
Chapter 3
Tutorial: A Module for Linear

Regression

Chapter Table of Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Solving a System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . 23

A MODULE FOR LINEAR REGRESSION . . . . . . . . . . . . . . . . . . 25

PLOTTING REGRESSION RESULTS . . . . . . . . . . . . . . . . . . . . 31

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



22 � Chapter 3. Tutorial: A Module for Linear Regression

SAS OnlineDoc: Version 8



Chapter 3
Tutorial: A Module for Linear

Regression

Overview

SAS/IML software makes it possible for you to solve mathematical problems or im-
plement new statistical techniques and algorithms. The language is patterned after
linear algebra notation. For example, the least-squares formula familiar to statisti-
cians

B = (X 0
X)�1

X
0
Y

can be easily translated into the Interactive Matrix Language statement

b=inv(x‘*x)*x‘*y;

This is an example of an assignment statement that uses a built-in function (INV) and
operators (transpose and matrix multiplication).

If a statistical method has not been implemented directly in a SAS procedure, you
may be able to program it using IML. Because the operations in IML deal with arrays
of numbers rather than with one number at a time, and the most commonly used
mathematical and matrix operations are built directly into the language, programs
that take hundreds of lines of code in other languages often take only a few lines in
IML.

Solving a System of Equations

Because IML is built around traditional matrix algebra notation, it is often possible
to directly translate mathematical methods from matrix algebraic expressions into
executable IML statements. For example, consider the problem of solving three si-
multaneous equations:

3x1 � x2 + 2x3 = 8

2x1 � 2x2 + 3x3 = 2

4x1 + x2 � 4x3 = 9

These equations can be written in matrix form as

2
4

3 �1 2

2 �2 3

4 1 �4

3
5
2
4
x1

x2

x3

3
5 =

2
4

8

2

9

3
5



24 � Chapter 3. Tutorial: A Module for Linear Regression

and can be expressed symbolically as

Ax = c

BecauseA is nonsingular, the system has a solution given by

x = A�1c

In the following example, you solve this system of equations using an interactive
session. Submit the PROC IML statement to begin the procedure. Throughout this
chapter, the right angle brackets (>) indicate statements you submit; responses from
IML follow:

proc iml;

IML Ready

Enter

reset print;

The PRINT option of the RESET command causes automatic printing of results.
Notice that as you submit each statement, it is executed and the results are displayed.
While you are learning IML or developing modules, it is a good idea to have all
results printed automatically. Once you are familiar with SAS/IML software, you
will not need to use automatic printing.

Next, set up the matricesA andc. Both of these matrices are input as matrix literals;
that is, input the row and column values as discussed in Chapter 2, “Understanding
the Language.”

> a={3 -1 2,
> 2 -2 3,
> 4 1 -4};

A 3 rows 3 cols (numeric)

3 -1 2
2 -2 3
4 1 -4

> c={8, 2, 9};

C 3 rows 1 col (numeric)

8
2
9

SAS OnlineDoc: Version 8



A Module for Linear Regression � 25

Now write the solution equation,x = A�1c, as an IML statement. The appropriate
statement is an assignment statement that uses a built-in function and an operator
(INV is a built-in function that takes the inverse of a square matrix, and * is the
operator for matrix multiplication).

> x=inv(a)*c;

X 3 rows 1 col (numeric)

3
5
2

After IML executes the statement, the first row of matrixX contains thex1 value
for which you are solving, the second row contains thex2 value, and the third row
contains thex3 value.

Now end the session by entering the QUIT command.

> quit;

Exiting IML

A Module for Linear Regression

The previous method may be more familiar to statisticians when different notation is
used. A linear model is usually written

y = Xb+ e

wherey is the vector of responses,X is the design matrix, andb is a vector of
unknown parameters estimated by minimizing the sum of squares ofe, the error or
residual.

The following example illustrates the programming techniques involved in perform-
ing linear regression. It is not meant to replace regression procedures such as the
REG procedure, which are more efficient for regressions and offer a multitude of
diagnostic options.

Suppose that you have response datay measured at five values of the independent
variablex and you want to perform a quadratic regression.

Submit the PROC IML statement to begin the procedure.

> proc iml;

IML Ready

Input the design matrixX and the data vectory as matrix literals.

SAS OnlineDoc: Version 8



26 � Chapter 3. Tutorial: A Module for Linear Regression

> x={1 1 1,
> 1 2 4,
> 1 3 9,
> 1 4 16,
> 1 5 25};

X 5 rows 3 cols (numeric)

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

> y={1,5,9,23,36};

Y 5 rows 1 col (numeric)

1
5
9

23
36

Compute the least-squares estimate ofb using the traditional formula.

> b=inv(x\baccent *x)*x\baccent *y;

B 3 rows 1 col (numeric)

2.4
-3.2

2

The predicted values are simply theX matrix multiplied by the parameter estimates,
and the residuals are the difference between actual and predictedy.

> yhat=x*b;

YHAT 5 rows 1 col (numeric)

1.2
4

10.8
21.6
36.4

> r=y-yhat;

R 5 rows 1 col (numeric)

SAS OnlineDoc: Version 8



A Module for Linear Regression � 27

-0.2
1

-1.8
1.4

-0.4

To calculate the estimate of the variance of the responses, calculate the sum of squared
errors (SSE), its degrees of freedom (DFE), and the mean squared error (MSE). Note
that in computing the degrees, you use the function NCOL to return the number of
columns ofX.

> sse=ssq(r);

SSE 1 row 1 col (numeric)

6.4

> dfe=nrow(x)-ncol(x);

DFE 1 row 1 col (numeric)

2

> mse=sse/dfe;

MSE 1 row 1 col (numeric)

3.2

Notice that each calculation has required one simple line of code.

Now suppose you want to solve the problem repeatedly on new data sets without
reentering the code. To do this, define a module (or subroutine). Modules begin with
a START statement and end with a FINISH statement, with the program statements
in between. The following statements define a module named REGRESS to perform
linear regression.

> start regress; /* begin module */
> xpxi=inv(t(x)*x); /* inverse of X’X */
> beta=xpxi*(t(x)*y); /* parameter estimate */
> yhat=x*beta; /* predicted values */
> resid=y-yhat; /* residuals */
> sse=ssq(resid); /* SSE */
> n=nrow(x); /* sample size */
> dfe=nrow(x)-ncol(x); /* error DF */
> mse=sse/dfe; /* MSE */
> cssy=ssq(y-sum(y)/n); /* corrected total SS */
> rsquare=(cssy-sse)/cssy; /* RSQUARE */
> print,"Regression Results",
> sse dfe mse rsquare;
> stdb=sqrt(vecdiag(xpxi)*mse); /* std of estimates */

SAS OnlineDoc: Version 8



28 � Chapter 3. Tutorial: A Module for Linear Regression

> t=beta/stdb; /* parameter t-tests */
> prob=1-probf(t#t,1,dfe); /* p-values */
> print,"Parameter Estimates",,
> beta stdb t prob;
> print,y yhat resid;
> finish regress; /* end module */

Submit the module REGRESS for execution.

> reset noprint;
> run regress; /* execute module */

Regression Results

SSE DFE MSE RSQUARE
6.4 2 3.2 0.9923518

Parameter Estimates

BETA STDB T PROB
2.4 3.8366652 0.6255432 0.5954801

-3.2 2.9237940 -1.094468 0.3879690
2 0.4780914 4.1833001 0.0526691

Y YHAT RESID
1 1.2 -0.2
5 4 1
9 10.8 -1.8

23 21.6 1.4
36 36.4 -0.4

At this point, you still have all of the matrices defined if you want to continue calcula-
tions. Suppose that you want to correlate the estimates. First, calculate the covariance
estimate of the estimates; then, scale the covariance into a correlation matrix with val-
ues of 1 on the diagonal.

> reset print; /* turn on auto printing */
> covb=xpxi*mse; /* covariance of estimates */

COVB 3 rows 3 cols (numeric)

14.72 -10.56 1.6
-10.56 8.5485714 -1.371429

1.6 -1.371429 0.2285714

> s=1/sqrt(vecdiag(covb));

S 3 rows 1 col (numeric)

SAS OnlineDoc: Version 8



A Module for Linear Regression � 29

0.260643
0.3420214
2.0916501

> corrb=diag(s)*covb*diag(s); /* correlation of estimates */

CORRB 3 rows 3 cols (numeric)

1 -0.941376 0.8722784
-0.941376 1 -0.981105
0.8722784 -0.981105 1

Your module REGRESS remains available to do another regression, in this case, an
orthogonalized version of the last polynomial example. In general, the columns of
X will not be orthogonal. You can use the ORPOL function to generate orthogonal
polynomials for the regression. Using them provides greater computing accuracy and
reduced computing times. When using orthogonal polynomial regression, you expect
the statistics of fit to be the same and the estimates to be more stable and uncorrelated.

To perform an orthogonal regression on the data, you must first create a vector con-
taining the values of the independent variablex, which is the second column of the
design matrixX. Then, use the ORPOL function to generate orthogonal second de-
gree polynomials.

> x1={1,2,3,4,5}; /* second column of X */

X1 5 rows 1 col (numeric)

1
2
3
4
5

> x=orpol(x1,2); /* generates orthogonal polynomials */

X 5 rows 3 cols (numeric)

0.4472136 -0.632456 0.5345225
0.4472136 -0.316228 -0.267261
0.4472136 0 -0.534522
0.4472136 0.3162278 -0.267261
0.4472136 0.6324555 0.5345225

> reset noprint; /* turns off auto printing */
> run regress; /* run REGRESS */

SAS OnlineDoc: Version 8



30 � Chapter 3. Tutorial: A Module for Linear Regression

Regression Results

SSE DFE MSE RSQUARE
6.4 2 3.2 0.9923518

Parameter Estimates

BETA STDB T PROB
33.093806 1.7888544 18.5 0.0029091
27.828043 1.7888544 15.556349 0.0041068
7.4833148 1.7888544 4.1833001 0.0526691

Y YHAT RESID
1 1.2 -0.2
5 4 1
9 10.8 -1.8

23 21.6 1.4
36 36.4 -0.4

> reset print;
> covb=xpxi*mse;

COVB 3 rows 3 cols (numeric)

3.2 -2.73E-17 4.693E-16
-2.73E-17 3.2 -2.18E-15
4.693E-16 -2.18E-15 3.2

> s=1/sqrt(vecdiag(covb));

S 3 rows 1 col (numeric)

0.559017
0.559017
0.559017

> corrb=diag(s)*covb*diag(s);

CORRB 3 rows 3 cols (numeric)

1 -8.54E-18 1.467E-16
-8.54E-18 1 -6.8E-16
1.467E-16 -6.8E-16 1

Note that the values on the off-diagonal are displayed in scientific notation; the val-
ues are close to zero but not exactly zero because of the imprecision of floating-point

SAS OnlineDoc: Version 8



Plotting Regression Results � 31

arithmetic. To clean up the appearance of the correlation matrix, use the FUZZ op-
tion.

> reset fuzz;
> corrb=diag(s)*covb*diag(s);

CORRB 3 rows 3 cols (numeric)

1 0 0
0 1 0
0 0 1

Plotting Regression Results

You can create some simple plots by using the PGRAF subroutine. The PGRAF
subroutine produces scatter plots suitable for printing on a line printer. If you want to
produce better quality graphics using color, you can use the graphics capabilities of
IML (see Chapter 12, “Graphics Examples,” for more information).

Here is how you can plot the residuals againstx. First, create a matrix containing the
pairs of points by concatenatingX1 with RESID using the horizontal concatenation
operator (k).

> xy=x1||resid;

XY 5 rows 2 cols (numeric)

1 -0.2
2 1
3 -1.8
4 1.4
5 -0.4

Next, use a CALL statement to call the PGRAF subroutine to produce the desired
plot. The arguments to PGRAF are, in order,

� the matrix containing the pairs of points

� a plotting symbol

� a label for the X-axis

� a label for the Y-axis

� a title for the plot

SAS OnlineDoc: Version 8



32 � Chapter 3. Tutorial: A Module for Linear Regression

> call pgraf(xy,’r’,’x’,’Residuals’,’Plot of Residuals’);

Plot of Residuals
2 +

|
| r

R |
e | r
s |
i |
d 0 +
u | r r
a |
l |
s |

|
| r

-2 +
--------+------+------+------+------+------+------+------+------+--------

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

You can also plot the predicted valuesŷ againstx. You must first create a matrix, say
XYH , containing the points. Do this by concatenatingX1 with YHAT . Next, call the
PGRAF subroutine to plot the points.

> xyh=x1||yhat;

XYH 5 rows 2 cols (numeric)

1 1.2
2 4
3 10.8
4 21.6
5 36.4

> call pgraf(xyh,’*’,’x’,’Predicted’,’Plot of Predicted Values’);

SAS OnlineDoc: Version 8



Plotting Regression Results � 33

Plot of Predicted Values
40 +

| *
|

P |
r |
e |
d | *
i 20 +
c |
t |
e | *
d |

|
| *

0 + *
--------+------+------+------+------+------+------+------+------+--------

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

You can get a more detailed plot, denoting the observed values with a “y” and the
predicted values with a “p” using the following statements. Create a matrixNEWXY
containing the pairs of points to overlay. You need to use both the horizontal concate-
nation operator (k) and the vertical concatenation operator (//). The NROW function
returns the number of observations, that is, the number of rows ofX1. The matrix
LABEL contains the character label for each point, plotting a “y” for each observed
point and a “p” for each predicted point.

> newxy=(x1//x1)||(y//yhat);

NEWXY 10 rows 2 cols (numeric)

1 1
2 5
3 9
4 23
5 36
1 1.2
2 4
3 10.8
4 21.6
5 36.4

> n=nrow(x1);

N 1 row 1 col (numeric)

5

> label=repeat(’y’,n,1)//repeat(’p’,n,1);

SAS OnlineDoc: Version 8



34 � Chapter 3. Tutorial: A Module for Linear Regression

LABEL 10 rows 1 col (character, size 1)

y
y
y
y
y
p
p
p
p
p

> call pgraf(newxy,label,’x’,’y’,’Scatter Plot with Regression Line’ );

Scatter Plot with Regression Line
y 40 +

| y
|
|
|
|
| y

20 +
|
|
| p
| y
| y
| p

0 + y
--------+------+------+------+------+------+------+------+------+----

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

As you can see, the observed and predicted values are too close together to be able to
distinguish them at all values ofx.

Summary

In this chapter, you have seen the programming techniques necessary for solving
systems of equations. You have seen how to define a module for performing lin-
ear regression and obtaining covariance and correlation matrices, and how to obtain
some simple diagnostic plots. Many of the ideas presented in Chapter 2, “Under-
standing the Language,” such as the use of assignment statements, functions, CALL
statements, and subscripting have been demonstrated.

SAS OnlineDoc: Version 8



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–553–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


