a7

CHAPTER

Using IMS-DL/I Data in SAS
Programs

Introduction 47
Charting Data 47
Calculating Statistics 48
Using the FREQ Procedure 48
Using the MEANS Procedure 49
Using the RANK Procedure 53
Selecting and Combining Data 54
Using the WHERE Statement 54
Using the SAS System’s SQL Procedure 58
Combining Data from Various Sources 58
Creating New Items with the GROUP BY Clause 61
Updating a SAS Data File with IMS-DL/I Data 62
Example of VALIDVARNAME=V6 62
Example of VALIDVARNAME=V7 64

Introduction

An advantage of the SAS/ACCESS to IMS-DL/I interface view engine is that it
enables the SAS System to read and write IMS-DL/I data directly from SAS programs
without having to code DL/I calls. This chapter presents examples using IMS-DL/I data
described by view descriptors as input data for SAS programs. Throughout the
examples, the SAS terms variable and observation are used instead of the IMS-DL/I
terms field and segment because this chapter illustrates using SAS procedures and the
DATA step. The examples include charting data using the Version 7 SQL procedure to
combine data from various sources, and updating a Version 6 SAS data file with data
from IMS-DL/I.

READ, WRITE, ALTER, or PW passwords can be assigned to a view descriptor,
access descriptor, PROC SQL view, DATA step view, or SAS data file. See Chapter 6,
“ACCESS Procedure Reference,” on page 93 and “SAS System Passwords for SAS/
ACCESS Descriptors” on page 96 for information on assigning passwords.

Appendix 2 includes definitions of all the view descriptors referenced in this chapter.
Appendix 2 also includes the IMS-DL/I database data, SAS data files, and a DB2 table
used in some of the examples.

Charting Data

GCHART procedure programs work with data described by view descriptors just as
they do with other SAS data sets. The following example creates a horizontal bar chart



48 Calculating Statistics A Chapter 4

of the number of checking account withdrawals per day. This example uses the view
descriptor VLIB.CDBTDATE to describe the CHCKDEBT segment of the ACCTDBD
database:

options nodate linesize=132;
goptions device=chardrvw;

proc gchart data=vlib.cdbtdate;

vbar check date / discrete;

title2 ’Checking Account Withdrawals Per Day’;
run;

Display 4.1 on page 48 shows the output for this example. CDBTDATE represents the
date of each checking account withdrawal; the number of checking account withdrawals
is represented by the length of the bar. For more information on the GCHART
procedure, see SAS Language Reference: Concepts and the SAS Procedures Guide.

Display 4.1 Vertical Bar Chart of Checking Account Withdrawals

GRAPH1- WORK . GSEG . GCHART—
Command ===> ||

Checking Account Withdrawals Per Davy

DEBIT DATE

FREQUENCY

ra

=

L 0D T .o
S LAMDIT oM
EN I )
N o7m>DToe
N oD TN
U e - S TN
N oA Z o
R N
(GRS e
nmomDmTe e
oD —
nmomE T e
nme=c o e -

| L0G “Cr o)

If you have SAS/GRAPH software, you can create colored block charts, plots, and
other graphics based on IMS-DL/I data. See SAS/GRAPH Software: Reference for more
information on the kinds of graphics that you can produce with this SAS product.

Calculating Statistics

You can also execute statistical procedures using IMS-DL/I data. This section shows
examples using the FREQ, MEANS, and RANK procedures.

Using the FREQ Procedure

Suppose you want to find the percentages of your accounts in each city where you
have a bank so that you can decide where to increase your marketing. The following



Using IMS-DL/I Data in SAS Programs A Using the MEANS Procedure 49

example calculates the percentages of customers for each city appearing in the IMS-DL/
I database ACCTDBD using the view descriptor VLIB.CUSTINFO:

options nodate linesize=80;
proc freq data=vlib.custinfo;
table city;

title2 ’'Cities in the ACCTDBD Database’;
run;

Output 4.1 on page 49 shows the one-way frequency table that this example
generates.

Output 4.1 Frequency Table for Variable CITY

The SAS System
Cities in the ACCTDBD Database

CITY
Cumulative Cumulative
CITY Frequency Percent Frequency Percent
CHARLOTTESVILLE 2 20.0 2 20.0
GORDONSVILLE 3 30.0 5 50.0
ORANGE 2 20.0 7 70.0
RAPIDAN 1 10.0 8 80.0
RICHMOND 2 20.0 10 100.0

For more information on the FREQ procedure, see SAS Language Reference: Concepts
and the SAS Procedures Guide.

Using the MEANS Procedure

In your analysis of recent accounts, suppose that you also want to determine some
statistics by customer. In the following example, PROC MEANS is used to generate the
mean debit amount for each customer (including the number of observations (N) and
the number of missing values (NMISS)):

proc sort data=vlib.trans out=mydata.trandata;
by soc_sec number;
run;

options nodate linesize=80;

proc means data=mydata.trandata mean

sum n nmiss maxdec=0;

by soc_sec number;

var check debit_amount;

title2 ’'Mean Debit Amount Per Customer’;
run;

Output 4.2 on page 50 shows the output for this example.

In the example, the view descriptor VLIB.TRANS selects CUSTOMER, CHCKACCT,
and CHCKDEBT segment data from the IMS-DL/I database ACCTDBD. Since the
ACCTDBD database is an HDAM and therefore is not indexed, the data described by
the view descriptor must be sorted before using PROC MEANS. The sorted data are



50

Using the MEANS Procedure A Chapter 4

stored in a SAS data file called MYDATA. TRANDATA, which is then used as input to
PROC MEANS.

If your database is indexed, you can use a SAS BY statement for the indexed field so
that data from this database are returned as if they were sorted. Database access
methods HIDAM, HISAM, and SHISAM are indexed. If your database is not indexed,
you need to sort the IMS-DL/I data before using the MEANS procedure with a BY
statement. Because you cannot sort data in an IMS-DL/I database, you must use the
OUT= option to extract data from the database so that you can pass it to the MEANS
procedure. Since the ACCTDBD database is an HDAM and therefore is not indexed, the
data described by the view descriptor must be sorted before using PROC MEANS with
a BY statement for SOC_SEC_NUMBER.

Note: You can store the sorted data in a temporary data set if space is a concern. A

Note: If the view descriptor describes a path of data that includes segments from
multiple hierarchical levels, the parent segment information is repeated for each SAS
observation. This can cause misleading statistical results. To avoid misleading results,
perform mathematical operations using only the data in the segment at the lowest
hierarchical level. You can also avoid misleading results by creating a view descriptor
that describes only the data in the segment at the lowest hierarchical level. »



Using IMS-DL/I Data in SAS Programs A Using the MEANS Procedure 51

Output 4.2 Statistics on Customer Debit Amounts

The SAS System
Mean Debit Amount Per Customer

—————————————————————————— SOC_SEC_NUMBER=156-45-5672 —=———————————ommm o
The MEANS Procedure

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT

N
Mean Sum N Miss
27 110 4 0

-------------------------- SOC_SEC_NUMBER=178-42-6534 ———————mmm e

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT

N
Mean Sum N Miss
26 26 1 0

-------------------------- SOC_SEC_NUMBER=234-74-4612 ————————mm e

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT

N
Mean Sum N Miss
0 1

-------------------------- SOC_SEC_NUMBER=434-62-1224 ———————mmm oo

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT




52

Using the MEANS Procedure A Chapter 4

The SAS System
Mean Debit Amount Per Customer

-------------------------- SOC_SEC_NUMBER=434-62-1234 —————— oo

The MEANS Procedure

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT

N
Mean Sum N Miss
. . 0 1

-------------------------- SOC_SEC_NUMBER=436-42-6394 —————— oo

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT

N
Mean Sum N Miss
. . 0 1

-------------------------- SOC_SEC_NUMBER=456-45-3462 ————————————— e

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT

N
Mean Sum N Miss
66 263 4 0

-------------------------- SOC_SEC_NUMBER=657-34-3245 ===

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT

N
Mean Sum N Miss
. . 0 1

-------------------------- SOC_SEC_NUMBER=667-73-8275 ————————————mmm e

The MEANS Procedure

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT

N
Mean Sum N Miss
355 1065 3 2

-------------------------- SOC_SEC_NUMBER=667-82-8275 ————————————mmm e

Analysis Variable : CHECK DEBIT AMOUNT CHECK DEBIT AMOUNT




Using IMS-DL/I Data in SAS Programs /A Using the RANK Procedure 53

For more information on PROC MEANS, see SAS Language Reference: Concepts and
the SAS Procedures Guide.

Using the RANK Procedure

You can also use more advanced statistical procedures on IMS-DL/I data. The
following example uses the RANK procedure to rank checking account deposits by
amount. It also assigns the variable name CRDRANK to the new item created by the
RANK procedure, extracts and sorts the data, and prints the sorted output data. The
view descriptor VLIB.CREDITS describes the CUSTOMER, CHCKACCT, and
CHCKCRDT segments in the ACCTDBD database.

proc rank data=vlib.credits out=mydata.rankcred;
var check credit_amount;
ranks crdrank;

run;

proc sort data=mydata.rankcred;
by crdrank;
run;

options nodate linesize=132;
proc print data=mydata.rankcred;

title2 ’'Deposits in Ascending Order’;
run;

Output 4.3 on page 53 shows the result of this example.

Output 4.3 Ranking of Checking Account Balances

The SAS System
Deposits in Ascending Order
CHECK_  CHECK_  CHECK_ CHECK_

SOC_SEC_ CHECK_ACCOUNT_ CREDIT_ CREDIT_ CREDIT_ CREDIT_
OBS NUMBER NUMBER AMOUNT DATE TIME DESC
1 436-42-6394 345620135872 50.00 O02APR95 12:16:34 ACH DEPOSIT
2 456-45-3462 345620134522 50.00 O5APR95 12:14:52 ACH DEPOSIT
3 156-45-5672 345620123456 100.00 O01APR95 12:24:34 ATM DEPOSIT
4 667-82-8275 382957492811 100.00 16APR95 09:21:14 ACH DEPOSIT
5 434-62-1224 345620134663 120.00 28MAR95 10:26:45 ACH DEPOSIT
6 657-34-3245 345620131455 230.00 O04APR95 14:24:11 ACH DEPOSIT
7 434-62-1234 345620104732 400.00 O02APR95 10:23:46 ACH DEPOSIT
8 234-74-4612 345620113263 672.32 31MAR95 ATM DEPOSIT
9 178-42-6534 745920057114 1300.00 12JUN95 14:34:12 ACH DEPOSIT
10 434-62-1224 345620134564 1342.42 22MAR95 23:23:52 ACH DEPOSIT
11 667-73-8275 345620145345 1563.23 31MAR95 15:42:43 MAIN ST BRANCH DEPOSIT
12 667-73-8275 345620154633 1563.23 31MAR95 15:42:43 BAD ACCT_NUM

For more information on PROC RANK and other advanced statistics procedures, see
the SAS Procedures Guide.



54

Selecting and Combining Data A Chapter 4

Selecting and Combining Data

A great majority of SAS programs select and combine data from various sources. The
method you use depends on the configuration of the data. The next three examples show
you how to select and combine data using two different methods: the SET statement
used in a DATA step and the SQL procedure. When choosing between these methods,
you should first read the performance considerations discussed in Chapter 7, “Advanced
User Topics for the SAS/ACCESS Interface View Engine for IMS-DI/I,” on page 129.

Using the WHERE Statement

Suppose you had two view descriptors, VLIB.CHKCRD and VLIB.CHKDEB, that
contain information about the checking accounts of customers. The view descriptor
VLIB.CHKCRD describes the checking credit data in the CUSTOMER, CHCKACCT,
and CHCKCRDT segments, and the view descriptor VLIB.CHKDEB describes the
checking debit data in the CUSTOMER, CHCKACCT, and CHCKDEBT segments. You
could use the SET statement to concatenate the data in these files and create a SAS
data file that contains information on checking account transactions by customer. Since
you are accessing the same database more than once, you need to reference the same
PSB in both view descriptors, but use different PCB index values, where each value
references an ACCTDBD PCB that is sensitive to the segments defined in the view. In
this example, VLIB.CHKCRD uses a PCB index value of 2, and VLIB.CHKDEB uses a
PCB index value of 3 in the ACCUPSB PSB.

The PROC SORT statement orders the accounts by Social Security number and
checking account number.

data chktrans (keep=soc_sec_number
check account_number trantype date amount);
length trantype $ 6;
format date date9. amount dollarl2.2;
set vlib.chkcrd(in=crd) vlib.chkdeb(in=dbt);
where check balance>0;
if crd then do;
trantype='Credit’;
date=check credit_date;
amount=check credit_amount;
end;
else if dbt then do;
trantype='Debit’;
date=check debit_date;
amount=check debit_amount;
end
run;

proc sort;
by soc_sec_number check account_ number;
run;

options nodate linesize=80;
proc print data=chktrans;

by soc_sec_number;
var check_account number trantype date amount;



Using IMS-DL/I Data in SAS Programs /A Using the WHERE Statement 55

title2 ’Checking Account Transactions by SSN’;
run;

In the SAS WHERE statement, be sure to use the IMS-DL/I item name as the search
criteria when VALIDVARNAME=V7 and the SAS variable name when
VALIDVARNAME=V6. This is a Version 7 example. Output 4.4 on page 56 shows the
result of the new temporary SAS data file WORK.CHKTRANS.



56 Using the WHERE Statement A Chapter 4

Output 4.4 WORK.CHKTRANS Data File Created Using a SAS WHERE Statement

Checking Account Transactions by SSN
—————————————————————— SOC_SEC_NUMBER=156-45-5672 ==m======—————————mm

CHECK_ACCOUNT_

OBS NUMBER TRANTYPE DATE AMOUNT
1 345620123456 Credit 01APR1991 $100.00
2 345620123456 Debit 28MAR1991 $13.29
3 345620123456 Debit 31MAR1991 $32.87
4 345620123456 Debit 02APR1991 $50.00
5 345620123456 Debit 31MAR1991 $13.42

---------------------- SOC_SEC_NUMBER=178-42-6534 ————————mmmmmmmmmme

CHECK_ACCOUNT_

OBS NUMBER TRANTYPE DATE AMOUNT
6 745920057114 Credit 12JUN1991 $1,300.00
7 745920057114 Debit 10JUN1991 $25.89

---------------------- SOC_SEC_NUMBER=234-74-4612 —————————mmmmmmmmme

CHECK_ ACCOUNT

OBS NUMBER " TRANTYPE DATE AMOUNT
8 345620113263 Credit 31MAR1991 $672.32
9 345620113263 Debit

---------------------- SOC_SEC_NUMBER=434-62-1224 —————————mmmmmmmmme

CHECK_ ACCOUNT

OBS NUMBER " TRANTYPE DATE AMOUNT
10 345620134564 Credit 22MAR1991 $1,342.42
11 345620134564 Debit 18MAR1991 $432.87
12 345620134564 Debit 18MAR1991 $19.23
13 345620134564 Debit 22MAR1991 $723.23
14 345620134564 Debit 22MAR1991 $82.32
15 345620134564 Debit 26MAR1991 $73.62
16 345620134564 Debit 26MAR1991 $31.23
17 345620134564 Debit 29MAR1990 $162.87
18 345620134564 Debit 29MAR1991 $7.12
19 345620134564 Debit 31MAR1991 $62.34
20 345620134663 Credit 28MAR1991 $120.00
21 345620134663 Debit 28MAR1991 $25.00

---------------------- SOC_SEC_NUMBER=434-62-1234 ———————mmmmmmmmmmm

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

22 345620104732 Credit 02APR1991 $400.00
23 345620104732 Debit




Using IMS-DL/I Data in SAS Programs /A Using the WHERE Statement 57

Checking Account Transactions by SSN
—————————————————————— SOC_SEC_NUMBER=436-42-6394 —————————mmmmmmmmo

CHECK_ ACCOUNT

0BS NUMBER ~  TRANTYPE DATE AMOUNT
24 345620135872 Credit 02APR1991 $50.00
25 345620135872 Debit 30MAR1990

---------------------- SOC_SEC_NUMBER=456-45-3462 =—-—————————————————m

CHECK_ACCOUNT_

OBS NUMBER TRANTYPE DATE AMOUNT
26 345620134522 Credit 05APR1991 $50.00
27 345620134522 Debit 29MAR1991 $42.73
28 345620134522 Debit 29MAR1991 $172.45
29 345620134522 Debit 30MAR1991 $38.23
30 345620134522 Debit 02APR1991 $10.00

---------------------- SOC_SEC_NUMBER=657-34-3245 ————————mmmmmmmmmo

CHECK_ACCOUNT_

OBS NUMBER TRANTYPE DATE AMOUNT
31 345620131455 Credit 04APR1991 $230.00
32 345620131455 Debit

---------------------- SOC_SEC_NUMBER=667-73-8275 ==—————————————————m

CHECK_ACCOUNT_

OBS NUMBER TRANTYPE DATE AMOUNT
33 345620145345 Credit 31MAR1991 $1,563.23
34 345620145345 Debit 19MAR1990 .

35 345620145345 Debit 23MAR1991 $820.00
36 345620145345 Debit 23MAR1991 $52.00
37 345620145345 Debit 28MAR1991 $193.00
38 345620154633 Credit 31MAR1991 $1,563.23
39 345620154633 Debit . .

---------------------- SOC_SEC_NUMBER=667-82-8275 ======—————————————m

CHECK_ACCOUNT_

OBS NUMBER TRANTYPE DATE AMOUNT
40 382957492811 Credit 16APR1991 $100.00
41 382957492811 Debit

The first line of the DATA step uses the KEEP= data set option. This option works with
view descriptors just as it works with other SAS data sets; the KEEP= option specifies
that you want only the listed variables included in the new SAS data file
WORK.CHKTRANS, although you can use the other variables in the view descriptor
within the DATA step. Note that the KEEP= option does not reduce the number of
variables mapped by the view descriptor and, therefore, does not reduce the amount of
data read by the engine.

When you reference a view descriptor in a SAS procedure or DATA step, it is more
efficient to use a SAS WHERE statement than a subsetting IF statement because an IF
statement does not reduce the amount of data read. A DATA step or SAS procedure
passes the SAS WHERE statement to the interface view engine, which attempts to



58

Using the SAS System’s SQL Procedure A Chapter 4

create SSAs from the WHERE statement. If the engine can create the SSAs, it
processes the SAS WHERE statement and returns to the SAS System only the data
that satisfy the WHERE statement. Otherwise, all the data referenced by the view
descriptor are returned to the SAS System for processing. Processing IMS-DL/I data
using a WHERE statement that the IMS-DL/I engine can turn into SSAs reduces the
amount of data read and retrieved by the engine. This improves engine performance
significantly. For more information on how IMS-DL/I handles WHERE statements, see
“Performance and Efficient View Descriptors” on page 122.

For more information on the SAS WHERE statement, refer to SAS Language
Reference: Dictionary.

Using the SAS System’s SQL Procedure

This section provides two examples of using the SAS System’s SQL procedure on
IMS-DL/I data. The SQL procedure implements the Structured Query Language (SQL)
in Version 7 of the SAS System. The SQL procedure is a good way to perform SQL
operations with IMS-DL/I, which by itself has no SQL capabilities. The first example
illustrates using PROC SQL to combine data from three sources. The second example
shows how to use the GROUP BY clause to create new items from data described by a
view descriptor.

Combining Data from Various Sources

The SQL procedure provides another way to select and combine data. For example,
suppose you have the following:

O a view descriptor, VLIB.CUSTACCT, based on the CUSTOMER and CHCKACCT
segments of the IMS-DL/I database ACCTDBD.

0 a SAS data file, MYDATA.CHGDATA, which contains checking account numbers
and checking fees.

o MYDATA.BANKCHRG, a view descriptor based on data in a DB2 table that
contains additional banking fees. (The MYDATA.BANKCHRG view descriptor has
been created using the SAS/ACCESS interface to DB2.)

You can use PROC SQL to create a view that joins all these sources of data. When
you use the PROC SQL view in your SAS program, the joined data are presented in a
single output table. In this example, using the SAS WHERE or subsetting IF
statements would not be an appropriate way of presenting data from various sources
because you want to compare variables from several sources rather than simply merge
or concatenate the data. For more information on the DB2 table used in this example,
see Appendix 2.

CAUTION:
Accessing More Than One IMS-DL/I Database When you use PROC SQL to access more
than one IMS-DL/I database, the view descriptors for each database must use the
same PSB. In addition, a PCB must be included in that PSB for each database you
want to access. If you are accessing the same database multiple times, each view
descriptor must specify a different PCB using the PCB index field. A

Output 4.5 on page 59, Output 4.6 on page 60, and Output 4.7 on page 60 show the
results of the PRINT procedure performed on the VLIB.CUSTACCT view descriptor
(based on IMS-DL/I data), the MYDATA.BANKCHRG view descriptor (based on DB2
data), and the MYDATA.CHGDATA data file. The following code generates the output:

options nodate linesize=120;



Using IMS-DL/I Data in SAS Programs A

proc print data=vlib.custacct;

title2

run;

options nodate linesize=80;

proc print data=mydata.bankchrg;

title2

run;

proc print data=mydata.chgdata;

title2

run;

"SAS Data File MYDATA.CHGDATA';

Output 4.5 Data Described by VLIB.CUSTACCT

Using the SAS System’s SQL Procedure

'Data Described by VLIB.CUSTACCT';

'Data Described by MYDATA.BANKCHRG';

59

OBS

0oL WN -

e
N = OV

SOC_SEC_
NUMBER

667-73-8275
667-73-8275
434-62-1234
436-42-6394
434-62-1224
434-62-1224
178-42-6534
156-45-5672
657-34-3245
667-82-8275
456-45-3462
234-74-4612

The SAS System
Data Described by VLIB.CUSTACCT

CUSTOMER_NAME

WALLS, HOOPER J.
WALLS, HOOPER J.
SUMMERS, MARY T.
BOOKER, APRIL M.
SMITH, JAMES MARTIN
SMITH, JAMES MARTIN
PATTILLO, RODRIGUES
O’CONNOR, JOSEPH
BARNHARDT, PAMELA S.
COHEN, ABRAHAM
LITTLE, NANCY M.
WIKOWSKI, JONATHAN S.

CHECK_ACCOUNT_

NUMBER

345620145345
345620154633
345620104732
345620135872
345620134564
345620134663
745920057114
345620123456
345620131455
382957492811
345620134522
345620113263




60 Using the SAS System’s SQL Procedure A Chapter 4

Output 4.6 Data Described by MYDATA.BANKCHRG

The SAS System
Data Described by MYDATA.BANKCHRG
OBS ssn accountn chckchrg atmfee loanchrg
1 667-73-8275 345620145345 3.75 5.00 2.00
2 434-62-1234 345620104732 15.00 25.00 552.23
3 436-42-6394 345620135872 1.50 7.50 332.15
4 434-62-1224 345620134564 9.50 0.00 0.00
5 178-42-6534 . 0.50 15.00 223.77
6 156-45-5672 345620123456 0.00 0.00 0.00
7 657-34-3245 345620132455 10.25 10.00 100.00
8 667-82-8275 . 7.50 7.50 175.75
9 456-45-3462 345620134522 23.00 30.00 673.23
10 234-74-4612 345620113262 4.50 7.00 0.00

Output 4.7 Data in the SAS Data File MYDATA.CHGDATA

The SAS System
SAS Data File MYDATA.CHGDATA

OBS account charge
1 345620135872 $10
2 345620134522 $7
3 345620123456 $12
4 382957492811 $3
5 345620134663 $8
6 345620131455 $6
7 345620104732 $9

The following SAS statements select and combine data from these three sources to
create a PROC SQL view, SQL.CHARGES. The SQL.CHARGES view retrieves checking
fee information so that the bank can charge customers for checking services.

options nodate linesize=132;
libname sql ’'SAS-data-library’;

proc sql;
create view sqgl.charges as
select distinct custacct.soc_sec_number,
custacct.customer name,
custacct.check account number,
chgdata.charge,
bankchrg.chckchrg,
bankchrg.atmfee,
bankchrg.loanchrg
from vlib.custacct,
mydata.bankchrg,
mydata.chgdata
where custacct.soc_sec_number=bankchrg.ssn and
custacct.check_account number=chgdata.account;
title2 ’'Banking Charges for the Month’;



Using IMS-DL/I Data in SAS Programs /A Using the SAS System’s SQL Procedure 61

select * from sqgl.charges;

The CREATE statement incorporates a WHERE clause along with the SELECT
clause. The last SELECT statement retrieves and displays the PROC SQL view
SQL.CHARGES. To select all the items from the view, use an asterisk (*) in place of
item names. When an asterisk is used, the order of the items displayed matches the
order of the items as specified in the SQL.CHARGES view definition. Notice that PROC
SQL prints the output automatically on the display using the IMS-DL/I item names
instead of the SAS variable names. It also executes without a RUN statement when the
procedure is submitted. Output 4.8 on page 61 shows the data described by the PROC
SQL view SQL.CHARGES.

Output 4.8 Data Described by the PROC SQL View SQL.CHARGES

The SAS System
Banking Charges for the Month
SOC_SEC_ CHECK_ACCOUNT_

NUMBER CUSTOMER_NAME NUMBER charge chckchrg atmfee loanchrg
156-45-5672 O’CONNOR, JOSEPH 345620123456 $12 0.00 0.00 0.00
434-62-1224 SMITH, JAMES MARTIN 345620134663 $8 9.50 0.00 0.00
434-62-1234 SUMMERS, MARY T. 345620104732 $9 15.00 25.00 552.23
436-42-6394 BOOKER, APRIL M. 345620135872 $10 1.50 7.50 332.15
456-45-3462 LITTLE, NANCY M. 345620134522 $7 23.00 30.00 673.23
657-34-3245 BARNHARDT, PAMELA S. 345620131455 $6 10.25 10.00 100.00
667-82-8275 COHEN, ABRAHAM 382957492811 $3 7.50 7.50 175.75

Creating New Items with the GROUP BY Clause

It is often useful to create new items with summary or aggregate functions such as
the SUM function. Although you cannot use the ACCESS procedure to create new
items, you can easily use the SQL procedure with data described by a view descriptor to
display output that contains new items.

This example uses PROC SQL to retrieve and manipulate data from the view
descriptor VLIB.SAVEBAL, which is based on the CUSTOMER and SAVEACCT
segments in the ACCTDBD database. When this query (as a SELECT statement is
often called) is submitted, it calculates and displays the average savings account
balance for each city.

options nodate linesize=80;

proc sql;
title2 ’Average Savings Balance Per City’;
select distinct city,
avg(savings_balance) label='Average Balance’
format=dollarl2.2
from vlib.savebal
where city is not missing
group by city;

Output 4.9 on page 61 shows the query’s result.



62

Updating a SAS Data File with IMS-DL/l Data A Chapter 4

Output 4.9 Data Retrieved by a PROC SQL Query

The SAS System
Average Savings Balance Per City

Average
CITY Balance
CHARLOTTESVILLE $1,673.35
GORDONSVILLE $4,758.26
ORANGE $615.60
RAPIDAN $672.63
RICHMOND $924.62

For more information on the SQL procedure, refer to the SAS Guide to the SQL
Procedure: Usage and Reference.

Updating a SAS Data File with IMS-DL/I Data

You can update a SAS data file with IMS-DL/I data described by a view descriptor
just as you can update a SAS data file using another data file: by using a DATA step
UPDATE statement. In this section, the term ¢ransaction data refers to the new data
that are to be added to the original file.

You can even perform updates when the file to be updated is a Version 6 data file
with user-defined, 8-byte SAS variable names and the transaction data are from a
Version 7 source. Version 7 uses generated SAS variable names of up to 32 bytes.

You have two choices when you update a Version 6 SAS data file with Version 7 data:

O operate Version 7 in default mode. Your Version 6 program will run, but WHERE
processing will not be available.

o0 set the VALIDVARNAME SAS System option to V6 to operate in Version 6 mode.
The V6 option offers functionality comparable to Version 6 of the interface view
engine, including WHERE processing.

The VALIDVARNAME SAS System option lets you control what type of variable
names will be used in a SAS session. It enforces the naming conventions by converting
any nonconforming names to the necessary format. The default format is V7. When a
Version 6 program is run under V7, the software replaces the 8-byte Version 6 variable
names created with the SASNAME= (sn=) parameter with longer SAS variable names
generated from the ITEM name. When a Version 7 program is run and
VALIDVARNAME=V®6, the longer variable names are truncated to 8 bytes. The
conversion is permanent: when a conversion is made, the original names are not stored.

The following examples illustrate the situations in which each of the options is
appropriate.

Example of VALIDVARNAME=V6

Suppose you have a Version 6 SAS data set, VER6.SSNUMS, which contains some
customer names and Social Security numbers. You want to update this data set with
data described by VLIB.SSNAME, a view descriptor based on the CUSTOMER segment
of the IMS-DL/I database ACCTDBD. Since this will require you to first sort the data
then create an output data set with the sorted data, this is a good situation for using
VALIDVARNAME=VS.

To perform the update, you would enter the following SAS statements:



Using IMS-DL/I Data in SAS Programs /A Example of VALIDVARNAME=V6 63

options validvarname=V6;
options nodate linesize=80;
libname ver6 ’'SAS-data-library’;

proc sort data=ver6.ssnums;
by ssnumb;
run;

proc print data=ver6.ssnums;
title2 ’'VER6.SSNUMS Data File’;
run;

proc sort data=vlib.ssname out=mydata.newnums;
by ssnumb;
run;

proc print data=mydata.newnums;
title2 ’'Data Described by MYDATA.NEWNUMS';
run;

data mydata.newnames;
update ver6.ssnums mydata.newnums;
by ssnumb;

run;

proc print data=mydata.newnames;
title2 'MYDATA.NEWNAMES Data File’;
run;

The new SAS data file MYDATA NEWNAMES is a Version 6 data file stored in a
Version 6 data library associated with the libref MYDATA.

Output 4.10 on page 63, Output 4.11 on page 64, and Output 4.12 on page 64 show
the results of PRINT procedures for the original data file, the transaction data, and the
updated data file.

Output 4.10 Data in the Data File to Be Updated, VER6.SSNUMS

The SAS System
VER6 .SSNUMS Data File

OBS SSNUMB NAME

1 267-83-2241 GORDIEVSKY, OLEG

2 276-44-6885 MIFUNE, YUKIO

3 352-44-2151 SHIEKELESLAM, SHALA

4 436-46-1931 NISHIMATSU-LYNCH, CAROL




64 Example of VALIDVARNAME=V7 A Chapter 4

Output 4.11 Data Described by Updated Data File MYDATA.NEWNUMS

The SAS System
Data Described by MYDATA.NEWNUMS
OBS SSNUMB NAME

1 156-45-5672 O’CONNOR, JOSEPH

2 178-42-6534 PATTILLO, RODRIGUES
3 234-74-4612 WIKOWSKI, JONATHAN S.
4 434-62-1224 SMITH, JAMES MARTIN
5 434-62-1234 SUMMERS, MARY T.

6 436-42-6394 BOOKER, APRIL M.

7 456-45-3462 LITTLE, NANCY M.

8 657-34-3245 BARNHARDT, PAMELA S.
9 667-73-8275 WALLS, HOOPER J.
10 667-82-8275 COHEN, ABRAHAM

Output 4.12 Data in the Updated Data File MYDATA.NEWNAMES

The SAS System
MYDATA.NEWNAMES Data File
OBS SSNUMB NAME
1 156-45-5672 O’CONNOR, JOSEPH
2 178-42-6534 PATTILLO, RODRIGUES
3 234-74-4612 WIKOWSKI, JONATHAN S.
4 267-83-2241 GORDIEVSKY, OLEG
5 276-44-6885 MIFUNE, YUKIO
6 352-44-2151 SHIEKELESLAM, SHALA
7 434-62-1224 SMITH, JAMES MARTIN
8 434-62-1234 SUMMERS, MARY T.
9 436-42-6394 BOOKER, APRIL M.
10 436-46-1931 NISHIMATSU-LYNCH, CAROL
11 456-45-3462 LITTLE, NANCY M.
12 657-34-3245 BARNHARDT, PAMELA S.
13 667-73-8275 WALLS, HOOPER J.
14 667-82-8275 COHEN, ABRAHAM

For more information on the UPDATE statement, see SAS Language Reference:
Dictionary.

Example of VALIDVARNAME=V7

The following is an example of a Version 7 update of data. The Version 7 data set,
MYDATA.SSNUMS, is updated with data described by the view descriptor
VLIB.SSNAME. Both the data in the data set and in the view descriptor are sorted by
social security number before the output data set is used to update the existing data set.

To perform the update, you would enter the following statements:

proc sort data=mydata.ssnums;
by soc_sec number;
run;



Using IMS-DL/I Data in SAS Programs /\ Example of VALIDVARNAME=V7 65

proc print data=mydata.ssnums;
title2 ’'MYDATA.SSNUMS Data Set’;
run;

proc sort data=vlib.ssname out=mydata.newnums;
by soc_sec number;
run;

proc print data=mydata.newnums;
title2 ’'Data Described by MYDATA.NEWNUMS';
run;

data mydata.newnames;
update mydata.ssnums mydata.newnums;
by soc_sec number;
run;

proc print data=mydata.newnames;
title2 'MYDATA.NEWNAMES Data Set’;
run;

The new SAS data file MYDATA.NEWNAMES is a Version 7 data file that is stored
in a Version 7 data library associated with the libref MYDATA. Output 4.13 on page 66,
Output 4.14 on page 66, and Output 4.15 on page 67 show the results of the PRINT
procedures for the original data file, the transaction data, and the updated data file.



Example of VALIDVARNAME=V7 A Chapter 4

Output 4.13 Data in the Data File to be Updated, MYDATA.SSNUMS

W N

The SAS System
MYDATA.SSNUMS Data Set

soc sec
number

267-83-2241
276-44-6885
352-44-2151
436-46-1931

customer name

GORDIEVSKY, OLEG
MIFUNE, YUKIO
SHIEKELESLAM, SHALA
NISHIMATSU-LYNCH, CAROL

Output 4.14 Data Described by Updated Data File MYDATA.NEWNUMS

O VWO JOoO WL WN K

=

The SAS System
Data Described by MYDATA.NEWNUMS

SOC_SEC_
NUMBER

156-45-5672
178-42-6534
234-74-4612
434-62-1224
434-62-1234
436-42-6394
456-45-3462
657-34-3245
667-73-8275
667-82-8275

CUSTOMER_NAME

O’CONNOR, JOSEPH
PATTILLO, RODRIGUES
WIKOWSKI, JONATHAN S.
SMITH, JAMES MARTIN
SUMMERS, MARY T.
BOOKER, APRIL M.
LITTLE, NANCY M.
BARNHARDT, PAMELA S.
WALLS, HOOPER J.
COHEN, ABRAHAM




Using IMS-DL/I Data in SAS Programs A

Output 4.15 Data in the Updated Data File MYDATA.NEWNAMES

Example of VALIDVARNAME=V7

The SAS System
MYDATA.NEWNAMES Data Set

soc_sec_
OBS number customer_name

1 156-45-5672 O’CONNOR, JOSEPH

2 178-42-6534 PATTILLO, RODRIGUES

3 234-74-4612 WIKOWSKI, JONATHAN S.

4 267-83-2241 GORDIEVSKY, OLEG

5 276-44-6885 MIFUNE, YUKIO

6 352-44-2151 SHIEKELESLAM, SHALA

7 434-62-1224 SMITH, JAMES MARTIN

8 434-62-1234 SUMMERS, MARY T.

9 436-42-6394 BOOKER, APRIL M.

10 436-46-1931 NISHIMATSU-LYNCH, CAROL
11 456-45-3462 LITTLE, NANCY M.

12 657-34-3245 BARNHARDT, PAMELA S.

13 667-73-8275 WALLS, HOOPER J.

14 667-82-8275 COHEN, ABRAHAM

67



68 Example of VALIDVARNAME=V7 A Chapter 4



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS?® Interface to IMS-DL/I Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. 316 pp.

SAS/ACCESS’ Interface to IMS-DL/I Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-548-5

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.



