
Chapter 15
Using SAS/IML Software to Generate

IML Statements

Chapter Table of Contents

OVERVIEW . 429

GENERATING AND EXECUTING STATEMENTS 429
Executing a String Immediately . .. 429
Feeding an Interactive Program . 430
Calling the Operating System. 431
Calling Display Manager .. 431
Executing Any Command in an EXECUTE Call 432
Making Operands More Flexible . 433
Interrupt Control . 433
Specific Error Control . 434
General Error Control . 435
Macro Interface . 437
IML Line Pushing Contrasted with Using the Macro Facility. 437
Example 15.1 Full-Screen Editing .. 438

SUMMARY . 442

428 � Chapter 15. Using SAS/IML Software to Generate IML Statements

SAS OnlineDoc: Version 8

Chapter 15
Using SAS/IML Software to Generate

IML Statements

Overview

This chapter describes ways of using SAS/IML software to generate and execute
statements from within the Interactive Matrix Language. You can execute statements
generated at run time, execute global SAS commands under program control, or cre-
ate statements dynamically to get more flexibility.

Generating and Executing Statements

You can push generated statements into the input command stream (queue) with the
PUSH, QUEUE, and EXECUTE subroutines. This can be very useful in situations
that require added flexibility, such as menu-driven applications or interrupt handling.

The PUSH command inserts program statements at the front of the input command
stream, whereas the QUEUE command inserts program statements at the back. In
either case, if they are not input to an interactive application, the statements remain
in the queue until IML enters a pause state, at which point they are executed. The
pause state is usually induced by a program error or an interrupt control sequence.
Any subsequent RESUME statement resumes execution of the module from the point
where the PAUSE command was issued. For this reason, the last statement put into
the command stream for PUSH or QUEUE is usually a RESUME command.

The EXECUTE statement also pushes program statements like PUSH and QUEUE,
but it executes them immediately and returns. It is not necessary to push a RESUME
statement when you use the CALL EXECUTE command.

Executing a String Immediately

The PUSH, QUEUE, and EXECUTE commands are especially useful when used in
conjunction with the pause and resume features because they enable you to generate
a pause-interrupt command to execute the code you push and return from it via a
pushed RESUME statement. In fact, this is precisely how the EXECUTE subroutine
is implemented generally.

CAUTION: Note that the push and resume features work this way only in the context
of being inside modules. You cannot resume an interrupted sequence of statements
in immediate mode, that is, not inside a module.

For example, suppose that you collect program statements in a matrix called CODE.
You push the code to the command input stream along with a RESUME statement

430 � Chapter 15. Using SAS/IML Software to Generate IML Statements

and then execute a PAUSE statement. The PAUSE statement interrupts the execution,
parses and executes the pushed code, and returns to the original execution via the
RESUME statement.

proc iml;
start testpush;

print ’*** ENTERING MODULE TESTPUSH ***’;
print ’*** I should be 1,2,3: ’;
/* constructed code * /
code = ’ do i = 1 to 3; print i; end; ’;
/* push code+resume */
call push (code, ’resume;’);
/* pause interrupt */
pause;
print ’*** EXITING MODULE TESTPUSH ***’;

finish;

When the PAUSE statement interrupts the program, the IML procedure then parses
and executes the line:

do i=1 to 3; print i; end; resume;

The RESUME command then causes the IML procedure to resume the module that
issued the PAUSE.

Note: The EXECUTE routine is equivalent to a PUSH command, but it also adds the
push of a RESUME command, then issues a pause automatically.

A CALL EXECUTE command should be used only from inside a module because
pause and resume features do not support returning to a sequence of statements in
immediate mode.

Feeding an Interactive Program

Suppose that an interactive program gets responses from the statement INFILE
CARDS. If you want to feed it under program control, you can push lines to the
command stream that is read.

For example, suppose that a subroutine prompts a user to respondYESbefore per-
forming some action. If you want to run the subroutine and feed theYES response
without the user being bothered, you push the response as follows:

/* the function that prompts the user */
start delall;

file log;
put ’Do you really want to delete all records? (yes/no)’;
infile cards;
input answer $;
if upcase(answer)=’YES’ then

do;
delete all;
purge;

SAS OnlineDoc: Version 8

Calling Display Manager � 431

print "*** FROM DELALL:
should see End of File (no records to list)";
list all;

end;
finish;

The latter DO group is necessary so that the pushedYESis not read before the RUN
statement. The following example illustrates the use of the module DELALL given
above:

/* Create a dummy data set for delall to delete records */
xnum = {1 2 3, 4 5 6, 7 8 0};
create dsnum1 from xnum;
append from xnum;

do;
call push (’yes’);
run delall;

end;

Calling the Operating System

Suppose that you want to construct and execute an operating system command. Just
push it to the token stream in the form of an X statement and have it executed under
a pause interrupt.

The following module executes any system command given as an argument:

start system(command);
call push(" x ’",command,"’; resume;");
pause;

finish;
run system(’listc’);

The call generates and executes a LISTC command under MVS:

x ’listc’; resume;

Calling Display Manager

The same strategy used for calling the operating system works for SAS global state-
ments as well, including calling display manager by generating DM statements.

The following subroutine executes a display manager command:

start dm(command);
call push(" dm ’",command,"’; resume;");
pause;

finish;
run dm(’log; color source red’);

SAS OnlineDoc: Version 8

432 � Chapter 15. Using SAS/IML Software to Generate IML Statements

The call generates and executes the statements

dm ’log; color source red’; resume;

which take you to the LOG window, where all source code is written in red.

Executing Any Command in an EXECUTE Call

The EXECUTE command executes the statements contained in the arguments using
the same facilities as a sequence of CALL PUSH, PAUSE, and RESUME statements.
The statements use the same symbol environment as that of the subroutine that calls
them. For example, consider the following subroutine:

proc iml;
start exectest;
/* IML STATEMENTS */

call execute ("xnum = {1 2 3, 4 5 6, 7 8 0};");
call execute ("create dsnum1 from xnum;");
call execute ("append from xnum;");
call execute ("print ’DSNUM should have 3 obs and 3 var:’;");
call execute ("list all;");

/* global (options) statement */
call execute ("options linesize=68;");
call execute ("print ’Linesize should be 68’;");

finish;
run exectest;

The output generated from EXECTEST is exactly the same as if you had entered the
statements one at a time:

DSNUM should have 3 obs and 3 var:

OBS COL1 COL2 COL3
------ --------- --------- ---------

1 1.0000 2.0000 3.0000
2 4.0000 5.0000 6.0000
3 7.0000 8.0000 0

Linesize should be 68

CALL EXECUTE could almost be programmed in IML as shown here; the difference
between this and the built-in command is that the following subroutine would not
necessarily have access to the same symbols as the calling environment:

start execute(command1,...);
call push(command1,...," resume;");
pause;

finish;

SAS OnlineDoc: Version 8

Interrupt Control � 433

Making Operands More Flexible

Suppose that you want to write a program that prompts a user for the name of a data
set. Unfortunately the USE, EDIT, and CREATE commands expect the data set name
as a hardcoded operand rather than an indirect one. However, you can construct and
execute a function that prompts the user for the data set name for a USE statement.

/* prompt the user to give dsname for use statement */
start flexible;

file log;
put ’What data set shall I use?’;
infile cards;
input dsname $;

call execute(’use’, dsname, ’;’);
finish;
run flexible;

If you enter USER.A, the program generates and executes the line

use user.a;

Interrupt Control

Whenever a program error or interrupt occurs, IML automatically issues a pause,
which places the module in a paused state. At this time, any statements pushed to the
input command queue get executed. Any subsequent RESUME statement (including
pushed RESUME statements) resume executing the module from the point where the
error or interrupt occurred.

If you have a long application such as reading a large data set and you want to be able
to find out where the data processing is just by entering a break-interrupt (sometimes
called an attention signal), you push the interrupt text. The pushed text can, in turn,
push its own text on each interrupt, followed by a RESUME statement to continue
execution.

For example, suppose you have a data set called TESTDATA that has 4096 observa-
tions. You want to print the current observation number if an attention signal is given.
The following code does this:

start obsnum;
use testdata;
brkcode={"print ’now on observation number’,i;"

"if (i<4096) then do;"
"call push(brkcode);"
"resume;"
"end;"
};

call push(brkcode);
do i=1 to 4096;

read point i;
end;

SAS OnlineDoc: Version 8

434 � Chapter 15. Using SAS/IML Software to Generate IML Statements

finish;
run obsnum;

After the module has been run, enter the interrupt control sequence for your operating
system. Type S to suspend execution. The IML procedure prints a message telling
which observation is being processed. Because the pushed code is executed at the
completion of the module, the message is also printed when OBSNUM ends.

Each time the attention signal is given, OBSNUM executes the code contained in
the variable BRKCODE. This code prints the current itteration number and pushes
commands for the next interrupt. Note that the PUSH and RESUME commands are
inside a DO group, making them conditional and ensuring that they are parsed before
the effect of the PUSH command is realized.

Specific Error Control

A PAUSE command is automatically issued whenever an execution error occurs,
putting the module in a holding state. If you have some way of checking for spe-
cific errors, you can write an interrupt routine to correct them during the pause state.

In this example, if a singular matrix is passed to the INV function, the IML procedure
pauses and executes the pushed code to make the result for the inverse be set to
missing values. The code uses the variable SINGULAR to detect if the interrupt
occurred during the INV operation. This is particularly necessary because the pushed
code is executed on completion of the routine, as well as on interrupts.

proc iml;
a = {3 3, 3 3}; /* singular matrix */
/* If a singular matrix is sent to the INV function, */
/* IML normally sets the resulting matrix to be empty */
/* and prints an error message. */
b = inv(a);
print "*** A should be non-singular", a;
start singtest;

msg=" Matrix is singular - result set to missing ";
onerror=

"if singular then do; b=a#.; print msg; print b;
call push(onerror); resume; end;";

call push(onerror);
singular = 1;
b = inv(a);
singular = 0;

finish ;
call singtest;

The resulting output is shown below:

ERROR: (execution) Matrix should be non-singular.

Error occured in module SINGTEST at line 67 column 9
operation : INV at line 67 column 16

SAS OnlineDoc: Version 8

General Error Control � 435

operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 67 column 9

Paused in module SINGTEST.

MSG
Matrix is singular - result set to missing

B
. .
. .

Resuming execution in module SINGTEST.

General Error Control

Sometimes, you may want to process or step over errors. To do this, put all the code
into modules and push a code to abort if the error count goes above some maximum.
Often, you may submit a batch job and get a trivial mistake that causes an error, but
you do not want to cause the whole run to fail because of it. On the other hand, if you
have many errors, you do not want to let the routine run.

In the following example, up to three errors are tolerated. A singular matrixA is
passed to the INV function, which would, by itself, generate an error message and
issue a pause in the module. This module pushes three RESUME statements, so that
the first three errors are tolerated. Messages are printed and execution is resumed.
The DO loop in the module OOPS is executed four times, and on the fourth iteration,
an ABORT statement is issued and you exit IML.

proc iml;
a={3 3, 3 3}; /* singular matrix */

/* */
/* GENERAL ERROR CONTROL -- exit iml for 3 or more errors */
/* */

start; /* module will be named MAIN */
errcode = {" if errors >= 0 then do;",

" errors = errors + 1;",
" if errors > 2 then abort;",
" else do; call push(errcode); resume; end;",
" end;" } ;

call push (errcode);
errors = 0;
start oops; /* start module OOPS */

do i = 1 to 4;
b = inv(a);

end;

SAS OnlineDoc: Version 8

436 � Chapter 15. Using SAS/IML Software to Generate IML Statements

finish; /* finish OOPS */
run oops;

finish; /* finish MAIN */
errors=-1; /* disable */
run;

The output generated from this example is shown below:

ERROR: (execution) Matrix should be non-singular.

Error occured in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.

Error occured in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.

Error occured in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

SAS OnlineDoc: Version 8

IML Line Pushing Contrasted with Using the Macro Facility � 437

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Exiting IML.

Actually, in this particular case it would probably be simpler to put three RESUME
statements after the RUN statement to resume execution after each of the first three
errors.

Macro Interface

The pushed text is scanned by the macro processor; therefore, the text can contain
macro instructions. For example, here is an all-purpose routine that shows what the
expansion of any macro is, assuming that it does not have embedded double quotes:

/* function: y = macxpand(x); */
/* will macro-process the text in x, */
/* and return the expanded text in the result. */
/* Do not use double quotes in the argument */
/* */

start macxpand(x);
call execute(’Y="’,x,’";’);
return(y);

finish;

Consider the following statements:

%macro verify(index);
data _null_;

infile junk&index;
file print;
input;
put _infile_;

run;
%mend;
y = macxpand(’%verify(1)’);
print y;

The output produced is shown below:

Y

DATA _NULL_; INFILE JUNK1; FILE PRINT; INPUT;
PUT _INFILE_; RUN;

IML Line Pushing Contrasted with Using the Macro Facility

The SAS macro language is a language embedded in and running on top of another
language; it generates text to feed the other language. Sometimes it is more conve-
nient to generate the text using the primary language directly rather than embedding

SAS OnlineDoc: Version 8

438 � Chapter 15. Using SAS/IML Software to Generate IML Statements

the text generation in macros. The preceding examples show that this can even be
done at execution time, whereas pure macro processing is done only at parse time.
The advantage of the macro language is its embedded, yet independent, nature: it
needs little quoting, and it works for all parts of the SAS language, not just IML.
The disadvantage is that it is a separate language that has its own learning burden,
and it uses extra reserved characters to mark its programming constructs and vari-
ables. Consider the quoting of IML versus the embedding characters of the macro
facility: IML makes you quote every text constant, whereas the macro facility makes
you use the special characters percent sign (%) and ampersand (&) on every macro
item. There are some languages, such as REXX, that give you the benefits of both
(no macro characters and no required quotes), but the cost is that the language forces
you to discipline your naming so that names are not expanded inadvertently.

Example 15.1. Full-Screen Editing

The ability to form and submit statements dynamically provides a very powerful
mechanism for making systems flexible. For example, consider the building of a data
entry system for a file. It is straightforward to write a system using WINDOW and
DISPLAY statements for the data entry and data processing statements for the I/O,
but once you get the system built, it is good only for that one file. With the ability to
push statements dynamically, however, it is possible to make a system that dynami-
cally generates the components that are customized for each file. For example, you
can change your systems from static systems to dynamic systems.

To illustrate this point, consider an IML system to edit an arbitrary file, a system like
the FSEDIT procedure in SAS/FSP software but programmed in IML. You cannot
just write it with open code because the I/O statements hardcode the filenames and
the WINDOW and DISPLAY statements must hardcode the fields. However, if you
generate just these components dynamically, the problem is solved for any file, not
just one.

proc iml;
/* FSEDIT */
/* This program defines and stores the modules FSEINIT, */
/* FSEDT, FSEDIT, and FSETERM in a storage catalog called */
/* FSED. To use it, load the modules and issue the command */
/* RUN FSEDIT; The system prompts or menus the files and */
/* variables to edit, then runs a full screen editing */
/* routine that behaves similar to PROC FSEDIT */
/* */
/* These commands are currently supported: */
/* */
/* END gets out of the system. The user is prompted */
/* as to whether or not to close the files and */
/* window. */
/* SUBMIT forces current values to be written out, */
/* either to append a new record or replace */
/* existing ones */
/* ADD displays a screen variable with blank values */
/* for appending to the end of a file */
/* DUP takes the current values and appends them to */
/* the end of the file */

SAS OnlineDoc: Version 8

Example 15.1. Full-Screen Editing � 439

/* number goes to that line number */
/* DELETE deletes the current record after confirmation */
/* by a Y response */
/* FORWARD1 moves to the next record, unless at eof */
/* BACKWARD1 moves to the previous record, unless at eof */
/* EXEC executes any IML statement */
/* FIND finds records and displays them */
/* */
/* Use: proc iml; */
/* reset storage=’fsed’; */
/* load module=_all_; */
/* run fsedit; */
/* */
/*---routine to set up display values for new problem--- */
start fseinit;

window fsed0 rows=15 columns=60 icolumn=18 color=’GRAY’
cmndline=cmnd group=title +30 ’Editing a data set’ color=’BLUE’;
/*---get file name--- */
_file=" ";
msg =

’Please Enter Data Set Name or Nothing For Selection List’;
display fsed0.title,

fsed0 (/ @5 ’Enter Data Set:’
+1 _file
+4 ’(or nothing to get selection list)’);

if _file=’ ’ then
do;

loop:
_f=datasets(); _nf=nrow(_f); _sel=repeat("_",_nf,1);
display fsed0.title,

fsed0 (/ "Select? File Name"/) ,
fsed0 (/ @5 _sel +1 _f protect=yes) repeat ;

_l = loc(_sel^=’_’);
if nrow(_l)^=1 then

do;
msg=’Enter one S somewhere’;
goto loop;

end;
_file = _f[_l];

end;
/*---open file, get number of records--- */
call queue(" edit ",_file,";

setin ",_file," NOBS _nobs; resume;"); pause *;
/*---get variables--- */
_var = contents();
_nv = nrow(_var);
sel = repeat("",_nv,1);
display fsed0.title,

fsed0 (/ "File:" _file) noinput,
fsed0 (/ @10 ’Enter S to select each var, or select none

to get all.’
// @3 ’select? Variable ’),
fsed0 (/ @5 _sel +5 _var protect=yes) repeat;

/*---reopen if subset of variables--- */
if any(_sel^=’_’) then

do;
_var = _var[loc(_sel^=’_’)];
_nv = nrow(_var);
call push(’close ’,_file,’; edit ’,_file,’ var

SAS OnlineDoc: Version 8

440 � Chapter 15. Using SAS/IML Software to Generate IML Statements

_var;resume;’);pause *;
end;

/*---close old window--- */
window close=fsed0;
/*---make the window---*/
call queue(’window fsed columns=55 icolumn=25 cmndline=cmnd

msgline=msg ’, ’group=var/@20 "Record " _obs
protect=yes’);

call queue(concat(’/"’,_var,’: " color="YELLOW" ’,
_var,’ color="WHITE"’));

call queue(’;’);
/*---make a missing routine---*/
call queue(’start vmiss; ’);
do i=1 to _nv;

val = value(_var[i]);
if type(val)=’N’ then call queue(_var[i],’=.;’);
else call queue(_var[i],’="’,

cshape(’ ’,1,1,nleng(val)),’";’);
end;
call queue(’finish; resume;’);
pause *;
/*---initialize current observation---*/
_obs = 1;
msg = Concat(’Now Editing File ’,_file);

finish;
/* */
/*---The Editor Runtime Controller--- */

start fsedt;
_old = 0; go=1;
do while(go);
/*--get any needed data--*/

if any(_obs^=_old) then do; read point _obs; _old = _obs;
end;
/*---display the record---*/
display fsed.var repeat;
cmnd = upcase(left(cmnd));
msg=’ ’;
if cmnd=’END’ then go=0;
else if cmnd=’SUBMIT’ then

do;
if _obs<=_nobs then

do;
replace point _obs; msg=’replaced’;

end;
else do;

append;
_nobs=_nobs+nrow(_obs);
msg=’appended’;

end;
end;

else if cmnd="ADD" then
do;

run vmiss;
_obs = _nobs+1;
msg=’New Record’;

end;
else if cmnd=’DUP’ then

do;
append;

SAS OnlineDoc: Version 8

Example 15.1. Full-Screen Editing � 441

_nobs=_nobs+1;
_obs=_nobs;
msg=’As Duplicated’;

end;
else if cmnd>’0’ & cmnd<’999999’ then

do;
_obs = num(cmnd);
msg=concat(’record number ’,cmnd);

end;
else if cmnd=’FORWARD1’ then _obs=min(_obs+1,_nobs);
else if cmnd=’BACKWARD1’ then _obs=max(_obs-1,1);
else if cmnd=’DELETE’ then

do;
records=cshape(char(_obs,5),1,1);
msg=concat(’Enter command Y to Confirm delete of’

,records);
display fsed.var repeat;
if (upcase(cmnd)=’Y’) then

do;
delete point _obs;
_obs=1;
msg=concat(’Deleted Records’,records);

end;
else msg=’Not Confirmed, Not Deleted’;

end;
else if substr(cmnd,1,4)=’FIND’ then

do;
call execute("find all where(",

substr(cmnd,5),
") into _obs;");

_nfound=nrow(_obs);
if _nfound=0 then

do;
_obs=1;
msg=’Not Found’;

end;
else

do;
msg=concat("Found ",char(_nfound,5)," records");

end;
end;

else if substr(cmnd,1,4)=’EXEC’ then
do;

msg=substr(cmnd,5);
call execute(msg);

end;
else msg=’Unrecognized Command; Use END to exit.’;
end;

finish;
/*---routine to close files and windows, clean up---*/

start fseterm;
window close=fsed;
call execute(’close ’,_file,’;’);
free _q;

finish;
/*---main routine for FSEDIT---*/

start fsedit;
if (nrow(_q)=0) then

do;

SAS OnlineDoc: Version 8

442 � Chapter 15. Using SAS/IML Software to Generate IML Statements

run fseinit;
end;

else msg = concat(’Returning to Edit File ’,_file);
run fsedt;
q=’’;
display fsed ("Enter ’q’ if you want to close files and windows"

_q " (anything else if you want to return later"
pause ’paused before termination’;

run fseterm;
finish;
reset storage=’fsed’;
store module=_all_;

Summary

In this chapter you learned how to use SAS/IML software to generate IML statements.
You learned how to use the PUSH, QUEUE, EXECUTE, and RESUME commands
to interact with the operating system or with the SAS System in display manager. You
also saw how to add flexibility to programs by adding interrupt control features and by
modifying error control. Finally, you learned how IML compares to the SAS macro
language.

SAS OnlineDoc: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–553–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

