Chapter 16
Further Notes

Chapter Table of Contents

MEMORY AND WORKSPACE 445
ACCURACY . . e 447
ERRORDIAGNOSTICS e e e 447
EFFICIENCY . . . 448
MISSING VALUES 448
PRINCIPLES OF OPERATION 449

OPERATION-LEVEL EXECUTION 450

444 + Chapter 16. Further Notes

SAS OnlineDocl] : Version 8

Chapter 16
Further Notes

Memory and Workspace

You do not need to be concerned with the details of memory usage because mem-
ory allocation is done automatically. However, if you are interested, the following
sections explain how it works.

There are two logical areas of memosymbolspac@ndworkspace Symbolspace
contains symbol table information and compiled statements. Workspace contains
matrix data values. Workspace itself is divided into one or more extents.

At the start of a session, the symbolspace and the first extent of workspace are al-
located automatically. More workspace is allocated as the need to store data values
grows. The SYMSIZE=and WORKSIZE= options in the PROC IML statement give
you control over the size of symbolspace and the size of each extent of workspace.
If you do not specify these options, PROC IML uses host dependent defaults. For
example, you can begin an IML session and set the SYMSIZE= and WORKSIZE=
options with the statement

proc iml symsize= nl worksize= n?2;
wherenl andn?2 are specified in kilobytes.

If the symbolspace memory becomes exhausted, more memory is automatically ac-
quired. The symbolspace is stable memory and is not compressible like workspace.
Symbolspace is recycled whenever possible for reuse as the same type of object. For
example, temporary symbols may be deleted after they are used in evaluating an ex-
pression. The symbolspace formerly used by these temporaries is added to a list of
free symbol-table nodes. When allocating temporary variables to evaluate another ex-
pression, IML looks for symbol-table nodes in this list first before consuming unused
symbolspace.

Workspace is compressible memory. Workspace extents fill up as more matrices
are defined by operations. Holes in extents appear as you free matrices or as IML
frees temporary intermediate results. When an extent fills up, compression reclaims
the holes that have appeared in the extent. If compression does not reclaim enough
memory for the current allocation, IML allocates a new extent. This procedure results
in the existence of a list of extents, each of which contains a mixture of active memory
and holes of unused memory. There is always a current extent, the one in which the
last allocation was made.

For a new allocation, the search for free space begins in the current extent and pro-
ceeds around the extent list until finding enough memory or returning to the current
extent. If the search returns to the current extent, IML begins a second transversal
of the extent list, compressing each extent until either finding sufficient memory or

446

L

Chapter 16. Further Notes

returning to the current extent. If the second search returns to the current extent, IML
opens a new extent and makes it the current one.

If the SAS System cannot provide enough memory to open a new extent with the full
extent size, IML repeatedly reduces its request by 2K. In this case, the successfully
opened extent will be smaller than the standard size.

If a single allocation is larger than the standard extent size, IML requests an allocation
large enough to hold the matrix.

The WORKSIZE=and SYMSIZE= options offer tools for tuning memory usage. For
data intensive applications involving a few large matrices, use a high WORKSIZE=
value and a low SYMSIZE= value. For symbol intensive applications involving many
matrices, perhaps through the use of many IML modules, use a high SYMSIZE=
value.

You can use the SHOW SPACE command to display the current status of IML mem-
ory usage. This command also lists the total number of compressions done on all
extents.

Setting the DETAILS option in the RESET command prints messages in the output
file when IML compresses an extent, opens a new extent, allocates a large object,
or acquires more symbolspace. These messages can be useful because these ac-
tions normally occur without the user's knowledge. The information can be used to
tune WORKSIZE= and SYMSIZE= values for an application. However, the default
WORKSIZE= and SYMSIZE= values should be appropriate in most applications.

Do not specify a very large value in the WORKSIZE= and SYMSIZE= options unless
absolutely necessary. Many of the native functions and all of the DATA step functions
used are dynamically loaded at execution time. If you use a large amount of the
memory for symbolspace and workspace, there may not be enough remaining to load
these functions, resulting in the error message

Unable to load module module-name.

Should you run into this problem, issue a SHOW SPACE command to examine cur-
rent usage. You may be able to adjust the SYMSIZE= or WORKSIZE= values.

The amount of memory your system can provide depends on the capacity of your
computer and on the products installed. The following techniques for efficient mem-
ory use are recommended when memory is at a premium:

e Free matrices as they are no longer needed using the FREE command.

e Store matrices you will need later in external library storage using the STORE
command, and then FREE their values. You can restore the matrices later using
the LOAD command. See Chapter 14, “Storage Features.”

e Plan your work to use smaller matrices.

SAS OnlineDocll : Version 8

Efficiency ¢ 447

Accuracy

All numbers are stored and all arithmetic is done in double-precision. The algorithms
used are generally very accurate numerically. However, when many operations are
performed or when the matrices are ill-conditioned, matrix operations should be used
in a numerically responsible way because numerical errors add up.

Error Diagnostics

When an error occurs, several lines of messages are printed. The error description, the
operation being performed, and the line and column of the source for that operation
are printed. The names of the operation’s arguments are also printed. Matrix names
beginning with a pound sign (#) or an asterisk (*) may appear; these are temporary
names assigned by the IML procedure.

If an error occurs while you are in immediate mode, the operation is not completed
and nothing is assigned to the result. If an error occurs while executing statements
inside a module, a PAUSE command is automatically issued. You can correct the
error and resume execution of module statements with a RESUME statement.

The most common errors are described below:

¢ referencing a matrix that has not been set to a value, that is, referencing a matrix
that has no value associated with the matrix name

e making a subscripting error, that is, trying to refer to a row or column not
present in the matrix

e performing an operation with nonconformable matrix arguments, for example,
multiplying two matrices together that do not conform, or using a function that
requires a special scalar or vector argument

e referencing a matrix that is not square for operations that require a square ma-
trix (for example, INV, DET, or SOLVE)

e referencing a matrix that is not symmetric for operations that require a sym-
metric matrix (for example, GENEIG)

e referencing a matrix that is singular for operations that require a nonsingular
matrix (for example, INV and SOLVE)

e referencing a matrix that is not positive definite or positive semidefinite for
operations that require such matrices (for example, ROOT and SWEEP)

e not enough memory (see “Memory and Workspace” earlier in this chapter) to
perform the computations and produce the result matrices.

These errors result from the actual dimensions or values of matrices and are caught

only after a statement has begun to execute. Other errors, such as incorrect number
of arguments or unbalanced parentheses, are syntax errors and resolution errors and
are detected before the statement is executed.

SAS OnlineDocl]: Version 8

448 ¢ Chapter 16. Further Notes

Efficiency

The Interactive Matrix Language is an interpretive language executor that can be
characterized as follows:

o efficient and inexpensive to compile
¢ inefficient and expensive for the number of operations executed
o efficient and inexpensive within each operation.
Therefore, you should try to substitute matrix operations for iterative loops. Thereis a

high overhead involved in executing each instruction; however, within the instruction
IML runs very efficiently.

Consider four methods of summing the elements of a matrix:

s=0; /* method 1 */
do i=1 to m;

do j=1 to n;

s=s+x[i,jI;

end;
end;
s=j[1,m]*x*j[n,1]; /* method 2 *
s=X[+,+]; /* method 3 */
s=sum(Xx); /* method 4 */

Method 1 is the least efficient, method 2 is more efficient, method 3 is more efficient
yet, and method 4 is the most efficient. The greatest advantage of using IML is
reducing human programming labor.

Missing Values

An IML numeric element can have a special value calledissing valughat indi-

cates that the value is unknown or unspecified. (A matrix with missing values should
not be confused with an empty or unvalued matrix, that is, a matrix with O rows and 0
columns.) A numeric matrix can have any mixture of missing and nonmissing values.

SAS/IML software supports missing values in a limited way. The operators listed be-
low recognize missing values and propagate them. Most matrix operators and func-
tions do not support missing values. For example, matrix multiplication or exponen-
tiation involving a matrix with missing values is not meaningful. Also, the inverse of

a matrix with missing values has no meaning.

Missing values are coded in the bit pattern of very large negative numbers, as an
I.LE.E.E. “NAN" code, or as a special string, depending on the host system.

In literals, a numeric missing value is specified as a single period. In data processing
operations, you can add or delete missing values. All operations that move values
around move missing values properly. The following arithmetic operators propagate
missing values.

SAS OnlineDocll : Version 8

addition @)
multiplication (#)
maximum >)
modulo (MOD)

Principles of Operation ¢+ 449

subtraction {)
division (/)
minimum (<)
exponentiation (##)

The comparison operators treat missing values as large negative numbers. The logical
operators treat missing values as zeros. The operators SUM, SSQ, MAX, and MIN

check for and exclude missing values.

The subscript reduction operators exclude missing values from calculations. If all of
a row or column that is being reduced is missing, then the operator returns the result

indicated in the table below.

Operator Result If All Missing
addition &) 0
multiplication (#) 1

maximum & >)
minimum & <)

sum squares (##)
index maximum €:>)
index minimum :<)
mean (:)

large negative value

large positive value
0

1

1

missing value

Also note that, unlike the SAS DATA step, IML does not distinguish between special
and generic missing values; it treats all missing values alike.

Principles of Operation

This section presents various technical details on the operation of SAS/IML software.
Statements in IML go through three phases:

e The parsing phase includes text acquisition, word scanning, recognition, syn-
tactical analysis, and enqueuing on the statement queue. This is performed
immediately as IML reads the statements.

¢ The resolution phase includes symbol resolution, label and transfer resolution,
and function and call resolution. Symbol resolution connects the symbolic
names in the statement with their descriptors in the symbol table. New sym-
bols can be added or old ones recognized. Label and transfer resolution con-
nects statements and references affecting the flow of control. This connects
LINK and GOTO statements with labels; it connects IF with THEN and ELSE
clauses; it connects DO with END. Function-call resolution identifies functions
and call routines and loads them if necessary. Each reference is checked with
respect to the number of arguments allowed. The resolution phase begins after
a module definition is finished or a DO group is ended. For all other state-
ments outside of any module or DO group, resolution begins immediately after

parsing.

SAS OnlineDocl]: Version 8

450 ¢ Chapter 16. Further Notes

e The execution phase occurs when the statements are interpreted and executed.
There are two levels of execution: statement and operation. Operation-level
execution involves the evaluation of expressions within a statement.

Operation-Level Execution

Operations are executed from a chain of operation elements created at parse-time and
resolved later. For each operation, the interpreter performs the following steps:

1. Prints arecord of the operation if the FLOW option is on.

2. Looks at the operands to make sure they have values. Only certain special
operators are allowed to tolerate operands that have not been set to a value.
The interpreter checks whether any argument has character values.

3. Inspects the operator and gives control to the appropriate execution routine. A
separate set of routines is invoked for character values.

4. Checks the operands to make sure they are valid for the operation. Then the
routine allocates the result matrix and any extra workspace needed for inter-
mediate calculations. Then the work is performed. Extra workspace is freed.
A return code notifies IML if the operation was successful. If unsuccessful, it
identifies the problem. Control is passed back to the interpreter.

5. Checks the return code. If the return code is nonzero, diagnostic routines are
called to explain the problem to the user.

6. Associates the results with the result arguments in the symbol table. By keeping
results out of the symbol table until this time, the operation does not destroy
the previous value of the symbol if an error has occurred.

7. Prints the result if RESET PRINT or RESET PRINTALL is specified. The
PRINTALL option prints intermediate results as well as end results.

8. Moves to the next operation.

SAS OnlineDocll : Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-553-1

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

