with points varying between (0,0) and
(100,100), where (0,0) refers to the lower left corner and (100,100) refers to the upper
right corner.

In summary,

� the world coordinate system is defined relative to your data

� the normalized coordinate system is defined relative to the display device

Figure 12.3 shows the ACME stock data in terms of normalized coordinates. There
is a natural mathematical relationship between each point in world and normalized
coordinates. The normalized device coordinate system is mapped to the device dis-
play area so that (0,0), the lower left corner, corresponds to (71, 123.625) in world
coordinates, and (100,100), the upper right corner, corresponds to (86,159.5) in world
coordinates.

SAS OnlineDoc: Version 8

Windows and Viewports � 383

Figure 12.3. Normalized Coordinates

Windows and Viewports

A windowdefines a rectangular area in world coordinates. You define a window with
a GWINDOW statement. You can define the window to be larger than, the same size
as, or smaller than the actual range of data values, depending on whether you want to
show all of the data or only part of the data.

A viewportdefines in normalized coordinates a rectangular area on the display device
where the image of the data appears. You define a viewport with the GPORT com-
mand. You can have your graph take up the entire display device or show it in only a
portion, say the upper right part.

Mapping Windows to Viewports
A windowand aviewportare related by the linear transformation that maps the win-
dow onto the viewport. A line segment in the window is mapped to a line segment in
the viewport such that the relative positions are preserved.

You don’t have to display all of your data in a graph. In Figure 12.4, the graph on the
left displays all of the ACME stock data, and the graph on the right displays only a
part of the data. Suppose that you wanted to graph only the last ten years of the stock
data, say from 1977 to 1986. You would want to define a window where the YEAR
axis ranges from 77 to 86, while the PRICE axis could range from 120 to 160. Figure
12.4 shows stock prices in a window defined for data from 1977 to 1986 along the
horizontal direction and from 120 to 160 along the vertical direction. The window
is mapped to a viewport defined by the points (20,20) and (70,60). The appropriate
GPORT and GWINDOW specifications are as follows.

SAS OnlineDoc: Version 8

384 � Chapter 12. Graphics Examples

call gwindow({77 120, 86 160});
call gport({20 20, 70 60});

The window, in effect, defines the portion of the graph that is to be displayed in world
coordinates, and the viewport specifies the area on the device on which the image is
to appear.

Figure 12.4. Window to Viewport Mapping

Understanding Windows
Because the default world coordinate system ranges from (0,0) to (100,100), you
usually need to define awindowin order to set the world coordinates corresponding
to your data. A window specifies which part of the data in world coordinate space
is to be shown. Sometimes you want all of the data shown; other times, you want to
show only part of the data.

A window is defined by an array of four numbers, which define a rectangular area.
You define this area by specifying theworld coordinatesof the lower left and upper
right corners in the GWINDOW statement, which has the general form

CALL GWINDOW(minimum-x minimum-y maximum-x maximum-y);

The argument can be either a matrix or a literal. The order of the elements is impor-
tant. The array of coordinates can be a2�2, 1�4, or4�1matrix. These coordinates
can be specified as matrix literals or as the name of a numeric matrix containing the
coordinates. If you do not define a window, the default is to assume bothx andy
range between 0 and 100.

SAS OnlineDoc: Version 8

Windows and Viewports � 385

In summary, a window

� defines the portion of the graph that appears in the viewport

� is a rectangular area

� is defined by an array of four numbers

� is defined in world coordinates

� scales the data relative to world coordinates

In the previous example, the variable YEAR ranges from 1971 to 1986, while PRICE
ranges from 123.625 to 159.50. Because the data do not fit nicely into the default, you
want to define a window that reflects the ranges of the variables YEAR and PRICE.
To draw the graph of this data to scale, you can let the YEAR axis range from 70 to
87 and the PRICE axis range from 100 to 200. Use the following statements to draw
the graph, shown in Figure 12.5.

call gstart;
xbox={0 100 100 0};
ybox={0 0 100 100};
call gopen("stocks1"); /* begin new graph STOCKS1 */
call gset("height", 2.0);
year=do(71,86,1); /* initialize YEAR */
price={123.75 128.00 139.75 /* initialize PRICE */

155.50 139.750 151.500
150.375 149.125 159.500
152.375 147.000 134.125
138.750 123.625 127.125
125.50};

call gwindow({70 100 87 200}); /* define window */
call gpoint(year,price,"diamond","green"); /* graph the points */
call gdraw(year,price,1,"green"); /* connect points */
call gshow; /* show the graph */

SAS OnlineDoc: Version 8

386 � Chapter 12. Graphics Examples

Figure 12.5. Stock Data

In this example, you perform several steps that you did not do with the previous
graph:

� You associate the name STOCKS1 with this graphics segment in the GOPEN
command.

� You define a window that reflects the actual ranges of the data with a GWIN-
DOW command.

� You associate a plotting symbol, the diamond, and the color green with the
GPOINT command.

� You connect the points with line segments with the GDRAW command. The
GDRAW command requests that the line segments be drawn in style 1 and be
green.

Understanding Viewports
A viewportspecifies a rectangular area on the display device where the graph appears.
You define this area by specifying thenormalizedcoordinates, the lower left corner
and the upper right corner, in the GPORT statement, which has the general form

CALL GPORT(minimum-x minimum-y maximum-x maximum-y);

The argument can be either a matrix or a literal. Note that bothx andy must range
between 0 and 100. As with the GWINDOW specification, you can give the coordi-
nates either as a matrix literal enclosed in braces or as the name of a numeric matrix

SAS OnlineDoc: Version 8

Windows and Viewports � 387

containing the coordinates. The array can be a2 � 2, 1 � 4, or 4 � 1 matrix. If you
do not define a viewport, the default is to span the entire display device.

In summary, a viewport

� specifies where the image appears on the display

� is a rectangular area

� is specified by an array of four numbers

� is defined in normalized coordinates

� scales the data relative to the shape of the viewport

To display the stock price data in a smaller area on the display device, you must define
a viewport. While you are at it, add some text to the graph. You can use the graph
that you created and named STOCKS1 in this new graph. The following statements
create the graph shown in Figure 12.6.

/* module centers text strings */
start gscenter(x,y,str);

call gstrlen(len,str); /* find string length */
call gscript(x-len/2,y,str); /* print text */

finish gscenter;

call gopen("stocks2"); /* open a new segment */
call gset("font","swiss"); /* set character font */
call gpoly(xbox,ybox); /* draw a border */
call gwindow({70 100,87 200}); /* define a window */
call gport({15 15,85 85}); /* define a viewport */
call ginclude("stocks1"); /* include segment STOCKS1 */
call gxaxis({70 100},17,18, , /* draw x-axis */

,"2.",1.5);
call gyaxis({70 100},100,11, , /* draw y-axis */

,"dollar5.",1.5);
call gset("height",2.0); /* set character height */
call gtext(77,89,"Year"); /* print horizontal text */
call gvtext(68,200,"Price"); /* print vertical text */
call gscenter(79,210,"ACME Stock Data"); /* print title */
call gshow;

SAS OnlineDoc: Version 8

388 � Chapter 12. Graphics Examples

Figure 12.6. Stock Data with Axes and Labels

The statements that generated this graph are described below:

� GOPEN begins a new graph and names it STOCKS2.

� GPOLY draws a box around the display area.

� GWINDOW defines the world coordinate space to be larger than the actual
range of stock data values.

� GPORT defines a viewport. It causes the graph to appear in the center of the
display, with a border around it for text. The lower left corner has coordinates
(15,15) and the upper right corner has coordinates (85,85).

� GINCLUDE includes the graphics segment STOCKS1. This saves you from
having to plot points you have already created.

� GXAXIS draws thex axis. It begins at the point (70,100) and is 17 units
(years) long, divided with 18 tick marks. The axis tick marks are printed with
the numeric 2.0 format, and they have a height of 1.5 units.

� GYAXIS draws they axis. It also begins at (70,100) but is 100 units (dollars)
long, divided with 11 tick marks. The axis tick marks are printed with the
DOLLAR5.0 format and have a height of 1.5 units.

� GSET sets the text font to be Swiss and the height of the letters to be 2.0 units.
The height of the characters has been increased because the viewport definition
scales character sizes relative to the viewport.

� GTEXT prints horizontal text. It prints the text stringYear beginning at the
world coordinate point (77,89).

SAS OnlineDoc: Version 8

Windows and Viewports � 389

� GVTEXT prints vertical text. It prints the text stringPrice beginning at the
world coordinate point (68,200).

� GSCENTER runs the module to print centered text strings.

� GSHOW displays the graph.

Changing Windows and Viewports
Windows and viewports can be changed for the graphics segment any time that the
segment is active. Using the stock price example, you can first define a window for
the data during the years 1971 to 1974 and map this to the viewport defined on the
upper half of the normalized device; then you can redefine the window to enclose
the data for 1983 to 1986 and map this to an area in the lower half of the normalized
device. Notice how the shape of the viewport affects the shape of the curve. Changing
the viewport can affect the height of any printed characters as well. In this case, you
can modify the HEIGHT parameter.

The following statements generate the graph in Figure 12.7:

/* figure 12.7 */
reset clip; /* clip outside viewport */
call gopen; /* open a new segment */
call gset("color","blue");
call gset("height",2.0);
call gwindow({71 120,74 175}); /* define a window */
call gport({20 55,80 90}); /* define a viewport */
call gpoly({71 74 74 71},{120 120 170 170}); /* draw a border */
call gscript(71.5,162,"Viewport #1 1971-74",, /* print text */

,3.0,"complex","red");
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gblkvpd;
call gwindow({83 120,86 170}); /* define new window */
call gport({20 10,80 45}); /* define new viewport */
call gpoly({83 86 86 83},{120 120 170 170}); /* draw border */
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gscript(83.5,162,"Viewport #2 1983-86",, /* print text */

,3.0,"complex","red");
call gshow;

SAS OnlineDoc: Version 8

390 � Chapter 12. Graphics Examples

Figure 12.7. Multiple Viewports

The RESET CLIP command is necessary because you are graphing only a part of the
data in the window. You want to clip the data that falls outside of the window. See
“Clipping Your Graphs” later in this chapter for more on clipping. In this graph, you

� open a new segment (GOPEN)

� define the first window for the first four years’ data (GWINDOW)

� define a viewport in the upper part of the display device (GPORT)

� draw a box around the viewport (GPOLY)

� add text (GSCRIPT)

� graph the points and connect them (GPOINT and GDRAW)

� define the second window for the last four years (GWINDOW)

� define a viewport in the lower part of the display device (GPORT)

� draw a box around the viewport (GPOLY)

� graph the points and connect them (GPOINT and GDRAW)

� add text (GSCRIPT)

� display the graph (GSHOW)

Stacking Viewports
Viewports can be stacked; that is, a viewport can be defined relative to another view-
port so that you have a viewport within a viewport.

SAS OnlineDoc: Version 8

Windows and Viewports � 391

A window or a viewport is changed globally through the IML graphics commands:
the GWINDOW command for windows, and the GPORT, GPORTSTK, and GPORT-
POP commands for viewports. When a window or viewport is defined, it persists
across IML graphics commands until another window- or viewport-altering command
is encountered. Stacking helps you define a viewport without losing the effect of a
previously defined viewport. When a stacked viewport ispopped, you are placed into
the environment of the previous viewport.

Windows and viewports are associated with a particular segment; thus, they automat-
ically become undefined when the segment is closed. A segment is closed whenever
IML encounters a GCLOSE command or a GOPEN command. A window or a view-
port can also be changed for a single graphics command. Either one can be passed
as an argument to a graphics primitive, in which case any graphics output associated
with the call is defined in the specified window or viewport. When a viewport is
passed as an argument, it is stacked, or defined relative to the current viewport, and
poppedwhen the graphics command is complete.

For example, suppose you want to create a legend that shows the low and peak points
of the data for the ACME stock graph. Create a graphics segment showing this infor-
mation:

call gopen("legend");
call gset(’height’,5); /* enlarged to accomodate viewport later */
call gset(’font’,’swiss’);
call gscript(5,75,"Stock Peak: 159.5 in 1979");
call gscript(5,65,"Stock Low: 123.6 in 1984");
call gclose;

Now create a segment that highlights and labels the low and peak points of the data:

/* Highlight and label the low and peak points of the stock */
call gopen("labels");
call gwindow({70 100 87 200}); /* define window */
call gpoint(84,123.625,"circle","red",4) ;
call gtext(84,120,"LOW","red");
call gpoint(79,159.5,"circle","red",4);
call gtext(79,162,"PEAK","red");
call gclose;

Open a new graphics segment and include the STOCK1 segment created earlier in
the chapter, placing the segment in the viewport {10 10 90 90}.

call gopen;
call gportstk ({10 10 90 90}); /* viewport for the plot itself */
call ginclude(’stocks2’);

To place the legend in the upper right corner of this viewport, use the GPORTSTK
command instead of the GPORT command to define the legend’s viewport relative to
the one used for the plot of the stock data:

call gportstk ({70 70 100 100}); /* viewport for the legend */
call ginclude("legend");

SAS OnlineDoc: Version 8

392 � Chapter 12. Graphics Examples

Now pop the legend’s viewport to get back to the viewport of the plot itself and
include the segment that labels and highlights the low and peak stock points:

call gportpop; /* viewport for the legend */
call ginclude ("labels");

Finally, display the graph.

call gshow;

Figure 12.8. Stacking Viewports

Clipping Your Graphs

The IML graphics subsystem does not automatically clip the output to the viewport.
Thus, it is possible that data are graphed outside of the defined viewport. This hap-
pens when there are data points lying outside of the defined window. For instance,
if you specify a window to be a subset of the world, then there will be data lying
outside of the window and these points will be graphed outside of the viewport. This
is usually not what you want. To clean up such graphs, you either delete the points
you do not want to graph or clip the graph.

There are two ways to clip a graph. You can use the RESET CLIP command, which
clips outside of a viewport. The CLIP option remains in effect until you submit
a RESET NOCLIP command. You can also use the GBLKVP command, which
clips either inside or outside of a viewport. Use the GBLKVP command to define a
blanking area in which nothing can be drawn until the blanking area is released. Use
the GBLKVPD command to release the blanking area.

SAS OnlineDoc: Version 8

Common Arguments � 393

Common Arguments

IML graphics commands are available in the form of call subroutines. They generally
take a set of required arguments followed by a set of optional arguments. All graphics
primitives takewindow and viewport as optional arguments. Some IML graphics
commands, like GPOINT or GPIE, allow implicit repetition factors in the argument
lists. The GPOINT command places as many markers as there are well-defined(x; y)

pairs. The GPIE command draws as many slices as there are well-defined pies. In
those cases, some of the attribute matrices can have more than one element, which are
used in order. If an attribute list is exhausted before the repetition factor is completed,
the last element of the list is used as the attribute for the remaining primitives.

The arguments to the IML graphics commands are positional. Thus, to skip over an
optional argument from the middle of a list, you must specify a comma to hold its
place. For example, the command

call gpoint(x,y, ,"red");

omits the third argument from the argument list.

The following list details the arguments commonly used in IML graphics com-
mands:

color is a character matrix or literal that names a valid color as specified
in the GOPTIONS statement. The default color is the first color
specified in the COLORS= list in the GOPTIONS statement. If no
such list is given, IML uses the first default color for the graphics
device. Note thatcolor can be specified either as a quoted literal,
such as "RED", a color number, such as 1, or the name of a matrix
containing a reference to a valid color. A color numbern refers to
thenth color in the color list.

You can change the default color with the GSET command.

font is a character matrix or quoted literal that specifies a valid font
name. The default font is the hardware font, which can be changed
by the GSET command unless a viewport is in effect.

height is a numeric matrix or literal that specifies the character height.
The unit of height is thegunit of the GOPTIONS statement, when
specified; otherwise, the unit is a character cell. The default height
is 1 gunit, which you can change using the GSET command.

pattern is a character matrix or quoted literal that specifies the pattern
to fill the interior of a closed curve. You specify a pattern by a
coded character string as documented in the V= option in the PAT-
TERN statement (refer to the chapter on the PATTERN ttatement
in SAS/GRAPH Software: Reference.

The default pattern set by the IML graphics subsystem is “E”, that
is, empty. The default pattern can be changed using the GSET
command.

SAS OnlineDoc: Version 8

394 � Chapter 12. Graphics Examples

segment-name is a character matrix or quoted literal that specifies a valid SAS
name used to identify a graphics segment. Thesegment-nameis
associated with the graphics segment opened with a GOPEN com-
mand. If you do not specifysegment-name, IML generates default
names. For example, to create a graphics segment called PLOTA,
enter

call gopen("plota");

Graphics segments are not allowed to have the same name as an
existing segment. If you try to create a second segment named
PLOTA, (that is, when thereplace flagis turned off), then the sec-
ond segment is named PLOTA1. Thereplaceflag is set by the
GOPEN command for the segment that is being created. To open a
new segment named PLOTA and replace an existing segment with
the same name, enter

call gopen("plota",1);

If you do not specify areplaceargument to the GOPEN command,
the default is set by the GSTART command for all subsequent seg-
ments that are created. By default, the GSTART command sets the
replaceflag to 0, so that new segments do not replace like-named
segments.

style is a numeric matrix or literal that specifies an index correspond-
ing to the line style documented for the SYMBOL statement in the
chapter on the Symbol statement inSAS/GRAPH Software: Ref-
erence. The IML graphics subsystem sets the default line style to
be 1, a solid line. The default line style can be changed using the
GSET command.

symbol is a character matrix or quoted literal that specifies either a charac-
ter string corresponding to a symbol as defined for the V= option
of the SYMBOL statement or specifies the corresponding identify-
ing symbol number. STAR is the default symbol used by the IML
graphics subsystem.

SAS/IML graphics commands are described in detail in Chapter 17, “Language
Reference.” Refer also toSAS/GRAPH Software: Referencefor additional infor-
mation.

Graphics Examples

This section provides the details and code for three examples involving SAS/IML
graphics. The first example shows a2 � 2 matrix of scatter plots and a3� 3 matrix
of scatter plots. A matrix of scatter plots is useful when you have several variables
that you want to investigate simultaneously rather than in pairs. The second example
draws a grid for representing a train schedule, with arrival and departure dates on
the horizontal axis and destinations along the vertical axis. The final example plots
Fisher’s Iris data. This example shows how to plot several graphs on one page.

SAS OnlineDoc: Version 8

Example 12.1. Scatter Plot Matrix � 395

Example 12.1. Scatter Plot Matrix

With the viewport capability of the IML graphics subroutine, you can arrange several
graphs on a page. In this example, multiple graphs are generated from three variables
and are displayed in a scatterplot matrix. For each variable, one contour plot is gen-
erated with each of the other variables as the dependent variable. For the graphs on
the main diagonal, a box and whisker plot is generated for each variable.

This example takes advantage of user-defined IML modules:

BOXWHSKR computes median and quartiles.

GBXWHSKR draws box and whisker plots.

CONTOUR generates confidence ellipses assuming bivariate normal data.

GCONTOUR draws the confidence ellipses for each pair of variables.

GSCATMAT produces then � n scatter plot matrix, wheren is the number of
variables.

The code for the five modules and a sample data set follow. The modules produce
Figure 12.9 on page 401 and Figure 12.10 on page 401.

/* This program generates a data set and uses iml graphics */
/* subsystem to draw a scatterplot matrix. */
/* */

data factory;
input recno prod temp a defect mon;
datalines;

1 1.82675 71.124 1.12404 1.79845 2
2 1.67179 70.9245 0.924523 1.05246 3
3 2.22397 71.507 1.50696 2.36035 4
4 2.39049 74.8912 4.89122 1.93917 5
5 2.45503 73.5338 3.53382 2.0664 6
6 1.68758 71.6764 1.67642 1.90495 7
7 1.98233 72.4222 2.42221 1.65469 8
8 1.17144 74.0884 4.08839 1.91366 9
9 1.32697 71.7609 1.76087 1.21824 10

10 1.86376 70.3978 0.397753 1.21775 11
11 1.25541 74.888 4.88795 1.87875 12
12 1.17617 73.3528 3.35277 1.15393 1
13 2.38103 77.1762 7.17619 2.26703 2
14 1.13669 73.0157 3.01566 1 3
15 1.01569 70.4645 0.464485 1 4
16 2.36641 74.1699 4.16991 1.73009 5
17 2.27131 73.1005 3.10048 1.79657 6
18 1.80597 72.6299 2.62986 1.8497 7
19 2.41142 81.1973 11.1973 2.137 8
20 1.69218 71.4521 1.45212 1.47894 9
21 1.95271 74.8427 4.8427 1.93493 10
22 1.28452 76.7901 6.79008 2.09208 11
23 1.51663 83.4782 13.4782 1.81162 12
24 1.34177 73.4237 3.42369 1.57054 1
25 1.4309 70.7504 0.750369 1.22444 2
26 1.84851 72.9226 2.92256 2.04468 3
27 2.08114 78.4248 8.42476 1.78175 4

SAS OnlineDoc: Version 8

396 � Chapter 12. Graphics Examples

28 1.99175 71.0635 1.06346 1.25951 5
29 2.01235 72.2634 2.2634 1.36943 6
30 2.38742 74.2037 4.20372 1.82846 7
31 1.28055 71.2495 1.24953 1.8286 8
32 2.05698 76.0557 6.05571 2.03548 9
33 1.05429 77.721 7.72096 1.57831 10
34 2.15398 70.8861 0.886068 2.1353 11
35 2.46624 70.9682 0.968163 2.26856 12
36 1.4406 73.5243 3.52429 1.72608 1
37 1.71475 71.527 1.52703 1.72932 2
38 1.51423 78.5824 8.5824 1.97685 3
39 2.41538 73.7909 3.79093 2.07129 4
40 2.28402 71.131 1.13101 2.25293 5
41 1.70251 72.3616 2.36156 2.04926 6
42 1.19747 72.3894 2.3894 1 7
43 1.08089 71.1729 1.17288 1 8
44 2.21695 72.5905 2.59049 1.50915 9
45 1.52717 71.1402 1.14023 1.88717 10
46 1.5463 74.6696 4.66958 1.25725 11
47 2.34151 90 20 3.57864 12
48 1.10737 71.1989 1.19893 1.62447 1
49 2.2491 76.6415 6.64147 2.50868 2
50 1.76659 71.7038 1.70377 1.231 3
51 1.25174 76.9657 6.96572 1.99521 4
52 1.81153 73.0722 3.07225 2.15915 5
53 1.72942 71.9639 1.96392 1.86142 6
54 2.17748 78.1207 8.12068 2.54388 7
55 1.29186 77.0589 7.05886 1.82777 8
56 1.92399 72.6126 2.61256 1.32816 9
57 1.38008 70.8872 0.887228 1.37826 10
58 1.96143 73.8529 3.85289 1.87809 11
59 1.61795 74.6957 4.69565 1.65806 12
60 2.02756 75.7877 5.78773 1.72684 1
61 2.41378 75.9826 5.98255 2.76309 2
62 1.41413 71.3419 1.34194 1.75285 3
63 2.31185 72.5469 2.54685 2.27947 4
64 1.94336 71.5592 1.55922 1.96157 5
65 2.094 74.7338 4.73385 2.07885 6
66 1.19458 72.233 2.23301 1 7
67 2.13118 79.1225 9.1225 1.84193 8
68 1.48076 87.0511 17.0511 2.94927 9
69 1.98502 79.0913 9.09131 2.47104 10
70 2.25937 73.8232 3.82322 2.49798 12
71 1.18744 70.6821 0.682067 1.2848 1
72 1.20189 70.7053 0.705311 1.33293 2
73 1.69115 73.9781 3.9781 1.87517 3
74 1.0556 73.2146 3.21459 1 4
75 1.59936 71.4165 1.41653 1.29695 5
76 1.66044 70.7151 0.715145 1.22362 6
77 1.79167 74.8072 4.80722 1.86081 7
78 2.30484 71.5028 1.50285 1.60626 8
79 2.49073 71.5908 1.59084 1.80815 9
80 1.32729 70.9077 0.907698 1.12889 10
81 2.48874 83.0079 13.0079 2.59237 11
82 2.46786 84.1806 14.1806 3.35518 12
83 2.12407 73.5826 3.58261 1.98482 1
84 2.46982 76.6556 6.65559 2.48936 2
85 1.00777 70.2504 0.250364 1 3
86 1.93118 73.9276 3.92763 1.84407 4

SAS OnlineDoc: Version 8

Example 12.1. Scatter Plot Matrix � 397

87 1.00017 72.6359 2.63594 1.3882 5
88 1.90622 71.047 1.047 1.7595 6
89 2.43744 72.321 2.32097 1.67244 7
90 1.25712 90 20 2.63949 8
91 1.10811 71.8299 1.82987 1 9
92 2.25545 71.8849 1.8849 1.94247 10
93 2.47971 73.4697 3.4697 1.87842 11
94 1.93378 74.2952 4.2952 1.52478 12
95 2.17525 73.0547 3.05466 2.23563 1
96 2.18723 70.8299 0.829929 1.75177 2
97 1.69984 72.0026 2.00263 1.45564 3
98 1.12504 70.4229 0.422904 1.06042 4
99 2.41723 73.7324 3.73238 2.18307 5

;

proc iml;

/*-- Load graphics --*/
call gstart;

/*--------------------*/
/*-- Define modules --*/
/*--------------------*/

/* Module : compute contours */
start contour(c,x,y,npoints,pvalues);

/* This routine computes contours for a scatter plot */
/* c returns the contours as consecutive pairs of columns */
/* x and y are the x and y coordinates of the points */
/* npoints is the number of points in a contour */
/* pvalues is a column vector of contour probabilities */
/* the number of contours is controlled by the ncol(pvalue) */

xx=x||y;
n=nrow(x);

/* Correct for the mean */
mean=xx[+,]/n;
xx=xx-mean@j(n,1,1);

/* Find principle axes of ellipses */
xx=xx\rg \baccent \ms *xx/n;
call eigen(v,e,xx);

/* Set contour levels */
c=-2*log(1-pvalues);
a=sqrt(c*v[1]); b=sqrt(c*v[2]);

/* Parameterize the ellipse by angle */
t=((1:npoints)-{1})#atan(1)#8/(npoints-1);
s=sin(t);
t=cos(t);
s=s\rg \baccent \ms *a;
t=t\rg \baccent \ms *b;

/* Form contour points */
s=((e*(shape(s,1)//shape(t,1)))+mean‘@j(1,npoints*ncol(c),1))‘;

SAS OnlineDoc: Version 8

398 � Chapter 12. Graphics Examples

c=shape(s,npoints);

/* Returned as ncol pairs of columns for contours */
finish contour;
/*-- Module : draw contour curves --*/
start gcontour(t1, t2);

run contour(t12, t1, t2, 30, {.5 .8 .9});
window=(min(t12[,{1 3}],t1)||min(t12[,{2 4}],t2))//

(max(t12[,{1 3}],t1)||max(t12[,{2 4}],t2));
call gwindow(window);
call gdraw(t12[,1],t12[,2],,’blue’);
call gdraw(t12[,3],t12[,4],,’blue’);
call gdraw(t12[,5],t12[,6],,’blue’);
call gpoint(t1,t2,,’red’);

finish gcontour;

/*-- Module : find median, quartiles for box and whisker plot --*/
start boxwhskr(x, u, q2, m, q1, l);

rx=rank(x);
s=x;
s[rx,]=x;
n=nrow(x);

/*-- Median --*/
m=floor(((n+1)/2)||((n+2)/2));
m=(s[m,])[+,]/2;

/*-- Compute quartiles --*/
q1=floor(((n+3)/4)||((n+6)/4));
q1=(s[q1,])[+,]/2;
q2=ceil(((3*n+1)/4)||((3*n-2)/4));
q2=(s[q2,])[+,]/2;
h=1.5*(q2-q1); /*-- step=1.5*(interquartile range) --*/
u=q2+h;
l=q1-h;
u=(u>s)[+,]; /*-- adjacent values -----------------*/
u=s[u,];
l=(l>s)[+,];
l=s[l+1,];

finish boxwhskr;

/*-- Box and Whisker plot --*/
start gbxwhskr(t, ht);

run boxwhskr(t, up, q2,med, q1, lo);

/*---Adjust screen viewport and data window */
y=min(t)//max(t);
call gwindow({0, 100} || y);
mid = 50;
wlen = 20;

/*-- Add whiskers */
wstart=mid-(wlen/2);
from=(wstart||up)//(wstart||lo);
to=((wstart//wstart)+wlen)||from[,2];

SAS OnlineDoc: Version 8

Example 12.1. Scatter Plot Matrix � 399

/*-- Add box */
len=50;
wstart=mid-(len/2);
wstop=wstart+len;
from=from//(wstart||q2)//(wstart||q1)//

(wstart||q2)//(wstop||q2);
to=to//(wstop||q2)//(wstop||q1)//

(wstart||q1)//(wstop||q1);

/*---Add median line */
from=from//(wstart||med);
to=to//(wstop||med);

/*---Attach whiskers to box */
from=from//(mid||up)//(mid||lo);
to=to//(mid||q2)//(mid||q1);

/*-- Draw box and whiskers */
call gdrawl(from, to,,’red’);

/*---Add minimum and maximum data points */
call gpoint(mid, y ,3,’red’);

/*---Label min, max, and mean */
y=med//y;
s={’med’ ’min’ ’max’};
call gset("font","swiss");
call gset(’height’,13);
call gscript(wstop+ht, y, char(y,5,2),,,,,’blue’);
call gstrlen(len, s);
call gscript(wstart-len-ht,y,s,,,,,’blue’);
call gset(’height’);

finish gbxwhskr;

/*-- Module : do scatter plot matrix --*/
start gscatmat(data, vname);

call gopen(’scatter’);
nv=ncol(vname);
if (nv=1) then nv=nrow(vname);
cellwid=int(90/nv);
dist=0.1*cellwid;
width=cellwid-2*dist;
xstart=int((90 -cellwid * nv)/2) + 5;
xgrid=((0:nv)#cellwid + xstart)\rg \baccent \ms ;

/*-- Delineate cells --*/
cell1=xgrid;
cell1=cell1||(cell1[nv+1]//cell1[nv+1-(0:nv-1)]);
cell2=j(nv+1, 1, xstart);
cell2=cell1[,1]||cell2;
call gdrawl(cell1, cell2);
call gdrawl(cell1[,{2 1}], cell2[,{2 1}]);
xstart = xstart + dist; ystart = xgrid[nv] + dist;

/*-- Label variables ---*/
call gset("height", 5);
call gset("font","swiss");

SAS OnlineDoc: Version 8

400 � Chapter 12. Graphics Examples

call gstrlen(len, vname);
where=xgrid[1:nv] + (cellwid-len)/2;
call gscript(where, 0, vname) ;
len=len[nv-(0:nv-1)];
where=xgrid[1:nv] + (cellwid-len)/2;
call gscript(4,where, vname[nv - (0:nv-1)],90);

/*-- First viewport --*/
vp=(xstart || ystart)//((xstart || ystart) + width) ;

/* Since the characters are scaled to the viewport */
/* (which is inversely porportional to the */
/* number of variables), */
/* enlarge it proportional to the number of variables */

ht=2*nv;
call gset("height", ht);
do i=1 to nv;

do j=1 to i;
call gportstk(vp);
if (i=j) then run gbxwhskr(data[,i], ht);
else run gcontour(data[,j], data[,i]);

/*-- onto the next viewport --*/
vp[,1] = vp[,1] + cellwid;
call gportpop;

end;
vp=(xstart // xstart + width) || (vp[,2] - cellwid);

end;
call gshow;

finish gscatmat;

/*-- Placement of text is based on the character height. */
/* The IML modules defined here assume percent as the unit of */
/* character height for device independent control. */

goptions gunit=pct;

use factory;
vname={prod, temp, defect};
read all var vname into xyz;
run gscatmat(xyz, vname[1:2]); /*-- 2 x 2 scatter plot matrix --*/
run gscatmat(xyz, vname); /*-- 3 x 3 scatter plot matrix --*/
quit;

goptions gunit=cell; /*-- reset back to default --*/

SAS OnlineDoc: Version 8

Example 12.2. Train Schedule � 401

Figure 12.9. 2� 2 Scatter Plot Matrix

Figure 12.10. 3� 3 Scatter Plot Matrix

SAS OnlineDoc: Version 8

402 � Chapter 12. Graphics Examples

Example 12.2. Train Schedule

This example draws a grid on which the horizontal dimension gives the ar-
rival/departure data and the vertical dimension gives the destination. The first
section of the code defines the matrices used. The following section generates
the graph. The following example code shows some applications of the GGRID,
GDRAWL, GSTRLEN, and GSCRIPT subroutines. This code produces Figure 12.11
on page 403.

proc iml;
/* Placement of text is based on the character height. */
/* The graphics segment defined here assumes percent as the */
/* unit of character height for device independent control. */

goptions gunit=pct;

call gstart;
/* Define several necessary matrices */
cityloc={0 27 66 110 153 180}\rg \baccent \ms \tw7.4 \lh11 \th11 ;
cityname={"Paris" "Montereau" "Tonnerre" "Dijon" "Macon" "Lyons"};
timeloc=0:30;
timename=char(timeloc,2,0);
/* Define a data matrix */
schedule=

/* origin dest start end comment */
{ 1 2 11.0 12.5, /* train 1 */

2 3 12.6 14.9,
3 4 15.5 18.1,
4 5 18.2 20.6,
5 6 20.7 22.3,
6 5 22.6 24.0,
5 4 0.1 2.3,
4 3 2.5 4.5,
3 2 4.6 6.8,
2 1 6.9 8.5,
1 2 19.2 20.5, /* train 2 */
2 3 20.6 22.7,
3 4 22.8 25.0,
4 5 1.0 3.3,
5 6 3.4 4.5,
6 5 6.9 8.5,
5 4 8.6 11.2,
4 3 11.6 13.9,
3 2 14.1 16.2,
2 1 16.3 18.0

};

xy1=schedule[,3]||cityloc[schedule[,1]];
xy2=schedule[,4]||cityloc[schedule[,2]];

call gopen;
call gwindow({-8 -35, 36 240});
call ggrid(timeloc,cityloc,1,"red");
call gdrawl(xy1,xy2,,"blue");

/*-- center title -- */
s = "Train Schedule: Paris to Lyons";
call gstrlen(m, s,5,"titalic");

SAS OnlineDoc: Version 8

Example 12.3. Fisher’s Iris Data � 403

call gscript(15-m/2,185,s,,,5,"titalic");

/*-- find max graphics text length of cityname --*/
call gset("height",3);
call gset("font","italic");
call gstrlen(len, cityname);
m = max(len) +1.0
call gscript(-m, cityloc,cityname);
call gscript(timeloc - .5,-12,timename,-90,90);
call gshow;

quit;
goptions gunit=cell; /*-- reset back to default --*/

Figure 12.11. Train Schedule

Example 12.3. Fisher’s Iris Data

This example generates four scatter plots and prints them on a single page. Scatter
plots of sepal length versus petal length, sepal width versus petal width, sepal length
versus sepal width, and petal length versus petal width are generated. The following
code produces Figure 12.12 on page 406.

data iris;
title ’Fisher (1936) Iris Data’;
input sepallen sepalwid petallen petalwid spec_no @@;
if spec_no=1 then species=’setosa ’;
if spec_no=2 then species=’versicolor’;
if spec_no=3 then species=’virginica ’;
label sepallen=’sepal length in mm.’

sepalwid=’sepal width in mm.’
petallen=’petal length in mm.’
petalwid=’petal width in mm.’;

SAS OnlineDoc: Version 8

404 � Chapter 12. Graphics Examples

datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2
67 31 56 24 3 63 28 51 15 3 46 34 14 03 1
69 31 51 23 3 62 22 45 15 2 59 32 48 18 2
46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3
58 27 51 19 3 68 32 59 23 3 51 33 17 05 1
57 28 45 13 2 62 34 54 23 3 77 38 67 22 3
63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3
70 32 47 14 2 64 32 45 15 2 61 28 40 13 2
48 31 16 02 1 59 30 51 18 3 55 24 38 11 2
63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3
44 32 13 02 1 67 33 57 21 3 50 35 16 06 1
58 26 40 12 2 44 30 13 02 1 77 28 67 20 3
63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1
51 38 16 02 1 61 30 49 18 3 48 34 19 02 1
50 30 16 02 1 50 32 12 02 1 61 26 56 14 3
64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3
49 30 14 02 1 51 35 14 02 1 56 30 45 15 2
58 27 41 10 2 50 34 16 04 1 46 32 14 02 1
60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3
58 27 51 19 3 57 29 42 13 2 72 30 58 16 3
54 34 15 04 1 52 41 15 01 1 71 30 59 21 3
64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2
55 42 14 02 1 49 31 15 02 1 77 26 69 23 3
60 22 50 15 3 54 39 17 04 1 66 29 46 13 2
52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2
58 27 39 12 2 47 32 13 02 1 46 31 15 02 1
69 32 57 23 3 62 29 43 13 2 74 28 61 19 3
59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3
67 25 58 18 3 49 31 15 01 1 67 31 47 15 2
63 23 44 13 2 54 37 15 02 1 56 30 41 13 2
63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3
69 31 54 21 3 54 39 13 04 1 51 35 14 03 1
72 36 61 25 3 65 32 51 20 3 61 29 47 14 2
56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1
48 30 14 01 1 45 23 13 03 1 57 25 50 20 3
57 38 17 03 1 51 38 15 03 1 55 23 40 13 2
66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3
67 30 50 17 2 63 33 60 25 3 53 37 15 02 1

;

proc iml;

use iris; read all;

SAS OnlineDoc: Version 8

Example 12.3. Fisher’s Iris Data � 405

/*-- */
/* Create 5 graphs, PETAL, SEPAL, SPWID, SPLEN, and ALL4 */
/* After the graphs are created, to see any one, type */
/* CALL GSHOW("name"); */
/* where name is the name of any one of the 5 graphs */
/* --- */

call gstart; /*-- always start with GSTART --*/

/*-- Spec_no will be used as marker index, change 3 to 4 */
/*-- 1 is + , 2 is x, 3 is *, 4 is a square -------------*/

do i=1 to 150;
if (spec_no[i] = 3) then spec_no[i] = 4;

end;

/*-- Creates 4 x-y plots stored in 4 different segments */

/*-- Creates a segment called petal, petallen by petalwid --*/
call gopen("petal");

wp = { -10 -5, 90 30};
call gwindow(wp);
call gxaxis({0 0}, 75, 6,,,’5.1’);
call gyaxis({0 0}, 25, 5,,,’5.1’);
call gpoint(petallen, petalwid, spec_no, ’blue’);
labs = "Petallen vs Petalwid";
call gstrlen(len, labs,2, ’swiss’);
call gscript(40-len/2,-4,labs,,,2,’swiss’);

/*-- Creates a segment called sepal, sepallen by sepalwid --*/
call gopen("sepal");

ws = {35 15 85 55};
call gwindow(ws);
call gxaxis({40 20}, 40, 9, , ,’5.1’);
call gyaxis({40 20}, 28, 7, , ,’5.1’);
call gpoint(sepallen, sepalwid, spec_no, ’blue’);
labs = "Sepallen vs Sepalwid";
call gstrlen(len, labs,2, ’swiss’);
call gscript(60-len/2,16,labs,,,2,’swiss’);

/*-- Creates a segment called spwid, petalwid by sepalwid --*/
call gopen("spwid");

wspwid = { 15 -5 55 30};
call gwindow(wspwid);
call gxaxis({20 0}, 28, 7,,,’5.1’);
call gyaxis({20 0}, 25, 5,,,’5.1’);
call gpoint(sepalwid, petalwid, spec_no, ’green’);
labs = "Sepalwid vs Petalwid";
call gstrlen(len, labs,2,’swiss’);
call gscript(35-len/2,-4,labs,,,2,’swiss’);

/*-- Creates a segment called splen, petallen by sepallen --*/
call gopen("splen");

wsplen = {35 -15 85 90};
call gwindow(wsplen);
call gxaxis({40 0}, 40, 9,,,’5.1’);
call gyaxis({40 0}, 75, 6,,,’5.1’);

SAS OnlineDoc: Version 8

406 � Chapter 12. Graphics Examples

call gpoint(sepallen, petallen, spec_no, ’red’);
labs = "Sepallen vs Petallen";
call gstrlen(len, labs,2,’swiss’);
call gscript(60-len/2,-14,labs,,,2,’swiss’);

/*-- Create a new segment */
call gopen("all4");

call gport({50 0, 100 50}); /* change viewport, lower right ----*/
call ginclude("sepal"); /* include sepal in this graph -----*/
call gport({0 50, 50 100}); /* change the viewport, upper left */
call ginclude("petal"); /* include petal -------------------*/
call gport({0 0, 50 50}); /* change the viewport, lower left */
call ginclude("spwid"); /* include spwid -------------------*/
call gport({50 50, 100 100});/* change the viewport, upper right */
call ginclude("splen"); /* include splen -------------------*/

call gshow("Petal");

Figure 12.12. Petal Length versus Petal Width

SAS OnlineDoc: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–553–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

