Chapter 6
Working with SAS Data Sets

Chapter Table of Contents

OVERVIEW . . . . e e 79
OPENING ASASDATASET . . . . . . . e e 80
MAKING A SASDATASETCURRENT . . . ... ... ... ....... 81
DISPLAYING SAS DATA SET INFORMATION . . . . ... ... ... .. 82
REFERRINGTOASASDATASET . . . .. . . .. . i . 82
LISTINGOBSERVATIONS . . . . . . . . e e 83
Specifying a Range of Observations . . . .. ... ... ... ........ 83
Selectinga Setof Variables . . . . . ... ... ... ... ... .. ... 85
Selecting Observations . . . . . . . . . ... . ... ... e 86
READING OBSERVATIONS FROM A SASDATASET . . . ... ... .. 89
Using the READ Statement withthe VAR Clause . . . . ... ... ... .. 89
Using the READ Statement with the VAR and INTO Clauses . . . . .. ... 90
Using the READ Statement with the WHERE Clause . . . . .. .. ... .. 90
EDITING ASASDATASET . . . . . . e e e e 91
Updating Observations . . . . . . . . . .. .. .. ... . ... .. ..... 92
Deleting Observations . . . . . . . . .. ... ... ... . ... . 93
CREATING A SAS DATASET FROM AMATRIX . . . ... .. ... .. 94
Using the CREATE Statement with the FROM Option . . . . . . . ... .. 94
Using the CREATE Statement with the VAR Clause . . . . . .. .. .. .. 95
UNDERSTANDING THE END-OF-FILECONDITION . . . ... ... .. 96
PRODUCING SUMMARY STATISTICS . . . . . ... ... .. ...... 96
SORTING ASASDATASET . . . . . . . e e 97
INDEXING ASASDATASET . . . . . i et 97
DATA SET MAINTENANCE FUNCTIONS . . . . ... ... ... ..... 99
SUMMARY OF COMMANDS . . . . . . . . . e e 99
SIMILARITIES AND DIFFERENCES WITH THE SAS DATA STEP . 100



78 ¢ Chapter 6. Working with SAS Data Sets

SUMMARY . . .

SAS OnlineDocll : Version 8



Chapter 6
Working with SAS Data Sets

Overview

SAS/IML software has many statements for passing data from SAS data sets to ma-

trices and from matrices to SAS data sets. You can create matrices from the variables

and observations of a SAS data set in several ways. You can create a column vector
for each data set variable, or you can create a matrix where columns correspond to

data set variables. You can use all the observations in a data set or use a subset of
them.

You can also create a SAS data set from a matrix. The columns correspond to data
set variables and the rows correspond to observations. Data management commands
enable you to edit, append, rename, or delete SAS data sets from within the SAS/IML
environment.

When reading a SAS data set, you can read any number of observations into a matrix
either sequentially, directly by record number, or conditionally according to condi-
tions in a WHERE clause. You can also index a SAS data set. The indexing capability
facilitates retrievals by the indexed variable.

Operations on SAS data sets are performed with straightforward, consistent, and pow-
erful statements. For example, the LIST statement can perform the following tasks:

e list the next record

list a specified record

list any number of specified records

list the whole file

list records satisfying one or more conditions

list specified variables or all variables

If you want to read values into a matrix, use the READ statement instead of the LIST
statement with the same operands and features as the LIST statement. You can specify
operands that control which records and variables are used indirectly, as matrices, so
that you can dynamically program the records, variables, and conditional values you
want.

In this chapter, you use the SAS data set CLASS, which contains the variables
NAME, SEX, AGE, HEIGHT, and WEIGHT, to learn about

e Opening a SAS data set



80 ¢ Chapter 6. Working with SAS Data Sets

e examining the contents of a SAS data set

¢ displaying data values with the LIST statement

¢ reading observations from a SAS data set into matrices
e editing a SAS data set

e creating a SAS data set from a matrix

¢ displaying matrices with row and column headings

e producing summary statistics

e sorting a SAS data set

e indexing a SAS data set

¢ similarities and differences between the data set and the SAS DATA step

Throughout this chapter, the right angle brackets (>) indicate statements that you
submit; responses from Interactive Matrix Language follow.

First, invoke the IML procedure:

> proc iml;

IML Ready

Opening a SAS Data Set

Before you can access a SAS data set, you must first submit a command to open it.
There are three ways to open a SAS data set:

e To simply read from an existing data set, submit a USE statement to open it for
read access. The general form of the USE statement is

USE SAS-data-set < VAR operand > < WHERE(expression) > ;

With read access, you can use the FIND, INDEX, LIST, and READ statements
on the data set.

¢ To read and write to an existing data set, use the EDIT statement. The general
form of the EDIT statement is

EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;

This statement enables you to use both the reading statements (LIST, READ,
INDEX, and FIND) and the writing statements (REPLACE, APPEND,
DELETE, and PURGE).

SAS OnlineDocll : Version 8



Making a SAS Data Set Current ¢+ 81

e To create a new data set, use the CREATE statement to open a new data set for
both output and input. The general form of the CREATE statement is

CREATE SAS-data-set < VAR operand > ;
CREATE SAS-data-set FROM from-name

< [COLNAME= column-name ROWNAME=row-name] > ;

Use the APPEND statement to place the matrix data into the newly created
data set. If you don't use the APPEND statement, the new data set has no
observations.

If you want to list observations and create matrices from the data in the SAS data
set CLASS, you must first submit a statement to open the CLASS data set. Because
CLASS already exists, specify the USE statement.

Making a SAS Data Set Current

IML data processing commands work on the current data set. This feature makes
it unnecessary for you to specify the data set as an operand each time. There are
two current data sets, one for input and one for output. IML makes a data set the

current one as it is opened. You can also make a data set current by using two setting
statements, SETIN and SETOUT:

e The USE and SETIN statements make a data set current for input.
e The SETOUT statement makes a data set current for output.

e The CREATE and EDIT statements make a data set current for both input and
output.

If you issue a USE, EDIT, or CREATE statement for a data set that is already open,
the data set is made the current data set. To find out which data sets are open and
which are current input and current output data sets, use the SHOW DATASETS
statement.

The current observation is set by the last operation that performed input/output (1/O).
If you want to set the current observation without doing any 1/O, use the SETIN (or
SETOUT) statement with the POINT option. After a data set is opened, the current
observation is set to 0. If you attempt to list or read the current observation, the
current observation is converted to 1. You can make the data set CLASS current for
input and position the pointer at the tenth observation with the statement

> setin class point 10;

SAS OnlineDocl]: Version 8



82 ¢+ Chapter 6. Working with SAS Data Sets

Displaying SAS Data Set Information

You can use SHOW statements to display information about your SAS data sets.
The SHOW DATASETS statement lists all open SAS data sets and their status. The
SHOW CONTENTS statement displays the variable names and types, the size, and
the number of observations in the current input data set. For example, to get informa-
tion for the CLASS data set, issue the following statements:

> use class;
> show datasets;

LIBNAME MEMNAME  OPEN MODE  STATUS

WORK .CLASS Input Current Input
> show contents;

VAR NAME TYPE  SIZE

NAME CHAR 8
SEX CHAR 8
AGE NUM 8
HEIGHT NUM 8
WEIGHT NUM 8
Number of Variables: 5

Number of Observations: 19

As you can see, CLASS is the only data set open. The USE statement opens it for
input, and itis the current input data set. The full name for CLASS is WORK.CLASS.
The libref is the default, WORK. The next section tells you how to change the libref
to another name.

Referring to a SAS Data Set

The USE, EDIT, and CREATE statements take as their first operand the data set name.
This name can have either one or two levels. If it is a two-level name, the first level
refers to the name of the SAS data library; the second name is the data set name. If
the libref is WORK, the data set is stored in a directory for temporary data sets; these
are automatically deleted at the end of the session. Other librefs are associated with
SAS data libraries using the LIBNAME statement.

If you specify only a single name, then IML supplies a default libref. At the beginning
of an IML session, the default libref is SASUSER if SASUSER is defined as a libref
or WORK otherwise. You can reset the default libref by using the RESET DEFLIB
statement. If you want to create a permanent SAS data set, you must specify a two-
level name using the RESET DEFLIB statement (refer to the chapter on SAS files in
SAS Language Reference: Concdptsnore information about permanent SAS data
sets).

> reset deflib= name

SAS OnlineDocll : Version 8



Specifying a Range of Observations ¢+ 83

Listing Observations

You can list variables and observations in a SAS data set with the LIST statement.
The general form of the LIST statement is

LIST < range > < VAR operand > < WHERE(expression) > ;

where

range specifies a range of observations.
operand selects a set of variables.
expression is an expression that is evaluated for being true or false.

The next three sections discuss how to use each of these clauses with the CLASS data
set.

Specifying a Range of Observations

You can specify a range of observations with a keyword or by record number using the
POINT option. You can use thangeoperand with the data management statements
DELETE, FIND, LIST, READ, and REPLACE.

You can specifyrangeusing any of the following keywords:

ALL all observations

CURRENT the current observation

NEXT < number> the next observation or nertimberof observations

AFTER all observations after the current one

POINT operand observations by number, wheoperandcan be one of the fol-

lowing:
Operand Example
a single record number point 5
a literal giving several record numbers point {2 5 10}
the name of a matrix containing record humbenint p
an expression in parentheses point (p+1)

If you want to list all observations in the CLASS data set, use the keyword ALL to
indicate that the range is all observations:

> list all;
OBS NAME SEX AGE HEIGHT WEIGHT
1 JOYCE F 11.0000 51.3000 50.5000
2 THOMAS M 11.0000 57.5000 85.0000

SAS OnlineDocl]: Version 8



84

¢

Chapter 6. Working with SAS Data Sets

3 JAMES M 12.0000 57.3000  83.0000
4 JANE F 12.0000 59.8000  84.5000
5 JOHN M 12.0000 59.0000  99.5000
6 LOUISE F 12.0000 56.3000  77.0000

7 ROBERT M 12.0000 64.8000 128.0000
8 ALICE F 13.0000  56.5000  84.0000

9 BARBARA F 13.0000 65.3000  98.0000
10 JEFFREY M 13.0000 62.5000  84.0000
11 CAROL F 14.0000 62.8000 102.5000
12 HENRY M 14.0000  63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
14 JuDY F 14.0000 64.3000  90.0000
15 JANET F 15.0000 62.5000 112.5000

16 MARY F 15.0000 66.5000 112.0000
17 RONALD M 15.0000  67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000

19 PHILIP M 16.0000  72.0000 150.0000

Without arangespecification, the LIST statement lists only the current observation,
which in this example is now the last observation because of the previous LIST state-
ment:

> |ist;

OBS NAME SEX AGE HEIGHT WEIGHT

19 PHILIP M 16.0000  72.0000 150.0000

Use the POINT keyword with record numbers to list specific observations. You can
follow the keyword POINT with a single record number or with a literal giving several
record numbers.

> list point 5;
OBS NAME SEX AGE HEIGHT WEIGHT
5 JOHN M 12.0000 59.0000  99.5000

> list point {2 4 9},

OBS NAME SEX AGE HEIGHT WEIGHT
2 THOMAS M 11.0000 57.5000  85.0000
4 JANE F 12.0000  59.8000  84.5000
9 BARBARA F 13.0000  65.3000  98.0000

You can also indicate the range indirectly by creating a matrix containing the records
you want listed:

> p={2 4 9}
> list point p;

SAS OnlineDocll : Version 8



Selecting a Set of Variables ¢+ 85

OBS NAME SEX AGE HEIGHT WEIGHT
2 THOMAS M 11.0000 57.5000  85.0000
4 JANE F 12.0000 59.8000  84.5000
9 BARBARA F 13.0000  65.3000  98.0000

The range operand is usually listed first when you are using the access statements
DELETE, FIND, LIST, READ, and REPLACE. Listed below are access statements
and their default ranges.

Statement Default Range
LIST current

READ current

FIND all

REPLACE current
APPEND always at end
DELETE current

Selecting a Set of Variables
You can use the VAR clause to select a set of variables. The general form of the VAR

clause is

VAR operand

whereoperandcan be specified using one of the following:

e a literal containing variable names
¢ the name of a matrix containing variable names
e an expression in parentheses yielding variable names

¢ one of the following keywords:

_ALL_ for all variables
_CHAR_ for all character variables
_NUM_ for all numeric variables

The following examples show each possible way you can use the VAR clause:

var {timel time5 time9}; /* a literal giving the variables */

var time; /* a matrix containing the names */
var('timel’:'time9’); /* an expression  */
var _all_; /* a keyword */

For example, to list students’ names from the CLASS data set, use the VAR clause
with a literal.

SAS OnlineDocl]: Version 8



86 ¢ Chapter 6. Working with SAS Data Sets

> list point p var{name};

OBS NAME

2 THOMAS
4 JANE
9 BARBARA

To list AGE, HEIGHT, and WEIGHT, you can use the VAR clause with a matrix
giving the variables:

> v={age height weight};
> list point p var v;

OBS AGE HEIGHT WEIGHT

2 11.0000 57.5000  85.0000
4 12.0000 59.8000  84.5000
9 13.0000  65.3000  98.0000

The VAR clause can be used with the following statements for the tasks described:

Statement VAR Clause Function
APPEND  specifies which IML variables contain data to append to the data set
CREATE  specifies the variables to go in the data set

EDIT limits which variables are accessed
LIST specifies which variables to list
READ specifies which variables to read

REPLACE specifies which data set variable’s data values to replace with corre-
sponding IML variable data values
USE limits which variables are accessed

Selecting Observations

The WHERE clause conditionally selects observations, withinrémge specifi-
cation, according to conditions given in tlegpression The general form of the
WHERE clause is

WHERE variable comparison-op operand ;

where

variable is a variable in the SAS data set.
comparison-op is one of the following comparison operators:

< lessthan
<= less than or equal to

SAS OnlineDocll : Version 8



Selecting Observations ¢ 87

= equalto

> greater than

>= greater than or equal to

= not equal to

? contains a given string

~? does not contain a given string

=:  begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeedsdll the elements in the matrix satisfy the condition:

~

= "? < <= > >=

For the following operators, the WHERE clause succeedsyfof the elements in
the matrix satisfy the condition:

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (]) operators. The general form is

claus& clause (for an AND clause)
clause| clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

For example, to list the names of all males in the data set CLASS, use the following
statement:

> list all var{name} where(sex="M");

OBS NAME

2 THOMAS

3 JAMES

5 JOHN

7 ROBERT
10 JEFFREY
12 HENRY
13 ALFRED
17 RONALD
18 WILLIAM
19 PHILIP

SAS OnlineDocl]: Version 8



88 ¢ Chapter 6. Working with SAS Data Sets

The WHERE comparison arguments can be matrices. In the following cases using
the =* operator, the comparison is made on each name to find a string that sounds
like or is spelled similar to the given string or strings:

> n={name sex age};
> list all var n where(name=*{"ALFRED","CAROL","JUDY"});

OBS NAME SEX AGE

11 CAROL F 14.0000

13 ALFRED M 14.0000

14 JUubY F 14.0000

> list all var n where(name=*{"JON","JAN"});

OBS NAME SEX AGE

4 JANE F 12.0000

5 JOHN M 12.0000

To list AGE, HEIGHT, and WEIGHT for all students in their teens, use the following
statement:

> list all var v where(age>12);

OBS AGE HEIGHT WEIGHT
8 13.0000  56.5000  84.0000
9 13.0000  65.3000  98.0000

10 13.0000 62.5000  84.0000
11 14.0000 62.8000 102.5000
12 14.0000 63.5000 102.5000
13 14.0000  69.0000 112.5000
14  14.0000 64.3000  90.0000
15 15.0000 62.5000 112.5000
16 15.0000 66.5000 112.0000
17 15.0000 67.0000 133.0000
18 15.0000 66.5000 112.0000
19 16.0000  72.0000 150.0000

Note: In the WHERE clause, the expression on the left-hand side refers to values
of the data set variables, and the expression on the right-hand side refers to matrix
values. You cannot use comparisons involving more than one data set variable in a
single comparison; for example, you cannot use either of the following expressions:

list all where(height>weight);
list all where(weight-height>0);

You could use the first statement if WEIGHT were a matrix name already defined
rather than a variable in the SAS data set.

SAS OnlineDocll : Version 8



Using the READ Statement with the VAR Clause ¢ 89

Reading Observations from a SAS Data Set

Transferring data from a SAS data set to a matrix is done using the READ statement.
The SAS data set you want to read data from must already be open. You can open a
SAS data set with either the USE or the EDIT statement. If you already have several
data sets open, you can point to the one you want with the SETIN statement, making
it the current input data set. The general form of the READ statement is

READ < range > < VAR operand > < WHERE(expression) >
< INTO name > ;

where

range specifies a range of observations.
operand selects a set of variables.
expression is an expression that is evaluated for being true or false.

name names a target matrix for the data.

Using the READ Statement with the VAR Clause

Use the READ statement with the VAR clause to read variables from the current SAS
data set into column vectors of the VAR clause. Each variable in the VAR clause
becomes a column vector with the same name as the variable in the SAS data set.
The number of rows is equal to the number of observations processed, depending on
the range specification and the WHERE clause. For example, to read the numeric
variables AGE, HEIGHT, and WEIGHT for all observations in the CLASS data set,

use the following statements:
> read all var {age height weight};

Now submit the SHOW NAMES statement to display all the matrices you have cre-
ated so far in this chapter:

> show names;

AGE 19 rows 1 col num 8
HEIGHT 19 rows 1 col num 8
N 1 row 3 cols char 4
P 1 row 3 cols num 8
\% 1 row 3 cols char 6
WEIGHT 19 rows 1 col num 8

Number of symbols = 8 (includes those without values)

You see that, with the READ Statement, you have created the three numeric vectors
AGE, HEIGHT , andWEIGHT . (Notice that the matrices you created earliér,P,

SAS OnlineDocl]: Version 8



90

¢

Chapter 6. Working with SAS Data Sets

andV, are also listed.) You can select the variables that you want to access with a
VAR clause in the USE statement. The two previous statements can also be written
as

use class var{age height weight};
read all;

Using the READ Statement with the VAR and INTO Clauses

Sometimes you want to have all of the numeric variables in the same matrix so that
you can determine correlations. Use the READ statement with the INTO clause and
the VAR clause to read the variables listed in the VAR clause into the single matrix
named in the INTO clause. Each variable in the VAR clause becomes a column of
the target matrix. If there ang variables in the VAR clause andobservations are
processed, the target matrix in the INTO clause i& anp matrix.

The following statement creates a matixcontaining the numeric variables of the
CLASS data set. Notice the use of the keywaoMUM_ in the VAR clause to specify
that all numeric variables be read.

> read all var _num_ into x;

> print X;
X

11 51.3 50.5
11 57.5 85
12 57.3 83
12 59.8 84.5
12 59 99.5
12 56.3 77
12 64.8 128
13 56.5 84
13 65.3 98
13 62.5 84
14 62.8 102.5
14 63.5 102.5
14 69 112.5
14 64.3 90
15 62.5 112.5
15 66.5 112
15 67 133
15 66.5 112
16 72 150

Using the READ Statement with the WHERE Clause

Use the WHERE clause as you did with the LIST statement, to conditionally select
observations from within the specified range. If you want to create a nfaix
MALE containing the variables AGE, HEIGHT, and WEIGHT for females only, use
the following statements.

SAS OnlineDocll : Version 8



Editing a SAS Data Set ¢+ 91

> read all var _num_ into female where(sex="F"),
> print female;

FEMALE
11 51.3 50.5
12 59.8 84.5
12 56.3 77
13 56.5 84
13 65.3 98
14 62.8 102.5
14 64.3 90
15 62.5 112.5
15 66.5 112

Now try some special features of the WHERE clause to find values that begin with
certain characters (the =: operator) or that contain certain strings (the ? operator). To
create a matrid containing the students whose names begin with the letter “J”, use
the following statements:

> read all var{name} into j where(name=:"J");
> print j;

J
JOYCE
JAMES
JANE
JOHN
JEFFREY
JubY
JANET

To creat a matrixAL of children with names containing the string “AL”, use the
statement

> read all var{name} into al where(name?"AL");
> print al;

AL
ALICE
ALFRED
RONALD

Editing a SAS Data Set

You can edit a SAS data set using the EDIT statement. You can update values of
variables, mark observations for deletion, delete the marked observations, and save
the changes you make. The general form of the EDIT statement is

EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;

SAS OnlineDocl]: Version 8



92

¢

Chapter 6. Working with SAS Data Sets

where

SAS-data-setnames an existing SAS data set.
operand selects a set of variables.
expression is an expression that is evaluated for being true or false.

Updating Observations

Suppose you have updated data and want to change some values in the CLASS data
set. For instance, suppose that the student named HENRY has had a birthday since
the data were added to the CLASS data set. You can

e make the data set CLASS current for input and output
e read the data

e change the appropriate data value

¢ replace the changed data in the data set

First, submit an EDIT statement to make the CLASS data set current for input and
output. Then use the FIND statement, which finds observation numbers and stores
them in a matrix, to find the observation number of the data for HENRY and store it
in the matrixd.

> edit class;
> find all where(hame={'HENRY’}) into d;
> print d;
D
12

List the observation containing the data for HENRY.

> list point d;
OBS NAME SEX AGE HEIGHT WEIGHT
12 HENRY M 14.0000 63.5000 102.5000

As you see, the observation number is 12. Now read the value for AGE into a matrix
and update its value. Finally, replace the value in the CLASS data set and list the
observation containing the data for HENRY again.

> age=15;
> replace;

1 observations replaced.

> list point 12;

SAS OnlineDocll : Version 8



Deleting Observations ¢ 93

OBS NAME SEX AGE HEIGHT WEIGHT

12 HENRY M 15.0000  63.5000 102.5000

Deleting Observations

Use the DELETE statement to mark an observation to be deleted. The general form
of the DELETE statement is

DELETE < range > < WHERE(expression) > ;

where

range specifies a range of observations.
expression is an expression that is evaluated for being true or false.

The following are examples of valid uses of the DELETE statement.

Code Action

delete; deletes the current observation
delete point 10; deletes observation 10

delete all where (age>12); deletes all observations where

AGE is greater than 12

If a file accumulates a number of observations marked as deleted, you can clean out
these observations and renumber the remaining observations by using the PURGE
statement.

Suppose that the student named John has moved and you want to update the CLASS
data set. You can remove the observation using the EDIT and DELETE statements.
First, find the observation number of the data for JOHN and store it in the nahtrix
using the FIND statement. Then submit a DELETE statement to mark the record for
deletion. A deleted observation is still physically in the file and still has an observa-
tion number, but it is excluded from processing. The deleted observations appear as
gaps when you list the file by observation number:

\

find all where(name={'JOHN’}) into d;
print d;

\Y
o Qo

\

delete point d;

1 observation deleted.

\Y

list all;

SAS OnlineDocl]: Version 8



94

¢

Chapter 6. Working with SAS Data Sets

OBS NAME SEX AGE HEIGHT WEIGHT
1 JOYCE F 11.0000  51.3000  50.5000
2 THOMAS M 11.0000 57.5000  85.0000
3 JAMES M 12.0000 57.3000  83.0000
4 JANE F 12.0000  59.8000  84.5000
6 LOUISE F 12.0000  56.3000  77.0000
7 ROBERT M 12.0000 64.8000 128.0000
8 ALICE F 13.0000 56.5000  84.0000
9 BARBARA F 13.0000  65.3000  98.0000
10 JEFFREY M 13.0000 62.5000  84.0000
11 CAROL F 14.0000 62.8000 102.5000
12 HENRY M 15.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
14 JUuDY F 14.0000 64.3000  90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000  72.0000 150.0000

Notice that there is a gap in the data where the deleted observation was (observation
5). To renumber the observations and close the gaps, submit the PURGE statement.
Note that the PURGE statement deletes any indexes associated with a data set.

> purge;

Creating a SAS Data Set from a Matrix

SAS/IML software provides the ability to create a new SAS data set from a matrix.
Use the CREATE and APPEND statements to create a SAS data set from a matrix,
where the columns of the matrix become the data set variables and the rows of the
matrix become the observations. Thusyar m matrix creates a SAS data set with

m variables and observations. The CREATE statement opens the new SAS data set
for both input and output, and the APPEND statement writes to (outputs to) the data

set.

Using the CREATE Statement with the FROM Option

You can create a SAS data set from a matrix using the CREATE statement with the
FROM option. This form of the CREATE statement is

CREATE SAS-data-set FROM matrix
< [COLNAME-= column-name ROWNAME=row-name] > ;

where

SAS-data-set names the new data set.

SAS OnlineDocll : Version 8



Using the CREATE Statement with the VAR Clause ¢ 95

matrix names the matrix containing the data.
column-name names the variables in the data set.

row-name adds a variable containing row titles to the data set.

Suppose you want to create a SAS data set named RATIO containing a variable with
the height-to-weight ratios for each student. You first create a matrix containing the
ratios from the matrice$lEIGHT and WEIGHT that you have already defined.
Next, use the CREATE and APPEND statements to open a new SAS data set called
RATIO and append the observations, naming the data set variable HTWT instead of
COL1.

htwt=height/weight;
create ratio from htwt[colname="htwt];
append from htwt;

Now submit the SHOW DATASETS and SHOW CONTENTS statements.

> show datasets;

LIBNAME MEMNAME OPEN MODE STATUS

WORK .CLASS Update
WORK .RATIO Update Current Input Current Output

> show contents;
VAR NAME TYPE SIZE
HTWT NUM 8
Number of Variables: 1
Number of Observations: 18

> close ratio;

As you can see, the new SAS data set RATIO has been created. It has 18 observations
and 1 variable (recall that you deleted 1 observation earlier).

Using the CREATE Statement with the VAR Clause

You can use a VAR clause with the CREATE statement to select the variables you
want to include in the new data set. In the previous example, the new data set RATIO
had one variable. If you want to create a similar data set but include the second
variable NAME, you use the VAR clause. You could not do this using the FROM
option because the variable HTWT is numeric and the variable NAME is character.
The following statements create a new data set RATIO2 having the variables NAME
and HTWT.

> create ratio2 var{name htwt};
> append;
> show contents;

SAS OnlineDocl]: Version 8



96 ¢ Chapter 6. Working with SAS Data Sets

VAR NAME TYPE SIZE

NAME CHAR 8
HTWT NUM 8
Number of Variables: 2

Number of Observations: 18

> close ratio2;

Notice that now the variable NAME is in the data set.

Understanding the End-of-File Condition

If you try to read past the end of a data set or point to an observation greater than the
number of observations in the data set, you create an end-of-file condition. If an end
of file occurs while inside a DO DATA iteration group, IML transfers control to the
next statement outside the current DO DATA group.

The following example uses a DO DATA loop while reading the CLASS data set. It
reads the variable WEIGHT in one observation at a time and accumulates the weights
of the students in the IML matrix SUM. When the data are read, the total class weight
is stored in the matrix SUM.

setin class point 0;
sum=0;
do data;
read next var{weight};
sum=sum-+weight;
end,;
print sum;

Producing Summary Statistics

Summary statistics on the numeric variables of a SAS data set can be obtained with
the SUMMARY statement. These statistics can be based on subgroups of the data by
using the CLASS clause in the SUMMARY statement. The SAVE option in the OPT
clause enables you to save the computed statistics in matrices for later perusal. For
example, consider the following statement.

> summary var {height weight} class {sex} stat{mean std} opt{save};

SEX Nobs Variable MEAN STD
F 9 HEIGHT 60.58889 5.01833
WEIGHT 90.11111 19.38391
M 9 HEIGHT 64.45556 4.90742
WEIGHT 110.00000 23.84717
All 18 HEIGHT 62.52222 5.20978
WEIGHT 100.05556 23.43382

SAS OnlineDocll : Version 8



Indexing a SAS Data Set ¢+ 97

This summary statement gives the mean and standard deviation of the variables
HEIGHT and WEIGHT for the two subgroups (male and female) of the data set
CLASS. Since the SAVE option is set, the statistics of the variables are stored in
matrices under the name of the corresponding variables, with each column corre-
sponding to a statistic requested and each row corresponding to a subgroup. Two
other vectors, SEX andNOBS_, are created. The vector SEX contains the two dis-
tinct values of the class variable SEX used in forming the two subgroups. The vector
_NOBS_ has the number of observations in each subgroup.

Note that the combined means and standard deviations of the two subgroups are dis-
played but are not saved.

More than one class variable can be used, in which case a subgroup is defined by the
combination of the values of the class variables.

Sorting a SAS Data Set

The observations in a SAS data set can be ordered (sorted) by specific key variables.
To sort a SAS data set, close the data set if it is currently open, and issue a SORT
statement for the variables by which you want the observations to be ordered. Specify
an output data set name if you want to keep the original data set. For example, the
statement

> sort class out=sorted by name;

creates a new SAS data set named SORTED. The new data set has the observations
from the data set CLASS, ordered by the variable NAME.

The statement

> sort class by name;

sorts in place the data set CLASS hy the variable NAME. However, at the completion
of the SORT statement, the original data set is replaced by the sorted data set.

You can specify as many key variables as needed, and, optionally, each variable can
be preceded by the keyword DESCENDING, which denotes that the variable that
follows is to be sorted in descending order.

Indexing a SAS Data Set

Searching through a large data set for information about one or more specific ob-
servations may take a long time because the procedure must read each record. You
can reduce this search time by first indexing the data set by a variable. The INDEX
statement builds a special companion file containing the values and record numbers
of the indexed variables. Once the index is built, IML may use the index for queries
with WHERE clauses if it decides that indexed retrieval is more efficient. Any num-
ber of variables can be indexed, but only one index is in use at a given time. Note

SAS OnlineDocl]: Version 8



98 ¢ Chapter 6. Working with SAS Data Sets

that purging a data set with the PURGE statement results in the loss of all associated
indexes.

Once you have indexed a data set, IML can use this index whenever a search is con-
ducted with respect to the indexed variables. The indexes are updated automatically
whenever you change values in indexed variables. When an index is in use, observa-
tions cannot be randomly accessed by their physical location numbers. This means
that the POINT range cannot be used when an index is in effect. However, if you
purge the observations marked for deletion, or sort the data set in place, the indexes
become invalid and IML automatically deletes them.

For example, if you want a list of all female students in the CLASS data set, you can
firstindex CLASS by the variable SEX. Then use the LIST statement with a WHERE
clause. Of course, the CLASS data set is small, and indexing does little if anything
to speed queries with the WHERE clause. If the data set had thousands of students,
though, indexing could save search time.

To index the data set by the variable SEX, submit the statement

> index sex;

NOTE: Variable SEX indexed.
NOTE: Retrieval by SEX.

Now list all students. Notice the ordering of the special file built by indexing by the
variable SEX. Retrievals by SEX will be quick.

> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
1 JOYCE F 11.0000 51.3000  50.5000
4 JANE F 12.0000 59.8000 84.5000
6 LOUISE F 12.0000 56.3000  77.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000  98.0000
11 CAROL F 14.0000 62.8000 102.5000
14 JUuDY F 14.0000 64.3000  90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000  83.0000
7 ROBERT M 12.0000 64.8000 128.0000
10 JEFFREY M 13.0000 62.5000 84.0000
12 HENRY M 15.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000  72.0000 150.0000

SAS OnlineDocll : Version 8



Summary of Commands ¢+ 99

Data Set Maintenance Functions

Two functions and two subroutines are provided to perform data set mainte-
nance:

DATASETS function obtains members in a data library. This function returns a
character matrix containing the names of the SAS data sets
in a library.

CONTENTS function obtains variables in a member. This function returns a
character matrix containing the variable names for the SAS
data set specified dibnameandmemnameThe variable
list is returned in alphabetic order.

RENAME subroutine renames a SAS data set member in a specified library.
DELETE subroutine deletes a SAS data set member in a specified library.

See Chapter 17, “Language Reference,” for details and examples of these functions
and routines.

Summary of Commands

You have seen that IML has an extensive set of commands that operate on SAS data
sets. The following table summarizes the data management commands you can use to
perform management tasks for which you might normally use the SAS DATA step.

SAS OnlineDocl]: Version 8



100

L

Chapter 6. Working with SAS Data Sets

Table 6.1. Data Management Commands

Command Action

APPEND adds observations to the end of a SAS data set
CLOSE closes a SAS data set

CREATE creates and opens a new SAS data set for input and output
DELETE marks observations for deletion in a SAS data set
EDIT opens an existing SAS data set for input and output
FIND finds observations

INDEX indexes variables in a SAS data set

LIST lists observations

PURGE purges all deleted observations from a SAS data set
READ reads observations into IML variables

REPLACE writes observations back into a SAS data set
RESET DEFLIB names default libname

SAVE saves changes and reopens a SAS data set

SETIN selects an open SAS data set for input

SETOUT selects an open SAS data set for output

SHOW CONTENTS shows contents of the current input SAS data set
SHOW DATASETS shows SAS data sets currently open

SORT sorts a SAS data set
SUMMARY produces summary statistics for numeric variables
USE opens an existing SAS data set for input

Similarities and Differences with the SAS DATA

Step

If you want to remain in the IML environment and mimic DATA step processing, you
need to learn the basic differences between IML and the DATA step:

e With SAS/IML software, you start with a CREATE statement instead of a

DATA statement. You must explicitly set up all your variables with the right at-
tributes before you create a data set. This means that you must define character
variables having the desired string length beforehand. Numeric variables are
the default, so any variable not defined as character is assumed to be numeric.
In the DATA step, the variable attributes are determined from context across
the whole step.

With SAS/IML software, you must use an APPEND statement to output an
observation; in the DATA step, you either use an OUTPUT statement or let the
DATA step output it automatically.

With SAS/IML software, you iterate with a DO DATA loop. In the DATA step,
the iterations are implied.

With SAS/IML software, you have to close the data set with a CLOSE state-
ment unless you plan to leave the IML environment with a QUIT statement.

SAS OnlineDocll : Version 8



Summary ¢+ 101

The DATA step closes the data set automatically at the end of the step.

e The DATA step usually executes faster than IML.

In short, the DATA step treats the problem with greater simplicity, allowing shorter
programs. However, IML has more flexibility because it is both interactive and has a

powerful matrix-handling capability.

Summary

In this chapter, you have learned many ways to interact with SAS data sets from
within the IML environment. You learned how to open and close a SAS data set, how
to make it current for input and output, how to list observations by specifying a range
of observations to process, a set of variables to use, and a condition for subsetting
observations. You also learned summary statistics. You also know how to read obser-
vations and variables from a SAS data set into matrices as well as create a SAS data

set from a matrix of values.

SAS OnlineDocl]: Version 8



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-553-1

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.



