
Chapter 2
Understanding the Language

Chapter Table of Contents

DEFINING A MATRIX . 9

MATRIX NAMES AND LITERALS . 9
Matrix Names .. 9
Matrix Literals . 10

CREATING MATRICES FROM MATRIX LITERALS 10
Scalar Literals . 10
Numeric Literals . 11
Character Literals . 12
Repetition Factors. 12
Reassigning Values. 13
Assignment Statements . 13

TYPES OF STATEMENTS . 14
Control Statements . 14
Functions . 15
CALL Statements and Subroutines . 16
Commands . 17

MISSING VALUES . 19

SUMMARY . 20

8 � Chapter 2. Understanding the Language

SAS OnlineDoc: Version 8

Chapter 2
Understanding the Language

Defining a Matrix

The fundamental data object on which all Interactive Matrix Language commands
operate is a two-dimensional (row� column) numeric or character matrix. By their
very nature, matrices are useful for representing data and efficient for working with
data. Matrices have the following properties:

� Matrices can be either numeric or character. Elements of a numeric matrix are
stored in double precision. Elements of a character matrix are character strings
of equal length. The length can range from 1 to 32676 characters.

� Matrices are referred to by valid SAS names. Names can be from 1 to 8 char-
acters long, beginning with a letter or underscore, and continuing with letters,
numbers, and underscores.

� Matrices have dimension defined by the number of rows and columns.

� Matrices can contain elements that have missing values (see the section “Miss-
ing Values” on page 19 later in this chapter).

The dimension of a matrix is defined by the number of rows and columns it has. An
m � n matrix hasmn elements arranged inm rows andn columns. The following
nomenclature is standard in this book:

� 1� nmatrices are calledrow vectors.

� m� 1 matrices are calledcolumn vectors.

� 1� 1 matrices are calledscalars.

Matrix Names and Literals

Matrix Names

A matrix is referred to by a valid SAS name. Names can be from 1 to 8 characters
long, beginning with a letter or underscore and continuing with letters, numbers,
and underscores. You associate a name with a matrix when you create or define
the matrix. A matrix name exists independently of values. This means that at any
time, you can change the values associated with a particular matrix name, change the
dimension of the matrix, or even change its type (numeric or character).

10 � Chapter 2. Understanding the Language

Matrix Literals

A matrix literal is a matrix represented by its values. When you represent a matrix
by a literal, you are simply specifying the values of each element of the matrix. A
matrix literal can have a single element (a scalar) or have many elements arranged in
a rectangular form (rows� columns). The matrix can be numeric (all elements are
numeric) or character (all elements are character). The dimension of the matrix is
automatically determined by the way you punctuate the values.

If there are multiple elements, use braces ({ }) to enclose the values and commas
to separate the rows. Within the braces, values must be either all numeric or all
character. If you use commas to create multiple rows, all rows must have the same
number of elements (columns).

The values you input can be any of the following:

� a number, with or without decimal points, possibly in scientific notation (such
as 1E�5)

� a character string. Character strings can be enclosed in either single quotes
(’) or double quotes ("), but they do not necessarily need quotes. Quotes are
required when there are no enclosing braces or when you want to preserve case,
special characters, or blanks in the string. If the string has embedded quotes,
you must double them (for example, WORD=’Can”t’). Special characters can
be any of the following: ? = * : ().

� a period (.), representing a missing numeric value

� numbers in brackets ([]), representing repetition factors

Creating Matrices from Matrix Literals

Creating matrices using matrix literals is easy. You simply input the element values
one at a time, usually inside of braces. Representing a matrix as a matrix literal is not
the only way to create matrices. A matrix can also be created as a result of a function,
a CALL statement, or an assignment statement. Below are some simple examples of
matrix literals, some with a single element (scalars) and some with multiple elements.
For more information on matrix literals, see Chapter 4, “Working with Matrices.”

Scalar Literals

The following examples define scalars as literals. These are examples of simple as-
signment statements, with the matrix name on the left-hand side of the equal sign and
the value on the right. Notice that you do not need to use braces when there is only
one element.

a=12;
a=. ;
a=’hi there’;
a="Hello";

SAS OnlineDoc: Version 8

Character Literals � 11

Numeric Literals

Matrix literals with multiple elements have the elements enclosed in braces. Use
commas to separate the rows of a matrix. For example, the statement

x={1 2 3 4 5 6};

assigns a row vector to the matrixX:

X
1 2 3 4 5 6

The statement

y={1,2,3,4,5};

assigns a column vector to the matrixY:

Y
1
2
3
4
5

The statement

z={1 2, 3 4, 5 6};

assigns a3� 2 matrix literal to the matrixZ:

Z
1 2
3 4
5 6

The following assignment

w=3#z;

creates a matrixW that is three times the matrixZ:

W
3 6
9 12

15 18

SAS OnlineDoc: Version 8

12 � Chapter 2. Understanding the Language

Character Literals

You input a character matrix literal by entering character strings. If you do not use
quotes, all characters are converted to uppercase. You must use either single or dou-
ble quotes to preserve case or when blanks or special characters are present in the
string. For character matrix literals, the length of the elements is determined from the
longest element. Shorter strings are padded on the right with blanks. For example,
the assignment of the literal

a={abc defg};

results inA being defined as a1� 2 character matrix with string length 4 (the length
of the longer string).

A
ABC DEFG

The assignment

a={’abc’ ’DEFG’};

preserves the case of the elements, resulting in the matrix

A
abc DEFG

Note that the string length is still 4.

Repetition Factors

A repetition factor can be placed in brackets before a literal element to have the
element repeated. For example, the statement

answer={[2] ’Yes’, [2] ’No’};

is equivalent to

answer={’Yes’ ’Yes’, ’No’ ’No’};

and results in the matrix

ANSWER
Yes Yes
No No

SAS OnlineDoc: Version 8

Assignment Statements � 13

Reassigning Values

You can assign new values to elements of a matrix at any time. The following state-
ment creates a2� 3 numeric matrix namedA.

a={1 2 3, 6 5 4};

The statement

a={’Sales’ ’Marketing’ ’Administration’};

redefines the matrixA as a1� 3 character matrix.

Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the
results to a matrix. The expressions can be composed of operators (for example,
matrix multiplication) or functions (for example, matrix inversion) operating on ma-
trices. Because of the nature of linear algebraic expressions, the resulting matrices
automatically acquire appropriate characteristics and values. Assignment statements
have the general form

result= expression;

whereresult is the name of the new matrix andexpressionis an expression that is
evaluated, the results of which are assigned to the new matrix.

Functions as Expressions
Matrices can be created as a result of a function call. Scalar functions such as LOG
or SQRT operate on each element of a matrix, while matrix functions such as INV or
RANK operate on the entire matrix. For example, the statement

a=sqrt(b);

assigns the square root of each element ofB to the corresponding element ofA.

The statement

y=inv(x);

calls the INV function to compute the inverse matrix ofX and assign the results to
Y.

The statement

r=rank(x);

creates a matrixR with elements that are the ranks of the corresponding elements of
X.

Operators within Expressions
There are three types of operators that can be used in assignment statement expres-
sions. Be sure that the matrices on which an operator acts are conformable to the

SAS OnlineDoc: Version 8

14 � Chapter 2. Understanding the Language

operation. For example, matrix multiplication requires that the number of columns
of the left-hand matrix be equal to the number of rows of the right-hand matrix.

The three types of operators are as follows:

prefix operators are placed in front of an operand (�A).

infix operators are placed between operands (A �B).

postfix operators are placed after an operand (A
0).

All operators can work in a one-to-many or many-to-one manner; that is, they enable
you to, for example, add a scalar to a matrix or divide a matrix by a scalar. The
followingis an example of using operators in an assignment statement.

y=x#(x>0);

This assignment statement creates a matrixY in which each negative element of the
matrixX is replaced with zero. The statement actually has two expressions evaluated.
The expression (X>0) is a many-to-one operation that compares each element ofX

to zero and creates a temporary matrix of results; an element of the temporary matrix
is 1 when the corresponding element ofX is positive, and 0 otherwise. The original
matrixX is then multiplied elementwise by the temporary matrix, resulting in the
matrixY.

For a complete listing and explanation of operators, see Chapter 17, “Language
Reference.”

Types of Statements

Statements in SAS/IML software can be classified into three general categories:

Control Statements
direct the flow of execution. For example, the IF-THEN/ELSE Statement con-
ditionally controls statement execution.

FunctionsandCALL Statements
perform special tasks or user-defined operations. For example, the statement
CALL: GSTARTactivates the SAS/IML graphics system.

Commands
perform special processing, such as setting options, displaying, and handling
input/output. For example, the command RESET:PRINTturns on the automatic
displaying option so that matrix results are displayed as you submit statements.

Control Statements

SAS/IML software has a set of statements for controlling program execution. Control
statements direct the flow of execution of statements in IML. With them, you can
define DO-groups and modules (also known as subroutines) and route execution of
your program. Some control statements are described as follows.

SAS OnlineDoc: Version 8

Functions � 15

Statements Action
DO, END group statements
iterative DO, END define an iteration loop
GOTO, LINK transfer control
IF-THEN/ELSE routes execution conditionall
PAUSE instructs a module to pause during execution
QUIT ends a SAS/IML session
RESUME instructs a module to resume execution
RETURN returns from a LINK statement or a CALL module
RUN executes a module
START, FINISH define a module
STOP, ABORT stop execution of an IML program

See Chapter 5, “Programming Statements,” later in this book for more information
on control statements.

Functions

The general form of a function is

result= FUNCTION(arguments);

whereargumentscan be matrix names, matrix literals, or expressions. Functions
always return a single result (whereas subroutines can return multiple results or no
result). If a function returns a character result, the matrix to hold the result is allocated
with a string length equal to the longest element, and all shorter elements are padded
with blanks.

Categories of Functions
Functions fall into the following six categories:

matrix inquiry functions
return information about a matrix. For example, the ANY function returns a
value of 1 if any of the elements of the argument matrix are nonzero.

scalar functions
operate on each element of the matrix argument. For example, the ABS function
returns a matrix with elements that are the absolute values of the corresponding
elements of the argument matrix.

summary functions
return summary statistics based on all elements of the matrix argument. For
example, the SSQ function returns the sum of squares of all elements of the
argument matrix.

matrix arithmetic functions
perform matrix algebraic operations on the argument. For example, the TRACE
function returns the trace of the argument matrix.

SAS OnlineDoc: Version 8

16 � Chapter 2. Understanding the Language

matrix reshaping functions
manipulate the matrix argument and return a reshaped matrix. For example,
the DIAG function returns a matrix with diagonal elements that are equal to the
diagonal elements of a square argument matrix. All off-diagonal elements are
zero.

linear algebra and statistical functions
perform linear algebraic functions on the matrix argument. For example, the
GINV function returns the matrix that is the generalized inverse of the argument
matrix.

Exceptions to the SAS DATA Step
SAS/IML software supports most functions supported in the SAS DATA step. These
functions all accept matrix arguments, and the result has the same dimension as the
argument. (See Appendix 1 for a list of these functions.) The following functions are
not supported by SAS/IML software:

DIFn HBOUND LAGn PUT
DIM INPUT LBOUND

The following functions are implemented differently in SAS/IML software. (See
Chapter 17, “Language Reference,” for descriptions.)

MAX RANK SOUND SUBSTR
MIN REPEAT SSQ SUM

The random number functions, UNIFORM and NORMAL, are built-in and produce
the same streams as the RANUNI and RANNOR functions, respectively, of the DATA
step. For example, to create a10� 1 vector of random numbers, use

x=uniform(repeat(0,10,1));

Also, SAS/IML software does not support the OF clause of the SAS DATA step. For
example, the statement

a=mean(of x1-x10); /* invalid in IML */

cannot be interpreted properly in IML. The term (X1-X10) would be interpreted as
subtraction of the two matrix arguments rather than its DATA step meaning, “X1
through X10.”

CALL Statements and Subroutines

CALL statements invoke a subroutine to perform calculations, operations, or a ser-
vice. CALL statements are often used in place of functions when the operation returns
multiple results or, in some cases, no result. The general form of the CALL statement
is

CALL SUBROUTINE arguments ;

SAS OnlineDoc: Version 8

Commands � 17

whereargumentscan be matrix names, matrix literals, or expressions. If you specify
several arguments, use commas to separate them. Also, when using arguments for
output results, always use variable names rather than expressions or literals.

Creating Matrices with CALL Statements
Matrices are created whenever a CALL statement returns one or more result matrices.
For example, the statement

call eigen(val,vec,t);

returns two matrices (vectors),VAL andVEC, containing the eigenvalues and eigen-
vectors, respectively, of the symmetric matrixT.

You can program your own subroutine using the START and FINISH statements
to define a module. You can then execute the module with a CALL statement or
a RUN statement. For example, the following statements define a module named
MYMOD that returns matrices containing the square root and log of each element of
the argument matrix:

start mymod(a,b,c);
a=sqrt(c);
b=log(c);

finish;
run mymod(s,l,x);

Execution of the module statements create matricesS andL, containing the square
roots and logs, respectively, of the elements ofX.

Performing Services
You can use CALL statements to perform special services, such as managing SAS
data sets or accessing the graphics system. For example, the statement

call delete(mydata);

deletes the SAS data set named MYDATA.

The statements

call gstart;
call gopen;
call gpoint(x,y);
call gshow;

activate the graphics system (CALL GSTART), open a new graphics segment (CALL
GOPEN), produce a scatter plot of points (CALL GPOINT), and display the graph
(CALL GSHOW).

Commands

Commands are used to perform specific system actions, such as storing and loading
matrices and modules, or to perform special data processing requests. The following
is a list of some commands and the actions they perform.

SAS OnlineDoc: Version 8

18 � Chapter 2. Understanding the Language

Command Action
FREE frees a matrix of its values and increases available space
LOAD loads a matrix or module from the storage library
MATTRIB associates printing attributes with matrices
PRINT prints a matrix or message
RESET sets various system options
REMOVE removes a matrix or module from library storage
SHOW requests that system information be displayed
STORE stores a matrix or module in the storage library

These commands play an important role in SAS/IML software. With them, for ex-
ample, you can control displayed output (with RESET PRINT, RESET NOPRINT,
or MATTRIB) or get system information (with SHOW SPACE, SHOW STORAGE,
or SHOW ALL).

If you are running short on available space, you can use commands to store matrices
in the storage library, free the matrices of their values, and load them back later when
you need them again, as shown in the following example.

Throughout this session, the right angle brackets (>) indicate statements that you
submit; responses from IML follow. First, invoke the procedure by entering PROC
IML at the input prompt. Then, create matricesA andB as matrix literals.

> proc iml;

IML Ready

> a={1 2 3, 4 5 6, 7 8 9};
> b={2 2 2};

List the names and attributes of all of your matrices with the SHOW NAMES com-
mand.

> show names;

A 3 rows 3 cols num 8
B 1 row 3 cols num 8
Number of symbols = 2 (includes those without values)

Store these matrices in library storage with the STORE command, and release the
space with the FREE command. To list the matrices and modules in library storage,
use the SHOW STORAGE command.

> store a b;
> free a b;
> show storage;

Contents of storage = SASUSER.IMLSTOR
Matrices:

A B

Modules:

SAS OnlineDoc: Version 8

Missing Values � 19

The output from the SHOW STORAGE statement indicates that you have two ma-
trices in storage. Because you have not stored any modules in this session, there are
no modules listed in storage. Return these matrices from the storage library with the
LOAD command. (See Chapter 14, “Storage Features,” for details about storage.)

> load a b;

End the session with the QUIT command.

> quit;

Exiting IML

Data Management Commands
SAS/IML software has many data management commands that enable you to manage
your SAS data sets from within the SAS/IML environment. These data management
commands operate on SAS data sets. There are also commands for accessing external
files. The following is a list of some commands and the actions they perform.

Command Action
APPEND adds records to an output SAS data set
CLOSE closes a SAS data set
CREATE creates a new SAS data set
DELETE deletes records in an output SAS data set
EDIT reads from or writes to an existing SAS data set
FIND finds records that meet some condition
LIST lists records
PURGE purges records marked for deletion
READ reads records from a SAS data set into IML variables
SETIN makes a SAS data set the current input data set
SETOUT makes a SAS data set the current output data set
SORT sorts a SAS data set
USE opens an existing SAS data set for read access

These commands can be used to perform any necessary data management functions.
For example, you can read observations from a SAS data set into a target matrix with
the USE or EDIT command. You can edit a SAS data set, appending or deleting
records. If you have generated data in a matrix, you can output the data to a SAS data
set with the APPEND or CREATE command. See Chapter 6, “Working with SAS
Data Sets,” and Chapter 7, “File Access,” for more information on these commands.

Missing Values

With SAS/IML software, a numeric element can have a special value called amissing
value that indicates that the value is unknown or unspecified. Such missing values
are coded, for logical comparison purposes, in the bit pattern of very large negative
numbers. A numeric matrix can have any mixture of missing and nonmissing values.

SAS OnlineDoc: Version 8

20 � Chapter 2. Understanding the Language

A matrix with missing values should not be confused with an empty or unvalued
matrix, that is, a matrix with zero rows and zero columns.

In matrix literals, a numeric missing value is specified as a single period. In data
processing operations involving a SAS data set, you can append or delete missing
values. All operations that move values move missing values properly.

SAS/IML software supports missing values in a limited way, however. Most matrix
operators and functions do not support missing values. For example, matrix multipli-
cation involving a matrix with missing values is not meaningful. Also, the inverse of
a matrix with missing values has no meaning. Performing matrix operations such as
these on matrices that have missing values can result in inconsistencies, depending
on the host environment.

See Chapter 4, “Working with Matrices,” and Chapter 16, “Further Notes,” for more
details on missing values.

Summary

In this chapter, you were introduced to the fundamentals of the SAS/IML language.
The basic data element, the matrix, was defined, and you learned several ways to
create matrices: the matrix literal, CALL statements that return matrix results, and
assignment statements.

You were introduced to the types of statements with which you can program: com-
mands, control statements for iterative programming and module definition, func-
tions, and CALL subroutines.

Chapter 3, “Tutorial: A Module for Linear Regression,” offers an introductory tutorial
that demonstrates using SAS/IML software to build and execute a module.

SAS OnlineDoc: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–553–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

