39

CHAPTER

Defining SAS/ACCESS Descriptor
Files

Introduction 39
Understanding SAS/ACCESS Descriptor Files 39
Creating and Using Descriptor Files 40
Creating Access and View Descriptors in One PROC Step 40
Creating Access and View Descriptors in Separate PROC Steps 42
Using View Descriptors in SAS Programs 43
Printing Data 43
Reviewing Variables 45

Introduction

To use the SAS/ACCESS to IMS-DL/I interface view engine, you must define special
files that describe IMS-DL/I databases and data to the SAS System. These files are
called SAS/ACCESS descriptor files. This chapter is a tutorial and uses examples to
show you how to create and edit descriptor files.

The examples in this chapter are based on the IMS-DL/I database WIRETRN.
Complete information on the WIRETRN database is provided later in this chapter.
From this database, you will create an access descriptor. Then, you will create a view
descriptor based on the access descriptor. For complete reference information on the
ACCESS procedure, see Chapter 6, “ACCESS Procedure Reference,” on page 93.

Understanding SAS/ACCESS Descriptor Files

One way that the SAS System interacts with IMS-DL/I databases is through an
interface view engine that makes use of SAS/ACCESS descriptor files created with the
ACCESS procedure. There are two types of descriptor files:

O access descriptors

O view descriptors.

An access descriptor contains information about the IMS-DL/I database you want to
use. The information includes the IMS-DL/I database name, the IMS-DL/I field names
and their default SAS formats, database formats, segment names and lengths, and key
fields. An access descriptor also contains any special handling considerations for a field
and indicates if an item occurs multiple times in a database segment. You use the
access descriptor to create view descriptors. An access descriptor is like a master
descriptor file for a single IMS-DL/I database because it contains a complete description
of that database (if you choose to enter all the data). Because IMS-DL/I does not store

40

Creating and Using Descriptor Files A Chapter 3

descriptive information about a database, you must enter the database definition in the
access descriptor.

A view descriptor defines a subset of the data described by an access descriptor. This
subset must contain data from only one path in the database on which the access
descriptor is based. You choose this subset by selecting particular items and specifying
criteria that the data must meet. For example, you may want to select two items,
CUSTOMER_NAME and STATE, and specify that the value stored in item STATE
must equal NC.

A view descriptor is a SAS data set of member type VIEW. After you create your view
descriptors, you can use them in a SAS program to read or write the data directly from
and to an IMS-DL/I database, or you can extract IMS-DL/I data and place them in a
SAS data file. Typically, you have several view descriptors (each selecting a different
path of data in the database) for each access descriptor that you have defined.

Creating and Using Descriptor Files

You can use batch mode to create the access descriptor MYLIB.WIRETRN and the
view descriptor VLIB.WIREDATA. Because IMS-DL/I does not have a dictionary or
store descriptive information about IMS-DL/I databases, you must provide the database
definition in the SAS statements following the procedure statement. You can also create
view descriptors in the same PROC ACCESS execution after the access descriptor
statements are entered. (See Chapter 6, “ACCESS Procedure Reference,” on page 93 for
a list of valid options that you can use with PROC ACCESS.) Here is the general format
for creating descriptors:

proc access options;
statements;
run;

Creating Access and View Descriptors in One PROC Step

Perhaps the most common way to use the ACCESS procedure is to create an access
descriptor and one or more view descriptors during a single PROC ACCESS execution.

The following example shows how to create the access descriptor MYLIB.WIRETRN
based on the IMS-DL/I database WIRETRN. The view descriptor VLIB.WIREDATA is
based on this access descriptor. After the following example, each SAS/ACCESS
statement is explained in the order of appearance in the program:

JCL statements;

libname mylib 'access-descriptor libref’;
libname vlib ’‘view-descriptor libref’;

proc access dbms=ims;
create mylib.wiretrn.access;
database=wiretrn dbtype=hdam;
record='wire transaction’ segment=wiretran
seglng=100;
item='ssn - account’ level=2 dbformat=$23.
search=ssnacc key=y;
item='account type’ 1level=2 dbformat=$1.
search=accttype;

Defining SAS/ACCESS Descriptor Files A Creating Access and View Descriptors in One PROC Step 41

item='wire date’ level=2 dbformat=$8.
search=wiredate;

item='wire time’ level=2 dbformat=$8.
search=wiretime;

item='wire amount’ level=2 dbformat=pd5.2

search=wireammt
dbcontent=1;
item='wire descript’ level=2 dbformat=$40.
search=wiredesc;
an=y;
list all;

create vlib.wiredata.view psbname=acctsam
pcbindex=5;
select ’'wire transaction’;
list view;
run;

Here is an explanation of the statements in this example. See “Procedure

Statements” on page 98 for complete reference information on these statements.

JCL statements;
include for batch and noninteractive line modes.

libname mylib='libref.access-descriptor’;

libname vlib='libref.view-descriptor’;
use LIBNAME statements to reference the SAS data library in which you will
store the access descriptor (MYLIB) and the SAS data library in which you will
store the view descriptors (VLIB). You must associate a libref with its data library
before you can use it in another SAS statement or procedure.

proc access dbms=ims;

invokes the ACCESS procedure for the SAS/ACCESS interface to IMS-DL/I.

create mylib.wiretrn.access;

identifies the access descriptor, MYLIB.WIRETRN, that you want to create.

database=wiretrn dbtype=hdam;
specifies the IMS-DL/I database named WIRETRN on which the access descriptor
is to be created. The database type is HDAM.

record='wire transaction’ segment=wiretran seglng=100;
specifies the user-specified record name, as well as the segment name and segment
length, as specified in the IMS DBD for the WIRETRN database.

item='ssn - account’ level=2 dbformat=$23. search=ssnacc key=y;
identifies the item SSN - ACCOUNT. It has an internal format of type character,
length 23 bytes. SSNACC is specified as a search field name. KEY=Y indicates
that SSN - ACCOUNT is listed in the DBD as a key field for the WIRETRAN

segment.

item='account type’ level=2 dbformat=$1. search=accttype;
identifies the item ACCOUNT TYPE with an internal format of type character,
length 1 byte. ACCTTYPE is specified as a search field in the DBD.

item='wire date’ level=2 dbformat=$8. search=wiredate;
identifies the item WIRE DATE with an internal format of type character, length 8
bytes. The search field WIREDATE is specified.

item='wire time’ level=2 dbformat=$8. search=wiretime;
identifies the item WIRE TIME with the same attributes as WIRE DATE except it
has the search field name WIRETIME.

42

Creating Access and View Descriptors in Separate PROC Steps A Chapter 3

item='wire amount’ level=2 dbformat=pd5.2 search=wireammt
dbcontent=1;
identifies item WIRE AMOUNT with a packed decimal database format of 5 bytes
with 2 decimal places. DBCONTENT=L indicates that SAS should display a
missing value when it finds low values (hexadecimal zeros) for this item. The
search field is WIREAMMT.

item='wire descript’ level=2 dbformat=$40. search=wiredesc;
identifies the item WIRE DESCRIPT with an internal format of type character,
length 40 bytes. The search field is WIREDESC.

an=y;
generates unique SAS variable names and default formats based on the name of
the IMS-DL/I item and its DBFORMAT= value. Using AN=Y in an access
descriptor means no changes can be made to the SAS names and formats in any
view descriptors that use the access descriptor.

list all;
lists all the items in the access descriptor and SAS information for each item. The
output is displayed in the SAS log.

create vlib.wiredata.view psbname=acctsam pcbindex=5;

creates a view descriptor called WIREDATA which references PSB ACCTSAM. The
PCBINDEX=5 statement refers to the specific PCB in the PSB to be used at
execution time.

select ’'wire transaction’;
selects the WIRETRAN segment of the IMS-DL/I database to be included in the
view, as defined in the access descriptor.

list view;
lists SAS information on the record WIRE TRANSACTION you selected for this
view. Output from this statement is shown in the SAS log.

run;

forces execution of the ACCESS procedure.

Creating Access and View Descriptors in Separate PROC Steps

You can create view descriptors and access descriptors in separate PROC ACCESS

steps. In the first PROC ACCESS step in the following example, you create the access
descriptor MYLIB.WIRETRN, which is based on the WIRETRN database. In the second
PROC ACCESS step, you create a view descriptor, VLIB.WIREDATA, which is based on
the access descriptor MYLIB.WIRETRN.

proc access dbms=ims;
create mylib.wiretrn.access;
database=wiretrn dbtype=hdam;
record='wire transaction’ segment=wiretran
seglng=100;
item='ssn - account’ level=2 dbformat=$23.
search=ssnacc
key=y;
item='account type’ 1level=2 dbformat=$1.
search=accttype;
item='wire date’ level=2 dbformat=$8.
search=wiredate;

Defining SAS/ACCESS Descriptor Files /A Printing Data 43

item='wire time’ level=2 dbformat=$8.
search=wiretime;
item='wire amount’ level=2 dbformat=pd5.2

search=wireammt
dbcontent=1;
item='wire descript’ level=2 dbformat=$40.
search=wiredesc;
an=y;
list all;
run;

proc access dbms=ims accdesc=mylib.wiretrn;
create vlib.wiredata.view psbname=acctsam
pcbindex=5;
select ’‘wire transaction’;
list view;
run;
Note that the statement proc access dbms=ims is repeated in this example. See
“Creating Access and View Descriptors in One PROC Step” on page 40 for complete
reference information on this statement.

Using View Descriptors in SAS Programs

You can use a view descriptor in any SAS procedure in which you could use other
SAS data sets. The next two examples include printing and reviewing variables for a
view descriptor.

Printing Data

Printing IMS-DL/I data described by a view descriptor is like printing any other
SAS data set, as shown in the following example:

options nodate linesize=120;
proc print data=vlib.wiredata;

title2 ’'Wire Transactions’;
run;

Output 3.1 on page 44 shows the output for the VLIB.WIREDATA view descriptor.

44 Printing Data A Chapter 3

Output 3.1

Results of the PRINT Procedure

OBS SSN_ACCOUNT

The SAS System
Wire Transactions

ACCOUNT_TYPE WIRE_DATE WIRE_TIME WIRE_AMOUNT WIRE_DESCRIPT

W NU s W N

10

335-45-3451345620145345 C 03/31/95 15:42:43 1563.23 BAD CUST_SSN
434-62-1224345656336366 L 03/30/95 23:45:32 424.87 WIRED FROM SCNB 37262849393
156-45-5672345689435776 S 04/06/95 12:23:42 -150.00 WIRED TO BOA 9383627274
456-45-3462345620134522 C 04/06/95 13:12:34 -245.73 WIRED TO WELLS FARGO CHICAGO
234-74-4612345689413263 S 04/06/95 15:45:42 -238.73 WIRED TO WELLS FARGO SAN FRANCISCO
667-73-8275345620154633 S 03/31/95 15:42:43 1563.23 BAD ACCT_NUM
234-74-4612345620113263 C 04/06/95 11:12:42 1175.00 WIRED FROM SCNB 73653728343
156-45-5672345620123456 C 04/06/94 10:23:53 -136.29 WIRED TO SCNB 53472019836
156-45-5672345620123456 C 04/06/95 9:35:53 1923.87 WIRED FROM CIBN 37284839328
434-62-1224345620134564 C 04/06/95 13:23:52 -284.42 WIRED TO TVNB 837362636438
667-73-8275345689454633 C 03/28/95 15:42:43 1563.23 BAD ACCT_NUM

When you use the PRINT procedure, you may want to take advantage of the OBS= and
FIRSTOBS= data set options. The OBS= option enables you to specify the last
observation to be processed; the FIRSTOBS= option enables you to specify the first. The
options are not valid with any form of the WHERE expression. The OBS= option
improves performance when the view descriptor describes a large amount of data and
you just want to see an example of the output. Because each record must still be read
and its position calculated, using the FIRSTOBS= option does not improve performance
significantly. The POINT= and KEY= options of the MODIFY and SET statements are
not currently supported by the IMS-DL/I engine.

The following example uses the OBS= data set option to print the first five
observations of data described by the view descriptor VLIB.WIREDATA, which
describes the WIRETRAN segment of the IMS-DL/I database WIRETRN:

options nodate linesize=120;
proc print data=vlib.wiredata(obs=5);
title2 'First Five Observations Described by

VLIB.WIREDATA';
run;

Output 3.2 on page 45 shows the result of this example.

Output 3.2 Results of Using the FIRSTOBS= Option

Defining SAS/ACCESS Descriptor Files /A Reviewing Variables

45

OBS

[I S R N

SSN_ACCOUNT

335-45-3451345620145345
434-62-1224345656336366
156-45-5672345689435776
456-45-3462345620134522
234-74-4612345689413263

ACCOUNT_TYPE WIRE_DATE WIRE_TIME

n Qo n

The SAS System
First Five Observations Described by VLIB.WIREDATA

03/31/95
03/30/95
04/06/95
04/06/95
04/06/95

15:
23:
12:
13:
15:

42:
45:
23:
12:
45:

43
32
42
34
42

1563.

424.
-150.
-245.
-238.

23
87
00
73
73

WIRE_AMOUNT WIRE_DESCRIPT

BAD CUST_SSN

WIRED FROM SCNB 37262849393

WIRED TO BOA 9383627274

WIRED TO WELLS FARGO CHICAGO
WIRED TO WELLS FARGO SAN FRANCISCO

For more information on the PRINT procedure, see SAS Language Reference:
Concepts and SAS Procedures Guide. For more information on the OBS= and
FIRSTOBS= options, see SAS Language Reference: Dictionary.

Reviewing Variables
If you want to use IMS-DL/I data described by a view descriptor in your SAS

program, you can use the CONTENTS or DATASETS procedure to display the view’s

variable and format information. You use these procedures with view descriptors in the
same way you use them with other SAS data sets.

The following example uses the DATASETS procedure to give you information on the
view descriptor VLIB.WIREDATA, which describes the data in the WIRETRAN

segment of the IMS-DL/I database WIRETRN:

options nodate linesize=132;

proc datasets library=vlib memtype=view;
contents data=wiredata;

title2

run;

Output 3.3 on page 46 shows the first display of the information for this example.

46 Reviewing Variables A Chapter 3

Output 3.3 Using the DATASETS Procedure with a View Descriptor

DATASETS PROCEDURE

Data Set Name: VLIB.WIREDATA Observations: .
Member Type: VIEW Variables: 6
Engine: SASIOIMS Indexes: 0
Created: . Observation Length: 88
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

Variable Type Len Pos Format Informat Label

2 ACCOUNT_TYPE Char 1 23 S1. S1. ACCOUNT TYPE
1 SSN_ACCOUNT Char 23 0 $23. $23. SSN - ACCOUNT
5 WIRE_AMOUNT Num 8 40 12.2 12.2 WIRE AMOUNT

3 WIRE_DATE Char 8 24 $8. $8. WIRE DATE

6 WIRE_DESCRIPT Char 40 48 $40. $40. WIRE DESCRIPT
4 WIRE_TIME Char 8 32 $8. $8. WIRE TIME

As you can see from the output produced by the DATASETS procedure, the
VLIB.WIREDATA view descriptor has six variables: ACCOUNT_TYPE,
SSN_ACCOUNT, WIRE_AMOUNT, WIRE_DATE, WIRE_DESCRIPT, and
WIRE_TIME. The variables are listed in alphabetic order, and the column labeled with
a # (pound sign) in the listing shows the order of each variable as it appears in the
WIRETRAN database segment. You cannot change a view descriptor’s variable labels
using the DATASETS procedure. The labels are generated from the IMS-DL/I item
names when the view descriptor is created.

For more information on the DATASETS procedure, see SAS Language Reference:
Concepts and the SAS Procedures Guide.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS?® Interface to IMS-DL/I Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. 316 pp.

SAS/ACCESS’ Interface to IMS-DL/I Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-548-5

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

