Chapter 7
File Access

Chapter Table of Contents

OVERVIEW 105
REFERRING TO AN EXTERNALFILE 105
Types of External Files 106
READING FROM AN EXTERNALFILE 107
Using the INFILE Statement 107
Using the INPUT Statement 108
WRITING TO AN EXTERNALFILE 115
Using the FILE Statement 115
Usingthe PUT Statement 116
Examples 117
LISTING YOUR EXTERNALFILES 118
CLOSING AN EXTERNALFILE 119

SUMMARY . . e 119

104 + Chapter 7. File Access

SAS OnlineDocl] : Version 8

Chapter 7
File Access

Overview

In this chapter you learn about external files and how to refer to an external file,
whether it is a text file or a binary file. You learn how to read data from a file using
the INFILE and INPUT statements and how to write data to an external file using the
FILE and PUT statements.

With external files, you must know the format in which the data are stored or to
be written. This is in contrast to SAS data sets, which are specialized files with a
structure that is already known to the SAS System.

The Interactive Matrix Language statements used to access files are very similar to
the corresponding statements in the SAS DATA step. The following table summarizes
the IML statements and their functions.

Statement Function

CLOSEFILE closes an external file

FILE opens an external file for output
INFILE opens an external file for input
INPUT reads from the current input file
PUT writes to the current output file

SHOW:FILES shows all open files, their attributes, and their status
(current input and output files)

Referring to an External File

Suppose that you have data for students in a class. You have recorded the values for
the variables NAME, SEX, AGE, HEIGHT, and WEIGHT for each student and have
stored the data in an external text file named USER.TEXT.CLASS. If you want to
read this data into IML variables, you need to indicate where the data are stored. In
other words, you need to name the input file. If you want to write data from matrices
to a file, you also need to name an output file.

There are two ways to refer to an input or output fildfilgpathand afilename A
filepathis the name of the file as it is known to the operating systenfileAameis

an indirect SAS reference to the file made using the FILENAME statement. You can
identify a file in either way using the FILE and INFILE statements.

For example, you can refer to the input file where the class data are stored using a
literal filepath, that is, a quoted string. The statement

infile 'user.text.class’;

106 ¢+ Chapter 7. File Access

opens the file USER.TEXT.CLASS for input. Similarly, if you want to output data
to the file USER.TEXT.NEWCLASS, you need to reference the output file with the
statement

file 'user.text.newclass’;

You can also refer to external files usindilename When using a filename as the
operand, simply give the name. The name must be one already associated with a
filepath by a previously issued FILENAME statement.

For example, suppose you want to reference the file with the class data using a FILE-
NAME statement. First, you must associate the filepath with an alias (cafiéd a
eref), say INCLASS. Then you can refer to USER.TEXT.CLASS with the fileref
INCLASS.

The following statements accomplish the same thing as the previous INFILE state-
ment with the quoted filepath:

filename inclass ’user.text.class’;
infile inclass;

You can use the same technique for output files. The following statements have the
same effect as the previous file statement:

filename outclass 'user.text.newclass’;
file outclass;

Three filenames have special meaning to IML: CARDS, LOG, and PRINT. These re-
fer to the standard input and output streams for all SAS sessions, as described below:

CARDS s a special filename for instream input data.
LOG is a special filename for log output.
PRINT is a special filename for standard print output.

When the filepath is specified, there is a limit of 64 characters to the operand.

Types of External Files

Most files that you work with aréext files which means that they can be edited
and displayed without any special program. Text files under most host environments
have special characters, called carriage-control characters or end-of-line characters,
to separate one record from the next.

If your file does not adhere to these conventions, it is callbahary file Typically,

binary files do not have the usual record separators, and they may use any binary
codes, including unprintable control characters. If you want to read a binary file, you
must specify RECFM=N in the INFILE statement and use the byte operand (<) in the
INPUT statement to specify the length of each item you want read. Treating a file as

SAS OnlineDocll : Version 8

Using the INFILE Statement ¢+ 107

binary enables you to have direct access to a file position by byte-address using the
byte operand (>) in the INPUT or PUT statement.

You write data to an external file using the FILE and PUT statements. The output file
can be text or binary. If your output file is binary, you must specify RECFM=N in

the FILE statement. One difference between binary and text files in output is that the
PUT statement does not put the record-separator characters on the end of each record
written for binary files.

Reading from an External File

After you have chosen a method to refer to the external file you want to read, you
need an INFILE statement to open it for input and an INPUT statement to tell IML
how to read the data.

The next several sections cover how to use an INFILE statement and how to specify
an INPUT statement so that you can input data from an external file.

Using the INFILE Statement

An INFILE statement identifies an external file containing data that you want to read.
It opens the file for input or, if the file is already open, makes it the current input file.
This means that subsequent INPUT statements are read from this file until another
file is made the current input file.

The following options can be used with the INFILE statement:

FLOWOVER
enables the INPUT statement to go to the next record to obtain values for the vari-
ables.

LENGTH=variable
names a variable containing the length of the current record, where the value is set to
the number of bytes used after each INPUT statement.

MISSOVER
prevents reading from the next input record when an INPUT statement reaches the
end of the current record without finding values for all variables. It assigns missing
values to all values that are expected but not found.

RECFM=N
specifies that the file is to be read in as a pure binary file rather than as a file with
record-separator characters. You must use the byte operands (< and >) to get new
records rather than separate INPUT statements or the new line operator (/).

STOPOVER
stops reading when an INPUT statement reaches the end of the current record without
finding values for all variables in the statement. It treats going past the end of a record
as an error condition, triggering an end-of-file condition. The STOPOVER option is
the default.

SAS OnlineDocl]: Version 8

108 ¢+ Chapter 7. File Access

The FLOWOVER, MISSOVER, and STOPOVER options control how the INPUT
statement works when you try to read past the end of a record. You can specify
only one of these options. Read these options carefully so that you understand them
completely.

Below is an example using the INFILE statement with a FILENAME statement to
read the class data file. The MISSOVER option is used to prevent reading from the
next record if values for all variables in the INPUT statement are not found.

filename inclass ’user.text.class’;
infile inclass missover;

You can specify the filepath with a quoted literal also. The preceding statements
could be written as

infile 'user.text.class’ missover;

Using the INPUT Statement

Once you have referenced the data file containing your data with an INFILE state-
ment, you need to tell IML exactly how the data are arranged:

the number of variables and their names

each variable’s type, either numeric or character

the format of each variable’s values

the columns that correspond to each variable

In other words, you must tell IML how to read the data.

The INPUT statement describes the arrangement of values in an input record. The
INPUT statement reads records from a file specified in the previously executed IN-
FILE statement, reading the values into IML variables.

There are two ways to describe a record’s values in an IML INPUT statement:

e list (or scanning) input

¢ formatted input

Here are several examples of valid INPUT statements for the class data file, depend-
ing, of course, on how the data are stored.

If the data are stored with a blank or a comma between fields, then list input can be
used. For example, the INPUT statement for the class data file might look as follows:

infile inclass;
input name $ sex $ age height weight;

SAS OnlineDocll : Version 8

Using the INPUT Statement ¢+ 109

These statements tell IML the following:

e There are five variables: NAME, SEX, AGE, HEIGHT and WEIGHT.

¢ Data fields are separated by commas or blanks.

e NAME and SEX are character variables, as indicated by the dollar sign ($).
e AGE, HEIGHT, and WEIGHT are numeric variables, the default.

The data must be stored in the same order in which the variables are listed in the
INPUT statement. Otherwise, you can use formatted input, which is column spe-
cific. Formatted input is the most flexible and can handle any data file. Your INPUT
statement for the class data file might look as follows:

infile inclass;
input @1 name $char8. @10 sex $charl. @15 age 2.0
@20 height 4.1 @25 weight 5.1;

These statements tell IML the following:

¢ NAME is a character variable; its value begins in column 1 (indicated by @1)
and occupies eight columns ($char8.).

e SEX s a character variable; its value is in column 10 ($charl.).

e AGE is a numeric variable; its value is found in columns 15 and 16 and has no
decimal places (2.0).

e HEIGHT is a numeric variable found in columns 20 through 23 with one deci-
mal place implied (4.1).

e WEIGHT is a numeric variable found in columns 25 through 29 with one dec-
imal place implied (5.1).
The next sections discuss these two modes of input.

List Input
If your data are recorded with a comma or one or more blanks between data fields,
you can use list input to read your data. If you have missing values, that is, unknown
values, they must be represented by a period (.) rather than a blank field.

When IML looks for a value, it skips past blanks and tab characters. Then it scans
for a delimiter to the value. The delimiter is a blank, a comma, or the end of the
record. When the ampersand (&) format modifier is used, IML looks for two blanks,
a comma, or the end of the record.

The general form of the INPUT statement for list input is

INPUT variable < $> < & > < ...variable < $> < & > > ;

SAS OnlineDocl]: Version 8

110 ¢ Chapter 7. File Access

where

variable names the variable to be read by the INPUT statement.

$ indicates that the preceding variable is character.

& indicates that a character value may have a single embedded blank. Be-
cause a blank normally indicates the end of a data value, use the amper-
sand format modifier to indicate the end of the value with at least two
blanks or a comma.

With list input, IML scans the input lines for values. Consider using list input when

¢ blanks or commas separate input values

e periods rather than blanks represent missing values

List input is the default in several situations. Descriptions of these situations and the

behavior of IML follow:

¢ If no input format is specified for a variable, IML scans for a number.

e If a single dollar sign or ampersand format modifier is specified, IML scans
for a character value. The ampersand format modifier allows single embedded
blanks to occur.

¢ If a format is given with width unspecified or 0, IML scans for the first blank
or comma.

If the end of a record is encountered before IML finds a value, then the behavior is

as described by the record overflow options in the INFILE statement discussed in the

section “Using the INFILE Statement.”

When you read with list input, the order of the variables listed in the INPUT statement

must agree with the order of the values in the data file. For example, consider the

following data:

Alice f 10 61 97

Beth f 11 64 105

Bill m 12 63 110

You can use list input to read this data by specifying the following INPUT statement:

input name $ sex $ age height weight;

Note: This statement implies that the variables are stored in the order given. That is,

each line of data contains a student’s NAME, SEX, AGE, HEIGHT, and WEIGHT in

that order and separated by at least one blank or by a comma.
Formatted Input

The alternative to list input is formatted input. An INPUT statement reading format-
ted input must have a SAS informat after each variable.iddormat gives the data

SAS OnlineDocll : Version 8

Using the INPUT Statement ¢ 111

type and field width of an input value. Formatted input may be used with pointer con-
trols and format modifiers. Note, however, that neither pointer controls nor format
modifiers are necessary for formatted input.

Pointer control features
Pointer controls reset the pointer's column and line positions and tell the INPUT
statement where to go to read the data value. You use pointer controls to specify the
columns and lines from which you want to read:

e Column pointer controlsnove the pointer to the column you specify.
e Line pointer controlanove the pointer to the next line.
¢ Line hold controlkeep the pointer on the current input line.

e Binary file indicator controldndicate that the input line is from a binary file.

Column pointer controls
Column pointer controls indicate in which column an input value starts. Column
pointer controls begin with either an at sign (@) or a plus sign (+).

@n moves the pointer to columm.

@point-variable moves the pointer to the column given by the current value of
point-variable

@(expression moves the pointer to the column given by the value ofdkpres-
sion Theexpressiormust evaluate to a positive integer.

+n moves the pointen columns.

+point-variable moves the pointer the number of columns given by the value of
point-variable

+(expressiop moves the pointer the number of columns given by the value of
expressionThe value ofexpressiorcan be positive or negative.

Here are some examples using column pointer controls:

Example Meaning

@12 go to column 12

@N go to the column given by the value of N
@(N-1) go to the column given by the value of-NL
+5 skip 5 spaces

+N skip N spaces

+(N+1) skip N+1 spaces

In the earlier example using formatted input, you used several pointer controls:

infile inclass;
input @1 name $char8. @10 sex $charl. @15 age 2.0
@20 height 4.1 @25 weight 5.1;

SAS OnlineDocl]: Version 8

112 + Chapter 7. File Access

The @1 moves the pointer to column 1, the @10 moves it to column 10, and so on.
You move the pointer to the column where the data field begins and then supply an
informat specifying how many columns the variable occupies. The INPUT statement
could also be written as

input @1 name $char8. +1 sex $charl. +4 age 2. +3 height 4.1
+1 weight 5.1,

In this form, you move the pointer to column 1 (@1) and read eight columns. The
pointer is now at column 9. Now, move the pointer +1 columns to column 10 to read
SEX. The $charl. informat says to read a character variable occupying one column.
After you read the value for SEX, the pointer is at column 11, so move it to column
15 with +4 and read AGE in columns 15 and 16 (the 2. informat). The pointer is
now at column 17, so move +3 columns and read HEIGHT. The same idea applies
for reading WEIGHT.

Line pointer control
The line pointer control (/) directs IML to skip to the next line of input. You need
a line pointer control when a record of data takes more than one line. You use the
new line pointer control (/) to skip to the next line and continue reading data. In the
example reading the class data, you do not need to skip a line because each line of
data contains all the variables for a student.

Line hold control

The trailing at sign (@), when at the end of an INPUT statement, directs IML to
hold the pointer on the current record so that you can read more data with subsequent
INPUT statements. You can use it to read several records from a single line of data.
Sometimes, when a record is very short, say ten columns or so, you can save space in
your external file by coding several records on the same line.

Binary file indicator controls

When the external file you want to read is a binary file (RECFM=N is specified in
the INFILE statement), you must tell IML how to read the values using the following
binary file indicator controls:

>n start reading the next record at the byte positidn the file.

>point-variable start reading the next record at the byte position in the file given by
point-variable

>(expressiop start reading the next record at the byte position in the file given by
expression

<n read the number of bytes indicated by the value .of
<point-variable read the number of bytes indicated by the valupaht-variable
<(expressiop read the number of bytes indicated by the valuexgression

Pattern Searching

You can have the input mechanism search for patterns of text by using the at sign
(@) positional with a character operand. IML starts searching at the current position,

SAS OnlineDocll : Version 8

Using the INPUT Statement ¢ 113

advances until it finds the pattern, and leaves the pointer at the position immediately
after the found pattern in the input record. For example, the statement

input @ 'NAME=" name $;

searches for the patteMAME=and then uses list input to read the value after the
found pattern.

If the pattern is not found, then the pointer is left past the end of the record,
and the rest of the INPUT statement follows the conventions based on the options
MISSOVER, STOPOVER, and FLOWOVER described in the section “Using the IN-
FILE Statement” earlier in this chapter. If you use pattern searching, you usually
specify the MISSOVER option so that you can control for the occurrences of the
pattern not being found.

Notice that the MISSOVER feature enables you to search for a variety of items on
the same record, even if some of them are not found. For example, the statements

infile in1 missover;

input @1 @ "NAME=" name $
@1 @ "ADDR=" addr &
@1 @ "PHONE=" phone $;

are able to read in the ADDR variable everNAME-=is not found (in which case,
NAME is unvalued).

The pattern operand can use any characters except for the following:
% $ [] {} < > — 2 * # @ ~ ° (backquote)

Record Directives
Each INPUT statement goes to a new record except for the following special cases:

e An at sign (@) at the end of an INPUT statement specifies that the record is to
be held for future INPUT statements.

¢ Binary files (RECFM=N) always hold their records until the > directive.

As discussed in the syntax of the INPUT statement, the line pointer operator (/)
instructs the input mechanism to go immediately to the next record. For binary
(RECFM=N) files, the > directive is used instead of the /.

Blanks
For character values, the informat determines the way blanks are interpreted. For
example, the $CHAR. format reads blanks as part of the whole value, while the
BZw. format turns blanks into Os. Refer 8AS Language Reference: Dictiondoy
more information on informats.

Missing Values

Missing values in formatted input are represented by blanks or a single period for a
numeric value and by blanks for a character value.

SAS OnlineDocl]: Version 8

114 + Chapter 7. File Access

Matrix Use

Data values are either character or numeric. Input variables always result in scalar
(one row by one column) values with type (character or numeric) and length deter-
mined by the input format.

End-of-File Condition
End of file is the condition of trying to read a record when there are no more records
to read from the file. The consequences of an end-of-file condition are described as
follows.

o All the variables in the INPUT statement that encountered end of file are freed

of their values. You can use the NROW or NCOL function to test if this has
happened.

If end of file occurs while inside a DO DATA loop, execution is passed to the

statement after the END statement in the loop.

For text files, the end of file is encountered first as the end of the last record. The next
time input is attempted, the end-of-file condition is raised.

For binary files, the end of file can result in the input mechanism returning a record
that is shorter than the requested length. In this case IML still attempts to process
the record, using the rules described in the section “Using the INFILE Statement,”
earlier in this chapter.

The DO DATA mechanism provides a convenient mechanism for handling end of file.
For example, to read the class data from the external file USER.TEXT.CLASS into a
SAS data set, you need to perform the following steps:

A W dp P

o

10.

Establish dileref referencing the data file.
Use an INFILE statement to open the file for input.
Initialize any character variables by setting the length.

Create a new SAS data set with a CREATE statement. You want to list the
variables you plan to input in a VAR clause.

Use a DO DATA loop to read the data one line at a time.

. Write an INPUT statement telling IML how to read the data.

. Use an APPEND statement to add the new data line to the end of the new SAS

data set.

. End the DO DATA loop.

. Close the new data set.

Close the external file with a CLOSEFILE statement.

Your code would look as follows.

SAS OnlineDocll : Version 8

Using the FILE Statement ¢ 115

filename inclass ’'user.text.class’;
infile inclass missover;
name="12345678";

sex="1",
create class var{name sex age height weight};
do data;
input name $ sex $ age height weight;
append;
end;
close class;

closefile inclass;

Note that the APPEND statement is not executed if the INPUT statement reads past
the end of file since IML escapes the loop immediately when the condition is encoun-
tered.

Differences with the SAS DATA Step
If you are familiar with the SAS DATA step, you will notice that the following fea-
tures are supported differently or are not supported in IML:

e The pound sign (#) directive supporting multiple current records is not sup-
ported.

e Grouping parentheses are not supported.
e The colon (:) format modifier is not supported.
e The byte operands (< and >) are new features supporting binary files.

e The ampersand (&) format modifier causes IML to stop reading data if a
comma is encountered. Use of the ampersand format modifier is valid with
list input only.

e The RECFM=F option is not supported.

Writing to an External File

If you have data in matrices and you want to write this data to an external file, you
need to reference, or point to, the file (as discussed in the section “Referring to an
External File”). The FILE statement opens the file for output so that you can write
data to it. You need to specify a PUT statement to direct how the data is output. These
two statements are discussed in the following sections.

Using the FILE Statement

The FILE statement is used to refer to an external file. If you have values stored in
matrices, you can write these values to a file. Just as with the INFILE statement, you
need a fileref to point to the file you want to write to. You use a FILE statement to
indicate that you want to write to rather than read from a file. For example, if you
want to output to the file USER.TEXT.NEWCLASS, you can specify the file with a
quoted literal filepath.

SAS OnlineDocl]: Version 8

116 ¢ Chapter 7. File Access

> file 'user.text.newclass’;

Otherwise, you can first establish a fileref and then refer to the file by its fileref:

> filename outclass 'user.text.class’;
> file outclass;

There are two options you can use in the FILE statement:

RECFM=N specifies that the file is to be written as a pure binary file without
record-separator characters.

LRECL=operand specifies the size of the buffer to hold the records.

The FILE statement opens a file for output or, if the file is already open, makes it
the current output file so that subsequent PUT statements write to the file. The FILE
statement is similar in syntax and operation to the INFILE statement.

Using the PUT Statement

The PUT statement writes lines to the SAS log, to the SAS output file, or to any
external file specified in a FILE statement. The file associated with the most recently
executed FILE statement is tharrent output file

You can use the following arguments with the PUT statement:

variable names the IML variable with a value that is put to the current
pointer position in the record. The variable must be scalar valued.
The put variable can be followed immediately by an output format.

literal gives a literal to be put to the current pointer position in the record.
The literal can be followed immediately by an output format.

(expression) must produce a scalar-valued result. The expression can be imme-
diately followed by an output format.

format names the output formats for the values.
pointer-control moves the output pointer to a line or column.

Pointer Control Features
Most PUT statements need the added flexibility obtained with pointer controls. IML
keeps track of its position on each output line with a pointer. With specifications in
the PUT statement, you can control pointer movement from column to column and
line to line. The pointer controls available are discussed in the section “Using the
INPUT statement”.

Differences with the SAS DATA Step
If you are familiar with the SAS DATA step, you will notice that the following fea-
tures are supported differently or are not supported:

e The pound sign (#) directive supporting multiple current records is not sup-
ported.

SAS OnlineDocll : Version 8

Examples ¢ 117

e Grouping parentheses are not supported.

e The byte operands (< and >) are a new feature supporting binary files.

Examples

Writing a Matrix to an External File
If you have data stored in am x m matrix and you want to output the values to an
external file, you need to write out the matrix element by element.

For example, suppose that you have a mafrigontaining data that you want written
to the file USER.MATRIX. Suppose also th¥tcontains 1s and Os so that the format
for output can be one column. You need to do the following:

Establish a fileref, for example, OUT.

Use a FILE statement to open the file for output.

Specify DO loop for the rows of the matrix.

Specify DO loop for the columns of the matrix.

Use a PUT statement to specify how to write the element value.
End the inner DO loop.

Skip a line.

End the outer DO loop.

© © N o g M w b P

Close the file.

Your code should look as follows:

filename out 'user.matrix’;
file out;
do i=1 to nrow(x);
do j=1 to ncol(x);
put (x[i,j]) 1.0 +2 @;
end;
put;
end;
closefile out;

The output file contains a record for each row of the matrix. For example, if your
matrix is4 x 4, then the file might look as follows:

ORr R Rk
B R OoR
or oo
R OR Rk

SAS OnlineDocl]: Version 8

118

Chapter 7. File Access

Quick Printing to the PRINT File
You can use the FILE PRINT statement to route output to the standard print file. The
following statements generate data that are output to the PRINT file:

file print;

do a=0 to 6.28 by .2;

>

>

> x=sin(a);
> p=(x+1)#30;
>

>

end;

put @1 a 6.4 +p x 8.4;

The result is shown below:

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000
1.4000
1.6000
1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
3.2000
3.4000
3.6000
3.8000
4.0000
4.2000
4.4000
4.6000
4.8000
5.0000
5.2000
5.4000
5.6000
5.8000
6.0000
6.2000

-0.8716
-0.9516
-0.9937
-0.9962
-0.9589
-0.8835

0.0000

0.1987

0.1411
-0.0584
-0.2555
-0.4425
-0.6119

-0.7568

-0.7728

-0.6313
-0.4646
-0.2794
-0.0831

0.3894
0.5646
0.7174
0.8415

0.9320
0.9854
0.9996
0.9738

0.9093

0.8085
0.6755
0.5155
0.3350

Listing Your External Files

To list all open files and their current input or current output status, use the SHOW

FILES statement.

SAS OnlineDocll : Version 8

Summary ¢+ 119

Closing an External File

The CLOSEFILE statement closes files opened by an INFILE or a FILE statement.
You specify the CLOSEFILE statement just as you do the INFILE or FILE statement.
For example, the following statements open the external file USER. TEXT.CLASS for
input and then close it;

filename in ’'user.text.class’;
infile in;
closefile in;

Summary

In this chapter, you learned how to refer to, or point to, an external file with a FILE-
NAME statement. You can use the FILENAME statement whether you want to read
from or write to an external file. The file can also be referenced by a quoted literal
filepath. You also learned about the difference between a text file and a binary file.

You learned how to read data from an external file with the INFILE and INPUT state-
ments, using either list or formatted input. You learned how to write your matrices
to an external file using the FILE and PUT statements. Finally, you learned how to
close your files.

SAS OnlineDocl]: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
IML User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 846 pp.

SAS/IML User’s Guide, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-553-1

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

