
Chapter 17
Language Reference

Chapter Table of Contents

OVERVIEW . 453

OPERATORS . 460

STATEMENTS, FUNCTIONS, AND SUBROUTINES 476

REFERENCES . 811

452 � Chapter 17. Language Reference

SAS OnlineDoc: Version 8

Chapter 17
Language Reference

Overview

This chapter describes all operators, statements, functions, and subroutines that can
be used in SAS/IML software. All necessary details, such as arguments and operands,
are included.

This chapter is divided into two sections. The first section contains operator descrip-
tions. They are in alphabetic order according to the name of the operator. The second
section contains descriptions of statements, functions, and subroutines also arranged
alphabetically by name.

The following tables list all statements, functions, and subroutines available in
SAS/IML software grouped by functionality.

Scalar Functions
ABS Function takes the absolute value
EXP Function calculates the exponential
INT Function truncates a value
LOG Function takes the natural logarithm
MOD Function computes the modulo (remainder)
NORMAL Function generates a pseudo-random normal deviate
SQRT Function calculates the square root
UNIFORM Function generates pseudo-random uniform deviates

Reduction Functions
MAX Function finds the maximum value of a matrix
MIN Function finds the smallest element of a matrix
SSQ Function calculates the sum of squares of all elements
SUM Function sums all elements

Matrix Inquiry Functions
ALL Function checks for all nonzero elements
ANY Function checks for any nonzero elements
LOC Function finds nonzero elements of a matrix
NCOL Function finds the number of columns of a matrix
NLENG Function finds the size of an element
NROW Function finds the number of rows of a matrix
TYPE Function determines the type of a matrix

454 � Chapter 17. Language Reference

Matrix Reshaping Functions
BLOCK Function forms block-diagonal matrices
BTRAN Function computes block transpose
DIAG Function creates a diagonal matrix
DO Function produces an arithmetic series
I Function creates an identity matrix
INSERT Function inserts one matrix inside another
J Function creates a matrix of identical values
REMOVE Function discards elements from a matrix
REPEAT Function creates a new matrix of repeated values
SHAPE Function reshapes and repeats values
SQRSYM Function converts a symmetric matrix to a square matrix
SYMSQR Function converts a square matrix to a symmetric matrix
T Function transposes a matrix
VECDIAG Function creates a vector from a diagonal

Character Functionality
BYTE Function translates numbers to ordinal characters
CHANGE Call replaces text
CHAR Function produces a character representation of a matrix
CHOOSE Function conditionally chooses and changes elements
CONCAT Function Concatenates elementwise strings
CONVMOD Function converts modules to character matrices
CSHAPE Function reshapes and repeats character values
LENGTH Call finds the lengths of character matrix elements
NAME Function lists the names of arguments
NUM Function produces a numeric representation of a character matrix
ROWCAT Function concatenates rows without using blank compression
ROWCATC Function concatenates rows using blank compression
SUBSTR Function takes substrings of matrix elements

Statistical Functionality
BRANKS Function computes bivariate ranks
CUSUM Function calculates cumulative sums
DESIGN Function creates a design matrix
DESIGNF Function creates a full rank design matrix
IPF Call performs an iterative proportional fit
LAV Call performs linear least absolute value regression by solving

theL1 norm minimization problem
LMS Call performs robust regression
LTS Call performs robust regression
MARG Call evaluates marginal totals in a multiway contingency table
MAXQFORM Call computes the subsets of a matrix system that maximize the

quadratic form
MVE Call finds the minimum volume ellipsoid estimator
OPSCAL Function rescales qualitative data to be a least-squares fit to qualita-

tive data

SAS OnlineDoc: Version 8

Overview � 455

RANK Function ranks elements of a matrix
RANKTIE Function ranks matrix elements using tie-averaging
SEQSCALE Call perform discrete sequential tests
SEQSHIFT Call perform discrete sequential tests
SEQTESTS Calls perform discrete sequential tests
SWEEP Function sweeps a matrix

Time Series Functionality
ARMACOV Call computes an autocovariance sequence for an ARMA

model
ARMALIK Call computes the log likelihood and residuals for an ARMA

model
ARMASIM Function simulates an ARMA series
CONVEXIT Function calculates convexity of a non-contingent cash-flow
COVLAG Function computes autocovariance estimates for a vector time series
DURATION Function calculates modified duration of a non-contingent cash-

flow
FORWARD Function calculates forward rates
KALCVF Call computes the one-step predictionzt+1jt and the filtered

estimateztjt, as well as their covariance matrices. The call
uses forward recursions, and you can also use it to obtain
k-step estimates.

KALCVS Call uses backward recursions to compute the smoothed esti-
mateztjT and its covariance matrix,PtjT , whereT is the
number of observations in the complete data set.

KALDFF Call computes the one-step forecast of state vectors in an SSM
using the diffuse Kalman filter. The call estimates the con-
ditional expectation ofzt, and it also estimates the initial
random vector,�, and its covariance matrix.

KALDFS Call computes the smoothed state vector and its mean square
error matrix from the one-step forecast and mean square
error matrix computed by KALDFF.

PV Function calculates present value
RATES Function converts interest rates from one base to another
SPOT Function calculates spot rates
TSBAYSEA Call performs Bayesian seasonal adjustment modeling
TSDECOMP Call analyzes nonstationary time series by using smoothness

priors modeling
TSMLOMAR Call analyzes nonstationary or locally stationary multivariate

time series by using the minimum AIC procedure
TSMULMAR Call estimates VAR processes by using the minimum AIC

procedure
TSPEARS Call analyzes periodic AR models with the minimum AIC

procedure
TSPRED Call provides predicted values of univariate and multivariate

ARMA processes when the ARMA coefficients are input

SAS OnlineDoc: Version 8

456 � Chapter 17. Language Reference

TSROOT Call calculates AR and MA coefficients from the characteristic
roots of the model or calculates the characteristic roots of
the model from the AR and MA coefficients

TSTVCAR Call analyzes time series that are nonstationary in the covari-
ance function

TSUNIMAR Call determines the order of an AR process with the minimum
AIC procedure and estimates the AR coefficients

VARMACOV Call computes the theoretical auto-cross covariance matrices
for the stationary VARMA(p; q) model

VARMASIM Call generates VARMA(p; q) time series
VNORMAL Call generates multivariate normal random series
VTSROOT Call computes the characteristic roots for the VAR(p) or

VMA(q) model
YIELD Function calculates yield-to-maturity of a cash-flow stream

Numerical Analysis Functionality
FFT Function performs the finite Fourier transform
IFFT Function computes the inverse finite Fourier transform
JROOT Function computes the first nonzero roots of a Bessel function of

the first kind and the derivative of the Bessel function at
each root

ODE Call performs numerical integration of vector differential equa-
tions of the form

ORPOL Function generates orthogonal polynomials
ORTVEC Call provides columnwise orthogonalization by the Gram-

Schmidt process and stepwise QR decomposition by the
Gram-Schmidt process

POLYROOT Function finds zeros of a real polynomial
PRODUCT Function multiplies matrices of polynomials
QUAD Call performs numerical integration of scalar functions in one

dimension over infinite, connected semi-infinite, and con-
nected finite intervals

RATIO Function divides matrix polynomials
SPLINE Call evaluates points on the spline
SPLINEC Call evaluates points on the spline
SPLINEV Function evaluates points on a spline
TPSPLINE Call computes thin-plate smoothing splines
TPSPLNEV Call evaluates the thin-plate smoothing spline at new data

points

Linear Algebra Functionality
APPCORT CALL complete orthogonal decomposition
COMPORT Call complete orthogonal decomposition by Householder

transformations
CVEXHULL Function finds a convex hull of a set of planar points
DET Function computes the determinant of a square matrix
ECHELON Function reduces a matrix to row-echelon normal form

SAS OnlineDoc: Version 8

Overview � 457

EIGEN Call computes eigenvalues and eigenvectors of symmetric
matrices

EIGVAL Function computes eigenvalues
EIGVEC Function computes eigenvectors
GENEIG Call computes eigenvalues and eigenvectors of a generalized

eigenproblem
GINV Function computes the generalized inverse
GSORTH Call computes the Gram-Schmidt orthonormalization
HALF Function computes Cholesky decomposition
HANKEL Function generates a Hankel matrix
HDIR Function performs a horizontal direct product
HERMITE Function reduces a matrix to Hermite normal form
HOMOGEN Function solves homogeneous linear systems
INV Function produces the inverse
INVUPDT Function updates a matrix inverse
LUPDT Call provides updating and downdating for rank deficient linear

least squares solutions, complete orthogonal factorization,
and Moore-Penrose inverses

QR Call produces the QR decomposition of a matrix by House-
holder transformations

RDODT Call downdate and update QR and Cholesky decompositions
ROOT Function performs the Cholesky decomposition of a matrix
RUPDT Call update QR and Cholesky decompositions
RZLIND Call update QR and Cholesky decompositions
SOLVE Function solves a system of linear equations
SVD Call computes the singular value decomposition
TOEPLITZ Function generates a Toeplitz or block-Toeplitz matrix
TRACE Function sums diagonal elements
TRISOLV Function solves linear systems with triangular matrices
XMULT Function performs accurate matrix multiplication

Optimization Subroutines
LCP Call solves the linear complementarity problem
LP Call solves the linear programming problem
NLPCG Call nonlinear optimization by conjugate gradient method
NLPDD Call nonlinear optimization by double dogleg method
NLPFDD Call approximates derivatives by finite differences method
NLPFEA Call computes feasible points subject to constraints
NLPHQN Call calculates hybrid quasi-Newton least squares
NLPLM Call calculates Levenberg-Marquardt least squares
NLPNMS Call nonlinear optimization by Nelder-Mead simplex method
NLPNRA Call nonlinear optimization by Newton-Raphson method
NLPNRR Call nonlinear optimization by Newton-Raphson ridge method
NLPQN Call nonlinear optimization by quasi-Newton method
NLPQUA Call nonlinear optimization by quadratic method
NLPTR Call nonlinear optimization by trust region method

SAS OnlineDoc: Version 8

458 � Chapter 17. Language Reference

Set Functions
SETDIF Function compares elements of two matrices
UNION Function performs unions of sets
UNIQUE Function sorts and removes duplicates
XSECT Function intersects sets

Control Statements
ABORT Statement ends IML
APPLY Function applies an IML module
DO and END
Statements

groups statements as a unit

DO, Iterative Statement iteratively executes a Do group
DO and UNTIL
Statement and Clause

conditionally executes statements iteratively

DO and WHILE
Statement and Clause

conditionally executes statements iteratively

END Statement ends a DO loop or DO statement
EXECUTE Call executes SAS statements immediately
FINISH Statement denotes the end of a module
FORCE Statement see the description of the SAVE statement
FREE Statement frees matrix storage space
GOTO Statement jumps to a new statement
IFTHEN Statement conditionally executes statement
LINK Statement jump to another statement
MATTRIB Statement associates printing attributes with matrices
PARSE Statement parses matrix elements as statements
PAUSE Statement interrupts module execution
PRINT Statement prints matrix values
PURGE Statement removes observations marked for deletion and renumbers

records
PUSH Call pushes SAS statements into the command input stream
QUEUE Call queues SAS statements into the command input stream
QUIT Statement exits from IML
REMOVE Statement removes matrices from storage
RESET Statement sets processing options
RESUME Statement resumes execution
RETURN Statement returns to caller
RUN Statement executes statements in a module
SHOW Statement prints system information
SOUND Call produces a tone
START/FINISH
Statements

define a module

STOP Statement stops execution of statements
STORAGE Function lists names of matrices and modules in storage
STORE Statement stores matrices and modules in library storage
VALSET Call performs indirect assignment
VALUE Function assigns values by indirect reference

SAS OnlineDoc: Version 8

Overview � 459

Dataset and File Functionality
APPEND Statement adds observations to SAS dataset
CLOSE Statement closes a SAS dataset
CLOSEFILE Statement closes a file
CONTENTS Function returns the variables in a SAS dataset
CREATE Statement creates a new SAS dataset
DATASETS Function obtains the names of SAS datasets
DELETE Call deletes a SAS data set
DELETE Statement marks observations for deletion
DO DATA Statement repeats a loop until an end of file occurs
EDIT Statement opens a SAS data set for editing
FILE Statement opens or points to an external file
FIND Statement finds observations
INDEX Statement indexes a variable in a SAS data set
INFILE Statement opens a file for input
INPUT Statement inputs data
LIST Statement displays observations of a data set
LOAD Statement loads modules and matrices from library storage
PUT Statement writes data to an external file
READ Statement reads observations from a data set
RENAME Call renames a SAS data set
REPLACE Statement replaces values in observations and updates observations
SAVE Statement saves data
SETIN Statement makes a data set current for input
SETOUT Statement makes a data set current for output
SORT Statement sorts a SAS data set
SUMMARY Statement computes summary statistics for SAS data sets
USE Statement opens a SAS data set for reading

Graphics and Window Functions
DISPLAY Statement displays fields in a display window
GBLKVP Call defines a blanking viewport
GBLKVPD Call deletes the blanking viewport
GCLOSE Call closes the graphics segment
GDELETE Call deletes a graphics segment
GDRAW Call draws a polyline
GDRAWL Call draws individual lines
GGRID Call draws a grid
GINCLUDE Call includes a graphics segment
GOPEN Call opens a graphics segment
GPIE Call draws pie slices
GPIEXY Call converts from polar to world coordinates
GPOINT Call plots points
GPOLY Call draws and fills a polygon
GPORT Call defines a viewport
GPORTPOP Call pops the viewport
GPORTSTK Call stacks the viewport

SAS OnlineDoc: Version 8

460 � Chapter 17. Language Reference

GSCALE Call calculates round numbers for labeling axes
GSCRIPT Call writes multiple text strings with special fonts
GSET Call sets attributes for a graphics segment
GSHOW Call shows a graph
GSTART Call initializes the graphics system
GSTOP Call deactivates the graphics system
GSTRLEN Call finds the string length
GTEXT and GVTEXT
Calls

place text horizontally or vertically on a graph

GWINDOW Call defines the data window
GXAXIS and GYAXIS
Calls

draw a horizontal or vertical axis

PGRAF Call produces scatter plots
WINDOW Statement opens a display window

Operators

All operators available in SAS/IML software are described in this section.

Addition Operator: +

adds corresponding matrix elements

matrix1 + matrix2
matrix + scalar

The addition infix operator (+) produces a new matrix containing elements that are
the sums of the corresponding elements ofmatrix1andmatrix2. The element in the
first row, first column of the first matrix is added to the element in the first row, first
column of the second matrix, with the sum becoming the element in the first row, first
column of the new matrix, and so on.

For example, the statements

a={1 2,
3 4};

b={1 1,
1 1};

c=a+b;

produce the matrixC.

C 2 rows 2 cols (numeric)

2 3
4 5

SAS OnlineDoc: Version 8

Comparison Operators: < > = <= >= ˆ = � 461

In addition to adding conformable matrices, you can also use the addition operator to
add a matrix and a scalar or two scalars. When you use thematrix+ scalar(or scalar
+ matrix) form, the scalar value is added to each element of the matrix to produce a
new matrix.

For example, you can obtain the same result as you did in the previous example with
the statement

c=a+1;

When a missing value occurs in an operand, IML assigns a missing value for the
corresponding element in the result.

You can also use the addition operator on character operands. In this case, the opera-
tor does elementwise concatenation exactly as the CONCAT function.

Comparison Operators: < > = <= >= ˆ =

compare matrix elements

matrix1<matrix2
matrix1<=matrix2

matrix1>matrix2

matrix1>=matrix2

matrix1=matrix2

matrix1ˆ =matrix2

The comparison operators compare two matrices element by element and produce
a new matrix that contains only zeros and ones. If an element comparison is true,
the corresponding element of the new matrix is 1. If the comparison is not true, the
corresponding element is 0. Unlike in base SAS software or the MATRIX procedure,
you cannot use the English equivalents GT and LT for the greater than and less than
signs. Scalar values can be used instead of matrices in any of the forms shown above.

For example, let

a={1 7 3,
6 2 4};

and

b={0 8 2,
4 1 3};

SAS OnlineDoc: Version 8

462 � Chapter 17. Language Reference

Evaluation of the expression

c=a>b;

results in the matrix of values

C 2 rows 3 cols (numeric)

1 0 1
1 1 1

In addition to comparing conformable matrices, you can apply the comparison opera-
tors to a matrix and a scalar. If either argument is a scalar, the comparison is between
each element of the matrix and the scalar.

For example the expression

d=(a>=2);

yields the result

D 2 rows 3 cols (numeric)

0 1 1
1 1 1

If the element lengths of two character operands are different, the shorter elements
are padded on the right with blanks for the comparison.

If a numeric missing value occurs in an operand, IML treats it as lower than any valid
number for the comparison.

When you are making conditional comparisons, all values of the result must be
nonzero for the condition to be evaluated as true.

Consider the following statement:

if x>=y then goto loop1;

The GOTO statement is executed only if every element ofx is greater than or equal
to the corresponding element iny. See also the descriptions of the ALL and ANY
functions.

SAS OnlineDoc: Version 8

Concatenation Operator, Horizontal: || � 463

Concatenation Operator, Horizontal: ||

concatenates matrices horizontally

matrix1||matrix2

The horizontal concatenation operator (||) produces a new matrix by horizontally join-
ing matrix1andmatrix2. Matrix1 andmatrix2must have the same number of rows,
which is also the number of rows in the new matrix. The number of columns in
the new matrix is the number of columns inmatrix1plus the number of columns in
matrix2.

For example, the statements

a={1 1 1,
7 7 7};

b={0 0 0,
8 8 8};

c=a||b;

result in

C 2 rows 6 cols (numeric)

1 1 1 0 0 0
7 7 7 8 8 8

Also, if

b={A B C,
D E F};

and

c={"GH" "IJ",
"KL" "MN"};

then

a=b||c;

results in

A 2 rows 5 cols (character, size 2)

A B C GH IJ
D E F KL MN

SAS OnlineDoc: Version 8

464 � Chapter 17. Language Reference

For character operands, the element size in the result matrix is the larger of the two
operands. In the preceding example,A has element size 2.

You can use the horizontal concatenation operator when one of the arguments has no
value. For example, ifA has not been defined andB is a matrix,A ||B results in a
new matrix equal toB.

Quotation marks (") are needed around matrix elements only if you want to embed
blanks or maintain uppercase and lowercase distinctions.

Concatenation Operator, Vertical: //

concatenates matrices vertically

matrix1//matrix2

The vertical concatenation operator (//) produces a new matrix by vertically joining
matrix1andmatrix2. Matrix1 andmatrix2must have the same number of columns,
which is also the number of columns in the new matrix. For example, ifA has three
rows and two columns andB has four rows and two columns, thenA==B produces
a matrix with seven rows and two columns. Rows 1 through 3 of the new matrix
correspond toA; rows 4 through 7 correspond toB.

For example, the statements

a={1 1 1,
7 7 7};

b={0 0 0,
8 8 8};

c=a//b;

result in

C 4 rows 3 cols (numeric)

1 1 1
7 7 7
0 0 0
8 8 8

Also let

b={"AB" "CD",
"EF" "GH"};

and

c={"I" "J",
"K" "L",
"M" "N"};

SAS OnlineDoc: Version 8

Direct Product Operator: @ � 465

Then the statement

a=b//c;

produces the new matrix

A 5 rows 2 cols (character, size 2)

AB CD
EF GH
I J
K L
M N

For character matrices, the element size of the result matrix is the larger of the element
sizes of the two operands.

You can use the vertical concatenation operator when one of the arguments has not
been assigned a value. For example, ifA has not been defined andB is a matrix,
A//B results in a new matrix equal toB.

Quotation marks (") are needed around matrix elements only if you want to embed
blanks or maintain uppercase and lowercase distinctions.

Direct Product Operator: @

takes the direct product of two matrices

matrix1@matrix2

The direct product operator (@) produces a new matrix that is the direct product (also
called theKronecker product) of matrix1 andmatrix2, usually denoted byA
 B.
The number of rows in the new matrix equals the product of the number of rows in
matrix1and the number of rows inmatrix2; the number of columns in the new matrix
equals the product of the number of columns inmatrix1and the number of columns
in matrix2.

For example, the statements

a={1 2,
3 4};

b={0 2};
c=a@b;

result in

C 2 rows 4 cols (numeric)

0 2 0 4
0 6 0 8

SAS OnlineDoc: Version 8

466 � Chapter 17. Language Reference

The statement

d=b@a;

results in

D 2 rows 4 cols (numeric)

0 0 2 4
0 0 6 8

Division Operator: /

performs elementwise division

matrix1/matrix2
matrix/scalar

The division operator (/) divides each element ofmatrix1 by the corresponding ele-
ment ofmatrix2, producing a matrix of quotients.

In addition to dividing elements in conformable matrices, you can also use the divi-
sion operator to divide a matrix by a scalar. If either operand is a scalar, the operation
does the division for each element and the scalar value.

When a missing value occurs in an operand, the IML procedure assigns a missing
value for the corresponding element in the result.

If a divisor is zero, the procedure prints a warning and assigns a missing value for
the corresponding element in the result. An example of a valid statement using this
operater follows:

c=a/b;

Element Maximum Operator: <>

selects the larger of two elements

matrix1<>matrix2

The element maximum operator (<>) compares each element ofmatrix1to the corre-
sponding element ofmatrix2. The larger of the two values becomes the corresponding
element of the new matrix that is produced.

When either argument is a scalar, the comparison is between each matrix element and
the scalar.

The element maximum operator can take as operands two character matrices of the
same dimensions or a character matrix and a character string. If the element lengths

SAS OnlineDoc: Version 8

Index Creation Operator: : � 467

of the operands are different, the shorter elements are padded on the right with blanks.
The element length of the result is the longer of the two operand element lengths.

When a missing value occurs in an operand, IML treats it as smaller than any valid
number.

For example, the statements

a={2 4 6, 10 11 12};
b={1 9 2, 20 10 40};
c=a<>b;

produce the result

C 2 rows 3 cols (numeric)

2 9 6
20 11 40

Element Minimum Operator: ><

selects the smaller of two elements

matrix1><matrix2

The element minimum operator (><) compares each element ofmatrix1with the cor-
responding element ofmatrix2. The smaller of the values becomes the corresponding
element of the new matrix that is produced.

When either argument is a scalar, the comparison is between the scalar and each
element of the matrix.

The element minimum operator can take as operands two character matrices of the
same dimensions or a character matrix and a character string. If the element lengths
of the operands are different, the shorter elements are padded on the right with blanks.
The element length of the result is the longer of the two operand element lengths.

When a missing value occurs in an operand, IML treats it as smaller than any valid
numeric value.

For example, the statements

a={2 4 6, 10 11 12};
b={1 9 2, 20 10 40};
c=a><b;

produce the result

C 2 rows 3 cols (numeric)

1 4 2
10 10 12

SAS OnlineDoc: Version 8

468 � Chapter 17. Language Reference

Index Creation Operator: :

creates an index vector

value1:value2

The index creation operator (:) creates a row vector with a first element that isvalue1.
The second element isvalue1+1, and so on, as long as the elements are less than or
equal tovalue2. For example, the statement

I=7:10;

results in

I 1 row 4 cols (numeric)

7 8 9 10

If value1is greater thanvalue2, a reverse order index is created. For example, the
statement

r=10:6;

results in the row vector

R 1 row 5 cols (numeric)

10 9 8 7 6

The index creation operator also works on character arguments with a numeric suffix.
For example, the statement

varlist=’var1’:’var5’;

results in

VARLIST 1 row 5 cols (character, size 4)

var1 var2 var3 var4 var5

Use the DO function if you want an increment other than 1 or�1. See the description
of the DO function later in this chapter.

SAS OnlineDoc: Version 8

Multiplication Operator, Elementwise: # � 469

Logical Operators: & | ˆ

perform elementwise logical comparisons

matrix1&matrix2
matrix&scalar

matrix1|matrix2

matrix|scalar

ˆ matrix

The AND logical operator (&) compares two matrices, element by element, to pro-
duce a new matrix. An element of the new matrix is 1 if the corresponding elements
of matrix1andmatrix2are both nonzero; otherwise, it is a zero.

An element of the new matrix produced by the OR operator (|) is 1 if either of the
corresponding elements ofmatrix1 and matrix2 is nonzero. If both are zero, the
element is zero.

The NOT prefix operator (ˆ) examines each element of a matrix and produces a new
matrix containing elements that are ones and zeros. If an element ofmatrix equals 0,
the corresponding element in the new matrix is 1. If an element ofmatrix is nonzero,
the corresponding element in the new matrix is 0.

The following statements illustrate the use of these logical operators:

z=x&r;
if a|b then print c;
if ^m then link x1;

Multiplication Operator, Elementwise: #

performs elementwise multiplication

matrix1#matrix2
matrix#scalar

matrix#vector

The elementwise multiplication operator (#) produces a new matrix with elements
that are the products of the corresponding elements ofmatrix1andmatrix2.

SAS OnlineDoc: Version 8

470 � Chapter 17. Language Reference

For example, the statements

a={1 2,
3 4};

b={4 8,
0 5};

c=a#b;

result in the matrix

C 2 rows 2 cols (numeric)

4 16
0 20

In addition to multiplying conformable matrices, you can use the elementwise multi-
plication operator to multiply a matrix and a scalar. When either argument is a scalar,
the scalar value is multiplied by each element inmatrix to form the new matrix.

You can also multiply vectors by matrices. You can multiply matrices as long as
they either conform in each dimension or one operand has dimension value 1. For
example, a2� 3 matrix can be multiplied on either side by a2� 3, a1� 3, a2� 1,
or a1� 1 matrix. Multiplying the2� 2 matrixA by the column vectorD, as in

d={10,100};
ad=a#d;

produces the matrix

AD 2 rows 2 cols (numeric)

10 20
300 400

whereas the statements

d={10 100};
ad=a#d;

produce the matrix

AD 2 rows 2 cols (numeric)

10 200
30 400

The result of elementwise multiplication is also known as the Schur or Hadamard
product. Element multiplication (using the # operator) should not be confused with
matrix multiplication (using the * operator).

When a missing value occurs in an operand, IML assigns a missing value in the result.

SAS OnlineDoc: Version 8

Power Operator, Elementwise: ## � 471

Multiplication Operator, Matrix: *

performs matrix multiplication

matrix1*matrix2

The matrix multiplication infix operator (*) produces a new matrix by performing
matrix multiplication. The first matrix must have the same number of columns as the
second matrix has rows. The new matrix has the same number of rows as the first ma-
trix and the same number of columns as the second matrix. The matrix multiplication
operator does not consistently propagate missing values.

For example, the statements

a={1 2,
3 4};

b={1 2};
c=b*a;

result in

C 1 row 2 cols (numeric)

7 10

and the statement

d=a*b‘;

results in

D 2 rows 1 col (numeric)

5
11

Power Operator, Elementwise: ##

raises each element to a power

matrix1##matrix2
matrix##scalar

The elementwise power operator (##) creates a new matrix with elements that are the
elements ofmatrix1 raised to the power of the corresponding element ofmatrix2. If
any value inmatrix1 is negative, the corresponding element inmatrix2 must be an
integer.

SAS OnlineDoc: Version 8

472 � Chapter 17. Language Reference

In addition to handling conformable matrices, the elementwise power operator allows
either operand to be a scalar. In this case, the operation takes the power for each
element and the scalar value. Missing values are propagated if they occur.

For example, the statements

a={1 2 3};
b=a##3;

result in

B 1 row 2 cols (numeric)

1 8 27

The statement

b=a##.5;

results in

B 1 row 3 cols (numeric)

1 1.4142136 1.7320508

Power Operator, Matrix: **

raises a matrix to a power

matrix**scalar

The matrix power operator (**) creates a new matrix that ismatrixmultiplied by itself
scalar times.Matrix must be square;scalarmust be an integer greater than or equal
to�1. Large scalar values cause numerical precision problems. If the scalar is not an
integer, it is truncated to an integer.

For example, the statements

a={1 2,
1 1};

c=a**2;

result in

C 2 rows 2 cols (numeric)

3 4
2 3

SAS OnlineDoc: Version 8

Subscripts: [] � 473

If the matrix is symmetric, it is preferable to power its eigenvalues rather than using
the matrix power operator directly on the matrix (see the description of the EIGEN
call). Note that the expression

A**(-1)

is permitted and is equivalent toINV(A) .

The matrix power operater does not support missing values.

Sign Reverse Operator: –

reverses the signs of elements

–matrix

The sign reverse prefix operator (�) produces a new matrix containing elements that
are formed by reversing the sign of each element inmatrix. A missing value is as-
signed if the element is missing.

For example, the statements

a={-1 7 6,
2 0 -8};

b=-a;

result in the matrix

B 2 rows 3 cols (numeric)

1 -7 -6
-2 0 8

Subscripts: []

select submatrices

matrix[rows,columns]
matrix[elements]

Subscripts are used with matrices to select submatrices, whererowsandcolumnsare
expressions that evaluate to scalars or numeric vectors. These expressions contain
valid subscript values of rows and columns in the argument matrix. A subscripted
matrix can appear on the left side of the equal sign. The dimensions of the target sub-
matrix must conform to the dimensions of the source matrix. See Chapter 4, “Work-
ing with Matrices,” for further information.

SAS OnlineDoc: Version 8

474 � Chapter 17. Language Reference

For example, the statements

x={1 2 3,
4 5 6,
7 8 9};

a=3;
m=x[2,a];

select the element in the second row and third column ofX and produce the matrix
M:

M 1 row 1 col (numeric)

6

The statements

a=1:3;
m=x[2,a];

select row 2, and columns 1 through 3 ofX, producing the matrixM:

M 1 row 3 cols (numeric)

4 5 6

Subtraction Operator: –

subtracts corresponding matrix elements

matrix1–matrix2
matrix–scalar

The subtraction infix operator (�) produces a new matrix containing elements that are
formed by subtracting the corresponding elements ofmatrix2 from those ofmatrix1.

In addition to subtracting conformable matrices, you can also use the subtraction op-
erator to subtract a matrix and a scalar. When either argument is a scalar, the operation
is performed by using the scalar against each element of the matrix argument.

When a missing value occurs in an operand, IML assigns a missing value for the
corresponding element in the result.

An example of a valid statement follows:

c=a-b;

SAS OnlineDoc: Version 8

Transpose Operator: ‘ � 475

Transpose Operator: ‘

transposes a matrix

matrix‘

The transpose operator (denoted by the backquote ‘ character) exchanges the rows
and columns ofmatrix, producing the transpose ofmatrix. For example, if an element
in matrix is in the first row and second column, it is in the second row and first column
of the transpose; an element in the first row and third column ofmatrix is in the third
row and first column of the transpose, and so on. Ifmatrix contains three rows and
two columns, its transpose has two rows and three columns.

For example, the statements

a={1 2,
3 4,
5 6};

b=a‘;

result in

B 2 rows 3 cols (numeric)

1 3 5
2 4 6

If your keyboard does not have a backquote character, you can transpose a matrix
with the T (transpose) function, documented later in this chapter.

SAS OnlineDoc: Version 8

476 � Chapter 17. Language Reference

Statements, Functions, and Subroutines

This section presents descriptions of all statements, functions, and subroutines avail-
able in IML.

ABORT Statement

stops execution and exits IML

ABORT;

The ABORT statement instructs IML to stop executing statements. It also stops IML
from parsing any further statements, causing IML to close its files and exit. See also
the description of the STOP statement.

ABS Function

takes the absolute value

ABS(matrix)

wherematrix is a numeric matrix or literal.

The ABS function is a scalar function that returns the absolute value of every element
of the argument matrix. An example of how to use the ABS function follows.

c=abs(a);

ALL Function

checks for all elements nonzero

ALL(matrix)

wherematrix is a numeric matrix or literal.

The ALL function returns a value of 1 if all elements inmatrix are nonzero. If any
element ofmatrix is zero, the ALL function returns a value of 0. Missing values in
matrix are treated as zeros.

You can use the ALL function to express the results of a comparison operator as
a single 1 or 0. For example, the comparison operationA > B yields a matrix
containing elements that can be either ones or zeros. All the elements of the new
matrix are ones only if each element ofA is greater than the corresponding element
of B.

SAS OnlineDoc: Version 8

ANY Function � 477

For example, consider the statement

if all(a>b) then goto loop;

IML executes the GOTO statement only if every element ofA is greater than the
corresponding element ofB. The ALL function is implicitly applied to the evaluation
of all conditional expressions. The statements

if (a>b) then goto loop;

and

if all(a>b) then goto loop;

have the same effect.

ANY Function

checks for any nonzero element

ANY(matrix)

wherematrix is a numeric matrix or literal.

The ANY function returns a value of 1 if any of the elements inmatrix are nonzero.
If all the elements ofmatrixare zeros, the ANY function returns a value of 0. Missing
values inmatrix are treated as zeros.

For example, consider the statement

if any(a=b) then print a b;

The matricesA andB are printed if at least one value inA is the same as the corre-
sponding value inB. The following statements do not print the message:

a={-99 99};
b={-99 98};
if a^=b then print ’a^=b’;

However, the following statement prints the message:

if any(a^=b) then print ’a^=b’;

SAS OnlineDoc: Version 8

478 � Chapter 17. Language Reference

APPCORT Call

applies complete orthogonal decomposition by Householder transformations on
the right-hand-side matrix, B for the solution of rank-deficient linear least-
squares systems

CALL APPCORT(prqb, lindep, a, b <, sing>);

The inputs to the APPCORT subroutine are:

a is anm�nmatrixA, withm � n, which is to be decomposed into the
product of them�m orthogonal matrixQ, then�n upper triangular
matrixR, and then� n orthogonal matrixP,

A = Q

�
R

0

�
�0P0�

b is them � p matrixB that is to be left multiplied by the transposed
m�m matrixQ0.

sing is an optional scalar specifying a singularity criterion.

The APPCORT subroutine returns the following values:

prqb is ann� p matrix product

P�

�
(L0)�1 0

0 0

�
Q0B

which is the minimum 2-norm solution of the (rank deficient) least-
squares problemkAx� bk22. Refer to Golub and Van Loan (1989, pp.
241�242) for more details.

lindep is the number of linearly dependent columns in the matrixA detected
by applying ther Householder transformations. That is,lindep= n�r,
wherer = rank(A).

See “COMPORT Call” for information on complete orthogonal decomposition.

SAS OnlineDoc: Version 8

APPEND Statement � 479

APPEND Statement

adds observations to the end of a SAS data set

APPEND < VAR operand > ;
APPEND < FROM from-name < [ROWNAME= row-name] > > ;

In the preceding statements,

operand can be specified as one of the following:

� a literal containing variable names

� a character matrix containing variable names

� an expression in parentheses yielding variable names

� one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

from-name is the name of a matrix containing data to append.

row-name is a character matrix or quoted literal containing descriptive row
names.

Use the APPEND statement to add data to the end of the current output data set. The
appended observations are from either the variables specified in the VAR clause or
variables created from the columns of the FROM matrix. The FROM clause and the
VAR clause should not be specified together.

You can specify a set of variables to use with the VAR clause.

Following are examples showing each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

If the VAR clause includes a matrix with more than one row and column, the AP-
PEND statement adds one observation for each element in the matrix with the great-
est number of elements. Elements are appended in row-major order. Variables in the
VAR clause with fewer than the maximum number of elements contribute missing
values to observations after all of their elements have been used.

The default variables for the APPEND statement are all matrices that match variables
in the current data set with respect to name and type.

The ROWNAME= operand to the FROM clause specifies the name of a character
matrix to contain row titles. The firstnrow values of this matrix become values of a

SAS OnlineDoc: Version 8

480 � Chapter 17. Language Reference

variable with the same name in the output data set;nrow is the number of rows in the
FROM matrix. The procedure uses the firstnrow elements in row-major order.

Examples using the APPEND statement follow. The first example shows the use
of the FROM clause when creating a new data set. See also the section “CREATE
Statement” on page 500

x={1 2 3, 4 5 6};
create mydata from x[colname={x1 x2 x3}];
append from x;
show contents;

/* shows 3 variables (x1 x2 x3) and 2 observations */

The next example shows the use of the VAR clause for selecting variables from which
to append data.

names={’Jimmy’ ’Sue’ ’Ted’};
sex={m f m};
create folks var{names sex};
append;
show contents;
/* shows 2 variables (names,sex) and 3 observations in FOLKS */

You could achieve the same result with the statements

dsvar={names sex};
create folks var dsvar;
append;

APPLY Function

applies an IML module to its arguments

APPLY(modname, argument1<, argument2,: : :, argument15>)

In the preceding statement,

modname is the name of an existing module, supplied in quotes, as a matrix
containing the module name, or an expression rendering the mod-
ule name.

argument is an argument passed to the module. You must have at least one
argument. You can specify up to 15 arguments.

The APPLY function applies a user-defined IML module to each element of the argu-
ment matrix or matrices and returns a matrix of results. The first argument to APPLY
is the name of the module. The module must already be defined before the APPLY
function is executed. The module must be a function module, capable of returning a
result.

SAS OnlineDoc: Version 8

ARMACOV Call � 481

The subsequent arguments to the APPLY function are the arguments passed to the
module. They all must have the same dimension. If the module takesn arguments,
argument1throughargumentnshould be passed to APPLY where1 � n � 15. The
APPLY function effectively calls the module. The result has the same dimension
as the input arguments, and each element of the result corresponds to the module
applied to the corresponding elements of the argument matrices. The APPLY function
can work on numeric as well as character arguments. For example, the following
statements define module ABC and then call the APPLY function, with matrixA as
an argument:

start abc(x);
r=x+100;
return (r);

finish abc;

a={6 7 8,
9 10 11};

r=apply("ABC",a);

The result is

R 2 rows 3 cols (numeric)

106 107 108
109 110 111

In the next example, the statements define the module SWAP and call the APPLY
function:

start swap(a,b,c);
r=a*b*c;
a=b;
if r<0 then return(0);
return(r);

finish swap;

a={2 3, 4 5};
b={4 3, 5 6};
c={9 -1, 3 7};
mod={swap};
r=apply(mod,a,b,c);
print a r;

The results are

A R
4 3 72 0
5 6 60 210

SAS OnlineDoc: Version 8

482 � Chapter 17. Language Reference

ARMACOV Call

computes an autocovariance sequence for an ARMA model

CALL ARMACOV(auto, cross, convol, phi, theta, num);

The inputs to the ARMACOV subroutine are as follows:

phi refers to a1� (p+1) matrix containing the autoregressive param-
eters. The first element is assumed to have the value 1.

theta refers to a1 � (q + 1) matrix containing the moving-average pa-
rameters. The first element is assumed to have the value 1.

num refers to a scalar containingn, the number of autocovariances to be
computed, which must be a positive number.

The ARMACOV subroutine returns the following values:

auto specifies a variable to contain the returned1�nmatrix containing
the autocovariances of the specified ARMA model, assuming unit
variance for the innovation sequence.

cross specifies a variable to contain the returned1� (q + 1) matrix con-
taining the covariances of the moving-average term with lagged
values of the process.

convol specifies a variable to contain the returned1� (q + 1) matrix con-
taining the autocovariance sequence of the moving-average term.

The ARMACOV subroutine computes the autocovariance sequence that corresponds
to a given autoregressive moving-average (ARMA) time-series model. An arbitrary
number of terms in the sequence can be requested. Two related covariance sequences
are also returned.

The model notation for the ARMACOV and ARMALIK subroutines is the same. The
ARMA (p; q) model is denoted

pX
j=0

�jyt�j =

qX
i=0

�i�t�i

with �0 = �0 = 1. The notation is the same as that of Box and Jenkins (1976)
except that the model parameters are opposite in sign. The innovationsf�tg satisfy
E(�t) = 0 andE(�t�t�k) = 1 if k=0, and are zero otherwise. The formula for the
kth element of theconvolargument is

qX
i=k�1

�i�i�k+1

SAS OnlineDoc: Version 8

ARMACOV Call � 483

for k = 1; 2; : : : ; q + 1. The formula for thekth element of thecrossargument is

qX
i=k�1

�i i�k+1

for k = 1; 2; : : : ; q+1, where i is theith impulse response value. The i sequence,
if desired, can be computed with the RATIO function. It can be shown that k is
the same asE(Yt�k�2t)=�, which is used by Box and Jenkins (1976, p. 75) in their
formulation of the autocovariances. Thekth autocovariance, denotedk and returned
as thek+1 element of theautoargument(k = 0; 1; : : : ; n� 1), is defined implicitly
for k > 0 by

pX
i=0

k�i�i = �k

where�k is thekth element of thecrossargument. See Box and Jenkins (1976) or
McLeod (1975) for more information.

To compute the autocovariance function at lags zero through four for the model

yt = 0:5yt�1 + et + 0:8et�1

use the following statements:

proc iml;
/* an arma(1,1) model */

phi ={1 -0.5};
theta={1 0.8};
call armacov(auto,cross,convol,phi,theta,5);
print auto,,cross convol;

The result is

AUTO
3.2533333 2.4266667 1.2133333 0.6066667 0.3033333

CROSS CONVOL
2.04 0.8 1.64 0.8

SAS OnlineDoc: Version 8

484 � Chapter 17. Language Reference

ARMALIK Call

computes the log likelihood and residuals for an ARMA model

CALL ARMALIK(lnl, resid, std, x, phi, theta);

The inputs to the ARMALIK subroutine are as follows:

x is ann � 1 or 1 � n matrix containing values of the time series
(assuming mean zero).

phi is a 1 � (p + 1) matrix containing the autoregressive parameter
values. The first element is assumed to have the value 1.

theta is a1 � (q + 1) matrix containing the moving-average parameter
values. The first element is assumed to have the value 1.

The ARMALIK subroutine returns the following values:

lnl specifies a3� 1 matrix containing the log likelihood concentrated
with respect to the innovation variance; the estimate of the innova-
tion variance (the unconditional sum of squares divided byn); and
the log of the determinant of the variance matrix, which is stan-
dardized to unit variance for the innovations.

resid specifies ann � 1 matrix containing the standardized residuals.
These values are uncorrelated with a constant variance if the spec-
ified ARMA model is the correct one.

std specifies ann� 1 matrix containing the scale factors used to stan-
dardize the residuals. The actual residuals from the one-step-ahead
predictions using the past values can be computed asstd#resid.

The ARMALIK subroutine computes the concentrated log likelihood function for
an ARMA model. The unconditional sum of squares is readily available, as are the
one-step-ahead prediction residuals. Factors that can be used to generate confidence
limits associated with prediction from a finite past sample are also returned.

The notational conventions for the ARMALIK subroutine are the same as those used
by the ARMACOV subroutine. See the description of the ARMACOV call for the
model employed. In addition, the condition

Pq
i=0 �

i
iz 6= 0 for jzj < 1 should be

satisfied to guard against floating-point overflow.

If the column vectorx containsn values of a time series and the variance matrix is
denoted� = �2V, where�2 is the variance of the innovations, then, up to additive
constants, the log likelihood, concentrated with respect to�2, is

�n
2
log
�
x0V�1x

�� 1

2
log jVj :

SAS OnlineDoc: Version 8

ARMASIM Function � 485

The matrixV is a function of the specified ARMA model parameters. IfL is the
lower Cholesky root ofV (that is,V = LL0), then the standardized residuals are
computed asresid= L�1x. The elements ofstd are the diagonal elements ofL.
The variance estimate isx0V�1x=n, and the log determinant islog jVj. See Ansley
(1979) for further details. To compute the log-likelihood for the model

yt � yt�1 + 0:25yt�2 = et + 0:5et�1

use the following IML code:

proc iml;
phi={ 1 -1 0.25} ;
theta={ 1 0.5} ;
x={ 1 2 3 4 5} ;
call armalik(lnl,resid,std,x,phi,theta);
print lnl resid std;

The printed output is

LNL RESID STD
-0.822608 0.4057513 2.4645637
0.8721154 0.9198158 1.2330147
2.3293833 0.8417343 1.0419028

1.0854175 1.0098042
1.2096421 1.0024125

ARMASIM Function

simulates a univariate ARMA series

ARMASIM(phi, theta, mu, sigma, n, <seed>)

The inputs to the ARMASIM function are As follows:

phi is a1 � (p + 1) matrix containing the autoregressive parameters.
The first element is assumed to have the value 1.

theta is a1� (q+1) matrix containing the moving-average parameters.
The first element is assumed to have the value 1.

mu is a scalar containing the overall mean of the series.

sigma is a scalar containing the standard deviation of the innovation se-
ries.

n is a scalar containingn, the length of the series. The value ofn
must be greater than 0.

seed is a scalar containing the random number seed. If it is not supplied,
the system clock is used to generate the seed. If it is negative, then
the absolute value is used as the starting seed; otherwise, subse-
quent calls ignore the value ofseedand use the last seed generated
internally.

SAS OnlineDoc: Version 8

486 � Chapter 17. Language Reference

The ARMASIM function generates a series of lengthn from a given autoregressive
moving-average (ARMA) time series model and returns the series in ann�1 matrix.
The notational conventions for the ARMASIM function are the same as those used
by the ARMACOV subroutine. See the description of the ARMACOV call for the
model employed. The ARMASIM function uses an exact simulation algorithm as
described in Woodfield (1988). A sequenceY0; Y1; : : : ; Yp+q�1 of starting values is
produced using an expanded covariance matrix, and then the remaining values are
generated using the recursion form of the model, namely

Yt = �
pX

i=1

�iYt�i + �t +

qX
i=1

�i�t�i t = p+ q; p+ q + 1; : : : ; n� 1 :

The random number generator RANNOR is used to generate the noise component of
the model. Note that the statement

armasim(1,1,0,1, n, seed);

returnsn standard normal pseudo-random deviates.

For example, to generate a time series of length 10 from the model

yt = 0:5yt�1 + et + 0:8et�1

use the following code to produce the result shown:

proc iml;
phi={1 -0.5};
theta={1 0.8};
y=armasim(phi, theta, 0, 1, 10, -1234321);
print y;

Y

2.3253578
0.975835

-0.376358
-0.878433
-2.515351
-3.083021
-1.996886
-1.839975
-0.214027
1.4786717

SAS OnlineDoc: Version 8

BRANKS Function � 487

BLOCK Function

forms block-diagonal matrices

BLOCK(matrix1<, matrix2,: : :, matrix15>)

wherematrix is a numeric matrix or literal.

The BLOCK function creates a new block-diagonal matrix from all the matrices spec-
ified in the argument matrices. Up to 15 matrices can be specified. The matrices are
combined diagonally to form a new matrix. For example, the statement

block(a,b,c);

produces a matrix of the form

24 A 0 0
0 B 0
0 0 C

35
The statements

a={2 2,
4 4} ;

b={6 6,
8 8} ;

c=block(a,b);

result in the matrix

C 4 rows 4 cols (numeric)

2 2 0 0
4 4 0 0
0 0 6 6
0 0 8 8

BRANKS Function

computes bivariate ranks

BRANKS(matrix)

wherematrix is ann� 2 numeric matrix.

The BRANKS function calculates the tied ranks and the bivariate ranks for ann� 2
matrix and returns ann� 3 matrix of these ranks. The tied ranks of the first column
of matrix are contained in the first column of the result matrix; the tied ranks of the

SAS OnlineDoc: Version 8

488 � Chapter 17. Language Reference

second column ofmatrixare contained in the second column of the result matrix; and
the bivariate ranks ofmatrix are contained in the third column of the result matrix.

The tied rank of an elementxj of a vector is defined as

Ri =
1

2
+
X
j

u(xi � xj)

where

u(t) =

8<:
1 if t > 0
1
2 if t = 0
0 if t < 0 :

The bivariate rank of a pair(xj ; yj) is defined as

Qi =
3

4
+
X
j

u(xi � xj)u(yi � yj) :

For example, the following statements produce the result shown below:

x={1 0,
4 2,
3 4,
5 3,
6 3};

f=branks(x);

F 5 rows 3 cols (numeric)

1 1 1
3 2 2
2 5 2
4 3.5 3
5 3.5 3.5

BTRAN Function

computes the block transpose

BTRAN(x, n, m)

The inputs to the BTRAN function are as follows:

x is an(inx)� (jmx) numeric matrix.

n is a scalar with a value that specifies the row dimension of the submatrix
blocks.

SAS OnlineDoc: Version 8

BYTE Function � 489

m is a scalar with a value that specifies the column dimension of the submatrix
blocks.

The BTRAN function computes the block transpose of a partitioned matrix. The
argumentx is a partitioned matrix formed from submatrices of dimensionn � n. If
the ith, jth submatrix of the argumentx is denotedAij , then theith, jth submatrix
of the result isAji.

The value returned by the BTRAN function is a(jn) � (im) matrix, the block tran-
pose ofx, where the blocks aren�m.

For example, the statements

proc iml;
z=btran({1 2 3 4,

5 6 7 8},2,2);
print z;

produce the result

Z 4 rows 2 cols (numeric)

1 2
5 6
3 4
7 8

BYTE Function

translates numbers to ordinal characters

BYTE(matrix)

wherematrix is a numeric matrix or literal.

The BYTE function returns a character matrix with the same shape as the numeric
argument. Each element of the result is a single character with an ordinal position in
the computer’s character set that is specified by the corresponding numeric element
in the argument. These numeric elements should generally be in the range 0 to 255.

For example, in the ASCII character set,

a=byte(47);

specifies that

a="/"; /* the slash character */

SAS OnlineDoc: Version 8

490 � Chapter 17. Language Reference

The lowercase alphabet can be generated with

y=byte(97:122);

which produces

Y 1 row 26 cols (character, size 1)

a b c d e f g h i j k l m n o p q r s t u v w x y z

This function simplifies the use of special characters and control sequences that can-
not be entered directly using the keyboard into IML source code. Consult the char-
acter set tables for the computer you are using to determine the printable and control
characters that are available and their ordinal positions.

CALL Statement

calls a subroutine or function

CALL name <(arguments)> ;

The inputs to the CALL statement are as follows:

name is the name of a user-defined module or an IML subroutine or func-
tion.

arguments are arguments to the module or subroutine.

The CALL statement executes a subroutine. The order of resolution for the CALL
statement is

1. IML built-in subroutine

2. user-defined module

This resolution order needs to be considered only if you have defined a module with
the same name as an IML built-in subroutine.

See also the section on the RUN statement.

SAS OnlineDoc: Version 8

CHAR Function � 491

CHANGE Call

search and replace text in an array

CALL CHANGE(matrix, old, new<, numchange>);

The inputs to the CHANGE call are as follows:

matrix is a character matrix or quoted literal.

old is the string to be changed.

new is the string to replace theold string.

numchange is the number of times to make the change.

The CHANGE subroutine changes the firstnumchangeoccurrences of the substring
old in each element of the character arraymatrix to the formnew. If numchange
is not specified, the routine defaults to 1. Ifnumchangeis 0, the routine changes
all occurrences ofold. If no occurrences are found, the matrix is not changed. For
example, the statements

a="It was a dark and stormy night.";
call change(a, "night","day");

produce

A="It was a dark and stormy day."

In theold operand, the following characters are reserved:

% $ [] { } < > � ? * # @ ’ ‘(backquote) ˆ

CHAR Function

produces a character representation of a numeric matrix

CHAR(matrix<, w <, d >>)

The inputs to the CHAR function are as follows:

matrix is a numeric matrix or literal.

w is the field width.

d is the number of decimal positions.

The CHAR function takes a numeric matrix as an argument and, optionally, a field
widthw and a number of decimal positionsd. The CHAR function produces a char-
acter matrix with dimensions that are the same as the dimensions of the argument

SAS OnlineDoc: Version 8

492 � Chapter 17. Language Reference

matrix and wtih elements that are character representations of the corresponding nu-
meric elements.

The CHAR function can take one, two, or three arguments. The first argument is the
name of a numeric matrix and must always be supplied. The second argument is the
field width of the result. If the second argument is not supplied, the system default
field width is used. The third argument is the number of decimal positions in the
result. If no third argument is supplied, the best representation is used. See also the
description of the NUM function, which does the reverse conversion.

For example, the statements

%\xxs NUM function\xe
a={1 2 3 4};
f=char(a,4,1);

produce the result

F 1 row 4 cols (character, size 4)

1.0 2.0 3.0 4.0

CHOOSE Function

conditionally chooses and changes elements

CHOOSE(condition, result-for-true, result-for-false)

The inputs to the CHOOSE function are as follows:

condition is checked for being true or false for each element.

result-for-true is returned whenconditionis true.

result-for-false is returned whenconditionis false.

The CHOOSE function examines each element of the first argument for being true
(nonzero and not missing) or false (zero or missing). For each true element, it re-
turns the corresponding element in the second argument. For each false element, it
returns the corresponding element in the third argument. Each argument must be
conformable with the others or be a single element to be propagated.

For example, suppose that you want to choose betweenx andy according to whether
x#y is odd or even, respectively. The statements

x={1, 2, 3, 4, 5};
y={101, 205, 133, 806, 500};
r=choose(mod(x#y,2)=1,x,y);
print x y r;

result in

SAS OnlineDoc: Version 8

CLOSE Statement � 493

X Y R
1 101 1
2 205 205
3 133 3
4 806 806
5 500 500

Suppose you want all missing values inx to be changed to zeros. Submit the follow-
ing statements to produce the result shown below:

x={1 2 ., 100 . -90, . 5 8};
print x;

X 3 rows 3 cols (numeric)

1 2 .
100 . -90

. 5 8

The following statement replaces the missing values inX with zeros:

x=choose(x=.,0,x);
print x;

X 3 rows 3 cols (numeric)

1 2 0
100 0 -90

0 5 8

CLOSE Statement

closes a SAS data set

CLOSE <SAS-data-set>;

whereSAS-data-setcan be specified with a one-word name (for example, A) or a
two-word name (for example, SASUSER.A). For more information on specifying
SAS data sets, see Chapter 6, “Working with SAS Data Sets,”. Also, refer to the
chapter on SAS data sets inSAS Language Reference: Concepts. More than one
SAS data set can be listed in a CLOSE statement.

The CLOSE statement is used to close one or more SAS data sets opened with the
USE, EDIT, or CREATE statements. To find out which data sets are open, use the
SHOWdatasetsstatement; see also the section on the SAVE statement later in this
chapter. IML automatically closes all open data sets when a QUIT statement is exe-
cuted. See Chapter 6, “Working with SAS Data Sets,” for more information. Exam-
ples of the CLOSE statement are as follows.

SAS OnlineDoc: Version 8

494 � Chapter 17. Language Reference

close mydata;
close mylib.mydata;
close; /* closes the current data set */

CLOSEFILE Statement

closes an input or output file

CLOSEFILE files;

wherefilescan be names (for defined filenames), literals, or expressions in parenthe-
ses (for filepaths).

The CLOSEFILE statement is used to close files opened by the INFILE or FILE
statement. The file specification should be the same as when the file was opened. File
specifications are either a name (for a defined filename), a literal, or an expression
in parentheses (for a filepath). To find out what files are open, use the statement
SHOWfiles. For further information, consult Chapter 7, “File Access.” See also the
description of the SAVE statement. IML automatically closes all files when a QUIT
statement is executed.

Examples of the CLOSEFILE statement are shown below.

filename in1 ’mylib.mydata’;
closefile in1;

or

closefile ’mylib.mydata’;

or

in=’mylib/mydata’;
closefile(in);

COMPORT Call

provides complete orthogonal decomposition by Householder transformations

CALL COMPORT(q, r, p, piv, lindep, a <, b><, sing>);

The COMPORT subroutine returns the following values:

q If b is not specified,q is them � m orthogonal matrixQ that is the
product of themin(m;n) separate Householder transformations. Ifb
is specified,q is them� p matrixQ0B that has the transposed House-
holder transformationsQ0 applied on thep columns of the argument
matrixB.

SAS OnlineDoc: Version 8

COMPORT Call � 495

r is then�n upper triangular matrixR that contains ther�r nonsingular
upper triangular matrixL0 of the complete orthogonal decomposition,
wherer � n is the rank ofA. The fullm� n upper triangular matrix
R of the orthogonal decomposition of matrixA can be obtained by
vertical concatenation (IML operator//) of the (m � n) � n zero
matrix to the resultr.

piv is ann�1 vector of permutations of the columns ofA. That is, the QR
decomposition is computed, not ofA, but of the matrix with columns
[Apiv[1] � � �Apiv[n]]. The vectorpiv corresponds to ann � n permu-
tation matrix,�, of the pivoted QR decomposition in the first step of
orthogonal decomposition.

lindep specifies the number of linearly dependent columns in the matrixA

detected by applying ther Householder transformation in the order
specified by the argumentpiv. That is,lindep= n� r.

The inputs to the COMPORT subroutine are as follows:

a specifies them�nmatrixA, withm � n, which is to be decomposed
into the product of them �m orthogonal matrixQ, then � n upper
triangular matrixR, and then� n orthogonal matrixP,

A = Q

�
R

0

�
�0P0�

b specifies an optionalm� pmatrixB that is to be left multiplied by the
transposedm�m matrixQ0.

sing is an optional scalar specifying a singularity criterion.

The completeorthogonal decomposition of the singular matrixA can be used to
compute the Moore-Penrose inverseA�, r = rank(A) < n, or to compute the
minimum 2-norm solution of the (rank deficient) least-squares problemkAx� bk22.

1. Use the QR decomposition ofA with column pivoting,

A = Q

�
R

0

�
�0 =

�
Y Z

� � R1 R2

0 0

�
�0

whereR = [R1 R2] 2 Rr�t is upper trapezoidal,R1 2 Rr�r is upper
triangular and invertible,R2 2 Rr�s, Q = [Y Z] is orthogonal,Y 2
Rt�r, Z 2 Rt�s, and� permutes the columns ofA.

2. Use the transposeL12 of the upper trapezoidal matrixR =
�
R1 R2

�
,

L12 =

�
L1
L2

�
= R0 2 Rt�r

SAS OnlineDoc: Version 8

496 � Chapter 17. Language Reference

with rank(L12) = rank(L1) = r, L1 2 Rr�r lower triangular,L2 2 Rs�r.
The lower trapezoidal matrixL12 2 Rt�r is premultiplied withr Householder
transformationsP1; : : : ;Pr:

Pr � � �P1

�
L1
L2

�
=

�
L

0

�
each zeroing out one of ther columns ofL2 and producing the nonsingular
lower triangular matrixL 2 Rr�r. Therefore, you obtain

A = Q

�
L0 0

0 0

�
�0P0 = Y

�
L0 0

�
�0P0

with P = �Pr � � �P1 2 Rt�t and upper triangularL0. This second step is
described in Golub and Van Loan (1989, p. 220 and p. 236).

3. Compute the Moore-Penrose InverseA� explicitly.

A� = P�

�
(L0)�1 0

0 0

�
Q0 = P�

�
(L0)�1

0

�
Y0

(a) ObtainY in Q =
�
Y Z

�
explicitly by applying ther Householder

transformations obtained in the first step to

�
Ir
0

�
.

(b) Solve ther� r lower triangular system(L0)�1Y0 with t right hand sides
using backward substitution, which yields anr � t intermediate matrix.

(c) Left-apply ther Householder transformations inP on ther � t inter-

mediate matrix

�
(L0)�1Y0

0

�
, which results in the symmetric matrix

A� 2 Rt�t.

The GINV function computes the Moore-Penrose inverseA� using the singular value
decomposition ofA. Using complete orthogonal decomposition to computeA� usu-
ally needs far fewer floating point operations. However, it may be slightly more sen-
sitive to rounding errors, which can disturb the detection of the true rank ofA, than
singular value decomposition.

CONCAT Function

performs elementwise string concatenation

CONCAT(argument1, argument2<; : : :, argument15>)

whereargumentsare character matrices or quoted literals.

The CONCAT function produces a character matrix containing elements that are the
concatenations of corresponding element strings from each argument. The CONCAT
function accepts up to 15 arguments, where each argument is a character matrix or

SAS OnlineDoc: Version 8

CONTENTS Function � 497

a scalar. All nonscalar arguments must conform. Any scalar arguments are used
repeatedly to concatenate to all elements of the other arguments. The element length
of the result equals the sum of the element lengths of the arguments. Trailing blanks
of one matrix argument appear before elements of the next matrix argument in the
result matrix. For example, if you specify

b={"AB" "C ",
"DE" "FG"};

and

c={"H " "IJ",
" K" "LM"};

then the statement

a=concat(b,c);

produces the new2� 2 matrix

A 2 rows 2 cols (character, size 4)

ABH C IJ
DE K FGLM

Quotation marks (") are needed only if you want to embed blanks or maintain upper-
case and lowercase distinctions. You can also use the ADD infix operator to concate-
nate character operands. See the description of the addition operator.

CONTENTS Function

obtains the variables in a SAS data set

CONTENTS(<libref><, SAS-data-set>)

whereSAS-data-setcan be specified with a one-word name or with a libref and a
SAS-data-set name. For more information on specifying SAS data sets, see Chap-
ter 6, “Working with SAS Data Sets.” Also, refer to the chapter on SAS data sets in
SAS Language Reference: Concepts.

The CONTENTS function returns a character matrix containing the variable names
for SAS-data-set. The result is a character matrix withn rows, one column, and
8 characters per element, wheren is the number of variables in the data set. The
variable list is returned in the order in which the variables occur in the data set. If a
one-word name is provided, IML uses the default SAS data library (as specified in
the DEFLIB= option). If no arguments are specified, the current open input data set
is used. Some examples follow.

SAS OnlineDoc: Version 8

498 � Chapter 17. Language Reference

x=contents(); /* current open input data set */

x=contents(’work’,’a’); /* contents of data set A in */
/* WORK library */

See also the description of the SHOWcontentsstatement.

CONVEXIT Function

calculates and returns a scalar containing the convexity of a non-contingent
cash-flow

CONVEXIT (times; flows; ytm)

The CONVEXIT function calculates and returns a scalar containing the convexity
of a non-contingent cash-flow.

times is an n-dimensional column vector of times. Elements should be non-
negative.

flows is ann-dimensional column vector of cash-flows.

ytm is the per-period yield-to-maturity of the cash-flow stream. This is a scalar and
should be positive.

Convexity is essentially a measure of how duration, the sensitivity of price to yield,
changes as interest rates change:

C =
1

P

d2P

dy2

With cash-flows that are not yield sensitive, and the assumption of parallel shifts to a
flat term-structure, convexity is given by

C =

PK
k=1 tk(tk + 1) c(k)

(1+y)tk

P (1 + y)2

whereP is the present value,y is the effective per period yield-to-maturity,K is the
number of cash-flows, thek-th cash-flow beingc(k) tk periods from the present.

Example

proc iml;
timesn=do(1,100,1);
timesn=T(timesn);
flows=repeat(10,100);
ytm={.1};
convexit=convexit(timesn,flows,ytm);

print convexit ;
quit;

CONVEXIT
199.26229

SAS OnlineDoc: Version 8

COVLAG Function � 499

CONVMOD Function

converts modules to character matrices

CONVMOD(module-name)

wheremodule-nameis a character matrix or quoted literal containing the name of an
IML module.

The CONVMOD function returns a character matrix withn rows and 1 column,
wheren is the number of statements in the module. The element length is determined
from the longest statement in the module. The CONVMOD function is supported to
maintain compatibility with Version 5 SAS/IML software. It should be used only
in conjunction with the STORE and PARSE statements. For example, consider the
statements

start abc;
\ob statements \obe

finish;
r=convmod(’abc’); /* convert module ABC to matrix R */
store r; /* store module as character matrix */

Note that this can also be done in just one step with the statement

store module=’abc’;

This statement stores module ABC in the storage library. You should use the STORE
MODULE= command instead to store modules. See Chapter 14, “Storage Features,”
for details concerning storage of modules.

COVLAG Function

computes autocovariance estimates for a vector time series

COVLAG(x, k)

The inputs to the COVLAG function are as follows:

x is ann� nv matrix of time series values;n is the number of observations, and
nv is the dimension of the random vector.

k is a scalar, the absolute value of which specifies the number of lags desired. If
k is positive, a mean correction is made. Ifk is negative, no mean correction is
made.

The COVLAG function computes a sequence of lagged crossproduct matrices. This
function is useful for computing sample autocovariance sequences for scalar or vector
time series.

SAS OnlineDoc: Version 8

500 � Chapter 17. Language Reference

The value returned by the COVLAG function is annv � (k � nv) matrix. Theith
nv � nv block of the matrix is the sum

1

n

nX
j=i

x0jxj�i+1 if k < 0

wherexj is thejth row ofx. If k>0, then theith nv � nv block of the matrix is

1

n

nX
j=i

(xj � �x)0(xj�i+1 � �x)

where�x is a row vector of the column means ofx. For example, the statements

x={-9,-7,-5,-3,-1,1,3,5,7,9};
cov=covlag(x,4);

produce the matrix

COV 1 row 4 cols (numeric)

33 23.1 13.6 4.9

CREATE Statement

creates a new SAS data set

CREATE SAS-data-set <VAR operand>;
CREATE SAS-data-set FROM matrix-name

<[COLNAME= column-name ROWNAME=row-name]>;

The inputs to the CREATE statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, see Chapter 6, “Working with SAS Data
Sets.” Also, refer to the chapter on SAS data sets inSAS Language
Reference: Concepts.

operand gives a set of existing IML variables to become data set variables.

matrix-name names a matrix containing the data.

column-name is a character matrix or quoted literal containing descriptive names
to associate with data set variables.

row-name is a character matrix or quoted literal containing descriptive names
to associate with observations on the data set.

SAS OnlineDoc: Version 8

CREATE Statement � 501

The CREATE statement creates a new SAS data set and makes it both the current
input and output data sets. The variables in the new SAS data set are either the
variables listed in the VAR clause or variables created from the columns of the FROM
matrix. The FROM clause and the VAR clause should not be specified together.

You can specify a set of variables to use with the VAR clause, whereoperandcan be
specified as one of the following:

� a literal containing variable names

� the name of a matrix containing variable names

� an expression in parentheses yielding variable names

� one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

Following are examples showing each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

You can specify a COLNAME= and a ROWNAME= matrix in the FROM clause. The
COLNAME= matrix gives names to variables in the SAS data set being created. The
COLNAME= operand specifies the name of a character matrix. The firstncol values
from this matrix provide the variable names in the data set being created, wherencol
is the number of columns in the FROM matrix. The CREATE statement uses the first
ncol elements of the COLNAME= matrix in row-major order.

The ROWNAME= operand adds a variable to the data set to contain row titles. The
operand must be a character matrix that exists and has values. The length of the
data set variable added is the length of a matrix element of the operand. The same
ROWNAME= matrix should be used on any subsequent APPEND statements for this
data set.

The variable types and lengths are the current attributes of the matrices specified in
the VAR clause or the matrix in the FROM clause. The default type is numeric when
the name is undefined and unvalued. The default, when no variables are specified, is
all active variables. To add observations to your data set, you must use the APPEND
statement.

For example, the following statements create a new SAS data set CLASS having
variables NAME, SEX, AGE, HEIGHT, and WEIGHT. The data come from IML
matrices with the same names. You must initialize the character variables (NAME
and SEX) and set the length prior to invoking the CREATE statement. NAME and
SEX are character variables of lengths 12 and 1, respectively. AGE, HEIGHT, and
WEIGHT are, by default, numeric.

SAS OnlineDoc: Version 8

502 � Chapter 17. Language Reference

name="123456789012";
sex="M";
create class var {name sex age height weight};
append;

In the next example, you use the FROM clause with the COLNAME= operand to cre-
ate a SAS data set named MYDATA. The new data set has variables named with the
COLNAME= operand. The data are in the FROM matrixX, and there are two obser-
vations becauseX has two rows of data. The COLNAME= operand gives descriptive
names to the data set variables.

x={1 2 3, 4 5 6};
varnames=’x1’:’x3’;

/* creates data set MYDATA with variables X1, X2, X3 */
create mydata from x [colname=varnames];
append;

CSHAPE Function

reshapes and repeats character values

CSHAPE(matrix, nrow, ncol, size<, padchar>)

The inputs to the CSHAPE function are as follows:

matrix is a character matrix or quoted literal.

nrow is the number of rows.

ncol is the number of columns.

size is the element length.

padchar is a padding character.

The CSHAPE function shapes character matrices. See also the description of the
SHAPE function, which is used with numeric data. The dimension of the matrix
created by the CSHAPE function is specified bynrow (the number of rows),ncol (the
number of columns), andsize(the element length). A padding character is specified
by padchar.

The CSHAPE function works by looking at the source matrix as if the characters of
the source elements had been concatenated in row-major order. The source characters
are then regrouped into elements of lengthsize. These elements are assigned to the
result matrix, once again in row-major order. If there are not enough characters for
the result matrix, the source of the remaining characters depends on whether padding
was specified withpadchar. If no padding was specified, the source matrix’s char-
acters are cycled through again. If a padding character was specified, the remaining
characters are all the padding character.

SAS OnlineDoc: Version 8

CSHAPE Function � 503

If one of the dimension arguments (nrow, ncol), orsize) is zero, the function computes
the dimension of the output matrix by dividing the number of elements of the input
matrix by the product of the nonzero arguments.

Some examples follow. The statement

r=cshape(’abcd’,2,2,1);

results in

R 2 rows 2 cols (character, size 1)

a b
c d

The statement

r=cshape(’a’,1,2,3);

results in

R 1 row 2 cols (character, size 3)

aaa aaa

The statement

r=cshape({’ab’ ’cd’,
’ef’ ’gh’,
’ij’ ’kl’}, 2, 2, 3);

results in

R 2 rows 2 cols (character, size 3)

abc def
ghi jkl

The statement

r=cshape(’XO’,3,3,1);

results in

R 3 rows 3 cols (character, size 1)

X O X
O X O
X O X

SAS OnlineDoc: Version 8

504 � Chapter 17. Language Reference

And finally, the statement

r=cshape(’abcd’,2,2,3,’*’);

results in

R 2 rows 2 cols (character, size 3)

abc d**
*** ***

CUSUM Function

calculates cumulative sums

CUSUM(matrix)

wherematrix is a numeric matrix or literal.

The CUSUM function returns a matrix of the same dimension as the argument ma-
trix. The result contains the cumulative sums obtained by scanning the argument and
summing in row-major order.

For example, the statements

a=cusum({1 2 4 5});
b=cusum({5 6, 3 4});

produce the result

A 1 row 4 cols (numeric)

1 3 7 12

B 2 rows 2 cols (numeric)

5 11
14 18

CVEXHULL Function

finds a convex hull of a set of planar points

CVEXHULL(matrix)

wherematrix is ann� 2 matrix of (x; y) points.

The argument for the CVEXHULL function is ann� 2 matrix of (x; y) points. The
result matrix is ann � 1 matrix of indices. The indices of points in the convex hull

SAS OnlineDoc: Version 8

DATASETS Function � 505

in counter-clockwise order are returned as the first part of the result matrix, and the
negative of the indices of the internal points are returned as the remaining elements
of the result matrix. Any points that lie on the convex hull but lie on a line segment
joining two other points on the convex hull are not included as part of the convex
hull. The result matrix can be split into positive and negative parts using the LOC
function. For example, the statements

z=cvexhull(x);
c=z[loc(z>0),];

yield the index vector for the convex hull.

DATASETS Function

obtains the names of SAS data sets in a SAS data library

DATASETS(<libref>)

wherelibref is the name of a SAS data library. For more information on specifying a
SAS data library, see Chapter 6, “Working with SAS Data Sets.”

The DATASETS function returns a character matrix containing the names of the SAS
data sets in the specified SAS data library. The result is a character matrix withn rows
and one column, wheren is the number of data sets in the library. If no argument is
specified, IML uses the default libname. (See the DEFLIB= option in the description
of the RESET statement.)

For example, suppose you have several data sets in the SAS data library SASUSER.
You can list the names of the data sets in SASUSER by using the DATASETS func-
tion as follows.

lib={sasuser};
a=datasets(lib);

A 6 rows 1 col (character, size 8)

CLASS
FITNESS
GROWTH
HOUSES
SASPARM
TOBACCO

SAS OnlineDoc: Version 8

506 � Chapter 17. Language Reference

DELETE Call

deletes a SAS data set

CALL DELETE(<libname,> member-name);

The inputs to the DELETE subroutine are as follows:

libname is a character matrix or quoted literal containing the name of a SAS
data library.

member-name is a character matrix or quoted literal containing the name of a data
set.

The DELETE subroutine deletes a SAS data set in the specified library. If a one word
name is specified, the default SAS data library is used. (See the DEFLIB= option in
the description of the RESET statement.)

Some examples follow.

call delete(work,a); /* deletes WORK.A */

reset deflib=work; /* sets default libname to WORK */
call delete(a); /* also deletes WORK.A */

d=datasets(’work’); /* returns all data sets in WORK */
call delete(work,d[1]);

/* deletes data set whose name is */
/* first element of matrix D */

SAS OnlineDoc: Version 8

DELETE Statement � 507

DELETE Statement

marks observations for deletion

DELETE <range> <WHERE(expression)>;

The inputs to the DELETE statement are as follows:

range specifies a range of observations.

expression is an expression that is evaluated for being true or false.

Use the DELETE statement to mark records for deletion in the current output data
set. To delete records and renumber the remaining observations, use the PURGE
statement.

You can specifyrangeby using a keyword or by record number using the POINT
operand. The following keywords are valid values forrange:

ALL specifies all observations.

CURRENT specifies the current observation.

NEXT <number> specifies the next observation or the nextnumberof observa-
tions.

AFTER specifies all observations after the current one.

POINToperand specifies observations by number, whereoperandis one of the
following:

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

CURRENT is the default value forrange. If the current data set has an index in use,
the POINT option is invalid.

The WHERE clause conditionally selects observations that are contained within the
rangespecification. The general form of the WHERE clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

SAS OnlineDoc: Version 8

508 � Chapter 17. Language Reference

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

= : begins with a given string

= * sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the conditon:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an AND clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

Here are several examples of DELETE statements:

delete; /* deletes the current obs */
delete point 34; /* deletes obs 34 */
delete all where(age<21); /* deletes obs where age<21 */

You can use the SETOUT statement with the DELETE statement as follows:

setout class point 34; /* makes CLASS current output */
delete; /* deletes ob 34 */

Observations deleted using the DELETE statement are not physically removed from
the data set until a PURGE statement is issued.

SAS OnlineDoc: Version 8

DESIGNF Function � 509

DESIGN Function

creates a design matrix

DESIGN(column-vector)

wherecolumn-vectoris a numeric column vector or literal.

The DESIGN function creates a design matrix of 0s and 1s fromcolumn-vector. Each
unique value of the vector generates a column of the design matrix. This column con-
tains ones in elements with corresponding elements in the vector that are the current
value; it contains zeros elsewhere. The columns are arranged in the sort order of the
original values.

For example, the statements

a={1,1,2,2,3,1};
a=design(a);

produce the design matrix

A 6 rows 3 cols (numeric)

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
1 0 0

DESIGNF Function

creates a full-rank design matrix

DESIGNF(column-vector)

wherecolumn-vectoris a numeric column vector or literal.

The DESIGNF function works similar to the DESIGN function; however, the result
matrix is one column smaller and can be used to produce full-rank design matrices.
The result of the DESIGNF function is the same as if you took the last column off
the DESIGN function result and subtracted it from the other columns of the result.

For example, the statements

a={1,1,2,2,3,3};
b=designf(a);

produce the following design matrix.

SAS OnlineDoc: Version 8

510 � Chapter 17. Language Reference

B 6 rows 2 cols (numeric)

1 0
1 0
0 1
0 1

-1 -1
-1 -1

DET Function

computes the determinant of a square matrix

DET(square-matrix)

wheresquare-matrixis a numeric matrix or literal.

The DET function computes the determinant ofsquare-matrix, which must be square.
The determinant, the product of the eigenvalues, is a single numeric value. If the
determinant of a matrix is zero, then that matrix is singular; that is, it does not have
an inverse.

The method performs an LU decomposition and collects the product of the diagonals
(Forsythe, Malcolm, and Moler 1967). For example, the statements

a={1 1 1,1 2 4,1 3 9};
c=det(a);

produce the matrixC containing the determinant:

C 1 row 1 col (numeric)

2

The DET function (as well as the INV and SOLVE functions) uses the following
criterion to decide whether the input matrix,A = [aij]i;j=1;:::;n, is singular:

sing= 100 �MACHEPS� max
1�i;j�n

jaij j

whereMACHEPSis the relative machine precision.

All matrix elements less than or equal tosingare now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal tosing, the
matrix is considered singular by the DET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating point error. This
occasionally yielded numerically unstable results. The new criterion is much more

SAS OnlineDoc: Version 8

DIAG Function � 511

conservative, and it generates far fewer erroneous results. In some cases, you may
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong,

� try the GINV function to compute the generalized inverse

� examine the size of the singular values returned by the SVD fall. The SVD fall
can be used to compute a generalized inverse with a user-specified singularity
criterion.

DIAG Function

creates a diagonal matrix

DIAG(argument)

whereargumentcan be either a numeric square matrix or a vector.

If argumentis a square matrix, the DIAG function creates a matrix with diagonal
elements equal to the corresponding diagonal elements. All off-diagonal elements in
the new matrix are zeros.

If argumentis a vector, the DIAG function creates a matrix with diagonal elements
that are the values in the vector. All off-diagonal elements are zeros.

For example, the statements

a={4 3,
2 1};

c=diag(a);

result in

C 2 rows 2 cols (numeric)

4 0
0 1

The statements

b={1 2 3};
d=diag(b);

result in

D 3 rows 3 cols (numeric)

1 0 0
0 2 0
0 0 3

SAS OnlineDoc: Version 8

512 � Chapter 17. Language Reference

DISPLAY Statement

displays fields in display windows

DISPLAY <group-spec group-options<; : : :, group-spec group-options>>;

The inputs to the DISPLAY statement are as follows:

group-spec specifies a group. It can be specified as either a compound name of
the formwindowname.groupnameor a window name followed by
a group of the formwindow-name(field-specs), wherefield-specs
is as defined for the WINDOW statement.

group-options can be any of the following:

NOINPUT displays the group with all fields protected so
that no data can be entered in the fields.

REPEAT repeats the group for each element of the matri-
ces specified as field operands.

BELL rings the bell, sounds the alarm, or beeps the
speaker on your workstation when the window
is displayed.

The DISPLAY statement directs IML to gather data into fields defined on the screen
for purposes of display, data entry, or menu selection. The DISPLAY statement
always refers to a window that has been previously opened by a WINDOW state-
ment. The statement is described completely in Chapter 13, “Window and Display
Features.”

Following are several examples of using the DISPLAY statement:

display;
display w(i);
display w ("BELL") bell;
display w.g1 noinput;
display w (i protect=yes

color="blue"
j color="yellow");

SAS OnlineDoc: Version 8

DO Function � 513

DO Function

produces an arithmetic series

DO(start, stop, increment)

The inputs to the DO function are as follows:

start is the starting value for the series.

stop is the stopping value for the series.

increment is an increment value.

The DO function creates a row vector containing a sequence of numbers starting with
start and incrementing byincrementas long as the elements are less than or equal
to stop (greater than or equal tostop for a negative increment). This function is a
generalization of the index creation operator (:).

For example, the statement

i=do(3,18,3);

yields the result

I 1 row 6 cols (numeric)

3 6 9 12 15 18

The statement

j=do(3,-1,-1);

yields the result

J 1 row 5 cols (numeric)

3 2 1 0 -1

SAS OnlineDoc: Version 8

514 � Chapter 17. Language Reference

DO and END Statements

groups statements as a unit

DO;
statements

END;

The DO statement specifies that the statements following the DO statement are ex-
ecuted as a group until a matching END statement appears. DO statements often
appear in IF-THEN/ELSE statements, where they designate groups of statements to
be performed when the IF condition is true or false.

For example, consider the following statements:

if x=y then
do;

i=i+l;
print x;

end;
print y;

The statements between the DO and END statements (called the DO group) are per-
formed only ifX = Y; that is, only if all elements ofX are equal to the correspond-
ing elements ofY. If any element ofX is not equal to the corresponding element of
Y, the statements in the DO group are skipped and the next statement is executed, in
this case

print y;

DO groups can be nested. Any number of nested DO groups is allowed. Here is an
example of nested DO groups:

if y>z then
do;

if z=0 then
do;

z=b*c;
x=2#y;

end;
end;

It is good practice to indent the statements in a DO group as shown above so that their
positions indicate their levels of nesting.

SAS OnlineDoc: Version 8

DO Statement, Iterative � 515

DO Statement, Iterative

iteratively executes a DO group

DO variable=start TO stop <BY increment>;

The inputs to the DO statement are as follows:

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

When the DO group has this form, the statements between the DO and END state-
ments are executed repetitively. The number of times the statements are executed
depends on the evaluation of the expressions given in the DO statement.

The start, stop, and incrementvalues should be scalars or expressions with evalua-
tions that yield scalars. Thevariable is given a new value for each repetition of the
group. The index variable starts with thestart value, then is incremented by thein-
crementvalue each time. The iterations continue as long as the index variable is less
than or equal to thestopvalue. If a negative increment is used, then the rules reverse
so that the index variable decrements to a lower bound. Note that thestart, stop, and
incrementexpressions are evaluated only once before the looping starts.

For example, the statements

do i=1 to 5 by 2;
print ’THE VALUE OF I IS:’ i;

end;

produce the output

I
THE VALUE OF I IS: 1

I
THE VALUE OF I IS: 3

I
THE VALUE OF I IS: 5

SAS OnlineDoc: Version 8

516 � Chapter 17. Language Reference

DO DATA Statement

repeats a loop until an end of file occurs

DO DATA <variable=start TO stop>;

The inputs to the DO DATA statement are as follows:

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

The DO DATA statement is used for repetitive DO loops that need to be exited upon
the occurrence of an end of file for an INPUT, READ, or other I/O statement. This
form is common for loops that read data from either a sequential file or a SAS data set.
When an end of file is reached inside the DO DATA group, IML immediately jumps
from the group and starts executing the statement following the END statement. DO
DATA groups can be nested, where each end of file causes a jump from the most local
DO DATA group. The DO DATA loop simulates the end-of-file behavior of the SAS
DATA step. You should avoid using GOTO and LINK statements to jump out of a
DO DATA group.

Examples of valid statements follow. The first example inputs the variable NAME
from an external file for the first 100 lines or until the end of file, whichever occurs
first.

do data i=1 to 100;
input name $8.;

end;

Or, if reading from a SAS data set, then the code can be

do data; /* read next obs until eof is reached */
read next var{x}; /* read only variable X */

end;

SAS OnlineDoc: Version 8

DO Statement with an UNTIL Clause � 517

DO Statement with an UNTIL Clause

conditionally executes statements iteratively

DO UNTIL(expression);
DO variable=start TO stop <BY increment> UNTIL(expression);

The inputs to the DO UNTIL statement are as follows:

expression is an expression that is evaluated at the bottom of the loop for being
true or false.

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

Using an UNTIL expression makes possible the conditional execution of a set of
statements iteratively. The UNTIL expression is evaluated at the bottom of the loop,
and the statements inside the loop are executed repeatedly as long as the expression
yields a zero or missing value. In the example that follows, the body of the loop
executes until the value of X exceeds 100:

x=1;
do until (x>100);

x+1;
end;
print x; /* x=101 */

SAS OnlineDoc: Version 8

518 � Chapter 17. Language Reference

DO Statement with a WHILE Clause

conditionally executes statements iteratively

DO WHILE(expression);
DO variable=start TO stop <BY increment> WHILE(expression);

The inputs to the DO WHILE statement are as follows:

expression is an expression that is evaluated at the top of the loop for being
true or false.

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

Using a WHILE expression makes possible the conditional execution of a set of state-
ments iteratively. The WHILE expression is evaluated at the top of the loop, and the
statements inside the loop are executed repeatedly as long as the expression yields a
nonzero or nonmissing value.

Note that the incrementing is done before the WHILE expression is tested. The fol-
lowing example demonstrates the incremeting:

x=1;
do while(x<100);

x+1;
end;
print x; /* x=100 */

The next example increments the starting value by 2:

y=1;
do x=1 to 100 by 2 while(y<200);

y=y#x;
end; /* at end of loop, x=11 and y=945 */

SAS OnlineDoc: Version 8

DURATION Function � 519

DURATION Function

calculates and returns a scalar containing the modified duration of a non-
contingent cash-flow.

DURATION (times; flows; ytm)

The Duration function returns the modified duration of a non-contingent
cash-flow as a scalar.

times is an n-dimensional column vector of times. Elements should be non-
negative.

flows is ann-dimensional column vector of cash-flows.

ytm is the per-period yield-to-maturity of the cash-flow stream.
This is a scalar and should be positive.

Duration of a security is generally defined as

D = �
dP
P

dy

In other words, it is the relative change in price for a unit change in yield. Since
prices move in the opposite direction to yields, the sign change preserves positivity
for convenience. With cash-flows that are not yield-sensitive and the assumption of
parallel shifts to a flat term-structure, duration is given by:

Dmod =

PK
k=1 tk

c(k)
(1+y)tk

P (1 + y)

whereP is the present value,y is the per period effective yield-to-maturity,K is the
number of cash-flows, thek-th cash flow beingc(k), tk periods from the present. This
measure is referred to asmodified durationto differentiate it from the first duration
measure ever proposed,Macaulay duration:

DMac =

PK
k=1 tk

c(k)
(1+y)tk

P

This expression also reveals the reason for the name duration, since it is a present-
value-weighted average of the duration (i.e. timing) of all the cash-flows and is hence
an "average time-to-maturity" of the bond.

Example

proc iml;
times={1};
ytm={.1};
flow={10};
duration=duration(times,flow,ytm);

print duration;
quit;

SAS OnlineDoc: Version 8

520 � Chapter 17. Language Reference

DURATION
0.9090909

ECHELON Function

reduces a matrix to row-echelon normal form

ECHELON(matrix)

wherematrix is a numeric matrix or literal.

The ECHELON function uses elementary row operations to reduce a matrix to row-
echelon normal form as in the following example (Graybill 1969, p. 286):

a={3 6 9,
1 2 5,
2 4 10};

e=echelon(a);

The resulting matrix is

E 3 rows 3 cols (numeric)

1 2 0
0 0 1
0 0 0

If the argument is a square matrix, then the row-echelon normal form can be obtained
from the Hermite normal form by rearranging rows that are all zeros.

EDIT Statement

opens a SAS data set for editing

EDIT SAS-data-set <VAR operand> <WHERE(expression)>
<NOBS name>;

The inputs to the EDIT statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, refer to the chapter on SAS data sets in
SAS Language Reference: Concepts.

operand selects a set of variables.

SAS OnlineDoc: Version 8

EDIT Statement � 521

expression selects observations conditionally.

name names a variable to contain the number of observations.

The EDIT statement opens a SAS data set for reading and updating. If the data set
has already been opened, the EDIT statement makes it the current input and output
data sets.

You can specify a set of variables to use with the VAR clause, whereoperandcan be
specified as one of the following:

� a literal containing variable names

� the name of a matrix containing variable names

� an expression in parentheses yielding variable names

� one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

Following are examples showing each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

SAS OnlineDoc: Version 8

522 � Chapter 17. Language Reference

ˆ ? does not contain a given string

= : begins with a given string

= * sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

The EDIT statement can define a set of variables and the selection criteria that are
used to control access to data set observations. The NOBS clause returns the total
number of observations in the data set in the variablename.

The VAR and WHERE clauses are optional and can be specified in any order. The
NOBS clause is also optional.

See Chapter 6, “Working with SAS Data Sets,” for more information on editing SAS
data sets.

To edit the data set DAT, or WORK.DAT, use the statements

edit dat;
edit work.dat;

To control the variables you want to edit and conditionally select observations for
editing, use the VAR and WHERE clauses. For example, to read and update observa-
tions for variable I where I is greater than 9, use the statement

edit work.dat var{i} where (i>9);

Following is an example using the NOBS option.

/* if MYDATA has 10 observations, */
/* then ct is a numeric matrix with value 10 */
edit mydata nobs ct;

SAS OnlineDoc: Version 8

EIGEN Call � 523

EIGEN Call

computes eigenvalues and eigenvectors

CALL EIGEN(eigenvalues, eigenvectors, A) <VECL="vl">;

whereA is an arbitrary square numeric matrix for which eigenvalues and eigenvec-
tors are to be calculated.

The EIGEN call returns the following values:

eigenvalues a matrix to contain the eigenvalues of the input matrix.

eigenvectors names a matrix to contain the right eigenvectors of the input
matrix.

vl is an optionaln � n matrix containing the left eigenvectors
of A in the same manner thateigenvectorscontains the right
eigenvectors.

The EIGEN subroutine computeseigenvalues, a matrix containing the eigenvalues of
A arranged in descending order. IfA is symmetric,eigenvaluesin then� 1 vector
containing then real eigenvalues ofA. If A is not symmetric (as determined by the
criterion described below)eigenvaluesis ann� 2 matrix containing the eigenvalues
of then � n matrixA. The first column ofA contains the real parts, Re(�), and
the second column contains the imaginary parts Im(�). Each row represents one
eigenvalue, Re(�) + iIm(�). Complex conjugate eigenvalues, Re(�) � iIm(�), are
stored in standard order; that is, the eigenvalue of the pair with a positive imaginary
part is followed by the eigenvalue of the pair with the negative imaginary part.

The EIGEN subroutine also computeseigenvectors, a matrix. IfA is symmetric, then
eigenvectorshas orthonormal column eigenvectors ofA arranged so that the matrices
correspond; that is, the first column ofeigenvectorsis the eigenvector corresponding
to the largest eigenvalue, and so forth. IfA is not symmetric, theneigenvectorsis
ann � n matrix containing the right eigenvectors ofA. If the eigenvalue in rowi
of eigenvaluesis real, then columni of eigenvectorscontains the corresponding real
eigenvector. If rowsi andi+1 of eigenvaluescontain complex conjugate eigenvalues
Re(�) � iIm(�), then columnsi andi + 1 of eigenvectorscontain the real,v, and
imaginary,u, parts, respectively, of the two corresponding eigenvectorsv� iu.

The eigenvalues of a matrixA are the roots of the characteristic polynomial, which
is defined asp(z) = det(zI � A). The spectrum, denoted by�(A), is the set of
eigenvalues of the matrixA. If �(A) = f�1; : : : ; �ng, thendet(A) = �1�2 � � � �n.

The trace ofA is defined by

tr(A) =
nX
i=1

aii

and tr(A) = �1 + � � �+ �n.

SAS OnlineDoc: Version 8

524 � Chapter 17. Language Reference

An eigenvector is a nonzero vector,x, that satisfiesAx = �x for � 2 �(A). Right
eigenvectors satisfyAx = �x, and left eigenvectors satisfyx0A = �x0.

The following are properties of the unsymmetricreal eigenvalue problem, in which
the real matrixA is square but not necessarily symmetric:

� The eigenvalues of an unsymmetric matrixA can be complex. IfA has a
complex eigenvalue Re(�)+iIm(�), then the conjugate complex value Re(�)�
iIm(�) is also an eigenvalue ofA.

� The right and left eigenvectors corresponding to a real eigenvalue ofA are real.
The right and left eigenvectors corresponding to conjugate complex eigenval-
ues ofA are also conjugate complex.

� The left eigenvectors ofA are the same as the complex conjugate right eigen-
vectors ofA0.

The three routines, EIGEN, EIGVAL, and EIGVEC, use the following test of sym-
metry for a square argument matrixA:

1. Select the entry ofA with the largest magnitude:

amax = max
i;j=1;:::;n

jai;jj

2. Multiply the value ofamax with the square root of the machine precision�.
(The value of� is the largest value stored in double precision that, when added
to 1 in double precision, still results in 1.)

3. The matrixA is consideredunsymmetricif there exists at least one pair of
symmetric entries that differs in more thanamax

p
�,

jai;j � aj;ij > amax

p
�

If A is symmetric, the result of the statement

call eigen(m,e,a);

has the properties

A � E = E � diag(M)

E0 � E = I(N)

that is,

E0 = inv(E)

so that

A = E � diag(M) �E0 :

SAS OnlineDoc: Version 8

EIGVAL Function � 525

The QL method is used to compute the eigenvalues (Wilkinson and Reinsch 1971).

In statistical applications, nonsymmetric matrices for which eigenvalues are desired
are usually of the formE�1H, whereE andH are symmetric. The eigenvaluesL
and eigenvectorsV of E�1H can be obtained by using the GENEIG subroutine or as
follows:

f=root(einv);
a=f*h*f’;
call eigen(l,w,a);
v=f’*w;

The computation can be checked by forming the residuals:

r=einv*h*v-v*diag(l);

The values inR should be of the order of round-off error.

EIGVAL Function

computes eigenvalues

EIGVAL(A)

whereA is a square numeric matrix.

The EIGVAL function returns a column vector of the eigenvalues ofA. See the
description of the EIGEN subroutine for more details.

The following code computes Example 7.1.1 from Golub and Van Loan (1989):

proc iml;

a = { 67.00 177.60 -63.20 ,
-20.40 95.88 -87.16 ,

22.80 67.84 12.12 };

val = EIGVAL(a);
print val;

The matrix produced containing the eigenvalues is

VAL

75 100
75 -100
25 0

Notice that sincea is not symmetric the eigenvalues are complex. The first column
of the VAL matrix is the real part and the second column is the complex part of the
three eigenvalues.

SAS OnlineDoc: Version 8

526 � Chapter 17. Language Reference

A symmetric example follows:

x={1 1,1 2,1 3,1 4};
xpx=t(x)*x;
a=eigval(xpx); /* xpx is a symmetric matrix */

The matrix produced containing the eigenvalues is

A 2 rows 1 col (numeric)

33.401219
0.5987805

EIGVEC Function

computes right eigenvectors

EIGVEC(A)

whereA is a square numeric matrix.

The EIGVEC function creates a matrix containing the right eigenvectors ofA. See
the description of the EIGEN subroutine for more details.

You can obtain the left eigenvectors by first transposingA.

An example calculating the eigenvectors of a symmetric matrix follows:

x={1 1,1 2,1 3,1 4};
xpx=t(x)*x;
a=eigvec(xpx); /* xpx is a symmetric matrix */

The matrix produced containing the eigenvectors is

A 2 rows 2 cols (numeric)

0.3220062 0.9467376
0.9467376 -0.322006

END Statement

ends a DO loop or DO statement

END:

See the description of the DO and END statements.

SAS OnlineDoc: Version 8

EXP Function � 527

EXECUTE Call

executes SAS statements immediately

CALL EXECUTE(operands);

whereoperandsare character matrices or quoted literals containing valid SAS state-
ments.

The EXECUTE subroutine pushes character arguments to the input command stream,
executes them, and then returns to the calling module. You can specify up to 15
arguments. The subroutine should be called from a module rather than from the
immediate environment (because it uses theresumemechanism that works only from
modules). The strings you push do not appear on the log.

Following are examples of valid EXECUTE subroutines:

call execute("x={1 2 3, 4 5 6};");
call execute(" x ’ls’;");
call execute(" dm ’log; color source red’;");
call execute(concat(" title ’",string,"’;"));

For more details on the EXECUTE subroutine, see Chapter 15, “Using SAS/IML
Software to Generate IML Statements.”

EXP Function

calculates the exponential

EXP(matrix)

wherematrix is a numeric matrix or literal.

The EXP function is a scalar function that takes the exponential function of every
element of the argument matrix. The exponential is the natural numbere raised to the
indicated power. An example of a valid statement follows:

b={2 3 4};
a=exp(b);

A 1 row 3 cols (numeric)

7.3890561 20.085537 54.59815

SAS OnlineDoc: Version 8

528 � Chapter 17. Language Reference

FFT Function

performs the finite Fourier transform

FFT(x)

wherex is a1� n or n� 1 numeric vector.

The FFT function returns the cosine and sine coefficients for the expansion of a vector
into a sum of cosine and sine functions.

The argument of the FFT function,x, is a1� n or n� 1 vector. The value returned
is the resulting transform, annp� 2 matrix, where

np = floor
�n
2
+ 1
�

The elements of the first column of the returned matrix are the cosine coefficients;
that is, theith element of the first column is

nX
j=1

xj cos

�
2�

n
(i� 1)(j � 1)

�

for i = 1; : : : ; np, where the elements ofx are denoted asxj. The elements of the
second column of the returned matrix are the sine coefficients; that is, theith element
of the second column is

nX
j=1

xj sin

�
2�

n
(i� 1)(j � 1)

�

for i = 1; : : : ; np.

Note: For most efficient use of the FFT function,n should be a power of 2. Ifn is
a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z
algorithm is used (Monro and Branch 1976).

The FFT function can be used to compute the periodogram of a time series. In con-
junction with the inverse finite Fourier transform routine IFFT, the FFT function can
be used to efficiently compute convolutions of large vectors (Gentleman and Sande
1966; Nussbaumer 1982). An example of a valid statement follows:

a=fft(c);

SAS OnlineDoc: Version 8

FILE Statement � 529

FILE Statement

opens or points to an external file

FILE file-name <RECFM=N> <LRECL=operand>;

The inputs to the FILE statement are as follows:

file-name is a name (for defined filenames), a quoted literal, or an expres-
sion in parentheses (for filepaths).

RECFM=N specifies that the file is to be written as a pure binary file with-
out record-separator characters.

LRECL=operand specifies the record length of the output file. The default record
length is 512.

You can use the FILE statement to open a file for output, or if the file is already open,
to make it the current output file so that subsequent PUT statements write to it. The
FILE statement is similar in syntax and operation to the INFILE statement. The FILE
statement is described in detail in Chapter 7, “File Access.”

Thefile-nameis either a predefined filename or a quoted string or character expres-
sion in parentheses referring to the filepath. There are two ways to refer to an input
or output file: by a filepath and by a filename. The filepath is the name as known to
the operating system. The filename is a SAS reference to the file established directly
through a connection made with the FILENAME statement. You can specify a file in
either way in the FILE and INFILE statements. To specify a filename as the operand,
just give the name. The name must be one already connected to a filepath by a previ-
ously issued FILENAME statement. There are, however, two special filenames that
are recognized by IML: LOG and PRINT. These refer to the standard output streams
for all SAS sessions. To specify a filepath, put it in quotes or specify an expression
yielding the filepath in parentheses.

When the filepath is specified, there is a limit of 64 characters to the operand.

Following are several valid uses of FILE statement.

file "student.dat"; /* by literal filepath */

filename out "student.dat"; /* specify filename OUT */
file out; /* refer to by filename */

file print; /* standard print output */
file log; /* output to log */

file "student.dat" recfm=n; /* for a binary file */

SAS OnlineDoc: Version 8

530 � Chapter 17. Language Reference

FIND Statement

finds observations

FIND <range> <WHERE(expression)> INTO matrix-name;

The inputs to the FIND statement are as follows:

range specifies a range of observations.

expression is an expression that is evaluated for being true or false.

matrix-name names a matrix to contain the observation numbers.

The FIND statement finds the observation numbers of records inrange that satisfy
the conditions of the WHERE clause. The FIND statement places these observation
numbers in the numeric matrix whose name follows the INTO keyword.

You can specify arange of observations with a keyword or by record number us-
ing the POINT option. You can use any of the following keywords to specify
range:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the nextnumberof observations

AFTER all observations after the current one

POINToperand observations specified by number, whereoperandis one of the
following.

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

If the current data set has an index in use, the POINT option is invalid.

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

SAS OnlineDoc: Version 8

FIND Statement � 531

In the preceding statement,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

= : begins with a given string

= * sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the conditon:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

Following are some valid examples of the FIND statement:

find all where(name=:"Smith") into p;
find next where(age>30) into p2;

P andP2 are column vectors containing the observation numbers that satisfy the
WHERE clause in the given range. The default range is all observations.

SAS OnlineDoc: Version 8

532 � Chapter 17. Language Reference

FINISH Statement

denotes the end of a module

FINISH <module-name>;

wheremodule-nameis the name of a user-defined module.

The FINISH statement signals the end of a module and the end of module definition
mode. Optionally, the FINISH statement can take the module name as its argument.
See the description of the START statement and consult Chapter 5, “Programming
Statements,” for further information on defining modules. Some examples follow.

finish;
finish mod1;

FORCE Statement

see the description of the SAVE statement

FORWARD Function

calculates a column vector of forward rates given vectors of spot rates and times

FORWARD (times; spot–rates)

The FORWARD function returns an n x 1 vector of forward rates.

times is an n x 1 column vector of times
in consistent units. Elements should be non-negative.

spot–rates is an n x 1 column vector of corresponding
per-period spot rates. Elements should be positive.

The FORWARD function transforms the given spot rates as.

f1 = s1

fi = [
(1 + si)

t
i

(1 + si�1)ti�1
]

ti
ti�1 � 1:0; i = 2; :::n

Example

proc iml;
spt={.75};
times={1};
forward=forward(times,spt);

print forward;
quit;

SAS OnlineDoc: Version 8

GBLKVP Call � 533

FORWARD
0.75

FREE Statement

frees matrix storage space

FREE matrices;
FREE / <matrices>;

wherematricesare names of matrices.

The FREE statement causes the specified matrices to lose their values; the memory
is then freed for other uses. After execution of the FREE statement, the matrix does
not have a value, and it returns 0 for the NROW and NCOL functions. Any printing
attributes (assigned by the MATTRIB statement) are not released.

The FREE statement is used mostly in large applications or under tight memory con-
straints to make room for more data (matrices) in the workspace.

For example, to free the matricesa, b, andc, use the statement

free a b c;

If you want to free all matrices, specify a slash (/) after the keyword FREE. If you
want to free all matrices except a few, then list the ones you do not want to free after
the slash. For example, to free all matrices exceptd ande, use the statement

free / d e;

For more information, see the discussion of workspace storage in Chapter 16, “Fur-
ther Notes.”

GBLKVP Call

defines a blanking viewport

CALL GBLKVP(viewport <, inside>);

The inputs to the GBLKVP subroutine are as follows:

viewport is a numeric matrix or literal defining a viewport. This rectangular
area’s boundary is specified in normalized coordinates, where you
specify the coordinates of the lower left corner and the upper right
corner of the rectangular area in the form

{ minimum-x minimum-y maximum-x maximum-y}

SAS OnlineDoc: Version 8

534 � Chapter 17. Language Reference

inside is a numeric argument that specifies whether graphics output is to
be clipped inside or outside the blanking area. The default is to clip
outside the blanking area.

The GBLKVP subroutine defines an area, called the blanking area, in which nothing
is drawn until the area is released. This routine is useful for clipping areas outside the
graph or for blanking out inner portions of the graph. Ifinsideis set to 0 (the default),
no graphics output appears outside the blanking area. Settinginsideto 1 clips inside
the blanking areas.

Note that the blanking area (as specified by the viewport argument) is defined on the
current viewport, and it is released when the viewport is changed or popped. At most
one blanking area is in effect at any time. The blanking area can also be released by
the GBLKVPD subroutine or another GBLKVP call. The coordinates in use for this
graphics command are given in normalized coordinates because it is defined relative
to the current viewport.

For example, to blank out a rectangular area with corners at the coordinates (20,20)
and (80,80), relative to the currently defined viewport, use the statement

call gblkvp({20 20, 80 80});

No graphics or text can be written outside this area until the blanking viewport is
ended.

Alternatively, if you want to clip inside of the rectangular area as above, use theinside
parameter:

call gblkvp({20 20, 80 80},1);

See also the description of the CLIP option in the RESET statement.

GBLKVPD Call

deletes the blanking viewport

CALL GBLKVPD;

The GBLKVPD subroutine releases the current blanking area. It allows graphics
output to be drawn in the area previously blanked out by a call to the GBLKVP
subroutine.

To release an area previously blanked out, as in the example for the GBLKVP sub-
routine, use the following statement.

SAS OnlineDoc: Version 8

GDELETE Call � 535

/* define blanking viewport */

call gblkvp({20 20,80 80});

more graphics statements
/* now release the blanked out area */

call gblkvpd;

/* graphics or text can now be written to the area */

continue graphics statements

See also the description of the CLIP option in the RESET statement.

GCLOSE Call

closes the graphics segment

CALL GCLOSE;

The GCLOSE subroutine closes the current graphics segment. Once a segment is
closed, no other primitives can be added to it. The next call to a graph-generating
function begins building a new graphics segment. However, the GCLOSE subroutine
does not have to be called explicitly to terminate a segment; the GOPEN subroutine
causes GCLOSE to be called.

GDELETE Call

deletes a graphics segment

CALL GDELETE(segment-name);

wheresegment-nameis a character matrix or quoted literal containing the name of
the segment.

The GDELETE subroutine searches the current catalog and deletes the first segment
found with the namesegment-name.

An example of a valid statement follows.

/* SEG_A is defined as a character matrix */
/* that contains the name of the segment to delete */

call gdelete(seg_a);

The segment can also be specified as a quoted literal:

call delete("plot_13");

SAS OnlineDoc: Version 8

536 � Chapter 17. Language Reference

GDRAW Call

draws a polyline

CALL GDRAW(x, y <, style><, color><, window><, viewport>);

The inputs to the GDRAW subroutine are as follows:

x is a vector containing thex coordinates of points used to draw a
sequence of lines.

y is a vector containing they coordinates of points used to draw a
sequence of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GDRAW subroutine draws a sequence of connected lines from points represented
by values inx andy, which must be vectors of the same length. Ifx andy haven
points, there will ben� 1 lines. The first line will be from the point(x(1); y(1)) to
(x(2); y(2)). The lines are drawn in the same color and line style. The coordinates in
use for this graphics command are world coordinates. An example using the GDRAW
subroutine follows:

/* line from (50,50) to (75,75) - x and y take */
/* default window range of 0 to 100 */

call gdraw({50 75},{50 75});
call gshow;

SAS OnlineDoc: Version 8

GDRAWL Call � 537

GDRAWL Call

draws individual lines

CALL GDRAWL(xy1, xy2 <, style><, color><, window><, viewport>);

The inputs to the GDRAWL subroutine are as follows:

xy1 is a matrix of points used to draw a sequence of lines.

xy2 is a matrix of points used to draw a sequence of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GDRAWL subroutine draws a sequence of lines specified by their beginning and
ending points. The matricesxy1 andxy2 must have the same number of rows and
columns. The first two columns (other columns are ignored) ofxy1 give thex; y co-
ordinates of the beginning points of the line segment, and the first two columns ofxy2
havex; y coordinates of the corresponding end points. Ifxy1 andxy2 haven rows,n
lines are drawn. The first line is from(xy1(1; 1); xy1(1; 2)) to (xy2(1; 1); xy2(1; 2)).
The lines are drawn in the same color and line style. The coordinates in use for this
graphics command are world coordinates. An example using the GDRAWL call fol-
lows:

/* line from (25,25) to (50,50) - x and y take */
/* default window range of 0 to 100 */

call gdrawl({25 25},{50 50});
call gshow;

SAS OnlineDoc: Version 8

538 � Chapter 17. Language Reference

GENEIG Call

computes eigenvalues and eigenvectors of a generalized eigenproblem

CALL GENEIG(eigenvalues, eigenvectors, symmetric-matrix1,
symmetric-matrix2);

The inputs to the GENEIG subroutine are as follows:

eigenvalues is a returned vector containing the eigenvalues.

eigenvectors is a returned matrix containing the corresponding eigenvectors.

symmetric-matrix1 is a symmetric numeric matrix.

symmetric-matrix2 is a positive definite symmetric matrix.

The GENEIG subroutine computes eigenvalues and eigenvectors of the generalized
eigenproblem. The statement

call geneig (m,e,a,b);

computes eigenvaluesM and eigenvectorsE of the generalized eigenproblemA �
E = B � E � diag(M), whereA andB are symmetric andB is positive definite.
The vectorM contains the eigenvalues arranged in descending order, and the matrix
E contains the corresponding eigenvectors in the columns.

The following example is from Wilkinson and Reinsch (1971, p. 311).

a={1 0 2 3 1 1,
2 12 1 2 1,
3 1 11 1 -1,
1 2 1 9 1,
1 1 -1 1 15};

b={12 1 -1 2 1,
1 14 1 -1 1,

-1 1 16 -1 1,
2 -1 -1 12 -1,
1 1 1 -1 11};

call geneig(m,e,a,b);

SAS OnlineDoc: Version 8

GGRID Call � 539

The matrices produced are as follows.

M
1.49235
1.10928
0.94385
0.66366
0.43278

E
-0.07638 0.14201 0.19171 -0.08292 -0.13459

0.01709 0.14242 -0.15899 -0.15314 0.06129
-0.06666 0.12099 0.07483 0.11860 0.15790

0.08604 0.12553 -0.13746 0.18281 -0.10946
0.28943 0.00769 0.08897 -0.00356 0.04147

GGRID Call

draws a grid

CALL GGRID(x, y <, style><, color><, window><, viewport>);

The inputs to the GGRID subroutine are as follows:

x andy are vectors of points used to draw sequences of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GGRID subroutine draws a sequence of vertical and horizontal lines specified by
thex andy vectors, respectively. The start and end of the vertical lines are implicitly
defined by the minimum and maximum of they vector. Likewise, the start and end of
the horizontal lines are defined by the minimum and maximum of thex vector. The
grid lines are drawn in the same color and line style. The coordinates in use for this
graphics command are world coordinates.

For example, use the following statements to place a grid in the lower left corner of
the screen.

SAS OnlineDoc: Version 8

540 � Chapter 17. Language Reference

x={10,20,30,40,50};
y=x;

/* The following GGRID command will place a GRID */
/* in lower left corner of the screen */
/* assuming the default window and viewport */

call ggrid(x,y);
call gshow;

GINCLUDE Call

includes a graphics segment

CALL GINCLUDE(segment-name);

wheresegment-nameis a character matrix or quoted literal specifying a graphics
segment.

The GINCLUDE subroutine includes into the current graph a previously defined
graph namedsegment-namefrom the same catalog. The included segment is defined
in the current viewport but not the current window.

The implementation of the GINCLUDE subroutine makes it possible to include other
segments to the current segment and reposition them in different viewports. Fur-
thermore, a segment can be included by different graphs, thus effectively reducing
storage space. Examples of valid statements follow:

/* segment1 is a character variable */
/*containing the segment name */

segment1={myplot};
call ginclude(segment1);

/* specify the segment with quoted literal */
call ginclude("myseg");

GINV Function

computes the generalized inverse

GINV(matrix)

wherematrix is a numeric matrix or literal.

The GINV function creates the Moore-Penrose generalized inverse ofmatrix. This
inverse, known as the four-condition inverse, has these properties:

If G = GINV(A) then

AGA = A GAG = G (AG)0 = AG (GA)0 = GA

SAS OnlineDoc: Version 8

GOPEN Call � 541

The generalized inverse is also known as thepseudoinverse, usually denoted byA�.
It is computed using the singular value decomposition (Wilkinson and Reinsch 1971).

Least-squares regression for the model

Y = X� + �

can be performed by using

b=ginv(x)*y;

as the estimate of�. This solution has minimumb0b among all solutions minimizing
�0�, where� = Y �Xb.

Projection matrices can be formed by specifying GINV(X) � X (row space) or
X�GINV(X) (column space).

See Rao and Mitra (1971) for a discussion of properties of this function.

GOPEN Call

opens a graphics segment

CALL GOPEN(<segment-name><, replace><, description>);

The inputs to the GOPEN subroutine are as follows:

segment-name is a character matrix or quoted literal specifying the name of a
graphics segment.

replace is a numeric argument.

description is a character matrix or quoted text string with a maximum length
of 40 characters.

The GOPEN subroutine starts a new graphics segment. The window and viewport are
reset to the default values (f0 0 100 100g) in both cases. Any attribute modified using
a GSET call is reset to its default value, which is set by the attribute’s corresponding
GOPTIONS value.

A nonzero value forreplaceindicates that the new segment should replace the first
found segment with the same name, and zero indicates otherwise. If you do not
specify thereplaceflag, the flag set by a previous GSTART call is used. By default,
the GSTART subroutine sets the flag to NOREPLACE.

Thedescriptionis a text string of up to 40 characters that you want to store with the
segment to describe the graph.

Two graphs cannot have the same name. If you try to create a segment, say PLOT–A,
twice, the second segment is named using a name generated by IML.

SAS OnlineDoc: Version 8

542 � Chapter 17. Language Reference

To open a new segment named COSINE, setreplaceto replace a like-named segment,
and attach a description to the segment, use the statement

call gopen(’cosine’,1,’Graph of Cosine Curve’);

GOTO Statement

jumps to a new statement

GOTO label;

wherelabel is a labeled statement. Execution jumps to this statement. A label is a
name followed by a colon (:).

The GOTO (or GO TO) statement directs IML to jump immediately to the statement
with the givenlabel and begin executing statements from that point. Any IML state-
ment can have a label, which is a name followed by a colon preceding any executable
statement.

GOTO statements are usually clauses of IF statements, for example,

if x>y then goto skip;
y=log(y-x);
yy=y-20;
skip: if y<0 then

do;
more statements

end;

The function of GOTO statements is usually better performed by DO groups. For
example, the statements above could be better written

if x<=y then
do;

y=log(y-x);
yy=y-20;

end;
more statements

CAUTION: You can only use the GOTO statement inside a module or a DO group.
As good programming practice, you should avoid GOTO statements when they refer
to a label above the GOTO statement; otherwise, an infinite loop is possible.

SAS OnlineDoc: Version 8

GPIE Call � 543

GPIE Call

draws pie slices

CALL GPIE(x, y, r <, angle1><, angle2><, color><, outline>
<, pattern><, window><, viewport>);

The inputs to the GPIE subroutine are AS FOLLOWS:

x andy are numeric scalars (or possibly vectors) defining the center (or
centers) of the pie (or pies).

r is a scalar or vector giving the radii of the pie slices.

angle1 is a scalar or vector giving the start angles. It defaults to 0.

angle2 is a scalar or vector giving the terminal angles. It defaults to 360.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

outline is an index indicating the side of the slice to draw. The default is 3.

pattern is a character matrix or quoted literal that specifies the pattern with
which to fill the interior of a closed curve.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{\ob minimum-x minimum-y maximum-x maximum-y\obe}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPIE subroutine draws one or more pie slices. The number of pie slices is
the maximum dimension of the first five vectors. The angle arguments are specifed
in degrees. The start angle (angle1) defaults to 0, and the terminal angle (angle2)
defaults to 360.Outline is an index that indicates the side of the slice to draw. The
outlinespecification can be one of the following:

<0 uses absolute value as the line style and draws no line segment from center to
arc.

0 draws no line segment from center to arc.

1 draws an arc and line segment from the center to the starting angle point.

2 draws an arc and line segment from the center to the ending angle point.

3 draws all sides of the slice. This is the default.

SAS OnlineDoc: Version 8

544 � Chapter 17. Language Reference

Color, outline, and pattern can have more than one element. The coordinates in
use for this graphics command are world coordinates. An example using the GPIE
subroutine follows:

/* draws a pie with 4 slices of equal size */
call gpie(50,50,30,{0 90 180 270},{90 180 270 0});

GPIEXY Call

converts from polar to world coordinates

CALL GPIEXY(x, y, fract-radii, angles<, center><, radius><,
window>);

The inputs to the GPIEXY subroutine are as follows:

x andy are vectors of coordinates returned by GPIEXY.

fract-radii is a vector of fractions of the radius of the reference circle.

angles is the vector of angle coordinates in degrees.

center defines the reference circle.

radius defines the reference circle.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPIEXY subroutine computes the world coordinates of a sequence of points
relative to a circle. Thex andy arguments are vectors of new coordinates returned
by the GPIEXY subroutine. Together, the vectorsfract-radii andanglesdefine the
points in polar coordinates. Each pair from thefract-radii andanglesvectors yields a
corresponding pair in thex andy vectors. For example, supposefract-radii has two
elements, 0.5 and 0.3, and the corresponding two elements ofanglesare 90 and 30.
The GPIEXY subroutine returns two elements in thex vector and two elements in the
y vector. The first(x; y) pair locates a point half way from the center to the reference
circle on the vertical line through the center, and the second(x; y) pair locates a
point one-third of the way on the line segment from the center to the reference circle,
where the line segment slants 30 degrees from the horizontal. The reference circle
can be defined by an earlier GPIE call or another GPIEXY call, or it can be defined
by specifyingcenterandradius.

Graphics devices can have diverse aspect ratios; thus, a circle may appear distorted
when drawn on some devices. The SAS graphics system adjusts computations to
compensate for this distortion. Thus, for any given point, the transformation from
polar coordinates to world coordinates may need an equivalent adjustment. The
GPIEXY subroutine ensures that the same adjustment applied in the GPIE subroutine
is applied to the conversion. An example using the GPIEXY call follows.

SAS OnlineDoc: Version 8

GPOINT Call � 545

/* add labels to a pie with 4 slices of equal size */
call gpie(50,50,30,{0 90 180 270},{90 180 270 0});
call gpiexy(x,y,1.2,{45 135 225 315},{50 50},30,{0 0 100 100});

/* adjust for label size: */
x [4,]=x[4,]-3;
x [1,]=x[1,]-4;
x [2,]=x[2,]+1;
call gscript(x,y,{’QTR1’ ’QTR2’ ’QTR3’ ’QTR4’});
call gshow;

GPOINT Call

plots points

CALL GPOINT(x, y <, symbol><, color><, height><, window>
<, viewport>);

The inputs to the GPOINT subroutine are as follows:

x is a vector containing thex coordinates of points.

y is a vector containing they coordinates of points.

symbol is a character vector or quoted literal that specifies a valid plotting
symbol or symbols.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

height is a numeric matrix or literal specifying the character height.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPOINT subroutine marks one or more points with symbols. Thex andy vectors
define the points where the markers are to be placed. Thesymbolandcolor arguments
can have from one up to as many elements as there are well-defined points. The
coordinates in use for this graphics command are world coordinates.

In the example that follows, points on the lineY = X are generated for30 � X � 80
and then plotted with the GPOINT call:

x=30:80;
y=x;

SAS OnlineDoc: Version 8

546 � Chapter 17. Language Reference

call gpoint(x,y);
call gshow;

As another example, you can plot symbols at specific locations on the screen using
the GPOINT subroutine. To printi in the lower left corner andj in the upper right
corner, use the statements

call gpoint({10 80},{5 95},{i j});
call gshow;

See Chapter 12, “Graphics Examples,” for examples using the GPOINT subroutine.

GPOLY Call

draws and fills a polygon

CALL GPOLY(x, y <, style><, ocolor><, pattern><, color>
<, window><, viewport>);

The inputs to the GPOLY subroutine are as follows.

x is a vector defining thex coordinates of the corners of the polygon.

y is a vector defining they coordinates of the corners of the polygon.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

ocolor is a matrix or literal specifying a valid outline color. Theocolor
argument can be specified as a quoted text string (such as ’RED’),
the name of a character matrix containing a valid color as an ele-
ment, or a color number (such as 1). A color numbern refers to
thenth color in the color list.

pattern is a character matrix or quoted literal that specifies the pattern to
fill the interior of a closed curve.

color is a valid SAS color used in filling the polygon. Thecolor argument
can be specified as a quoted text string (such as ’RED’), the name
of a character matrix containing a valid color as an element, or a
color number (such as 1). A color numbern refers to thenth color
in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

SAS OnlineDoc: Version 8

GPORTPOP Call � 547

The GPOLY subroutine fills an area enclosed by a polygon. The polygon is defined by
the set of points given in the vectorsx andy. Thecolor argument is the color used in
shading the polygon, andocolor is the outline color. By default, the shading color and
the outline color are the same, and the interior pattern is empty. The coordinates in
use for this graphics command are world coordinates. An example using the GPOLY
subroutine follows:

xd={20 20 80 80};
yd={35 85 85 35};
call gpoly (xd,yd, , ,’X’,’red’);

GPORT Call

defines a viewport

CALL GPORT(viewport);

whereviewport is a numeric matrix or literal defining the viewport. The rectangular
area’s boundary is specified in normalized coordinates, where you specify the coor-
dinates of the lower left corner and the upper right corner of the rectangular area in
the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPORT subroutine changes the current viewport. Theviewportargument de-
fines the new viewport using device coordinates (always 0 to 100). Changing the
viewport may affect the height of the character fonts; if so, you may want to modify
the HEIGHT parameter. An example of a valid statement follows:

call gport({20 20 80 80});

The default values for viewport are 0 0 100 100.

GPORTPOP Call

pops the viewport

CALL GPORTPOP;

The GPORTPOP subroutine deletes the top viewport from the stack.

SAS OnlineDoc: Version 8

548 � Chapter 17. Language Reference

GPORTSTK Call

stacks the viewport

CALL GPORTSTK(viewport);

whereviewportis a numeric matrix or literal defined in normalized coordinates in the
form

{ minimum-x minimum-y maximum-x maximum-y}

The GPORTSTK subroutine stacks the viewport defined by the matrixviewportonto
the current viewport; that is, the new viewport is defined relative to the current view-
port. The coordinates in use for this graphics command are world coordinates. An
example of a valid statement follows:

call gportstk({5 5 95 95});

GSCALE Call

calculates round numbers for labeling axes

CALL GSCALE(scale, x, nincr<, nicenum><, fixed-end>);

The inputs to the GSCALE subroutine are as follows:

scale is a returned vector containing the scaled minimum data value, the
scaled maximum data value, and a grid increment.

x is a numeric matrix or literal.

nincr is the number of intervals desired.

nicenum is numeric and provides up to ten numbers to use for scaling. By
default,nicenumis (1,2,2.5,5).

fixed-end is a character argument and specifies which end of the scale is held
fixed. The default isX.

The GSCALE subroutine obtains simple (round) numbers with uniform grid interval
sizes to use in scaling a linear axis. The GSCALE subroutine implements algorithm
463 of Collected Algorithms from CACM. The scale values are integer multiples of
the interval size. They are returned in the first argument, a vector with three elements.
The first element is the scaled minimum data value. The second element is the scaled
maximum data value. The third element is the grid increment.

The required input parameters arex, a matrix of data values, andnincr, the number of
intervals desired. Ifnincr is positive, the scaled range includes approximatelynincr
intervals. Ifnincr is negative, the scaled range includes exactly ABS(nincr) intervals.
Thenincr parameter cannot be zero.

SAS OnlineDoc: Version 8

GSCRIPT Call � 549

Thenicenumandfixed-endarguments are optional. Thenicenumargument provides
up to ten numbers, all between 1 and 10 (inclusive of the end points), to be used for
scaling. The default fornicenumis 1, 2, 2.5, and 5. The linear scale with this set of
numbers is a scale with an interval size that is the product of an integer power of 10
and 1, 2, 2.5, or 5. Changing these numbers alters the rounding of the scaled values.

Forfixed-end, Ufixes the upper end;L fixes the lower end;X allows both ends to vary
from the data values. The default isX. An example using the GSCALE subroutine
follows:

/* scalemat is set to {0,1000,100} */
call gscale(scalmat, {1 1000}, 10);

GSCRIPT Call

writes multiple text strings with special fonts

CALL GSCRIPT(x, y, text<, angle><, rotate><, height><, font>
<, color><, window><, viewport>);

The inputs to the GSCRIPT subroutine are as follows:

x is a scalar or vector containing thex coordinates of the lower left
starting position of the text string’s first character.

y is a scalar or vector containing they coordinates of the lower left
starting position of the text string’s first character.

text is a character vector of text strings.

angle is the slant of each text string.

rotate is the rotation of individual characters.

height is a real number specifying the character height.

font is a character matrix or quoted literal that specifies a valid font
name.

color is a valid SAS color. Thecolor argument can be specified as a
quoted text string (such as ’RED’), the name of a character matrix
containing a valid color as an element, or a color number (such as
1). A color numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

SAS OnlineDoc: Version 8

550 � Chapter 17. Language Reference

The GSCRIPT subroutine writes multiple text strings with special character fonts.
Thex andy vectors describe the coordinates of the lower left starting position of the
text string’s first character. Thecolor argument can have more than one element.

Note: Hardware characters cannot always be obtained if you change the HEIGHT or
ASPECT parameters or if you use a viewport.

The coordinates in use for this graphics command are world coordinates. Examples
of valid statements follow:

call gscript(7,y,names);
call gscript(50,50,"plot of height vs weight");
call gscript(10,90,"yaxis",-90,90);

GSET Call

sets attributes for a graphics segment

CALL GSET(attribute<, value>);

The inputs to the GSET subroutine are as follows:

attribute is a graphics attribute. Theattribute argument can be a character
matrix or quoted literal.

value is the value to which the attribute is set. Thevalue argument is
specified as a matrix or quoted literal.

The GSET subroutine enables you to change the following attributes for the current
graphics segment.

aspect a numeric matrix or literal that specifies the aspect ratio (width
relative to height) for characters.

color a valid SAS color. Thecolor argument can be specified as a quoted
text string (such as ’RED’), the name of a character matrix contain-
ing a valid color as an element, or a color number (such as 1). A
color numbern refers to thenth color in the colorlist.

font a character matrix or quoted literal that specifies a valid font name.

height a numeric matrix or literal that specifies the character height.

pattern a character matrix or quoted literal that specifies the pattern to use
to fill the interior of a closed curve.

style a numeric matrix or literal that specifies an index corresponding to
a valid line style.

thick an integer specifying line thickness.

SAS OnlineDoc: Version 8

GSHOW Call � 551

To reset the IML default value for any one of the attributes, omit the second argu-
ment. Attributes are reset back to the default with a call to the GOPEN or GSTART
subroutines. Single or double quotes can be used around this argument. For more
information on the attributes, see Chapter 12, “Graphics Examples.”

Examples of valid statements follow:

call gset(’pattern’,’m1n45’);
call gset(’font’,’simplex’);

f=’font’;
s=’simplex’;
call gset(f,s);

For example, the statement

call gset("color");

resetscolor to its default.

GSHOW Call

shows a graph

CALL GSHOW <(segment-name)>;

wheresegment-nameis a character matrix or literal specifying a graphics segment.

If you do not specifysegment-name, the GSHOW subroutine displays the current
graph. If the current graph is active at the time that the GSHOW subroutine is called,
it remains active after the call; that is, graphics primitives can still be added to the
segment. On the other hand, if you specifysegment-name, the GSHOW subroutine
closes any active graphics segment, searches the current catalog for a segment with
the given name, and then displays that graph. Examples of valid statements follow.

call gshow;
call gshow("plot_a5");

seg={myplot};
call gshow(seg);

SAS OnlineDoc: Version 8

552 � Chapter 17. Language Reference

GSORTH Call

computes the Gram-Schmidt orthonormalization

CALL GSORTH(p, t, lindep, a);

The inputs to the GSORTH subroutine are as follows:

p is anm� n column-orthonormal output matrix.

t is an upper triangularn� n output matrix.

lindep is a flag with a value of 0 if columns ofa are independent and a value
of 1 if they are dependent. Thelindepargument is an output scalar.

a is an inputm� n matrix.

The GSORTH subroutine computes the Gram-Schmidt orthonormal factorization of
them�nmatrixA, wherem is greater than or equal ton; that is, the GSORTH sub-
routine computes the column-orthonormalm� n matrixP and the upper triangular
n� n matrixT such that

A = P �T :

If the columns ofA are linearly independent (that is, rank(A) = n), thenP is full-
rank column-orthonormal:P0P = Iw, T is nonsingular, and the value oflindep (a
scalar) is set to 0. If the columns ofA are linearly dependent (say rank(A) = k < n)
thenn� k columns ofP are set to 0, the corresponding rows ofT are set to 0 (T is
singular), andlindep is set to 1. The pattern of zero columns inP corresponds to the
pattern of linear dependencies of the columns ofA when columns are considered in
left-to-right order.

The GSORTH subroutine is not recommended for the construction of matrices of val-
ues of orthogonal polynomials; the ORPOL functionhould be used for that purpose.

If lindep is 1, you can rearrange the columns ofP and rows ofT so that the zero
columns ofP are right-most, that is,P = (P(; 1);P(; k); 0; : : : ; 0), wherek is the
column rank ofA andA = P �T is preserved. The following statements make this
rearrangement:

d=rank((ncol(t)-(1:ncol(t))‘)#(vecdiag(t)=0));
temp=p;
p[,d]=temp;
temp=t;
t[,d]=temp;

An example of a valid GSORTH call follows:

x={1 1 1, 1 2 4, 1 3 9};
xpx=x‘*x;
call gsorth(p, t, l, xpx);

SAS OnlineDoc: Version 8

GSTART Call � 553

These statements produce the output matrices

P 3 rows 3 cols (numeric)

0.193247 -0.753259 0.6286946
0.386494 -0.530521 -0.754434

0.9018193 0.3887787 0.1886084

T 3 rows 3 cols (numeric)

15.524175 39.035892 104.99753
0 2.0491877 8.4559365
0 0 0.1257389

L 1 row 1 col (numeric)

0

See “Acknowledgments” in the front of this book for authorship of the GSORTH
subroutine.

GSTART Call

initializes the graphics system

CALL GSTART(<catalog><, replace>);

The inputs to the GSTART subroutine are as follows:

catalog is a character matrix or quoted literal specifying the SAS catalog
for saving the graphics segments.

replace is a numeric argument.

The GSTART subroutine activates the graphics system the first time it is called. A
catalog is opened to capture the graphics segments to be generated in the session. If
you do not specify a catalog, IML uses the temporary catalog WORK.GSEG.

Thereplaceargument is a flag; a nonzero value indicates that the new segment should
replace the first found segment with the same name. Thereplaceflag set by the
GSTART subroutine is a global flag, as opposed to thereplaceflag set by the GOPEN
subroutine. When set by GSTART, this flag is applied to all subsequent segments
created for this catalog, whereas with GOPEN, thereplaceflag is applied only to
the segment that is being created. The GSTART subroutine sets thereplaceflag to
0 when thereplaceargument is omitted. Thereplaceoption can be very inefficient
for a catalog with many segments. In this case, it is better to create segments with
different names (if necessary) than to use thereplaceoption.

SAS OnlineDoc: Version 8

554 � Chapter 17. Language Reference

The GSTART subroutine must be called at least once to load the graphics subsystem.
Any subsequent GSTART calls are generally to change graphics catalogs or reset the
global replaceflag.

The GSTART subroutine resets the defaults for all graphics attributes that can be
changed by the GSET subroutine. It does not reset GOPTIONS back to their defaults
unless the GOPTION corresponds to a GSET parameter. The GOPEN subroutine
also resets GSET parameters.

An example of a valid statement follows:

call gstart;

GSTOP Call

deactivates the graphics system

CALL GSTOP;

The GSTOP subroutine deactivates the graphics system. The graphics subsystem is
disabled until the GSTART subroutine is called again.

GSTRLEN Call

finds the string length

CALL GSTRLEN(length, text<, height><, font><, window>);

The inputs to the GSTRLEN subroutine are as follows:

length is a matrix of lengths specified in world coordinates.

text is a matrix of text strings.

height is a numeric matrix or literal specifying the character height.

font is a character matrix or quoted literal that specifies a valid font
name.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GSTRLEN subroutine returns in world coordinates the graphics text lengths in
a given font and for a given character height. Thelengthargument is the returned
matrix. It has the same shape as the matrixtext. Thus, if text is ann �m matrix of
text strings, thenlengthwill be ann �m matrix of lengths in world coordinates. If
you do not specifyfont, the default font is assumed. If you do not specifyheight, the
default height is assumed. An example using the GSTRLEN subroutine follows.

SAS OnlineDoc: Version 8

GTEXT and GVTEXT Calls � 555

/* centers text strings about coordinate */
/* points (50, 90) assume font=simplex */

ht=2;
x=30;
y=90;
str=’Nonparametric Cluster Analysis’;
call gstrlen(len, str, ht, ’simplex’);
call gscript(x-(len/2), y, str, ,,ht,’simplex’);

GTEXT and GVTEXT Calls

place text horizontally or vertically on a graph

CALL GTEXT(x, y, text<, color><, window><, viewport>);
CALL GVTEXT(x, y, text<, color><, window><, viewport>);

The inputs to the GTEXT and GVTEXT subroutines are as follows:

x is a scalar or vector containing thex coordinates of the lower left
starting position of the text string’s first character.

y is a scalar or vector containing they coordinates of the lower left
starting position of the text string’s first character.

text is a vector of text strings

color is a valid SAS color. Thecolor argument can be specified as a
quoted text string (such as ’RED’), the name of a character matrix
containing a valid color as an element, or a color number (such as
1). A color numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GTEXT subroutine places text horizontally across a graph; the GVTEXT sub-
routine places text vertically on a graph. Both subroutines use hardware characters
when possible. The number of text strings drawn is the maximum dimension of the
first three vectors. Thecolor argument can have more than one element. Hardware
characters cannot always be obtained if you change the HEIGHT or ASPECT param-
eters (using GSET or GOPTIONS) or if you use a viewport. The coordinates in use
for this graphics command are world coordinates.

SAS OnlineDoc: Version 8

556 � Chapter 17. Language Reference

Examples of the GTEXT and GVTEXT subroutines follow:

call gopen;
call gport({0 0 50 50});
call gset(’height’,4); /* shrink to a 4th of the screen */
call gtext(50,50,’Testing GTEXT: This will start in the

center of the viewportp ’);
call gshow;
call gopen;
call gvtext(.35,4.6,’VERTICAL STRING BY GVTEXT’,

’white’,{0.2 -1,1.5 6.5},{0 0,100 100});
call gshow;

GWINDOW Call

defines the data window

CALL GWINDOW(window);

wherewindow is a numeric matrix or literal specifying a window. The rectangular
area’s boundary is given in world coordinates, where you specify the lower left and
upper right corners in the form

{ minimum-x minimum-y maximum-x maximum-y}

The GWINDOW subroutine sets up the window for scaling data values in subsequent
graphics primitives. It is in effect until the next GWINDOW call or until the segment
is closed. The coordinates in use for this graphics command are world coordinates.
An example using the GWINDOW subroutine follows:

ydata={2.358,0.606,3.669,1.000,0.981,1.192,0.926,1.590,
1.806,1.962,4.028,3.148,1.836,2.845,1.013,0.414};

xdata={1.215,0.930,1.152,1.138,0.061,0.696,0.686,1.072,
1.074,0.934,0.808,1.071,1.009,1.142,1.229,0.595};

/* WD shows the actual range of the data */
wd=(min(xdata)||min(ydata))//(max(xdata)||max(ydata));
call gwindow(wd);

SAS OnlineDoc: Version 8

GXAXIS and GYAXIS Calls � 557

GXAXIS and GYAXIS Calls

draw a horizontal or vertical axis

CALL GXAXIS(starting-point, length, nincr <, nminor><, noticklab>
<, format><, height><, font><, color><, fixed-end>

<, window><, viewport>);

CALL GYAXIS(starting-point, length, nincr <, nminor><, noticklab>

<, format><, height><, font><, color><, fixed-end>

<, window><, viewport>);

The inputs to the GXAXIS and GYAXIS subroutines are as follows:

starting-point is the (x; y) starting point of the axis, specified in world coordi-
nates.

length is a numeric scalar giving the length of the axis.

nincr is a numeric scalar giving the number of major tick marks on the
axis.

nminor is an integer specifying the number of minor tick marks between
major tick marks.

noticklab is a flag that is nonzero if the tick marks are not labeled. The default
is to label tick marks.

format is a character scalar that gives a valid SAS numeric format used in
formatting the tick-mark labels. The default format is 8.2.

height is a numeric matrix or literal that specifies the character height.
This is used for the tick-mark labels.

font is a character matrix or quoted literal that specifies a valid font
name. This is used for the tick-mark labels.

color is a valid color. Thecolor argument can be specified as a quoted
text string (such as ’RED’), the name of a character matrix contain-
ing a valid color as an element, or a color number (such as 1). A
color numbern refers to thenth color in the color list.

fixed-end allows one end of the scale to be held fixed.U fixes the upper end;
L fixes the lower end;X and allows both ends to vary from the
data values. In addition, you may specifyN, which causes the axis
routines to bypass the scaling routine. The interval between tick
marks islengthdivided by (nincr�1). The default isX.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

SAS OnlineDoc: Version 8

558 � Chapter 17. Language Reference

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GXAXIS subroutine draws a horizontal axis; the GYAXIS subroutine draws a
vertical axis. The first three arguments are required.

Thestarting-pointargument is a matrix of two numbers given in world coordinates.
The matrix is the(x; y) starting point of the axis.

Thelengthargument is a scalar value giving the length of thex axis ory axis in world
coordinates along thex or y direction.

Thenincr argument is a scalar value giving the number of major tick marks shown
on the axis. The first tick mark will be on the starting point as specified.

The axis routines use the same scaling algorithm as the GSCALE subroutine. For
example, if thex starting point is 10 and the length of the axis is 44, and if you call
the GSCALE subroutine with thex vector containing the two elements, 10 and 44,
the scale obtained should be the same as that obtained by the GXAXIS subroutine.
Sometimes, it may be helpful to use the GSCALE subroutine in conjunction with the
axis routines to get more precise scaling and labeling.

For example, suppose you want to draw the axis for�2 � X � 2 and�2 � Y � 2.
The code below draws these axes. Each axis is 4 units long. Note that thex axis
begins at the point(�2; 0) and they axis begins at the point(0;�2). The tick marks
can be set at each integer value, with minor tick marks in between the major tick
marks. Thenoticklaboption is turned off, so that the tick marks are not labeled.

call gport({20 20 80 80});
call gwindow({-2 -2 2 2});
call gxaxis({-2,0},4,5,2,1);
call gyaxis({0,-2},4,5,2,1);

HALF Function

computes Cholesky decomposition

HALF(matrix)

wherematrix is a numeric matrix or literal.

The HALF function is the same as the ROOT function. See the description of the
ROOT function for Cholesky decomposition.

SAS OnlineDoc: Version 8

HANKEL Function � 559

HANKEL Function

generates a Hankel matrix

HANKEL(matrix)

wherematrix is a numeric matrix or literal.

The HANKEL function generates a Hankel matrix from a vector, or a block Hankel
matrix from a matrix. A block Hankel matrix has the property that all matrices on
the reverse diagonals are the same. The argument matrix is an(np)� p or p� (np)
matrix; the value returned is the(np)� (np) result.

The Hankel function uses the firstp � p submatrixA1 of the argument matrix as
the blocks of the first reverse diagonal. The secondp� p submatrixA2 of the argu-
ment matrix forms the second reverse diagonal. The remaining reverse diagonals are
formed accordingly. After the values in the argument matrix have all been placed,
the rest of the matrix is filled in with 0. IfA is (np) � p, then the firstp columns
of the returned matrix,R, will be the same asA. If A is p � (np), then the first
p rows ofRwill be the same asA. The HANKEL function is especially useful in
time-series applications, where the covariance matrix of a set of variables represent-
ing the present and past and a set of variables representing the present and future is
often assumed to be a block Hankel matrix. If

A = [A1jA2jA3j � � � jAn]

and ifR is the matrix formed by the HANKEL function, then

R =

2666664
A1 j A2 j A3 j � � � j An

A2 j A3 j A4 j � � � j 0

A3 j A4 j A5 j � � � j 0
...
An j 0 j 0 j � � � j 0

3777775
If

A =

26664
A1

A2
...
An

37775
and ifR is the matrix formed by the HANKEL function, then

R =

26664
A1 j A2 j A3 j � � � j An

A2 j A3 j A4 j � � � j 0
...
An j 0 j 0 j � � � j 0

37775

SAS OnlineDoc: Version 8

560 � Chapter 17. Language Reference

For example, the IML code

r=hankel({1 2 3 4 5});

results in

R 5 rows 5 cols (numeric)

1 2 3 4 5
2 3 4 5 0
3 4 5 0 0
4 5 0 0 0
5 0 0 0 0

The statement

r=hankel({1 2 ,
3 4 ,
5 6 ,
7 8});

returns the matrix

R 4 rows 4 cols (numeric)

1 2 5 6
3 4 7 8
5 6 0 0
7 8 0 0

And the statement

r=hankel({1 2 3 4 ,
5 6 7 8});

returns the result

R 4 rows 4 cols (numeric)

1 2 3 4
5 6 7 8
3 4 0 0
7 8 0 0

SAS OnlineDoc: Version 8

HDIR Function � 561

HDIR Function

performs a horizontal direct product

HDIR(matrix1, matrix2)

wherematrix1andmatrix2are numeric matrices or literals.

The HDIR function performs a direct product on all rows ofmatrix1andmatrix2and
creates a new matrix by stacking these row vectors into a matrix. This operation is
useful in constructing design matrices of interaction effects. Thematrix1andmatrix2
arguments must have the same number of rows. The result has the same number of
rows asmatrix1andmatrix2. The number of columns is equal to the product of the
number of columns inmatrix1andmatrix2.

For example, the statements

a={1 2,
2 4,
3 6};

b={0 2,
1 1,
0 -1};

c=hdir(a,b);

produce a matrix containing the values

C 3 rows 4 cols (numeric)

0 2 0 4
2 2 4 4
0 -3 0 -6

The HDIR function is useful for constructing crossed and nested effects from main
effect design matrices in ANOVA models.

SAS OnlineDoc: Version 8

562 � Chapter 17. Language Reference

HERMITE Function

reduces a matrix to Hermite normal form

HERMITE(matrix)

wherematrix is a numeric matrix or literal.

The HERMITE function uses elementary row operations to reduce a matrix to Her-
mite normal form. For square matrices this normal form is upper-triangular and idem-
potent.

If the argument is square and nonsingular, the result will be the identity matrix. In
general the result satisfies the following four conditions (Graybill 1969, p. 120):

� It is upper-triangular.

� It has only values of 0 and 1 on the diagonal.

� If a row has a 0 on the diagonal, then every element in that row is 0.

� If a row has a 1 on the diagonal, then every off-diagonal element is 0 in the
column in which the 1 appears.

Consider the following example (Graybill 1969, p. 288):

a={3 6 9,
1 2 5,
2 4 10};

h=hermite(a);

These statements produce

H 3 rows 3 cols (numeric)

1 2 0
0 0 0
0 0 1

If the argument is a square matrix, then the Hermite normal form can be transformed
into the row echelon form by rearranging rows in which all values are 0.

SAS OnlineDoc: Version 8

HOMOGEN Function � 563

HOMOGEN Function

solves homogeneous linear systems

HOMOGEN(matrix)

wherematrix is a numeric matrix or literal.

The HOMOGEN function solves the homogeneous system of linear equationsA �
X = 0 for X. For at least one solution vectorX to exist, them � n matrix A,
m � n, has to be of rankr < n. The HOMOGEN function computes ann� (n� r)
column orthonormal matrixX with the propertyA � X = 0, X0X = I. If A0A is
ill conditioned, rounding-error problems can occur in determining the correct rank
of A and in determining the correct number of solutionsX. Consider the following
example (Wilkinson and Reinsch 1971, p. 149):

a={22 10 2 3 7,
14 7 10 0 8,
-1 13 -1 -11 3,
-3 -2 13 -2 4,

9 8 1 -2 4,
9 1 -7 5 -1,
2 -6 6 5 1,
4 5 0 -2 2};

x=homogen(a);

These statements produce the solution

X 5 rows 2 cols (numeric)

-0.419095 0
0.4405091 0.4185481
-0.052005 0.3487901
0.6760591 0.244153
0.4129773 -0.802217

In addition, this function could be used to determine the rank of anm� n matrixA,
m � n.

SAS OnlineDoc: Version 8

564 � Chapter 17. Language Reference

I Function

creates an identity matrix

I(dimension)

wheredimensionspecifies the size of the identity matrix.

The I function creates an identity matrix withdimensionrows and columns. The
diagonal elements of an identity matrix are 1s; all other elements are 0s. The value
of dimensionmust be an integer greater than or equal to 1. Noninteger operands are
truncated to their integer part.

For example, the statement

a=I(3);

yields the result

A
1 0 0
0 1 0
0 0 1

IF-THEN/ELSE Statement

conditionally executes statements

IF expression THEN statement1;
ELSE statement2;

The inputs to the IF-THEN/ELSE statements are

expression is an expression that is evaluated for being true or false.

statement1 is a statement executed whenexpressionis true.

statement2 is a statement executed whenexpressionis false.

The IF statement contains an expression to be evaluated, the keyword THEN, and an
action to be taken when the result of the evaluation is true.

The ELSE statement optionally follows the IF statement and gives an action to be
taken when the IF expression is false. The expression to be evaluated is often a
comparison, for example,

if max(a)<20 then p=0;
else p=1;

SAS OnlineDoc: Version 8

IF-THEN/ELSE Statement � 565

The IF statement results in the evaluation of the condition MAX(A)<20. If the largest
value found in matrixA is less than 20,P is set to 0. Otherwise,P is set to 1. See
the description of the MAX function for details.

When the condition to be evaluated is a matrix expression, the result of the evaluation
is another matrix. If all values of the result matrix are nonzero and nonmissing, the
condition is true; if any element in the result matrix is 0 or missing, the condition is
false. This evaluation is equivalent to using the ALL function.

For example, writing

if x<y then
do;

produces the same result as writing

if all(x<y) then
do;

IF statements can be nested within the clauses of other IF or ELSE statements. Any
number of nesting levels is allowed. Below is an example.

if x=y then if abs(y)=z then
do;

CAUTION: Execution of THEN clauses occurs as if you were using the ALL func-
tion.

The statements

if a^=b then do;

and

if ^(a=b) then do;

are both valid, but the THEN clause in each case is only executed when all corre-
sponding elements ofA andB are unequal; that is, when none of the corresponding
elements are equal.

Evaluation of the statement

if any(a^=b) then do;

requires only one element ofA andB to be unequal for the expression to be true.

SAS OnlineDoc: Version 8

566 � Chapter 17. Language Reference

IFFT Function

computes the inverse finite Fourier transform

IFFT(f)

wheref is annp� 2 numeric matrix.

The IFFT function expands a set of sine and cosine coefficients into a sequence equal
to the sum of the coefficients times the sine and cosine functions. The argumentf is
annp� 2 matrix; the value returned is ann� 1 vector.

Note: If the element in the last row and second column off is exactly 0, thenn is
2np� 2; otherwise,n is 2np� 1.

The inverse finite Fourier transform of a two column matrixF, denoted by the vector
x is

xi = F1;1 + 2
nX

j=2

�
Fj;1 cos

�
2�

n
(j � 1)(i � 1)

�
+ Fj;2 sin

�
2�

n
(j � 1)(i� 1)

��
+ qi

for i = 1; : : : ; n, whereqi = (�1)iFnp;1 if n is even, orq = 0 if n is odd.

Note: For most efficient use of the IFFT function,n should be a power of 2. Ifn is
a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z
algorithm is used (Monro and Branch 1976).

IFFT(FFT(X)) returnsn timesx, wheren is the dimension ofx. If f is not the
Fourier transform of a real sequence, then the vector generated by the IFFT function
is not a true inverse Fourier transform. However, applications exist where the FFT
and IFFT functions may be used for operations on multidimensional or complex data
(Gentleman and Sande 1966; Nussbaumer 1982).

The convolution of two vectorsx (n� 1) andy (m� 1) can be accomplished using
the following statements:

a=fft(x//j(nice-nrow(x),1,0));
b=fft(y//j(nice-nrow(y),1,0));
z=(a#b)],+[;
b],2[=-b],2[;
z=ifft(z||((a#(b],2 1[))],+[));

where NICE is a number chosen to allow efficient use of the FFT and IFFT functions
and also is greater thann+m.

Windowed spectral estimates and inverse autocorrelation function estimates can also
be readily obtained.

SAS OnlineDoc: Version 8

INFILE Statement � 567

INDEX Statement

indexes a variable in a SAS data set

INDEX variables|NONE

wherevariablesare the names of variables for which indexes are to be built.

You can use the INDEX statement to create an index for the named variables in the
current input SAS data set. An index is created for each variable listed if it does not
already have an index. Current retrieval is set to the last variable indexed. Subsequent
I/O operations such as LIST, READ, FIND, and DELETE may use this index to
retrieve observations from the data set if IML determines that indexed retrieval will
be faster. The indices are automatically updated when a data set is edited with the
APPEND, DELETE, or REPLACE statements. Only one index is in effect at any
given time. The SHOWcontentscommand indicates which index is in use.

For example, the following statement creates indexes for the SAS data set CLASS in
the order of NAME and the order of SEX:

index name sex;

Current retrieval is set to use SEX. A LISTall statementould list females before males.

An INDEX nonestatement can be used to set retrieval back to physical order.

When a WHERE clause is being processed, IML automatically determines which
index to use, if any. The decision is based on the variables and operators involved in
the WHERE clause, and the decision criterion is based on the efficiency of retrieval.

INFILE Statement

opens a file for input

INFILE operand <options>;

The inputs to the INFILE statement are as follows:

operand is either a predefined filename or a quoted string containing the
filename or character expression in parentheses referring to the
filepath.

options are explained below.

You can use the INFILE statement to open an external file for input or, if the file is
already open, to make it the current input file so that subsequent INPUT statements
read from it.

The options available for the INFILE statement are described as follows.

SAS OnlineDoc: Version 8

568 � Chapter 17. Language Reference

LENGTH=variable
specifies a variable in which the length of a record will be stored as IML reads it in.

RECFM=N
specifies that the file is to be read in as a pure binary file rather than as a file with
record separator characters. To do this, you must use the byte operand (<) on the
INPUT statement to get new records rather than using separate input statements or
the new line (/) operator.

The following options control how IML behaves when an INPUT statement tries to
read past the end of a record. The default is STOPOVER.

FLOWOVER
allows the INPUT statement to go to the next record to obtain values for the variables.

MISSOVER
tolerates attempted reading past the end of the record by assigning missing values to
variables read past the end of the record.

STOPOVER
treats going past the end of a record as an error condition, which triggers an end-of-
file condition.

Several examples of INFILE statements are given below:

filename in1 ’student.dat’; /* specify filename IN1 */
infile in1; /* infile filepath */

infile ’student.dat’; /* path by quoted literal */

infile ’student.dat’ missover; /* using options */

See Chapter 7, “File Access,” for further information.

INPUT Statement

inputs data

INPUT<variables> <informats> <record-directives> <positionals>;

where the clauses and options are explained below.

You can use the INPUT statement to input records from the current input file, placing
the values into IML variables. The INFILE statement sets up the current input file.
See Chapter 7, “File Access,”, for details.

The INPUT statement contains a sequence of arguments that include the following:

variables specify the variable or variables you want to read from the cur-
rent position in the record. Each variable can be followed im-
mediately by an input format specification.

SAS OnlineDoc: Version 8

INPUT Statement � 569

informats specify an input format. These are of the formw:d or $w: for
standard numeric and character informats, respectively, where
w is the width of the field andd is the decimal parameter, if
any. You can also use a SAS format of the formNAMEw.d,
whereNAME is the name of the format. Also, you can use a
single $ or & for list input applications. If the width is unspec-
ified, the informat uses list-input rules to determine the length
by searching for a blank (or comma) delimiter. The special for-
mat $RECORD. is used for reading the rest of the record into
one variable. For more information on formats, refer toSAS
Language Reference: Dictionary.

Record holding is always implied for RECFM=N binary files,
as if the INPUT statement has a trailing @ sign. For more
information, see Chapter 7, “File Access.”

Examples of valid INPUT statements are shown below:

input x y;
input @1 name $ @20 sex $ @(20+2) age 3.;

eight=8;
input >9 <eight number2 ib8.;

Below is an example using binary input:

proc iml;
file ’out2.dat’ recfm=n ;
number=499; at=1;
do i = 1 to 5;

number=number+1;
put >at number ib8.; at=at+8;

end;
closefile ’out2.dat’;

infile ’out2.dat’ recfm=n;
size=8; /* 8 bytes */
do pos=1 to 33 by size;

input >pos number ib8.;
print number;

end;

record-directives are used to advance to a new record.Record-directivesare the
following:

holding @ sign is used at the end of an INPUT statement
to instruct IML to hold the current record
so that you can continue to read from the
record with later INPUT statements. Oth-
erwise, IML automatically goes to the next
record for the next INPUT statement.

/ advances to the next record.

> operand specifies that the next record to be read starts
at the indicated byte position in the file (for

SAS OnlineDoc: Version 8

570 � Chapter 17. Language Reference

RECFM= N files only). Theoperandis a lit-
eral number, a variable name, or an expres-
sion in parentheses.

< operand instructs IML to read the indicated num-
ber of bytes as the next record. The record
directive must be specified for binary files
(RECFM=N). Theoperandis a literal num-
ber, a variable name, or an expression in
parentheses.

positionals instruct PROC IML to go to a specific column on the record.
Thepositionalsare the following:

@ operand instructs IML to go to the indicated column,
whereoperandis a literal number, a variable
name, or an expression in parentheses. For
example, @30 means to go to column 30.
The operand can also be a character operand
when pattern searching is needed. For more
information, see Chapter 7, “File Access.”

+ operand specifies to skip the indicated number of
columns. Theoperandis a literal number,
a variable name, or an expression in paren-
theses.

INSERT Function

inserts one matrix inside another

INSERT(x, y, row<, column>)

The inputs to the INSERT function are as follows:

x is the target matrix. It can be either numeric or character.

y is the matrix to be inserted into the target. It can be either numeric
or character, depending on the type of the target matrix.

row is the row where the insertion is to be made.

column is the column where the insertion is to be made.

The INSERT function returns the result of inserting the matrixy inside the matrixx
at the place specified by therow andcolumnarguments. This is done by splittingx
either horizontally or vertically before the row or column specified and concatenating
y between the two pieces. Thus, ifx ism rows byn columns,row can range from 0
tom+ 1 andcolumncan range from 0 ton+ 1. However, it is not possible to insert
in both dimensions simultaneously, so eitherrow or columnmust be 0, but not both.
Thecolumnargument is optional and defaults to 0. Also, the matrices must conform
in the dimension in which they are joined.

SAS OnlineDoc: Version 8

INT Function � 571

For example, the statements

a={1 2, 3 4};
b={5 6, 7 8};
c=insert(a, b, 2, 0);
d=insert(a, b, 0, 3);

produce the result

C 4 rows 2 cols (numeric)

1 2
5 6
7 8
3 4

D 2 rows 4 cols (numeric)

1 2 5 6
3 4 7 8

C shows the result of insertion in the middle, whileD shows insertion on an end.

INT Function

truncates a value

INT(matrix)

wherematrix is a numeric matrix or literal.

The INT function truncates the decimal portion of the value of the argument. The
integer portion of the value of the argument remains. The INT function takes the
integer value of each element of the argument matrix.

An example using the INT function follows:

c=2.8;
b=int(c);

B 1 row 1 col (numeric)

2

In the next example, notice that a value of 11 is returned. This is because of the
maximal machine precision. If the difference is less than 1E�12, the INT function
rounds up.

x={12.95 10.9999999999999,
-30.5 1e-6};

SAS OnlineDoc: Version 8

572 � Chapter 17. Language Reference

b=int(x);

B 2 rows 2 cols (numeric)

12 11
-30 0

INV Function

computes the matrix inverse

INV(matrix)

wherematrix is a square nonsingular matrix.

The INV function produces a matrix that is the inverse ofmatrix, which must be
square and nonsingular.

ForG = INV(A) the inverse has the properties

GA = AG = identity :

To solve a system of linear equationsAX = B for X, you can use the statement

x=inv(a)*b;

However, the SOLVE function is more accurate and efficient for this task.

The INV function uses an LU decomposition followed by backsubstitution to solve
for the inverse, as described in Forsythe, Malcolm, and Moler (1967).

The INV function (as well as the DET and SOLVE functions) uses the following
criterion to decide whether the input matrix,A = [aij]i;j=1;:::;n, is singular:

sing= 100 �MACHEPS� max
1�i;j�n

jaij j

whereMACHEPSis the relative machine precision.

All matrix elements less than or equal tosingare now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal tosing, the
matrix is considered singular by the DET, inv, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating point error. This
occasionally yielded numerically unstable results. The new criterion is much more
conservative, and it generates far fewer erroneous results. In some cases, you may
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong,

SAS OnlineDoc: Version 8

INVUPDT Function � 573

� try the GINV function to compute the generalized inverse

� examine the size of the singular values returned by the SVD function. The SVD
function can be used to compute a generalized inverse with a user-specified
singularity criterion.

INVUPDT Function

updates a matrix inverse

INVUPDT(matrix, vector<, scalar>)

The inputs to the INVUPDT function are as follows:

matrix is ann� n positive definite matrix.

vector is ann� 1 or 1� n vector.

scalar is a numeric scalar.

The INVUPDT function updates a matrix inverse. For example, let

r=invupdt(a,x,w);

whereR is ann�w matrix;A is ann� n positive definite matrix;X is ann� 1 or
1� n vector; andw is an optional scalar (if not specified,w has default value 1).

The INVUPDT function computes the matrix expression

R = A� wAX(1 + wX0AX)�1X0A�1X0A

or, in matrix language,

r=a-w*a*x*inv(1+w*x‘*a*x)*x‘*a;

The INVUPDT function is used primarily to update a matrix inverse because the
function has the property

INVUPDT(B�1;X; w) = (B+ wXX0)�1 :

If Z is a design matrix andX is a new observation to be used in estimating the
parameters of a linear model, then the inverse crossproducts matrix that includes the
new observation can be updated from the old inverse by

c2=invupdt(c,x);

whereC = INV(Z0Z). Note that

c2=inv((z//x)‘*(z//x));

SAS OnlineDoc: Version 8

574 � Chapter 17. Language Reference

If w is 1, the function adds an observation to the inverse; ifw is �1, the function
removes an observation from the inverse. If weighting is used,w is the weight.

To perform the computation, the INVUPDT function uses about2n2 multiplications
and additions, wheren is the row dimension of the positive definite argument matrix.

IPF Call

performs an iterative proportional fit

CALL IPF(fit, status, dim, table, config<, initab><, mod>);

The inputs to the IPF subroutine are as follows:

fit is a returned matrix. The argumentfit specifies an array of the estimates
of the expected number in each cell under the model specified inconfig.
This matrix conforms totable.

status is a returned matrix. Thestatusargument specifies a row vector of
length 3. If you specify STATUS={error, obs-maxdev, no-iterate}, then
error is 0 if there is convergence to the desired accuracy and is 3 if there
is no convergence to the desired accuracy;obs-maxdevis the maximum
difference between estimates of the last two iterations; andno-iterate
is the number of iterations performed.

dim is an input matrix. Thedimargument is a vector specifying the number
of variables and the number of their possible levels in a contingency
table. Ifdim is 1� v, then there arev variables, and the value of theith
element is the number of levels of theith variable.

table is an input matrix. Thetableargument specifies an array of the number
of observations at each level of each variable. Variables are nested
across columns and then across rows.

config an input matrix. Theconfigargument gives an array specifying which
marginal totals to fit. Each column specifies a distinct marginal in the
model under consideration. Because the model is hierarchical, all sub-
sets of specified marginals are included in fitting.

initab is an input matrix. Theinitab argument is an array of initial values for
the iterative procedure. If you do not specify values, 1s are used. For
incomplete tables,initab is set to 1 if the cell is included in the design,
and 0 if it is not.

mod is an input matrix. Themodargument is a two-element vector specify-
ing the stopping criteria. Ifmod= {maxdev, maxit}, then the procedure
iterates until eithermaxit iterations are completed or the maximum dif-
ference between estimates of the last two iterations is less thanmaxdev.
Default values aremaxdev=0.25 andmaxit=15.

SAS OnlineDoc: Version 8

IPF Call � 575

The IPF subroutine performs an iterative proportional fit of the marginal totals of a
contingency table. The arguments used with the IPF function can be matrix names or
literals.

The matrixtable must conform in size to the contingency table as specified indim.
In particular, if table is n � m, the product of the entries indim must equalnm.
Furthermore, there must be some integerk such that the product of the firstk entries
in dim equalsm. If you specifyinitab, then it must be the same size astable.

For example, consider the no-three-factor-effect model for interpreting Bartlett’s data
as described in Bishop, Fienberg, and Holland (1975):

dim={2 2 2};
table={156 84 84 156,

107 133 31 209};
config={1 1 2,

2 3 3};
call ipf(fit,status,dim,table,config);

The result is

FIT
161.062 78.938 78.907 161.093
101.905 138.095 36.119 203.881

STATUS
0 .166966 4

Equivalent results are obtained by the statement

table={156 84,
84 156,

107 133,
31 209};

or the statement

table={156 84 84 156 107 133 31 209};

In the first specification, TABLE is interpreted as

variable 2: 1 2
_________ _________

variable 3 variable 1: 1 2 1 2

1 156 84 84 156
2 107 133 31 209

SAS OnlineDoc: Version 8

576 � Chapter 17. Language Reference

In the second specification, TABLE is interpreted as

variable 3 variable 2 variable 1: 1 2
__

1 1 156 84
2 84 156

2 1 107 133
2 31 209

And in the third specification, TABLE is interpreted as

variable 3: 1 2
________________________ _________________________

variable 2: 1 2 1 2
__________ __________ ___________ ___________

variable 1: 1 2 1 2 1 2 1 2

156 84 84 156 107 133 31 209 .

J Function

creates a matrix of identical values

J(nrow<, ncol<, value>>)

The inputs to the J function are as follows:

nrow is a numeric matrix or literal giving the number of rows.

ncol is a numeric matrix or literal giving the number of columns.

value is a numeric or character matrix or literal for filling the rows and
columns of the matrix.

The J function creates a matrix withnrow rows andncol columns with all elements
equal tovalue. If ncol is not specified, it defaults tonrow. If value is not specified,
it defaults to 1. The REPEAT and SHAPE functions can also perform this operation,
and they are more general.

Examples of the J function are as follows.

b=j(3);

B 3 rows 3 cols (numeric)

1 1 1
1 1 1
1 1 1

SAS OnlineDoc: Version 8

JROOT Function � 577

r=j(5,2,’xyz’);

R 5 rows 2 cols (character, size 3)

xyz xyz
xyz xyz
xyz xyz
xyz xyz
xyz xyz

JROOT Function

computes the first nonzero roots of a Bessel function of the first kind and the
derivative of the Bessel function at each root

JROOT(�, n)

The JROOT function returns ann � 2 matrix with the calculated roots in the first
column and the derivatives in the second column.

The inputs to the JROOT function are as follows:

� is a scalar denoting the order of the Bessel function, with� > �1.

n is a positive integer denoting the number of roots.

The JROOT function returns a matrix in which the first column contains the firstn
roots of the Bessel function; these roots are the solutions to the equation

J�(xi) = 0; i = 1; : : : ; n

The second column of this matrix contains the derivativesJ 0�(xi) of the Bessel func-
tion at each of the rootsxi. The expressionJ�(x) is a solution to the differential
equation

x2
d2J�
dx2

+ x
dJ�
dx

+ (x2 � �2)J� = 0

One of the expressions for such a function is given by the series

J�(x) =

�
1

2
z

�� 1X
k=0

��1
4z

2
�k

k!�(� + k + 1)

where�(�) is the gamma function. Refer to Abramowitz and Stegun (1973) for more
details concerning the Bessel and gamma functions. The algorithm is a Newton
method coupled with a reasonable initial guess. For large values ofn or �, the al-
gorithm could fail due to machine limitations. In this case, JROOT returns a matrix

SAS OnlineDoc: Version 8

578 � Chapter 17. Language Reference

with zero rows and zero columns. The values that cause the algorithm to fail are
machine dependent.

The following code provides an example:

proc iml;
x = jroot(1,4);
print x;

To obtain only the roots, you can use the following statement, which extracts the first
column of the returned matrix:

x = jroot(1,4)[,1];

KALCVF Call

CALL KALCVF(pred, vpred, filt, vfilt, data, lead, a, f , b, h,
var <, z0, vz0>);

The KALCVF call computes the one-step predictionzt+1jt and the filtered esti-
mateztjt, as well as their covariance matrices. The call uses forward recursions,
and you can also use it to obtaink-step estimates.

The inputs to the KALCVF subroutine are as follows:

data is aT �Ny matrix containing data(y1; � � � ;yT)0.
lead is the number of steps to forecast after the end of the data.

a is anNz�1 vector for a time-invariant input vector in the transition
equation, or a(T + lead)Nz � 1 vector containing input vectors in
the transition equation.

f is anNz � Nz matrix for a time-invariant transition matrix in the
transition equation, or a(T + lead)Nz � Nz matrix containing
transition matrices in the transition equation.

b is anNy � 1 vector for a time-invariant input vector in the mea-
surement equation, or a(T + lead)Ny � 1 vector containing input
vectors in the measurement equation.

h is anNy�Nz matrix for a time-invariant measurement matrix in the
measurement equation, or a(T + lead)Ny �Nz matrix containing
measurement matrices in the measurement equation.

var is an(Ny +Nz)� (Ny +Nz) matrix for a time-invariant variance
matrix for the error in the transition equation and the error in the
measurement equation, or a(T + lead)(Ny + Nz) � (Ny + Nz)
matrix containing variance matrices for the error in the transi-
tion equation and the error in the measurement equation, that is,
(�0t; �

0
t)
0.

SAS OnlineDoc: Version 8

KALCVF Call � 579

z0 is an optional1�Nz initial state vectorz01j0.

vz0 is an optionalNz �Nz covariance matrix of an initial state vector
P1j0.

The KALCVF call returns the following values:

pred is a (T + lead) � Nz matrix containing one-step predicted state
vectors(z1j0; � � � ; zT+1jT ; zT+2jT ; � � � ; zT+leadjT)

0.

vpred is a(T+lead)Nz�Nz matrix containing mean square errors of pre-
dicted state vectors(P1j0; � � � ;PT+1jT ;PT+2jT ; � � � ;PT+leadjT)

0.

filt is a T � Nz matrix containing filtered state vectors
(z1j1; � � � ; zT jT)0.

vfilt is a TNz � Nz matrix containing mean square errors of filtered
state vectors(P1j1; � � � ;PT jT)

0.

The KALCVF call computes the conditional expectation of the state vectorzt given
the observations, assuming that the mean and the variance of the initial state vector are
known. The filtered value is the conditional expectation of the state vectorzt given
the observations up to timet. For k-step forecasting wherek > 0, the conditional
expectation at timet+k is computed given observations up tot. For notation,Vt and
Rt are variances of�t and�t, respectively, andGt is a covariance of�t and�t. A�

stands for the generalized inverse ofA. The filtered value and its covariance matrix
are denotedztjt andPtjt, respectively. Fork > 0, zt+kjt andPt+kjt stand for the
k-step forecast ofzt+k and its mean square error. The Kalman filtering algorithm for
one-step prediction and filtering is given as follows:

�̂t = yt � bt �Htztjt�1

Dt = HtPtjt�1H
0
t +Rt

ztjt = ztjt�1 +Ptjt�1H
0
tD

�
t �̂t

Ptjt = Ptjt�1 �Ptjt�1H
0
tD

�
t HtPtjt�1

Kt = (FtPtjt�1H
0
t +Gt)D

�
t

zt+1jt = at + Ftztjt�1 +Kt�̂t

Pt+1jt = FtPtjt�1F
0
t +Vt �KtDtK

0
t

And for k-step forecasting fork > 1,

zt+kjt = at+k�1 + Ft+k�1zt+k�1jt

Pt+kjt = Ft+k�1Pt+k�1jtF
0
t+k�1 +Vt+k�1

When you use the alternative transition equation

zt = at + Ftzt�1 + �t

SAS OnlineDoc: Version 8

580 � Chapter 17. Language Reference

the forward recursion algorithm is written

�̂t = yt � bt �Htztjt�1

Dt = HtPtjt�1H
0
t +HtGt +G

0
tH

0
t +Rt

ztjt = ztjt�1 + (Ptjt�1H
0
t +Gt)D

�
t �̂t

Ptjt = Ptjt�1 � (Ptjt�1H
0
t +Gt)D

�
t (HtPtjt�1 +G

0
t)

Kt = (Ft+1Ptjt�1H
0
t +Gt)D

�
t

zt+1jt = at+1 + Ft+1ztjt�1 +Kt�̂t

Pt+1jt = Ft+1Ptjt�1F
0
t+1 +Vt+1 �KtDtK

0
t

And for k-step forecasting(k > 1),

zt+kjt = at+k + Ft+kzt+k�1jt

Pt+kjt = Ft+kPt+k�1jtF
0
t+k +Vt+k

You can use the KALCVF call when you specify the alternative transition equation
andGt = 0.

The initial state vector and its covariance matrix of the time invariant Kalman filters
are computed under the stationarity condition

z1j0 = (I� F)�a
P1j0 = (I� F
 F)�vec(V)

whereF andV are the time invariant transition matrix and the covariance matrix of
transition equation noise, and vec(V) is anN2

z � 1 column vector that is constructed
by the stackingNz columns of matrixV. Note that all eigenvalues of the matrixF
are inside the unit circle when the SSM is stationary. When the preceding formula
cannot be applied, the initial state vector estimatez1j0 is set toa1 and its covariance
matrixP1j0 is given by106I. Optionally, you can specify initial values.

The KALCVF call allows missing values in observations. If there is a missing obser-
vation, the filtered state vector for the missing observation is given by the one-step
forecast.

KALCVS Call

CALL KALCVS(sm, vsm, data, a, f , b, h, var, pred, vpred <,un, vun>);

The KALCVS call uses backward recursions to compute the smoothed estimate
ztjT and its covariance matrix,PtjT , whereT is the number of observations in
the complete data set.

The inputs to the KALCVS subroutine are as follows.

SAS OnlineDoc: Version 8

KALCVS Call � 581

data is aT �Ny matrix containing data(y1; � � � ;yT)0.
a is anNz � 1 vector for a time-invariant input vector in the transi-

tion equation, or aTNz � 1 vector containing input vectors in the
transition equation.

f is anNz � Nz matrix for a time-invariant transition matrix in the
transition equation, or aTNz �Nz matrix containingT transition
matrices.

b is anNy � 1 vector for a time-invariant input vector in the mea-
surement equation, or aTNy � 1 vector containing input vectors
in the measurement equation.

h is anNy � Nz matrix for a time-invariant measurement matrix in
the measurement equation, or aTNy � Nz matrix containingT
time variantHt matrices in the measurement equation.

var is an(Ny +Nz) � (Ny + Nz) covariance matrix for the errors in
the transition and the measurement equations, or aT (Ny +Nz)�
(Ny +Nz) matrix containing covariance matrices in the transition
equation and measurement equation noises, that is,(�0t; �

0
t)
0.

pred is aT�Nz matrix containing one-step forecasts(z1j0; � � � ; zT jT�1)0.
vpred is a TNz � Nz matrix containing mean square error matrices of

predicted state vectors(P1j0; � � � ;PT jT�1)
0.

un is an optional1 �Nz vector containinguT . The returned value is
u0.

vun is an optionalNz �Nz matrix containingUT . The returned value
isU0.

The KALCVS call returns the following values:

sm is a T � Nz matrix containing smoothed state vectors
(z1jT ; � � � ; zT jT)0.

vsm is aTNz �Nz matrix containing covariance matrices of smoothed
state vectors(P1jT ; � � � ;PT jT)

0.

When the Kalman filtering is performed in the KALCVF call, the KALCVS call
computes smoothed state vectors and their covariance matrices. The fixed-interval
smoothing state vector at timet is obtained by the conditional expectation given all
observations.

The smoothing algorithm uses one-step forecasts and their covariance matrices,
which are given in the KALCVF call. For notation,ztjT is the smoothed value of
the state vectorzt, and the mean square error matrix is denotedPtjT . For smoothing,

�̂t = yt � bt �Htztjt�1

Dt = HtPtjt�1H
0
t +Rt

Kt = (FtPtjt�1H
0
t +Gt)D

�
t

SAS OnlineDoc: Version 8

582 � Chapter 17. Language Reference

Lt = Ft �KtHt

ut�1 = H0
tD

�
t �̂t + L

0
tut

Ut�1 = H0
tD

�
t Ht + L

0
tUtLt

ztjT = ztjt�1 +Ptjt�1ut�1

PtjT = Ptjt�1 �Ptjt�1Ut�1Ptjt�1

wheret = T; T � 1; : : : ; 1. The initial values areuT = 0 andUT = 0.

When the SSM is specified using the alternative transition equation

zt = at + Ftzt�1 + �t

the fixed-interval smoothing is performed using the following backward recursions:

�̂t = yt � bt �Htztjt�1

Dt = HtPtjt�1H
0
t +Rt

Kt = Ft+1Ptjt�1H
0
tD

�
t

Lt = Ft+1 �KtHt

ut�1 = H0
tD

�
t �̂t + L

0
tut

Ut�1 = H0
tD

�
t Ht + L

0
tUtLt

ztjT = ztjt�1 +Ptjt�1ut�1

PtjT = Ptjt�1 �Ptjt�1Ut�1Ptjt�1

where it is assumed thatGt = 0.

You can use the KALCVS call regardless of the specification of the transition equa-
tion whenGt = 0. Harvey (1989) gives the following fixed-interval smoothing
formula, which produces the same smoothed value:

ztjT = ztjt +P
�
t (zt+1jT � zt+1jt)

PtjT = Ptjt +P
�
t (Pt+1jT �Pt+1jt)P

�0
t

where

P�
t = PtjtF

0
tP

�
t+1jt

under the shifted transition equation, but

P�
t = PtjtF

0
t+1P

�
t+1jt

under the alternative transition equation.

The KALCVS call is accompanied by the KALCVF call, as shown in the following
code. Note that you do not need to specify UN and VUN.

SAS OnlineDoc: Version 8

KALDFF Call � 583

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);

You can also compute the smoothed estimate and its covariance matrix on an
observation-by-observation basis. When the SSM is time invariant, the following
example performs smoothing. In this situation, you should initialize UN and VUN as
matrices of value 0.

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
n = nrow(y);
nz = ncol(f);
un = j(1,nz,0);
vun = j(nz,nz,0);
do i = 1 to n;

y_i = y[n-i+1,];
pred_i = pred[n-i+1,];
vpred_i = vpred[(n-i)*nz+1:(n-i+1)*nz,];
call kalcvs(sm_i,vsm_i,y_i,a,f,b,h,var,pred_i,vpred_i,un,vun);
sm = sm_i // sm;
vsm = vsm_i // vsm;

end;

KALDFF Call

CALL KALDFF(pred, vpred, initial, s2, data, lead, int, coef, var,
intd, coefd <, n0, at, mt, qt>);

The KALDFF call computes the one-step forecast of state vectors in an SSM
using the diffuse Kalman filter. The call estimates the conditional expectation of
zt, and it also estimates the initial random vector,�, and its covariance matrix.

The inputs to the KALDFF subroutine are as follows:

data is aT �Ny matrix containing data(y1; � � � ;yT)0.
lead is the number of steps to forecast after the end of the data set.

int is an(Ny+Nz)�N� matrix for a time-invariant fixed matrix, or a
(T+ lead)(Ny+Nz)�N� matrix containing fixed matrices for the
time-variant model in the transition equation and the measurement
equation, that is,(W0

t;X
0
t)
0.

coef is an(Ny +Nz)�Nz matrix for a time-invariant coefficient, or a
(T + lead)(Ny +Nz)�Nz matrix containing coefficients at each
time in the transition equation and the measurement equation, that
is, (F0t;H

0
t)
0.

var is an(Ny +Nz)� (Ny +Nz) matrix for a time-invariant variance
matrix for the error in the transition equation and the error in the
measurement equation, or a(T + lead)(Ny + Nz) � (Ny + Nz)

SAS OnlineDoc: Version 8

584 � Chapter 17. Language Reference

matrix containing covariance matrices for the error in the transi-
tion equation and the error in the measurement equation, that is,
(�0t; �

0
t)
0.

intd is an (Nz + N�) � 1 vector containing the intercept term in the
equation for the initial state vectorz0 and the mean effect�, that
is, (a0;b0)0.

coefd is an(Nz +N�)�N� matrix containing coefficients for the initial
state� in the equation for the initial state vectorz0 and the mean
effect�, that is,(A0;B0)0.

n0 is an optional scalar including an initial denominator. Ifn0 > 0,
the denominator for̂�2t is n0 plus the numbernt of elements of
(y1; � � � ;yt)0. If n0 � 0 or n0 is not specified, the denominator
for �̂2t is nt. With n0 � 0, the initial values,A1;M1, andQ1, are
assumed to be known and, hence,at,mt, andqt are used for input
containing the initial values. If the value ofn0 is negative orn0
is not specified, the initial values forat, mt, andqt are computed.
The value ofn0 is updated asmax(n0; 0) + nt after the KALDFF
call.

at is an optionalkNz � (N� + 1) matrix. If n0 � 0, at con-
tains (A0

1; � � � ;A0
k)
0. However, only the first matrixA1 is used

as input. When you specify the KALDFF call,at returns
(A0

T�k+lead+1; � � � ;A0
T+lead)

0. If n0 is negative or the matrix
A1 contains missing values,A1 is automatically computed.

mt is an optional kNz � Nz matrix. If n0 � 0, mt con-
tains (M1; � � � ;Mk)

0. However, only the first matrixM1

is used as input. Ifn0 is negative or the matrixM1 con-
tains missing values,mt is used for output, and it contains
(MT�k+lead+1; � � � ;MT+lead)

0. Note that the matrixM1 can
be used as an input matrix if either of the off-diagonal elements
is not missing. The missing elementM1(i; j) is replaced by the
nonmissing elementM1(j; i).

qt is an optionalk(N� + 1) � (N� + 1) matrix. If n0 � 0, qt con-
tains(Q1; � � � ;Qk)

0. However, only the first matrixQ1 is used as
input. If n0 is negative or the matrixQ1 contains missing values,
qt is used for output and contains(QT�k+lead+1; � � � ;QT+lead)

0.
The matrixQ1 can also be used as an input matrix if either of
the off-diagonal elements is not missing since the missing element
Q1(i; j) is replaced by the nonmissing elementQ1(j; i).

The KALCVF call returns the following values:

pred is a (T + lead) � Nz matrix containing estimated predicted state
vectors(ẑ1j0; � � � ; ẑT+1jT ; ẑT+2jT ; � � � ; ẑT+leadjT)

0.

vpred is a(T+lead)Nz�Nz matrix containing estimated mean square er-
rors of predicted state vectors(P1j0; � � � ;PT+1jT ;PT+2jT ; � � � ;PT+leadjT)

0.

SAS OnlineDoc: Version 8

KALDFF Call � 585

initial is anNd� (Nd+1) matrix containing an estimate and its variance
for initial state�, that is,(�̂T ; �̂�; T).

s2 is a scalar containing the estimated variance�̂2T .

The KALDFF call computes the one-step forecast of state vectors in an SSM using
the diffuse Kalman filter. The SSM for the diffuse Kalman filter is written

yt = Xt� +Htzt + �t

zt+1 = Wt� + Ftzt + �t

z0 = a+A�

� = b+B�

wherezt is anNz � 1 state vector,yt is anNy � 1 observed vector, and

�
�t
�t

�
� N

�
0; �2

�
Vt Gt

G0
t Rt

��
� � N(�; �2�)

It is assumed that the noise vector(�0t; �
0
t)
0 is independent and� is independent of

the vector(�0t; �
0
t)
0. The matrices,Wt, Ft, Xt, Ht, a, A, b, B, Vt, Gt, andRt,

are assumed to be known. The KALDFF call estimates the conditional expectation of
the state vectorzt given the observations. The KALDFF subroutine also produces the
estimates of the initial random vector� and its covariance matrix. Fork-step forecast-
ing wherek > 0, the estimated conditional expectation at timet+k is computed with
observations given up to timet. The estimatedk-step forecast and its estimated MSE
are denotedzt+kjt andPt+kjt (for k > 0). At+k(�) andEt(�) are last-column-deleted
submatrices ofAt+k andEt, respectively. The algorithm for one-step prediction is
given as follows:

Et = (XtB; yt �Xtb)�HtAt

Dt = HtMtH
0
t +Rt

Qt+1 = Qt +E
0
tD

�
t Et

=

�
St nt
n0t qt

�
�̂2t = (qt � n0tS�t nt)=nt
�̂t = S�t nt

�̂�;t = �̂2t S
�
t

Kt = (FtMtH
0
t +Gt)D

�
t

SAS OnlineDoc: Version 8

586 � Chapter 17. Language Reference

At+1 = Wt(�B;b) +FtAt +KtEt

Mt+1 = (Ft �KtHt)MtF
0
t +Vt �KtG

0
t

zt+1jt = At+1(��̂0t; 1)0

Pt+1jt = �̂2tMt+1 +At+1(�)�̂�;tA
0
t+1(�)

wherent is the number of elements of(y1; � � � ;yt)0 plusmax(n0; 0). Unless initial
values are given andn0 � 0, initial values are set as follows:

A1 = W1(�B;b) + F1(�A;a)
M1 = V1

Q1 = 0

Fork-step forecasting wherek > 1,

At+k = Wt+k�1(�B;b) + Ft+k�1At+k�1

Mt+k = Ft+k�1Mt+k�1F
0
t+k�1 +Vt+k�1

Dt+k = Ht+kMt+kH
0
t+k +Rt+k

zt+kjt = At+k(��̂0t; 1)0

Pt+kjt = �̂2tMt+k +At+k(�)�̂�;tA
0
t+k(�)

Note that if there is a missing observation, the KALDFF call computes the one-step
forecast for the observation following the missing observation as the two-step forecast
from the previous observation.

KALDFS Call

CALL KALDFS(sm, vsm, data, int, coef, var, bvec, bmat, initial, at,
mt, s2 <, un, vun>);

KALDFS computes the smoothed state vector and its mean square error ma-
trix from the one-step forecast and mean square error matrix computed by
KALDFF.

The inputs to the KALDFS subroutine are as follows:

data is aT �Ny matrix containing data(y1; � � � ;yT)0.

SAS OnlineDoc: Version 8

KALDFS Call � 587

int is an(Ny + Nz) � N� vector for a time-invariant intercept, or a
(T + lead)(Ny+Nz)�N� vector containing fixed matrices for the
time-variant model in the transition equation and the measurement
equation, that is,(W0

t;X
0
t)
0.

coef is an(Ny +Nz)�Nz matrix for a time-invariant coefficient, or a
(T + lead)(Ny +Nz)�Nz matrix containing coefficients at each
time in the transition equation and the measurement equation, that
is, (F0t;H

0
t)
0.

var is an(Ny +Nz)� (Ny +Nz) matrix for a time-invariant variance
matrix for transition equation noise and the measurement equation
noise, or a(T + lead)(Ny +Nz)� (Ny +Nz) matrix containing
covariance matrices for the transition equation and measurement
equation errors, that is,(�0t; �

0
t)
0.

bvec is anN��1 constant vector for the intercept for the mean effect�.

bmat is anN� �N� matrix for the coefficient for the mean effect�.

initial is anN� � (N� + 1) matrix containing an initial random vector
estimate and its covariance matrix, that is,(�̂T ; �̂�;T).

at is aTNz � (N� + 1) matrix containing(A0
1; � � � ;A0

T)
0.

mt is a(TNz)�Nz matrix containing(M1; � � � ;MT)
0.

s2 is the estimated variance in the end of the data set,�̂2T .

un is an optionalNz � (N� + 1) matrix containinguT . The returned
value isu0.

vun is an optionalNz �Nz matrix containingUT . The returned value
isU0.

The KALDFS call returns the following values:

sm is a T � Nz matrix containing smoothed state vectors
(z1jT ; � � � ; zT jT)0.

vsm is a TNz � Nz matrix containing mean square error matrices of
smoothed state vectors(P1jT ; � � � ;PT jT)

0.

Given the one-step forecast and mean square error matrix in the KALDFF call, the
KALDFS call computes a smoothed state vector and its mean square error matrix.
Then the KALDFS subroutine produces an estimate of the smoothed state vector at
timet, that is, the conditional expectation of the state vectorzt given all observations.
Using the notations and results from the KALDFF section, the backward recursion
algorithm for smoothing is denoted fort = T; T � 1; : : : ; 1;

Et = (XtB; yt �Xtb)�HtAt

Dt = HtMtH
0
t +Rt

Lt = Ft � (FtMtH
0
t +Gt)D

�
t Ht

SAS OnlineDoc: Version 8

588 � Chapter 17. Language Reference

ut�1 = H0
tD

�
t Et + L

0
tut

Ut�1 = H0
tD

�
t Ht + L

0
tUtLt

ztjT = (At +Mtut�1)(��̂0T ; 1)0

Ct = At +Mtut�1

PtjT = �̂2T (Mt �MtRt�1Mt) +Ct(�)�̂�;TC
0
t(�)

where the initial values areuT = 0 andUT = 0, andCt(�) is the last-column-deleted
submatrix ofCt. Refer to De Jong (1991b) for details on smoothing in the diffuse
Kalman filter.

The KALDFS call is accompanied by the KALDFF call as shown in the following
code:

ny = ncol(y);
nz = ncol(coef);
nb = ncol(int);
nd = ncol(coefd);
at = j(nz,nd+1,.);
mt = j(nz,nz,.);
qt = j(nd+1,nd+1,.);
n0 = -1;
call kaldff(pred,vpred,initial,s2,y,0,int,coef,var,intd,coefd,

n0,at,mt,qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
call kaldfs(sm,vsm,x,int,coef,var,bvec,bmat,initial,at,mt,s2);

You can also compute the smoothed estimate and its covariance matrix observation by
observation. When the SSM is time invariant, the following code performs smooth-
ing. You should initialize UN and VUN as matrices of value0.

n = nrow(y);
ny = ncol(y);
nz = ncol(coef);
nb = ncol(int);
nd = ncol(coefd);
at = j(nz,nd+1,.);
mt = j(nz,nz,.);
qt = j(nd+1,nd+1,.);
n0 = -1;
call kaldff(pred,vpred,initial,s2,y,0,int,coef,var,intd,coefd,

n0,at,mt,qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
un = j(nz,nd+1,0);
vun = j(nz,nz,0);
do i = 1 to n;

call kaldfs(sm_i,vsm_i,y[n-i+1],int,coef,var,bvec,bmat,
initial,at,mt,s2,un,vun);

sm = sm_i // sm;

SAS OnlineDoc: Version 8

LAV Call � 589

vsm = vsm_i // vsm;
end;

LAV Call

performs linear least absolute value regression by solving theL1 norm mini-
mization problem

CALL LAV(rc, xr, a, b <, <x0><, opt>>);

The LAV subroutine returns the following values:

rc is a scalar return code indicating the reason for optimization termina-
tion.

rc Termination
0 Successful
1 Successful, but approximate covariance matrix and standard

errors cannot be computed
�1 or�3 Unsuccessful: error in the input arguments
�2 Unsuccessful: matrixA is rank deficient (rank(A) < n)
�4 Unsuccessful: maximum iteration limit exceeded
�5 Unsuccessful: no solution found for ill-conditioned prob-

lem

xr specifies a vector or matrix withn columns. If the optimization process
is not successfully completed,xr is a row vector withnmissing values.
If termination is successful and theopt[3] option is not set,xr is the
vector with the optimal estimate,x�. If termination is successful and
theopt[3] option is specified,xr is an(n+2)�nmatrix that contains the
optimal estimate,x�, in the first row, the asymptotic standard errors in
the second row, and then�n covariance matrix of parameter estimates
in the remaining rows.

The inputs to the LAV subroutine are as follows:

a specifies anm � n matrix A with m � n and full column rank,
rank(A) = n. If you want to include an intercept in the model, you
must include a column of ones in the matrixA.

b specifies them� 1 vectorb.

x0 specifies an optionaln� 1 vector that specifies the starting point of the
optimization.

opt is an optional vector used to specify options.

SAS OnlineDoc: Version 8

590 � Chapter 17. Language Reference

opt[1] specifies the maximum numbermaxiof outer iterations (this cor-
responds to the number of changes of the Huber parameter). The
default ismaxi = min(100; 10n). (The number of inner iterations is
restricted by an internal threshold. If the number of inner iterations ex-
ceeds this threshold, a new outer iteration is started with an increased
value of.)

opt[2] specifies the amount of printed output. Higher values request
additional output and include the output of lower values.

opt[2] Termination
0 no output is printed
1 error and warning messages are printed
2 the iteration history is printed (this is the default)
3 then least-squares (L2 norm) estimates are printed if no start-

ing point is specified; theL1 norm estimates are printed;
if opt[3] is set, the estimates are printed together with the
asymptotic standard errors

4 then � n approximate covariance matrix of parameter esti-
mates is printed ifopt[3] is set

5 the residual and predicted values for allm rows (equations)
of A are printed

opt[3] specifies which estimate of the variance of the median of
nonzero residuals is to be used as a factor for the approximate co-
variance matrix of parameter estimates and for the approximate stan-
dard errors (ASE). Ifopt[3] = 0, the McKean-Schrader (1987) esti-
mate is used, and ifopt[3] > 0, the Cox-Hinkley (1974) estimate, with
v =opt[3], is used. The default isopt[3] = �1 or opt[3] = :, which
means that the covariance matrix is not computed.

opt[4] specifies whether a computationally expensive test for necessary
and sufficient optimality of the solutionx is executed. The default is
opt[4] = 0 or opt[4] = :, which means that the convergence test is not
performed.

Missing values are not permitted in thea or b argument. Thex0 argument is ignored
if it contains any missing values. Missing values in theoptargument cause the default
value to be used.

The Least Absolute Values (LAV) subroutine is designed for solving the uncon-
strained linearL1 norm minimization problem,

min
x
L1(x) where L1(x) = kAx� bk1 =

mX
i=1

������
nX

j=1

aijxj � bi

������
for m equations withn (unknown) parametersx = (x1; : : : ; xn). This is equivalent

SAS OnlineDoc: Version 8

LAV Call � 591

to estimating the unknown parameter vector,x, by least absolute value regression in
the model

b = Ax+ �

whereb is the vector ofn observations,A is the design matrix, and� is a random
error term.

An algorithm by Madsen and Nielsen (1993) is used, which can be faster for large
values ofm andn than the Barrodale and Roberts (1974) algorithm. The current
version of the algorithm assumes thatA has full column rank. Also, constraints
cannot be imposed on the parameters in this version.

TheL1 norm minimization problem is more difficult to solve than the least-squares
(L2 norm) minimization problem because the objective function of theL1 norm prob-
lem is not continuously differentiable (the first derivative has jumps). A function that
is continuous but not continuously differentiable is callednonsmooth. Using PROC
NLP and the IML nonlinear optimization subroutines, you can obtain the estimates
in linear and nonlinearL1 norm estimation (even subject to linear or nonlinear con-
straints) as long as the number of parameters,n, is small. Using the nonlinear op-
timization subroutines, there are two ways to solve the nonlinearLp-norm, p � 1,
problem:

� For small values ofn, you can implement the Nelder-Mead simplex algorithm
with the NLPNMS subroutine to solve the minimization problem in its original
specification. The Nelder-Mead simplex algorithm does not assume a smooth
objective function, does not take advantage of any derivatives, and therefore
does not require continuous differentiability of the objective function. See the
“NLPNMS Call” section on page 648 for details.

� Gonin and Money (1989) describe how an originalLp norm estimation prob-
lem can be modified to an equivalent optimization problem with nonlinear con-
straints which has a simple differentiable objective function. You can invoke
the NLPQN subroutine, which implements a quasi-Newton algorithm, to solve
the nonlinearly constrainedLp norm optimization problem. See the section
“NLPQN Call” on page 658 for details on the NLPQN subroutine.

Both approaches are successful only for a small number of parameters and good
initial estimates. If you cannot supply good initial estimates, the optimal results of
the corresponding nonlinear least-squares (L2 norm) estimation may provide fairly
good initial estimates.

Gonin and Money (1989, pp. 44�45) show that the nonlinearL1 norm estimation
problem

min
x

mX
i=1

jfi(x)j

can be reformulated as a linear optimization problem with nonlinear constraints in
the following ways.

SAS OnlineDoc: Version 8

592 � Chapter 17. Language Reference

� min
x

mX
i=1

ui subject to
fi(x)� ui � 0
fi(x) + ui � 0
ui � 0

9=; i = 1; : : : ;m

is a linear optimization problem with2m nonlinear inequality constraints in
m+ n variablesui andxj .

� min
x

mX
i=1

(yi + zi) subject to
fi(x) + yi � zi = 0
yi � 0
zi � 0

9=; i = 1; : : : ;m

is a linear optimization problem with2m nonlinear equality constraints in2m+
n variablesyi, zi, andxj .

For linear functionsfi(x) =
Pn

j=1(aijxj � bi), i = 1; : : : ;m, you obtain linearly
constrained linear optimization problems, for which the number of variables and con-
straints is on the order of the number of observations,m. The advantage that the
algorithm by Madsen and Nielsen (1993) has over the Barrodale and Roberts (1974)
algorithm is that its computational cost increases only linearly withm, and it can be
faster for large values ofm.

In addition to computing an optimal solutionx� that minimizesL1(x), you can also
compute approximate standard errors and the approximate covariance matrix ofx�.
The standard errors may be used to compute confidence limits.

The following example is the same one used for illustrating the LAV procedure by
Lee and Gentle (1986).A andb are as follows:

A =

26666664

1 0
1 1
1 �1
1 �1
1 2
1 2

37777775 b =

26666664

1
2
1

�1
2
4

37777775
The following code specifies the matrix A, the vector B, and the options vector OPT.
The options vector specifies that all output is printed (opt[2] = 5), that the asymptotic
standard errors and covariance matrix are computed based on the McKean-Schrader
(1987) estimate� of the variance of the median (opt[3] = 0), and that the convergence
test should be performed (opt[4] = 1).

proc iml;
a = { 0, 1, -1, -1, 2, 2 };
m = nrow(a);
a = j(m,1,1.) || a;
b = { 1, 2, 1, -1, 2, 4 };

opt= { . 5 0 1 };
call lav(rc,xr,a,b,,opt);

The first part of the printed output refers to the least-squares solution, which is used
as the starting point. The estimates of the largest and smallest nonzero eigenvalues of

SAS OnlineDoc: Version 8

LCP Call � 593

A0A give only an idea of the magnitude of these values, and they can be very crude
approximations.

The second part of the printed output shows the iteration history.

The third part of the printed output shows theL1 norm solution (first row) together
with asymptotic standard errors (second row) and the asymptotic covariance matrix
of parameter estimates (the ASEs are the square roots of the diagonal elements of this
covariance matrix).

The last part of the printed output shows the predicted values and residuals, as in Lee
and Gentle (1986).

LCP Call

solves the linear complementarity problem

CALL LCP(rc, w, z, m, q <, epsilon>);

The inputs to the LCP subroutine are as follows:

m is anm�m matrix.

q is anm� 1 matrix.

epsilon is a scalar defining virtual zero. The default value ofepsilon is
1.0E�8.

rc returns one of the following scalar return codes:

0 solution found

1 no solution possible

5 solution is numerically unstable

6 subroutine could not obtain enough memory.

w andz return the solution in anm-element column vector.

The LCP subroutine solves the linear complementarity problem:

w = Mz+ q

w0z = 0

w; z � 0

Consider the following example:

q={1, 1};
m={1 0,

0 1};
call lcp(rc,w,z,m,q);

SAS OnlineDoc: Version 8

594 � Chapter 17. Language Reference

The result is

RC 1 row 1 col (numeric)

0

W 2 rows 1 col (numeric)

1
1

Z 2 rows 1 col (numeric)

0
0

The next example shows the relationship between quadratic programming and the lin-
ear complementarity problem. Consider the linearly constrained quadratic program:

min c0x +
1

2
x0Hx

st.Gx � b (QP)

x � 0

If H is positive semidefinite, then a solution to the Kuhn-Tucker conditions solves
QP. The Kuhn-Tucker conditions for QP are

c+Hx = �+G0�

�0(Gx� b) = 0

�0x = 0

Gx � b

x; �; � � 0

In the linear complementarity problem, let

M =

�
H �G0

G 0

�
w0 = (�0s0)

z0 = (x0�0)

q0 = (c0 � b)

Then the Kuhn-Tucker conditions are expressed as findingw andz that satisfy

w = Mz+ q

w0z = 0

w; z � 0

SAS OnlineDoc: Version 8

LENGTH Function � 595

From the solutionw andz to this linear complementarity problem, the solution to QP
is obtained; namely,x is the primal structural variable,s = Gx � b the surpluses,
and� and� are the dual variables. Consider a quadratic program with the following
data:

C0 = (1245) B0 = (11)

H =

2664
100 10 1 0
10 100 10 1
1 10 100 10
0 1 10 100

3775
G =

�
1 2 3 4
10 20 30 40

�

This problem is solved using the LCP subroutine in PROC IML as follows:

/*---- Data for the Quadratic Program -----*/
c={1,2,3,4};
h={100 10 1 0, 10 100 10 1, 1 10 100 10, 0 1 10 100};
g={1 2 3 4, 10 20 30 40};
b={1, 1};

/*----- Express the Kuhn-Tucker Conditions as an LCP ----*/
m=h||-g^{\prime} ;
m=m//(g||j(nrow(g),nrow(g),0));
q=c//-b ;

/*----- Solve for a Kuhn-Tucker Point --------*/
call lcp(rc,w,z,m,q);

/*------ Extract the Solution to the Quadratic Program ----*/
x=z[1:nrow(h)];
print rc x;

The printed solution is

RC 1 row 1 col (numeric)

0

X 4 rows 1 col (numeric)

0.0307522
0.0619692
0.0929721
0.1415983

SAS OnlineDoc: Version 8

596 � Chapter 17. Language Reference

LENGTH Function

finds the lengths of character matrix elements

LENGTH(matrix)

wherematrix is a character matrix or quoted literal.

The LENGTH function takes a character matrix as an argument and produces a nu-
meric matrix as a result. The result matrix has the same dimensions as the argument
and contains the lengths of the corresponding string elements inmatrix. The length
of a string is equal to the position of the rightmost nonblank character in the string.
If a string is entirely blank, its length value is set to 1. An example of the LENGTH
function is shown below:

c={’Hello’ ’My name is Jenny’};
b=length(c);

B 1 row 2 cols (numeric)

5 16

See also the description of the NLENG function.

LINK and RETURN Statements

jump to another statement

LINK label;
statements

label:statements

RETURN;

The LINK statement, like the GOTO statement, directs IML to jump to the state-
ment with the specified label. Unlike the GOTO statement, however, IML remem-
bers where the LINK statement was issued and returns to that point when a RE-
TURN statement is executed. This statement can only be used inside modules and
DO groups.

The LINK statement provides a way of calling sections of code as if they were sub-
routines. The LINK statement calls the routine. The routine begins with the label and
ends with a RETURN statement. LINK statements can be nested within other LINK
statements to any level. A RETURN statement without a LINK statement is executed
the same as the STOP statement.

SAS OnlineDoc: Version 8

LIST Statement � 597

Any time you use a LINK statement, you may consider using a RUN statement and a
module defined using the START and FINISH statements instead.

An example using the LINK statement is shown below:

start a;
x=1;
y=2;
link sum1;
print z;
stop;
sum1:

z=x+y;
return;

finish a;
run a;

Z 1 row 1 col (numeric)

3

LIST Statement

displays observations of a data set

LIST <range> <VAR operand> <WHERE(expression)>;

The inputs to the LIST statement are as follows:

range specifies a range of observations

operand specifies a set of variables

expression is an expression evaluated to be true or false.

The LIST statement prints selected observations of a data set. If all data values for
variables in the VAR clause fit on a single line, values are displayed in columns
headed by the variable names. Each record occupies a separate line. If the data values
do not fit on a single line, values from each record are grouped into paragraphs. Each
element in the paragraph has the formname=value.

You can specify arangeof observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specify arange:

ALL all observations

CURRENT the current observation (this is the default for the LIST state-
ment)

NEXT <number> the next observation or the nextnumberof observations

AFTER all observations after the current one

SAS OnlineDoc: Version 8

598 � Chapter 17. Language Reference

POINToperand observations specified by number, whereoperandcan be one
of the following:

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. Theoperandcan be
specified as one of the following:

� a literal containing variable names

� the name of a matrix containing variable names

� an expression in parentheses yielding variable names

� one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

Below are examples showing each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within therangespecifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than

SAS OnlineDoc: Version 8

LIST Statement � 599

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

= : begins with a given string

= * sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

Below are several examples on using the LIST statement:

list all; /* lists whole data set */
list; /* lists current observation */
list var{name addr}; /* lists NAME and ADDR in current obs */
list all where(age>30); /* lists all obs where condition holds */
list next; /* lists next observation */
list point 24; /* lists observation 24 */
list point (10:15); /* lists observations 10 through 15 */

SAS OnlineDoc: Version 8

600 � Chapter 17. Language Reference

LMS and LTS Calls

performs robust regression

CALL LMS(sc, coef, wgt, opt, y <, < x ><, sorb>>);

robust (resistant) regression method, defined by minimizing thehth ordered squared
residual.

CALL LTS(sc, coef, wgt, opt, y <, < x ><, sorb>>);

robust (resistant) regression method, defined by minimizing the sum of theh smallest
squared residuals.

The Least Median of Squares (LMS) and Least Trimmed Squares (LTS) subroutines
perform robust regression (sometimes calledresistantregression). They are able to
detect outliers and perform a least-squares regression on the remaining observations.

The value ofhmay be specified, but in most applications the default value works just
fine and the results seem to be quite stable toward different choices ofh.

The inputs to the LMS and LTS subroutines are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values). The options vector can be a null vector.

opt[1] specifies whether an intercept is used in the model (opt[1]=0) or not
(opt[1] 6= 0). If opt[1]=0, then a column of 1s is added as the last
column to the input matrixX; that is, you do not need to add this
column of 1s yourself. The default isopt[1]=0.

opt[2] specifies the amount of printed output. Higher values request addi-
tional output and include the output of lower values.

opt[2]=0 prints no output except error messages.
opt[2]=1 prints all output except (1) arrays ofO(N), such as

weights, residuals, and diagnostics; (2) the history of the
optimization process; and (3) subsets that result in singular
linear systems.

opt[2]=2 additionally prints arrays ofO(N), such as weights, resid-
uals, and diagnostics; also prints the case numbers of the
observations in the best subset and some basic history of
the optimization process.

opt[2]=3 additionally prints subsets that result in singular linear
systems.

The default isopt[2]=0.

SAS OnlineDoc: Version 8

LMS and LTS Calls � 601

opt[3] specifies whether only LMS or LTS is computed or whether, addi-
tionally, least-squares (LS) and weighted least-squares (WLS) re-
gression are computed:

opt[3]=0 computes only LMS or LTS.
opt[3]=1 computes, in addition to LMS or LTS, weighted least-

squares regression on the observations withsmallLMS or
LTS residuals (wheresmall is defined by opt[8]).

opt[3]=2 computes, in addition to LMS or LTS, unweighted least-
squares regression.

opt[3]=3 adds both unweighted and weighted least-squares regres-
sion to LMS and LTS regression.

The default isopt[3]=0.

opt[4] specifies the quantileh to be minimized. This is used in the objective
function. The default isopt[5]= h = [N+n+1

2], which corresponds
to the highest possible breakdown value. This is also the default of
the PROGRESS program. The value ofh should be in the range
N
2 + 1 � h � 3N

4 + n+1
4

opt[5] specifies the numberNRep of generated subsets. Each subset con-
sists ofn observations(k1; : : : ; kn), where1 � ki � N . The total
number of subsets consisting ofn observations out ofN observa-
tions is

Ntot =

�
N

n

�
=

Qn
j=1(N � j + 1)Qn

j=1 j

wheren is the number of parameters including the intercept.

Due to computer time restrictions, not all subset combinations ofn
observations out ofN can be inspected for larger values ofN and
n. Specifying a value ofNRep < Ntot enables you to save computer
time at the expense of computing a suboptimal solution.

If opt[5] is zero or missing, the default number of subsets is taken
from the following table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0
Nupper 1000000 1414 182 71 43 32 27 24 23 22
NRep 500 1000 1500 2000 2500 3000 3000 3000 3000 3000

n 11 12 13 14 15
Nlower 0 0 0 0 0
Nupper 22 22 22 23 23
NRep 3000 3000 3000 3000 3000

If the number of cases (observations)N is smaller thanNlower, then
all possible subsets are used; otherwise,NRep subsets are drawn

SAS OnlineDoc: Version 8

602 � Chapter 17. Language Reference

randomly. This means that an exhaustive search is performed for
opt[6]=�1. If N is larger thanNupper, a note is printed in the log
file indicating how many subsets exist.

opt[7] specifies that the latest argumentsorb contains a given parameter
vectorb rather than a given subset for which the objective function
should be evaluated.

opt[8] is relevant only for LS and WLS regression (opt[3] > 0). It specifies
whether the covariance matrix of parameter estimates and approxi-
mate standard errors (ASEs) are computed and printed.

opt[8]=0 does not compute covariance matrix and ASEs.
opt[8]=1 computes the covariance matrix and ASEs but prints only

the ASEs.
opt[8]=3 computes and prints both the covariance matrix and the

ASEs.

The default isopt[8]=0.

y refers to anN response vectory.

x refers to anN � n matrixX of regressors. If opt[1] is zero or missing, an
interceptxn+1 � 1 is added by default as the last column ofX. If the matrix
X is not specified,y is analyzed as a univariate data set.

sorb refers to ann vector containing either of the following:

� n observation numbers of a subset for which the objective function
should be evaluated; this subset can be the start for a pairwise exchange
algorithm if opt[4] is specified.

� n given parametersb = (b1; : : : ; bn) (including the intercept, if neces-
sary) for which the objective function should be evaluated.

Missing values are not permitted inx or y. Missing values inopt cause the default
value to be used.

The LMS and LTS subroutines return the following values:

sc is a column vector containing the following scalar information, where rows
1–9 correspond to LMS or LTS regression and rows 11–14 correspond to
either LS or WLS:

sc[1] the quantileh used in the objective function

sc[2] number of subsets generated

sc[3] number of subsets with singular linear systems

sc[4] number of nonzero weightswi

sc[5] lowest value of the objective functionFLMS or FLTS attained

sc[6] preliminary LMS or LTS scale estimateSP
sc[7] final LMS or LTS scale estimateSF
sc[8] robustR2 (coefficient of determination)

SAS OnlineDoc: Version 8

LMS and LTS Calls � 603

sc[9] asymptotic consistency factor

If opt[3] > 0, then the following can also be set:

sc[11] LS or WLS objective function (sum of squared residuals)

sc[12] LS or WLS scale estimate

sc[13] R2 value for LS or WLS

sc[14] F value for LS or WLS

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, these rows correspond to LS estimates.

coef is a matrix withn columns containing the following results in its rows:

coef[1,] LMS or LTS parameter estimates

coef[2,] indices of observations in the best subset

If opt[3] > 0, then the following can also be set:

coef[3] LS or WLS parameter estimates

coef[4] approximate standard errors of LS or WLS estimates

coef[5] t-values

coef[6] p-values

coef[7] lower boundary of Wald confidence intervals

coef[8] upper boundary of Wald confidence intervals

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, to LS estimates.

wgt is a matrix withN columns containing the following results in its rows:

wgt[1] weights (=1 for small, =0 for large residuals)

wgt[2] residualsri = yi � xib
wgt[3] resistant diagnosticui (note that the resistant diagnostic cannot be

computed for a perfect fit when the objective function is zero or
nearly zero)

SAS OnlineDoc: Version 8

604 � Chapter 17. Language Reference

Example
Consider results for Brownlee’s (1965) stackloss data. The three explanatory vari-
ables correspond to measurements for a plant oxidizing ammonia to nitric acid:

� x1 air flow to the plant

� x2 cooling water inlet temperature

� x3 acid concentration

on 21 consecutive days. The response variableyi gives the permillage of ammonia
lost (stackloss). The data are also given by Rousseeuw & Leroy (1987, p.76) and
Osborne (1985, p.267):

print "Stackloss Data";
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

Rousseeuw & Leroy (1987, p.76) cite a large number of papers where this data set
was analyzed before and state that most researchers “concluded that observations 1,
3, 4, and 21 were outliers,” and some people also reported observation 2 as outlier.

ForN = 21 andn = 4 (three explanatory variables including intercept), you obtain
a total of 5985 different subsets of 4 observations out of 21. If you decide not to
specifyoptn[5] , your LMS and LTS algorithms drawNrep = 2000 random sample
subsets. Since there is a large number of subsets with singular linear systems, which
you do not want to print, you choseoptn[2]=2; for reduced printed output.

a = aa[,2:4]; b = aa[,5];
optn = j(8,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

SAS OnlineDoc: Version 8

LMS and LTS Calls � 605

CALL LMS(sc,coef,wgt,optn,b,a);

LMS: The 13th ordered squared residual will be minimized.

Median and Mean

Median Mean

VAR1 58 60.428571429
VAR2 20 21.095238095
VAR3 87 86.285714286
Intercep 1 1
Response 15 17.523809524

Dispersion and Standard Deviation

Dispersion StdDev

VAR1 5.930408874 9.1682682584
VAR2 2.965204437 3.160771455
VAR3 4.4478066555 5.3585712381
Intercep 0 0
Response 5.930408874 10.171622524

The following are the results of LS regression:

Unweighted Least-Squares Estimation

LS Parameter Estimates

Approx Pr >
Variable Estimate Std Err t Value |t|

VAR1 0.715640 0.134858 5.31 <.0001
VAR2 1.295286 0.368024 3.52 0.0026
VAR3 -0.152123 0.156294 -0.97 0.3440
Intercep -39.919674 11.895997 -3.36 0.0038

Variable Lower WCI Upper WCI

VAR1 0.451323 0.979957
VAR2 0.573972 2.016600
VAR3 -0.458453 0.154208
Intercep -63.2354 -16.603949

SAS OnlineDoc: Version 8

606 � Chapter 17. Language Reference

Sum of Squares = 178.8299616
Degrees of Freedom = 17

LS Scale Estimate = 3.2433639182

Cov Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep

VAR1 0.018187 -0.036511 0.007144 0.287587
VAR2 -0.036511 0.135442 0.000010 -0.651794
VAR3 -0.007144 0.000011 0.024428 -1.676321
Intercep 0.287587 -0.651794 1.676321 141.514741

R-squared = 0.9135769045
F(3,17) Statistic = 59.9022259

Probability = 3.0163272E-9

These are the LMS results for the 2000 random subsets:

Random Subsampling for LMS

Best
Subset Singular Criterion Percent

500 23 0.163262 25
1000 55 0.140519 50
1500 79 0.140519 75
2000 103 0.126467 100

Minimum Criterion= 0.1264668282
Least Median of Squares (LMS) Method

Minimizing 13th Ordered Squared Residual.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 2103 Subsets
Among 2103 subsets 103 are singular.

Observations of Best Subset

15 11 19 10

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep

0.75 0.5 0 -39.25

SAS OnlineDoc: Version 8

LMS and LTS Calls � 607

LMS Objective Function = 0.75
Preliminary LMS Scale = 1.0478510755

Robust R Squared = 0.96484375
Final LMS Scale = 1.2076147288

For LMS observations, 1, 3, 4, and 21 have scaled residuals larger than 2.5 (table not
shown) and are considered outliers. These are the corresponding WLS results:

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Pr >
Variable Estimate Std Err t Value |t|

VAR1 0.797686 0.067439 11.83 <.0001
VAR2 0.577340 0.165969 3.48 0.0041
VAR3 -0.067060 0.061603 -1.09 0.2961
Intercep -37.652459 4.732051 -7.96 <.0001

Lower WCI Upper WCI

0.665507 0.929864
0.252047 0.902634

-0.187800 0.053680
-46.927108 -28.37781

Weighted Sum of Squares = 20.400800254
Degrees of Freedom = 13

RLS Scale Estimate = 1.2527139846

Cov Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep

VAR1 0.004548 -0.007921 -0.001199 0.001568
VAR2 -0.007921 0.027546 -0.000463 -0.065018
VAR3 -0.001199 -0.000463 0.003795 -0.246102
Intercep 0.001568 -0.065018 -0.246102 22.392305

Weighted R-squared = 0.9750062263
F(3,13) Statistic = 169.04317954

Probability = 1.158521E-10
There are 17 points with nonzero weight.

Average Weight = 0.8095238095

SAS OnlineDoc: Version 8

608 � Chapter 17. Language Reference

References
� Brownlee, K.A. (1965),Statistical Theory and Methodology in Science and

Engineering, New York: John Wiley & Sons, Inc.

� Davies, L. (1992), “The Asymptotics of Rousseeuw’s Minimum Volume Ellip-
soid Estimator,”The Annals of Statistics, 20, 1828 –1843.

� Rousseeuw, P.J. (1984), “Least Median of Squares Regression,”Journal of the
American Statistical Association, 79, 871 –880.

� Rousseeuw, P.J. (1985), “Multivariate Estimation with High Breakdown Point,”
in Mathematical Statistics and Applications, ed. by W. Grossmann, G. Pflug,
I. Vincze, and W. Wertz, Dordrecht: Reidel Publishing Company, 283 –297.

� Rousseeuw, P.J. and Croux, C. (1993), “Alternatives to the Median Absolute
Deviation,”Journal of the American Statistical Association, 88, 1273 –1283.

� Rousseeuw, P.J. and Hubert, M. (1997), “Recent Developments in
PROGRESS,” inL1-Statistical Procedures and Related Topics, ed. by Y.
Dodge, IMS Lecture Notes - Monograph Series, No. 31, 201 –214.

� Rousseeuw, P.J. and Leroy, A.M. (1987),Robust Regression and Outlier De-
tection, New York: John Wiley & Sons, Inc.

� Rousseeuw, P.J. and Van Driessen, K. (1997), “A fast Algorithm for the Mini-
mum Covariance Determinant Estimator,” submitted for publication.

� Rousseeuw, P.J. and Van Zomeren, B.C. (1990), “Unmasking Multivariate Out-
liers and Leverage Points,”Journal of the American Statistical Association, 85,
633 –639.

LOAD Statement

loads modules and matrices from library storage

LOAD <MODULE=(module-list)> <matrix-list>;

The inputs to the LOAD statement are as follows:

module-list is a list of modules.

matrix-list is a list of matrices

The LOAD statement loads modules or matrix values from the current library storage
into the current workspace. For example, to load three modules A, B, and C and one
matrix X, specify the statement

load module=(A B C) X;

SAS OnlineDoc: Version 8

LOC Function � 609

The special operand–ALL – can be used to load all matrices or all modules. For
example, if you want to load all matrices, specify

load _all_;

If you want to load all modules, specify

load module=_all_;

To load all matrices and modules stored in the library storage, you can enter the
LOAD command without any arguments:

load;

The storage library can be specified using a RESETstoragecommand The default
library is SASUSER.IMLSTOR. For more information, see Chapter 14, “Storage
Features,” and the descriptions of the STORE, REMOVE, RESET, and SHOW state-
ments.

LOC Function

finds nonzero elements of a matrix

LOC(matrix)

wherematrix is a numeric matrix or literal. The LOC function creates a1 � n row
vector, wheren is the number of nonzero elements in the argument. Missing val-
ues are treated as zeros. The values in the resulting row vector are the locations of
the nonzero elements in the argument (in row-major order, like subscripting). For
example, the statements

a={1 0 2 3 0};
b=loc(a);

result in the row vector

B 1 row 3 cols (numeric)

1 3 4

since the first, third, and fourth elements ofA are nonzero. If every element of the
argument vector is 0, the result is empty; that is,B has zero rows and zero columns.

The LOC function is useful for subscripting parts of a matrix that satisfy some condi-
tion. For example, suppose you want to create a matrixY containing the rows ofX
that have a positive element in the diagonal ofX. Specify the following statements.

SAS OnlineDoc: Version 8

610 � Chapter 17. Language Reference

x={1 1 0,
0 -2 2,
0 0 3};

y=x[loc(vecdiag(x)>0),];

The result is

Y = X[f13g;]

or the matrix

Y 2 rows 3 cols (numeric)

1 1 0
0 0 3

since the first and third rows ofX have positive elements on the diagonal ofX.

The next example selects all positive elements of a column vectorA:

a={0,
-1,

2,
0};

y=a[loc(a>0),];

The result is

Y = A[3;]

or the scalar

Y 1 row 1 col (numeric)

2

LOG Function

takes the natural logarithm

LOG(matrix)

wherematrix is a numeric matrix or literal.

The LOG function is the scalar function that takes the natural logarithm of each ele-
ment of the argument matrix. An example of a valid statement is shown below:

b=log(c);

SAS OnlineDoc: Version 8

LP Call � 611

LP Call

solves the linear programming problem

CALL LP(rc, x, dual, a, b <, cntl><, u><, l><, basis>);

The inputs to the LP subroutine are as follows:

a is anm � n vector specifying the technological coefficients, wherem is
less than or equal ton.

b is anm� 1 vector specifying the right-side vector.

cntl is an optional row vector with 1 to 5 elements. If CNTL=(indx, nprimal,
ndual, epsilon, infinity), then

indx is the subscript of nonzero objective coefficient.

nprimal is the maximum number of primal iterations.

ndual is the maximum number of dual iterations.

epsilon is the value of virtual zero.

infinity is the value of virtual infinity.

The default values are as follows:indx equalsn, nprimal equals 999999,
ndualequals 999999,epsilonequals 1.0E�8, andinfinity is machine depen-
dent. If you specifyndualor nprimal or both, then on return they contain
the number of iterations actually performed.

u is an optional array of dimensionn specifying upper bounds on the decision
variables. If you do not specifyu, the upper bounds are assumed to be
infinity.

l is an optional array of dimensionn specifying lower bounds on the decision
variables. Ifl is not given, then the lower bounds are assumed to be 0 for all
the decision variables. This includes the decision variable associated with
the objective value, which is specified by the value ofindx.

basis is an optional array of dimensionn specifying the current basis. This is
given by identifying which columns are explicitly in the basis and which
columns are at their upper bound, as given inu. The absolute value of the
elements in this vector is a permutation of the column indices. The columns
specified in the firstm elements ofbasisare considered the explicit basis.
The absolute value of the lastn�m elements ofbasisare the indices of the
nonbasic variables. Any of the lastn�m elements ofbasisthat are negative
indicate that that nonbasic variable is at its upper bound. On return from
the LP subroutine, thebasisvector contains the final basis encountered. If
you do not specifybasis, then the subroutine assumes that an initial basis is
in the lastm columns ofA and that no nonbasic variables are at their upper
bound.

SAS OnlineDoc: Version 8

612 � Chapter 17. Language Reference

rc returns one of the following scalar return codes:

0 solution is optimal

1 solution is primal infeasible and dual feasible

2 solution is dual infeasible and primal feasible

3 solution is neither primal nor dual feasible

4 singular basis encountered

5 solution is numerically unstable

6 subroutine could not obtain enough memory

7 number of iterations exceeded

x returns the current primal solution in a column vector of
lengthn.

dual returns the current dual solution in a row vector of length
m.

The LP subroutine solves the linear program:

max(0; : : : ; 0; 1; 0; : : : ; 0)x

st.Ax = b

l � x � u

The subroutine first inverts the initial basis. If theBASIS vector is given, then the
initial basis is them�m submatrix identified by the firstm elements inBASIS; oth-
erwise, the initial basis is defined by the lastm columns ofA. If the initial basis is
singular, the subroutine returns with RC=4. If the basis is nonsingular, then the cur-
rent dual and primal solutions are evaluated. If neither is feasible, then the subroutine
returns with RC=3. If the primal solution is feasible, then the primal algorithm iter-
ates until either a dual feasible solution is encountered or the number of NPRIMAL
iterations is exceeded. If the dual solution is feasible, then the dual algorithm iterates
until either a primal feasible solution is encountered or the number of NDUAL iter-
ations is exceeded. When a basis is identified that is both primal and dual feasible,
then the subroutine returns with RC=0.

Note that care must be taken when solving a sequence of linear programs and using
the NPRIMAL or NDUAL control parameters or both. Because the LP subroutine
resets the NPRIMAL and NDUAL parameters to reflect the number of iterations exe-
cuted, subsequent invocations of the LP subroutine will have the number of iterations
limited to the number used by the last LP subroutine executed. In these cases you
should consider resetting these parameters prior to each LP call.

Consider the following example to maximizeX1 subject to the constraintsX1�X2 =
10 andX1 � 0. The problem is solved as follows:

/* the problem data */
obj={1 0};
coef={1 1};

SAS OnlineDoc: Version 8

LUPDT Call � 613

b={0, 10};

/* embed the objective function */
/* in the coefficient matrix */

a=obj//coef;
a=a||{-1, 0};

/* solve the problem */
call lp(rc,x,dual,a,b);

The result is

RC 1 row 1 col (numeric)

0

X 3 rows 1 col (numeric)

10
0

10

DUAL 1 row 2 cols (numeric)

-1 1

LTS Call

performs robust regression

CALL LTS(sc, coef, wgt, opt, y <, < x ><, sorb>>);

See the entry for the LMS subroutine for details.

LUPDT Call

provides updating and downdating for rank deficient linear least squares solu-
tions, complete orthogonal factorization, and Moore-Penrose inverses

CALL LUPDT(lup, bup, sup, l, z <, b, y <, ssq>>);

The LUPDT subroutine returns the following values:

lup is ann� n lower triangular matrixL that is updated or downdated by
using theq rows inZ.

bup is ann � p matrixB of right-hand sides that is updated or downdated
by using theq rows inY. If b is not specified,bup is not accessible.

SAS OnlineDoc: Version 8

614 � Chapter 17. Language Reference

sup is ap vector of square roots of residual sum of squares that is updated
or downdated by using theq rows inY. If ssqis not specified,sup is
not accessible.

The inputs to the LUPDT subroutine are as follows:

l specifies ann�n lower triangular matrixL to be updated or downdated
by q row vectorsz stored in theq�nmatrixZ. Only the lower triangle
of l is used; the upper triangle may contain any information.

z is aq � n matrixZ used rowwise to update or downdate the matrixL.

b specifies an optionaln � p matrixB of right-hand sides that have to
be updated or downdated simultaneously withL. If b is specified, the
argumenty must be specified.

y specifies an optionalq � p matrixY used rowwise to update or down-
date the right-hand-side matrixB.

ssq specifies an optionalp � 1 vector that, ifb is specified, specifies the
square root of the error sum of squares that should be updated or down-
dated simultaneously withL andb.

The relevant formula for the LUPDT call is~L~L0 = LL0 +ZZ0. See the LUPDT
Example section for an example of the LUPDT call.

MAD Function

finds the univariate (scaled) median-absolute-deviation

MAD((x <; spt >))

where

x is ann� p input data matrix.

spt is an optional string argument with the following values:

"MAD" for computing the MAD (which is the default)

"NMAD" for computing the normalized version of MAD

"SN" for computingSn
"QN" for computingQn

The MAD function can be used for computing one of the following three robust scale
estimates:

� Median Absolute Deviation (MAD) or normalized form of MAD:

MADn = b �medni jxi �mednj xjj

SAS OnlineDoc: Version 8

MAD Function � 615

whereb = 1 is the unscaled default andb = 1:4826 is used for the scaled
version (consistency with the Gaussian distribution).

� Sn which is a more efficient alternative to MAD:

Sn = cn �medi medj 6=i jxi � xj j

where the outer median is a low median (order statistic of rank
�
n+1
2

�
) and the

inner median is a high median (order statistic of rank
�
n
2 + 1

�
), and wherecn

is a scalar depending on sample sizen.

� Qn is another efficient alternative to MAD. It is based on thekth order statistic

of the

�
n
2

�
inter-point distances:

Qn = dn � fjxi � xj j; i < jg(k) with k �
�
n
2

�
=4

wheredn is a scalar similar to, but different fromcn. See Rousseeuw and
Croux (1993) for more details.

The scalarscn anddn are defined as follows:

cn = 1:1926�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

:743 for n=2
1:851 for n=3
:954 for n=4
1:351 for n=5
:993 for n=6
1:198 for n=7
1:005 for n=8
1:131 for n=9
n=(n� 0:9) odd n
1:0 otherwise

dn = 2:2219�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

:399 for n=2
:994 for n=3
:512 for n=4
:844 for n=5
:611 for n=6
:857 for n=7
:669 for n=8
:872 for n=9
n=(n+ 1:4) uneven n
n=(n+ 3:8) even n

Example
This example uses the univariate data set of Barnett & Lewis (1978) that is used above
to illustrate the univariate LMS and LTS estimates:

b = { 3, 4, 7, 8, 10, 949, 951 };

rmad1 = mad(b);
rmad2 = mad(b,"mad");
rmad3 = mad(b,"nmad");
rmad4 = mad(b,"sn");
rmad5 = mad(b,"qn");
print "Default MAD=" rmad1,

"Common MAD =" rmad2,
"MAD*1.4826 =" rmad3,
"Robust S_n =" rmad4,
"Robust Q_n =" rmad5;

SAS OnlineDoc: Version 8

616 � Chapter 17. Language Reference

This program produces the following:

Default MAD= 4
Common MAD = 4
MAD*1.4826 = 5.9304089
Robust S_n = 7.143674
Robust Q_n = 5.7125049

References
� Barnett, V. and Lewis, T. (1978),Outliers in Statistical Data, New York: John

Wiley & Sons, Inc.

� Rousseeuw, P.J. and Croux, C. (1993), “Alternatives to the Median Absolute
Deviation,”Journal of the American Statistical Association, 88, 1273 –1283.

MARG Call

evaluates marginal totals in a multiway contingency table

CALL MARG(locmar, marginal, dim, table, config);

The inputs to the MARG subroutine are as follows:

dim specifies a vector containing the number of variables and the num-
ber of their possible levels in a contingency table. Ifdim is 1 � v,
then there arev variables, and the value of theith element is the
number of levels of theith variable.

table specifies an array containing the number of observations at each
level of each variable. Variables are nested across columns and
then across rows.

config specifies an array containing the marginal totals to be evaluated.
Each column specifies a distinct marginal.

locmar returns a vector of indices to each new set of marginal totals spec-
ified by config. A marginal total is exhibited for each level of the
specified marginal. These indices help locate particular totals.

marginal returns a vector of marginal totals.

The matrixtable must conform in size to the contingency table specified indim. In
particular, if table is n �m, the product of the entries in thedim vector must equal
nm. In addition, there must be some integerk such that the product of the firstk
entries indimequalsm. See the description of the IPF function for more information
on specifyingtable.

For example, consider the no-three-factor-effect model for Bartlett’s data as described
in Bishop, Fienberg, and Holland (1975).

SAS OnlineDoc: Version 8

MATTRIB Statement � 617

dim={2 2 2};
table={156 84 84 156,

107 133 31 209};
config={1 1 2,

2 3 3};
call marg(locmar,marginal,dim,table,config);

These statements return

LOCMAR 1 row 3 cols (numeric)

1 5 9

MARGINAL 1 row 12 cols (numeric)

263 217 115 365 240 240 138
:342 240 240 240 240

MATTRIB Statement

associates printing attributes with matrices

MATTRIB name <ROWNAME=row-name>
<COLNAME=column-name><LABEL= label><FORMAT=format>;

The inputs to the MATTRIB subroutine are as follows:

name is a character matrix or quoted literal giving the name of a matrix.

row-name is a character matrix or quoted literal specifying row names.

column-name is a character matrix or quoted literal specifying column names.

label is a character matrix or quoted literal associating a label with the
matrix. Thelabel argument has a maximum length of 40 charac-
ters.

format is a valid SAS format.

The MATTRIB statement associates printing attributes with matrices. Each matrix
can be associated with a ROWNAME= matrix and a COLNAME= matrix, which is
used whenever the matrix is printed to label the rows and columns, respectively. The
statement is written as the keyword MATTRIB followed by a list of one or more
names and attribute associations. It is not necessary to specify all attributes. The
attribute associations are applied to the previousname. Thus, the following statement
gives a row name RA and a column name CA toA, and a column name CB toB:

mattrib a rowname=ra colname=ca b colname=cb;

You cannot group names; although the following statement is valid, it does not asso-
ciate anything withA.

SAS OnlineDoc: Version 8

618 � Chapter 17. Language Reference

mattrib a b rowname=n;

The values of the associated matrices are not looked up until they are needed. Thus,
they need not have values at the time the MATTRIB statement is specified. They can
be specified later when the object matrix is printed. The attributes continue to bind
with the matrix until reassigned with another MATTRIB statement. To eliminate an
attribute, specify EMPTY as the name, for example, ROWNAME=EMPTY. Labels
can be up to 40 characters long. Longer labels are truncated. Use the SHOWnames
statemento view current matrix attributes.

An example using the MATTRIB statement follows:

rows=’xr1’:’xr5’;
print rows;

ROWS
xr1 xr2 xr3 xr4 xr5

cols=’cl1’:’cl5’;
print cols;

COLS
cl1 cl2 cl3 cl4 cl5

x={1 1 1 1,2 2 2 2,3 3 3 3};
mattrib x rowname=(rows [1:3])

colname=(cols [1:4])
label={’matrix,x’}
format=5.2;

print x;

matrix,x cl1 cl2 cl3 cl4

xr1 1.00 1.00 1.00 1.00
xr2 2.00 2.00 2.00 2.00
xr3 3.00 3.00 3.00 3.00

MAX Function

finds the maximum value of matrix

MAX(matrix1<, matrix2,: : :, matrix15>)

wherematrix is a numeric or character matrix or literal.

The MAX function produces a single numeric value (or a character string value)
that is the largest element (or highest character string value) in all arguments. There
can be as many as 15 argument matrices. The function checks for missing numeric

SAS OnlineDoc: Version 8

MAXQFORM Call � 619

values and does not include them in the result. If all arguments are missing, then the
machine’s most negative representable number is the result.

If you want to find the elementwise maximums of the corresponding elements of two
matrices, use the maximum operator (<>).

For character arguments, the size of the result is the size of the largest of all argu-
ments.

An example using the MAX function is shown below:

b=max(c);

MAXQFORM Call

computes the subsets of a matrix system that maximize the quadratic form

CALL MAXQFORM(rc, maxq, V , b <, best>);

If V andb are ann � n matrix and ann � 1 vector, respectively, then the MAXQ-
FORM function computes the subsets of componentss such thatb0[s]V�1[s; s]b[s]
is maximized.

The MAXQFORM subroutine returns the following values:

rc is one of the following scalar return codes:

0 normal return
1 error: the number of elements ofb is too large to process
2 error:V is not positive semidefinite

maxq is anm� (n+2) matrix, wherem is the total number of subsets com-
puted andn is the number of elements inb. The value ofm depends
on the value ofbestand is equal to2n � 1 if best is not specified.
Each row ofmaxqcontains information for a selected subset ofV and
b. The first element of the row is the number of components in the
subset. The second element is the value of the quadratic form. The
following elements of the row are either 0 or 1, to indicate whether the
corresponding components ofV andb are included in the subset.

The inputs to the MAXQFORM subroutine are as follows:

V specifies ann� n positive semidefinite matrix. Often this is generated
as a crossproduct matrix,X0X, whereX is ak � n matrix.

b specifies ann� 1 vector. Often this arises asX0y, whereX is ak � n
matrix, andy is ak � 1 vector.

SAS OnlineDoc: Version 8

620 � Chapter 17. Language Reference

best specifies an optional scalar. Ifbestis specified with the valuep, then
thep subsets with the largest value for the quadratic form are returned
for each subset size.

The leaps and bounds algorithm by Furnival and Wilson (1974) computes the maxi-
mum value of quadratic forms for subsets of components. Many statistics computed
as a quadratic form can then be used as the criterion for the method of subset selec-
tion. These include the regression sum of squares, Wald statistics, and score statistics.

Consider the following fitness data, which consists of observations with values for age
measured in years, weight measured in kilograms, time to run 1.5 miles measured
in minutes, heart rate while resting, heart rate while running, maximum heart rate
recorded while running, and oxygen intake rate while running measured in milliliters
per kilogram of body weight per minute.

proc iml;
fit = {

44 89.47 11.37 62 178 182 44.609,
40 75.07 10.07 62 185 185 45.313,
44 85.84 8.65 45 156 168 54.297,
42 68.15 8.17 40 166 172 59.571,
38 89.02 9.22 55 178 180 49.874,
47 77.45 11.63 58 176 176 44.811,
40 75.98 11.95 70 176 180 45.681,
43 81.19 10.85 64 162 170 49.091,
44 81.42 13.08 63 174 176 39.442,
38 81.87 8.63 48 170 186 60.055,
44 73.03 10.13 45 168 168 50.541,
45 87.66 14.03 56 186 192 37.388,
45 66.45 11.12 51 176 176 44.754,
47 79.15 10.60 47 162 164 47.273,
54 83.12 10.33 50 166 170 51.855,
49 81.42 8.95 44 180 185 49.156,
51 69.63 10.95 57 168 172 40.836,
51 77.91 10.00 48 162 168 46.672,
48 91.63 10.25 48 162 164 46.774,
49 73.37 10.08 67 168 168 50.388,
57 73.37 12.63 58 174 176 39.407,
54 79.38 11.17 62 156 165 46.080,
52 76.32 9.63 48 164 166 45.441,
50 70.87 8.92 48 146 155 54.625,
51 67.25 11.08 48 172 172 45.118,
54 91.63 12.88 44 168 172 39.203,
51 73.71 10.47 59 186 188 45.790,
57 59.08 9.93 49 148 155 50.545,
49 76.32 9.40 56 186 188 48.673,
48 61.24 11.50 52 170 176 47.920,
52 82.78 10.50 53 170 172 47.467 };

Use the following IML statement to center the data.

SAS OnlineDoc: Version 8

MCD and MVE Calls � 621

fit = fit - j(31,1,1) * fit[:,];

Now compute the crossproduct matrices, as follows:

x = fit[,1:6];
y = fit[,7];
xpx = x‘*x;
xpy = x‘*y;

The following statements compute the best three regression sums of squares for each
size of regressor set:

call maxqform(rc, maxq, xpx, xpy, 3);
print maxq;

MCD and MVE Calls

finds the minimum covariance determinant estimator and the minimum volume
ellipsoid estimator

CALL MCD(sc, coef, dist, opt, x <, s >);

The MDC call is the robust (resistent) estimation of multivariate location and scatter,
defined by minimizing the determinant of the covariance matrix computed fromh
points.

CALL MVE(sc, coef, dist, opt, x <, s >);

The MVE call is the robust (resistent) estimation of multivariate location and scatter,
defined by minimizing the volume of an ellipsoid containingh points.

The MVE and MCD subroutines compute the minimum volume ellipsoid estimator
and the minimum covariance determinant estimator. These robust locations and co-
variance matrices can be used to detect multivariate outliers and leverage points. For
this purpose, the MVE and MCD subroutines provide a table of robust distances.

The inputs to the MCD and MVE subroutine are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values):

opt[1] specifies the amount of printed output. Higher option values re-
quest additional output and include the output of lower values.

opt[1]=0 prints no output except error messages.
opt[1]=1 prints most of the output.

SAS OnlineDoc: Version 8

622 � Chapter 17. Language Reference

opt[1]=2 additionally prints case numbers of the observations in
the best subset and some basic history of the optimiza-
tion process.

opt[1]=3 additionally prints how many subsets result in singular
linear systems.

The default isopt[1]=0.

opt[2] specifies whether the classical, initial, and final robust covariance
matrices are printed. The default isopt[2]=0. Note that the final
robust covariance matrix is always returned incoef.

opt[3] specifies whether the classical, initial, and final robust correlation
matrices are printed or returned:

opt[3]=0 does not return or print.
opt[3]=1 prints the robust correlation matrix.
opt[3]=2 returns the final robust correlation matrix incoef.
opt[3]=3 prints and returns the final robust correlation matrix.

opt[4] specifies the quantileh used in the objective function. The default
is opt[5]= h = N+n+1

2 . If the value ofh is specified outside the
rangeN2 +1 � h � 3N

4 + n+1
4 , it is reset to the closest boundary

of this region.

opt[5] specifies the numberNRep of subset generations. This option is
the same as described previously for the LMS and LTS subrou-
tines. Due to computer time restrictions, not all subset combina-
tions can be inspected for larger values ofN andn. If opt[6] is
zero or missing, the default number of subsets is taken from the
following table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0
Nupper 1000000 1414 182 71 43 32 27 24 23 22
NRep 500 1000 1500 2000 2500 3000 3000 3000 3000 3000

n 11 12 13 14 15
Nlower 0 0 0 0 0
Nupper 22 22 22 23 23
NRep 3000 3000 3000 3000 3000

If the number of cases (observations)N is smaller thanNlower,
then all possible subsets are used; otherwise,NRep subsets are
drawn randomly. This means that an exhaustive search is per-
formed for opt[6]=�1. If N is larger thanNupper, a note is
printed in the log file indicating how many subsets exist.

x refers to anN � n matrixX of regressors.

SAS OnlineDoc: Version 8

MCD and MVE Calls � 623

s refers to ann vector containingn observation numbers of a subset for which
the objective function should be evaluated. This subset can be the start for
a pairwise exchange algorithm ifopt[4] is specified.

Missing values are not permitted inx. Missing values inopt cause the default value
to be used.

The MCD and MVE subroutines return the following values:

sc is a column vector containing the following scalar information:

sc[1] the quantileh used in the objective function

sc[2] number of subsets generated

sc[3] of subsets with singular linear systems

sc[4] number of nonzero weightswi

sc[5] lowest value of the objective functionFMVE attained (volume of
smallest ellipsoid found)

sc[6] Mahalanobis-like distance used in the computation of the lowest
value of the objective functionFMVE

sc[7] the cutoff value used for the outlier decision

sc[8] the correction factorc(N;n) used in scaling the initial MVE scat-
ter matrix

sc[9] scaling factor for the initial MVE scatter matrix

f =
c2(N;n)

CINV(0:5; n)

coef is a matrix withn columns containing the following results in its rows:

coef[1] location of ellipsoid center

coef[2] eigenvalues of final robust scatter matrix

coef[3:2+n] the final robust scatter matrix foropt[2]=1 or opt[2]=3

dist is a matrix withN columns containing the following results in its rows:

dist[1] Mahalanobis distances

dist[2] robust distances based on the final estimates

dist[3] weights (=1 for small, =0 for large robust distances)

SAS OnlineDoc: Version 8

624 � Chapter 17. Language Reference

Example
Consider results for Brownlee’s (1965) stackloss data. The three explanatory vari-
ables correspond to measurements for a plant oxidizing ammonia to nitric acid on 21
consecutive days.

� x1 air flow to the plant

� x2 cooling water inlet temperature

� x3 acid concentration

The response variableyi gives the permillage of ammonia lost (stackloss). These data
are also given by Rousseeuw & Leroy (1987, p.76).

print "Stackloss Data";
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

Rousseeuw & Leroy (1987, p.76) cite a large number of papers where this data set
was analyzed before and state that most researchers "concluded that observations 1,
3, 4, and 21 were outliers"; some people also reported observation 2 as an outlier.

By default, subroutine MVE tries only 2000 randomly selected subsets in its search.
There are in total 5985 subsets of 4 cases out of 21 cases.

a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: use all subsets */

CALL MVE(sc,xmve,dist,optn,a);

SAS OnlineDoc: Version 8

MCD and MVE Calls � 625

The first part of the output shows the classical scatter and correlation matrix:

Minimum Volume Ellipsoid (MVE) Estimation

Consider Ellipsoids Containing 12 Cases.

Classical Covariance Matrix

VAR1 VAR2 VAR3

VAR1 84.057142857 22.657142857 24.571428571
VAR2 22.657142857 9.9904761905 6.6214285714
VAR3 24.571428571 6.6214285714 28.714285714

Classical Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.781852333 0.5001428749
VAR2 0.781852333 1 0.3909395378
VAR3 0.5001428749 0.3909395378 1

Classical Mean

VAR1 60.428571429
VAR2 21.095238095
VAR3 86.285714286

There are 5985 subsets of 4 cases out of 21 cases.
All 5985 subsets will be considered.

The second part of the output shows the results of the optimization (complete subset
sampling):

Complete Enumeration for MVE

Best
Subset Singular Criterion Percent

1497 22 253.312431 25
2993 46 224.084073 50
4489 77 165.830053 75
5985 156 165.634363 100

Minimum Criterion= 165.63436284

Among 5985 subsets 156 are singular.

Observations of Best Subset

7 10 14 20

SAS OnlineDoc: Version 8

626 � Chapter 17. Language Reference

Initial MVE Location
Estimates

VAR1 58.5
VAR2 20.25
VAR3 87

Initial MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 34.829014749 28.413143611 62.32560534
VAR2 28.413143611 38.036950318 58.659393261
VAR3 62.32560534 58.659393261 267.63348175

The third part of the output shows the optimization results after local improvement:

Final MVE Estimates (Using Local Improvement)

Number of Points with Nonzero Weight=17

Robust MVE Location
Estimates

VAR1 56.705882353
VAR2 20.235294118
VAR3 85.529411765

Robust MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 23.470588235 7.5735294118 16.102941176
VAR2 7.5735294118 6.3161764706 5.3676470588
VAR3 16.102941176 5.3676470588 32.389705882

Eigenvalues of Robust
Scatter Matrix

VAR1 46.597431018
VAR2 12.155938483
VAR3 3.423101087

Robust Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.6220269501 0.5840361335
VAR2 0.6220269501 1 0.375278187
VAR3 0.5840361335 0.375278187 1

SAS OnlineDoc: Version 8

MCD and MVE Calls � 627

The final output presents a table containing the classical Mahalanobis distances, the
robust distances, and the weights identifying the outlying observations (that is lever-
age points when explainingy with these three regressor variables):

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 5.528395 0
2 2.324745 5.637357 0
3 1.593712 4.197235 0
4 1.271898 1.588734 1.000000
5 0.303357 1.189335 1.000000
6 0.772895 1.308038 1.000000
7 1.852661 1.715924 1.000000
8 1.852661 1.715924 1.000000
9 1.360622 1.226680 1.000000

10 1.745997 1.936256 1.000000
11 1.465702 1.493509 1.000000
12 1.841504 1.913079 1.000000
13 1.482649 1.659943 1.000000
14 1.778785 1.689210 1.000000
15 1.690241 2.230109 1.000000
16 1.291934 1.767582 1.000000
17 2.700016 2.431021 1.000000
18 1.503155 1.523316 1.000000
19 1.593221 1.710165 1.000000
20 0.807054 0.675124 1.000000
21 2.176761 3.657281 0

Distribution of Robust Distances

MinRes 1st Qu. Median

0.6751244996 1.5084120761 1.7159242054

Mean 3rd Qu. MaxRes

2.2282960174 2.0831826658 5.6373573538

Cutoff Value = 3.0575159206

The cutoff value is the square root of
the 0.975 quantile of the chi square

distribution with 3 degrees of freedom.

There are 4 points with large robust distances receiving
zero weights. These may include boundary cases. Only points
whose robust distances are substantially larger than the cutoff
value should be considered outliers.

SAS OnlineDoc: Version 8

628 � Chapter 17. Language Reference

References
� Brownlee, K.A. (1965),Statistical Theory and Methodology in Science and

Engineering, New York: John Wiley & Sons, Inc.

� Davies, L. (1992), “The Asymptotics of Rousseeuw’s Minimum Volume Ellip-
soid Estimator,”The Annals of Statistics, 20, 1828 –1843.

� Rousseeuw, P.J. (1984), “Least Median of Squares Regression,”Journal of the
American Statistical Association, 79, 871 –880.

� Rousseeuw, P.J. (1985), “Multivariate Estimation with High Breakdown Point,”
in Mathematical Statistics and Applications, ed. by W. Grossmann, G. Pflug,
I. Vincze, and W. Wertz, Dordrecht: Reidel Publishing Company, 283 –297.

� Rousseeuw, P.J. and Croux, C. (1993), “Alternatives to the Median Absolute
Deviation,”Journal of the American Statistical Association, 88, 1273 –1283.

� Rousseeuw, P.J. and Hubert, M. (1997), “Recent developments in
PROGRESS,” inL1-Statistical Procedures and Related Topics, ed. by Y.
Dodge, IMS Lecture Notes - Monograph Series, No. 31, 201 –214.

� Rousseeuw, P.J. and Leroy, A.M. (1987),Robust Regression and Outlier De-
tection, New York: John Wiley & Sons, Inc.

� Rousseeuw, P.J. and Van Driessen, K. (1997), “A fast Algorithm for the Mini-
mum Covariance Determinant Estimator,” submitted for publication.

� Rousseeuw, P.J. and Van Zomeren, B.C. (1990), “Unmasking Multivariate Out-
liers and Leverage Points,”Journal of the American Statistical Association, 85,
633 –639.

MIN Function

finds the smallest element of a matrix

MIN(matrix1<, matrix2,: : :, matrix15>)

wherematrix is a numeric or character matrix or literal.

The MIN function produces a single numeric value (or a character string value) that
is the smallest element (lowest character string value) in all arguments. There can be
as many as 15 argument matrices. The function checks for missing numeric values
and excludes them from the result. If all arguments are missing, then the machine’s
largest representable number is the result.

If you want to find the elementwise minimums of the corresponding elements of two
matrices, use the element minimum operator (><).

For character arguments, the size of the result is the size of the largest of all argu-
ments.

SAS OnlineDoc: Version 8

NAME Function � 629

An example using the MIN function is shown below.

b=min(c);

MOD Function

computes the modulo (remainder)

MOD(value, divisor)

The inputs to the MOD function are as follows:

value is a numeric matrix or literal giving the dividend.

divisor is a numeric matrix or literal giving the divisor.

The MOD function is the scalar function returning the remainder of the division of
elements of the first argument by elements of the second argument. An example of a
valid statement follows.

b=mod(4,1);

NAME Function

lists the names of arguments

NAME(arguments);

whereargumentsare the names of existing matrices.

The NAME function returns the names of the arguments in a column vector. In the
following example,N is a 3 � 1 character matrix of element size 8 containing the
character values A, B, and C:

n=name(a,b,c);

The main use of the NAME function is with macros when you want to use an argu-
ment for both its name and its value.

SAS OnlineDoc: Version 8

630 � Chapter 17. Language Reference

NCOL Function

finds the number of columns of a matrix

NCOL(matrix)

wherematrix is a numeric or character matrix.

The NCOL function returns a single numeric value that is the number of columns in
matrix. If the matrix has not been given a value, the NCOL function returns a value
of 0.

For example, to let B contain the number of columns of matrixS, use the statement

b=ncol(s);

NLENG Function

finds the size of an element

NLENG(matrix)

wherematrix is a numeric or character matrix.

The NLENG function returns a single numeric value that is the size in bytes of each
element inmatrix. All matrix elements have the same size. If the matrix does not have
a value, then the NLENG function returns a value of 0. This function is different from
the LENGTH function, which returns the size of each element of a character matrix,
omitting the trailing blanks.

The following statement returns the value 7:

a=nleng({"ab " "ijklm ",
"x" " "});

SAS OnlineDoc: Version 8

Nonlinear Optimization and Related Subroutines � 631

Nonlinear Optimization and Related Subroutines

Table 17.1. Nonlinear Optimization and Related Subroutines

Optimization Subroutines
Conjugate Gradient Optimization Method

CALL NLPCG(rc, xr, "fun", x0 <, opt, blc, tc, par, "ptit", "grd">);

Double Dogleg Optimization Method

CALL NLPDD(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd">);

Nelder-Mead Simplex Optimization Method

CALL NLPNMS(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "nlc">);

Newton-Raphson Optimization Method

CALL NLPNRA(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

Newton-Raphson Ridge Optimization Method

CALL NLPNRR(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

(Dual) Quasi-Newton Optimization Method

CALL NLPQN(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "nlc", "jacnlc">);

Quadratic Optimization Method

CALL NLPQUA(rc, xr, quad, x0 <,opt, blc, tc, par, "ptit", lin>);

Trust-Region Optimization Method

CALL NLPTR(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

Least-Squares Subroutines
Hybrid Quasi-Newton Least-Squares Methods

CALL NLPHQN(rc, xr, "fun", x0, opt <,blc, tc, par, "ptit", "jac">);

Levenberg-Marquardt Least-Squares Method

CALL NLPLM(rc, xr, "fun", x0, opt <,blc, tc, par, "ptit", "jac">);

SAS OnlineDoc: Version 8

632 � Chapter 17. Language Reference

Supplementary Subroutines
Approximate Derivatives by Finite Differences

CALL NLPFDD(f, g, h, "fun", x0 <,par, "grd">);

Feasible Point Subject to Constraints

CALL NLPFEA(xr, x0, blc <,par>);

Note: The names of the optional arguments can be used as keywords. For example,
the following statements are equivalent:

call nlpnrr(rc,xr,"fun",x0,,,ter,,,"grad");
call nlpnrr(rc,xr,"fun",x0) tc=ter grd="grad";

All the optimization subroutines require at least two input arguments.

� The NLPQUA subroutine requires thequadmatrix argument, which specifies
the symmetric matrixG of the quadratic problem. The input can be dense or
sparse. Other optimization subroutines require thefunmodule argument, which
specifies an IML module that defines the objective function or functions. For
least-squares subroutines, the FUN module must return a column vector of
lengthm that corresponds to the values of them functionsf1(x); : : : ; fm(x),
each evaluated at the pointx = (x1; : : : ; xn). For other subroutines, the FUN
module must return the value of the objective functionf = f(x) evaluated at
the pointx.

� The argumentx0 specifies a row vector that defines the number of parame-
tersn. If x0 is a feasible point, it represents a starting point for the iterative
optimization process. Otherwise, a linear programming algorithm is called at
the start of each optimization subroutine to replace the inputx0 by a feasible
starting point.

The other arguments that can be used as input are described in the following list. As
indicated in Table 17.1, not all input arguments apply to each subroutine. Note that
you can specify optional arguments with thekeyword=argumentsyntax.

� Theopt argument indicates an options vector that specifies details of the opti-
mization process, such as particular updating techniques and whether the ob-
jective function is to be maximized instead of minimized. See “Options Vector”
for details.

� The blc argument specifies a constraint matrix that defines lower and upper
bounds for then parameters as well as general linear equality and inequality
constraints. For details, see

� The tc argument specifies a vector of thresholds corresponding to the termina-
tion criteria tested in each iteration. See “Termination Criteria” for details.

SAS OnlineDoc: Version 8

Nonlinear Optimization and Related Subroutines � 633

� Thepar argument specifies a vector of control parameters that can be used to
modify the algorithms if the default settings do not complete the optimization
process successfully. For details, see

� The"ptit" module argument specifies an IML module that replaces the subrou-
tine used to print the iteration history and test the termination criteria. If the
"ptit" module is specified, the matrix specified by thetc argument has no effect.
See “Termination Criteria” for details.

� The "grd" module argument specifies an IML module that computes the gra-
dient vector,g = rf , at a given input pointx. See “Objective Function and
Derivatives” for details.

� The"hes"module argument specifies an IML module that computes then� n
Hessian matrix,G = r2f , at a given input pointx. See “Objective Function
and Derivatives” for details.

� The"jac" module argument specifies an IML module that computes them�n
Jacobian matrix,J = (rfi), of them least-squares functions at a given input
pointx. See “Objective Function and Derivatives” for details.

� The"nlc" module argument specifies an IML module that allows the computa-
tion of general equality and inequality constraints. This is the method by which
nonlinear constraints must be specified. For details, see

� The "jacnlc" module argument specifies an IML module that computes the
Jacobian matrix of first-order derivatives of the equality and inequality con-
straints specified by the NLC module. For details, see “Parameter Constraints”.

� The lin argument specifies the linear part of the quadratic optimization prob-
lem. See “NLPQUA Call” for details.

The modules that can be used as input arguments for the subroutines ("fun", "grd",
"hes", "jac", "ptit", "nlc", and "jacnlc") allow only a single input parameterx =
(x1; : : : ; xn). You can provide more input parameters for these modules by using the
GLOBAL clause. See “Using the GLOBAL Clause” for an example.

All the optimization subroutines return the following results:

� The scalar return coderc indicates the reason for the termination of the opti-
mization process. A return coderc > 0 indicates successful termination cor-
responding to one of the specified termination criteria. A return coderc < 0
indicates unsuccessful termination, that is, that the resultxr is unreliable. See
“Definition of Return Codes” for more details.

� The row vectorxr, which has lengthn, the number of parameters, contains the
optimal point whenrc > 0.

SAS OnlineDoc: Version 8

634 � Chapter 17. Language Reference

NLPCG Call

nonlinear optimization by conjugate gradient method

CALL NLPCG(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPCG subroutine requires function and gradient calls; it does not need second-
order derivatives. The gradient vector contains the first derivatives of the objective
functionf with respect to the parametersx1; : : : ; xn, as follows:

g(x) = rf(x) =
�
@f

@xj

�

If you do not specify an IML module with the"grd" argument, the first-order deriva-
tives are approximated by finite difference formulas using only function calls. The
NLPCG algorithm can require many function and gradient calls, but it requires less
memory than other subroutines for unconstrained optimization. In general, many it-
erations are needed to obtain a precise solution, but each iteration is computationally
inexpensive. You can specify one of four update formulas for generating the conju-
gate directions with the fourth element of theopt input argument.

Value of opt[4] Update Method
1 Automatic restart method of Powell (1977) and Beale (1972).

This is the default.
2 Fletcher-Reeves update (Fletcher 1987)
3 Polak-Ribiere update (Fletcher 1987)
4 Conjugate-descent update of Fletcher (1987)

The NLPCG subroutine is useful for optimization problems with largen. For the
unconstrained or boundary constrained case, the NLPCG method needs only ordern
bytes of working memory, whereas the other optimization methods require ordern2

bytes of working memory. Duringn successive iterations, uninterrupted by restarts
or changes in the working set, the conjugate gradient algorithm computes a cycle of
n conjugate search directions. In each iteration, a line search is done along the search
direction to find an approximate optimum of the objective function. The default line-
search method uses quadratic interpolation and cubic extrapolation to obtain a step
size� that satisfies the Goldstein conditions. One of the Goldstein conditions can be
violated if the feasible region defines an upper limit for the step size. You can specify
other line-search algorithms with the fifth element of theopt argument.

For an example of the NLPCG subroutine, see “Constrained Betts Function”.

SAS OnlineDoc: Version 8

NLPDD Call � 635

NLPDD Call

nonlinear optimization by double dogleg method

CALL NLPDD(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The double dogleg optimization method combines the ideas of the quasi-Newton and
trust-region methods. In each iteration, the algorithm computes the step,s(k), as

a linear combination of the steepest descent or ascent search direction,s
(k)
1 , and a

quasi-Newton search direction,s(k)2 , as follows:

s(k) = �1s
(k)
1 + �2s

(k)
2 :

The steps(k) must remain within a specified trust-region radius (refer to Fletcher
1987). Hence, the NLPDD subroutine uses the dual quasi-Newton update but does
not perform a line search. You can specify one of two update formulas with the fourth
element of theopt input argument.

Value of opt[4] Update Method
1 Dual BFGS update of the Cholesky factor of the Hessian matrix.

This is the default.
2 Dual DFP update of the Cholesky factor of the Hessian matrix

The double dogleg optimization technique works well for medium to moderately
large optimization problems, in which the objective function and the gradient are
much faster to compute than the Hessian. The implementation is based on Dennis
and Mei (1979) and Gay (1983), but it is extended for boundary and linear con-
straints. The NLPDD subroutine generally needs more iterations than the techniques
that require second-order derivatives (NLPTR, NLPNRA, and NLPNRR), but each
of the NLPDD iterations is computationally inexpensive. Furthermore, the NLPDD
subroutine needs only gradient calls to update the Cholesky factor of an approximate
Hessian.

In addition to the standard iteration history, the NLPDD routine prints the following
information:

� The headinglambdarefers to the parameter� of the double dogleg step. A
value of 0 corresponds to the full (quasi-) Newton step.

� The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero.

SAS OnlineDoc: Version 8

636 � Chapter 17. Language Reference

The following statements invoke the NLPDD subroutine to solve the constrained
Betts optimization problem (see “Constrained Betts Function”).

proc iml;
start F_BETTS(x);

f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 1};
call nlpdd(rc,xres,"F_BETTS",x,optn,con);
quit;

The preceding statements produce the following iteration history.

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2 Radius 1

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 0 -99.54678
2 0 3 0 -99.59120
3 0 5 0 -99.90252
4 0 6 1 -99.96000
5 0 7 1 -99.96000
6 0 8 1 -99.96000

Objective Max Abs Slope of
Function Gradient Search

Iter Change Element Lambda Direction

1 1.0092 0.1346 6.012 -1.805
2 0.0444 0.1279 0 -0.0228
3 0.3113 0.0624 0 -0.209
4 0.0575 0.00432 0 -0.0975

SAS OnlineDoc: Version 8

NLPFDD Call � 637

5 4.66E-6 0.000079 0 -458E-8
6 1.559E-9 0 0 -16E-10

Optimization Results

Iterations 6 Function Calls 9
Gradient Calls 8 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -1.56621E-9 Radius 1

GCONV convergence criterion satisfied.

NLPFDD Call

approximates derivatives by finite differences method

CALL NLPFDD(f, g, h, "fun", x0, <,par, "grd">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPFDD subroutine can be used for the following tasks:

� If the module"fun" returns a scalar, the NLPFDD subroutine computes the
function valuef, the gradient vectorg, and the Hessian matrixh, all evaluated
at the pointx0.

� If the module"fun" returns a column vector ofm function values, the sub-
routine assumes that a least-squares function is specified, and it computes the
function vectorf, the Jacobian matrixJ, and the crossproduct of the Jacobian
matrixJ0J at the pointx0. Note that in this case, you must set the first element
of thepar argument tom.

If any of the results cannot be computed, the subroutine returns a missing value for
that result.

You can specify the following input arguments with the NLPFDD subroutine:

� The "fun" argument refers to an IML module that returns either a scalar value
or a column vector of lengthm. This module returns the value of the objec-
tive function or, for least-squares problems, the values of them functions that
comprise the objective function.

� The x0 argument is a vector of lengthn that defines the point at which the
functions and derivatives should be computed.

SAS OnlineDoc: Version 8

638 � Chapter 17. Language Reference

� Thepar argument is a vector that defines options and control parameters. Note
that thepar argument in the NLPFDD call is different from the one used in the
optimization subroutines.

� The "grd" argument is optional and refers to an IML module that returns a
vector defining the gradient of the function atx0. If the "fun" argument returns
a vector of values instead of a scalar, the"grd" argument is ignored.

If the "fun" module returns a scalar, the subroutine returns the following values:

� f is the value of the function at the pointx0.

� g is a vector containing the value of the gradient at the pointx0. If you specify
the"grd" argument, the gradient is computed from that module. Otherwise, the
approximate gradient is computed by a finite difference approximation using
calls of the function module in a neighborhood ofx0.

� h is a matrix containing a finite difference approximation of the value of the
Hessian at the pointx0. If you specify the"grd" argument, the Hessian is
computed by calls of that module in a neighborhood ofx0. Otherwise, it is
computed by calls of the function module in a neighborhood ofx0.

If the "fun" module returns a vector, the subroutine returns the following values:

� f is a vector containing the values of them functions comprising the objective
function at the pointx0.

� g is them� n Jacobian matrixJ, which contains the first-order derivatives of
the functions with respect to the parameters, evaluated atx0. It is computed by
finite difference approximations in a neighborhood ofx0.

� h is then � n crossproduct of the Jacobian matrix,JTJ. It is computed by
finite difference approximations in a neighborhood ofx0.

Thepar argument is a vector of length 3.

� par[1] corresponds to theopt[1] argument in the optimization subroutines. This
argument is relevant only to least-squares optimization methods, in which case
it specifies the number of functions returned by the module"fun". If par[1] is
missing or is smaller than 1, it is set to 1.

� par[2] corresponds to theopt[8] argument in the optimization subroutines. It
determines what type of approximation is to be used and how the finite differ-
ence interval,h, is to be computed. See “Finite Difference Approximations of
Derivatives” for details.

� par[3] corresponds to thepar[8] argument in the optimization subroutines. It
specifies the number of accurate digits in evaluating the objective function. The
default is� log10(�), where� is the machine precision.

If you specify a missing value in thepar argument, the default value is used.

SAS OnlineDoc: Version 8

NLPFDD Call � 639

The NLPFDD subroutine is particularly useful for checking your analytical derivative
specifications of the"grd", "hes", and"jac" modules. You can compare the results
of the modules with the finite difference approximations of the derivatives off at the
point x0 to verify your specifications.

In the unconstrained Rosenbrock problem (see “Unconstrained Rosenbrock
Function”), the objective function is

f(x) = 50(x2 � x21)
2 +

1

2
(1� x1)

2

Then the gradient and the Hessian, evaluated at the pointx = (2; 7), are

g0 =

24 @f
@x1

@f
@x2

35 =

�
200x31 � 200x1x2 + x1 � 1

�100x21 + 100x2

�
=

� �1199
300

�

H =

24 @2f
@x2

1

@2f
@x1@x2

@2f
@x2@x1

@2f
@x2

2

35 =

�
600x21 � 200x2 + 1 �200x1

�200x1 100

�
=

�
1001 �400
�400 100

�

The following statements define the Rosenbrock function and use the NLPFDD call
to compute the gradient and the Hessian.

proc iml;
start F_ROSEN(x);

y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;
x = {2 7};
CALL NLPFDD(crit,grad,hess,"F_ROSEN",x);
print grad;
print hess;

GRAD

-1199 300.00001

HESS

1000.9998 -400.0018
-400.0018 99.999993

SAS OnlineDoc: Version 8

640 � Chapter 17. Language Reference

If the Rosenbrock problem is considered from a least-squares perspective, the two
functions are

f1(x) = 10(x2 � x21)

f2(x) = 1� x1

Then the Jacobian and the crossproduct of the Jacobian, evaluated at the pointx =
(2; 7), are

J =

24 @f1
@x1

@f1
@x2

@f2
@x1

@f2
@x2

35 =

� �20x1 10
�1 0

�
=

� �40 10
�1 0

�

JTJ =

�
400x21 + 1 �200x1
�200x1 100

�
=

�
1601 �400
�400 100

�

The following statements define the Rosenbrock problem in a least-squares frame-
work and use the NLPFDD call to compute the Jacobian and the crossproduct matrix.
Since the value of the PARMS variable, which is used for thepar argument, is 2, the
NLPFDD subroutine allocates memory for a least-squares problem with two func-
tions,f1(x) andf2(x).

proc iml;
start F_ROSEN(x);

y = j(2,1,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];
return(y);

finish F_ROSEN;
x = {2 7};
parms = 2;
CALL NLPFDD(fun,jac,crpj,"F_ROSEN",x,parms);
print jac;
print crpj;

The finite difference approximations for Jacobian follow.

JAC

-40 10
-1 0

CRPJ

1601 -400
-400 100

SAS OnlineDoc: Version 8

NLPFEA Call � 641

NLPFEA Call

computes feasible points subject to constraints

CALL NLPFEA(xr, x0, blc <,par>);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPFEA subroutine tries to compute a point that is feasible subject to a set of
boundary and linear constraints. You can specify boundary and linear constraints
that define an empty feasible region, in which case the subroutine will return missing
values.

You can specify the following input arguments with the NLPFEA subroutine:

� x0 is a row vector defining the coordinates of a point that is not necessarily
feasible for a set of linear and boundary constraints.

� blc is anm�nmatrix defining a set ofm boundary and linear constraints. See
“Parameter Constraints” for details.

� par is a vector of length two. The argument is different from the one used
in the optimization subroutines. The first element sets the LCEPS parameter,
which controls how precisely the returned point must satisfy the constraints.
The second element sets the LCSING parameter, which specifies the criterion
for deciding when constraints are considered linearly dependent. For details,
see

The NLPFEA subroutine returns thexr argument. The result is a vector containing
either then coordinates of a feasible point, which indicates that the subroutine was
successful, or missing values, which indicates that the subroutine could not find a
feasible point.

The following statements call the NLPFEA subroutine with the constraints from the
Betts problem (see “Constrained Betts Function”) and an initial infeasible pointx0 =
(�17;�61). The subroutine returns the feasible point(2;�50) as the vector XFEAS.

proc iml;
con = { 2. -50. . .,

50. 50. . .,
10. -1. 1. 10.};

x = {-17. -61};
call nlpfea(xfeas,x,con);

SAS OnlineDoc: Version 8

642 � Chapter 17. Language Reference

NLPHQN Call

calculates hybrid quasi-Newton least squares

CALL NLPHQN(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "jac">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPHQN subroutine uses one of the Fletcher and Xu (1987) hybrid quasi-
Newton methods. Refer also to Al-Baali and Fletcher (1985, 1986). In each iteration,
the subroutine uses a criterion to decide whether a Gauss-Newton or a dual quasi-
Newton search direction is appropriate. You can choose one of three criteria (HY1,
HY2, or HY3) proposed by Fletcher and Xu (1987) with the sixth element of the
opt vector. The default is HY2. The subroutine computes the crossproduct Jacobian
(for the Gauss-Newton step), updates the Cholesky factor of an approximate Hessian
(for the quasi-Newton step), and performs a line search to compute an approximate
minimum along the search direction. The default line-search technique used by the
NLPHQN method is designed for least-squares problems (refer to Lindström and
Wedin 1984, and Al-Baali and Fletcher 1986), but you can specify a different line-
search algorithm with the fifth element of theopt argument. See “Options Vector”
for details.

You can specify two update formulas with the fourth element of theopt argument as
indicated in the following table.

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.

The NLPHQN subroutine needs approximately the same amount of working memory
as the NLPLM subroutine, and in most applications, the latter seems to be superior.
Hence, the NLPHQN method is recommended only when the NLPLM method en-
counters problems.

Note: In least-squares subroutines, you must set the first element of theopt vector to
m, the number of functions.

In addition to the standard iteration history, the NLPHQN subroutine prints the fol-
lowing information:

� Under the headingIter, an asterisk (*) printed after the iteration number indi-
cates that, on the basis of the Fletcher and Xu (1987) criterion, the subroutine
used a Gauss-Newton search direction instead of a quasi-Newton search direc-
tion.

� The headingalphais the step size,�, computed with the line-search algorithm.

SAS OnlineDoc: Version 8

NLPHQN Call � 643

� The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The following statements use the NLPHQN call to solve the unconstrained Rosen-
brock problem (see “Unconstrained Rosenbrock Function”).

proc iml;
title ’Test of NLPHQN subroutine: No Derivatives’;
start F_ROSEN(x);

y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];

return(y);
finish F_ROSEN;

x = {-1.2 1.};
optn = {2 2};
call nlphqn(rc,xr,"F_ROSEN",x,optn);

The iteration history for the subroutine follows.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.200000 -107.799999
2 X2 1.000000 -44.000000

Value of Objective Function = 12.1

Hybrid Quasi-Newton LS Minimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Version HY2 of Fletcher & Xu (1987)

Gradient Computed by Finite Differences
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.7999987

Function Active Objective
Iter Restarts Calls Constraints Function

SAS OnlineDoc: Version 8

644 � Chapter 17. Language Reference

1 0 3 0 7.22423
2* 0 5 0 0.97090
3* 0 7 0 0.81911
4 0 9 0 0.69103
5 0 19 0 0.47345
6* 0 21 0 0.35906
7* 0 22 0 0.23342
8* 0 24 0 0.14799
9* 0 26 0 0.00948

10* 0 28 0 1.98834E-6
11* 0 30 0 7.0768E-10
12* 0 32 0 2.0246E-21

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 4.8758 56.9322 0.0616 -628.8
2* 6.2533 2.3017 0.266 -14.448
3* 0.1518 3.7839 0.119 -1.942
4 0.1281 5.5103 2.000 -0.144
5 0.2176 8.8638 11.854 -0.194
6* 0.1144 9.8734 0.253 -0.947
7* 0.1256 10.1490 0.398 -0.718
8* 0.0854 11.6248 1.346 -0.467
9* 0.1385 2.6275 1.443 -0.296

10* 0.00947 0.00609 0.938 -0.0190
11* 1.988E-6 0.000748 1.003 -398E-8
12* 7.08E-10 1.82E-10 1.000 -14E-10

Optimization Results

Iterations 12 Function Calls 33
Jacobian Calls 13 Gradient Calls 19
Active Constraints 0 Objective Function 2.024612E-21
Max Abs Gradient Element 1.816863E-10 Slope of Search Direction -1.415366E-9

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 1.000000 1.816863E-10
2 X2 1.000000 -1.22069E-10

Value of Objective Function = 2.024612E-21

SAS OnlineDoc: Version 8

NLPLM Call � 645

NLPLM Call

calculates Levenberg-Marquardt least squares

CALL NLPLM(rc, xr, "fun", x0, opt, blc, tc, par, "ptit", "jac">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPLM subroutine uses the Levenberg-Marquardt method, which is an effi-
cient modification of the trust-region method for nonlinear least-squares problems
and is implemented as in Moré (1978). This is the recommended algorithm for
small to medium least-squares problems. Large least-squares problems can often be
processed more efficiently with other subroutines, such as the NLPCG and NLPQN
methods. In each iteration, the NLPLM subroutine solves a quadratically-constrained
quadratic minimization problem that restricts the step to the boundary or interior of
ann-dimensional elliptical trust region.

Them functionsf1(x); : : : ; fm(x) are computed by the module specified with the
"fun" module argument. Them�n Jacobian matrix,J, contains the first-order deriva-
tives of them functions with respect to then parameters, as follows:

J(x) = (rf1; : : : ;rfm) =
�
@fi
@xj

�

You can specifyJ with the "jac" module argument; otherwise, the subroutine will
compute it with finite difference approximations. In each iteration, the subroutine
computes the crossproduct of the Jacobian matrix,JTJ, to be used as an approximate
Hessian.

Note: In least-squares subroutines, you must set the first element of theopt vector to
m, the number of functions.

In addition to the standard iteration history, the NLPLM subroutine also prints the
following information:

� Under the headingIter, an asterisk (*) printed after the iteration number in-
dicates that the computed Hessian approximation was singular and had to be
ridged with a positive value.

� The headinglambdarepresents the Lagrange multiplier,�. This has a value
of zero when the optimum of the quadratic function approximation is inside
the trust region, in which case a trust-region-scaled Newton step is performed.
It is greater than zero when the optimum is at the boundary of the trust re-
gion, in which case the scaled Newton step is too long to fit in the trust region
and a quadratically-constrained optimization is done. Large values indicate
optimization difficulties, and as in Gay (1983), a negative value indicates the
special case of an indefinite Hessian matrix.

SAS OnlineDoc: Version 8

646 � Chapter 17. Language Reference

� The headingrho refers to�, the ratio between the achieved and predicted dif-
ference in function values. Values that are much smaller than one indicate
optimization difficulties. Values close to or larger than one indicate that the
trust region radius can be increased.

The iteration history for the solution of the unconstrained Rosenbrock problem fol-
lows. See the section "Unconstrained Rosenbrock Function" for the statements that
generate this output.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.200000 -107.799999
2 X2 1.000000 -44.000000

Value of Objective Function = 12.1

Levenberg-Marquardt Optimization

Scaling Update of More (1978)
Gradient Computed by Finite Differences
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.7999987 Radius 2626.5613171

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 4 0 2.18185
2 0 6 0 1.59370
3 0 7 0 1.32848
4 0 8 0 1.03891
5 0 9 0 0.78943
6 0 10 0 0.58838
7 0 11 0 0.34224
8 0 12 0 0.19630
9 0 13 0 0.11626

10 0 14 0 0.0000396
11 0 15 0 2.4652E-30

SAS OnlineDoc: Version 8

NLPLM Call � 647

Ratio
Between

Actual
Objective Max Abs and
Function Gradient Predicted

Iter Change Element Lambda Change

1 9.9181 17.4704 0.00804 0.964
2 0.5881 3.7015 0.0190 0.988
3 0.2652 7.0843 0.00830 0.678
4 0.2896 6.3092 0.00753 0.593
5 0.2495 7.2617 0.00634 0.486
6 0.2011 7.8837 0.00462 0.393
7 0.2461 6.6815 0.00307 0.524
8 0.1459 8.3857 0.00147 0.469
9 0.0800 9.3086 0.00016 0.409

10 0.1162 0.1781 0 1.000
11 0.000040 4.44E-14 0 1.000

Optimization Results

Iterations 11 Function Calls 16
Jacobian Calls 12 Active Constraints 0
Objective Function 2.46519E-30 Max Abs Gradient Element 4.440892E-14
Lambda 0 Actual Over Pred Change 1
Radius 0.0178062912

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 1.000000 -4.44089E-14
2 X2 1.000000 2.220446E-14

Value of Objective Function = 2.46519E-30

SAS OnlineDoc: Version 8

648 � Chapter 17. Language Reference

NLPNMS Call

nonlinear optimization by Nelder-Mead simplex method

CALL NLPNMS(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "nlc">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The Nelder-Mead simplex method is one of the subroutines that can solve optimiza-
tion problems with nonlinear constraints. It does not use any derivatives, and it does
not assume that the objective function has continuous derivatives. However, the ob-
jective function must be continuous. The NLPNMS technique uses a large number of
function calls, and it may be unable to generate precise results whenn > 40.

The NLPNMS subroutine uses the following simplex algorithms:

� For unconstrained or only boundary-constrained problems, the original Nelder-
Mead simplex algorithm is implemented and extended to boundary constraints.
This algorithm does not compute the objective for infeasible points, and it is
invoked if the"nlc" module argument is not specified and theblc argument
contains at most two rows (corresponding to lower and upper bounds).

� For linearly or nonlinearly constrained problems, a slightly modified ver-
sion of Powell’s (1992) Constrained Optimization BY Linear Approximations
(COBYLA) implementation is used. This algorithm is invoked if the"nlc"
module argument is specified or if at least one linear constraint is specified
with theblc argument.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear
constraints, but in the unconstrained or boundary-constrained cases, it can be faster.
It changes the shape of the simplex by adapting the nonlinearities of the objective
function; this contributes to an increased speed of convergence.

Powell’s COBYLA Algorithm
Powell’s COBYLA algorithm is a sequential trust-region algorithm that tries to main-
tain a regularly-shaped simplex throughout the iterations. The algorithm uses a
monotone-decreasing radius,�, of a spheric trust region. The modification imple-
mented in the NLPNMS call permits an increase of the trust-region radius� in special
situations. A sequence of iterations is performed with a constant trust-region radius
� until the computed function reduction is much less than the predicted reduction.
Then, the trust-region radius� is reduced. The trust-region radius is increased only
if the computed function reduction is relatively close to the predicted reduction and
if the simplex is well-shaped. The start radius,�beg, can be specified with the second
element of thepar argument, and the final radius,�end, can be specified with the ninth
element of thetc argument. Convergence to small values of�end, or high-precision
convergence, may require many calls of the function and constraint modules and may
result in numerical problems. The main reasons for the slow convergence of the

SAS OnlineDoc: Version 8

NLPNMS Call � 649

COBYLA algorithm are as follows:

� Linear approximations of the objective and constraint functions are used lo-
cally.

� Maintaining the regularly-shaped simplex and not adapting its shape to non-
linearities yields very small simplexes for highly nonlinear functions, such as
fourth-order polynomials.

To allocate memory for the vector returned by the"nlc" module argument, you must
specify the total number of nonlinear constraints with the tenth element of theopt
argument. If any of the constraints are equality constraints, the number of equal-
ity constraints must be specified by the eleventh element of theopt argument. See
“Parameter Constraints” for details.

For more information on the special sets of termination criteria used by the NLPNMS
algorithms, see

In addition to the standard iteration history, the NLPNMS subroutine prints the fol-
lowing information. For unconstrained or boundary-constrained problems, the sub-
routine also prints

� difcrit, which, in this subroutine, refers to the difference between the largest
and smallest function values of then+ 1 simplex vertices

� std, which is the standard deviation of the function values of the simplex ver-
tices

� deltax, which is the vertex length of a restarted simplex. If there are conver-
gence problems, the algorithm restarts the iteration process with a simplex of
smaller vertex length.

� size, which is the averageL1 distance of the simplex vertex with the smallest
function value to the other simplex vertices

For linearly and nonlinearly constrained problems, the subroutine prints the follow-
ing:

� conmaxis the maximum constraint violation.

� meritf is the value of the merit function,�.

� difmerit is the difference between adjacent values of the merit function.

� � is the trust-region radius.

The following code uses the NLPNMS call to solve the Rosen-Suzuki problem (see
“Rosen-Suzuki Problem”), which has three nonlinear constraints:

proc iml;
start F_HS43(x);

f = x*x‘ + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
return(f);

finish F_HS43;

SAS OnlineDoc: Version 8

650 � Chapter 17. Language Reference

start C_HS43(x);
c = j(3,1,0.);
c[1] = 8 - x*x‘ - x[1] + x[2] - x[3] + x[4];
c[2] = 10 - x*x‘ - x[2]*x[2] - x[4]*x[4] + x[1] + x[4];
c[3] = 5 - 2.*x[1]*x[1] - x[2]*x[2] - x[3]*x[3]

- 2.*x[1] + x[2] + x[4];
return(c);

finish C_HS43;
x = j(1,4,1);
optn= j(1,11,.); optn[2]= 3; optn[10]= 3; optn[11]=0;
call nlpnms(rc,xres,"F_HS43",x,optn,,,,,"C_HS43");

Part of the output produced by the preceding code follows.

Optimization Start
Parameter Estimates

N Parameter Estimate

1 X1 1.000000
2 X2 1.000000
3 X3 1.000000
4 X4 1.000000

Value of Objective Function = -19

Values of Nonlinear Constraints

Constraint Residual

[1] 4.0000
[2] 6.0000
[3] 1.0000

Nelder-Mead Simplex Optimization

COBYLA Algorithm by M.J.D. Powell (1992)

Minimum Iterations 0
Maximum Iterations 1000
Maximum Function Calls 3000
Iterations Reducing Constraint Violation 0
ABSFCONV Function Criterion 0
FCONV Function Criterion 2.220446E-16
FCONV2 Function Criterion 1E-6
FSIZE Parameter 0
ABSXCONV Parameter Change Criterion 0.0001
XCONV Parameter Change Criterion 0
XSIZE Parameter 0
ABSCONV Function Criterion -1.34078E154
Initial Simplex Size (INSTEP) 0.5
Singularity Tolerance (SINGULAR) 1E-8

Nelder-Mead Simplex Optimization

SAS OnlineDoc: Version 8

NLPNMS Call � 651

COBYLA Algorithm by M.J.D. Powell (1992)

Parameter Estimates 4
Nonlinear Constraints 3

Optimization Start

Objective Function -29.5 Maximum Constraint Violation 4.5

Maximum
Function Objective Constraint

Iter Restarts Calls Function Violation

1 0 12 -52.80342 4.3411
2 0 17 -39.51475 0.0227
3 0 53 -44.02098 0.00949
4 0 62 -44.00214 0.000833
5 0 72 -44.00009 0.000033
6 0 79 -44.00000 1.783E-6
7 0 90 -44.00000 1.363E-7
8 0 94 -44.00000 1.543E-8

Between
Actual

Merit and
Merit Function Predicted

Iter Function Change Change

1 -42.3031 12.803 1.000
2 -39.3797 -2.923 0.250
3 -43.9727 4.593 0.0625
4 -43.9977 0.0249 0.0156
5 -43.9999 0.00226 0.0039
6 -44.0000 0.00007 0.0010
7 -44.0000 1.74E-6 0.0002
8 -44.0000 5.33E-7 0.0001

Optimization Results

Iterations 8 Function Calls 95
Restarts 0 Objective Function -44.00000003
Maximum Constraint Violation 1.543059E-8 Merit Function -43.99999999
Actual Over Pred Change 0.0001

ABSXCONV convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range.

Optimization Results
Parameter Estimates

N Parameter Estimate

SAS OnlineDoc: Version 8

652 � Chapter 17. Language Reference

1 X1 -0.000034167
2 X2 1.000004
3 X3 2.000023
4 X4 -0.999971

Value of Objective Function = -44.00000003

Values of Nonlinear Constraints

Constraint Residual

[1] -1.54E-8 *?*
[2] 1.0000
[3] -1.5E-8 *?*

NLPNRA Call

nonlinear optimization by Newton-Raphson method

CALL NLPNRA(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPNRA algorithm uses a pure Newton step at each iteration when both the
Hessian is positive definite and the Newton step successfully reduces the value of the
objective function. Otherwise, it performs a combination of ridging and line-search
to compute successful steps. If the Hessian is not positive definite, a multiple of the
identity matrix is added to the Hessian matrix to make it positive definite (refer to
Eskow & Schnabel 1991).

The subroutine uses the gradientg(k) = rf(x(k)) and the Hessian matrixG(k) =
r2f(x(k)), and it requires continuous first- and second-order derivatives of the ob-
jective function inside the feasible region. If second-order derivatives are computed
efficiently and precisely, the NLPNRA method does not need many function, gradi-
ent, and Hessian calls, and it may perform well for medium to large problems.

Note that using only function calls to compute finite difference approximations for
second-order derivatives can be computationally very expensive and may contain sig-
nificant rounding errors. If you use the"grd" input argument to specify a module that
computes first-order derivatives analytically, you can reduce drastically the compu-
tation time for numerical second-order derivatives. The computation of the finite
difference approximation for the Hessian matrix generally uses onlyn calls of the
module that specifies the gradient.

SAS OnlineDoc: Version 8

NLPNRA Call � 653

In each iteration, a line search is done along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation. You can specify other line-search al-
gorithms with the fifth element of theoptargument. See “Options Vector” for details.

In unconstrained and boundary constrained cases, the NLPNRA algorithm can take
advantage of diagonal or sparse Hessian matrices that are specified by the input ar-
gument"hes". To use sparse Hessian storage, the value of the ninth element of the
opt argument must specify the number of nonzero Hessian elements returned by the
Hessian module. See “Objective Function and Derivatives” for more details.

In addition to the standard iteration history, the NLPNRA subroutine prints the fol-
lowing information:

� The headingalphais the step size,�, computed with the line-search algorithm.

� The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The following statements invoke the NLPNRA subroutine to solve the constrained
Betts optimization problem (see “Constrained Betts Function”). The iteration history
follows.

proc iml;
start F_BETTS(x);

f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 2};
call nlpnra(rc,xres,"F_BETTS",x,optn,con);
quit;

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint
1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

SAS OnlineDoc: Version 8

654 � Chapter 17. Language Reference

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Newton-Raphson Optimization with Line Search

Without Parameter Scaling
Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences
Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 0 -98.81551
2* 0 3 0 -99.40840
3* 0 4 1 -99.87504
4 0 5 1 -99.96000
5 0 6 1 -99.96000

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 0.2779 1.8000 0.100 -2.925
2* 0.5929 1.2713 0.294 -2.365
3* 0.4666 0.5829 0.542 -1.181
4 0.0850 0.000039 1.000 -0.170
5 3.9E-10 9.537E-7 1.000 -76E-11

Optimization Results

Iterations 5 Function Calls 7
Hessian Calls 6 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -7.64376E-10 Ridge 0

GCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 -0.000000196 0

SAS OnlineDoc: Version 8

NLPNRR Call � 655

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

NLPNRR Call

nonlinear optimization by Newton-Raphson ridge method

CALL NLPNRR(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPNRR algorithm uses a pure Newton step when both the Hessian is positive
definite and the Newton step successfully reduces the value of the objective function.
Otherwise, a multiple of the identity matrix is added to the Hessian matrix.

The subroutine uses the gradientg(k) = rf(x(k)) and the Hessian matrixG(k) =
r2f(x(k)), and it requires continuous first- and second-order derivatives of the ob-
jective function inside the feasible region.

Note that using only function calls to compute finite difference approximations for
second-order derivatives can be computationally very expensive and may contain sig-
nificant rounding errors. If you use the"grd" input argument to specify a module that
computes first-order derivatives analytically, you can reduce drastically the compu-
tation time for numerical second-order derivatives. The computation of the finite
difference approximation for the Hessian matrix generally uses onlyn calls of the
module that specifies the gradient.

The NLPNRR method performs well for small to medium-sized problems, and it
does not need many function, gradient, and Hessian calls. However, if the gradient is
not specified analytically by using the"grd" module argument, or if the computation
of the Hessian module specified with the"hes" argument is computationally expen-
sive, one of the (dual) quasi-Newton or conjugate gradient algorithms may be more
efficient.

In addition to the standard iteration history, the NLPNRR subroutine prints the fol-
lowing information:

� The headingridge refers to the value of the nonnegative ridge parameter. A
value of zero indicates that a Newton step is performed. A value greater than
zero indicates either that the Hessian approximation is zero or that the New-
ton step fails to reduce the optimization criterion. A large value can indicate
optimization difficulties.

SAS OnlineDoc: Version 8

656 � Chapter 17. Language Reference

� The headingrho refers to�, the ratio of the achieved difference in function
values and the predicted difference, based on the quadratic function approxi-
mation. A value that is much smaller than one indicates possible optimization
difficulties.

The following statements invoke the NLPNRR subroutine to solve the constrained
Betts optimization problem (see “Constrained Betts Function”). The iteration history
follows.

proc iml;
start F_BETTS(x);

f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 2};
call nlpnrr(rc,xres,"F_BETTS",x,optn,con);
quit;

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint

1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Newton-Raphson Ridge Optimization

Without Parameter Scaling
Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

SAS OnlineDoc: Version 8

NLPNRR Call � 657

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 1 -99.87337
2 0 3 1 -99.96000
3 0 4 1 -99.96000

Ratio
Actual

Objective Max Abs and
Function Gradient Predicted

Iter Change Element Ridge Change

1 1.3358 0.5887 0 0.706
2 0.0866 0.000040 0 1.000
3 4.07E-10 0 0 1.014

Optimization Results

Iterations 3 Function Calls 5
Hessian Calls 4 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Ridge 0 Actual Over Pred Change 1.0135158294

GCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 0.000000134 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

SAS OnlineDoc: Version 8

658 � Chapter 17. Language Reference

NLPQN Call

nonlinear optimization by quasi-Newton method

CALL NLPQN(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit",
"grd", "nlc", "jacnlc">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPQN subroutine uses (dual) quasi-Newton optimization techniques, and it
is one of the two subroutines available that can solve problems with nonlinear con-
straints. These techniques work well for medium to moderately large optimization
problems where the objective function and the gradient are much faster to compute
than the Hessian matrix. The NLPQN subroutine does not need to compute second-
order derivatives, but it generally requires more iterations than the techniques that
compute second-order derivatives.

The two categories of problems solved by the NLPQN subroutine are unconstrained
or linearly constrained problems and nonlinearly constrained problems. Uncon-
strained or linearly constrained problems do not use the"nlc" or "jacnlc" module
arguments, whereas nonlinearly constrained problems use the arguments to specify
the nonlinear constraints and the Jacobian matrix of their first-order derivatives, re-
spectively.

The type of optimization problem specified determines the algorithm that the sub-
routine invokes. The algorithms are very different, and they use different sets of
termination criteria. For more details, see

Unconstrained or Linearly Constrained QN Optimization
The NLPQN subroutine invokes this algorithm if you do not specify the"nlc" ar-
gument. Using the fourth element of theopt argument, you can specify two update
formulas for either the original quasi-Newton algorithm or the dual quasi-Newton
algorithm, as indicated in the following table:

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.
3 Original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) up-

date of the inverse Hessian matrix.
4 Original Davidon, Fletcher, and Powell (DFP) update of the in-

verse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation to obtain a step size that satisfies the

SAS OnlineDoc: Version 8

NLPQN Call � 659

Goldstein conditions. One of the Goldstein conditions can be violated if the feasible
region defines an upper limit of the step size. Violating the left-side Goldstein con-
dition can affect the positive definiteness of the quasi-Newton update. In these cases,
either the update is skipped or the iterations are restarted with an identity matrix re-
sulting in the steepest descent or ascent search direction. You can specify line-search
algorithms different from the default method with the fifth element of theopt argu-
ment.

Note: In Release 6.08, the DBFGS and DDFP updates were implemented with the
NLPDQN subroutine. In Release 6.09 and in later releases, these updates are speci-
fied with the NLPQN subroutine, and the NLPDQN subroutine is not permitted.

The following statements invoke the NLPQN subroutine to solve the Rosenbrock
problem (see “Unconstrained Rosenbrock Function”):

proc iml;
start F_ROSEN(x);

y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;
x = {-1.2 1.};
optn = {0 2 . 2};
call nlpqn(rc,xr,"F_ROSEN",x,optn);
quit;

Since OPTN[4] = 2, the DDFP update is performed. The gradient is approximated
by finite differences since no module is specified that computes the first-order deriva-
tives. Part of the iteration history follows. In addition to the standard iteration history,
the NLPQN subroutine prints the following information for unconstrained or linearly
constrained problems:

� The headingalphais the step size,�, computed with the line-search algorithm.

� The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.200000 -107.799989
2 X2 1.000000 -43.999999

Value of Objective Function = 12.1

SAS OnlineDoc: Version 8

660 � Chapter 17. Language Reference

Dual Quasi-Newton Optimization

Dual Davidon - Fletcher - Powell Update (DDFP)
Gradient Computed by Finite Differences

Parameter Estimates 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.79998927

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 4 0 2.06405
2 0 7 0 1.92035
3 0 10 0 1.78089
4 0 13 0 1.33331
5 0 17 0 1.13400
6 0 22 0 0.93915
7 0 24 0 0.84821
8 0 30 0 0.54334
9 0 32 0 0.46593

10 0 37 0 0.35322
12 0 41 0 0.20282
12 0 41 0 0.20282
13 0 46 0 0.11714
14 0 51 0 0.07149
15 0 53 0 0.04746
16 0 58 0 0.02759
17 0 60 0 0.01625
18 0 62 0 0.00475
19 0 66 0 0.00167
20 0 70 0 0.0005952
21 0 72 0 0.0000771
23 0 78 0 2.39914E-8
23 0 78 0 2.39914E-8
24 0 80 0 5.0936E-11
25 0 119 0 3.9538E-11

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 10.0359 0.7917 0.0340 -628.8
2 0.1437 8.6301 6.557 -0.0363
3 0.1395 11.0943 8.193 -0.0288
4 0.4476 7.6069 33.376 -0.0269
5 0.1993 0.9386 15.438 -0.0260
6 0.1948 3.5290 11.537 -0.0233
7 0.0909 4.8308 8.124 -0.0193
8 0.3049 4.1770 35.143 -0.0186
9 0.0774 0.9479 8.708 -0.0178

SAS OnlineDoc: Version 8

NLPQN Call � 661

10 0.1127 2.5981 10.964 -0.0147
11 0.0894 3.3028 13.590 -0.0121
12 0.0610 0.6451 10.000 -0.0116
13 0.0857 1.6603 11.395 -0.0102
14 0.0456 2.4050 11.559 -0.0074
15 0.0240 0.5628 6.868 -0.0071
16 0.0199 1.3282 5.365 -0.0055
17 0.0113 1.9246 5.882 -0.0035
18 0.0115 0.6357 8.068 -0.0032
19 0.00307 0.4810 2.336 -0.0022
20 0.00108 0.6043 3.287 -0.0006
21 0.000518 0.0289 2.329 -0.0004
22 0.000075 0.0365 1.772 -0.0001
23 1.897E-6 0.00158 1.159 -331E-8
24 2.394E-8 0.000016 0.967 -46E-9
25 1.14E-11 7.962E-7 1.061 -19E-13

Optimization Results

Iterations 25 Function Calls 120
Gradient Calls 107 Active Constraints 0
Objective Function 3.953804E-11 Max Abs Gradient Element 7.9622469E-7
Slope of Search Direction -1.88032E-12

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.999991 -0.000000796
2 X2 0.999982 0.000000430

Value of Objective Function = 3.953804E-11

Nonlinearly Constrained QN Optimization
The algorithm used for nonlinearly constrained quasi-Newton optimization is an effi-
cient modification of Powell’s (1978, 1982) Variable Metric Constrained WatchDog
(VMCWD) algorithm. A similar but older algorithm (VF02AD) is part of the Har-
well library. Both the VMCWD and VF02AD algorithms use Fletcher’s VE02AD
algorithm, which is also part of the Harwell library, for positive definite quadratic
programming. This NLPQN implementation uses a quadratic programming subrou-
tine that updates and downdates the Cholesky factor when the active set changes (refer
to Gill, Murray, Saunders, and Wright 1984). The nonlinear NLPQN algorithm is not
a feasible point algorithm, and the value of the objective function is not required to
decrease monotonically. Instead, the algorithm tries to reduce a linear combination
of objective function and constraint violations.

SAS OnlineDoc: Version 8

662 � Chapter 17. Language Reference

The following are similarities and differences between this algorithm and Powell’s
VMCWD algorithm:

� You can use the sixth element of theoptargument to modify the algorithm used
by the NLPQN subroutine. If you specifyopt[6] = 2, which is the default, the
evaluation of the Lagrange vector� is performed the same way as described
in Powell (1982b). Note, however, that the VMCWD program seems to have a
bug in the implementation of formula (4.4) in Powell (1982b). If you specify
opt[6] = 1, the original update of� used in the VF02AD algorithm in Powell
(1978a) is performed.

� Instead of updating an approximate Hessian matrix, this algorithm uses the dual
BFGS or dual DFP update that updates the Cholesky factor of an approximate
Hessian. If the condition of the updated matrix gets too bad, a restart is done
with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

� The Cholesky factor is loaded into the quadratic programming subroutine,
which ensures positive definiteness of the problem. During the quadratic pro-
gramming step, the Cholesky factor of the projected Hessian matrixZT

k GZk is
updated simultaneously withQT decomposition when the active set changes.
Refer to Gill, Murray, Saunders, and Wright (1984) for more information.

� The line-search strategy is very similar to that of Powell’s algorithm, but this
algorithm does not call for derivatives during the line search. For that rea-
son, this algorithm generally needs fewer derivative calls than function calls,
whereas the VMCWD algorithm always requires the same number of deriva-
tive calls as function calls. Also, Powell’s line-search method sometimes uses
steps that are too long during the early iterations. In those cases, you can use
the second element of thepar argument to restrict the step length� in the first
five iterations. See “Control Parameters Vector” for more details.

� The watchdog strategy is also similar to that of Powell’s algorithm. However,
this algorithm does not return automatically after a fixed number of iterations
to a previous, more optimal point. A return to such a point is further delayed if
the observed function reduction is close to the expected function reduction of
the quadratic model.

� Although Powell’s termination criterion, the FTOL2 criterion, can still be used,
the NLPQN implementation uses, by default, two other termination criteria
(GTOL and ABSGTOL).

This algorithm is automatically invoked if the"nlc" argument is specified. The mod-
ule specified with the"nlc" argument must return a vector of lengthnc, wherenc is
the total number of constraints. Lettingnec be the number of equality constraints,
the constraints must be of the following form:

ci(x) = 0; i = 1; : : : ; nec
ci(x) � 0; i = nec+ 1; : : : ; nc

The firstnec elements of the returned vector contain theci for the equality constraints,
and the remaining elements contain theci for the inequality constraints.

SAS OnlineDoc: Version 8

NLPQUA Call � 663

Note: You must specify the total number of constraints with the tenth element of the
optargument, and if there are any equality constraints, you must specify that number,
nec, with the eleventh element of theopt argument.

The nonlinear NLPQN algorithm requires the Jacobian matrix of the first-order
derivatives of thenc constraints returned by the module specified by the"nlc" ar-
gument. You can provide these derivatives by specifying a module with the"jacnlc"
argument. This module must return the Jacobian matrixJ of first-order partial deriva-
tives. That is,J is annc� n matrix such that the entry in theith row andjth column
is given by

J(i; j) =
@ci
@xj

If you specify an"nlc" module without specifying a"jacnlc" argument, finite differ-
ence approximations of the first-order derivatives of the constraints are used. You can
use the ninth element of thepar argument to specify the number of accurate digits
used in evaluating the constraints.

You can specify two update formulas with the fourth element of theopt argument as
indicated in the following table:

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.

This algorithm uses its own line-search technique. None of the options and parame-
ters that control the line search in the other algorithms apply in the nonlinear NLPQN
algorithm, with the exception of the second element of thepar vector, which can be
used to restrict the length of the step size in the first five iterations.

See Example 11.8 for an example where you need to specify a value for the second
element of thepar argument. The values of the fourth, fifth, and sixth elements of the
par vector, which control the processing of linear and boundary constraints, are valid
only for the quadratic programming subroutine used in each iteration of the NLPQN
call. For a simple example of the NLPQN subroutine, see “Rosen-Suzuki Problem”.

NLPQUA Call

nonlinear optimization by quadratic method

CALL NLPQUA(rc, xr, quad, x0 <,opt, blc, tc, par, "ptit", lin>);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

SAS OnlineDoc: Version 8

664 � Chapter 17. Language Reference

The NLPQUA subroutine uses a fast algorithm for maximizing or minimizing the
quadratic objective function

1

2
xTGx+ gTx+ con

subject to boundary constraints and general linear equality and inequality constraints.
The algorithm is memory-consuming for problems with general linear constraints.

The matrixG must be symmetric but not necessarily positive definite (or negative
definite for maximization problems). The constant termcon affects only the value of
the objective function, not its derivatives or the optimal pointx�.

The algorithm is an active-set method in which the update of active boundary and
linear constraints is done separately. TheQT decomposition of the matrixAk of
active linear constraints is updated iteratively (refer to Gill, Murray, Saunders, and
Wright, 1984). Ifnf is the number of free parameters (that is,nminus the number of
active boundary constraints), andna is the number of active linear constraints, thenQ
is annf � nf orthogonal matrix containing null spaceZ in its firstnf � na columns
and range spaceY in its lastna columns. The matrixT is anna � na triangular
matrix of the formtij = 0 for i < n � j. The Cholesky factor of the projected
Hessian matrixZT

k GZk is updated simultaneously with theQT decomposition when
the active set changes.

The objective function is specified by the input argumentsquadandlin, as follows:

� The quadargument specifies the symmetricn � n Hessian matrix,G, of the
quadratic term. The input can be in dense or sparse form. In dense form, alln2

entries of thequadmatrix must be specified. Ifn � 3, the dense specification
must be used. The sparse specification can be useful whenG has many zero
elements. You can specify annn� 3 matrix in which each row represents one
of thenn nonzero elements ofG. The first column specifies the row location
in G, the second column specifies the column location, and the third column
specifies the value of the nonzero element.

� The lin argument specifies the linear part of the quadratic optimization prob-
lem. It must be a vector of lengthn or n + 1. If lin is a vector of lengthn, it
specifies the vectorg of the linear term, and the constant termcon is considered
zero. If lin is a vector of lengthn+1, then the firstn elements of the argument
specify the vectorg and the last element specifies the constant termcon of the
objective function.

As in the other optimization subroutines, you can use theblc argument to specify
boundary and general linear constraints, and you must provide a starting pointx0 to
determine the number of parameters. Ifx0 is not feasible, a feasible initial point is
computed by linear programming, and the elements ofx0 can be missing values.

Assuming nonnegativity constraintsx � 0, the quadratic optimization problem
solved with the LCP call, which solves the linear complementarity problem. Refer to
SAS/IML Software: Usage and Reference, Version 6, First Editionfor details.

SAS OnlineDoc: Version 8

NLPQUA Call � 665

Choosing a sparse (or dense) input form of thequadargument does not mean that
the algorithm used in the NLPQUA subroutine is necessarily sparse (or dense). If the
following conditions are satisfied, the NLPQUA algorithm will store and process the
matrixG as sparse:

� No general linear constraints are specified.

� The memory needed for the sparse storage ofG is less than 80% of the memory
needed for dense storage.

� G is not a diagonal matrix. IfG is diagonal, it is stored and processed as a
diagonal matrix.

The sparse NLPQUA algorithm uses a modified form of minimum degree Cholesky
factorization (George and Liu 1981).

In addition to the standard iteration history, the NLPNRA subroutine prints the fol-
lowing information:

� The headingalphais the step size,�, computed with the line-search algorithm.

� The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The Betts problem (see “Constrained Betts Function”) can be expressed as a quadratic
problem in the following way:

x =

�
x1
x2

�
; G =

�
0:02 0
0 2

�
; g =

�
0
0

�
; con= �100

Then

1

2
xTGx� gTx+ con= 0:5[0:02x21 + 2x22]� 100 = 0:01x21 + x22 � 100

The following statements use the NLPQUA subroutine to solve the Betts problem:

proc iml;
lin = { 0. 0. -100};
quad = { 0.02 0.0 ,

0.0 2.0 };
c = { 2. -50. . .,

50. 50. . .,
10. -1. 1. 10.};

x = { -1. -1.};
optn = {0 2};
CALL NLPQUA(rc,xres,quad,x,optn,c,,,,lin);

Thequadargument specifies theG matrix, and thelin argument specifies theg vec-
tor with the value ofcon appended as the last element. The matrix C specifies the
boundary constraints and the general linear constraint.

SAS OnlineDoc: Version 8

666 � Chapter 17. Language Reference

The iteration history follows.

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint

1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Null Space Method of Quadratic Problem

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1
Using Sparse Hessian _

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 1 -99.87349
2 0 3 1 -99.96000

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 1.3359 0.5882 0.706 -2.925
2 0.0865 0 1.000 -0.173

Optimization Results

Iterations 2 Function Calls 4
Gradient Calls 3 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -0.173010381

ABSGCONV convergence criterion satisfied.

SAS OnlineDoc: Version 8

NLPTR Call � 667

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 0 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

NLPTR Call

nonlinear optimization by trust region method

CALL NLPTR(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

See “Nonlinear Optimization and Related Subroutines” for a listing of all NLP sub-
routines. See Chapter 11, “Nonlinear Optimization Examples,” for a description of
the inputs to and outputs of all NLP subroutines.

The NLPTR subroutine is a trust-region method that uses the gradient
g(k) = rf(x(k)) and Hessian matrixG(k) = r2f(x(k)). It requires that the
objective functionf = f(x) has continuous first- and second-order derivatives inside
the feasible region.

Then�n Hessian matrixG contains the second derivatives of the objective function
f with respect to the parametersx1; : : : ; xn; as follows:

G(x) = r2f(x) =

�
@2f

@xj@xk

�
The trust-region method works by optimizing a quadratic approximation to the non-
linear objective function within a hyperelliptic trust region. This trust region has a
radius,�, that constrains the step size corresponding to the quality of the quadratic
approximation. The method is implemented using Dennis, Gay, and Welsch (1981),
Gay (1983), and Moré and Sorensen (1983).

Note that finite difference approximations for second-order derivatives using only
function calls are computationally very expensive. If you specify first-order deriva-
tives analytically with the"grd" module argument, you can drastically reduce the
computation time for numerical second-order derivatives. Computing the finite dif-
ference approximation for the Hessian matrixG generally uses onlyn calls of the
module that computes the gradient analytically.

SAS OnlineDoc: Version 8

668 � Chapter 17. Language Reference

The NLPTR method performs well for small- to medium-sized problems and does
not need many function, gradient, and Hessian calls. However, if the gradient is
not specified analytically by using the"grd" argument or if the computation of the
Hessian module, as specified by the"hes" module argument, is computationally ex-
pensive, one of the (dual) quasi-Newton or conjugate gradient algorithms may be
more efficient.

In addition to the standard iteration history, the NLPTR subroutine prints the follow-
ing information:

� Under the headingIter, an asterisk (*) printed after the iteration number in-
dicates that the computed Hessian approximation was singular and had to be
ridged with a positive value.

� The headinglambdarepresents the Lagrange multiplier,�. This has a value
of zero when the optimum of the quadratic function approximation is inside
the trust region, in which case a trust-region-scaled Newton step is performed.
It is greater than zero when the optimum is at the boundary of the trust re-
gion, in which case the scaled Newton step is too long to fit in the trust region
and a quadratically-constrained optimization is done. Large values indicate
optimization difficulties, and as in Gay (1983), a negative value indicates the
special case of an indefinite Hessian matrix.

� The headingradius refers to�, the radius of the trust region. Small values
of the radius combined with large values of� in subsequent iterations indicate
optimization problems.

For an example of the use of the NLPTR subroutine, see “Unconstrained Rosenbrock
Function”.

NORMAL Function

generates a pseudo-random normal deviate

NORMAL(seed)

whereseedis a numeric matrix or literal. Theseedargument can be any integer value
up to231 � 1.

The NORMAL function is a scalar function that returns a pseudo-random number
having a normal distribution with a mean of 0 and a standard deviation of 1. The
NORMAL function returns a matrix with the same dimensions as the argument. The
first argument on the first call is used for the seed (or if that is 0, the system clock
is used for the seed). This function is synonymous with the DATA step function
RANNOR. The Box-Muller transformation of the UNIFORM function deviates is
used to generate the numbers.

SAS OnlineDoc: Version 8

NUM Function � 669

NROW Function

finds the number of rows of a matrix

NROW(matrix)

wherematrix is a numeric or character matrix.

The NROW function returns a single numeric value that is the number of rows in
matrix. If the matrix has not been given a value, the NROW function returns a value
of 0.

For example, to let J contain the number of rows of the matrixS, use the statement

j=nrow(s);

NUM Function

produces a numeric representation of a character matrix

NUM(matrix)

wherematrix is a character matrix or a quoted literal.

The NUM function takes as an argument a character matrix with elements that are
character numerics; and produces a numeric matrix with dimensions that are the
same as the dimensions of the argument and with elements that are the numeric rep-
resentations (double-precision floating-point) of the corresponding elements of the
argument.

An example using the NUM function is shown below:

c={’1’ ’2’ ’3’};
j=num(c);

C 1 row 3 cols (character, size 1)

1 2 3

J 1 row 3 cols (numeric)
1 2 3

See also the description of the CHAR function, which does the reverse conversion.

SAS OnlineDoc: Version 8

670 � Chapter 17. Language Reference

ODE Call

performs numerical integration of vector differential equations of the form

dy

dt
= f(t;y(t)) with y(0) = c

CALL ODE(r, "dername", c, t, h <, J="jacobian"><, EPS=eps><,
"data">);

The ODE subroutine returns the following values:

r is a numeric matrix that contains the results of the integration over con-
nected subintervals. The number of columns inr is equal to the number
of subintervals of integration as defined by the argumentt. In case of
any error in the integration on any subinterval, partial results will not
be reported inr.

The inputs to the ODE subroutine are as follows:

"dername" specifies the name of an IML module used to evaluate the integrand.

c specifies an initial value vector for the variabley.

t specifies a sorted vector that describes the limits of integration over
connected subintervals. The simplest form of the vectort contains only
the limits of the integration on one interval. The first component oft
should contain the initial value, and the second component should be
the final value of the independent variable. For more advanced usage
of the ODE subroutine, the vectort can contain more than two compo-
nents. The components of the vector must be sorted in ascending order.
Two consecutive components of the vectort are interpreted as a subin-
terval. The ODE call reports the final result of integration at the right
endpoint of each subinterval. This information is vital iff(�) has inter-
nal points of discontinuity. To produce accurate solutions, it is essential
that you provide the location of these points in the variablet, since the
continuity of the forcing function is vital to the internal control of error.

h specifies a numeric vector that contains three components: the min-
imum allowable step size,hmin; the maximum allowable step size,
hmax; and the initial step size to start the integration process,hinit.

"jacobian" optionally specifies the name of an IML module that is used to evaluate
the Jacobian analytically. The Jacobian is the matrixJ , with

Jij =
@fi
@yj

SAS OnlineDoc: Version 8

ODE Call � 671

If the "jacobian" module is not specified, the ODE call uses a finite
difference method to approximate the Jacobian. The keyword for this
option is J.

eps specifies a scalar indicating the required accuracy. It has a default value
of 1E�4. The keyword for this option is EPS.

data (scalar, optional, character, input) a valid predefined SAS Dataset name
that is used to save the successful independent and dependent variables
of the integration at each step.

The ODE subroutine is an adaptive, variable order, variable step-size, stiff integrator
based on implicit backward-difference methods. Refer to Aiken (1985), Bickart and
Picel (1973), Donelson and Hansen (1971), Gaffney (1984), and Shampine (1978).
The integrator is an implicit predictor-corrector method that locally attempts to main-
tain the prescribed precisionepsrelative to

d = max
0�t�T

(ky(t)k1; 1)

As you can see from the expression, this quantity is dynamically updated during the
integration process and can help you to understand the validity of the results reported
by the subroutine.

Consider the differential equation

dy

dt
= �ty with y = 0:5 at t = 0

The following statements attempt to find the solution att = 1:

proc iml; ;
/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = .5;
t = { 0 1};
h = { 1E-12 1 1E-5};
call ode(r,"FUN",c,t,h);
print r[format=E21.14];

In this case, the integration is carried out over(0; 1) to give the value ofy at t = 1.
The optional parameterepshas not been specified, so it is internally set to 1E�4.
Also, the optional parameter"jacobian" has not been specified, so finite difference
methods are used to estimate the Jacobian. The accuracy of the answer can be in-
creased by specifyingeps. For example, seteps=1E�7 as follows.

SAS OnlineDoc: Version 8

672 � Chapter 17. Language Reference

proc iml;
/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = .5;
t = {0 1};
h = {1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-7;

print r[format =E21.14];

Compare this value to0:5e�0:5 = 3:03265329856310E�01 and observe that the
result is correct through the sixth decimal digit and has an error relative to 1 that is
O(1E�7).
If the solution was desired at 1 and 2 with an accuracy of 1E�7, you would use the
following statements:

proc iml;
/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = .5;
t = { 0 1 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-7;

print r[format=E21.14];

Note that R contains the solution att = 1 in the first column and att = 2 in the
second column.

Now consider the smoothness of the forcing functionf(�). For the purpose of esti-
mating errors, adaptive methods require some degree of smoothness in the function
f(�). If this smoothness is not present inf(�) over the interior and including the left
endpoint of the subinterval, the reported result will not have the desired accuracy. The
functionf(�) must be at least continuous. If the function does not meet this require-
ment, you should specify the discontinuity as an intermediate point. For example,
consider the differential equation

dy

dt
=

�
t if t < 1
0:5t2 if t � 1

SAS OnlineDoc: Version 8

ODE Call � 673

To find the solution att = 2, use the following statements:

proc iml;
/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = .5*t*t;
return(v);

finish;

/* Call ODE */
c = 0;
t = { 0 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps = 1E-12;
print r[format =E21.14];

In the preceding case, the integration is carried out over a single interval,(0; 2). The
optional parameterepsis specified to be 1E�12. The optional parameterjacobianis
not specified, so finite difference methods are used to estimate the Jacobian.

Note that the value of R does not have the required accuracy (it should contain a 12
decimal-place representation of 5/3), although no error message is produced. The
reason is that the function is not continuous at the pointt = 1. Even the lowest-order
method cannot produce a local reliable error estimate near the point of discontinuity.
To avoid this problem, you can create subintervals so that the integration is carried
out first over(0; 1) and then over(1; 2). The following code implements this method:

proc iml;
/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = .5*t*t;
return(v);

finish;

/* Call ODE */
c = 0;
t = { 0 1 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-12;
print r[format=E21.14];

The variable R contains the solutions at botht = 1 andt = 2, and the errors are of
the specified order. Although there is no interest in the solution at the pointt = 1, the
advantage of specifying subintervals with no discontinuities is that the functionf(�)
is infinitely differentiable in each subinterval.

SAS OnlineDoc: Version 8

674 � Chapter 17. Language Reference

When f(�) is continuous, the ODE subroutine can compute the integration to the
specified precision, even if the function is defined piecewise. Consider the differential
equation

dy

dt
=

�
t if t < 1
t2 if t � 1

The following code finds the solution att = 2: Since the functionf(�) is continuous,
the requirements for error control are satisfied.

proc iml;
/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = t*t;
return(v);

finish;

/* Call ODE */
c = .5;
t = { 0 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-12;

print r[format=E21.14];

This example compares the ODE call to an eigenvalue decomposition for stiff-linear
systems. In the problem

dy

dt
= Ay with y(0) = c

whereA is a symmetric constant matrix, the solution can be written in terms of the
eigenvalue decomposition, as follows:

y(t) = UeDtU0c

whereU is the matrix of eigenvectors andD is a diagonal matrix with the eigenvalues
on its diagonal.

The following statements produce two solutions, one using the ODE call and the
other using the eigenvalue decomposition:

proc iml;
/* Define the integrand */
start fun(t,x) global(a,count);

count = count+1;
v = a*x;
return(v);

finish;

SAS OnlineDoc: Version 8

ODE Call � 675

/* Define the Jacobian */
start jac(t,x) global(a);

v = a;
return(v);

finish;

a = {-1000 -1 -2 -3,
-1 -2 3 -1,
-2 3 -4 -3,
-3 -1 -3 -5 };

/* Call ODE */
count = 0;
t = { 0 1 2};
h = {1E-12 1 1E-5};
eps = 1E-9;
c = {1, 0, 0, 0 };
call ode(z,"FUN",c,t,h) eps=eps j="JAC";
print z[format=E21.14];

print count;

/* Do the eigenvalue decomposition */
start eval(t) global(d,u,c);

v = u*diag(exp(d*t))*u‘*c;
return(v);

finish;

call eigen(d,u,a);
free z1;
do i = 1 to nrow(t)*ncol(t)-1;

z1 = z1 || (eval(t[i+1]));
end;
print z1[format=E21.14];

The question now is whether this is anO(1E�9) result. Note that for this problem

d = max
0�t�T

(ky(t)k1; 1) = 1

with the 1E�6 result, the ODE call should attempt to maintain an accuracy of 1E�9
relative to 1. Therefore, the 1E�6 result should have almost three correct decimal
places. Att = 2, the first component ofZ is 6.58597048842310E�06, while its
more accurate value is 6.58580950203220E�06, showing anO(1E�10) error.

The ODE subroutine may fail for problems with unusual qualitative properties, such
as finite escape time in the interval of integration (that is, the solution goes towards
infinity at some finite time). In such cases, try testing with different subintervals and
different levels of accuracy to gain some qualitative information about the behavior
of the solution of the differential equation.

SAS OnlineDoc: Version 8

676 � Chapter 17. Language Reference

OPSCAL Function

rescales qualitative data to be a least-squares fit to qualitative data

OPSCAL(mlevel, quanti<, qualit>)

The inputs to the OPSCAL function are as follows:

mlevel specifies a scalar that has one of two values. Whenmlevelis 1 the
qualit matrix is at the nominal measurement level; whenmlevelis
2 it is at the ordinal measurement level.

quanti specifies anm � n matrix of quantitative information assumed to
be at the interval level of measurement.

qualit specifies anm � n matrix of qualitative information whose level
of measurement is specified bymlevel. Whenqualit is omitted,
mlevelmust be 2. When omitted, a temporaryqualit is constructed
that contains the integers from 1 ton in the first row, fromn + 1
to 2n in the second row, from2n+ 1 to 3n in the third row, and so
forth, up to the integers(m�1)n tomn in the last(mth) row. Note
that you cannot specifyqualit as a character matrix.

The result of the OPSCAL function is the optimal scaling transformation of the qual-
itative (nominal or ordinal) data inqualit. The optimal scaling transformation result

� is a least-squares fit to the quantitative data inquanti

� preserves the qualitative measurement level ofqualit

The OPSCAL function performs as a function or call. When used as a call, the first
argument of the call is the matrix to contain the result returned.

When qualit is at the nominal level of measurement, the optimal scaling transfor-
mation result is a least-squares fit toquanti, given the restriction that the category
structure ofqualit must be preserved. If elementi of qualit is in categoryc, then ele-
menti of the optimum scaling transformation result is the mean of all those elements
of quanti that correspond to elements ofqualit that are in categoryc.

For example, consider these statements:

quanti={5 4 6 7 4 6 2 4 8 6};
qualit={6 6 2 12 4 10 4 10 8 6};
os=opscal(1,quanti,qualit);

The resulting vectorOS has the following values:

OS 1 row 10 cols (numeric)

5 5 6 7 3 5 3
: 5 8 5

SAS OnlineDoc: Version 8

OPSCAL Function � 677

The optimal scaling transformation result is said to preserve the nominal measure-
ment level ofqualit because wherever there was aqualit categoryc, there is now a
result category labelv. The transformation is least squares because the result element
v is the mean of appropriate elements ofquanti. This is Young’s (1981) discrete-
nominal transformation.

Whenqualit is at the ordinal level of measurement, the optimal scaling transformation
result is a least-squares fit toquanti, given the restriction that the ordinal structure of
qualit must be preserved. This is done by determining blocks of elements ofqualit so
that if elementi of qualit is in blockb, then elementi of the result is the mean of all
thosequantielements corresponding to blockb elements ofqualit so that the means
are (weakly) in the same order as the elements ofqualit. For example, consider these
statements:

quanti={5 4 6 7 4 6 2 4 8 6};
qualit={6 6 2 12 4 10 4 10 8 6};
os=opscal(2,quanti,qualit);

The resulting vectorOS has the following values:

OS 1 row 10 cols (numeric)

5 5 4 7 4 6 4
: 6 6 5

This transformation preserves the ordinal measurement level ofqualit because the
elements ofqualit and the result are (weakly) in the same order. It is least-squares
because the result elements are the means of appropriate elements ofquanti. By
comparing this result to the nominal one, you see that categories whose means are
incorrectly ordered have been merged together to form correctly ordered blocks. This
is known as Kruskal’s (1964) least-squares monotonic transformation. Consider the
following statements:

quanti={5 3 6 7 5 7 8 6 7 8};
os=opscal(2,quanti);

These statements imply that

qualit={ 1 2 3 4 5 6 7 8 9 10} ;

which means that the resulting vector has the values

OS 1 row 10 cols (numeric)

4 4 6 6 6 7 7
: 7 7 8

SAS OnlineDoc: Version 8

678 � Chapter 17. Language Reference

ORPOL Function

generates orthogonal polynomials

ORPOL(vector<, maxdegree<, weights>>)

The inputs to the ORPOL function are as follows:

vector is ann� 1 (or 1� n) vector of values over which the polynomials
are to be defined.

maxdegree specifies the maximum degree polynomial to be computed.
Note that the number of columns in the computed result is
1+maxdegree, whether maxdegreeis specified or the default
value is used. Ifmaxdegreeis omitted, IML uses the default
valuemin(n; 19). If weightsis specified,maxdegree mustalso be
specified.

weights specifies ann � 1 (or 1 � n) vector of nonnegative weights to be
used in defining orthogonality:

P0 � diag(weights)P = I :

If you specifyweights, youmustalso specifymaxdegree. If maxde-
greeis not specified or is specified incorrectly, the default weights
(all weights are 1) are used.

The ORPOL matrix function generates orthogonal polynomials. The result is a
column-orthonormal matrixP with the same number of rows as the vector and with
maxdegree+1 columns:

P0diag(weights)P = I :

The result is computed such thatP[i; j] is the value of a polynomial of degreej � 1
evaluated at theith element of the vector.

The maximum number of nonzero orthogonal polynomials (r) that can be computed
from the vector and the weights is the number of distinct values in the vector, ignoring
any value associated with a zero weight.

The polynomial of maximum degree has degree ofr � 1. If the value ofmaxdegree
exceedsr� 1, then columnsr+ 1, r+ 2,. . . ,maxdegree+1 of the result are set to 0.
In this case,

P0diag(weights)P =

�
I(r) 0
0 0 � J(maxdegree+ 1� r)

�

SAS OnlineDoc: Version 8

ORTVEC Call � 679

The statement below results in a matrix with 3 orthogonal columns:

orpol=orpol(1:5,2);

ORPOL 5 rows 3 cols (numeric)

0.4472136 -0.632456 0.5345225
0.4472136 -0.316228 -0.267261
0.4472136 0 -0.534522
0.4472136 0.3162278 -0.267261
0.4472136 0.6324555 0.5345225

See “Acknowledgments” in the front of this book for authorship of the ORPOL func-
tion.

ORTVEC Call

provides columnwise orthogonalization by the Gram-Schmidt process and step-
wise QR decomposition by the Gram-Schmidt process

CALL ORTVEC(w, r, �, lindep, v <, q>);

The ORTVEC subroutine returns the following values:

w If the Gram-Schmidt process converges (lindep=0), w is them � 1
vectorw orthonormal to the columns ofQ, which is assumed to have
n � m (nearly) orthonormal columns. If the Gram-Schmidt process
does not converge (lindep=1), w is a vector of missing values. For
stepwise QR decomposition,w is the(n + 1)th orthogonal column of
the matrixQ. If there is no matrixQ, that is, if theq argument is not
specified,w is the normalized value of the vectorv,

w =
vp
v0v

r If the Gram-Schmidt process converges (lindep=0), r specifies then�1
vectorr of Fourier coefficients. If the Gram-Schmidt process does not
converge (lindep=1), r is a vector of missing values. If theq argument
is not specified,r is a vector with zero dimension. For stepwise QR
decomposition,r contains then upper triangular elements of the(n+

1)th column ofR.

� If the Gram-Schmidt process converges (lindep=0), � specifies the dis-
tance fromw to the range ofQ. Even if the Gram-Schmidt process
converges, if� is sufficiently small, the vectorv may be linearly de-
pendent on the columns ofQ. If the Gram-Schmidt process does not
converge (lindep=1), � is set to 0. For stepwise QR decomposition,�

contains the diagonal element of the(n+ 1)th column ofR.

SAS OnlineDoc: Version 8

680 � Chapter 17. Language Reference

lindep returns a value of 1 if the Gram-Schmidt process does not converge in
10 iterations. In most cases, iflindep=1, the input vectorv is linearly
dependent on then columns of the input matrixQ. In that case,� is
set to 0, and the resultsw andr contain missing values. Iflindep=0,
the Gram-Schmidt process did converge, and the resultsw, r, and� are
computed.

The inputs to the ORTVEC subroutine are as follows:

v specifies anm�1 vectorv that is to be orthogonalized to then columns
of Q. For stepwise QR decomposition of a matrix,v is the(n + 1)th

matrix column before its orthogonalization.

q specifies an optionalm � n matrixQ that is assumed to haven � m
(nearly) orthonormal columns. Thus, then�nmatrixQ0Q should ap-
proximate the identity matrix. The column orthonormality assumption
is not tested in the ORTVEC call. If it is violated, the results are not
predictable. The argumentq can be omitted or can have zero rows and
columns. For stepwise QR decomposition of a matrix,q contains the
first n matrix columns that are already orthogonal.

The relevant formula for the ORTVEC subroutine is

v = Qr+ �w

Assuming that them�nmatrixQ hasn (nearly) orthonormal columns, the ORTVEC
subroutine orthogonalizes the vectorv to the columns ofQ. The vectorr is the array
of Fourier coefficients, and� is the distance fromw to the range ofQ.

There are two special cases:

� If m > n, ORTVEC normalizes the resultw, so thatw0w = 1.

� If m = n, the output vectorw is the null vector.

The casem < n is not possible sinceQ is assumed to haven (nearly) orthonormal
columns.

To initialize a stepwise QR decomposition, ORTVEC can be called to normalizev

only, that is, to computew = v=
p
v0v and� =

p
v0v only. There are two ways of

using the ORTVEC call for this reason:

� Omit the last argumentq, as incall ortvec(w,r,rho,lindep,v); .

� Provide a matrixQ with zero rows and columns, for example, by using the
free q; command.

In both cases,r is a column vector with zero rows.

SAS OnlineDoc: Version 8

ORTVEC Call � 681

The ORTVEC subroutine is useful for the following applications:

� performing stepwise QR decomposition. ComputeQ andR, so thatA = QR,
whereQ is column orthonormal,Q0Q = I, andR is upper triangular. Thejth
step is applied to thejth column,v, ofA, and it computes thejth columnw
of Q and thejth column,(r � 0)0, ofR.

� computing them� (m�n) null space matrix,Q2, corresponding to anm�n
range space matrix,Q1 (m > n), by the following stepwise process: setv =
ei (whereei is theith unit vector) and try to make it orthogonal to all column
vectors ofQ1 and the already generatedQ2, if the subroutine is successful,
appendw toQ2; otherwise, tryv = ei+1.

The 4 � 3 matrix Q contains the unit vectorse1; e3, ande4. The column vector
v is pairwise linearly independent with the three columns ofQ. As expected, the
ORTVEC call computes the vectorw as the unit vectore2 with u = (1; 1; 1) and
� = 1.

proc iml;
q = { 1 0 0,

0 0 0,
0 1 0,
0 0 1 };

v = { 1, 1, 1, 1 };
call ortvec(w,u,rho,lindep,v,q);
print rho u w;

You can perform the QR decomposition of the linearly independent columns of an
m� n matrixA with the following statements:

proc iml;
a = { . . . enter matrix A here . . . };
nind = 0; ndep = 0; dmax = 0.;
n = ncol(a); m = nrow(a);
free q;
do j = 1 to n;

v = a[,j];
call ORTVEC(w,u,rho,lindep,v,q);
aro = abs(rho);
if aro > dmax then dmax = aro;
if aro <= 1.e-10 * dmax then lindep = 1;
if lindep = 0 then do;

nind = nind + 1;
q = q || w;
if nind = n then r = r || (u // rho);
else r = r || (u // rho // j(n-nind,1,0.));

end;
else do;

print "Column " j " is linearly dependent.";
ndep = ndep + 1; ind[ndep] = j;

end;
end;

SAS OnlineDoc: Version 8

682 � Chapter 17. Language Reference

Next, process the remaining columns ofA:

do j = 1 to ndep;
k = ind[ndep-j+1];
v = a[,k];
call ORTVEC(w,u,rho,lindep,v,q);
if lindep = 0 then do;

nind = nind + 1;
q = q || w;
if nind = n then r = r || (u // rho);
else r = r || (u // rho // j(n-nind,1,0.));

end;
end;

Now compute the null space in the last columns ofQ:

do i = 1 to m;
if nind < m then do;

v = j(m,1,0.); v[i] = 1.;
call ORTVEC(w,u,rho,lindep,v,q);
aro = abs(rho);
if aro > dmax then dmax = aro;
if aro <= 1.e-10 * dmax then lindep = 1;
if lindep = 0 then do;

nind = nind + 1;
q = q || w;

end;
else print "Unit vector" i "linearly dependent.";

end;
end;
if nind < m then do;

print "This is theoretically not possible.";
end;

PARSE Statement

parses matrix elements as statements

PARSE matrices <(matrix-names)>;

The inputs to the PARSE statement are as follows:

matrices are character matrices containing IML module statements.

(matrix-names) are character matrices whose elements are the names of character
matrices containing IML module statements.

Use the PARSE statement to parse the elements of a character matrix containing IML
module statements. For example, the following statement parses the elements (rows)
of matrixA as lines of code.

SAS OnlineDoc: Version 8

PAUSE Statement � 683

parse a;

You can parse several matrices with one PARSE statement either by listing all of their
names in the statement or by first creating a character matrix, sayN, containing their
names as elements and then parsingN. Each element ofN is the name of a matrix
containing IML module statements. In this case, encloseN in parentheses in the
PARSE statement to indicate the indirect references to the elements ofN.

For example, the statements

a={"start mod1;",
"x={1 2 3};",
"print x;",
"finish;"};

parse a;
run mod1;

produce the result

NOTE: Module MOD1 defined.

X
1 2 3

Alternatively, you can use the following statements to obtain the same result:

a={"start mod1;",
"x={1 2 3};",
"print x;",
"finish;"};

c={a};
parse (c);
run mod1;

PAUSE Statement

interrupts module execution

PAUSE <expression> <*>;

The inputs to the PAUSE statement are as follows:

expression is a character matrix or quoted literal giving a message to print.

* suppresses any messages.

The PAUSE statement stops execution of a module, saves the calling chain so that
execution can resume later (by a RESUME statement), prints a pause message that
you can specify, and puts you in immediate mode so you can enter more statements.

You can specify an operand in the PAUSE statement to supply a message to be printed
for the pause prompt. If no operand is specified, the default message,

SAS OnlineDoc: Version 8

684 � Chapter 17. Language Reference

paused in module XXX

is printed, whereXXX is the name of the module containing the pause. If you want to
suppress all messages in a PAUSE statement, use an asterisk as the operand:

pause *;

The PAUSE statement should only be specified in modules. It generates a warning if
executed in immediate mode.

When an error occurs while executing inside a module, IML automatically behaves
as though a PAUSE statement was issued. PROC IML prints a note saying

paused in module

and IML puts you in immediate mode within the module environment, where you
can correct the error. You can then resume execution from the statement following
the one where the error occurred by issuing a RESUME command.

IML supports pause processing of both subroutine and function modules. See also
the description of the SHOW statement using the PAUSE option.

PGRAF Call

produces scatter plots

CALL PGRAF(xy <, id><, xlabel><, ylabel><, title>);

The inputs to the PGRAF subroutine are as follows:

xy is ann� 2 matrix of (x; y) points.

id is ann� 1 character matrix of labels for each point. The PGRAF
subroutine uses up to 8 characters per point. Ifid is a scalar (1 �
1), then the same label is used for all of the points. The label is
centered over the actual point location. If you do not specifyid, x

is the default character for labeling the points.

xlabel is a character scalar or quoted literal that labels thex axis (centered
below thex axis).

ylabel is a character scalar or quoted literal that labels they axis (printed
vertically to the left of they axis).

title is a character scalar or quoted literal printed above the graph.

The PGRAF subroutine produces a scatter plot suitable for display on a line printer
or similar device.

The statements below specify a plotting symbol, axis labels, and a title to produce the
plot shown.

SAS OnlineDoc: Version 8

POLYROOT Function � 685

xy={1 2, 3 3, 5 4, 6 2};
call pgraf(xy,’*’,’X’,’Y’,’Plot of X vs Y’);

Plot of X vs Y
|

4 + *
|
|
|

Y |
3 + *

|
|
|
|

2 + * *
--+------+------+------+------+------+-

1.0 2.0 3.0 4.0 5.0 6.0

X

POLYROOT Function

finds zeros of a real polynomial

POLYROOT(vector)

wherevector is ann � 1 (or 1 � n) vector containing the coefficients of an (n � 1)
degree polynomial with the coefficients arranged in order of decreasing powers. The
POLYROOT function returns the arrayr, which is an(n� 1)� 2 matrix containing
the roots of the polynomial. The first column ofr contains the real part of the com-
plex roots and the second column contains the imaginary part. If a root is real, the
imaginary part will be 0.

The POLYROOT function finds the real and complex roots of a polynomial with real
coefficients.

The POLYROOT function uses an algorithm proposed by Jenkins and Traub (1970)
to find the roots of the polynomial. The algorithm is not guaranteed to find all roots of
the polynomial. An appropriate warning message is issued when one or more roots
cannot be found. The POLYROOT algorithm produces roots within the precision
allowed by the hardware. Ifr is given as a root of the polynomialP (x), then1 +
P (R) = 1 based on the roundoff error of the computer that is employed.

For example, to find the roots of the polynomial

P (x) = 0:2567x4 + 0:1570x3 + 0:0821x2 � 0:3357x + 1

use the following IML code to produce the result shown.

SAS OnlineDoc: Version 8

686 � Chapter 17. Language Reference

p={0.2567 0.1570 0.0821 -0.3357 1};
r=polyroot(p);

R 4 rows 2 cols (numeric)

0.8383029 0.8514519
0.8383029 -0.851452
-1.144107 1.1914525
-1.144107 -1.191452

The polynomial has two conjugate pairs of roots that, within machine precision, are
given byr = 0:8383029 � 0:8514519i andr = �1:144107 � 1:1914525i.

PRINT Statement

prints matrix values

PRINT <matrices> <(expression)> <"message">
<pointer-controls> <[options]>;

The inputs to the PRINT statement are as follows:

matrices are the names of matrices.

(expression) is an expression in parentheses that is evaluated. The result of the
evaluation is printed. The evaluation of a subscripted matrix used
as an expression results in printing the submatrix.

"message" is a message in quotes.

pointer-controls control the pointer for printing. For example, using a comma (,)
skips a single line and using a slash (/) skips to a new page.

[options] are described below.

The PRINT statement prints the specified matrices or message. The options below
can appear in the PRINT statement. They are specified in brackets after the matrix
name to which they apply.

COLNAME=matrix
specifies the name of a character matrix whose firstncol elements are to be used for
the column labels of the matrix to be printed, wherencol is the number of columns in
the matrix. (You can also use the RESETautonamestatement to automatically label
columns as COL1, COL2, and so on.)

FORMAT=format
specifies a valid SAS or user-defined format to use in printing the values of the matrix,
for example,

print x[format=5.3];

SAS OnlineDoc: Version 8

PRINT Statement � 687

ROWNAME=matrix
specifies the name of a character matrix whose firstnrow elements are to be used for
the row labels of the matrix to be printed, wherenrow is the number of rows in the
matrix and where the scan to find the firstnrow elements goes across row 1, then
across row 2, and so forth through rown. (You can also use the RESETautoname
statement to automatically label rows as ROW1, ROW2, and so on.)

reset autoname;

For example, you can use the statement below to print a matrix calledX in format
12.2 with columns labeled AMOUNT and NET PAY, and rows labeled DIV A and
DIV B:

x={45.125 50.500,
75.375 90.825};

r={"DIV A" "DIV B"};
c={"AMOUNT" "NET PAY"};

print x[rowname=r colname=c format=12.2];

The output is

X AMOUNT NET PAY

DIV A 45.13 50.50
DIV B 75.38 90.83

To permanently associate the above options with a matrix name, refer to the descrip-
tion of the MATTRIB statement.

If there is not enough room to print all the matrices across the page, then one or
more matrices are printed out in the next group. If there is not enough room to print
all the columns of a matrix across the page, then the columns are folded, with the
continuation lines identified by a colon(:).

The spacing between adjacent matrices can be controlled by the SPACES= option
of the RESET statement. The FW= option of the RESET statement can be used
to control the number of print positions used to print each numeric element. For
more print-related options, see the description of the RESET statement. The example
below shows how to print part of a matrix:

y=1:10;
/* prints first five elements of y*/

print (y[1:5]) [format=5.1];

SAS OnlineDoc: Version 8

688 � Chapter 17. Language Reference

PRODUCT Function

multiplies matrices of polynomials

PRODUCT(a, b <, dim>)

The inputs to the PRODUCT function are as follows:

a is anm � (ns) numeric matrix. The firstm � n submatrix contains the
constant terms of the polynomials, the secondm � n submatrix contains
the first order terms, and so on.

b is ann� (pt) matrix. The firstn� p submatrix contains the constant terms
of the polynomials, the secondn � p submatrix contains the first order
terms, and so on.

dim is a1� 1 matrix, with valuep > 0. The value of this matrix is used to set
p above. If omitted, the value ofp is set to 1.

The PRODUCT function multiplies matrices of polynomials. The value returned is
them� (p(s+ t� 1)) matrix of the polynomial products. The firstm� p submatrix
contains the constant terms, the secondm�p submatrix contains the first order terms,
and so on.

Note: The PRODUCT function can be used to multiply the matrix operators em-
ployed in a multivariate time-series model of the form

�1(B)�2(B)Yt = �1(B)�2(B)�t

where�1(B), �2(B), �1(B), and�2(B) are matrix polynomial operators whose
first matrix coefficients are identity matrices. Often�2(B) and�2(B) represent
seasonal components that are isolated in the modeling process but multiplied with
the other operators when forming predictors or estimating parameters. The RATIO
function is often employed in a time series context as well.

For example, the statement

r=product({1 2 3 4,
5 6 7 8},

{1 2 3,
4 5 6}, 1);

produces the result

R 2 rows 4 cols (numeric)

9 31 41 33
29 79 105 69

SAS OnlineDoc: Version 8

PUSH Call � 689

PURGE Statement

removes observations marked for deletion and renumbers records

PURGE;

The PURGE data processing statement is used to remove observations marked for
deletion and to renumber the remaining observations. This closes the gaps created
by deleted records. Execution of this statement may be time consuming because it
involves rewriting the entire data set.

CAUTION: Any indexes associated with the data set are lost after a purge.

IML does not do an automatic purge for you at quit time.

In the example that follows, a data set named A is created. Then, you begin an
IML session and edit A. You delete the fifth observation, list the data set, and is-
sue a PURGE statement to delete the fifth observation and renumber the remaining
observations.

data a;
do i=1 to 10;

output;
end;

run;

proc iml;
edit a;
delete point 5;
list all;
purge;
list all;

PUSH Call

pushes SAS statements into the command input stream

CALL PUSH(argument1<, argument2,: : :, argument15>);

whereargumentis a character matrix or quoted literal containing valid SAS state-
ments.

The PUSH subroutine pushes character arguments containing valid SAS statements
(usually SAS/IML statements or global statements) to the input command stream.
You can specify up to 15 arguments. Any statements pushed to the input command
queue get executed when the module is put in a hold state. This is usually induced by
one of the following:

� an execution error within a module

SAS OnlineDoc: Version 8

690 � Chapter 17. Language Reference

� an interrupt

� a pause command

The string pushed is read before any other lines of input. If you call the PUSH
subroutine several times, the strings pushed each time are ahead of the less recently
pushed strings. If you would rather place the lines after others in the input stream,
then use the QUEUE command instead.

The strings you push do not appear on the log.

CAUTION: Do not push too much code at one time.

Pushing too much code at one time, or getting into infinite loops of pushing, causes
problems that may result in exiting the SAS system.

For details, see Chapter 15, “Using SAS/IML Software to Generate IML
Statements.”

An example using the PUSH subroutine is shown below:

start;
code=’reset pagesize=25;’;
call push(code,’resume;’);
pause;

/* show that pagesize was set to 25 during */
/* a PAUSE state of a module */

show options;
finish;
run;

PUT Statement

writes data to an external file

PUT <operand> <record-directives> <positionals> <format>;

The inputs to the PUT statement are as follows:

operand specifies the value you want to output to the current position
in the record. Theoperandcan be either a variable name, a
literal value, or an expression in parentheses. Theoperandcan
be followed immediately by an output format specification.

record-directives start new records. There are three types:

holding@ at the end of a PUT statement, instructs IML
to put a hold on the current record so that
IML can write more to the record with later
PUT statements. Otherwise, IML automati-
cally begins the next record for the next PUT
statement.

SAS OnlineDoc: Version 8

PV Function � 691

/ writes out the current record and begins
forming a new record.

> operand specifies that the next record written will
start at the indicated byte position in the file
(for RECFM=N files only). Theoperandis
a literal number, a variable name, or an ex-
pression in parentheses, for example,

put >3 x 3.2;

positionals specify the column on the record to which the PUT statement
should go. There are two types of positionals:

@ operand specifies to go to the indicated column,
whereoperandis a literal number, a variable
name, or an expression in parentheses. For
example, @30 means to go to column 30.

+ operand specifies that the indicated number of
columns are to be skipped, whereoperand
is a literal number, a variable name, or an
expression in parentheses.

format specifies a valid SAS or user-defined output format. These are
of the formw:d or $w. for standard numeric and character
formats, respectively, wherew is the width of the field andd
is the decimal parameter, if any. They can also be a named
format of the formNAMEw:d, whereNAMEis the name of the
format. If the width is unspecified, then a default width is used;
this is 9 for numeric variables.

The PUT statement writes to the file specified in the previously executed FILE state-
ment, putting the values from IML variables. The statement is described in detail in
Chapter 7, “File Access.”

The PUT statement is a sequence of positionals and record directives, variables, and
formats. An example using the PUT statement is shown below:

/* output variable A in column 1 using SAS format 6.4. */
/* Skip 3 columns and output X using format 8.4 */

put @1 a 6.4 +3 x 8.4;

PV Function

calculates the present value of a vector of cash-flows and returns a scalar

PV(times; flows; freq; rates)

The PV function returns a scalar containing the present value of the cash-flows
based on the specified frequency and rates.

SAS OnlineDoc: Version 8

692 � Chapter 17. Language Reference

times is an n x 1 column vector of times.
Elements should be non-negative.

flows is an n x 1 column vector of cash-flows.

freq is a scalar which represents the base of the rates
to be used for discounting the cash-flows.
If positive, it represents discrete compounding
as the reciprocal of the number of compoundings.
If zero, it represents continuous compounding.
If -1, it represents per-period discount factors.
No other negative values are allowed.

rates is an n x 1 column vector of rates
to be used for discounting the cash-flows.
Elements should be positive.

A general present value relationship can be written as

P =

KX
k=1

c(k)D(tk)

whereP is the present value of the asset,fc(k)gk = 1; ::K is the sequence of cash-
flows from the asset,tk is the time to thek-th cash-flow in periods from the present,
andD(t) is the discount function for timet.
With per-unit-time-period discount factorsdt:

D(t) = dtt

With continuous compunding:

D(t) = e�rtt

With discrete compunding:

D(t) = (1 + fr)�(t=f)

wheref > 0 is the frequency, the reciprocal of the number of compoundings per unit
time period.

Example

proc iml;
timesn=do(1,100,1);
timesn=T(timesn);
flows=repeat(10,100);
freq={0};

SAS OnlineDoc: Version 8

QR Call � 693

do while(freq<50);
freq=freq+.25;
end;
rate=repeat(.10,100);
pv=pv(timesn,flows,freq,rate);

print pv;
quit;

PV
266.4717

QR Call

produces the QR decomposition of a matrix by Householder transformations

CALL QR(q, r, piv, lindep, a <, ord><, b>);

The QR subroutine returns the following values:

q specifies an orthogonal matrixQ that is the product of the Householder
transformations applied to them�nmatrixA, if the b argument is not
specified. In this case, themin(m;n) Householder transformations are
applied, andq is anm�mmatrix. If theb argument is specified,q is the
m�pmatrixQ0B that has the transposed Householder transformations
Q0 applied on thep columns of the argument matrixB.

r specifies amin(m;n) � n upper triangular matrixR that is the upper
part of them � n upper triangular matrixeR of the QR decomposi-
tion of the matrixA. The matrixeR of the QR decomposition can be
obtained by vertical concatenation (using the IML operator //) of the
(m�min(m;n))� n zero matrix to the result matrixR.

piv specifies ann � 1 vector of permutations of the columns ofA; that
is, on return, the QR decomposition is computed, not ofA, but of the
permuted matrix whose columns are[Apiv[1] � � �Apiv[n]]. The vector
piv corresponds to ann� n permutation matrix�.

lindep is the number of linearly dependent columns in matrixA detected
by applying themin(m;n) Householder transformations in the order
specified by the argument vectorpiv.

The inputs to the QR subroutine are as follows:

a specifies anm� n matrixA that is to be decomposed into the product
of the orthogonal matrixQ and the upper triangular matrixeR.

ord specifies an optionaln�1 vector that specifies the order of Householder
transformations applied to matrixA, as follows:

ord[j] > 0 Columnj ofA is aninitial column, meaning it has to
be processed at the start in increasing order oford[j].

SAS OnlineDoc: Version 8

694 � Chapter 17. Language Reference

ord[j] = 0 Columnj ofA is allowed to be permuted in order of
decreasing residual Euclidean norm (pivoting).

ord[j] < 0 Columnj of A is afinal column, meaning it has to
be processed at the end in decreasing order oford[j].

The default isord[j] = j, in which case the Householder transforma-
tions are done in the same order that the columns are stored in matrix
A (without pivoting).

b specifies an optionalm � p matrix B that is to be multiplied by the
transposedm�m matrixQ0. If b is specified, the resultq contains the
m�pmatrixQ0B. If b is not specified, the resultq contains them�m
matrixQ.

The QR subroutine decomposes anm � n matrixA into the product of anm �m
orthogonal matrixQ and anm� n upper triangular matrixeR, so that

A� = QeR; Q0Q = QQ0 = Im

by means ofmin(m;n) Householder transformations.

Them � m orthogonal matrixQ is computed only if the last argumentb is not
specified, as follows:

call qr(q,r,piv,lindep,a,ord);

In many applications, the number of rows,m, is very large. In these cases, the explicit
computation of them�m matrixQ can require too much memory or time.

In the usual case wherem > n,

A =

266664
� � �
� � �
� � �
� � �
� � �

377775 Q =

266664
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

377775

eR =

266664
� � �
0 � �
0 0 �
0 0 0
0 0 0

377775 R =

24 � � �
0 � �
0 0 �

35

Q =

�
Q1

...Q2

�
; eR =

�
R

0

�
whereR is the result returned by the QR subroutine.

Then columns of matrixQ1 provide an orthonormal basis for then columns ofA
and are called therange spaceofA. Since them�n columns ofQ2 are orthogonal to

SAS OnlineDoc: Version 8

QR Call � 695

then columns ofA,Q0
2A = 0, they provide an orthonormal basis for the orthogonal

complement of the columns ofA and are called thenull spaceofA.

In the case wherem < n,

A =

24 � � � � �
� � � � �
� � � � �

35 Q =

24 � � �
� � �
� � �

35

eR = R =

24 � � � � �
0 � � � �
0 0 � � �

35
Specifying the argumentord as ann vector lets you specify a special order of the
columns in matrixA on which the Householder transformations are applied. When
you specify theord argument, the columns ofA can be divided into the following
groups:

� ord[j] > 0: Columnj ofA is aninitial column, meaning it has to be processed
at the start in increasing order oford[j]. This specification defines the firstnl
columns ofA that are to be processed.

� ord[j] = 0: Columnj of A is a pivot column, meaning it is to be processed
in order of decreasing residual Euclidean norms. Thepivot columnsof A are
processed after thenl initial columnsand before thenu final columns.

� ord[j] < 0: Columnj of A is afinal column, meaning it has to be processed
at the end in decreasing order oford[j]. This specification defines the lastnu
columns ofA that are to be processed. Ifn > m, some of these columns will
not be processed at all.

There are two special cases:

� If you do not specify theord argument, the default valuesord[j] = j are used.
In this case, Householder transformations are done in the same order in which
the columns are stored inA (without pivoting).

� If you set all components oford to zero, the Householder transformations are
done in order of decreasing Euclidean norms of the columns ofA.

The resultingn�1 vectorpiv specifies the permutation of the columns ofA on which
the Householder transformations are applied; that is, on return, the QR decomposition
is computed, not ofA, but of the matrix with columns that are permuted in the order
Apiv[1]; : : : ;Apiv[n].

To check the QR decomposition, use the following statements to compute the three
residual sum of squares, represented by the variables SS0, SS1, and SS2, which
should be close to zero:

m = nrow(a); n = ncol(a);
call qr(q,r,piv,lindep,a,ord);

SAS OnlineDoc: Version 8

696 � Chapter 17. Language Reference

ss0 = ssq(a[,piv] - q[,1:n] * r);
ss1 = ssq(q * q‘ - i(m));
ss2 = ssq(q‘ * q - i(m));

If the QR subroutine detects linearly dependent columns while processing matrixA,
the column order given in the result vectorpiv can differ from an explicitly specified
order in the argument vectorord. If a column ofA is found to be linearly dependent
on columns already processed, this column is swapped to the end of matrixA. The
order of columns in the result matrixR corresponds to the order of columns processed
in A. The swapping of a linearly dependent column ofA to the end of the matrix
corresponds to the swapping of the same column inR and leads to a zero row at the
end of the upper triangular matrixR.

The scalar resultlindep counts the number of linearly dependent columns that are
detected in constructing the firstmin(m;n) Householder transformations in the order
specified by the argument vectorord. The test of linear dependence depends on the
size of the singularity criterion used; currently it is specified as 1E�8.

Solving the linear systemRx = Q0b with an upper triangular matrixR whose
columns are permuted corresponding to the result vectorpiv leads to a solutionx
with permuted components. You can reorder the components ofx by using the index
vectorpiv at the left-hand side of an expression, as follows:

call qr(qtb,r,piv,lindep,a,ord,b);
x[piv] = inv(r) * qtb[1:n,1:p];

The following example solves the full rank linear least-squares problem. Specify the
argumentb as anm� p matrixB, as follows:

call qr(q,r,piv,lindep,a,ord,b);

When you specify theb argument, the QR call computes the matrixQ0B (instead
of Q) as the resultq. Now you can compute thep least-squares solutionsxk of an
overdetermined linear system with anm� n;m > n coefficient matrixA, rank(A)
= n, andp right-hand sidesbk stored as the columns of them� p matrixB:

min
xk

kAxk � bkk2; k = 1; : : : ; p

wherek �k is the Euclidean vector norm. This is accomplished by solving thep upper
triangular systems with back-substitution:

xk = �
0R�1Q0

1bk; k = 1; : : : ; p

For most applications,m, the number of rows ofA, is much larger thann, the number
of columns ofA, orp, the number of right-hand sides. In these cases, you are advised
not to compute the largem �m matrixQ (which can consume too much memory
and time) if you can solve your problem by computing only the smallerm�p matrix
Q0B implicitly. For an example, use the first five columns of the6� 6 Hilbert matrix
A.

SAS OnlineDoc: Version 8

QUAD Call � 697

proc iml;
a= { 36 -630 3360 -7560 7560 -2772,

-630 14700 -88200 211680 -220500 83160,
3360 -88200 564480 -1411200 1512000 -582120,

-7560 211680 -1411200 3628800 -3969000 1552320,
7560 -220500 1512000 -3969000 4410000 -1746360,

-2772 83160 -582120 1552320 -1746360 698544 };
b= { 463, -13860, 97020, -258720, 291060, -116424};
n = 5; aa = a[,1:n];
call qr(qtb,r,piv,lindep,aa,,b);
if lindep=0 then x=inv(r)*qtb[1:n];
print x;

Note that you are using only the firstn rows,Q0
1B, of QTB. The IF-THEN statement

of the preceding code may be replaced by the more efficient TRISOLV function, as
follows:

if lindep=0 then x=TRISOLV(1,r,qtb[1:n],piv);
print x;

Both cases produce the following output:

X
1

0.5
0.3333333

0.25
0.2

For information on solving rank-deficient linear least-squares problems, see the
RZLIND call.

QUAD Call

performs numerical integration of scalar functions in one dimension over infi-
nite, connected semi-infinite, and connected finite intervals

CALL QUAD(r, "fun", points <, EPS=eps><, PEAK=peak>
<, SCALE=scale><, MSG=msg><, CYCLES=cycles>);

The QUAD subroutine returns the following value:

r is a numeric vector containing the results of the integration. The size of
r is equal to the number of subintervals defined by the argumentpoints.
Should the numerical integration fail on a particular subinterval, the
corresponding element ofr is set to missing.

SAS OnlineDoc: Version 8

698 � Chapter 17. Language Reference

The inputs to the QUAD are as follows:

"fun" specifies the name of an IML module used to evaluate the integrand.

points specifies a sorted vector that provides the limits of integration over con-
nected subintervals. The simplest form of the vector provides the limits
of the integration on one interval. The first element ofpoints should
contain the left limit. The second element should be the right limit. A
missing value of.M in the left limit is interpreted as�1, and a miss-
ing value of.P is interpreted as+1. For more advanced usage of the
QUAD call, pointscan contain more than two elements. The elements
of the vector must be sorted in an ascending order. Each two consecu-
tive elements inpointsdefines a subinterval, and the subroutine reports
the integration over each specified subinterval. The use of subintervals
is important because the presence of internal points of discontinuity in
the integrand will hinder the algorithm.

eps is an optional scalar specifying the desired relative accuracy. It has a
default value of 1E�7. You can specifyepswith the keyword EPS.

peak is an optional scalar that is the approximate location of a maximum of
the integrand. By default, it has a location of 0 for infinite intervals, a
location that is one unit away from the finite boundary for semi-infinite
intervals, and a centered location for bounded intervals. You can spec-
ify peakwith the keyword PEAK.

scale is an optional scalar that is the approximate estimate of any scale in the
integrand along the independent variable (see the examples). It has a
default value of 1. You can specifyscalewith the keyword SCALE.

msg is an optional character scalar that restricts the number of messages
produced by the QUAD subroutine. Ifmsg= "NO" then it does not
produce any warning messages. You can specifymsgwith the keyword
MSG.

cycles is an optional integer indicating the number of refinements allowed to
achieve the required accuracy. It has a default value of 8. You can
specifycycleswith the keyword CYCLES.

If the dimensions of any optional argument are0� 0, the QUAD call uses its default
value.

The QUAD subroutine quad is a numerical integrator based on adaptive Romberg-
type integration techniques. Refer to Rice (1973), Sikorsky (1982), Sikorsky and
Stenger (1984), and Stenger (1973a, 1973b, 1978). Many adaptive numerical inte-
gration methods (Ralston and Rabinowitz 1978) start at one end of the interval and
proceed towards the other end, working on subintervals while locally maintaining a
certain prescribed precision. This is not the case with the QUAD call. The QUAD
call is an adaptive global-type integrator that produces a quick, rough estimate of the
integration result and then refines the estimate until achieving the prescribed accu-
racy. This gives the subroutine an advantage over Gauss-Hermite and Gauss-Laguerre

SAS OnlineDoc: Version 8

QUAD Call � 699

quadratures (Ralston and Rabinowitz 1978, Squire 1987), particularly for infinite and
semi-infinite intervals, because those methods perform only a single evaluation.

Consider the integrationZ 1

0
e�t dt

The following statements evaluate this integral:

proc iml;
/* Define the integrand */
start fun(t);

v = exp(-t);
return(v);

finish;

/* Call QUAD */
a = { 0 .P };
call quad(z,"fun",a);
print z[format=E21.14];

The integration is carried out over the interval(0;1), as specified by the variable
A. Note that the missing value in the second element of A is interpreted as1. The
values ofeps=1E�7, peak=1, scale=1, andcycles=8 are used by default.

The following code performs the integration over two subintervals, as specified by
the variable A:

proc iml;
/* Define the integrand */
start fun(t);

v = exp(-t);
return(v);

finish;

/* Call QUAD */
a = { 0 3 .P };
call quad(z,"fun",a);
print z[format=E21.14];

Note that the elements of A are in ascending order. The integration is carried out
over (0; 3) and(3;1), and the corresponding results are shown in the output. The
values ofeps=1E�7, peak=1, scale=1, andcycles=8 are used by default. To obtain
the results of integration over(0;1), use the SUM function on the elements of the
vectorZ, as follows:

b = sum(z);
print b[format=E21.14];

SAS OnlineDoc: Version 8

700 � Chapter 17. Language Reference

The purpose of thepeakand scaleoptions is to enable you to avoid analytically
changing the variable of the integration in order to produce a well-conditioned inte-
grand that permits the numerical evaluation of the integration.

Consider the integrationZ 1

0
e�10000t dt

The following statements evaluate this integral:

proc iml;
/* Define the integrand */
start fun(t);

v = exp(-10000*t);
return(v);

finish;

/* Call QUAD */
a = { 0 .P };
/* Either syntax can be used */
/* call quad(z,"fun",a,1E-10,0.0001); or */
call quad(z,"fun",a) eps=1E-10 peak=0.0001 ;
print z[format=E21.14];

Only one interval exists. The integration is carried out over(0;1). The default
values ofscale=1 andcycles=8 are used.

If you do not specify apeakvalue, the integration cannot be evaluated to the desired
accuracy, a message is printed to the LOG, and a missing value is returned. Note that
peakcan still be set to 1E�7 and the integration will be successful. The evaluation of
the integrand atpeakmust be non-zero for the computation to continue. You should
adjust the value ofpeakto get a nonzero evaluation atpeakbefore trying to adjust
scale. Reducingscaledecreases the initial step size and may lead to an increase in
the number of function evaluations per step at a linear rate.

Consider the integrationZ 1

0
e�100000(t�3)

2

dt

The following statements evaluate this integral:

proc iml;
/* Define the integrand */
start fun(t);

v = exp(-100000*(t-3)*(t-3));
return(v);

finish;
/* Call QUAD */
a = { .M .P };
call quad(z,"fun",a) eps=1E-10 peak=3 scale=0.001 ;
print z[format=E21.14];

SAS OnlineDoc: Version 8

QUAD Call � 701

Only one interval exists. The integration is carried out over(�1;1). The default
value ofcycles=8 has been used.

If you use the default value ofscale, the integral cannot be evaluated to the desired
accuracy, and a missing value is returned. The variablesscaleand cyclescan be
used to allow an increase in the number of possible function evaluations; the number
of possible function evaluations will increase linearly with the reciprocal ofscale,
but it will potentially increase in an exponential manner whencyclesis increased.
Increasing the number of function evaluations increases execution time.

When you perform double integration, you must separate the variables between the
iterated integrals. There should be a clear distinction between the variables of the
one-dimensional integration at hand and the parameters to be passed to the integrand.
Posting the correct limits of integration is also an important issue. For example,
consider the binormal probability, given by

probbnrm(a; b; �) =
1

2�
p
1� �2

Z a

�1

Z b

�1
exp

�
�x

2 � 2�xy + y2

2(1 � �2)

�
dy dx

The inner integral is

g(x; b; �) =
1

2�
p
1� �2

Z b

�1
exp

�
�x

2 � 2�xy + y2

2(1� �2)

�
dy

with parametersx and�, and the limits of integration are from�1 to b. The outer
integral is then

probbnrm(a; b; �) =
Z a

�1
g(x; b; �) dx

with the limits from�1 to a.

You can write the equation in the form of a function with the parametersa; b; � as
arguments. The following statements provide an example of this technique:

start norpdf2(t) global(yv,rho,omrho2,count);

/*---*/
/* This function is the density function and requires */
/* the variable T (passed in the argument) */
/* and a list of parameters, YV, RHO, OMRHO2, COUNT */
/* (defined in the GLOBAL clause) */
/*---*/

count = count+1;
q=(t#t-2#rho#t#yv+yv#yv)/omrho2;
p=exp(-q/2);
return(p);

finish;

SAS OnlineDoc: Version 8

702 � Chapter 17. Language Reference

start marginal(v) global(yy,yv,eps);
/*--*/
/* The inner integral */
/* The limits of integration from .M to YY */
/* YV is passed as a parameter to the inner integral*/
/*--*/

interval = .M || yy;
if (v < -12) then return(0);
yv = v;
call quad(pm,"NORPDF2",interval) eps=eps;
return(pm);

finish;

start norcdf2(a,b,rrho) global(yy,rho,omrho2,eps);
/*--*/
/* Post some global parameters */
/* YY, RHO, OMRHO2 */
/* EPS will be set from IML */
/* RHO and B cannot be arguments in the GLOBAL */
/* list at the same time */
/*--*/

rho = rrho;
yy = b;
omrho2 = 1-rho#rho;
/*--*/
/* The outer integral */
/* The limits of integration */
/*--*/
interval= .M || a;

/*--*/
/*Note that EPS the keyword = EPS the variable */
/*--*/
call quad(p,"MARGINAL",interval) eps=eps;

/*--------------------------*/
/* PER will be reset here */
/*--------------------------*/
per = 1/(8#atan(1)#sqrt(omrho2)) * p;
return(per);

finish;

/*----------------------------------*/
/*First set up the global constants */
/*----------------------------------*/
count = 0;
eps = 1E-11;

/*------------------------------------*/
/* Do the work and print the results */
/*------------------------------------*/
p = norcdf2(2,1,0.1);

SAS OnlineDoc: Version 8

QUEUE Call � 703

print p[format=E21.14];
print count;

The variable COUNT contains the number of times the NORPDF2 module is called.
Note that the value computed by the NORCDF2 module is very close to that returned
by the PROBBNRM function, as computed by the following statements:

/*--*/
/* Calculate the value with the PROBBNRM function */
/*--*/
pp = probbnrm(2,1,0.1);
print pp[format=E21.14];

Note the following:

� The iterated inner integral cannot have a left endpoint of�1. For large values
of v, the inner integral does not contribute to the answer but still needs to
be calculated to the required relative accuracy. Therefore, either cut off the
function (whenv � �12), as in the MARGINAL module in the preceding
code, or have the intervals start from a reasonable cutoff value. In addition, the
QUAD call stops if the integrands appear to be identically 0 (probably caused
by underflow) over the interval of integration.

� This method of integration (iterated, one-dimensional integrals) is extremely
conservative and requires unnecessary function evaluations. In this example,
the QUAD call for the inner integration lacks information about the final value
that the QUAD call for the outer integration is trying to refine. The lack of com-
munication between the two QUAD routines can cause useless computations
to be performed in the inner integration.

To illustrate this idea, let the relative error be 1E�11 and let the answer de-
livered by the outer integral be 0.8, as in this example. Any computation of
the inner execution of the QUAD call that yields 0.8E�11 or less will not con-
tribute to the final answer of the QUAD call for the outer integral. However,
the inner integral lacks this information, and for a given value of the parameter
yv, it attempts to compute an answer with much more precision than is neces-
sary. The lack of communication between the two QUAD subroutines prevents
the introduction of better cut-offs. Although this method can be inefficient, the
final calculations are accurate.

QUEUE Call

queues SAS statements into the command input stream

CALL QUEUE(argument1<, argument2,: : :, argument15>);

whereargumentis a character matrix or quoted literal containing valid SAS state-
ments.

SAS OnlineDoc: Version 8

704 � Chapter 17. Language Reference

The QUEUE subroutine places character arguments containing valid SAS statements
(usually SAS/IML statements or global statements) at the end of the input command
stream. You can specify up to 15 arguments. The string queued is read after other
lines of input already on the queue. If you want to push the lines in front of other
lines already in the queue, use the PUSH subroutine instead. Any statements queued
to the input command queue get executed when the module is put in a hold state. This
is usually induced by one of the following:

� an execution error within a module

� an interrupt

� a pause command.

The strings you queue do not appear on the log.

CAUTION: Do not queue too much code at one time.

Queuing too much code at one time, or getting into infinite loops of queuing, causes
problems that may result in exiting the SAS system.

For more examples, consult Chapter 15, “Using SAS/IML Software to Generate IML
Statements.”

An example using the QUEUE subroutine follows:

start mod(x);
code=’x=0;’;
call queue (code,’resume;’);
pause;

finish;
x=1;
run mod(x);
print(x);

produces

X

0

QUIT Statement

exits from IML

QUIT;

Use the QUIT statement to exit IML. If a DATA or PROC statement is encountered,
QUIT is implied. The QUIT statement is executed immediately; therefore, you can-
not use QUIT as an executable statement, that is, as part of a module or conditional
clause. (See the description of the ABORT statement.)

SAS OnlineDoc: Version 8

RANKTIE Function � 705

PROC IML closes all open data sets and files when a QUIT statement is encountered.
Workspace and symbol spaces are freed up. If you need to use any matrix values or
any module definitions in a later session, you must store them in a storage library
before you quit.

RANK Function

ranks elements of a matrix

RANK(matrix)

wherematrix is a numeric matrix or literal.

The RANK function creates a new matrix containing elements that are the ranks of the
corresponding elements ofmatrix. The ranks of tied values are assigned arbitrarily
rather than averaged. (See the description of the RANKTIE function.)

For example, the statements

x={2 2 1 0 5};
y=rank(x);

produce the vector

Y

3 4 2 1 5

The RANK function can be used to sort a vectorx:

b=x;
x[,rank(x)]=b;

X
0 1 2 2 5

The RANK function can also be used to find anti-ranks ofx:

r=rank(x);
i=r;
i[,r]=1:ncol(x);

I
4 3 1 2 5

IML does not have a function that directly computes the rank of a matrix. You can
use the following technique to compute the rank of matrix A:

rank=round(trace(ginv(a)*a));

SAS OnlineDoc: Version 8

706 � Chapter 17. Language Reference

RANKTIE Function

ranks matrix elements using tie-averaging

RANKTIE(matrix)

wherematrix is a numeric matrix or literal.

The RANKTIE function creates a new matrix containing elements that are the ranks
of the corresponding elements ofmatrix. The ranks of tied values are averaged.

For example, the statements

x={2 2 1 0 5};
y=ranktie(x);

produce the vector

Y
3.5 3.5 2 1 5

The RANKTIE function differs from the RANK function in that RANKTIE averages
the ranks of tied values, whereas RANK breaks ties arbitrarily.

RATES Function

calculates a column vector of interest rates converted from one base to another

RATES(rates; oldfreq; newfreq)

the RATES function returns an n x 1 vector of interest rates converted
from one base to another.

rates is an n x 1 column vector of rates.
Elements should be positive.

oldfreq is a scalar which represents the old base.
If positive, it represents discrete compounding
as the reciprocal of the number of compoundings.
If zero, it represents continuous compounding.
If -1, it represents discount factors.
No other negative values are allowed

newfreq is a scalar which represents the new base.
If positive, it represents discrete compounding
as the reciprocal of the number of compoundings.
If zero, it represents continuous compounding.
If -1, it represents per-period discount factors.
No other negative values are allowed

SAS OnlineDoc: Version 8

RATIO Function � 707

Let D(t) be the discount function, which is the present value of a unit amount to
be receivedt periods from now. The discount function can be expressed in three
different ways:
with per-unit-time-period discount factorsdt:

D(t) = dtt

with continuous compunding:

D(t) = e�rtt

with discrete compunding:

D(t) = (1 + fr)�(t=f)

wheref > 0 is the frequency, the reciprocal of the number of compoundings per unit
time period. TheRATES function converts between these three representations.

Exampleproc iml;
rates=do(.1,.3,.1);
oldfreq=0;
newfreq=0;
rates2=T(rates);
rates=rates(rates2,oldfreq,newfreq);
print rates;
quit;

RATES
0.1
0.2
0.3

RATIO Function

divides matrix polynomials

returns a matrix containing the terms of�(B)�1�(B) considered as a matrix of
rational functions inB that have been expanded as power series

RATIO(ar, ma, terms<, dim>)

The inputs to the RATIO function are as follows:

ar is ann� (ns) matrix representing a matrix polynomial generating function,
�(B), in the variableB. The firstn � n submatrix represents the constant
term and must be nonsingular, the secondn�n submatrix represents the first
order coefficients, and so on.

SAS OnlineDoc: Version 8

708 � Chapter 17. Language Reference

ma is ann� (mt) matrix representing a matrix polynomial generating function,
�(B), in the variableB. The firstn �m submatrix represents the constant
term, the secondn�m submatrix represents the first order term, and so on.

terms is a scalar containing the number of terms to be computed, denoted byr in
the discussion below. This value must be positive.

dim is a scalar containing the value ofm above. The default value is 1.

The RATIO function multiplies a matrix of polynomials by the inverse of another
matrix of polynomials. It is useful for expressing univariate and multivariate ARMA
models in pure moving-average or pure autoregressive forms.

Note that the order of the first two arguments is reversed from the corresponding
PROC MATRIX function.

The value returned is ann�(mr)matrix containing the terms of�(B)�1�(B)considered
as a matrix of rational functions inB that have been expanded as power series.

Note: The RATIO function can be used to consolidate the matrix operators employed
in a multivariate time-series model of the form

�(B)Yt = �(B)�t

where�(B) and�(B) are matrix polynomial operators whose first matrix coeffi-
cients are identity matrices. The RATIO function can be used to compute a truncated
form of 	(B) = �(B)�1�(B) for the equivalent infinite order model

Yt = 	(B)�t :

The RATIO function can also be employed for simple scalar polynomial division,
giving a truncated form of�(x)=�(x) for two scalar polynomials�(x) and�(x).

The cumulative sum of the elements of a column vectorx can be obtained using

ratio({ 1 -1} ,x,ncol(x));

Consider the following example for multivariate ARMA(1,1):

ar={1 0 -.5 2,
0 1 3 -.8};

ma={1 0 .9 .7,
0 1 2 -.4};

psi=ratio(ar,ma,4,2);

The matrix produced in

PSI
1 0 1.4 -1.3 2.7 -1.45 11.35

: -9.165

0 1 -1 0.4 -5 4.22 -12.1
: 7.726

SAS OnlineDoc: Version 8

RDODT and RUPDT Calls � 709

RDODT and RUPDT Calls

downdate and update QR and Cholesky decompositions

CALL RDODT(def, rup, bup, sup, r, z <, b, y <, ssq>>);
CALL RUPDT(rup, bup, sup, r, z <, b, y <, ssq>>);

The RDODT and RUPDT subroutines return the values:

def is only used for downdating, and it specifies whether the downdating of
matrixR by using theq rows in argumentz has been successful. The
resultdef=2 means that the downdating ofR by at least one row ofZ
leads to a singular matrix and cannot be completed successfully (since
the result of downdating is not unique). In that case, the resultsrup,
bup, andsupcontain missing values only. The resultdef=1 means that
the residual sum of squares,ssq, could not be downdated successfully
and the resultsupcontains missing values only. The resultdef=0 means
that the downdating ofR byZ was completed successfully.

rup is then� n upper triangular matrixR that has been updated or down-
dated by using theq rows inZ.

bup is then � p matrix B of right-hand sides that has been updated or
downdated by using theq rows in argumenty. If the argumentb is not
specified,bup is not computed.

sup is ap vector of square roots of residual sum of squares that is updated
or downdated by using theq rows of argumenty. If ssqis not specified,
supis not computed.

The inputs to the RDODT and RUPDT subroutines are as follows:

r specifies ann�nupper triangular matrixR to be updated or downdated
by theq rows inZ. Only the upper triangle ofR is used; the lower
triangle can contain any information.

z specifies aq � n matrix Z used rowwise to update or downdate the
matrixR.

b specifies an optionaln � p matrixB of right-hand sides that have to
be updated or downdated simultaneously withR. If b is specified, the
argumenty must also be specified.

y specifies an optionalq � p matrixY used rowwise to update or down-
date the right-hand side matrixB. If b is specified, the argumenty must
also be specified.

ssq is an optionalp vector that, ifb is specified, specifies the square root of
the error sum of squares that should be updated or downdated simulta-
neously withR andB.

SAS OnlineDoc: Version 8

710 � Chapter 17. Language Reference

The upper triangular matrixR of the QR decomposition of anm� n matrixA,

A = QR; whereQ0Q = QQ0 = Im

is recomputed efficiently in two cases:

� update: An n vectorz is added to matrixA.

� downdate: An n vectorz is deleted from matrixA.

Computing the whole QR decomposition of matrixA by Householder transforma-
tions requires4mn2 � 4n3=3 floating point operations, whereas updating or down-
dating the QR decomposition (by Givens rotations) of one row vectorz requires only
2n2 floating point operations.

If the QR decomposition is used to solve the full rank linear least-squares problem

min
x
kAx� bk2 = ssq

by solving the nonsingular upper triangular system

x = R�1Q0b

then the RUPDT and RDODT subroutines can be used to update or downdate the
p-transformed right-hand sidesQ0B and the residual sum-of-squaresp vector ssq
provided that for eachn vectorz added to or deleted fromA there is also ap vector
y added to or deleted from them� p right-hand-side matrixB.

If the argumentsz andy of the subroutines RUPDT and RDODT containq > 1 row
vectors for whichR (andQ0B, and eventuallyssq) is to be updated or downdated,
the process is performed stepwise by processing the rowszk (andyk), k = 1; : : : ; q,
in the order in which they are stored.

The QR decomposition of anm� n matrixA,m � n, rank(A) = n,

A = QR; whereQ0Q = QQ0 = Im

corresponds to the Cholesky factorization

C = R0R; whereC = A0A

of the positive definiten � n crossproduct matrixC = A0A. In the case where
m � n and rank(A) = n, the upper triangular matrixR computed by the QR
decomposition (with positive diagonal elements) is the same as the one computed by
Cholesky factorization except for numerical error,

A0A = (QR)0(QR) = R0R

SAS OnlineDoc: Version 8

RDODT and RUPDT Calls � 711

Adding a row vectorz to matrixA corresponds to the rank-1 modification of the
crossproduct matrixC

eC = C+ z0z; whereeC = eA0 eA
and the(m+ 1)� n matrix eA contains all rows ofA with the rowz added.

Deleting a row vectorz from matrixA corresponds to the rank-1 modification

C� = C� z0z; whereC� = A�0A�

and the(m� 1)� n matrixA� contains all rows ofA with the rowz deleted. Thus,
you can also use the subroutines RUPDT and RDODT to update or downdate the
Cholesky factorR of a positive definite crossproduct matrixC of A.

The process of downdating an upper triangular matrixR (and eventually a residual
sum-of-squares vectorssq) is not always successful. First of all, the downdated ma-
trix R could be rank deficient. Even if the downdated matrixR is of full rank, the
process of downdating can be ill conditioned and does not work well if the down-
dated matrix is close (by rounding errors) to a rank-deficient one. In these cases, the
downdated matrixR is not unique and cannot be computed by subroutine RDODT. If
R cannot be computed,defreturns 2, and the resultsrup, bup, andsupreturn missing
values.

The downdating of the residual sum-of-squares vectorssqcan be a problem, too. In
practice, the downdate formula

ssqnew=
p

ssqold� ssqdod

cannot always be computed because, due to rounding errors, the radicand can be
negative. In this case, the result vectorsupreturns missing values, anddefreturns 1.

You can use various methods to compute thep columnsxk of then � p matrixX
that minimize thep linear least-squares problems with anm � n coefficient matrix
A, m � n, rank(A) = n, andp right-hand-side vectorsbk (stored columnwise in
them� pmatrixB). The first of the following methods solves thenormal equations
and cannot be applied to the example with the6 � 5 Hilbert matrix since too much
rounding error is introduced. Therefore, use the following simple example:

proc iml;
a = { 1 3 ,

2 2 ,
3 1 };

b = { 1, 1, 1};
m = nrow(a);
n = ncol(a);
p = 1;

� Cholesky Decomposition of Crossproduct Matrix:

SAS OnlineDoc: Version 8

712 � Chapter 17. Language Reference

aa = a‘ * a; ab = a‘ * b;
r = root(aa);
x = trisolv(2,r,ab);
x = trisolv(1,r,x);

� QR Decomposition by Householder Transformations:

call qr(qtb,r,piv,lindep,a, ,b);
x = trisolv(1,r[,piv],qtb[1:n,]);

� Stepwise Update by Givens Rotations:

r = j(n,n,0.); qtb = j(n,p,0.); ssq = j(1,p,0.);
do i = 1 to m;

z = a[i,];
y = b[i,];
call rupdt(rup,bup,sup,r,z,qtb,y,ssq);
r = rup;
qtb = bup;
ssq = sup;

end;
x = trisolv(1,r,qtb);

Or equivalently:

r = j(n,n,0.);
qtb = j(n,p,0.);
ssq = j(1,p,0.);
call rupdt(rup,bup,sup,r,a,qtb,b,ssq);
x = trisolv(1,rup,bup);

� Singular Value Decomposition:

call svd(u,d,v,a);
d = diag(1 / d);
x = v * d * u‘ * b;

For the preceding3� 2 example matrixA, each method obtains the unique LS esti-
mator:

ss = ssq(a * x - b);
print ss x;

To compute the (transposed) matrixQ, you can use the following specification:

r = shape(0,n,n);
y = i(m);
qt = shape(0,n,m);
call rupdt(rup,qtup,sup,r,a,qt,y);

SAS OnlineDoc: Version 8

READ Statement � 713

READ Statement

reads observations from a data set

READ <range> <VAR operand> <WHERE(expression)>
<INTO name <[ROWNAME= row-name

COLNAME=column-name]>> ;

The inputs to the READ function are as follows:

range specifies a range of observations.

operand selects a set of variables.

expression is evaluated for being true or false.

name is the name of the target matrix.

row-name is a character matrix or quoted literal giving descriptive row labels.

column-name is a character matrix or quoted literal giving descriptive column
labels.

The clauses and options are explained below.

Use the READ statement to read variables or records from the current SAS data set
into column matrices of the VAR clause or into the single matrix of the INTO clause.
When the INTO clause is used, each variable in the VAR clause becomes a column
of the target matrix, and all variables in the VAR clause must be of the same type. If
you specify no VAR clause, the default variables for the INTO clause are all numeric
variables. Read all character variables into a target matrix by using VAR–CHAR–.

You can specify arange of observations with a keyword or by record number us-
ing the POINT option. You can use any of the following keywords to specify a
range:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the nextnumberof observations

AFTER all observations after the current one

POINToperand observations specified by number, whereoperandcan be one
of the following.

SAS OnlineDoc: Version 8

714 � Chapter 17. Language Reference

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. Theoperandin the
VAR clause can be one of the following:

� a literal containing variable names

� the name of a matrix containing variable names

� an expression in parentheses yielding variable names

� one of keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables.

Examples showing each possible way you can use the VAR clause follow.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within therangespecifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

SAS OnlineDoc: Version 8

READ Statement � 715

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

You can specify ROWNAME= and COLNAME= matrices as part of the INTO clause.
The COLNAME= matrix specifies the name of a new character matrix to be created.
This COLNAME= matrix is created in addition to the target matrix of the INTO
clause and contains variable names from the input data set corresponding to columns
of the target matrix. The COLNAME= matrix has dimension1�nvar, wherenvar is
the number of variables contributing to the target matrix.

The ROWNAME= option specifies the name of a character variable in the input data
set. The values of this variable are put in a character matrix with the same name as
the variable. This matrix has the dimensionnobs�1, wherenobs is the number of
observations in the range of the READ statement. Therange, VAR, WHERE, and
INTO clauses are all optional and can be specified in any order.

Row names created via a READ statement are permanently associated with the INTO
matrix. You do not need to use a MATTRIB statement to get this association.

For example, to read all observations from the data set variables NAME and AGE, use
a READ statement with the VAR clause and the keyword ALL for therangeoperand.
This creates two IML variables with the same names as the data set variables.

read all var{name age};

SAS OnlineDoc: Version 8

716 � Chapter 17. Language Reference

To read all variables for the 23rd observation only, use the statement

read point 23;

To read the data set variables NAME and ADDR for all observations with a STATE
value ofNJ, use the statement

read all var{name addr} where(state="NJ");

See Chapter 6, “Working with SAS Data Sets,” for further information.

REMOVE Function

discards elements from a matrix

REMOVE(matrix, indices)

The inputs to the REMOVE function are as follows:

matrix is a numeric or character matrix or literal.

indices refers to a matrix containing the indices of elements that are re-
moved frommatrix.

The REMOVE function returns as a row vector elements of the first argument, with
elements corresponding to the indices in the second argument discarded and the gaps
removed. The first argument is indexed in row-major order, as in subscripting, and
the indices must be in the range 1 to the number of elements in the first argument.
Non-integer indices are truncated to their integer part. You can repeat the indices,
and you can give them in any order. If all elements are removed, the result is a null
matrix (zero rows and zero columns).

Thus, the statement

a=remove({ 5 6, 7 8} , 3);

removes the third element, producing the result shown:

A
5 6 8

The statement

a=remove({ 5 6 7 8} , { 3 2 3 1});

causes all but the fourth element to be removed, giving the result shown:

A
8

SAS OnlineDoc: Version 8

REPEAT Function � 717

REMOVE Statement

removes matrices from storage

REMOVE <MODULE=(module-list) <matrix-list>>;

The inputs to the REMOVE statement are as follows:

module-list specifies a module or modules to remove from storage.

matrix-list specifies a matrix or matrices to remove from storage.

The REMOVE statement removes matrices or modules or both from the current li-
brary storage. For example, the statement below removes the three modules A, B,
and C and the matrix X:

remove module=(A B C) X;

The special operand–ALL – can be used to remove all matrices or all modules or
both. For example, the following statement removes everything:

remove _all_ module=_all_;

See Chapter 14, “Storage Features,” and also the descriptions of the LOAD, STORE,
RESET, and SHOW statements for related information.

RENAME Call

renames a SAS data set

CALL RENAME(<libname,> member-name, new-name);

The inputs to the RENAME subroutine are as follows:

libname is a character matrix or quoted literal containing the name of the
SAS data library.

member-name is a character matrix or quoted literal containing the current name
of the data set.

new-name is a character matrix or quoted literal containing the new data set
name.

The RENAME subroutine renames a SAS data set in the specified library. All of
the arguments can directly be specified in quotes, although quotes are not required.
If a one-word data set name is specified, the libname specified by the RESETdeflib
statement is used. Examples of valid statements follow:

call rename(’a’,’b’);
call rename(a,b);
call rename(work,a,b);

SAS OnlineDoc: Version 8

718 � Chapter 17. Language Reference

REPEAT Function

creates a new matrix of repeated values

REPEAT(matrix, nrow, ncol)

The inputs to the REPEAT function are as follows:

matrix is a numeric matrix or literal.

nrow gives the number of timesmatrix is repeated across rows.

ncol gives the number of timesmatrix is repeated across columns.

The REPEAT function creates a new matrix by repeating the values of the argu-
ment matrixnrow*ncol times,ncol times across the rows, andnrow times down the
columns. Thematrixargument can be numeric or character. For example, the follow-
ing statements result in the matrixY, repeating theX matrix twice down and three
times across:

x={ 1 2 ,
3 4} ;

y=repeat(x,2,3);

Y
1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

REPLACE Statement

replaces values in observations and updates observations

REPLACE <range> <VAR operand> <WHERE(expression)>;

The inputs to the REPLACE statement are as follows:

range specifies a range of observations.

operand selects a set of variables.

expression is evaluated for being true or false.

The REPLACE statement replaces the values of observations in a SAS data set with
current values of IML matrices with the same name. Use therange, VAR, and
WHERE arguments to limit replacement to specific variables and observations. Re-
placement matrices should be the same type as the data set variables. The REPLACE

SAS OnlineDoc: Version 8

REPLACE Statement � 719

statement uses matrix elements in row order replacing the value in theith observa-
tion with theith matrix element. If there are more observations inrangethan matrix
elements, the REPLACE statement continues to use the last matrix element.

For example, the statements below cause all occurrences ofILL to be replaced byIL
for the variable STATE:

state="IL";
replace all var{state} where(state="ILL");

You can specify arange of observations with a keyword or by record number us-
ing the POINT option. You can use any of the following keywords to specify a
range:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the nextnumberof observations

AFTER all observations after the current one

POINToperand observations by number, whereoperandcan be one of the fol-
lowing:

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. Thevariablesargument
can have the following values:

� a literal containing variable names

� the name of a matrix containing variable names

� an expression in parentheses yielding variable names

� one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

Examples showing each possible way you can use the VAR clause follow.

SAS OnlineDoc: Version 8

720 � Chapter 17. Language Reference

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data setvariables,
and the expression on the right-hand side refers to matrix values.

SAS OnlineDoc: Version 8

RESET Statement � 721

The code statement below replaces all variables in the current observation:

replace;

RESET Statement

sets processing options

RESET <options>;

where theoptionsare described below.

The RESET statement sets processing options. The options described below are cur-
rently implemented options. Note that the prefix NO turns off the feature where
indicated. For options that take operands, the operand should be a literal, a name of
a matrix containing the value, or an expression in parentheses. The SHOWoptions
statement displays the current settings of all of the options.

AUTONAME
NOAUTONAME

specifies whether rows are automatically labeled ROW1, ROW2, and so on, and
columns are labeled COL1, COL2, and so on, when a matrix is printed. Row-name
and column-name attributes specified in the PRINT statement or associated via the
MATTRIB statement override the default labels. The AUTONAME option causes
the SPACES option to be reset to 4. The default is NOAUTONAME.

CENTER
NOCENTER

specifies whether output from the PRINT statement is centered on the page. The
default is CENTER.

CLIP
NOCLIP

specifies whether SAS/IML graphs are automatically clipped outside the viewport;
that is, any data falling outside the current viewport is not displayed. NOCLIP is the
default.

DEFLIB=operand
specifies the default libname for SAS data sets when no other libname is given. This
defaults to USER if a USER libname is set up, or WORK if not. The libname operand
can be specified with or without quotes.

DETAILS
NODETAILS

specifies whether additional information is printed from a variety of operations, such
as when files are opened and closed. The default is NODETAILS.

FLOW
NOFLOW

specifies whether operations are shown as executed. It is used for debugging only.
The default is NOFLOW.

SAS OnlineDoc: Version 8

722 � Chapter 17. Language Reference

FUZZ <=number>
NOFUZZ

specifies whether very small numbers are printed as zero rather than in scientific no-
tation. If the absolute value of the number is less than the value specified innumber,
it will be printed as 0. Thenumberargument is optional, and the default value varies
across hosts but is typically around 1E�12. The default is NOFUZZ.

FW=number
sets the field width for printing numeric values. The default field width is 9.

LINESIZE=n
specifies the linesize for printing. The default value is usually 78.

LOG
NOLOG

specifies whether output is routed to the log file rather than to the print file. On
the log, the results are interleaved with the statements and messages. The NOLOG
option routes output to the OUTPUT window in display manager and to the listing
file in batch modes. The default is NOLOG.

NAME
NONAME

specifies whether the matrix name or label is printed with the value for the PRINT
statement. The default is NAME.

PAGESIZE=n
specifies the pagesize for printing. The default value is usually 21.

PRINT
NOPRINT

specifies whether the final results from assignment statements are printed automati-
cally. NOPRINT is the default.

PRINTALL
NOPRINTALL

specifies whether the intermediate and final results are printed automatically. The
default is NOPRINTALL.

SPACES=n
specifies the number of spaces between adjacent matrices printed across the page.
The default value is 1, except when AUTONAME is on. Then, the default value is 4.

STORAGE=<libname.>memname;
specifies the file to be the current library storage for STORE and LOAD statements.
The default library storage is SASUSER.IMLSTOR. Thelibnameargument is op-
tional and defaults to SASUSER. It can be specified with or without quotes.

SAS OnlineDoc: Version 8

RETURN Statement � 723

RESUME Statement

resumes execution

RESUME;

The RESUME statement enables you to continue execution from the line in the mod-
ule where the most recent PAUSE statement was executed. PROC IML issues an
automatic pause when an error occurs inside a module. If a module was paused due
to an error, the RESUME statement resumes execution immediately after the state-
ment that caused the error. The SHOWpausestatement displays the current state of
all paused modules.

RETURN Statement

returns to caller

RETURN<(operand)>;

whereoperandis the value of the function returned. Useoperandonly in function
modules.

The RETURN statement causes IML to return to the calling point in a program. If a
LINK statement has been issued, IML returns to the statement following the LINK.
If no LINK statement was issued, the RETURN statement exits a module. If not in
a module, execution is stopped (as with a STOP statement), and IML looks for more
statements to parse.

The RETURN statement with anoperandis used in function modules that return a
value. Theoperandcan be a variable name or an expression. It is evaluated, and the
value is returned.

See the description of the LINK statement. Also, see Chapter 5, “Programming
Statements,” for details.

If you use a LINK statement, you need a RETURN statement at the place where you
want to go back to the statement after LINK.

If you are writing a function, use a RETURN to return the value of the function. An
example is shown below.

start sum1(a,b);
sum=a+b;
return(sum);

finish;

SAS OnlineDoc: Version 8

724 � Chapter 17. Language Reference

ROOT Function

performs the Cholesky decomposition of a matrix

ROOT(matrix)

wherematrix is a symmetric positive-definite matrix.

The ROOT function performs the Cholesky decomposition of a matrix (for example,
A) such that

U0U = A

whereU is upper triangular. The matrixAmust be symmetric and positive definite.

For example, the statements

xpx={4 15, 15 85};
a=root(xpx);

produce the result shown below:

A 2 rows 2 cols (numeric)
2 7.5
0 5.3619026

ROWCAT Function

concatenates rows without using blank compression

ROWCAT(matrix<, rows<, columns>>);

The inputs to the ROWCAT function are as follows:

matrix is a character matrix or quoted literal.

rows select the rows ofmatrix.

columns select the columns ofmatrix.

The ROWCAT function takes a character matrix or submatrix as its argument and
creates a new matrix with one column whose elements are the concatenation of all
row elements into a single string. If the argument hasn rows andm columns, the
result willhaven rows and 1 column. The element length of the result will bem
times the element length of the argument. The optional rows and columns arguments
may be used to select which rows and columns are concatenated.

SAS OnlineDoc: Version 8

ROWCATC Function � 725

For example, the statements

b={"ABC" "D " "EF ",
" GH" " I " " JK"};

a=rowcat(b);

produce the2� 1 matrix:

A 2 rows 1 col (character, size 9)

ABCD EF
GH I JK

Quotes (") are needed only if you want to embed blanks or special characters or to
maintain uppercase and lowercase distinctions.

The form

ROWCAT(matrix, rows, columns)

returns the same result as

ROWCAT(matrix[rows, columns])

The form

ROWCAT(matrix, rows)

returns the same result as

ROWCAT(matrix[rows,])

ROWCATC Function

concatenates rows using blank compression

ROWCATC(matrix<, rows<, columns>>);

The inputs to the ROWCATC function are as follows:

matrix is a character matrix or quoted literal.

rows select the rows ofmatrix.

columns select the columns ofmatrix.

SAS OnlineDoc: Version 8

726 � Chapter 17. Language Reference

The ROWCATC function works the same way as the ROWCAT function except that
blanks in element strings are moved to the end of the concatenation. For example,
the statements

b={"ABC" "D " "EF ",
" GH" " I " " JK"};

a=rowcatc(b);

produce the matrixA as shown:

A 2 rows 1 col (character, size 9)

ABCDEF
GHIJK

Quotes (") are needed only if you want to embed blanks or special characters or to
maintain uppercase and lowercase distinctions.

RUN Statement

executes statements in a module

RUN <name> <(arguments)>;

The inputs to the RUN statement are as follows:

name is the name of a user-defined module or an IML built-in subroutine.

arguments are arguments to the subroutine. Arguments can be both local and
global.

The RUN statement executes a user-defined module or invokes PROC IML’s built-in
subroutines.

The resolution order for the RUN statement is

1. A user-defined module

2. An IML built-in function or subroutine

This resolution order need only be considered if you have defined a module that has
the same name as an IML built-in subroutine. If a RUN statement cannot be resolved
at resolution time, a warning is produced. If the RUN statement is still unresolved
when executed and a storage library is open at the time, IML attempts to load a
module from that storage. If no module is found, then the program is interrupted and
an error message is generated. By default, the RUN statement tries to run the module
named MAIN.

You will usually want to supply both a name and arguments, as follows.

SAS OnlineDoc: Version 8

RZLIND Call � 727

run myf1(a,b,c);

See Chapter 5, “Programming Statements,” for further details.

RUPDT Call

update QR and Cholesky decompositions

CALL RUPDT(rup, bup, sup, r, z <, b, y <, ssq>>);

See the entry for the RDODT subroutine for details.

RZLIND Call

computes rank deficient linear least-squares solutions, complete orthogonal fac-
torization, and Moore-Penrose inverses

CALL RZLIND(lindep, rup, bup, r <, sing><, b>);

The RZLIND subroutine returns the following values:

lindep is a scalar giving the number of linear dependencies that are recognized
inR (number of zeroed rows inrup[n,n]).

rup is the updatedn � n upper triangular matrixR containing zero rows
corresponding to zero recognized diagonal elements in the originalR.

bup is then�pmatrixB of right-hand sides that is updated simultaneously
withR. If b is not specified,bup is not accessible.

The inputs to the RZLIND subroutine are as follows:

r specifies then� n upper triangular matrixR. Only the upper triangle
of r is used; the lower triangle may contain any information.

sing is an optional scalar specifying a relative singularity criterion for the
diagonal elements ofR. The diagonal elementrii is considered zero if
rii � singkrik, wherekrik is the Euclidean norm of columnri of R.
If the value provided forsing is not positive, the default valuesing=
1000� is used, where� is the relative machine precision.

b specifies the optionaln � p matrixB of right-hand sides that have to
be updated or downdated simultaneously withR.

The singularity test used in the RZLIND subroutine is a relative test using the Eu-
clidean norms of the columnsri of R. The diagonal elementrii is considered as
nearly zero (and theith row is zeroed out) if the following test is true:

rii � singkrik; wherekrik =
q
r0iri

SAS OnlineDoc: Version 8

728 � Chapter 17. Language Reference

Providing an argumentsing� 0 is the same as omitting the argumentsing in the
RZLIND call. In this case, the default issing= 1000�, where� is the relative machine
precision. IfR is computed by the QR decompositionA = QR, then the Euclidean
norm of columni ofR is the same (except for rounding errors) as the Euclidean norm
of columni ofA.

Consider the following possible application of the RZLIND subroutine. Assume that
you want to compute the upper triangular Cholesky factorR of then � n positive
semidefinite matrixA0A,

A0A = R0R whereA 2 Rm�n; rank(A) = r; r � n � m

The Cholesky factorR of a positive definite matrixA0A is unique (with the exception
of the sign of its rows). However, the Cholesky factor of a positive semidefinite
(singular) matrixA0A can have many different forms.

In the following example,A is a 12 � 8 matrix with linearly dependent columns
a1 = a2 + a3 + a4 anda1 = a5 + a6 + a7 with r = 6, n = 8, andm = 12.

proc iml;
a = {1 1 0 0 1 0 0,

1 1 0 0 1 0 0,
1 1 0 0 0 1 0,
1 1 0 0 0 0 1,
1 0 1 0 1 0 0,
1 0 1 0 0 1 0,
1 0 1 0 0 1 0,
1 0 1 0 0 0 1,
1 0 0 1 1 0 0,
1 0 0 1 0 1 0,
1 0 0 1 0 0 1,
1 0 0 1 0 0 1};

a = a || uniform(j(12,1,1));
aa = a‘ * a;
m = nrow(a); n = ncol(a);

Applying the ROOT function to the coefficient matrixA0A of the normal equations,

r1 = root(aa);
ss1 = ssq(aa - r1‘ * r1);
print ss1 r1 [format=best6.];

generates an upper triangular matrixR1 where linearly dependent rows are zeroed
out, and you can verify thatA0A = R0

1R1.

Applying the QR subroutine with column pivoting on the original matrixA yields a
different result, but you can also verifyA0A = R0

2R2 after pivoting the rows and
columns ofA0A:

ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
ss2 = ssq(aa[pivqr,pivqr] - r2‘ * r2);
print ss2 r2 [format=best6.];

SAS OnlineDoc: Version 8

RZLIND Call � 729

Using the RUPDT subroutine for stepwise updating ofR by them rows ofA will
finally result in an upper triangular matrixR3 with n � r nearly zero diagonal ele-
ments. However, other elements in rows with nearly zero diagonal elements can have
significant values. The following statements verify thatA0A = R0

3R3,

r3 = shape(0,n,n);
call rupdt(rup,bup,sup,r3,a);
r3 = rup;
ss3 = ssq(aa - r3‘ * r3);
print ss3 r3 [format=best6.];

The resultR3 of the RUPDT subroutine can be transformed into the resultR1 of
the ROOT function by left applications of Givens rotations to zero out the remaining
significant elements of rows withsmall diagonal elements. Applying the RZLIND
subroutine on the upper triangular resultR3 of the RUPDT subroutine will generate
a Cholesky factorR4 with zero rows corresponding to diagonal elements that are
small, giving the same result as the ROOT function (except for the sign of rows) if its
singularity criterion recognizes the same linear dependencies.

call rzlind(lind,r4,bup,r3);
ss4 = ssq(aa - r4‘ * r4);
print ss4 r4 [format=best6.];

Consider the rank-deficient linear least-squares problem:

min
x
kAx� bk2 whereA 2 Rm�n; rank(A) = r; r � n �m

For r = n, the optimal solution,̂x, is unique; however, forr < n, the rank-deficient
linear least-squares problem has many optimal solutions, each of which has the same
least-squares residual sum of squares:

ss= (Ax̂� b)0(Ax̂� b)

The solution of the full rank problem,r = n, is illustrated in the QR call. The
following list shows several solutions to the singular problem. This example uses the
12� 8 matrix from the preceding section and generates a new column vectorb. The
vectorb and the matrixA are shown in the output.

b = uniform(j(12,1,1));
ab = a‘ * b;
print b a [format=best6.];

Each entry in the following list solves the rank-deficient linear least-squares problem.
Note that while each method minimizes the residual sum of squares, not all of the
given solutions are of minimum Euclidean length.

� Use the singular value decomposition ofA, given byA = UDV0. Take the
reciprocals of significant singular values and set the small values ofD to zero.

SAS OnlineDoc: Version 8

730 � Chapter 17. Language Reference

call svd(u,d,v,a);
t = 1e-12 * d[1];
do i=1 to n;

if d[i] < t then d[i] = 0.;
else d[i] = 1. / d[i];

end;
x1 = v * diag(d) * u‘ * b;
len1 = x1‘ * x1;
ss1 = ssq(a * x1 - b);
x1 = x1‘;
print ss1 len1, x1 [format=best6.];

The solution̂x1 obtained by singular value decomposition,x̂1 = VD
�U0b=4,

is of minimum Euclidean length.

� Use QR decomposition with column pivoting:

A� = QR =
�
Y Z

� � R1 R2

0 0

�
= Y

�
R1 R2

�
Set the right partR2 to zero and invert the upper triangular matrixR1 to obtain
a generalized inverseR� and an optimal solution̂x2:

R� =

�
R�1

1

0

�
x̂2 = �R

�Y0b

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,1:nr];
x2 = shape(0,n,1);
x2[pivqr] = trisolv(1,r,qtb[1:nr]) // j(lindqr,1,0.);
len2 = x2‘ * x2;
ss2 = ssq(a * x2 - b);
x2 = x2‘;
print ss2 len2, x2 [format=best6.];

Note that the residual sum of squares is minimal, but the solutionx̂2 is not of
minimum Euclidean length.

� Use the resultR1 of the ROOT function on page 728 to obtain the vectorpiv
indicating the zero rows in the upper triangular matrixR1:

r1 = root(aa);
nr = n - lind;
piv = shape(0,n,1);
j1 = 1; j2 = nr + 1;
do i=1 to n;

if r1[i,i] ^= 0 then do;
piv[j1] = i; j1 = j1 + 1;

end;
else do;

piv[j2] = i; j2 = j2 + 1;
end;

end;

SAS OnlineDoc: Version 8

RZLIND Call � 731

Now computêx3 by solving the equation̂x3 = R�1R�0A0b.

r = r1[piv[1:nr],piv[1:nr]];
x = trisolv(2,r,ab[piv[1:nr]]);
x = trisolv(1,r,x);
x3 = shape(0,n,1);
x3[piv] = x // j(lind,1,0.);
len3 = x3‘ * x3;
ss3 = ssq(a * x3 - b);
x3 = x3‘;
print ss3 len3, x3 [format=best6.];

Note that the residual sum of squares is minimal, but the solutionx̂3 is not of
minimum Euclidean length.

� Use the resultR3 of the RUPDT call on page 729 and the vectorpiv (obtained
in the previous solution), which indicates the zero rows of upper triangular
matricesR1 andR3. After zeroing out the rows ofR3 belonging to small
diagonal pivots, solve the system̂x4 = R�1Y0b.

r3 = shape(0,n,n);
qtb = shape(0,n,1);
call rupdt(rup,bup,sup,r3,a,qtb,b);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
qtb = bup[piv[1:nr]];
x = trisolv(1,r4[piv[1:nr],piv[1:nr]],qtb);
x4 = shape(0,n,1);
x4[piv] = x // j(lind,1,0.);
len4 = x4‘ * x4;
ss4 = ssq(a * x4 - b);
x4 = x4‘;
print ss4 len4, x4 [format=best6.];

Since the matricesR4 andR1 are the same (except for the signs of rows), the
solutionx̂4 is the same aŝx3.

� Use the resultR4 of the RZLIND call in the previous solution, which is the
result of the first step ofcomplete QR decomposition, and perform the second
step of complete QR decomposition. The rows of matrixR4 can be permuted
to the upper trapezoidal form� bR T

0 0

�
;

where bR is nonsingular and upper triangular andT is rectangular. Next, per-
form the second step of complete QR decomposition with the lower triangular
matrix� bR0

T0

�
= �Y

�
�R
0

�
;

which leads to the upper triangular matrix�R.

SAS OnlineDoc: Version 8

732 � Chapter 17. Language Reference

r = r4[piv[1:nr],]‘;
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb);
x5 = q * (y // j(lind,1,0.));
len5 = x5‘ * x5;
ss5 = ssq(a * x5 - b);
x5 = x5‘;
print ss5 len5, x5 [format=best6.];

The solutionx̂5 obtained by complete QR decomposition has minimum Eu-
clidean length.

� Perform both steps of complete QR decomposition. The first step performs the
pivoted QR decomposition ofA,

A� = QR = Y

�
R

0

�
= Y

� bRT
0

�

wherebR is nonsingular and upper triangular andT is rectangular. The second
step performs a QR decomposition as described in the previous method. This
results in

A� = Y

�
�R0 0

0 0

�
�Y0

where �R0 is lower triangular.

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,]‘;
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb[1:nr]);
x6 = shape(0,n,1);
x6[pivqr] = q * (y // j(lindqr,1,0.));
len6 = x6‘ * x6;
ss6 = ssq(a * x6 - b);
x6 = x6‘;
print ss6 len6, x6 [format=best6.];

The solutionx̂6 obtained by complete QR decomposition has minimum Eu-
clidean length.

� Perform complete QR decomposition with the QR and LUPDT calls:

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,1:nr]‘; z = r2[1:nr,nr+1:n]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
x7 = shape(0,n,1);
x7[pivqr] = rd‘ * qtb[1:nr,];
len7 = x7‘ * x7;

SAS OnlineDoc: Version 8

RZLIND Call � 733

ss7 = ssq(a * x7 - b);
x7 = x7‘;
print ss7 len7, x7 [format=best6.];

The solutionx̂7 obtained by complete QR decomposition has minimum Eu-
clidean length.

� Perform complete QR decomposition with the RUPDT, RZLIND, and LUPDT
calls:

r3 = shape(0,n,n);
qtb = shape(0,n,1);
call rupdt(rup,bup,sup,r3,a,qtb,b);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
nr = n - lind; qtb = bup;
r = r4[piv[1:nr],piv[1:nr]]‘;
z = r4[piv[1:nr],piv[nr+1:n]]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r4[piv[1:nr],]);
rd = trisolv(4,lup,rd);
x8 = shape(0,n,1);
x8 = rd‘ * qtb[piv[1:nr],];
len8 = x8‘ * x8;
ss8 = ssq(a * x8 - b);
x8 = x8‘;
print ss8 len8, x8 [format=best6.];

The solutionx̂8 obtained by complete QR decomposition has minimum Eu-
clidean length. The same result can be obtained with the APPCORT or COM-
PORT call.

You can use various methods to compute the Moore-Penrose inverseA� of a rectan-
gular matrixA using orthogonal methods. The entries in the following list find the
Moore-Penrose inverse of the matrixA shown on page 729.

� Use the GINV operator. The GINV operator in IML uses the singular decom-
positionA = UDV0. The resultA� = VD�U0 should be identical to the
result given by the next solution.

ga = ginv(a);
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss1 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss1, ga [format=best6.];

� Use singular value decomposition. The singular decompositionA = UDV0

with U0U = Im, D = diag(di), andV0V = VV0 = In, can be used to
computeA� = VDyU0, withDy = diag(dyi) and

dyi =

�
0 wheredi � �

1=di otherwise

SAS OnlineDoc: Version 8

734 � Chapter 17. Language Reference

The resultA� should be the same as that given by the GINV operator if the
singularity criterion� is selected correspondingly. Since you cannot specify the
criterion � for the GINV operator, the singular value decomposition approach
can be important for applications where the GINV operator uses an unsuitable
� criterion. The slight discrepancy between the values of SS1 and SS2 is due
to rounding that occurs in the statement that computes the matrix GA.

call svd(u,d,v,a);
do i=1 to n;

if d[i] <= 1e-10 * d[1] then d[i] = 0.;
else d[i] = 1. / d[i];

end;
ga = v * diag(d) * u‘;
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss2 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss2;

� Use complete QR decomposition. The complete QR decomposition

A = Y

�
�R0 0

0 0

�
�Y0�0

where �R0 is lower triangular, yields the Moore-Penrose inverse

A� = � �Y

�
�R�0 0

0 0

�
Y0

ord = j(n,1,0);
call qr(q1,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
q1 = q1[,1:nr]; r = r2[1:nr,]‘;
call qr(q2,r5,piv2,lin2,r);
tt = trisolv(4,r5‘,q1‘);
ga = shape(0,n,m);
ga[pivqr,] = q2 * (tt // shape(0,n-nr,m));
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss3 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss3;

� Use complete QR decomposition with QR and LUPDT:

ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
r = r2[1:nr,1:nr]‘; z = r2[1:nr,nr+1:n]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga[pivqr,] = rd‘ * q[,1:nr]‘;

SAS OnlineDoc: Version 8

SAVE Statement � 735

t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss4 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss4;

� Use complete QR decomposition with RUPDT and LUPDT:

r3 = shape(0,n,n);
y = i(m); qtb = shape(0,n,m);
call rupdt(rup,bup,sup,r3,a,qtb,y);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
nr = n - lind; qtb = bup;
r = r4[piv[1:nr],piv[1:nr]]‘;
z = r4[piv[1:nr],piv[nr+1:n]]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r4[piv[1:nr],]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga = rd‘ * qtb[piv[1:nr],];
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss5 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss5;

SAVE Statement

saves data

SAVE;

The SAVE statement forces out any data residing in output buffers for all active output
data sets and files to ensure that the data are written to disk. This is equivalent to
closing and then reopening the files.

SAS OnlineDoc: Version 8

736 � Chapter 17. Language Reference

SEQ, SEQSCALE, and SEQSHIFT Calls

perform discrete sequential tests

CALL SEQ(prob, domain <, <TSCALE= tscale><, <EPS=eps>
<, <DEN=den>>>>);

CALL SEQSCALE(prob, gscale, domain, level<, <IGUESS=iguess>

<, <TSCALE= tscale><, <EPS=eps><, <DEN=den>>>>>);

CALL SEQSHIFT(prob, shift, domain, plevel<, <IGUESS=iguess>

<, <TSCALE= tscale><, <EPS=eps><, <DEN=den>>>>>);

The SEQSHIFT subroutine returns the following values:

prob is an(m+1)�nmatrix. The[i; j] entry in the array contains the prob-
ability at the[i; j] entry of the argumentdomain. Also, the probability
at infinity at every levelj is returned in the last entry ([m + 1; j]) of
columnj. Upon a successful completion of any routine, this variable
is always returned.

gscale is a numeric variable that returns from the routine SEQSCALE and
contains the scaling of the current geometry defined bydomain that
would yield a given significance levellevel.

shift is a numeric variable that returns from the routine SEQSHIFT and con-
tains the shift of current geometry defined bydomainthat would yield
a given power levelplevel.

The inputs to the SEQSHIFT subroutine are as follows:

domain specifies anm�nmatrix containing the boundary points separating the
intervals of continuation/stopping of the sequential test. Each column
k contains the boundary points at levelk sorted in an ascending order,
with .M and .P representing�1 and+1, respectively. They must
start on the first row, and any remaining entries must be filled with a
missing value. Elements that follow the missing value in any column
will be ignored. The number of columnsn is equal to the number of
stages present in the sequential test. The row dimensionm must be
even, and it is equal to the maximum number of boundary points in a
level. In fact,domainis the tabular form of the finite boundary points.
Entries indomainwith absolute values that exceed a standardized value
of 8 at any level will be internally reset to a standardized value of8 or
�8, depending on the sign of the entry. This is reflected in the results
returned for the probabilities and the densities.

SAS OnlineDoc: Version 8

SEQ, SEQSCALE, and SEQSHIFT Calls � 737

tscale specifies an optionaln � 1 vector that describes the time intervals be-
tween two consecutive stages. In the absence oftscale, these time inter-
vals will be internally set to1. The IML keyword fortscaleis TSCALE.

eps specifies an optional numeric parameter for controlling the absolute
precision of the computation. In the absence ofeps, the precision will
be internally set to 1E�7. The IML keyword forepsis EPS.

den specifies an optional character string to describe the name of anm� n
matrix. The[i; j] entry in the matrix returns the density of the distribu-
tion at the[i; j] entry of the matrix specified by thedomainargument.
The IML keyword fordenis DEN.

iguess specifies an optional numeric parameter that contains an initial guess
for the variablegscalein the SEQSCALE subroutine or for the variable
meanin the SEQSHIFT subroutine. In general, very good estimates
for these initial guesses can be provided by an iterative process, and
these estimates become extremely valuable near convergence. The IML
keyword foriguessis IGUESS.

level specifies a numeric parameter in the SEQSCALE subroutine that con-
tains the required significance level to be achieved through scaling the
domain(see the description of SEQSCALE).

plevel specifies a numeric parameter in the SEQSHIFT subroutine that pro-
vides the required power level to be achieved through shifting thedo-
main(see the description of SEQSHIFT).

SEQ Call
To compute the probability from a sequential test, you must specify a matrix con-
taining the boundaries. With the optional additional information concerning the time
intervals and the target accuracy, or their default values, the SEQ subroutine returns
the matrix that contains the probability and optionally returns the density from a
sequential test evaluated at each given point of the boundary. LetCj denote the con-

tinuation set at each levelj. Cj is defined to be the union at thejth level of all the
intervals bounded from below by the points with even indices0; 2; 4; : : : and from
above by the points with odd indices1; 3; : : :.

The SEQ call computes, with� = 0, the densities

fj(s; �) =

Z
Cj�1

�(s� y; �; tj�1)fj�1(y; �) dy, for j = 2; 3; : : :

with

f1(s; �) =
1p
2�

exp

�
�(s� �)2

2

�
and

�(s; �; t) =
1p
2�t

exp

�
�(s� �)2

2t

�

SAS OnlineDoc: Version 8

738 � Chapter 17. Language Reference

with the associated probability at any pointa at levelj to be

Pj(a; �) =

Z
Cj�1

�(a� y; �; tj)fj�1(y; �) dy, for j = 2; 3; : : :

with

�(b; �; t) =

Z b

�1
�(s; �; t) ds

The notation� denotes the vector of time intervalst1; : : : ; tn�1, andPj(g; �; �) de-
notes the probability of continuation at thejth level for a given domaing, a given
mean�, and a given time vector� . The variance at thejth level can be calculated
from � .

�21 = 1

�2j+1 = �2j + �j , for j = 1; 2; : : :

It is important to understand the limitations that are imposed internally on the domain
by the numerical method. Any elementgij will always be limited within a symmetric
interval with standardized values not to exceed8. That is,

gij = max[min(gij ; 8�j);�8�j]

SEQSCALE Call
Given a domaing, an optional time vector� , and a probability levelps, the SEQS-
CALE subroutine finds the amount of scalings that would solve the problem

Pn(gs; 0) = ps

The result for the amount of scalings is returned as the second argument of the
SEQSCALE subroutine,scale. Note that because of the complexity of the problem,
the SEQSCALE subroutine will not attempt to scale a domain with multiple intervals
of continuation.

For a significance level of�, setps = 1� �.

SEQSHIFT Call
Given a geometryg, an optional time vector� , and a power level1 � �, the SE-
QSHIFT subroutine finds the mean� that solves� � 0 such thatPn(g; �) = �.

Actually, a simple transformation of the variables in the sequential problem yields
the following result:

Pj(g
�; 0) = Pj(g; �), for j = 1; 2; : : : ; n

whereg� is given byg�ij = gij � �j.

SAS OnlineDoc: Version 8

SEQ, SEQSCALE, and SEQSHIFT Calls � 739

Many options are available with the NLP family of optimization routines, which are
described in Chapter 4, “Nonlinear Optimization Subroutines.”

Consider the following continuation intervals:

C1 = f�6; 2g
C2 = f�6; 3g
C3 = f�6; 4; 5; 6g
C4 = f�6; 4g

The following IML program computes the probability from the sequential test at each
boundary point specified in the geometry.

proc iml;
/* function to insert in m the geometry column a at level k*/
start table(m,a,k);

if ncol(m) = 0 & nrow(m) = 0 then m = j(nrow(a),k,.);
if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.);
if ncol(m) < k then m = m || j(nrow(m),k-ncol(m),.);
m[1:nrow(a),k] = a;

finish;

call table(m,{-6,2},1);
call table(m,{-6,3},2);
call table(m,{-6,4,5,6},3);
call table(m,{-6,4},4);
call seq(prob,m) eps = 1.e-8 den="density";
print m;
print prob;
print density;

The following output displays the values returned form, prob andden, respectively.

The probability at the levelk = 3 at the pointx = 6 is prob[4; 3] = 0:96651, while
the density at the same point isdensity[4; 3] = 0:0000524.

Consider the continuation intervals

C1 = f�20; 2g
C2 = f�20; 20g
C3 = f�3; 3g

Note that the continuation at level 2 can be effectively considered infinite, and it does
not numerically affect the results of the computation at level 3. The following IML
program verifies this by using thetscaleparameter to compute this problem.

proc iml;
reset nocenter;

/* function to insert in m the geometry column a at level k*/
start table(m,a,k);

SAS OnlineDoc: Version 8

740 � Chapter 17. Language Reference

if ncol(m) = 0 & nrow(m) = 0 then m = j(nrow(a),k,.);
if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.);
if ncol(m) < k then m = m || j(nrow(m),k-ncol(m),.);
m[1:nrow(a),k] = a;

finish;

call table(m,{-20,2},1);
call table(m,{-20,20},2);
call table(m,{-3,3},3);

/**************************************/
/* TSCALE has the default value of 1 */
/**************************************/
call seq(prob1,m) eps = 1.e-8 den="density";
print m[format=f5.] prob1[format=e12.5];

call table(mm,{-20,2},1);
call table(mm,{-3,3},2);

/* We can show a 2-step separation between the levels */
/* while dropping the intermediate level at 2 */

tscale = { 2 };
call seq(prob2,mm) eps = 1.e-8 den="density" TSCALE=tscale;
print mm[format=f5.] prob2[format=e12.5];

The values returned for the variablesm and prob1 as well asmm and prob2 are
shown in the output.

Some internal limitations are imposed on the geometry. Consider the three-level case
with geometrym in the preceding code. Since thetscalevariable is not specified, it is
set to its default value,(1; 1). The variance at thejth level is�2j = j for j = 1; 2; 3.
The first level has a lower boundary point of�20, as represented by the value of
m[1; 1]. Since the absolute standardized value is larger than 8, this point is replaced
internally by the value�8. Hence, the densities and the probabilities reported for
the first level at this point are not for the given value�20; instead, they are for the
internal value of�8. For practical purposes, this limitation is not severe since the
absolute error introduced is of the order of10�16.

The computations performed by the first call of the SEQ subroutine can be simplified
since the second level is large enough to be considered infinite. The matrix MM
contains the first and third columns of the matrix M. However, in order to specify the
two-step separation between the levels, you must specifytscale=2.

This example verifies some of the results published in Table 3 of Pocock (1982). That
is, the following IML program verifies for the given domain that the significance level
is 0:05 and that the power is1� � under the alternative hypothesis:

proc iml;
/***/
/* first check whether the numbers yield */
/* 0.95 for the alpha level */
/***/

SAS OnlineDoc: Version 8

SEQ, SEQSCALE, and SEQSHIFT Calls � 741

bm ={-3.663 -2.884 -2.573 -2.375 -2.037,
-2.988 -2.537 -2.407 -2.346 -2.156,
-2.598 -2.390 -2.390 -2.390 -2.310,
-2.446 -2.404 -2.404 -2.404 -2.396};

bplevel = { 0.5 0.25 0.1 0.05};
level = 0.95; /* this the required alpha value */
sigma = diag(sqrt(1:5)); /* global sigma matrix */

do i = 1 to 4;
m = bm[i,];
plevel = bplevel[i];
geom = (m//(-m))*sigma;

/***************************/
/* Try the null hypothesis */
/***************************/

call seq(prob,geom) eps = 1.e-10;
palpha = (prob[2,]-prob[1,])[5];

/**********************************/
/* Try the alternative hypothesis */
/**********************************/

call seqshift(prob,mean,geom,plevel);
beta = (prob[2,] -prob[1,])[5];
p = prob[3,]-prob[2,]+prob[1,];

/**********************************/
/* Number of patients per group */
/**********************************/

tn = 4*mean##2;
maxn = 5*tn;

/*************************************/
/* compute the average sample number */
/*************************************/

asn = tn *(5 - (4:0) * p‘);
summary = summary // (palpha || level || beta ||

plevel || tn || maxn ||asn);
end;
print summary[format=10.5];

Note that the variablesepsandtscalehave been internally set to their default values.
The following values are returned for the matrix SUMMARY:

These values compare well with the values shown in Table 3 of Pocock (1982). Dif-
ferences are of the order of10�5.

This example shows how to verify the results in Table 1 of Wang and Tsiatis (1987).
For a given�, the following program finds� that yields a symmetric continuation

SAS OnlineDoc: Version 8

742 � Chapter 17. Language Reference

interval given by

��j� � Cj � �j�

with a given significance level of�:

proc iml;
start func(delta,k) global(level);

m = ((1:k))##delta;
mm = (-m//m);
/*******************************/
/* meet the significance level */
/* by scaling */
/*******************************/
call seqscale(prob,scale,mm,level);
return(scale);

finish;

/*********************************/
/* alpha levels of 0.05 and 0.01 */
/*********************************/

blevel = {0.95 0.99};
do i = 1 to 2;

level = blevel[i];
free summary;
do delta = 0 to .7 by .1;

free row;
do k=2 to 5;

x = func(delta,k);
row = row || x;

end;
summary = summary //row;

end;
print summary[format=10.5];

end;

The value of SUMMARY for the 0.95 level is as follows.

The value for SUMMARY for the 0.99 level is as follows.

Note that sinceepsandtscaleare not specified, they are internally set to their default
values.

This example verifies the results in Table 2 of Pocock (1977). The following program
finds� that yields a symmetric continuation interval given by

��
p
j � Cj � �

p
j

for five groups. The overall significance level is� (the probabilitypalpha = 1� �),
and the power is1� �.

SAS OnlineDoc: Version 8

SEQ, SEQSCALE, and SEQSHIFT Calls � 743

proc iml;
%let nl = 5;
start func(plevel) global(level,scale,mean,palpha,beta,tn,asn);

m = sqrt((1: &nl));
mm = -m //m;
/*******************************/
/* meet the significance level */
/* by scaling */
/*******************************/

call seqscale(prob,scale,mm,level);
palpha = (prob[2,]-prob[1,])[&nl];
mm = mm *scale;

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,mm,plevel);
return(mean);

finish;

/****************/
/* alpha = 0.95 */
/****************/

level = 9.50000E-01;
bplevel = { 0.5 .25 .1 0.05 0.01};
free summary;
do i = 1 to 5;

summary = summary || func(bplevel[i]);
end;
print summary[format=10.5];

The value returned for SUMMARY are shown in the following table, and the entries
agree with Table 2 of Pocock (1977).

This example illustrates how to find the optimal boundary of the�-class of Wang and
Tsiatis (1987). The�-class boundary has the form

��j� � Cj � �j�

The �-class boundary is optimal if it minimizes the average sample number while
satisfying the required significance level� and the required power1 � �. You can
use the following program to verify some of the results published in Tables 2 and 3
of Wang and Tsiatis (1987):

proc iml;
%let nl=5;
start func(delta) global(level,plevel,mean,

scale,alpha,beta,tn,asn);

SAS OnlineDoc: Version 8

744 � Chapter 17. Language Reference

m = ((1: &nl))##delta;
mm = (-m//m);

/*******************************/
/* meet the significance level */
/*******************************/

call seqscale(prob,scale,mm,level);
alpha = (prob[2,]-prob[1,])[&nl];
mm = mm *scale;

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,mm,plevel);
beta = (prob[2,]-prob[1,])[&nl];

/*************************************/
/* compute the average sample number */
/*************************************/

p = prob[3,]-prob[2,]+prob[1];
tn = 4*mean##2; /* number per group */
asn = tn *(&nl - p *(%eval(&nl-1):0)‘);
return(asn);

finish;

/**/
/* set up the global variables needed by func */
/**/

level = 0.95;
plevel = 0.01;

/***/
/* set up the controlling options of the */
/* optimization routine */
/***/

opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epsd;

SAS OnlineDoc: Version 8

SEQ, SEQSCALE, and SEQSHIFT Calls � 745

/*****************************/
/* provide the initial guess */
/* and let nlpdd do the work */
/*****************************/

delta = 0.5;
call nlpdd(rc,rx,"func",delta) opt=opt tc=tc par=par;

The following output displays the results.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.500000 -8.09752

Value of Objective Function = 35.232023082

Double Dogleg Optimization
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Number of Parameter Estimates 1

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Criterion = 35.232
Max Abs Gradient Element 8.098 Radius = 1.000

Function Active Objective
Iter Restart Calls Constraints Function

1 0 3 0 34.8914
2* 0 4 0 34.8774
3* 0 5 0 34.8774

Iter difcrit maxgrad lambda slope

1 0.3406 1.644 49.273 -0.830
2* 0.0140 0.0440 0 -0.0144
3* 0.00001 0.00013 0 -1E-5

SAS OnlineDoc: Version 8

746 � Chapter 17. Language Reference

Optimization Results

Iterations 3 Function Calls 6
Gradient Calls 5 Active Constraints 0
Criterion 34.877417 Max Grad Element 0.000126832
Slope -0.0000100034 Radius 1

NOTE: FCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

N Parameter Estimate Gradient

1 X1 0.586554 -0.0001268

Value of Objective Function = 34.877416815

The optimal function value of 34.88 agrees with the entry in Table 2 of Wang and
Tsiatis (1987) for five groups,� = 0:05, and1 � � = 0:99. Note that the variables
epsandtscaleare internally set to their default values. For more information on the
NLPDD subroutine, see the section “NLPDD Call” on page 635. For details on the
opt, tc, andpar arguments in the NLPDD call, see the “Options Vector” section on
page 319, the “Termination Criteria” section on page 325, and the section “Control
Parameters Vector” on page 332, respectively.

You can replicate other values in Table 2 of Wang and Tsiatis (1987) by changing
the values of the variables NL and PLEVEL. You can obtain values from Table 3 by
changing the value of the variable LEVEL to 0.99 and specifying NL and PLEVEL
accordingly.

This example illustrates how to find the boundaries that minimize ASN given the
required significance level and the required power. It replicates some of the results
published in Table 3 of Pocock (1982). The IML program computes the domain that

� minimizes the ASN

� yields a given significance level of0:05

� yields a given power1� � under the alternative hypothesis

The last two nonlinear conditions on the optimization process can be incorporated
as a penalty applied on the error in these nonlinear conditions. The following IML
program does the computations for a power of 0.9.

proc iml ;
%let nl=5;
start func(m) global(level,plevel,sigma,epss,

geometry,stgeom,gscale,mean,alpha,beta,tn,asn);
m = abs(m);

SAS OnlineDoc: Version 8

SEQ, SEQSCALE, and SEQSHIFT Calls � 747

mm = (-m // m)*sigma;
/*******************************/
/* meet the significance level */
/*******************************/

call seqscale(prob,gscale,mm,level) iguess=gscale eps=epss;
stgeom = gscale*m;
geometry= mm*gscale;

alpha = (prob[2,]-prob[1,])[&nl];

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,geometry,plevel) iguess=mean eps=epss;
beta = (prob[2,]-prob[1,])[&nl];
p = prob[3,] - prob[2,]+prob[1,];

/*************************************/
/* compute the average sample number */
/*************************************/

tn = 4*mean##2; /* number per group */
asn = tn *(&nl - p *(%eval(&nl-1):0)‘);
return(asn);

finish;

/**/
/* set up the global variables needed by func */
/**/
epss = 1.e-8;
epso = 1.e-5;
level = 9.50000E-01;
plevel = 0.05;
sigma = diag(sqrt(1:5));

/***/
/* set up the controlling options of the */
/* optimization routine */
/***/

opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epso;

/************************************/
/* provide the constraint matrix */
/* we need monotonically increasing */
/* significance levels */
/************************************/

SAS OnlineDoc: Version 8

748 � Chapter 17. Language Reference

con = { ,
. ,
1 -1 . . . 1 0 ,
. 1 -1 . . 1 0 ,
. . 1 -1 . 1 0 ,
. . . 1 -1 1 0 };

/*****************************/
/* provide the initial guess */
/* and let nlp do the work */
/*****************************/

m = { 1 1 1 1 1 };
call nlpdd(rc,rx,"func",m) opt=opt blc = con tc=tc par=par;
print stgeom;

Note that whileepshas been set toeps=10�8, tscalehas been internally set to its
default value. You may choose to run the IML program with and without the specifi-
cation of the keyword IGUESS to see the effect on the execution time.

Note the following about the optimization process:

� Different levels of precision are imposed on different modules. In this ex-
ample,epss, which is used as the precision for the sequential tests, is 1E�8.
The absolute and relative function criteria for the objective function are set to
par[7]=1E�5 andtc[7]=1E�4, respectively. Since finite differences are used
to compute the first and second derivatives, the sequential test should be more
precise than the optimization routine. Otherwise, the finite difference estima-
tion is worthless. Optimally, if the precision of the function evaluation isO(�),
the first- and second-order derivatives should be estimated with perturbations
O(�

1

2) andO(�
1

3), respectively. For example, if all three precision levels are
set to 1E�5, the optimization process does not work properly.

� Line search techniques that do not depend on the computation of the derivative
are preferable.

� The amount of printed information from the optimization routines is controlled
by opt[2] and can be set to any value between 0 and 3, with larger numbers
representing more printed output.

SEQSCALE Call

perform discrete sequential tests

CALL SEQSCALE(prob, gscale, domain, level<, <IGUESS=iguess>
<, <TSCALE= tscale><, <EPS=eps><, <DEN=den>>>>>);

See the entry for the SEQ subroutine for details.

SAS OnlineDoc: Version 8

SETDIF Function � 749

SEQSHIFT Call

perform discrete sequential tests

CALL SEQSHIFT(prob, shift, domain, plevel<, <IGUESS=iguess>
<, <TSCALE= tscale><, <EPS=eps><, <DEN=den>>>>>);

See the entry for the SEQ subroutine for details.

SETDIF Function

compares elements of two matrices

SETDIF(matrix1, matrix2)

The inputs to the SETDIF function are as follows:

matrix1 is a reference matrix. Elements ofmatrix1not found inmatrix2are
returned in a vector. It can be either numeric or character.

matrix2 is the comparison matrix. Elements ofmatrix1 not found inma-
trix2 are returned in a vector. It can be either numeric or character,
depending on the type ofmatrix1.

The SETDIF function returns as a row vector the sorted set (without duplicates) of
all element values present inmatrix1but not inmatrix2. If the resulting set is empty,
the SETDIF function returns a null matrix (with zero rows and zero columns). The
argument matrices and result can be either both character or both numeric. For char-
acter matrices, the element length of the result is the same as the element length of
the matrix1. Shorter elements in the second argument are padded on the right with
blanks for comparison purposes.

For example, the statements

a={1 2 4 5};
b={3 4};
c=setdif(a,b);

produce the result

C 1 row 3 cols (numeric)

1 2 5

SAS OnlineDoc: Version 8

750 � Chapter 17. Language Reference

SETIN Statement

makes a data set current for input

SETIN SAS-data-set <NOBS name> <POINT operand>;

The inputs to the SETIN statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, see the chapter on data sets inSAS Lan-
guage Reference: Concepts.

name is the name of a variable to contain the number of observations in
the data set.

operand specifies the current observation.

The SETIN statement chooses the specified data set from among the data sets already
opened for input by the EDIT or USE statement. This data set becomes the current
input data set for subsequent data management statements. The NOBS option is not
required. If specified, the NOBS option returns the number of observations in the data
set in the scalar variablename. The POINT option makes the specified observation
the current one. It positions the data set to a particular observation. The SHOW
datasetscommand lists data sets already opened for input.

In the example that follows, if the data set WORK.A has 20 observations, the variable
SIZE is set to 20. Also, the current observation is set to 10.

setin work.a nobs size point 10;
list; /* lists observation 10 */

SETOUT Statement

makes a data set current for output

SETOUT SAS-data-set <NOBS name> <POINT operand>;

The inputs to the SETOUT statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, see the chapter on SAS data sets inSAS
Language Reference: Concepts.

name is the name of a variable to contain the number of observations in
the data set.

operand specifies the observation to be made the current observation.

SAS OnlineDoc: Version 8

SHAPE Function � 751

The SETOUT statement chooses the specified data set from among those data sets
already opened for output by the EDIT or CREATE statement. This data set becomes
the current output data set for subsequent data management statements. If specified,
the NOBS option returns the number of observations currently in the data set in the
scalar variablename. The POINT option makes the specified observation the current
one.

In the example that follows, the data set WORK.A is made the current output data set
and the fifth observation is made the current observation. The number of observations
in WORK.A is returned in the variable SIZE.

setout work.a nobs size point 5;

SHAPE Function

reshapes and repeats values

SHAPE(matrix<, nrow<, ncol<, pad-value>>>)

The inputs to the SHAPE function are as follows:

matrix is a numeric or character matrix or literal.

nrow gives the number of rows of the new matrix.

ncol gives the number of columns of the new matrix.

pad-value is a fill value.

The SHAPE function shapes a new matrix from a matrix with different dimensions;
nrow specifies the number of rows, andncol specifies the number of columns in the
new matrix. The operator works for both numeric and character operands. The three
ways of using the function are outlined below:

� If only nrow is specified, the number of columns is determined as the number
of elements in the object matrix divided bynrow. The number of elements
must be exactly divisible; otherwise, a conformability error is diagnosed.

� If both nrow andncol are specified, but notpad-value, the result is obtained
moving along the rows until the desired number of elements is obtained. The
operation cycles back to the beginning of the object matrix to get more ele-
ments, if needed.

� If pad-valueis specified, the operation moves the elements of the object matrix
first and then fills in any extra positions in the result with thepad-value.

If nrow or ncol is specified as 0, the number of rows or columns, respectively, be-
comes the number of values divided byncol or nrow.

SAS OnlineDoc: Version 8

752 � Chapter 17. Language Reference

For example, the statement

r=shape(12,3,4);

produces the result shown:

R 3 rows 4 cols (numeric)

12 12 12 12
12 12 12 12
12 12 12 12

The next statement

r=shape(77,1,5);

produces the result matrix by moving along the rows until the desired number of
elements is obtained, cycling back as necessary:

R 1 row 5 cols (numeric)

77 77 77 77 77

The statement below

r=shape({1 2, 3 4, 5 6},2);

hasnrow specified and converts the3� 2 matrix into a2� 3 matrix.

R 2 rows 3 cols (numeric)

1 2 3
4 5 6

The statement

r=shape({99 31},3,3);

demonstrates the cycling back and repetition of elements in row-major order until the
number of elements desired is obtained.

R 3 rows 3 cols (numeric)

99 31 99
31 99 31
99 31 99

SAS OnlineDoc: Version 8

SOLVE Function � 753

SHOW Statement

prints system information

SHOW operands;

whereoperandsare any of the valid operands to the SHOW statement. These are
given below.

The SHOW statement prints system information. The followingoperandsare avail-
able:

ALL shows all the information included by OPTIONS, SPACE,
DATASETS, FILES, and MODULES.

ALLNAMES behaves like NAMES, but also shows names without values.

CONTENTS shows the names and attributes of the variables in the current SAS
data set.

DATASETS shows all open SAS data sets.

FILES shows all open files.

MEMORY returns the size of the largest chunk of main memory available.

MODULES shows all modules that exist in the current IML environment. A
module already referenced but not yet defined is listed as unde-
fined.

name shows attributes of the specified matrix. If the name of a matrix
is one of the SHOW keywords, then both the information for the
keyword and the matrix are shown.

NAMES shows attributes of all matrices having values. Attributes include
number of rows, number of columns, data type, and size.

OPTIONS shows current settings of all IML options (see the RESET state-
ment).

PAUSE shows the status of all paused modules that are pending resume.

SPACE shows the workspace and symbolspace size and their current usage.

STORAGE shows the modules and matrices in the current IML library storage.

WINDOWS shows all active windows opened by WINDOW statements.

An example of a valid statement follows:

show all;

SAS OnlineDoc: Version 8

754 � Chapter 17. Language Reference

SOLVE Function

solves a system of linear equations

SOLVE(A, B)

The inputs to the SOLVE function are as follows:

A is ann� n nonsingular matrix.

B is ann� p matrix.

The SOLVE function solves the set of linear equationsAX = B for X. A must be
square and nonsingular.

X = SOLVE(A;B) is equivalent to using the INV function asX = INV(A) � B.
However, the SOLVE function is recommended over the INV function because it is
more efficient and more accurate. An example follows:

x=solve(a,b);

The solution method used is discussed in Forsythe, Malcolm, and Moler (1967).

The SOLVE function (as well as the DET and INV functions) uses the following
criterion to decide whether the input matrix,A = [aij]i;j=1;:::;n, is singular:

sing= 100 �MACHEPS� max
1�i;j�n

jaij j

whereMACHEPSis the relative machine precision.

All matrix elements less than or equal tosingare now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal tosing, the
matrix is considered singular by the DET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating point error. This
occasionally yielded numerically unstable results. The new criterion is much more
conservative, and it generates far fewer erroneous results. In some cases, you may
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong,

� try the GINV function to compute the generalized inverse

� examine the size of the singular values returned by the SVD function. The SVD
function can be used to compute a generalized inverse with a user-specified
singularity criterion.

SAS OnlineDoc: Version 8

SOUND Call � 755

SORT Statement

sorts a SAS data set

SORT <DATA=>SAS-data-set <OUT=SAS-data-set>
BY <DESCENDING> variables;

where you can use the following clauses with the SORT statement:

DATA=SAS-data-set names the SAS data set to be sorted. It can be specified
with a one-word name (for example, A) or a two-word
name (for example, SASUSER.A). For more information
on specifying SAS data sets, see the chapter on SAS data
sets inSAS Language Reference: Concepts. Note that the
DATA= portion of the specification is optional.

OUT=SAS-data-set specifies a name for the output data set. If this clause is
omitted, the DATA= data set is sorted and the sorted ver-
sion replaces the original data set.

BY variables specifies the variables to be sorted. A BY clausemustbe
used with the SORT statement.

DESCENDING specifies the variables are to be sorted in descending order.

The SORT statement sorts the observations in a SAS data set by one or more vari-
ables, stores the resulting sorted observations in a new SAS data set, or replaces the
original. As opposed to all other IML data processing statements, it ismandatorythat
the data set to be sorted be closed prior to the execution of the SORT statement.

The SORT statement first arranges the observations in the order of the first variable
in the BY clause; then it sorts the observations with a given value of the first variable
by the second variable, and so forth. Every variable in the BY clause can be preceded
by the keyword DESCENDING to denote that the variable that follows is to be sorted
in descending order. Note that the SORT statement in IML always retains the same
relative positions of the observations with identical BY variable values.

For example, the IML statement

sort class out=sclass by descending age height;

sorts the SAS data set CLASS by the variables AGE and HEIGHT, where AGE is
sorted in descending order, and all observations with the same AGE value are sorted
by HEIGHT in ascending order. The output data set SCLASS contains the sorted
observations. When a data set is sorted in place (without the OUT= clause) any
indexes associated with the data set become invalid and are automatically deleted.

Note that all the clauses of the SORT statement must be specified in the order given
above.

SAS OnlineDoc: Version 8

756 � Chapter 17. Language Reference

SOUND Call

produces a tone

CALL SOUND(freq<, dur>);

The inputs to the SOUND subroutine are as follows:

freq is a numeric matrix or literal giving the frequency in hertz.

dur is a numeric matrix or literal giving the duration in seconds. Note that the
dur argument differs from that in the DATA step.

The SOUND subroutine generates a tone usingfreq for frequency (in hertz) anddur
for duration (in seconds). Matrices may be specified for frequency and duration to
produce multiple tones, but if both arguments are nonscalar, then the number of el-
ements must match. The duration argument is optional and defaults to 0.25 (one
quarter second).

For example, the following statements produce tones from an ascending musical
scale, all with a duration of 0.2 seconds:

notes=400#(2##do(0, 1, 1/12));
call sound(notes,0.2);

SPLINE and SPLINEC Calls

provide cubic spline fits

CALL SPLINE(fitted, data<, smooth><, delta><, nout>
<, type><, slope>);

CALL SPLINEC(fitted, coeff, endval, data<, smooth><, delta>

<, nout><, type><, slope>);

The SPLINEC subroutine returns the following values:

fitted is ann� 2 matrix of fitted values.

coeff is ann � 5 (or n � 9) matrix of spline coefficients. The matrix con-
tains the cubic polynomial coefficients for the spline for each interval.
Column 1 is the left endpoint of thex-interval for the regular (nonpara-
metric) spline or the left endpoint of the parameter for the parametric
spline. Columns2 � 5 are the constant, linear, quadratic, and cubic
coefficients, respectively, for thex-component. If a parametric spline
is used, then columns6� 9 are the constant, linear, quadratic, and cu-
bic coefficients, respectively, for they-component. The coefficients for

SAS OnlineDoc: Version 8

SPLINE and SPLINEC Calls � 757

each interval are with respect to the variablex� xi wherexi is the left
endpoint of the interval andx is the point of interest. The matrixcoeff
can be processed to yield the integral or the derivative of the spline.
This, in turn, can be used with the SPLINEV function to evaluate the
resulting curves. The SPLINEC call returnscoeff.

endval is a1�2 matrix of endpoint values. Slopes of the two ends of the curve
are reported as angles expressed in degrees. The SPLINEC call returns
theendvalargument.

The inputs to the SPLINEC subroutine are as follows:

data specifies an�2 (orn�3) matrix of(x; y) points on which the spline is
to be fit. The optional third column is used to specify a weight for each
data point. Ifsmooth> 0, the weight column is used in calculations. A
weight� 0 causes the data point to be ignored in calculations.

delta is an optional scalar specifying the resolution constant. Ifdelta is spec-
ified, the fitted points are spaced by the amountdelta on the scale of
the first column ofdata if a regular spline is used or on the scale of the
curve length if a parametric spline is used. If bothnout anddelta are
specified,nout is used anddelta is ignored.

nout is an optional scalar specifying the number of fitted points to be com-
puted. The default isnout=200. If nout is specified, thennoutequally
spaced points are returned. Thenout argument overrides thedelta ar-
gument.

slope is an optional1�2 matrix of endpoint slopes given as angles in degrees.
If a parametric spline is used, the angle values are used modulo 360. If
a nonparametric spline is used, the tangent of the angles is used to set
the slopes (that is, the effective angles range from�90 to 90 degrees).

smooth is an optional scalar specifying the degree of smoothing to be used. If
smoothis omitted or set equal to 0, then a cubic interpolating spline is
fit to the data. Ifsmooth> 0, then a cubic spline is used. Larger values
of smoothgenerate more smoothing.

type is an optional1� 1 (or 1� 2) character matrix or quoted literal giving
the type of spline to be used. The first element oftypeshould be one of
the following:

� periodic , which requests periodic endpoints

� zero , which sets second derivatives at endpoints to 0

The typeargument controls the endpoint constraints unless theslope
argument is specified. Ifperiodic is specified, the response values
at the beginning and end of column 2 ofdatamust be the same unless
the smoothing spline is being used. If the values are not the same, an
error message is printed and no spline is fit. The default value iszero .
The second element oftypeshould be one of the following.

SAS OnlineDoc: Version 8

758 � Chapter 17. Language Reference

� nonparametric , which requests a nonparametric spline

� parametric , which requests a parametric spline

If parametric is specified, a parameter sequenceftig is formed as
follows: t1 = 0 and

ti = ti�1 +
p
(xi � xi�1)2 + (yi � yi�1)2

Splines are then fit to both the first and second columns ofdata. The
resulting splined values are paired to form the output. Changing the
relative scaling of the first two columns ofdata changes the output
because the sequenceftig assumes Euclidean distance.

Note that if the points are not arranged in ascending order by the first
columns ofdata, then a parametric method must be used. An error
message results if the nonparametric spline is requested.

Refer to Stoer and Bulirsch (1980), Reinsch (1967), and Pizer (1975) for descriptions
of the methods used to fit the spline.

proc iml;
data = { 0 1, 1 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8 9, 9 10 };
call splinec(fitted,coeff,endval,data,,,,’zero’,{45 45});
v = splinev(coeff,{-1 1 2 3 3.5 4 20});
print v;
v = splinev(coeff,,3);
print v;

This example takes a function defined by discrete data and finds the integral and the
first moment of the function.

data func;
input x @@;
y = x+0.1*sin(x);
datalines;

0 2 5 7 8 10
;

proc iml;
use func;
read all into a;
call splinec(fit,coeff,endval,a,,,,’zero’);

start fcheck(x) global(coeff,pow);
/************************************/
/* Note that the first column of v */
/* contains the points of */
/* evaluation and the second column */
/* contains the evaluation. */
/************************************/
v = x##pow # splinev(coeff,x //x)[1,2];
return(v);

finish;

SAS OnlineDoc: Version 8

SPLINEV Function � 759

start moment(po) global(coeff,pow);
pow = po;
call quad(z,’fcheck’,coeff[,1]) eps = 1.e-10;
v1 = sum(z);
return(v1);

finish;

mass = moment(0); /* to compute the mass */
mass = mass //

(moment(1)/mass) // /* to compute the mean */
(moment(2)/mass) ; /* to compute the meansquare */

print mass;

/***/
/* Use Gauss-Legendre integration: this is not */
/* adaptive, but it is good for moments up to maxng. */
/***/

gauss = {
-9.3246951420315205e-01
-6.6120938646626448e-01
-2.3861918608319743e-01

2.3861918608319713e-01
6.6120938646626459e-01
9.3246951420315183e-01,
1.713244923791701e-01
3.607615730481388e-01
4.679139345726905e-01
4.679139345726904e-01
3.607615730481389e-01
1.713244923791707e-01 };

ngauss = ncol(gauss);
maxng = 2*ngauss-4;
start moment1(pow) global(coeff,gauss,ngauss,maxng);

if pow < maxng then do;
nrow = nrow(coeff);
ncol = ncol(coeff);
left = coeff[1:nrow-1,1];
right = coeff[2:nrow,1];
mid = 0.5*(left+right);
interv = 0.5*(right - left);

/* scale the weights on each interval */
wgts = shape(interv*gauss[2,],1);

/* scale the points on each interval */
pts = shape(interv*gauss[1,] + mid * repeat(1,1,ngauss),1) ;

/* evaluate the function */
eval = splinev(coeff,pts)[,2]‘;
mat = sum (wgts#pts##pow#eval);

end;
return(mat);

finish;

mass = moment1(0); /* to compute the mass */
mass = mass // (moment1(1)/mass) // (moment1(2)/mass) ;
print mass;

SAS OnlineDoc: Version 8

760 � Chapter 17. Language Reference

SPLINEV Function

provides cubic spline evaluations

SPLINEV(coeff<, delta<, nout>>)

The SPLINEV function returns a two-column matrix containing the points of evalua-
tion in the first column and the corresponding fitted values of the spline in the second
column.

The inputs to the SPLINEV function are as follows:

coeff is ann� 5 (or n� 9) matrix of spline coefficients, as returned by the
SPLINEC Call. Thecoeffargument should not contain missing values.

delta is an optional vector specifying evaluation points. Ifdelta is a scalar,
the spline will be evaluated at equally spaced pointsdeltaapart. Ifdelta
is a vector arranged in ascending order, the spline will be evaluated at
each of these values. Evaluation at a point outside the support of the
spline results in a missing value in the output. If you specify thedelta
argument, you cannot specify thenoutargument.

nout is an optional scalar specifying the number of fitted points desired. The
default isnout=200. If you specify thenoutargument, you cannot spec-
ify the deltaargument.

See the section “SPLINE and SPLINEC Calls” on page 756 for details and examples.

SPOT Function

calculates a column vector of spot rates given vectors of forward rates and times

SPOT(times; forward–rates)

The SPOT function returns an n x 1 vector of spot rates.

times is an n x 1 column vector of times
in consistent units. Elements should be non-negative.

forward –rates is an n x 1 column vector of corresponding
per-period forward rates. Elements should be positive.

The SPOT function transforms the given spot rates as

s1 = f1

si = �j=i
j=1(1 + fj)

tj�tj�1 � 1:0; i = 2; :::n

SAS OnlineDoc: Version 8

SSQ Function � 761

Example

proc iml;
fwd={.05};
times={1}; \\
spot=spot(times,fwd);

print spot;
quit;

SPOT
0.05

SQRSYM Function

converts a symmetric matrix to a square matrix

SQRSYM(matrix)

wherematrix is a symmetric numeric matrix.

The SQRSYM function takes a matrix such as those generated by the SYMSQR
function and transforms it back into a square matrix. The elements of the argument
are unpacked into the lower triangle of the result and reflected across the diagonal
into the upper triangle.

For example, the following statement

sqr=sqrsym(symsqr({1 2, 3 4}));

which is the same as

sqr=sqrsym({ 1, 3, 4});

produces the result

SQR 2 rows 2 cols (numeric)

1 3
3 4

SQRT Function

calculates the square root SQRT(matrix)

wherematrix is a numeric matrix or literal.

The SQRT function is the scalar function returning the positive square roots of each
element of the argument. An example of a valid statement follows.

a=sqrt(c);

SAS OnlineDoc: Version 8

762 � Chapter 17. Language Reference

SSQ Function

calculates the sum of squares of all elements

SSQ(matrix1<, matrix2,: : :, matrix15>)

wherematrix is a numeric matrix or literal.

The SSQ function returns as a single numeric value the (uncorrected) sum of squares
for all the elements of all arguments. You can specify as many as 15 numeric argu-
ment matrices.

The SSQ function checks for missing arguments and does not include them in the
accumulation. If all arguments are missing, the result is 0.

An example of a valid statement follows:

a={1 2 3, 4 5 6};
x=ssq(a);

START and FINISH Statements

define a module

START <name> <(arguments)> <GLOBAL(arguments)>;
module statements;

FINISH <name>;

The inputs to the START and FINISH statements are as follows:

name is the name of a user-defined module.

arguments are names of variable arguments to the module. Arguments
can be either input variables or output (returned) variables. Ar-
guments listed in the GLOBAL clause are treated as global
variables. Otherwise, the arguments are local.

module statements are statements making up the body of the module.

The START statement instructs IML to enter a module-collect mode to collect the
statements of a module rather than execute them immediately. The FINISH statement
signals the end of a module. Optionally, the FINISH statement can take the module
name as its argument. When nonameargument is given in the START statement, the
module name MAIN is used by default. If an error occurs during module compilation,
the module is not defined. See Chapter 5, “Programming Statements,” for details.

The example below defines a module named MYMOD that has two local variables
(A and B) and two global variables (X and Y). The module creates the variable Y
from the arguments A, B, and X.

SAS OnlineDoc: Version 8

STORE Statement � 763

start mymod(a,b) global(x,y);
y=a*x+b;

finish;

STOP Statement

stops execution of statements

STOP;

The STOP statement stops the IML program, and no further matrix statements are
executed. However, IML continues to execute if more statements are entered. See
also the descriptions of the RETURN and ABORT statements.

If IML execution was interrupted by a PAUSE statement or by a break, the STOP
statement clears all the paused states and returns to immediate mode.

IML supports STOP processing of both regular and function modules.

STORAGE Function

lists names of matrices and modules in storage

STORAGE();

The STORAGE function returns a matrix of the names of all of the matrices and
modules in the current storage library. The result is a character vector with each
matrix or module name occupying a row. Matrices are listed before modules. The
SHOWstoragecommand separately lists all of the modules and matrices in storage.

For example, the following statements reset the current library storage to MYLIB and
then print a list of the modules and matrices in storage:

reset storage="MYLIB";

Then issue the command below to get the resulting matrix:

a=storage();
print a;

STORE Statement

stores matrices and modules in library storage

STORE <MODULE=(module-list)> <matrix-list>;

The inputs to the STORE statement are as follows.

SAS OnlineDoc: Version 8

764 � Chapter 17. Language Reference

module-list is a list of module names.

matrix-list is a list of matrix names.

The STORE statement stores matrices or modules in the storage library. For example,
the following statement stores the modules A, B, and C and the matrix X:

store module=(A B C) X;

The special operand–ALL – can be used to store all matrices or all modules. For
example, the following statement stores all matrices and modules:

store _all_ module=_all_;

The storage library can be specified using the RESETstoragecommand and defaults
to SASUSER.IMLSTOR. The SHOWstoragecommand lists the current contents of
the storage library. The following statement stores all matrices:

store;

See Chapter 14, “Storage Features,” and also the descriptions of the LOAD, RE-
MOVE, RESET, and SHOW statements for related information.

SUBSTR Function

takes substrings of matrix elements

SUBSTR(matrix, position<, length>)

The inputs to the SUBSTR function are as follows:

matrix is a character matrix or quoted literal.

position is a numeric matrix or scalar giving the starting position.

length is a numeric matrix or scalar giving the length of the substring.

The SUBSTR function takes a character matrix as an argument along with starting
positions and lengths and produces a character matrix with the same dimensions as
the argument. Elements of the result matrix are substrings of the corresponding argu-
ment elements. Each substring is constructed using the startingpositionsupplied. If
a lengthis supplied, this length is the length of the substring. If nolengthis supplied,
the remainder of the argument string is the substring.

Thepositionandlengtharguments can be scalars or numeric matrices. Ifpositionor
lengthis a matrix, its dimensions must be the same as the dimensions of the argument
matrix or submatrix. If either one is a matrix, its values are applied to the substringing
of the corresponding elements of thematrix. If lengthis supplied, the element length
of the result is MAX(length); otherwise, the element length of the result is

NLENG(matrix)�MIN (position) + 1 :

SAS OnlineDoc: Version 8

SUMMARY Statement � 765

The statements

B={abc def ghi, jkl mno pqr};
a=substr(b,3,2);

return the matrix

A 2 rows 3 cols (character, size 2)

C F I
L O R

The element size of the result is 2; the elements are padded with blanks.

SUM Function

sums all elements

SUM(matrix1<, matrix2,: : :, matrix15>)

wherematrix is a numeric matrix or literal.

The SUM function returns as a single numeric value the sum of all the elements in
all arguments. There can be as many as 15 argument matrices. The SUM function
checks for missing values and does not include them in the accumulation. It returns
0 if all values are missing.

For example, the statements

a={2 1, 0 -1};
b=sum(a);

return the scalar

B 1 row 1 col (numeric)

2

SUMMARY Statement

computes summary statistics for SAS data sets

SUMMARY <CLASS operand> <VAR operand> <WEIGHT operand>
<STAT operand> <OPT operand> <WHERE(expression)>;

where theoperandsused by most clauses take either a matrix name, a matrix literal,
or an expression yielding a matrix name or value. A discussion of the clauses and
operandsfollows.

SAS OnlineDoc: Version 8

766 � Chapter 17. Language Reference

The SUMMARY statement computes statistics for numeric variables for an entire
data set or a subset of observations in the data set. The statistics can be stratified by
the use of class variables. The computed statistics are displayed in tabular form and
optionally can be saved in matrices. Like most other IML data processing statements,
the SUMMARY statement works on the current data set.

The following options are available with the SUMMARY statement:

CLASS operand
specifies the variables in the current input SAS data set to be used to group the sum-
maries. Theoperandis a character matrix containing the names of the variables, for
example,

summary class { age sex} ;

Both numeric and character variables can be used as class variables.

VAR operand
calculates statistics for a set of numeric variables from the current input data set. The
operandis a character matrix containing the names of the variables. Also, the special
keyword–NUM– can be used as a VAR operand to specify all numeric variables. If
the VAR clause is missing, the SUMMARY statement produces only the number of
observations in each class group.

WEIGHT operand
specifies a character value containing the name of a numeric variable in the current
data set whose values are to be used to weight each observation. Only one variable
can be specified.

STAT operand
computes the statistics specified. Theoperandis a character matrix containing the
names of statistics. For example, to get the mean and standard deviation, specify

summary stat{mean std};

Below is a list of the keywords that can be specified as the STAToperand:

CSS computes the corrected sum of squares.

MAX computes the maximum value.

MEAN computes the mean.

MIN computes the minimum value.

N computes the number of observations in the subgroup used in the
computation of the various statistics for the corresponding analysis
variable.

NMISS computes the number of observations in the subgroup having miss-
ing values for the analysis variable.

STD computes the standard deviation.

SAS OnlineDoc: Version 8

SUMMARY Statement � 767

SUM computes the sum.

SUMWGT computes the sum of the WEIGHT variable values if WEIGHT is
specified; otherwise, IML computes the number of observations
used in the computation of statistics.

USS computes the uncorrected sum of squares.

VAR computes the variance.

When the STAT clause is omitted, the SUMMARY statement computes these statis-
tics for each variable in the VAR clause:

� MAX

� MEAN

� MIN

� STD.

Note that NOBS, the number of observations in each CLASS group, is always given.

OPT operand
sets the PRINT or NOPRINT and SAVE or NOSAVE options. The NOPRINT option
suppresses the printing of the results from the SUMMARY statement. The SAVE op-
tion requests that the SUMMARY statement save the resultant statistics in matrices.
Theoperandis a character matrix containing one or more of the options.

When the SAVE option is set, the SUMMARY statement creates a class vector for
each class variable, a statistic matrix for each analysis variable, and a column vector
named–NOBS–. The class vectors are named by the corresponding class variable
and have an equal number of rows. There are as many rows as there are subgroups
defined by the interaction of all class variables. The statistic matrices are named by
the corresponding analysis variable. Each column of the statistic matrix corresponds
to a statistic requested, and each row corresponds to the statistics of the subgroup
defined by the class variables. If no class variable has been specified, each statistic
matrix has one row, containing the statistics of the entire population. The–NOBS–
vector contains the number of observations for each subgroup.

The default is PRINT NOSAVE.

WHERE expression
conditionally selects observations, within therangespecification, according to con-
ditions given inexpression. The general form of the WHERE clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

SAS OnlineDoc: Version 8

768 � Chapter 17. Language Reference

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause, using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

See Chapter 6, “Working with SAS Data Sets,” for an example using the SUMMARY
statement.

SVD Call

computes the singular value decomposition

CALL SVD(u, q, v, a);

In the SVD subroutine:

a is the input matrix that is decomposed as described below.

u, q, andv are the returned decomposition matrices.

SAS OnlineDoc: Version 8

SVD Call � 769

The SVD subroutine decomposes a realm� n matrixA (wherem is greater than or
equal ton) into the form

A = Udiag(Q)V0

where

U0U = V0V = VV0 = In

andQ contains the singular values ofA. U ism� n,Q is n� 1, andV is n� n.

Whenm is greater than or equal ton,U consists of the orthonormal eigenvectors of
AA0, andV consists of the orthonormal eigenvectors ofA0A. Q contains the square
roots of the eigenvalues ofA0A andAA0, except for some zeros.

If m is less thann, a corresponding decomposition is done whereU andV switch
roles:

A = Udiag(Q)V0

but

U0U = UU0 = V0V = Iw :

The singular values are sorted in descending order.

For information about the method used in the SVD subroutine, refer to Wilkinson
and Reinsch (1971). Consider the following example (Wilkinson and Reinsch 1971,
p. 149):

a={22 10 2 3 7,
14 7 10 0 8,
-1 13 -1 -11 3,
-3 -2 13 -2 4,

9 8 1 -2 4,
9 1 -7 5 -1,
2 -6 6 5 1,
4 5 0 -2 2};

call svd(u,q,v,a);

The results are

U 8 rows 5 cols (numeric)

0.7071068 0.1581139 -0.176777 -0.06701 0.279804
0.5303301 0.1581139 0.3535534 -0.045208 -0.645372
0.1767767 -0.790569 0.1767767 0.5368704 -0.060458

0 0.1581139 0.7071068 0.1086593 0.592536
0.3535534 -0.158114 0 -0.228736 0.2300372
0.1767767 0.1581139 -0.53033 0.5116134 0.212316

SAS OnlineDoc: Version 8

770 � Chapter 17. Language Reference

0 0.4743416 0.1767767 0.5867386 -0.102189
0.1767767 -0.158114 0 -0.187346 0.2049688

Q 5 rows 1 col (numeric)

35.327043
20

19.595918
1.281E-15
3.661E-16

V 5 rows 5 cols (numeric)

0.8006408 0.3162278 -0.288675 0.4190955 0
0.4803845 -0.632456 0 -0.440509 -0.418548
0.1601282 0.3162278 0.8660254 0.0520045 -0.34879

0 0.6324555 -0.288675 -0.676059 -0.244153
0.3202563 0 0.2886751 -0.412977 0.8022171

SWEEP Function

sweeps a matrix

SWEEP(matrix, index-vector)

The inputs to the SWEEP function are as follows:

matrix is a numeric matrix or literal.

index-vector is a numeric vector indicating the pivots.

The SWEEP function sweepsmatrix on the pivots indicated inindex-vectorto pro-
duce a new matrix. The values of the index vector must be less than or equal to the
number of rows or the number of columns inmatrix, whichever is smaller.

For example, suppose thatA is partitioned into�
R S

T U

�
such thatR is q � q andU is (m� q)� (n� q). Let

I = [1 2 3 . . . q]

Then, the statement

s=sweep(A,I);

SAS OnlineDoc: Version 8

SYMSQR Function � 771

becomes�
R�1 R�1

�TR�1 U�TR�1

�
:

The index vector can be omitted. In this case, the function sweeps the matrix on all
pivots on the main diagonal 1:MIN(nrow,ncol).

The SWEEP function has sequential and reversibility properties when the submatrix
swept is positive definite:

� SWEEP(SWEEP(A,1),2)=SWEEP(A,{ 1 2 })

� SWEEP(SWEEP(A,I),I)=A

See Beaton (1964) for more information about these properties.

To use the SWEEP function for regression, suppose the matrixA contains

�
X0X X0Y

Y0X Y0Y

�

whereX0X is k � k.

ThenB = SWEEP(A; 1 : : : k) contains

�
(X0X)�1 (X0X)�1X0

�Y0X(X0X)�1 Y0(I�X(X0X)�1X0)Y

�

The partitions ofB form the beta values, SSE, and a matrix proportional to the co-
variance of the beta values for the least-squares estimates ofB in the linear model

Y = XB+ � :

If any pivot becomes very close to zero (less than or equal to 1E�12), the row and
column for that pivot are zeroed. See Goodnight (1979) for more information.

SYMSQR Function

converts a square matrix to a symmetric matrix

SYMSQR(matrix)

wherematrix is a square numeric matrix.

The SYMSQR function takes a square numeric matrix (sizen�n) and compacts the
elements from the lower triangle into a column vector (n(n+1)=2 rows). The matrix
is not checked for actual symmetry.

SAS OnlineDoc: Version 8

772 � Chapter 17. Language Reference

Therefore, the statement

sym=symsqr({1 2, 3 4});

sets

SYM 3 rows 1 col (numeric)

1
3
4

Note that the 2 is lost since it is only present in the upper triangle.

T Function

transposes a matrix

T(matrix)

wherematrix is a numeric or character matrix or literal.

The T (transpose) function returns the transpose of its argument. It is equivalent to
the transpose operator as written with a transpose postfix operator (‘), but since some
keyboards do not support the backquote character, this function is provided as an
alternate.

For example, the statements

x={1 2, 3 4};
y=t(x);

result in the matrix

Y 2 rows 2 cols (numeric)

1 3
2 4

TEIGEN Call

computes the eigenvalues and eigenvectors of square matrices

The TEIGEN subroutine is an alias for the EIGEN subroutine.

SAS OnlineDoc: Version 8

TOEPLITZ Function � 773

TEIGVAL Functions

compute eigenvalues of square matrices

The TEIGVAL function is an alias for the EIGVAL function.

TEIGVEC Functions

compute eigenvectors of square matrices

The TEIGVEC function is an alias for the EIGVEC function.

TOEPLITZ Function

generates a Toeplitz or block-Toeplitz matrix

TOEPLITZ(a)

wherea is either a vector or a numeric matrix.

The TOEPLITZ function generates a Toeplitz matrix from a vector, or a block
Toeplitz matrix from a matrix. A block Toeplitz matrix has the property that all
matrices on the diagonals are the same. The argumenta is an(np) � p or p � (np)
matrix; the value returned is the(np)� (np) result.

The TOEPLITZ function uses the firstp � p submatrix,A1, of the argument matrix
as the blocks of the main diagonal. The secondp� p submatrix,A2, of the argument
matrix forms one secondary diagonal, with the transposeA0

2 forming the other. The
remaining diagonals are formed accordingly. If the firstp � p submatrix of the ar-
gument matrix is symmetric, the result is also symmetric. IfA is (np) � p, the first
p columns of the returned matrix,R, will be the same asA. If A is p � (np), the
first p rows ofR will be the same asA. The TOEPLITZ function is especially useful
in time-series applications, where the covariance matrix of a set of variables with its
lagged set of variables is often assumed to be a block Toeplitz matrix.

If

A = [A1jA2jA3j � � � jAn]

and ifR is the matrix formed by the TOEPLITZ function, then

R =

2666664
A1 j A2 j A3 j � � � j An

A0
2 j A1 j A2 j � � � j An�1

A0
3 j A0

2 j A1 j � � � j An�2
...
A0

n j A0
n�1 j A0

n�2 j � � � j A1

3777775

SAS OnlineDoc: Version 8

774 � Chapter 17. Language Reference

If

A =

26664
A1

A2
...
An

37775
and ifR is the matrix formed by the TOEPLITZ function, then

R =

26664
A1 j A0

2 j A0
3 j � � � j A0

n

A2 j A1 j A0
2 j � � � j A0

n�1
...
An j An�1 j An�2 j � � � j A1

37775
Three examples follow.

r=toeplitz(1:5);

R 5 rows 5 cols (numeric)

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1

r=toeplitz({1 2 ,
3 4 ,
5 6 ,
7 8});

R 4 rows 4 cols (numeric)

1 2 5 7
3 4 6 8
5 6 1 2
7 8 3 4

r=toeplitz({1 2 3 4 ,
5 6 7 8});

R 4 rows 4 cols (numeric)

1 2 3 4
5 6 7 8
3 7 1 2
4 8 5 6

SAS OnlineDoc: Version 8

TPSPLINE Call � 775

TPSPLINE Call

computes thin-plate smoothing splines

CALL TPSPLINE(fitted, coeff, adiag, gcv, x, y <, lambda>);

The TSPLINE subroutine computes thin-plate smoothing spline (TPSS) fits to ap-
proximate smooth multivariate functions that are observed with noise. The general-
ized cross validation (GCV) function is used to select the smoothing parameter.

The TPSPLINE subroutine returns the following values:

fitted is ann � 1 vector of fitted values of the TPSS fit evaluated at the
design pointsx. Then is the number of observations. The final
TPSS fit depends on the optionallambda.

coeff is a vector of spline coefficients. The vector contains the coef-
ficients for basis functions in the null space and the representer of
evaluation functions at unique design points. (Refer to Wahba 1990
for more detail on reproducing kernel Hilbert space and representer
of evaluation functions.) The length ofcoeffvector depends on the
number of unique design points and the number of variables in the
spline model. In general, letnuobsandk be the number of unique
rows and the number of columns ofx respectively. The length of
coeffequals tok + nuobs+ 1. Thecoeffvector can be used as an
input of TPSPLNEV to evaluate the resulting TPSS fit at new data
points.

adiag is ann�1 vector of diagonal elements of the “hat” matrix. See the
“Details” section.

gcv If lambda is not specified, thengcv is the minimum value of the
GCV function. If lambdais specified, thengcvis a vector (or scalar
if lambdais a scalar) of GCV values evaluated at thelambdapoints.
It provides users both with the ability to study the GCV curves
by plotting gcv againstlambda, and with the chance to identify a
possible local minimum.

The inputs to the TPSPLINE subroutine are as follows:

x is ann� k matrix of design points on which the TPSS is to be fit.
Thek is the number of variables in the spline model. The columns
of x need to be linearly independent and contain no constant col-
umn.

y is then� 1 vector of observations.

lambda is a optionalq � 1 vector containing� values inlog10(n�) scale.
This option gives users the power to control how they want the
TPSPLINE subroutine to function. Iflambdais not specified (or
lambdais specified andq > 1) the GCV function is used to choose

SAS OnlineDoc: Version 8

776 � Chapter 17. Language Reference

the “best”� and the returningfittedvalues are based on the� that
minimizes the GCV function. Iflambdais specified andq = 1, no
minimization of the GCV function is involved and thefitted, coeff
andadiagvalues are all based on the TPSS fit using this particular
lambda. This gives users the freedom to choose the� which they
think appropriate.

Aside from the values returned, the TPSPLINE subroutine also prints other useful
information such as the number of unique observations, the dimensions of the null
space, the number of parameters in the model, a GCV estimate of�, the smoothing
penalty, the residual sum of square, the trace of(I � A(�)), an estimate of�2, and
the sum of squares for replication.

Note: No missing values are allowed within the input arguments. Also, you
should use caution if you want to specify smalllambda values. Since the true
� = (10log10 lambda)=n, a very small value forlambdacan cause� to be smaller
than the magnitude of machine error and usually the returnedgcv values from such
a� cannot be trusted. Finally, when using TPSPLINE be aware that TPSS is a com-
putationally intensive method. Therefore a large data set (that is, a large number of
unique design points) will take a lot of computer memory and time.

For convenience, we illustrate the TPSS method with a two-dimensional independent
variableX = (x1;x2). More details can be found in Wahba (1990), or in Bates,et
al. (1987).

Assume that the data is from the model

yi = f(xi) + �i;

where(xi; yi); i = 1; : : : ; n are the observations. The functionf is unknown and you
assume that it is reasonably smooth. The error terms�i; i = 1; : : : ; n are independent
zero-mean random variables.

You will measure the smoothness off by the integral over the entire plane of the
square of the partial derivatives off of total order 2, that is

J2(f) =

Z 1

�1

Z 1

�1

�
@2f

@x12

�2
+ 2

�
@2f

@x1@x2

�2
+

�
@2f

@x22

�2
dx1dx2:

Using this as a smoothness penalty, the thin-plate smoothing spline estimatef� of f
is the minimizer of

S�(f) =
1

n

nX
i=1

(yi � f(xi))
2 + �J2(f):

Duchon (1976) derived that the minimizerf� can be represented as

f�(x) =

3X
i=1

�i�i(x) +

nX
i=1

�iE2(x� xi);

SAS OnlineDoc: Version 8

TPSPLNEV Call � 777

where(�1(x); �2(x); �3(x)) = (1;x1;x2) andE2(n) = 1
23�knk2ln(knk).

Let matrixK have entries(K)ij = E2(xi � xj) and matrixT have entries(T)ij =
�j(xi). Then the minimization problem can be rewritten as finding coefficients� and
� to minimize

S�(�; �) =
1

n
ky �T� �K�k2 + ��TK�:

The final TPSS fits can be viewed as a type of generalized ridge regression estimator.
The � is called the smoothing parameter, which controls the balance between the
goodness of fit and the smoothness of the final estimate. The smoothing parameter
can be chosen by minimizing the Generalized Cross Validation function (GCV). If
you write

ŷ = A(�)y;

and call theA(�) as the “hat” matrix, the GCV functionV (�) is defined as

V (�) =
(1=n)k(I �A(�)yk2
[(1=n)tr(I�A(�))]2

:

The returned values from this function call will provide theŷ asfitted, the(�; �) as
coeff, anddiag(A(�)) asadiag.

To evaluate the TPSS fitf�(x) at new data points, you can use the TPSPLNEV call.

SupposeXnew, am � k matrix, contains them new data points at which you want
to evaluatef�. Let (Tnew

ij) = �j(x
new
i) and(Knew

ij) = E2(x
new
i � xj) be theijth

elements ofTnew andKnew respectively. The prediction at new data pointsXnew

is

ypred= Tnew� +Knew�:

Therefore, using the coefficient(�; �) obtained from TPSPLINE call, theypredcan
be easily evaluated.

TPSPLNEV Call

evaluates the thin-plate smoothing spline at new data points

It can be used only after the TPSPLINE call.

CALL TPSPLNEV(pred, xpred, x, coeff);

The TPSPLNEV subroutine returns the following value:

pred is anm�1 vector of the predicated values of the TPSS fit evaluated
atm new data points.

SAS OnlineDoc: Version 8

778 � Chapter 17. Language Reference

The inputs to the TPSPLNEV subroutine are as follows:

xpred is anm � k matrix of data points at which thef� is evaluated,
wherem is the number of new data points andk is the number of
variables in the spline model.

x is ann � k matrix of design points which is used as an input of
TPSPLINE call.

coeff is the coefficient vector returned from the TPSPLINE call.

See the previous section on the TPSPLINE call for details about the TSPLNEV sub-
routine.

As an example, consider the following data set, which consists of two independent
variables. The plot of the raw data can be found in the first panel of Figure 17.1.

proc iml;
x={ -1.0 -1.0, -1.0 -1.0, -.5 -1.0, -.5 -1.0,

.0 -1.0, .0 -1.0, .5 -1.0, .5 -1.0,
1.0 -1.0, 1.0 -1.0, -1.0 -.5, -1.0 -.5,

-.5 -.5, -.5 -.5, .0 -.5, .0 -.5,
.5 -.5, .5 -.5, 1.0 -.5, 1.0 -.5,

-1.0 .0, -1.0 .0, -.5 .0, -.5 .0,
.0 .0, .0 .0, .5 .0, .5 .0,

1.0 .0, 1.0 .0, -1.0 .5, -1.0 .5,
-.5 .5, -.5 .5, .0 .5, .0 .5,

.5 .5, .5 .5, 1.0 .5, 1.0 .5,
-1.0 1.0, -1.0 1.0, -.5 1.0, -.5 1.0,

.0 1.0, .0 1.0, .5 1.0, .5 1.0,
1.0 1.0, 1.0 1.0 };

y={15.54483570, 15.76312613, 18.67397826, 18.49722167,
19.66086310, 19.80231311, 18.59838649, 18.51904737,
15.86842815, 16.03913832, 10.92383867, 11.14066546,
14.81392847, 14.82830425, 16.56449698, 16.44307297,
14.90792284, 15.05653924, 10.91956264, 10.94227538,
9.614920104, 9.646480938, 14.03133439, 14.03122345,
15.77400253, 16.00412514, 13.99627680, 14.02826553,
9.557001644, 9.584670472, 11.20625177, 11.08651907,
14.83723493, 14.99369172, 16.55494349, 16.51294369,
14.98448603, 14.71816070, 11.14575565, 11.17168689,
15.82595514, 15.96022497, 18.64014953, 18.56095997,
19.54375504, 19.80902641, 18.56884576, 18.61010439,
15.86586951, 15.90136745 };

Now generate a sequence of� from �3:8 to �3:3 so that we can study the GCV
function within this range.

do j=-3.8 to -3.3 by 0.1;
lambda=lambda||j;

end;
lambda=t(lambda);

SAS OnlineDoc: Version 8

TPSPLNEV Call � 779

Use the following IML statement to do the thin-plate smoothing spline fit and return-
ing the fitted values on those design points.

call tpspline(fit,coef,adiag,gcv, x, y,lambda);

The output from this call follows.

SUMMARY OF TPSPLINE CALL

Number of observations 50
Number of unique design points 25
Dimension of polynomial Space 3
Number of Parameters 28

GCV Estimate of Lambda 0.00000668
Smoothing Penalty 2558.14323
Residual Sum of Squares 0.24611
Trace of (I-A) 25.40680
Sigma^2 estimate 0.00969
Sum of Squares for Replication 0.24223

After this TPSPLINE call, you obtained the fitted value. The fitted surface is plotted
in the second panel of Figure 17.1. Also in Figure 17.1, panel 4, you plot the GCV
function values againstlambda. From panel 2, you see that because of the spare
design points, the fitted surface is a little bit rough. In order to study the TPSS fit
f�(x) more closely, you use the following IML statements to generate a more dense
grid on [�1; 1] � [�1; 1].

do i1=-1 to 1 by 0.1;
do i2=-1 to 1 by 0.1;

x1=x1||i1;
x2=x2||i2;

end;
end;
x1=t(x1);
x2=t(x2);
xpred=x1||x2;

Now you can use the function TPSPLNEV to evaluatef�(x) on this dense grid.

call tpsplnev(pred, xpred, x, coef);

The final fitted surface is plotted in Figure 17.1, panel 3.

SAS OnlineDoc: Version 8

780 � Chapter 17. Language Reference

Figure 17.1. Plots of Fitted Surface

SAS OnlineDoc: Version 8

TRISOLV Function � 781

TRACE Function

sums diagonal elements

TRACE(matrix)

wherematrix is a numeric matrix or literal.

The TRACE function produces a single numeric value that is the sum of the diagonal
elements ofmatrix. For example, the statement

a=trace({5 2, 1 3});

produces the result

A 1 row 1 col (numeric)

8

TRISOLV Function

solves linear systems with triangular matrices

TRISOLV(code, r, b <, piv>)

The TRISOLV function returns the following value:

x is then � p matrixX containingp solutions of thep linear systems
specified bycode, r, andb.

The inputs to the TRISOLV function are as follows:

code specifies which of the following forms of triangular linear system has
to be solved:

code=1 solveRx = b,R upper triangular

code=2 solveR0x = b,R upper triangular

code=3 solveR0x = b,R lower triangular

code=4 solveRx = b,R lower triangular

r specifies then� n nonsingular upper (code=1,2) or lower (code=3,4)
triangular coefficient matrixR. Only the upper or lower triangle of ar-
gument matrixr is used; the other triangle can contain any information.

b specifies then� p matrix,B, of p right-hand sidesbk.

piv specifies an optionaln vector that relates the order of the columns of
matrixR to the order of the columns of an original coefficient matrix

SAS OnlineDoc: Version 8

782 � Chapter 17. Language Reference

A for which matrixR has been computed as a factor. For example,
the vectorpiv can be the result of the QR decomposition of a matrixA

whose columns were permuted in the orderApiv[1]; : : : ;Apiv[n].

For code=1 and code=3, the solution is obtained by backward elimination. For
code=2 andcode=4, the solution is obtained by forward substitution.

If TRISOLV recognizes the upper or lower triangular matrixR as a singular matrix
(that is, one that contains at least one zero diagonal element), it exits with an error
message.

See the example in the QR call section.

TSBAYSEA Call

performs Bayesian seasonal adjustment modeling

CALL TSBAYSEA(trend, season, series, adjust, abic, data
<,order, sorder, rigid, npred, opt, cntl, print>);

The inputs to the TSBAYSEA subroutine are as follows:

data specifies aT � 1 (or 1� T) data vector.

order specifies the order of trend differencing. The default isorder=2.

sorder specifies the order of seasonal differencing. The default issorder=1.

rigid specifies the rigidity of the seasonal pattern. The default isrigid=1.

npred specifies the length of the forecast beyond the available observations. The
default isnpred=0.

opt specifies the options vector.

opt[1] specifies the number of seasonal periods (speriod). By default,
opt[1]=12.

opt[2] specifies the year when the series starts (year). If opt[2]=0, there
will be no trading day adjustment. By default,opt[2]=0.

opt[3] specifies the month when the series starts (month). If opt[2]=0,
this option is ignored. By default,opt[3]=1.

opt[4] specifies the upper limit value for outlier determination (rlim).
Outliers are considered as missing values. If this value is less
than or equal to 0, TSBAYSEA assumes that the input data does
not contain outliers. The default isrlim=0. See the “Missing
Values” section on page 269.

opt[5] refers to the number of time periods processed at one time (span).
The default isopt[5]=4.

opt[6] specifies the number of time periods to be shifted (shift). By de-
fault, opt[6]=1.

SAS OnlineDoc: Version 8

TSBAYSEA Call � 783

opt[7] controls the transformation of the original series (logt). If
opt[7]=1, log transformation is requested. No transformation
(opt[7]=0) is the default.

cntl specifies control values for the TSBAYSEA subroutine. These values will
be automatically set. Be careful if you change these values.

cntl[1] controls the adaptivity of the trading day adjustment component
(wtrd). The default iscntl[1]=1.0.

cntl[2] controls the sum of seasonal components within a period (zer-
sum). The larger the value ofcntl[2], the closer to zero this sum
is. By default,cntl[2]=1.0.

cntl[3] controls the leap year effect (delta). The default iscntl[3]=7.0.

cntl[4] specifies the prior variance of the initial trend (alpha). The de-
fault is cntl[4]=0.01.

cntl[5] specifies the prior variance of the initial seasonal component
(beta). The default iscntl[5]=0.01. [.03in]

cntl[6] specifies the prior variance of the initial sum of seasonal compo-
nents (gamma). The default iscntl[6]=0.01.

print requests the power spectrum and the estimated and forecast values of time
series components. Ifprint=2, the spectra of irregular, differenced trend
and seasonal series are printed, together with estimates and forecast values.
If print=1, only the estimates and forecast values of time series components
are printed.

If print=0, printed output is suppressed. The default isprint=0.

The TSBAYSEA subroutine returns the following values:

trend refers to the estimate and forecast of the trend component.

season refers to the estimate and forecast of the seasonal component.

series refers to the smoothed and forecast values of the time series.

adjust refers to the seasonally adjusted series.

abic refers to the value of ABIC from the final estimates.

Bayesian seasonal adjustments are performed with the TSBAYSEA subroutine. The
smoothness of the trend and seasonal components is controlled by the prior dis-
tribution. The Akaike Bayesian Information Criterion (ABIC) is defined to com-
pare with alternative models. The basic TSBAYSEA procedure processes the block
of data in which the length is SPAN*SPERIOD, while the first block of data con-
sists of length (2*SPAN-1)*SPERIOD. The block of data is shifted successively by
SHIFT*SPERIOD.

The TSBAYSEA call decomposes the seriesyt into the following form:

yt = Tt + St + �t

SAS OnlineDoc: Version 8

784 � Chapter 17. Language Reference

whereTt is a trend component,St denotes a seasonal component, and�t is an irregular
component. To estimate the seasonal and trend components, some constraints are
imposed such that the sum of squares ofrkTt,rl

LSt, and
PL�1

i=0 St�i is small, where
r andrL are difference operators. Then the solution can be obtained by minimizing

NX
t=1

n
(yt � Tt � St)

2 + d2
h
s2(rkTt)

2 + (rl
LSt)

2 + z2(St + � � �+ St�L+1)
2
io

where d measures the smoothness of the trend and seasonality,s measures the
smoothness of the trend, andz is a smoothness constant for the sum of the sea-
sonal variability. The value ofd is estimated while the constants,s andz, are chosen
a priori. The value ofs is equal to 1

RIGID , and the constantz is determined as
ZERSUM*RIGID/SPERIOD1=2. The larger the constant RIGID, the more rigid the
seasonal pattern is. See the section, "Bayesian Constrained Least Squares", for more
information.

To analyze the monthly data with rigidity 0.5, you can specify

call tsbaysea(trend,season,series,adj,abic) data=z order=2
sorder=1 rigid=0.5 npred=10 print=2;

or

call tsbaysea(trend,season,series,adj,abic,z,2,1,0.5,10,,,2);

The TREND, SEASON, and SERIES components contain 10-period-ahead forecast
values as well as the smoothed estimates. The detailed result is also printed since the
PRINT=2 option is specified.

TSDECOMP Call

analyzes nonstationary time series by using smoothness priors modeling

CALL TSDECOMP(comp, est, aic, data, <,xdata, order, sorder,
nar, npred, init, opt, icmp, print>);

The inputs to the TSDECOMP subroutine are as follows:

data specifies aT � 1 (or 1� T) data vector.

xdata specifies aT �K explanatory data matrix.

order specifies the order of trend differencing (0, 1, 2, or 3). The default is 2.

sorder specifies the order of seasonal differencing (0, 1, or 2). The default is 1.

nar specifies the order of the AR process. The default is 0.

npred specifies the length of the forecast beyond the available observations. The
default is 0.

SAS OnlineDoc: Version 8

TSDECOMP Call � 785

init specifies the initial values of parameters. The initial values are specified
as variances for trend difference equation, AR process, seasonal difference
equation, regression equation, and partial AR coefficients. The correspond-
ing default variance values are 0.005, 0.8, 1E�5, and 1E�5. The default
partial AR coefficient values are determined as

 i = 0:88 � (�0:6)i�1 i = 1; 2; : : : ;nar

opt specifies the options vector.

opt[1] specifies the mean deletion option. The mean of the original se-
ries is subtracted from the series ifopt[1]=�1. By default, the
original series is processed (opt[1]=0). When regressors are spec-
ified, only theopt[1]=0 option is allowed.

opt[2] specifies the trading day adjustment. The default isopt[2]=0.

opt[3] specifies the year (� 1900) when the series starts. Ifopt[3]=0,
there is no trading day adjustment. By default,opt[3]=0.

opt[4] specifies the number of seasons within a period (speriod). By
default,opt[4]=12.

opt[5] controls the transformation of the original series. Ifopt[5]=1, log
transformation is requested. By default, there is no transforma-
tion (opt[5]=0).

opt[6] specifies the maximum number of iterations allowed. The default
is opt[6] = 200.

opt[7] specifies the update technique for the quasi-Newton optimization
technique. Ifopt[7]=1 is specified, the dual Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) update method is used. Ifopt[7]=2
is specified, the dual Davidon, Fletcher, and Powell (DFP) update
method is used. The default isopt[7]=1.

opt[8] specifies the line search technique for the quasi-Newton opti-
mization method. The default isopt[8] = 2.

opt[8]=1 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and extrapolation.

opt[8]=2 specifies a line search method that requires more ob-
jective function calls than gradient calls for cubic in-
terpolation and extrapolation.

opt[8]=3 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and extrapolation.

opt[8]=4 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and stepwise extrapolation.

opt[8]=5 specifies a line search method that is a modified ver-
sion ofopt[8]=4.

opt[8]=6 specifies the golden section line search method that
uses only function values for linear approximation.

SAS OnlineDoc: Version 8

786 � Chapter 17. Language Reference

opt[8]=7 specifies the bisection line search method that uses
only function values for linear approximation.

opt[8]=8 specifies the Armijo line search method that uses only
function values for linear approximation.

opt[9] specifies the upper bound of the variance estimates. If you specify
opt[9]=value, the variances are estimated with the constraint that
� � value. When you specify theopt[9]=0 option, the upper
bound is not imposed. The default isopt[9]=0.

opt[10] specifies the length of data used in backward filtering for the
Kalman filter initialization. The default value ofopt[10] is 100
if the number of observations is greater than 100; otherwise, the
default value is the number of observations.

icmp specifies which component is calculated.

icmp=1 requests the estimate and forecast of trend component.

icmp=2 requests the estimate and forecast of seasonal component.

icmp=3 requests the estimate and forecast of AR component.

icmp=4 requests the trading day adjustment component.

icmp=5 requests the regression component.

icmp=6 requests the time-varying regression coefficients.

You can calculate multiple components by specifying a vector. For exam-
ple, you can specifyicmp={1 2 3 5}.

print specifies the print option. By default, printed output is suppressed
(print=0). If you specifyprint=1, the subroutine prints the final estimates.
The iteration history is printed if you specifyprint=2.

The TSDECOMP subroutine returns the following values:

comp refers to the estimate and forecast of the trend component.

est refers to the parameter estimates including coefficients of the AR process.

aic refers to the AIC statistic obtained from the final estimates.

The TSDECOMP subroutine analyzes nonstationary time series by using smoothness
priors modeling (see the “Smoothness Priors Modeling” section on page 252 for
more details). The likelihood function is maximized with respect to hyperparameters.
The Kalman filter algorithm is used for filtering, smoothing, and forecasting. The
TSDECOMP call decomposes the time seriesyt as follows:

yt = Tt + St + TDt + ut +Rt + �t

whereTt represents the trend component,St denotes the seasonal component,TDt

represents the trading day adjustment component,ut denotes the autoregressive pro-
cess component,Rt denotes regression effect components, and�t represents the ir-
regular term with zero mean and constant variance.

SAS OnlineDoc: Version 8

TSMLOCAR Call � 787

The trend components are constrained as follows:

rkTt = w1t; w1t � N(0; �21)

When you specify the ORDER=0 option, the trend component is not estimated. The
maximum order of differencing is 3 (k = 0; : : : ; 3).

The seasonal components are denoted as a stochastically perturbed equation:

1 +

L�1X
i=1

Bi

!l

St = w2t; w2t � N(0; �22)

When you specify SORDER=0, the seasonal component is not estimated. The maxi-
mum value ofl is 2 (l = 0; 1; or 2).

The stationary autoregressive (AR) process is denoted as a stochastically perturbed
equation:

ut =

pX
i=1

�iut�i + w3t; w3t � N(0; �23)

wherep is the order of AR process. When NAR=0 is specified, the AR process
component is not estimated.

The time-varying regression coefficients are estimated if you include exogenous vari-
ables:

Rt = Xt�t

whereXt containsm regressors except the constant term and�0t = (�1t; : : : ; �mt).
The time-varying coefficients�t follow the random walk process:

�jt = �jt�1 + vjt; vjt � N(0; �2j)

where�jt is an element of the coefficient vector�t.

The trading day adjustment componentTDt is deterministically restricted. See the
section, "State Space and Kalman Filter Method", for more information.

You can estimate the time-varying coefficient model as follows:

call tsdecomp COMP=beta ORDER=0 SORDER=0 NAR=0
DATA=y XDATA=x ICMP=6;

The output matrix BETA contains time-varying regression coefficients.

SAS OnlineDoc: Version 8

788 � Chapter 17. Language Reference

TSMLOCAR Call

analyzes nonstationary or locally stationary time series by using the minimum
AIC procedure

CALL TSMLOCAR(arcoef, ev, nar, aic, start, finish, data
<,maxlag, opt, missing, print>);

The inputs to the TSMLOCAR subroutine are as follows:

data specifies aT � 1 (or 1� T) data vector.

maxlag specifies the maximum lag of the AR process. This value should be less
than half the length of locally stationary spans. The default ismaxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted ifopt[1]=�1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data is processed assum-
ing that the mean value of the input series is 0. The default is
opt[1]=0.

opt[2] specifies the number (J) of basic spans. By default,opt[2]=1.

opt[3] specifies the minimum AIC option. Ifopt[3]=0, themaximum lag
AR process is estimated. Ifopt[3]=1, the minimum AIC proce-
dure is performed. The default isopt[3]=1.

missing specifies the missing value option. By default, only the first contiguous ob-
servations with no missing values are used (missing=0). Themissing=1 op-
tion ignores observations with missing values. If you specify themissing=2
option, the missing values are replaced with the sample mean.print] spec-
ifies the print option. By default, printed output is suppressed (print=0).
The print=1 option prints the AR estimation result, while theprint=2 op-
tion plots the power spectral density as well as the AR estimates.

The TSMLOCAR subroutine returns the following values:

arcoef refers to annar� 1 AR coefficient vector of the final model if the intercept
estimate is not included. Ifopt[1]=1, the first element of thearcoefvector
is an intercept estimate.

ev refers to the error variance.

nar is the selected AR order of the final model. Ifopt[3]=0, nar=maxlag.

aic refers to the minimum AIC value of the final model.

start refers to the starting position of the input series, which corresponds to the
first observation of the final model.

SAS OnlineDoc: Version 8

TSMLOMAR Call � 789

finish refers to the ending position of the input series, which corresponds to the
last observation of the final model.

The TSMLOCAR subroutine analyzes nonstationary (or locally stationary) time se-
ries by using the minimum AIC procedure. The data of lengthT is divided intoJ
locally stationary subseries, which consist ofT

J observations. See the “Nonstationary
Time Series” section on page 256 for details.

TSMLOMAR Call

analyzes nonstationary or locally stationary multivariate time series by using the
minimum AIC procedure

CALL TSMLOMAR(arcoef, ev, nar, aic, start, finish, data
<,maxlag, opt, missing, print>);

The inputs to the TSMLOMAR subroutine are as follows:

data specifies aT �M data matrix, whereT is the number of observations and
M is the number of variables to be analyzed.

maxlag specifies the maximum lag of the vector AR (VAR) process. This value
should be less than12M of the length of locally stationary spans. The default
is maxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted ifopt[1]=�1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data is processed assum-
ing that the mean values of input series are zeroes. The default is
opt[1]=0.

opt[2] specifies the number (J) of basic spans. By default,opt[2]=1.

opt[3] specifies the minimum AIC option. Ifopt[3]=0, themaximum lag
VAR process is estimated. Ifopt[3]=1, a minimum AIC proce-
dure is used. The default isopt[3]=1.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). Themissing=1
option ignores observations with missing values. If you specify themiss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the AR estimates, minimum AIC, min-
imum AIC order, and innovation variance matrix.

The TSMLOMAR subroutine returns the following values.

SAS OnlineDoc: Version 8

790 � Chapter 17. Language Reference

arcoef refers to anM � (M �nar) VAR coefficient vector of the final model if the
intercept vector is not included. Ifopt[1]=1, the first column of thearcoef
matrix is an intercept estimate vector.

ev refers to the error variance matrix.

nar is the selected VAR order of the final model. Ifopt[3]=0, nar=maxlag.

aic refers to the minimum AIC value of the final model.

start refers to the starting position of the input seriesdata, which corresponds to
the first observation of the final model.

finish refers to the ending position of the input seriesdata, which corresponds to
the last observation of the final model.

The TSMLOMAR subroutine analyzes nonstationary (or locally stationary) multi-
variate time series by using the minimum AIC procedure. The data of lengthT is
divided intoJ locally stationary subseries. See “Nonstationary Time Series” in the
“Nonstationary Time Series” section on page 256 for details.

TSMULMAR Call

estimates VAR processes by using the minimum AIC procedure

CALL TSMULMAR(arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);

The inputs to the TSMULMAR subroutine are as follows:

data specifies aT �M data matrix, whereT is the number of observations and
M is the number of variables to be analyzed.

maxlag specifies the maximum lag of the VAR process. This value should be less
than 1

2M of the length of input data. The default ismaxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted ifopt[1]=�1. AnM � 1 intercept vector is estimated
if opt[1]=1. If opt[1]=0, the original input data is processed as-
suming that the mean value of the input data is 0. The default is
opt[1]=0.

opt[2] specifies the minimum AIC option. Ifopt[2]=0, themaximum lag
AR process is estimated. Ifopt[2]=1, the minimum AIC proce-
dure is used, while theopt[2]=2 option specifies the VAR order
selection method based on the AIC. The default isopt[2]=1.

opt[3] specifies instantaneous response modeling ifopt[3]=1. The de-
fault is opt[3]=0. See the section “Multivariate Time Series
Analysis” on page 259 for more information.

SAS OnlineDoc: Version 8

TSPEARS Call � 791

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). Themissing=1
option ignores observations with missing values. If you specify themiss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the final estimation result, while the
print=2 option prints intermediate and final results.

The TSMULMAR subroutine returns the following values:

arcoef refers to anM � (M � nar) AR coefficient matrix if the intercept is not
included. Ifopt[1]=1, the first column of thearcoefmatrix is an intercept
vector estimate.

ev refers to the error variance matrix.

nar is the selected VAR order of the minimum AIC procedure. Ifopt[2]=0,
nar=maxlag. aic] refers to the minimum AIC value.

The TSMULMAR subroutine estimates the VAR process by using the minimum AIC
method. The widely used VAR order selection method is added to the original TIM-
SAC program, which considers only the possibilities of zero coefficients at the be-
ginning and end of the model. The TSMULMAR subroutine can also estimate the
instantaneous response model. See the “Multivariate Time Series Analysis” section
on page 259 for details.

TSPEARS Call

analyzes periodic AR models with the minimum AIC procedure

CALL TSPEARS(arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);

The inputs to the TSPEARS subroutine are as follows:

data specifies aT � 1 (or 1� T) data matrix.

maxlag specifies the maximum lag of the periodic AR process. This value should
be less than12J of the input series. The default ismaxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted ifopt[1]=�1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data is processed assum-
ing that the mean values of input series are zeroes. The default is
opt[1]=0.

opt[2] specifies the number of instants per period. By default,opt[2]=1.

SAS OnlineDoc: Version 8

792 � Chapter 17. Language Reference

opt[3] specifies the minimum AIC option. Ifopt[3]=0, themaximum lag
AR process is estimated. Ifopt[3]=1, the minimum AIC proce-
dure is used. The default isopt[3]=1.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). Themissing=1
option ignores observations with missing values. If you specify themiss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the periodic AR estimates and inter-
mediate process.

The TSPEARS subroutine returns the following values:

arcoef refers to a periodic AR coefficient matrix of the periodic AR model. If
opt[1]=1, the first column of thearcoefmatrix is an intercept estimate vec-
tor.

ev refers to the error variance.

nar refers to the selected AR order vector of the periodic AR model.

aic refers to the minimum AIC values of the periodic AR model.

The TSPEARS subroutine analyzes the periodic AR model by using the minimum
AIC procedure. The data of lengthT are divided intod periods. There areJ instants
in one period. See the “Multivariate Time Series Analysis” section on page 259 for
details.

TSPRED Call

provides predicted values of univariate and multivariate ARMA processes when
the ARMA coefficients are input

CALL TSPRED(forecast, impulse, mse, data, coef, nar, nma
<,ev, npred, start, constant>);

The inputs to the TSPRED subroutine are as follows:

data specifies aT � M data matrix if the intercept is not included, whereT
denotes the length of the time series andM is the number of variables to
be analyzed. If the univariate time series is analyzed, the input data should
be a column vector.

coef refers to theM(P +Q)�M ARMA coefficient matrix, whereP is an AR
order andQ is an MA order. If the intercept term is included (constant=1),
the first row of the coefficient matrix is considered as the intercept term and
the coefficient matrix is anM(P +Q+1)�M matrix. If there are missing
values in thecoefmatrix, these are converted to zero.

SAS OnlineDoc: Version 8

TSROOT Call � 793

nar specifies the order of the AR process. If the subset AR process is requested,
nar should be a row or column vector. The default isnar=0.

nma specifies the order of the MA process. If the subset MA process is re-
quested,nmashould be a vector. The default isnma=0.

ev specifies the error variance matrix. If theev matrix is not provided, the
prediction error covariance will not be computed.

npred specifies the maximum length of multistep forecasting. The default is
npred=0.

start specifies the position where the multistep forecast starts. The default is
start=T .

constant specifies the intercept option. No intercept estimate is included ifcon-
stant=0; otherwise, the intercept estimate is included in the first row of the
coefficient matrix. Ifconstant=�1, the coefficient matrix is estimated by
using mean deleted series. By default,constant=0.

The TSPRED subroutine returns the following values:

forecast refers to predicted values.

impulse refers to the impulse response function.

mse refers to the mean square error ofs-step-ahead forecast. A scalar missing
value is returned if the error variance (ev) is not provided.

TSROOT Call

calculates AR and MA coefficients from the characteristic roots of the model or
calculates the characteristic roots of the model from the AR and MA coefficients

CALL TSROOT(matout, matin, nar, nma, <,qcoef, print>);

The inputs to the TSROOT subroutine are as follows:

matin refers to the(nar + nma) � 2 characteristic root matrix if the polynomial
(ARMA) coefficients are requested (qcoef=1), where the first column of
the matin matrix contains the real part of the root and the second column
of thematinmatrix contains the imaginary part of the root. When the char-
acteristic roots are requested (qcoef=0), the firstnar rows are complex AR
coefficients and the lastnmarows are complex MA coefficients. The de-
fault is qcoef=0.

nar specifies the order of the AR process. If you specify the subset AR model,
the inputnar should be a row or column vector.

nma specifies the order of the MA process. If you specify the subset MA model,
the inputnmashould be a row or column vector.

SAS OnlineDoc: Version 8

794 � Chapter 17. Language Reference

qcoef requests the ARMA coefficients when the characteristic roots are provided
(qcoef=1). By default, the characteristic roots of the polynomial are calcu-
lated (qcoef=0).

print specifies the print option ifprint=1. By default, printed output is suppressed
(print=0).

The TSROOT subroutine returns the following values

matout refers to the characteristic root matrix ifqcoef=0; otherwise, thematout
matrix contains the AR and MA coefficients.

TSTVCAR Call

analyzes time series that are nonstationary in the covariance function

CALL TSTVCAR(arcoef, variance, est, aic, data
<,nar, init, opt, outlier, print>);

The inputs to the TSTVCAR subroutine are as follows:

data specifies aT � 1 (or 1� T) data vector.

nar specifies the order of the AR process. The default isnar=8.

init specifies the initial values of the parameter estimates. The default is (1E�4,
0.3, 1E�5, 0).

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original se-
ries is subtracted from the series ifopt[1]=�1. By default, the
original series is processed (opt[1]=0).

opt[2] specifies the filtering period (nfilter). The number of state vectors
is determined by T

n�lter
. The default isopt[2]=10.

opt[3] specifies the numerical differentiation method. Ifopt[3]=1, the
one-sided (forward) differencing method is used. The two-sided
(or central) differencing method is used ifopt[3]=2. The default
is opt[3]=1.

outlier specifies the vector of outlier observations. The value should be less than
or equal to the maximum number of observations. The default isoutlier=0.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the final estimates. The iteration his-
tory is printed ifprint=2.

The TSTVCAR subroutine returns the following values:

arcoef refers to the time-varying AR coefficients.

SAS OnlineDoc: Version 8

TSUNIMAR Call � 795

variance refers to the time-varying error variances. See the “Smoothness Priors
Modeling” section on page 252 for details.

est refers to the parameter estimates.

aic refers to the value of AIC from the final estimates.

Nonstationary time series modeling usually deals with nonstationarity in the mean.
The TSTVCAR subroutine analyzes the model that is nonstationary in the covariance.
Smoothness priors are imposed on each time-varying AR coefficient and frequency
response function. See the “Nonstationary Time Series” section on page 256 for
details.

TSUNIMAR Call

determines the order of an AR process with the minimum AIC procedure and
estimates the AR coefficients

CALL TSUNIMAR(arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);

The inputs to the TSUNIMAR subroutine are as follows:

data specifies aT � 1 (or 1�T) data vector, whereT is the number of observa-
tions.

maxlag specifies the maximum lag of the AR process. This value should be less
than half the number of observations. The default ismaxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original
data is deleted ifopt[1]=�1. An intercept term is estimated if
opt[1]=1. If opt[1]=0, the original input data is processed assum-
ing that the mean value of the input data is 0. The default is
opt[1]=0.

opt[2] specifies the minimum AIC option. Ifopt[2]=0, themaximum lag
AR process is estimated. The minimum AIC option,opt[2]=1, is
the default.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). Themissing=1
option ignores observations with missing values. If you specify themiss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the final estimation result, while the
print=2 option prints intermediate and final results.

The TSUNIMAR subroutine returns the following values.

SAS OnlineDoc: Version 8

796 � Chapter 17. Language Reference

arcoef refers to annar� 1 AR coefficient vector if the intercept is not included. If
opt[1]=1, the first element of thearcoefvector is an intercept estimate.

ev refers to the error variance.

nar refers to the selected AR order by minimum AIC procedure. If
opt[2]=0, nar = maximum lag.

aic refers to the minimum AIC value.

The TSUNIMAR subroutine determines the order of the AR process by using the
minimum AIC procedure and estimates the AR coefficients. All AR coefficient esti-
mates up to maximum lag are printed if you specify the print option. See the section,
"Least Squares and Householder Transformation", for more information.

TYPE Function

determines the type of a matrix

TYPE(matrix)

wherematrix is a numeric or character matrix or literal.

The TYPE function returns a single character value; it isN if the type of the matrix
is numeric; it isC if the type of the matrix is character; it isU if the matrix does not
have a value. Examples of valid statements follow.

The statements

a={tom};
r=type(a);

set R toC. The statements

free a;
r=type(a);

set R toU. The statements

a={1 2 3};
r=type(a);

set R toN.

SAS OnlineDoc: Version 8

UNION Function � 797

UNIFORM Function

generates pseudo-random uniform deviates

UNIFORM(seed)

whereseedis a numeric matrix or literal. Theseedcan be any integer value up to
231 � 1.

The UNIFORM function returns one or more pseudo-random numbers with a uniform
distribution over the interval 0 to 1. The UNIFORM function returns a matrix with
the same dimensions as the argument. The first argument on the first call is used for
the seed, or if that argument is 0, the system clock is used for the seed. The function
is equivalent to the DATA step function RANUNI. An example of a valid statement
follows:

c=uniform(0);

UNION Function

performs unions of sets

UNION(matrix1<, matrix2,: : :, matrix15>)

wherematrix is a numeric or character matrix or quoted literal.

The UNION function returns as a row vector the sorted set (without duplicates) which
is the union of the element values present in its arguments. There can be up to 15
arguments, which can be either all character or all numeric. For character arguments,
the element length of the result is the longest element length of the arguments. Shorter
character elements are padded on the right with blanks. This function is identical to
the UNIQUE function. For example, the statements

a={1 2 4 5};
b={3 4};
c=union(a,b);

set

C 1 row 5 cols (numeric)

1 2 3 4 5

The UNION function can be used to sort elements of a matrix when there are no
duplicates by calling UNION with a single argument.

SAS OnlineDoc: Version 8

798 � Chapter 17. Language Reference

UNIQUE Function

sorts and removes duplicates

UNIQUE(matrix1<, matrix2,: : :, matrix15>)

wherematrix is a numeric or character matrix or quoted literal.

The UNIQUE function returns as a row vector the sorted set (without duplicates)
of all the element values present in its arguments. The arguments can be either all
numeric or all character, and there can be up to 15 arguments specified. This function
is identical to the UNION function, the description of which includes an example.

USE Statement

opens a SAS data set for reading

USE SAS-data-set <VAR operand> <WHERE(expression)>
<NOBS name>;

The inputs to the USE statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, see the chapter on SAS data sets inSAS
Language Reference: Concepts.

operand selects a set of variables.

expression is evaluated for being true or false.

name is the name of a variable to contain the number of observations.

If the data set has not already been opened, the USE statement opens the data set
for read access. The USE statement also makes the data set the current input data
set so that subsequent statements act on it. The USE statement optionally can define
selection criteria that are used to control access.

The VAR clause specifies a set of variables to use, whereoperandcan be any of the
following:

� a literal containing variable names

� the name of a matrix containing variable names

� an expression in parentheses yielding variable names

SAS OnlineDoc: Version 8

USE Statement � 799

� one of the following keywords:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples show each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within therangespecifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

SAS OnlineDoc: Version 8

800 � Chapter 17. Language Reference

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

The VAR and WHERE clauses are optional, and you can specify them in any order.
If a data set is already open, all the options that the data set was first opened with are
still in effect. To override any old options, the new USE statement must explicitly
specify the new options. Examples of valid statements follow.

use class;
use class var{name sex age};
use class var{name sex age} where(age>10);

VALSET Call

performs indirect assignment

CALL VALSET(char-scalar, argument);

The inputs to the VALSET subroutine are as follows:

char-scalar is a character scalar containing the name of a matrix.

argument is a value to which the matrix is set.

The VALSET subroutine expects a single character string argument containing the
name of a matrix. It looks up the matrix and moves the value of the second argu-
ment to this matrix. For example, the following statements find that the value of the
argumentB isA and then assign the value 99 toA, the indirect result:

b="A";
call valset(b,99);

The previous value of the indirect result is freed. The following statement setsB to
99, but the value ofA is unaffected by this statement:

b=99;

SAS OnlineDoc: Version 8

VARMACOV Call � 801

VALUE Function

assigns values by indirect reference

VALUE(char-scalar)

wherechar-scalaris a character scalar containing the name of a matrix.

The VALUE function expects a single character string argument containing the name
of a matrix. It looks up the matrix and moves its value to the result. For example, the
statements

a={1 2 3};
b="A";
c=value(b);

find that the value of the argumentB isA and then look upA and copy the value 1
2 3 toC.

C 1 row 3 cols (numeric)

1 2 3

VARMACOV Call

computes the theoritical auto-cross covariance matrices for stationary
VARMA(p; q) model

CALL VARMACOV(cov, phi, theta, sigma <, p, q, lag>);

The inputs to the VARMACOV subroutine are as follows:

phi specifies to akp�k matrix containing the vector autoregressive coefficient
matrices. All the roots ofj�(B)j = 0 are greater than one in absolute value.

theta specifies to akq � k matrix containing the vector moving-average coeffi-
cient matrices. You must specify eitherphi or theta.

sigma specifies ak � k symmetric positive-definite covariance matrix of the in-
novation series. By default,sigma is an identity matrix with dimension
k.

p specifies the order of AR. You can also specify the subset of the order of
AR. By default, letphi = �,

p =
the number of row of matrix �

the number of column of matrix �
:

SAS OnlineDoc: Version 8

802 � Chapter 17. Language Reference

For example, consider a 4 dimensional vector time series, ifphi = � is4�4
matrix andp = 1, the VARMACOV subroutine computes the theoritical
auto-cross covariance matrices of VAR(1) as follows

yt = �yt�1 +m�t:

If phi = � is 4 � 4 matrix andp = 2, the VARMACOV subroutine com-
putes the theoritical auto-cross covariance matrices of VAR(2) as follows

yt = �yt�2 +m�t:

If phi = [�0
1 �

0
3]
0 is 8 � 4 matrix andp = f1; 3g, the VARMACOV sub-

routine computes the theoritical auto-cross covariance matrices of VAR(3)
as follows

yt = �1yt�1 +�3yt�3 +m�t:

q specifies the order of MA. You can specify the subset of the order of MA.
By default, lettheta = �,

q =
the number of row of matrix �

the number of column of matrix �
:

The usage ofq is the same as that ofp.

lag specifies the length of lags, which must be a positive number. Iflag = h,
the VARMACOV computes the auto-cross covariance matrices from at lag
zero to at lagh. By default,lag = 12.

The VARMACOV subroutine returns the following value:

cov refers an(k � lag) � k matrices the theoritical auto-cross covariance
VARMA(p; q) series. In case of VMA(q) whenp = 0, the VARMACOV
computes the auto-cross covariance matrices from at lag zero to at lagq.

To compute the theoritical auto-cross covariance matrices of a bivariate (k = 2)
VARMA(1,1) model

yt = �yt�1 +m�t ��m�t�1;

withm�t �WN(0;�), where

� =

�
1:0 0:5
0:5 1:25

�
;� =

�
1:2 �0:5
0:6 0:3

�
;� =

��0:6 0:3
0:3 0:6

�
;

you can specify

call varmacov(cov, phi, theta, sigma) lag=5;

SAS OnlineDoc: Version 8

VARMASIM Call � 803

The VARMACOV subroutine computes theoritical auto-cross covariance matrices for
the VARMA(p,q) model when AR coefficient matrices�i, MA coefficient matrices
�i, and an inovation covariance matrix� are known. Auto-cross covariance matrices
�(l) are

�(l) =

pX
j=1

�(l � j)�0
j �

qX
j=l

	(j � l)��0
j; for l = 0; : : : ; q

�(l) =

pX
j=1

�(l � j)�0
j for l > q

where	j satisfy

	j = �1	j�1 +�2	j�2 + � � �+�p	j�p ��j

with �0 = �I, 	0 = I, and	j = 0 for j < 0.

VARMASIM Call

generates a VARMA(p,q) series

CALL VARMASIM(series, phi, theta, mu, sigma, n <, p, q, initial, seed>);

The inputs to the VARMASIM subroutine are as follows:

phi specifies to akp�k matrix containing the vector autoregressive coefficient
matrices.

theta specifies to akq � k matrix containing the vector moving-average coeffi-
cient matrices. You must specify eitherphi or theta.

mu specifies ak � 1 (or 1 � k) mean vector of the series. By default,mu is a
zero vector.

sigma specifies ak � k covariance matrix of the innovation series. By default,
sigmais an identity matrix with dimensionk.

n specifies the length of the series. By default,n = 100.

p specifies the order of VAR. See the VARMACOV subroutine.

q specifies the order of VMA. See the VARMACOV subroutine.

SAS OnlineDoc: Version 8

804 � Chapter 17. Language Reference

initial specifies the initial values of random variables. Ifinitial = a0,
y�p+1; : : : ;y0 andm��q+1; : : : ; �0 take all the same value asinitial = a0.
If initial option is not specified, the initial values are estimated using VAR-
MACOV for stationary vector time series, while the initial values assume
as zero values for nonstationary vector time series.

seed specifies the random number seed. See the VNORMAL subroutine.

The VARMASIM subroutine returns the following value:

series refers ann � k matrices the generated VARMA(p,q) series. When either
initial option is specified or the zero initial values are used, the returns do
not print these initial values.

To generate a bivariate(k = 2) stationary VARMA(1,1) time series

yt �m� = �(yt�1 �m�) +m�t ��m�t�1;

withm�t �WN(0;�), where

� =

�
1:0 0:5
0:5 1:25

�
; � =

�
10
20

�
;� =

�
1:2 �0:5
0:6 0:3

�
;� =

��0:6 0:3
0:3 0:6

�
;

you can specify

call varmasim(yt, phi, theta, mu, sigma, 100);

To generate a bivariate(k = 2) nonstationary VARMA(1,1) time series with the same
mu, sigma, andthetain previous example and the AR coefficient

� =

�
1:0 0
0 0:3

�
;

you can specify

call varmasim(yt, phi, theta, mu, sigma, 100) initial=3;

SAS OnlineDoc: Version 8

VNORMAL Call � 805

VECDIAG Function

creates a vector from a diagonal

VECDIAG(square-matrix)

wheresquare-matrixis a square numeric matrix.

The VECDIAG function creates a column vector whose elements are the main diag-
onal elements ofsquare-matrix. For example, the statements

a={2 1, 0 -1};
c=vecdiag(a);

produce the column vector

C 2 rows 1 col (numeric)

2
-1

VNORMAL Call

generates multivariate normal random series

CALL VNORMAL(series, mu, sigma, n <, seed>);

The inputs to the VNORMAL subroutine are as follows:

mu specifies ak � 1 (or 1� k) mean vector. By default,mu is a zero vector.

sigma specifies ak�k symmetric positive-definite covariance matrix. By default,
sigmais an identity matrix with dimensionk. You must specify eithermu
or sigma.

n specifies the length of the series. By default,n = 100.

seed specifies the random number seed. If it is not supplied, the system clock is
used to generate the seed. If it is negative, then the absolute value is used as
the starting seed; otherwise, subsequent calls ignore the value ofseedand
use the last seed generated internally.

The VNORMAL subroutine returns the following value:

series refers ann� k matrices the generated normal random series.

To generate a bivariate space (k = 2) normal random series with mean� and covari-
ance matrix�, where

� =

�
10
20

�
and � =

�
1:0 0:5
0:5 1:25

�

SAS OnlineDoc: Version 8

806 � Chapter 17. Language Reference

you can specify

call vnormal(et, mu, sigma, 100);

VTSROOT Call

calculates the characteristic roots of the model from AR and MA characteristic
functions

CALL VTSROOT(root, phi, theta<, p, q>);

The inputs to the VTSROOT subroutine are as follows:

phi specifies to akp�k matrix containing the vector autoregressive coefficient
matrices.

theta specifies to akq � k matrix containing the vector moving-average coeffi-
cient matrices. You must specify eitherphi or theta.

p specifies the order of VAR. See the VARMACOV subroutine.

q specifies the order of VMA. See the VARMACOV subroutine.

The VTSROOT subroutine returns the following value:

root refers ank � (maxar+maxma)�5 matrices, wheremaxar andmaxma
are the maximum orders corresponding to AR and MA, respectively. The
firstk�maxar rows refer the results of the AR part, and the lastk�maxma
rows refer the results of the MA part. The first column refers the real part
of eigenvalues of companion matrices associated with the VAR(p) charac-
teristic function. The second column refers the imaginary part of eigen-
values. The third column refers the modulus of eigenvalues. The forth
column refers the degree(radian) of eigenvalues. The fifth column refers
the degree(radian�180) of eigenvalues.

To compute the roots of a bivariate(k = 2) VARMA(1,1) model

yt = �yt�1 +m�t ��m�t�1

where

� =

�
1:2 �0:5
0:6 0:3

�
;� =

��0:6 0:3
0:3 0:6

�
you can specify

call vtsroot(root, phi, theta);

SAS OnlineDoc: Version 8

WINDOW Statement � 807

The VTSROOT subroutine computes the eigenvalues of thekp� kp companion ma-
trices associated with the AR(p) characteristic function, wherek is the number of
dependent variables. They indicate the stationary condition of the process since the
stationary condition on the roots ofj�(B)j = 0 in the AR(p) is equivalent to the con-
dition in the corresponding AR(1) representation that all eigenvalues of the compan-
ion matrix be less than one in absolute value. The stationarity condition is equivalent
to the condition in the corresponding AR(1) representation,Yt = m�Yt�1 +m"t,
that all eigenvalues of thekp � kp companion matrix� be less than one in absolute
value, whereYt = (y0t; : : : ;y

0
t�p+1)

0,m"t = (m�0t; 0
0; : : : ; 00)0, and

m� =

266664
�1 �2 � � � �p�1 �p

I 0 � � � 0 0
0 I � � � 0 0
...

...
. . .

...
...

0 0 � � � I 0

377775
Similarly, it can apply for checking the invertible condition of the MA proces.

WINDOW Statement

opens a display window

WINDOW <CLOSE=>window-name <window-options>
<GROUP=group-name field-specs>

< : : :GROUP=group-name field-specs>;

where the arguments and options are described below.

The WINDOW statement defines a window on the display and can include a num-
ber of fields. The DISPLAY statement actually writes values to the window. The
following fields can be specified in the WINDOW statement:

window-name
specifies a name 1 to 8 characters long for the window. This name is displayed in the
upper-left border of the window.

CLOSE=window-name
closes the window.

window-options
control the size, position, and other attributes of the window. The attributes can
also be changed interactively with window commands such as WGROW, WDEF,
WSHRINK, and COLOR. A description of the window options follows.

GROUP=group-name
starts a repeating sequence of groups of fields defined for the window. Thegroup-
namespecification is a name 1 to 8 characters long used to identify a group of fields
in a later DISPLAY statement.

SAS OnlineDoc: Version 8

808 � Chapter 17. Language Reference

field-specs
are a sequence of field specifications made up of positionals, field operands, formats,
and options. These are described in the next section.

The following window options can be specified in the WINDOW statement:

CMNDLINE=name
specifies the name of a variable in which the command line entered by the user will
be stored.

COLOR=operand
specifies the background color for the window. Theoperandis either a quoted char-
acter literal, a name, or an operand. The valid values are "WHITE", "BLACK",
"GREEN", "MAGENTA", "RED", "YELLOW", "CYAN", "GRAY", and "BLUE".
The default value is BLACK.

COLUMNS=operand
specifies the starting number of columns for the window. Theoperandis either a
literal number, a variable name, or an expression in parentheses. The default value is
78 columns.

ICOLUMN=operand
specifies the initial starting column position of the window on the display. The
operandis either a literal number or a variable name. The default value is column 1.

IROW=operand
specifies the initial starting row position of the window on the display. Theoperand
is either a literal number or a variable name. The default value is row 1.

MSGLINE=operand
specifies the message to be displayed on the standard message line when the window
is made active. Theoperandis almost always the name of a variable, but a character
literal can be used.

ROWS=operand
determines the starting number of rows of the window. Theoperandis either a literal
number, the name of a variable containing the number, or an expression in parentheses
yielding the number. The default value is 23 rows.

Both the WINDOW and DISPLAY statements allow field specifications, which have
the general form:

<positionals> field-operand <format> <field-options>

In the preceding statement,

positionals are directives determining the position on the screen to begin the
field. There are four kinds of positionals; any number of positionals
are allowed for each field operand.

SAS OnlineDoc: Version 8

XMULT Function � 809

operand specifies the row position; that is, it moves the current position to
column 1 of the specified line. Theoperandis either a number, a
name, or an expression in parentheses.

/ specifies that the current position move to column 1 of the next
row.

@ operand specifies the column position. Theoperandis either a number, a
name, or an expression in parentheses. The @ directive should
come after the # position if # is specified.

+ operand specifies a skip of columns. Theoperand is either a number, a
name, or an expression in parentheses.

field-operand is a character literal in quotes or the name of a variable that speci-
fies what is to go in the field.

format is the format used for display, the value, and the informat applied to
entered values. If no format is specified, then the standard numeric
or character format is used.

field-options specify the attributes of the field as follows:

PROTECT=YES
P=YES

specifies that the field is protected; that is, you cannot enter values
in the field. If the field operand is a literal, it is already protected.

COLOR=operand
specifies the color of the field. Theoperandis a literal character
value in quotes, a variable name, or an expression in parentheses.
The colors available are "WHITE", "BLACK", "GREEN", "MA-
GENTA", "RED", "YELLOW", "CYAN", "GRAY", and "BLUE".
Note that the color specification is different from that of the corre-
sponding DATA step value because it is an operand rather than a
name without quotes. The default value is "BLUE".

XMULT Function

performs accurate matrix multiplication

XMULT(matrix1, matrix2)

wherematrix1andmatrix2are numeric matrices.

The XMULT function computes the matrix product like the matrix multiplication
operator (*) except XMULT uses extended precision to accumulate sums of products.
You should use the XMULT function only when you need great accuracy.

SAS OnlineDoc: Version 8

810 � Chapter 17. Language Reference

XSECT Function

intersects sets

XSECT(matrix1<, matrix2,: : :, matrix15>)

wherematrix is a numeric or character matrix or quoted literal.

The XSECT function returns as a row vector the sorted set (without duplicates) of
the element values that are present in all of its arguments. This set is the intersection
of the sets of values in its argument matrices. When the intersection is empty, the
XSECT function returns a null matrix (zero rows and zero columns). There can be up
to 15 arguments, which must all be either character or numeric. For characters, the
element length of the result is the same as the shortest of the element lengths of the
arguments. For comparison purposes, shorter elements are padded on the right with
blanks.

For example, the statements

a={1 2 4 5};
b={3 4};
c=xsect(a,b);

return the result shown:

C 1 row 1 col (numeric)

4

YIELD Function

calculates yield-to-maturity of a cash-flow stream and returns a scalar

YIELD (times; flows; freq; value)

The YIELD function returns a scaler containing yield-to-maturity of a cash-flow
stream based on frequency and value specified.

times is ann-dimensional column vector of times.
Elements should be non-negative.

flows is ann-dimensional column vector of cash-flows.

freq is a scalar which represents the base of the rates
to be used for discounting the cash-flows.
If positive, it represents discrete compounding
as the reciprocal of the number of compoundings.
If zero, it represents continuous compounding.
No negative values are allowed.

SAS OnlineDoc: Version 8

References � 811

value is a scalar which is the discounted present value
of the cash-flows.

The present value relationship can be written as

P =
KX
k=1

c(k)D(tk)

whereP is the present value of the asset,fc(k)gk = 1; ::K is the sequence of cash-
flows from the asset,tk is the time to thek-th cash-flow in periods from the present,
andD(t) is the discount function for timet.
With continuous compunding:

D(t) = e�yt

With discrete compunding:

D(t) = (1 + fy)�(t=f)

wheref > 0 is the frequency, the reciprocal of the number of compoundings per unit
time period andy is the yield-to-maturity. TheY IELD function solves fory.

Exampleproc iml;
timesn=do(1,100,1);
timesn=T(timesn);
flows=repeat(10,100);
freq=0;
do while(freq<50);
freq=freq+.25;
end;
value=682.31027;
yield=yield(timesn,flows,freq,value);
print yield;
quit;

YIELD
0.0100001

References

� Al-Baali, M. and Fletcher, R. (1985), "Variational Methods for Nonlinear Least
Squares",J. Oper. Res. Soc., 36, 405 –421.

� Al-Baali, M. and Fletcher, R. (1986), "An Efficient Line Search for Nonlinear
Least Squares",J. Optimiz. Theory Appl., 48, 359 –377.

� Ansley, C. (1979), "An Algorithm for the Exact Likelihood of a Mixed
Autoregressive-Moving Average Process,"Biometrika, 66, 59 –65.

SAS OnlineDoc: Version 8

812 � Chapter 17. Language Reference

� Bates, D., Lindstrom, M., Wahba, G. and Yandell, B. (1987), " GCVPACK-
Routines for generalized Cross Validation,"Comm. Statist. B-Simulation Com-
put., 16, 263 –297.

� Barrodale, I. and Roberts, F.D.K. (1974), "Algorithm 478: Solution of an
overdetermined system of equations in thel1-norm", Communications ACM,
17, 319 –320.

� Beale, E.M.L. (1972), "A Derivation of Conjugate Gradients", inNumerical
Methods for Nonlinear Optimization, ed. F. A. Lootsma (ed.), London: Aca-
demic Press.

� Bishop, Y.M., Fienberg, S.E., and Holland, P.W. (1975),Discrete Multivariate
Analysis: Theory and Practice, Cambridge, MA: MIT Press.

� Box, G.E.P. and Jenkins, G.M. (1976),Time Series Analysis: Forecasting and
Control, Oakland, CA: Holden-Day.

� Bishop, Y.M., Fienberg, S.E., and Holland, P.W. (1975),Discrete Multivariate
Analysis: Theory and Practice, Cambridge, MA: MIT Press.

� Charnes, A., Frome, E.L., and Yu, P.L. (1976), "The Equivalence of Gener-
alized Least Squares and Maximum Likelihood Estimation in the Exponential
Family," Journal of the American Statistical Association, 71, 169 –172.

� Cox, D.R. and Hinkley, D.V. (1974),Theoretical Statistics, London: Chapman
and Hall.

� De Jong, P. (1991b), "Stable algorithms for the state space model," it Journal
of Time Series Analysis, 12, 143 –157.

� Dennis, J.E., Gay, D.M., and Welsch, R.E. (1981), "An Adaptive Nonlinear
Least-Squares Algorithm",ACM Trans. Math. Software, 7, 348 –368.

� Dennis, J.E. and Mei, H.H.W. (1979), "Two new unconstrained optimization
algorithms which use function and gradient values",J. Optim. Theory Appl.,
28, 453 –482.

� Duchon, J. (1976), "Fonctions-Spline et Esperances Conditionnelles de
Champs Guassiens," inAnn. Sci. Univ. Clermont Ferrand II Math, 14,
19 –27.

� Eskow, E. and Schnabel, R.B. (1991), "Algorithm 695: Software for a New
Modified Cholesky Factorization",ACM Trans. Math. Software, 17, 306 –312.

� Fletcher, R. (1987),Practical Methods of Optimization, 2nd Ed., Chichester:
John Wiley & Sons.

� Fletcher, R. and Xu, C. (1987), "Hybrid Methods for Nonlinear Least Squares",
Journal of Numerical Analysis, 7, 371 –389.

� Forsythe, G.E., Malcom, M.A., and Moler, C.B. (1967),Computer Solution of
Linear Algebraic Systems, Chapter 17, Englewood Cliffs, NJ: Prentice-Hall,
Inc.

SAS OnlineDoc: Version 8

References � 813

� Gay, D.M. (1983), "Subroutines for Unconstrained Minimization",ACM Trans.
Math. Software, 9, 503 –524.

� Golub, G.H., and Van Loan, C.F. (1989),Matrix Computations, 2nd Ed., Bal-
timore: J. Hopkins Univerity Press.

� Gonin, R. and Money, A.H. (1989),NonlinearLp-norm Estimation, New York:
M. Dekker, Inc.

� Graybill, F.A. (1969),Introduction to Matrices with Applications in Statistics,
Belmont, CA: Wadsworth, Inc.

� Gentleman, W.M. and Sande, G. (1966), "Fast Fourier Transforms-for Fun and
Profit," AFIPS Proceedings of the Fall Joint Computer Conference, 19, 563
–578.

� George, J.A. and Liu, J.W. (1981),Computer Solution of Large Sparse Positive
Definite Systems, New Jersey: Prentice-Hall.

� Gill, E.P., Murray, W., Saunders, M.A., and Wright, M.H. (1984), "Procedures
for Optimization Problems with a Mixture of Bounds and General Linear Con-
straints",ACM Trans. Math. Software, 10, 282 –298.

� Goodnight, J.H. (1979) "A Tutorial on the SWEEP Operator,"The American
Statistician, 33, 149 –158.

� Grizzle, J.E., Starmer, C.F., and Koch, G.G. (1969), "Analysis of Catagorical
Data by Linear Models,"Biometrics, 25, 489 –504.

� Hadley, G. (1963),Linear Programming, Reading, MA: Addison-Wesley Pub-
lishing Company, Inc.

� Harvey, A.C. (1989),Forecasting, Structural Time Series Models and the
Kalman Filter, Cambridge: Cambridge University Press.

� Jenkins, M.A. and Traub, J.F. (1970), " A Three-Stage Algorithm for Real
Polynomials Using Quadratic Iteration,"SIAM Journal of Numerical Analysis,
7, 545 –566.

� Jenrich, R.I. and Moore R.H. (1975), "Maximum Likelihood Estimation by
Means of Nonlinear Least Squares,"American Statistical Association, 1975
Proceedings of the Statistical Computing Section, 57 –65.

� Kastenbaum, M.A. and Lamphiear, D.E. (1959), " Calculation of Chi-Square
to Test the No Three-Factor Interaction Hypothesis,"Biometrics, 15, 107 –122.

� Kaiser, H.F. and Caffrey, J. (1965), "Alpha Factor Analysis,"Psychometrika,
30, 1 –14.

� Kruskal, J.B. (1964), "Nonmetric Multidimensional Scaling,"Psychometrika,
29, 1-27, 115 –129.

� Nelder, J.A. and Wedderburn, R.W.M. (1972), "Generalized Linear Models,"
Journal of the Royal Statistical Society, A.3, 370.

SAS OnlineDoc: Version 8

814 � Chapter 17. Language Reference

� Lee, W. and Gentle, J.E. (1986), "The LAV Procedure",SUGI Supllememtal
Library User’s Guide, Cary: SAS Institute, Chapter 21, pp. 257 –260.

� Lindström, P. and Wedin, P.A. (1984), "A new linesearch algorithm for nonlin-
ear least-squares problems",Mathematical Programming, 29, 268 –296.

� Madsen, K. and Nielsen, H.B. (1993), "A finite smoothing algorithm for linear
l1 estimation",SIAM Journal on Optimization, 3, 223 –235.

� McKean, J.W. and Schrader, R.M. (1987), "Least absolute errors analysis of
variance", In: Y. Dodge, ed.Statistical Data Analysis - Based onL1 Norm and
Related Methods, Amsterdam: North Holland, 297 –305.

� McLeod, I. (1975), "Derivation of the Theoretical Autocovariance Function
of Autoregressive-Moving Average Time Series,"Applied Statistics, 24, 255
–256.

� Monro, D.M. and Branch, J.L. (1976), "Algorithm AS 117. The Chirp Discrete
Fourier Transform and General Length,"Applied Statistics, 26, 351 –361.

� Moré, J.J. (1978), "The Levenberg-Marquardt Algorithm: Implementation and
Theory", in Lecture Notes in Mathematics 630, ed. G.A. Watson, Springer
Verlag, Berlin-Heidelberg-New York, 105 –116.

� Moré, J.J. and Sorensen, D.C. (1983), "Computing a Trust-Region Step",SIAM
J. Sci. Stat. Comput., 4, 553 –572.

� Nussbaumer, H.J. (1982),Fast Fourier Transform and Convolution Algorithms,
Second Edition, New York: Springer-Verlag.

� Pizer, S.M. (1975), Numerical Computing and Mathematical Analysis,
Chicago: Science Research Associates, Inc.

� Powell, J.M.D. (1977), "Restart Procedures for the Conjugate Gradient
Method",Mathematical Programming, 12, 241 –254.

� Powell, J.M.D. (1978a), "A fast algorithm for nonlinearly constraint opti-
mization calculations", inNumerical Analysis, Dundee 1977, Lecture Notes
in Mathematics 630, ed. G.A. Watson, Springer Verlag, Berlin, 144 –175.

� Powell, J.M.D. (1982b), "VMCWD: A Fortran subroutine for constrained op-
timization", DAMTP 1982/NA4, Cambridge, England.

� Rao, C.R. and Mitra, S.K. (1971),Generalized Inverse of Matrices and its
Applications, New York: John Wiley & Sons, Inc.

� Reinsch, Christian H. (1967), "Smoothing by Spline Functions,"Numerische
Mahematik, 10, 177 –183.

� Singleton, R.C. (1969), "An Algorithm for Computing the Mixed Radix Fast
Fourier Transform,"IEEE Transactions on Audio and Electoacoustics, AU-17,
93 –103.

SAS OnlineDoc: Version 8

References � 815

� Stoer, J. and Bulirsch, R. (1980),Introduction to Numerical Analysis, New
York: Springer-Verlag.

� Wahba, G. (1990),Spline Models for Observational Data, Philadelphia: Soci-
ety for Industrial and Applied Mathematics.

� Wilkinson, J.H. and Reinsch, C. (eds.), (1971),Linear Algebra, Handbook for
Automatic Computation, Volume 2, New York: Sprringer-Verlag.

� Woodfield, Terry J. (1988), "Simulating Stationary Gaussian ARMA Time Se-
ries,"Computer Science and Statistics: Proceedings of the 20th Symposium on
the Interface, 612 –617.

� Young, F.W. (1981), "Quantitative Analysis of Qualitative Data,"Psychome-
trika, 46, 357 –388.

SAS OnlineDoc: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–553–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

