
Chapter 4
Working with Matrices

Chapter Table of Contents

OVERVIEW . 37

ENTERING DATA AS MATRIX LITERALS 37
Scalars . 37
Matrices with Multiple Elements . .. 38

USING ASSIGNMENT STATEMENTS . 39
Simple Assignment Statements . 39
Matrix-generating Functions. 40
Index Vectors . 43

USING MATRIX EXPRESSIONS . 44
Operators . 44
Compound Expressions . .. 44
Elementwise Binary Operators . 46
Subscripts . 47
Subscript Reduction Operators . 51

DISPLAYING MATRICES WITH ROW AND COLUMN HEADINGS . . 52
Using the AUTONAME Option . 52
Using the ROWNAME= and COLNAME= Options 53
Using the MATTRIB Statement . 53

MORE ON MISSING VALUES . 53

36 � Chapter 4. Working with Matrices

SAS OnlineDoc: Version 8

Chapter 4
Working with Matrices

Overview

SAS/IML software provides many ways to create matrices. You can create matrices
by doing any of the following:

� entering data yourself as a matrix literal

� using assignment statements

� using matrix-generating functions

� creating submatrices from existing matrices with subscripts

� using SAS data sets (see Chapter 6, “Working with SAS Data Sets,” for more
information)

Once you have defined matrices, you have access to many operators and functions
for working on them in matrix expressions. These operators and functions facilitate
programming and make referring to submatrices efficient and simple.

Finally, you have several means available for tailoring your displayed output.

Entering Data as Matrix Literals

The most basic way to create a matrix is to define a matrix literal, either numeric or
character, by entering the matrix elements. A matrix literal can be a single element
(called ascalar), a single row of data (called arow vector), a single column of data
(called acolumn vector), or a rectangular array of data (called amatrix). Thedimen-
sionof a matrix is given by its number of rows and columns. Ann�m matrix hasn
rows andm columns.

Scalars

Scalarsare matrices that have only one element. You define a scalar with the matrix
name on the left-hand side of an assignment statement and its value on the right-hand
side. You can use the following statements to create and display several examples of
scalar literals. First, you must invoke the IML procedure.

> proc iml;

IML Ready

38 � Chapter 4. Working with Matrices

> x=12;
> y=12.34;
> z=.;
> a=’Hello’;
> b="Hi there";
> print x y z a b;

X Y Z A B
12 12.34 . Hello Hi there

Notice that, when defining a character literal, you need to use either single quotes (’)
or double quotes ("). Using quotes preserves uppercase and lowercase distinctions
and embedded blanks. It is also always correct to enclose the data values inside of
braces ({ }).

Matrices with Multiple Elements

To enter a matrix having multiple elements, use braces ({ }) to enclose the data values
and, if needed, commas to separate rows. Inside of the braces, all elements must be
either numeric or character. You cannot have a mixture of data types within a matrix.
Each row must have the same number of elements.

For example, suppose that you have one week of data on daily coffee consumption
(cups per day) for your office of four people. Create a matrixCOFFEE with each
person’s consumption as a row of the matrix and each day represented by a column.
First, submit the RESET: PRINT statemento that results are displayed as you submit
statements.

> reset print;
> coffee={4 2 2 3 2,
> 3 3 1 2 1,
> 2 1 0 2 1,
> 5 4 4 3 4};

COFFEE 4 rows 5 cols (numeric)

4 2 2 3 2
3 3 1 2 1
2 1 0 2 1
5 4 4 3 4

Now create a character matrix calledNAMES with rows containing the names of the
people in your office. Note that when you do not use quotes, characters are converted
to uppercase.

> names={Jenny, Linda, Jim, Samuel};

NAMES 4 rows 1 col (character, size 6)

JENNY
LINDA

SAS OnlineDoc: Version 8

Simple Assignment Statements � 39

JIM
SAMUEL

Notice that the output with the RESET PRINT statement includes the dimension,
type, and (when type is character) the element size of the matrix. The element size
represents the length of each string, and it is determined from the length of the longest
string.

Now, display theCOFFEE matrix usingNAMES as row labels by specifying the
ROWNAME= option in the PRINT statement.

> print coffee [rowname=names];

COFFEE
JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

Using Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the
results to a matrix. The expressions can be composed of operators (for example,
the matrix addition operator (+)), functions (for example, the INV function), and
subscripts. Assignment statements have the general form

result= expression;

whereresult is the name of the new matrix andexpressionis an expression that is
evaluated. The resulting matrix automatically acquires the appropriate dimension,
type, and value. Details on writing expressions are described in “Using Matrix Ex-
pressions” later in this chapter.

Simple Assignment Statements

Simple assignment statements involve an equation having the matrix name on the left-
hand side and either an expression involving other matrices or a matrix-generating
function on the right-hand side.

Suppose you want to generate some statistics for the weekly coffee data. If a cup
of coffee costs 30 cents, then you can create a matrix with the daily expenses,DAY-
COST, by multiplying the per-cup cost with the matrixCOFFEE using the element-
wise multiplication operator (#). Turn off the automatic printing so that you can tailor
the output with the ROWNAME= and FORMAT= options in the PRINT statement.

> reset noprint;
> daycost=0.30#coffee;
> print "Daily totals", daycost[rowname=names format=8.2];

SAS OnlineDoc: Version 8

40 � Chapter 4. Working with Matrices

Daily totals

DAYCOST
JENNY 1.20 0.60 0.60 0.90 0.60
LINDA 0.90 0.90 0.30 0.60 0.30
JIM 0.60 0.30 0.00 0.60 0.30
SAMUEL 1.50 1.20 1.20 0.90 1.20

You can calculate the weekly total cost for each person using the matrix multiplication
operator (*). First create a5 � 1 vector of 1s. This vector sums the daily costs for
each person when multiplied withCOFFEE. (You will see later that there is a more
efficient way to do this using subscript reduction operators.)

> ones={1,1,1,1,1};
> weektot=daycost*ones;
> print "Week total", weektot[rowname=names format=8.2];

Week total

WEEKTOT
JENNY 3.90
LINDA 3.00
JIM 1.80
SAMUEL 6.00

Finally, you can calculate the average number of cups drunk per day by dividing the
grand total of cups by days. To find the grand total, use the SUM function, which
returns the sum of all elements of a matrix. Next, divide the grand total by 5, the
number of days (which is the number of columns) using the division operator (/)
and the NCOL function. These two matrices are created separately, but the entire
calculation could be done in one statement.

> grandtot=sum(coffee);
> average=grandtot/ncol(coffee);
> print "Total number of cups", grandtot,,"Daily average",average;

Total number of cups

GRANDTOT
49

Daily average

AVERAGE
9.8

Matrix-generating Functions

SAS/IML software has many built-in functions that generate useful matrices. For
example, the J function creates a matrix with a given dimension and element value
when you supply the number of rows and columns, and an element value for the new

SAS OnlineDoc: Version 8

Matrix-generating Functions � 41

matrix. This function is useful to initialize a matrix to a predetermined size. Several
matrix-generating functions are listed below:

BLOCK creates a block-diagonal matrix.

DESIGNF creates a full-rank design matrix.

I creates an identity matrix.

J creates a matrix of a given dimension.

SHAPE shapes a new matrix from the argument.

The sections that follow illustrate these matrix-generating functions. Again, they are
shown with automatic printing of results, activated by invoking the RESET: PRINT
statement.

reset print;

The BLOCK Function
The BLOCK function has the general form

BLOCK(matrix1,<matrix2,: : :,matrix15 >);

and creates a block-diagonal matrix from the argument matrices. For example, the
statements

> a={1 1,1 1};

A 2 rows 2 cols (numeric)

1 1
1 1

> b={2 2, 2 2};

B 2 rows 2 cols (numeric)

2 2
2 2

> c=block(a,b);

result in the matrix

C 4 rows 4 cols (numeric)

1 1 0 0
1 1 0 0
0 0 2 2
0 0 2 2

SAS OnlineDoc: Version 8

42 � Chapter 4. Working with Matrices

The J Function
The J function has the general form

J(nrow<,ncol<,value> >);

and creates a matrix havingnrow rows,ncol columns, and all element values equal
to value. The ncol andvaluearguments are optional, but you will usually want to
specify them. In many statistical applications, it is helpful to be able to create a row
(or column) vector of 1s (you did so to calculate coffee totals in the last section). You
can do this with the J function. For example, the following statement creates a1� 5
row vector of 1s:

> one=j(1,5,1);

ONE 1 row 5 cols (numeric)
1 1 1 1 1

The I Function
The I function creates an identity matrix of a given size. It has the general form

I(dimension);

wheredimensiongives the number of rows. For example, the following statement
creates a3� 3 identity matrix:

> I3=I(3);

I3 3 rows 3 cols (numeric)

1 0 0
0 1 0
0 0 1

The DESIGNF Function
The DESIGNF function generates a full-rank design matrix, useful in calculating
ANOVA tables. It has the general form

DESIGNF(column-vector);

For example, the following statement creates a full-rank design matrix for a one-way
ANOVA, where the treatment factor has three levels and there aren1 = 3, n2 = 2,
andn3 = 2 observations at the factor levels:

> d=designf({1,1,1,2,2,3,3});

D 7 rows 2 cols (numeric)

1 0

SAS OnlineDoc: Version 8

Index Vectors � 43

1 0
1 0
0 1
0 1

-1 -1
-1 -1

The SHAPE Function
The SHAPE function shapes a new matrix from an argument matrix. It has the general
form

SHAPE(matrix<,nrow<,ncol<,pad-value >>>);

Although thenrow, ncol, andpad-valuearguments are optional, you will usually want
to specify them. The following example uses the SHAPE function to create a3 � 3
matrix containing the values 99 and 33. The function cycles back and repeats values
to fill in when nopad-valueis given.

> aa=shape({99 33,99 33},3,3);

AA 3 rows 3 cols (numeric)

99 33 99
33 99 33
99 33 99

In the next example, apad-valueis specified for filling in the matrix:

> aa=shape({99 33,99 33},3,3,0);

AA 3 rows 3 cols (numeric)

99 33 99
33 0 0

0 0 0

The SHAPE function cycles through the argument matrix elements in row-major or-
der and then fills in with 0s after the first cycle through the argument matrix.

Index Vectors

You can create a vector by using the index operator (:). Several examples of state-
ments involving index vectors are shown in the following code:

> r=1:5;

R 1 row 5 cols (numeric)
1 2 3 4 5

> s=10:6;

SAS OnlineDoc: Version 8

44 � Chapter 4. Working with Matrices

S 1 row 5 cols (numeric)
10 9 8 7 6

> t=’abc1’:’abc5’;

T 1 row 5 cols (character, size 4)
abc1 abc2 abc3 abc4 abc5

If you want an increment other than 1, use the DO function. For example, if you want
a vector ranging from�1 to 1 by 0.5, use the following statement:

> r=do(-1,1,.5);

R 1 row 5 cols (numeric)
-1 -0.5 0 0.5 1

Using Matrix Expressions

Matrix expressions are a sequence of names, literals, operators, and functions that
perform some calculation, evaluate some condition, or manipulate values. These
expressions can appear on either side of an assignment statement.

Operators

Operators used in matrix expressions fall into three general categories:

prefix operators are placed in front of operands. For example,�A uses the sign
reverse prefix operator (�) in front of the operandA to reverse
the sign of each element ofA.

infix operators are placed between operands. For example,A +B uses the ad-
dition infix operator (+) between operandsA andB to add cor-
responding elements of the matrices.

postfix operators are placed after an operand. For example,A�uses the transpose
postfix operator (�) after the operandA to transposeA.

Matrix operators are listed in Appendix 1, “SAS/IML Quick Reference,” and de-
scribed in detail in Chapter 17, “Language Reference.” Table 4.1 on page 44 shows
the precedence of matrix operators in Interactive Matrix Language.

SAS OnlineDoc: Version 8

Compound Expressions � 45

Table 4.1. Operator Precedence

Priority Group Operators
I (highest) ˆ ` subscripts �(prefix) ## **
II * # <> >< / @
III + �
IV kk // :
V < <= > >= = ˆ =
VI &
VII (lowest) |

Compound Expressions

With SAS/IML software, you can write compound expressions involving several ma-
trix operators and operands. For example, the following statements are valid matrix
assignment statements:

a=x+y+z;
a=x+y*z\prime ;
a=(-x)#(y-z);

The rules for evaluating compound expressions are as follows:

� Evaluation follows the order of operator precedence, as shown in Table 4.1.
Group I has the highest priority; that is, Group I operators are evaluated first.
Group II operators are evaluated after Group I operators, and so forth. For
example, the statement

a=x+y*z;

first multiplies matricesY andZ since the * operator (Group II) has higher
precedence than the + operator (Group III). It then adds the result of this mul-
tiplication to the matrixX and assigns the new matrix toA.

� If neighboring operators in an expression have equal precedence, the expres-
sion is evaluated from left to right, except for the highest priority operators.
For example, the statement

a=x/y/z;

first divides each element of matrixX by the corresponding element of matrix
Y. Then, using the result of this division, it divides each element of the result-
ing matrix by the corresponding element of matrixZ. The operators in Group
1 in Table 4.1 are evaluated from right to left. For example, the expression

-x**2

is evaluated as

-(x**2)

SAS OnlineDoc: Version 8

46 � Chapter 4. Working with Matrices

When multiple prefix or postfix operators are juxtaposed, precedence is deter-
mined by their order from inside to outside.

For example, the expression

^-a

is evaluated as (̂�A), and the expression

a‘[i,j]

is evaluated as(A�)[i; j].

� All expressions enclosed in parentheses are evaluated first, using the two pre-
ceding rules. Thus, the IML statement

a=x/(y/z);

is evaluated by first dividing elements ofY by the elements ofZ, then dividing
this result intoX.

Elementwise Binary Operators

Elementwise binary operators produce a result matrix from element-by-element op-
erations on two argument matrices. Table 4.2 on page 46 lists the elementwise binary
operators.

Table 4.2. Elementwise Binary Operators

Operator Action
+ addition, concatenation
� subtraction
elementwise multiplication
elementwise power
= division
<> element maximum
>< element minimum
j logical OR
& logical AND
< less than
<= less than or equal to
> greater than
>= greater than or equal to
ˆ = not equal to
= equal to

MOD(m;n) modulo (remainder)

For example, consider the following two matricesA andB given below.

LetA =

�
2 2
3 4

�
andB =

�
4 5
1 0

�

SAS OnlineDoc: Version 8

Subscripts � 47

The addition operator(+) adds corresponding matrix elements:

A+B yields

�
6 7
4 4

�

The elementwise multiplication operator(#) multiplies corresponding elements:

A#B yields

�
8 10
3 0

�

The elementwise power operator(##) raises elements to powers:

A##2 yields

�
4 4
9 16

�

The element maximum operator(<>) compares corresponding elements and
chooses the larger:

A <> B yields

�
4 5
3 4

�

The less than or equal to operator(<=) returns a 1 if an element ofA is less than or
equal to the corresponding element ofB, and returns a 0 otherwise:

A <= B yields

�
1 1
0 0

�

The modulo operator returns the remainder of each element divided by the argument:

MOD(A; 3) yields

�
2 2
0 1

�

All operators can also work in a one-to-many or many-to-one manner, as well as in an
element-to-element manner; that is, they enable you to perform tasks such as adding
a scalar to a matrix or dividing a matrix by a scalar. For example, the statement

x=x#(x>0);

replaces each negative element of the matrixX with 0. The expression (X>0) is a
many-to-one operation that compares each element ofX to 0 and creates a temporary
matrix of results; an element in the result matrix is 1 when the expression is true
and 0 when it is false. When the expression is true (the element is positive), the
element is multiplied by 1. When the expression is false (the element is negative or
0), the element is multiplied by 0. To fully understand the intermediate calculations,
you can use the RESET: PRINTALL command to have the temporary result matrices
displayed.

SAS OnlineDoc: Version 8

48 � Chapter 4. Working with Matrices

Subscripts

Subscripts are special postfix operators placed in square brackets([]) after a matrix
operand. Subscript operations have the general form

operand[row ; column]

where

operand is usually a matrix name, but it can also be an expression or literal.

row refers to an expression, either scalar or vector, for selecting one or
more rows from the operand.

column refers to an expression, either scalar or vector, for selecting one or
more columns from the operand.

You can use subscripts to

� refer to a single element of a matrix

� refer to an entire row or column of a matrix

� refer to any submatrix contained within a matrix

� perform a reduction across rows or columns of a matrix

In expressions, subscripts have the same (high) precedence as the transpose postfix
operator (�). Note that when bothrow andcolumnsubscripts are used, they are sepa-
rated by a comma.

Selecting a Single Element
You can select a single element of a matrix in two ways. You can use two subscripts
(row, column) to refer to its location, or you can use one subscript to look for the
element down the rows. For example, referring to the coffee example used earlier, to
find the element corresponding to the number of cups that Linda drank on Monday,
you can use either of two statements.

First, you can refer to the element by row and column location. In this case, you want
the second row and first column. You can call this matrixc21.

> print coffee[rowname=names];

COFFEE
JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

> c21=coffee[2,1];
> print c21;

C21
3

SAS OnlineDoc: Version 8

Subscripts � 49

You can also look for the element down the rows. In this case, you refer to this
element as the sixth element ofCOFFEE in row-major order.

> c6=coffee[6];
> print c6;

C6
3

Selecting a Row or Column
To refer to an entire row or column of a matrix, write the subscript with the row or
column number, omitting the other subscript but not the comma. For example, to refer
to the row ofCOFFEE that corresponds to Jim, you want the submatrix consisting
of the third row and all columns:

> jim=coffee[3,];
> print jim;

JIM
2 1 0 2 1

If you want the data for Friday, you know that the fifth column corresponds to Friday,
so you want the submatrix consisting of the fifth column and all rows:

> friday=coffee[,5];
> print friday;

FRIDAY
2
1
1
4

Submatrices
You refer to a submatrix by the specific rows and columns you want. Include within
the brackets the rows you want, a comma, and the columns you want. For example,
to create the submatrix ofCOFFEE consisting of the first and third rows and the
second, third, and fifth columns, submit the following statements:

> submat1=coffee[{1 3},{2 3 5}];
> print submat1;

SUBMAT1
2 2 2
1 0 1

The first vector, {1 3}, selects the rows, and the second vector, {2 3 5}, selects the
columns. Alternately, you can create the vectors beforehand and supply their names
as arguments.

SAS OnlineDoc: Version 8

50 � Chapter 4. Working with Matrices

> rows={1 3};
> cols={2 3 5};
> submat1=coffee[rows,cols];

You can use index vectors generated by the index creation operator (:) in subscripts
to refer to successive rows or columns. For example, to select the first three rows and
last three columns ofCOFFEE, use the following statements:

> submat2=coffee[1:3,3:5];
> print submat2;

SUBMAT2
2 3 2
1 2 1
0 2 1

Note that, in each example, the number in the first subscript defines the number of
rows in the new matrix; the number in the second subscript defines the number of
columns.

Subscripted Assignment
You can assign values into a matrix using subscripts to refer to the element or sub-
matrix. In this type of assignment, the subscripts appear on the left-hand side of the
equal sign. For example, to change the value in the first row, second column ofCOF-
FEE from 2 to 4, use subscripts to refer to the appropriate element in an assignment
statement:

> coffee[1,2]=4;
> print coffee;

COFFEE
4 4 2 3 2
3 3 1 2 1
2 1 0 2 1
5 4 4 3 4

To change the values in the last column ofCOFFEE to 0s use the following state-
ment:

> coffee[,5]={0,0,0,0};
> print coffee;

COFFEE
4 4 2 3 0
3 3 1 2 0
2 1 0 2 0
5 4 4 3 0

In the next example, you first locate the positions of negative elements of a matrix
and then set these elements equal to 0. This can be useful in situations where negative
elements may indicate errors or be impossible values. The LOC function is useful for

SAS OnlineDoc: Version 8

Subscript Reduction Operators � 51

creating an index vector for a matrix that satisfies some condition. In the following
example, the LOC function is used to find the positions of the negative elements of
the matrixT and then to set these elements equal to 0 using subscripted assignment:

> t={ 3 2 -1,
> 6 -4 3,
> 2 2 2 };
> print t;

T
3 2 -1
6 -4 3
2 2 2

> i=loc(t<0);
> print i;

I
3 5

> t[i]=0;
> print t;

T
3 2 0
6 0 3
2 2 2

Subscripts can also contain expressions with results that are either row or column
vectors. These statements can also be written

> t[loc(t<0)]=0;

If you use a noninteger value as a subscript, only the integer portion is used. Using a
subscript value less than one or greater than the dimension of the matrix results in an
error.

Subscript Reduction Operators

You can use reduction operators, which return a matrix of reduced dimension, in place
of values for subscripts to get reductions across all rows and columns. Table 4.3 lists
the eight operators for subscript reduction in IML.

SAS OnlineDoc: Version 8

52 � Chapter 4. Working with Matrices

Table 4.3. Subscript Reduction Operators

Operator Action
+ addition
multiplication
<> maximum
>< minimum
<:> index of maximum
>:< index of minimum
: mean (different from the MATRIX procedure)

sum of squares

For example, to get column sums of the matrixX (sum across the rows, which re-
duces the row dimension to 1), specify X[+;]. The first subscript (+) specifies that
summation reduction take place across the rows. Omitting the second subscript, cor-
responding to columns, leaves the column dimension unchanged. The elements in
each column are added, and the new matrix consists of one row containing the col-
umn sums.

You can use these operators to reduce either rows or columns or both. When both
rows and columns are reduced, row reduction is done first.

For example, the expression A[+; <>] results in the maximum(<>) of the column
sums(+).

You can repeat reduction operators. To get the sum of the row maxima, use the
expression A[; <>][+;].

A subscript such as A[f23g;+] first selects the second and third rows ofA and then
finds the row sums of that matrix. The following examples demonstrate how to use
the operators for subscript reduction.

LetA =

2
4 0 1 2

5 4 3
7 6 8

3
5

The following statements are true:

A[23;+] yields

�
12
21

�
(row sums for rows 2 and 3)

A[+; <>] yields
�
13

�
(maximum of column sums)

A[<>;+] yields
�
21

�
(sum of column maxima)

A[; ><][+;] yields
�
9
�

(sum of row minima)

SAS OnlineDoc: Version 8

Using the MATTRIB Statement � 53

A[; <:>] yields

2
4 3

1
3

3
5 (indices of row maxima)

A[>:<;] yields
�
1 1 1

�
(indices of column minima)

A[:] yields
�
4
�

(mean of all elements)

Displaying Matrices with Row and Column
Headings

You can tailor the way your matrices are diplayed with the AUTONAME option, the
ROWNAME= and COLNAME= options, or the MATTRIB statement.

Using the AUTONAME Option

You can use the RESET statement with the AUTONAME option to automatically
diplay row and column headings. If your matrix hasn rows andm columns, the row
headings are ROW1 to ROWn and the column headings are COL1 to COLm. For
example, the following statements produce the following results:

> reset autoname;
> print coffee;

COFFEE COL1 COL2 COL3 COL4 COL5

ROW1 4 2 2 3 2
ROW2 3 3 1 2 1
ROW3 2 1 0 2 1
ROW4 5 4 4 3 4

Using the ROWNAME= and COLNAME= Options

You can specify your own row and column headings. The easiest way is to create vec-
tors containing the headings and then display the matrix is with the ROWNAME= and
COLNAME= options. For example, the following statements produce the following
results:

> names={jenny linda jim samuel};
> days={mon tue wed thu fri};
> print coffee[rowname=names colname=days];

COFFEE MON TUE WED THU FRI

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

SAS OnlineDoc: Version 8

54 � Chapter 4. Working with Matrices

Using the MATTRIB Statement

The MATTRIB statement associates printing characteristics with matrices. You can
use the MATTRIB statement to displayCOFFEE with row and column headings.
In addition, you can format the displayed numeric output and assign a label to the
matrix name. The following example shows how to tailor your displayed output:

> mattrib coffee rowname=({jenny linda jim samuel})
> colname=({mon tue wed thu fri})
> label=’Weekly Coffee’
> format=2.0;
> print coffee;

Weekly Coffee MON TUE WED THU FRI

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

More on Missing Values

Missing values in matrices are discussed in Chapter 2, “Understanding the
Language.” You should read that chapter and Chapter 16, “Further Notes,” carefully
so that you are aware of the way IML treats missing values. Following are several
examples that show how IML handles missing values in a matrix.

LetX =

2
4 1 2 :

: 5 6
7 : 9

3
5 andY =

2
4 4 : 2

2 1 3
6 : 5

3
5

The following statements are true:

X+Y yields

2
4 5 : :

: 6 9
13 : 14

3
5 (matrix addition)

X#Y yields

2
4 4 : :

: 5 18
42 : 45

3
5 (element multiplication)

X[+;] yields
�
8 7 15

�
(column sums)

SAS OnlineDoc: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–553–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

