
69

C H A P T E R

5
Browsing and Updating IMS-DL/I
Data

Introduction 69
Browsing and Updating with SAS/FSP Procedures 70

Using the FSBROWSE Procedure 70

Using the FSEDIT Procedure 71

Using the FSVIEW Procedure 71

Using the FSVIEW Procedure to Browse IMS-DL/I Data 71
Using the FSVIEW Procedure to Update IMS-DL/I Data 72

Specifying a SAS WHERE Statement While Browsing or Editing 72

Scrolling with SAS/FSP Procedures 74

Inserting and Deleting Segments with SAS/FSP Procedures 74

Browsing and Updating with the SQL Procedure 76

Retrieving and Updating with the SQL Procedure 77
Inserting and Deleting with the SQL Procedure 79

Updating Data with the MODIFY Statement 80

Updating SAS Files with IMS-DL/I Data 82

Appending Data with the APPEND Procedure 86

Introduction
The SAS/ACCESS interface to IMS-DL/I enables you to browse and update your

IMS-DL/I data directly from a SAS session or program. This chapter shows you how to
use SAS procedures to review and update IMS-DL/I data that is described by
SAS/ACCESS view descriptors. The examples in this chapter use the view descriptors
VLIB.CUSTINFO and VLIB.CHCKACCT. See Appendix 2 for definitions of all the view
descriptors referenced in this chapter. Appendix 2 also includes the IMS-DL/I database
and SAS data files and data sets.

To browse or update IMS-DL/I data, you must use a Program Specification Block
(PSB) that contains a Program Communication Block (PCB) with the level of access
desired. You need to have this desired level of access to the database, to the segments
in that database, and to the fields in those segments. The types of access that a PCB
can allow include

G get

I insert

R replace

D delete

A all

Refer to Chapter 2, “Understanding IMS-DL/I Essentials,” on page 11 and “Program
Specification Block” on page 23 for more information on accessing IMS-DL/I data.

70 Browsing and Updating with SAS/FSP Procedures 4 Chapter 5

READ, WRITE, ALTER, or PW passwords can be assigned to a view descriptor,
access descriptor, PROC SQL view, DATA step view, or SAS data file. See Chapter 6,
“ACCESS Procedure Reference,” on page 93 and “SAS System Passwords for SAS/
ACCESS Descriptors” on page 96 for more information on assigning passwords.

Browsing and Updating with SAS/FSP Procedures
If your site has SAS/FSP software as well as SAS/ACCESS software, you can browse

and update IMS-DL/I data described by a view descriptor from within a SAS/FSP
procedure.

You can use any of three SAS/FSP procedures: FSBROWSE, FSEDIT, and FSVIEW.
The FSBROWSE and FSEDIT procedures display one observation at a time, while the
FSVIEW procedure produces multiple observations in a tabular format, similar to the
PRINT procedure. PROC FSVIEW enables you both to browse and update IMS-DL/I
data, depending on which option you choose. The FSBROWSE, FSEDIT, or FSVIEW
procedures can only be used with data accessed by a view descriptor, PROC SQL view,
DATA step view, or SAS data file; you cannot reference an access descriptor with any
SAS procedure or in the SAS DATA step.

Note: The formats assigned by the ACCESS procedure are by default used as
informats by the SAS/FSP procedures when you add or update a path of data. 4

Using the FSBROWSE Procedure
The FSBROWSE procedure enables you to look at IMS-DL/I data but does not allow

you to change them. To use PROC FSBROWSE, submit the following SAS statements
in the PROGRAM EDITOR window:

proc fsbrowse data=vlib.custinfo;
run;

The FSBROWSE procedure retrieves observations from an IMS-DL/I database one at
a time.

Display 5.1 on page 70 shows the last observation of the customers’ data described by
the VLIB.CUSTINFO view descriptor. To browse each observation, issue the FORWARD
and BACKWARD commands. Because a view descriptor can describe only one path of
data in an IMS-DL/I database, you can browse observations in one path of data only.

Display 5.1 Browsing IMS-DL/I Data in the FSBROWSE Window

Browsing and Updating IMS-DL/I Data 4 Using the FSVIEW Procedure 71

For more information on the FSBROWSE procedure, see "The FSBROWSE
Procedure" in SAS/FSP Software: Usage and Reference.

Note: Accessing observations by observation number is not supported for IMS-DL/I
view descriptors within the FSBROWSE procedure; a WHERE command can be used to
view a subset of the data. 4

Using the FSEDIT Procedure
The FSEDIT procedure enables you to update the IMS-DL/I data described by a

view descriptor if the view descriptor specifies in your PSB a PCB that allows you the
appropriate level of update access (insert, replace, delete, or all) for the database
segments. For example, if the area codes used in HOME_PHONE and OFFICE_PHONE
are incorrect for Richmond, you can correct them with the FSEDIT procedure.

To use PROC FSEDIT, submit the following statements from the PROGRAM
EDITOR window:

proc fsedit data=vlib.custinfo;
run;

An FSEDIT window appears that looks like the FSBROWSE window. Scroll to the
observation you want, or enter a WHERE statement to display the correct observation.
You can then add or further update the information about customer JONATHAN S.
WIKOWSKI, as shown in Display 5.2 on page 71.

Display 5.2 Updating Information in the FSEDIT Window

For more information on the FSEDIT procedure, see "The FSEDIT Procedure" in
SAS/FSP Software: Usage and Reference.

Using the FSVIEW Procedure
The FSVIEW procedure also enables you to browse or update IMS-DL/I data using a

view descriptor, depending on how you invoke the procedure.

Using the FSVIEW Procedure to Browse IMS-DL/I Data
To browse IMS-DL/I data in a tabular format, submit the following PROC FSVIEW

statements in the PROGRAM EDITOR:

proc fsview data=vlib.custinfo;
run;

72 Specifying a SAS WHERE Statement While Browsing or Editing 4 Chapter 5

Browse mode is the default for the FSVIEW procedure. The submitted statements
produce the window shown in Display 5.3 on page 72.

Display 5.3 Browsing IMS-DL/I Data in the FSVIEW Window

Using the FSVIEW Procedure to Update IMS-DL/I Data
To edit the IMS-DL/I data in a tabular format, you must add the EDIT or MODIFY

option to the PROC FSVIEW statement, as shown here:

proc fsview data=vlib.custinfo edit;
run;

Note: The CANCEL command in the FSVIEW window does not cancel your
changes; it ends the browse or edit session. 4

Specifying a SAS WHERE Statement While Browsing or Editing
If the IMS-DL/I engine can generate SSAs from the WHERE statement, it then

retrieves a subset of the IMS-DL/I data. If the engine cannot generate SSAs from the
WHERE statement, the WHERE statement is passed to the SAS System for processing.
You can also use a SAS WHERE command to retrieve a subset of the IMS-DL/I data
after you have invoked one of the SAS/FSP procedures using the PROC statements.

If you use a SAS WHERE statement, only the observations specified by that SAS
WHERE statement are available. The other observations are not available until you
exit the procedure. This is called a permanent WHERE clause.

If you use the SAS WHERE command, you can clear the command to make all the
observations available. This is called a temporary WHERE clause.

In the following example, the FSEDIT procedure uses a SAS WHERE statement to
retrieve a subset of customers from Richmond. Display 5.4 on page 73 shows the
FSEDIT window after the statements have been submitted.

proc fsedit data=vlib.custinfo;
where city=’RICHMOND’;

run;

Browsing and Updating IMS-DL/I Data 4 Specifying a SAS WHERE Statement While Browsing or Editing 73

Display 5.4 Submitting a SAS WHERE Statement While Invoking FSEDIT

Only the two observations with a CITY value of RICHMOND are retrieved for editing;
you must scroll forward to see the second observation. The word (Subset) appears
after VLIB.CUSTINFO in the window title to remind you that the data retrieved are a
subset of the data described by the view descriptor. You can then edit each observation
by typing over any incorrect information. Issue the END command to end your editing
session. If you want to cancel changes to an observation, you can issue the CANCEL
command before you scroll to another observation. Once you scroll, the changes are
saved.

You can also enter a SAS WHERE command to display a subset of your data. A SAS
WHERE command is a SAS WHERE expression that you enter on the command line.
To begin the FSEDIT procedure, submit the following commands in the PROGRAM
EDITOR:

proc fsedit data=vlib.custinfo;
run;

Display 5.5 on page 73 shows what the FSEDIT display looks like when the following
command-line command is entered within the FSEDIT window:

where city=’RICHMOND’

Display 5.5 Entering a SAS WHERE Command in an FSEDIT Window

74 Scrolling with SAS/FSP Procedures 4 Chapter 5

Only the two observations with a CITY value of RICHMOND are retrieved for editing;
you must scroll forward to see the second observation. You can then edit each
observation, as described earlier.

Although these examples have shown how to use a SAS WHERE statement and
command with the FSEDIT procedure, you can use a SAS WHERE statement and
command in the same way with the FSBROWSE and FSVIEW procedures. For more
information on the SAS WHERE statement, refer to SAS Language Reference:
Dictionary. For more information on the SAS WHERE command within the SAS/FSP
procedures, refer to SAS/FSP Software: Usage and Reference.

Scrolling with SAS/FSP Procedures
Scrolling through data using the FSEDIT, FSBROWSE, or FSVIEW procedures is

different when you are using view descriptors instead of SAS data files. While the
FORWARD command works identically in both cases, the BACKWARD command does
not.

Scrolling backward with SAS/FSP procedures can be slow when you are working with
a large database, particularly when you are looking at a path of data in a record near
the end of the database. To scroll backward through an IMS-DL/I database, the
IMS-DL/I engine must read forward in the database from the beginning until it reaches
the observation preceding the one that is displayed when the BACKWARD command
was issued. For example, suppose the view defines 5,000 observations, and the current
observation is 3,400. To scroll backward to observation 3,399, the FSEDIT procedure
must sequentially read observations 1 through 3,398. This can be expensive and time
consuming.

Inserting and Deleting Segments with SAS/FSP Procedures
Inserting and deleting database segments with SAS/FSP procedures is also different

when you are using view descriptors rather than SAS data files.
You can use the FSEDIT and FSVIEW procedures to insert segments into one path of

an IMS-DL/I database on which a view descriptor is based, assuming you are using a
PCB that allows you insert access to the database segments. There are two ways to add
a new segment to an IMS-DL/I database using SAS/FSP procedures:

� To insert one path of data, type ADD on the command line and press ENTER. You
can then enter an entire path of data, which the IMS-DL/I engine inserts in the
database using a path call.

� To insert a path of data under an existing parent segment, use a WHERE
statement or scroll to the parent segment under which you want to insert the path
of data. If there are no child segments under the parent segment, enter the path
of data and press ENTER. The IMS-DL/I engine inserts the new segments under
the existing parent segment. If child segments do exist, display one of the paths of
data and type the new data over the old path of data, making sure that you
change the key field value in the segments to be inserted. The IMS-DL/I engine
then inserts the new segment.

If the view descriptor you are using does not include all the variables defined in the
access descriptor for the segment to be inserted, low values (hexadecimal zeroes) are
placed in those fields in the new segment occurrence inserted into the database. For
more information on inserting segments when the SAS observations contain missing
values, see “Handling Missing Values” on page 134 in Chapter 7, “Advanced User Topics
for the SAS/ACCESS Interface View Engine for IMS-DL/I,” on page 129. Refer to SAS/
FSP Software: Usage and Reference for more information on how to use the ADD and

Browsing and Updating IMS-DL/I Data 4 Inserting and Deleting Segments with SAS/FSP Procedures 75

DUP commands in the FSEDIT procedure and the AUTOADD and DUP commands in
the FSVIEW procedure.

When the DELETE command is used while the FSEDIT or FSVIEW procedure is
referencing a view descriptor, the lowest-level existing database segment referenced in
the view descriptor is removed permanently from the IMS-DL/I database. Refer to
SAS/FSP Software: Usage and Reference for more information on this command.

CAUTION:
If you delete segments using a view descriptor that references only the upper hierarchical
level segments in the database, any children of these segments will also be deleted,
even though those child segments are not included in the view descriptor. 4

For example, consider a database consisting of a root segment, a child segment under
the root, and another child segment under that child. If you delete a segment in that
database using a view descriptor that references only the root and one child, the
DELETE command will delete the entire path of data below the root segment. There
are two ways you can delete an entire database record:

� Use the DELETE command with a view descriptor that references the root
segment only.

� Use the DELETE command multiple times with a view descriptor that references
an entire path of data in the database. Each time you use the DELETE command,
only the lowest existing segment in the path is deleted.

See “Delete Processing” on page 146 in Chapter 7, “Advanced User Topics for the
SAS/ACCESS Interface View Engine for IMS-DL/I,” on page 129 for more information
on deleting segments.

The following example illustrates how to use the DELETE command in the FSEDIT
procedure. Suppose you want to edit the IMS-DL/I data described by VLIB.CUSTINFO
to eliminate customers who have closed their bank accounts. If you are using a PCB
that allows you delete authority, you can perform this function by using the FSEDIT
procedure from the ACCESS window or with a PROC FSEDIT statement. Scroll
forward to the observations to be deleted and enter DELETE on the command line, as
shown in Display 5.6 on page 75.

Display 5.6 Deleting an IMS-DL/I Segment in an FSEDIT Window

The DELETE command deletes this root segment from the IMS-DL/I database
described by VLIB.CUSTINFO and any child segments under it, and displays a
message to that effect, as shown in Display 5.7 on page 76.

76 Browsing and Updating with the SQL Procedure 4 Chapter 5

Display 5.7 Using the DELETE Command in the FSEDIT Window

For more information on using SAS/FSP procedures, see SAS/FSP Software: Usage
and Reference.

Browsing and Updating with the SQL Procedure

The SQL procedure enables you to retrieve and update data from IMS-DL/I
databases. You can retrieve and browse IMS-DL/I data by specifying a view descriptor
in the SQL procedure’s SELECT statement.

To update the data, you can specify view descriptors in the SQL procedure’s INSERT,
DELETE, and UPDATE statements. The view descriptor specified can access data from
only one IMS-DL/I database path. You must use a PCB that allows you the appropriate
level of access (insert, replace, delete, or all) for the segments that you want to update
before you can edit the IMS-DL/I data.

The following list summarizes these SQL procedure statements:

SELECT retrieves, manipulates, and displays data from IMS-DL/I databases.
A SELECT statement is usually referred to as a query because it
queries the database for information.

DELETE deletes segments from an IMS-DL/I database.

INSERT inserts segments in an IMS-DL/I database.

UPDATE updates the data values in an IMS-DL/I database.

If you want to use the SQL procedure to join or access more than one IMS-DL/I
database, you must use a PSB in your view descriptors that includes a PCB for each
database to be accessed. Each view descriptor to be joined must use the same PSB. If
you join two view descriptors that reference different paths in the same database, each
view descriptor must reference in the PSB (that refers to the same database) a different
PCB by using the PCB Index field. That is, to access the same database using different
view descriptors in any SAS procedure, you must include multiple PCBs for that
database.

When using PROC SQL, notice that the data are displayed in the SAS OUTPUT
window in display manager mode and written to the SASLIST DDname in batch mode,
interactive line mode, and noninteractive mode. This procedure displays output data
automatically without the PRINT procedure and executes without a RUN statement
when an SQL procedure statement is submitted.

Browsing and Updating IMS-DL/I Data 4 Retrieving and Updating with the SQL Procedure 77

Retrieving and Updating with the SQL Procedure
Note: The following PROC SQL examples assume the ACCTDBD database has not

been updated by the earlier SAS/FSP examples. 4

You can use the SELECT statement to browse IMS-DL/I data described by a view
descriptor. The query in the following example retrieves all the observations in the
IMS-DL/I ACCTDBD database that are described by the VLIB.CUSTINFO view
descriptor.

options linesize=132;

proc sql;
title2 ’IMS-DL/I Data Retrieved by a PROC SQL query’;
select * /* An asterisk means select all variables */

from vlib.custinfo;

The OPTIONS statement is used to reset the default output width to 132 columns.
Output 5.1 on page 77 displays the query’s output. Note that PROC SQL displays
labels, which are the IMS-DL/I item names. In Version 7, the item names are also the
SAS variable names, as shown here.

Output 5.1 IMS-DL/I Data Retrieved by a PROC SQL Query

The SAS System

IMS-DL/I Data Retrieved by a PROC SQL query

SOC_SEC_

NUMBER CUSTOMER_NAME ADDR_LINE_1 ADDR_LINE_2

CITY STATE COUNTRY ZIP_CODE HOME_PHONE OFFICE_PHONE

--

667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD

RAPIDAN VA USA 22215-5600 803-657-3098 803-645-4418

434-62-1234 SUMMERS, MARY T. 4322 LEON ST.

GORDONSVILLE VA USA 26001-0670 803-657-1687

436-42-6394 BOOKER, APRIL M. 9712 WALLINGFORD PL.

GORDONSVILLE VA USA 26001-0670 803-657-1346

434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST.

GORDONSVILLE VA USA 26001-0670 803-657-3437

178-42-6534 PATTILLO, RODRIGUES 9712 COOK RD.

ORANGE VA USA 26042-1650 803-657-1346 803-657-1345

156-45-5672 O’CONNOR, JOSEPH 235 MAIN ST.

ORANGE VA USA 26042-1650 803-657-5656 803-623-4257

657-34-3245 BARNHARDT, PAMELA S. RT 2 BOX 324

CHARLOTTESVILLE VA USA 25804-0997 803-345-4346 803-355-2543

667-82-8275 COHEN, ABRAHAM 2345 DUKE ST.

CHARLOTTESVILLE VA USA 25804-0997 803-657-7435 803-645-4234

456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE.

RICHMOND VA USA 26502-3317 803-657-3566

234-74-4612 WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE

RICHMOND VA USA 26502-5317 803-467-4587 803-654-7238

78 Retrieving and Updating with the SQL Procedure 4 Chapter 5

You can specify a WHERE clause as part of the SQL procedure’s SELECT statement to
retrieve a subset of the database data. The following example displays a list of
customers who have accounts with the Richmond branch of the bank:

title2 ’IMS-DL/I Data Retrieved by a WHERE Statement’;
select *

from vlib.custinfo
where city=’RICHMOND’;

Notice that the PROC SQL statement is not repeated in this query. With the SQL
procedure, you do not need to repeat the PROC SQL statement unless you submit
another SAS procedure, a DATA step, or a QUIT statement between PROC SQL
statements. Output 5.2 on page 78 displays the customers of the Richmond branch who
are described by VLIB.CUSTINFO.

Output 5.2 IMS-DL/I Data Retrieved Using a WHERE Statement

The SAS System

IMS-DL/I Data Retrieved Using a WHERE Statement

SOC_SEC_

NUMBER CUSTOMER_NAME ADDR_LINE_1 ADDR_LINE_2

CITY STATE COUNTRY ZIP_CODE HOME_PHONE OFFICE_PHONE

--

456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE.

RICHMOND VA USA 26502-3317 803-657-3566

234-74-4612 WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE

RICHMOND VA USA 26502-5317 803-467-4587 803-654-7238

You can use the UPDATE statement to update the data in an IMS-DL/I database as
was done earlier in this chapter using the FSEDIT procedure. Remember that when
you reference a view descriptor in an SQL procedure statement, you are updating the
IMS-DL/I data described by the view descriptor, not the view descriptor itself. Use the
WHERE clause to position the IMS-DL/I engine on the database segment to be updated
by specifying values for the key fields of parent segments.

The following UPDATE statements update the values that are contained in the last
observation of VLIB.CUSTINFO:

update vlib.custinfo
set zip_code = ’27702-3317’
where soc_sec_number = ’234-74-4612’;

update vlib.custinfo
set addr_line_2 = ’151 Knox St.’
where soc_sec_number = ’234-74-4612’;

title2 ’Updated Data in IMS-DL/I ACCTDBD Database’;
select *

from vlib.custinfo
where soc_sec_number = ’234-74-4612’;

The SELECT statement in this example retrieves and displays the updated data in
Output 5.3 on page 78. (Because you are referencing a view descriptor, you use the SAS
names for items in the UPDATE statement; the SQL procedure displays the variable
labels as stored in the view.)

Browsing and Updating IMS-DL/I Data 4 Inserting and Deleting with the SQL Procedure 79

Output 5.3 IMS-DL/I Data Updated with the UPDATE Statement

The SAS System

Updated Data in IMS-DL/I ACCTDBD Database

SOC_SEC_

NUMBER CUSTOMER_NAME ADDR_LINE_1 ADDR_LINE_2

CITY STATE COUNTRY ZIP_CODE HOME_PHONE OFFICE_PHONE

--

234-74-4612 WIKOWSKI, JONATHAN S. 151 Knox St.

RICHMOND VA USA 27702-3317 803-467-4587 803-654-7238

Inserting and Deleting with the SQL Procedure
You can use the INSERT statement to add segments to an IMS-DL/I database or use

the DELETE statement to remove segments from an IMS-DL/I database, as you did
earlier in this chapter with the FSEDIT procedure. When inserting children under a
parent segment, you must indicate the key values of the parent segments in the SET=
statement. Use a view descriptor describing the entire path of data down to the lowest
segment to be inserted. In the following example, the root segment that contains the
value 234-74-4612 for the SOC_SEC_NUMBER variable is deleted from the
ACCTDBD database. Note that any child segments that exist under the parent
segment in this example will also be deleted.

options linesize=132;

proc sql;
delete from vlib.custinfo

where soc_sec_number = ’234-74-4612’;

title2 ’Observation Deleted from IMS-DL/I
ACCTDBD Database’;

select *
from vlib.custinfo;

The SELECT statement then displays the data for VLIB.CUSTINFO in Output 5.4
on page 79.

80 Updating Data with the MODIFY Statement 4 Chapter 5

Output 5.4 IMS-DL/I Data with an Observation Deleted

The SAS System

Observation Deleted from IMS-DL/I ACCTDBD Database

SOC_SEC_

NUMBER CUSTOMER_NAME ADDR_LINE_1 ADDR_LINE_2

CITY STATE COUNTRY ZIP_CODE HOME_PHONE OFFICE_PHONE

--

667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD

RAPIDAN VA USA 22215-5600 803-657-3098 803-645-4418

434-62-1234 SUMMERS, MARY T. 4322 LEON ST.

GORDONSVILLE VA USA 26001-0670 803-657-1687

436-42-6394 BOOKER, APRIL M. 9712 WALLINGFORD PL.

GORDONSVILLE VA USA 26001-0670 803-657-1346

434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST.

GORDONSVILLE VA USA 26001-0670 803-657-3437

178-42-6534 PATTILLO, RODRIGUES 9712 COOK RD.

ORANGE VA USA 26042-1650 803-657-1346 803-657-1345

156-45-5672 O’CONNOR, JOSEPH 235 MAIN ST.

ORANGE VA USA 26042-1650 803-657-5656 803-623-4257

657-34-3245 BARNHARDT, PAMELA S. RT 2 BOX 324

CHARLOTTESVILLE VA USA 25804-0997 803-345-4346 803-355-2543

667-82-8275 COHEN, ABRAHAM 2345 DUKE ST.

CHARLOTTESVILLE VA USA 25804-0997 803-657-7435 803-645-4234

456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE.

RICHMOND VA USA 26502-3317 803-657-3566

CAUTION:
Use a WHERE clause in a DELETE statement in the SQL procedure. If you omit the
WHERE clause from the DELETE statement in the SQL procedure, you delete the
lowest level segment for each database path that is defined by the view descriptor in
the IMS-DL/I database. If the view descriptor describes only the root segment, the
entire database will be deleted. 4

For more information on the SQL procedure, see the SAS Guide to the SQL
Procedure: Usage and Reference.

Updating Data with the MODIFY Statement
The MODIFY statement extends the capabilities of the DATA step by enabling you

to modify IMS-DL/I data accessed by a view descriptor or a SAS data file without
creating an additional copy of the file. To use the MODIFY statement with a view
descriptor, you must have update privileges defined in the PCB associated with the
view, even if your program doesn’t intend to modify the data.

You can specify either a view descriptor or a SAS data file as the data set to be
opened for update by using the MODIFY statement. In the following example, the data
set to be opened for update is the view descriptor VLIB.CUSTINFO, which describes
data in the IMS-DL/I sample database ACCTDBD. See Appendix 2 for the code used to
generate this view descriptor and the access descriptor MYLIB.ACCOUNT. The updates
made to VLIB.CUSTINFO will be used to change the data in the ACCTDBD database.

Browsing and Updating IMS-DL/I Data 4 Updating Data with the MODIFY Statement 81

In order to update VLIB.CUSTINFO, you create a SAS data set,
MYDATA.PHONENUM, to supply transaction information.

The MODIFY statement updates the ACCTDBD database with data from the
MYDATA.PHONENUM data set in the following example:

data vlib.custinfo
work.phoneupd (keep=soc_sec_number home_phone

office_phone)
work.nossnumb (keep=soc_sec_number home_phone

office_phone);
modify vlib.custinfo mydata.phonenum;
by soc_sec_number;
select (_iorc_);

when (%sysrc(_sok))
/* soc_sec_number found in ACCTDBD */

do;
replace vlib.custinfo;
output phoneupd;

end;
when (%sysrc(_dsenmr))

/* soc_sec_number not found in ACCTDBD */
do;

error=0;
output nossnumb;

/* stores misses in NOSSNUMB */
end;

otherwise
/* traps unexpected outcomes */

do;
put ’Unexpected error condition:

iorc = ’ _iorc_;
put ’for SOC_SEC_NUMBER=’ soc_sec_number

’. Data step continuing.’;
error=0;

end;
end;

run;

For each iteration of the DATA step, the SAS System attempts to read one
observation (or record) of the ACCTDBD database as defined by VLIB.CUSTINFO,
based on SOC_SEC_NUMBER values supplied by MYDATA.PHONENUM. If a match
on SOC_SEC_NUMBER values is found, the current segment data in ACCTDBD are
replaced with the updated information in MYDATA.PHONENUM, then
SOC_SEC_NUMBER, HOME_PHONE and OFFICE_PHONE are stored in the
PHONEUPD data file. If the SOC_SEC_NUMBER value supplied by
MYDATA.PHONENUM has no match in VLIB.CUSTINFO, the transaction information
is written to the data file NOSSNUMB.

To further understand this type of processing, be aware that for each iteration of the
DATA step (that is, each execution of the MODIFY statement), MYDATA.PHONENUM
is processed sequentially. For each iteration, the current value of SOC_SEC_NUMBER
is used to attach a WHERE clause to a request for an observation from
VLIB.CUSTINFO as defined by the view. The engine then tries to generate a retrieval
request with a qualified SSA from the WHERE clause. If the engine generates a
qualified SSA, a GET UNIQUE call is issued, and data defined by the view are accessed
directly. If the engine cannot generate a qualified SSA from the WHERE clause, a

82 Updating SAS Files with IMS-DL/I Data 4 Chapter 5

sequential pass of the database is required for each transaction observation in
MYDATA.PHONENUM.

Print the PHONEUPD data file to see the SOC_SEC_NUMBER items that were
updated. The output is shown in Output 5.5 on page 82:

/* Print data set named phoneupd */
proc print data=work.phoneupd nodate;

title2 ’SSNs updated.’;
run;

Output 5.5 Contents of the PHONEUPD Data File

The SAS System
SSNs updated.

SOC_SEC_
OBS NUMBER HOME_PHONE OFFICE_PHONE

1 667-73-8275 703-657-3098 703-645-4418
2 434-62-1234 703-645-441
3 178-42-6534 703-657-1346 703-657-1345
4 156-45-5672 703-657-5656 703-623-4257
5 657-34-3245 703-345-4346 703-355-5438
6 456-45-3462 703-657-3566 703-645-1212

Print the NOSSNUMB data set to see the SOC_SEC_NUMBER items that were not
updated. The output produced by the following code is shown in Output 5.6 on page 82:

/* Print data set named nossnumb */
proc print data=work.nossnumb nodate;

title2 ’SSNs not updated.’;
run;

Output 5.6 Contents of the NOSSUNUMB Data File

The SAS System
SSNs not updated.

SOC_SEC_
OBS NUMBER HOME_PHONE OFFICE_PHONE

1 416-41-3162 703-657-3166 703-615-1212

Updating SAS Files with IMS-DL/I Data

You can update a SAS data file or data set with IMS-DL/I data that are described by
a view descriptor just as you can update a SAS data file with data from another SAS
data file.

Suppose you have a SAS data set, MYDATA.BIRTHDAY, that contains employee ID
numbers, last names, and birthdays. (See Appendix 2 for a description of
MYDATA.BIRTHDAY.) You want to update this data set with data described by

Browsing and Updating IMS-DL/I Data 4 Updating SAS Files with IMS-DL/I Data 83

VLIB.EMPBDAY, a view descriptor that is based on the IMS-DL/I EMPLINF2
database. To perform this update, enter the following SAS statements:

libname vlib ’sas-data-library’;
libname mydata ’sas-data-library’;
options nodate;

/*---*/
/* Update the BIRTHDAY SAS data set */
/* with data from IMS-DL/I */
/* EMPLINF2 database */
/*---*/
options linesize=80;
proc sort data=mydata.birthday;

by employee_id;
run;

proc print data=mydata.birthday;
title2 ’Sorted SAS Data Set MYDATA.BIRTHDAY’;

run;

proc print data=vlib.empbday;
title2 ’Data Described by VLIB.EMPBDAY’;

run;

data mydata.newbday;
update mydata.birthday vlib.empbday;
by employee_id;

run;

proc print data=mydata.newbday;
title2 ’SAS Data Set MYDATA.NEWBDAY’;

run;

The EMPLINF2 database is a HIDAM database whose root segment is sequenced by
the key field EMPID, so when the UPDATE statement references the view descriptor
VLIB.EMPBDAY, the data is presented to the SAS System for updating in sorted order
by EMPLOYEE_ID. However, the SAS data set MYDATA.BIRTHDAY must be sorted
before the update because the UPDATE statement expects both the original file and the
transaction file to be sorted by the same BY variable.

Output 5.7 on page 83, Output 5.8 on page 84, and Output 5.9 on page 84 show the
results of the print procedures.

Output 5.7 Data Set to be Updated, MYDATA.BIRTHDAY, in EMPID Order

The SAS System
Sorted SAS Data Set MYDATA.BIRTHDAY

employee_
OBS id last_name birthday

1 1005 Knapp 06OCT38
2 1024 Mueller 17JUN53
3 1078 Gibson 23APR36
4 1247 Garcia 04APR54

84 Updating SAS Files with IMS-DL/I Data 4 Chapter 5

Output 5.8 IMS-DL/I Data Described by the View Descriptor VLIB.EMPBDAY

The SAS System
Data Described by VLIB.EMPBDAY

EMPLOYEE_ PHONE_
OBS ID LAST_NAME FIRST_NAME BIRTHDAY EXTENSION

1 1001 Waterhouse Clifton P. 01JAN48 X5109
2 1002 Bowman Hugh E. 14JUL31 X5901
3 1003 Salazar Yolanda 12DEC40 X5169
4 1004 Knight Althea 09APR50 X5218
5 1005 Knapp Patrice R. 04OCT37 X5012
6 1006 Garrett Olan M. 23JAN35 X5208
7 1007 Brown Virgina P. 24MAY46 X5258
8 1008 Hernandez Jesse L. 26MAR33 X5448
9 1009 Jones Michael Y. 21MAY31 X5713
10 1010 Smith Janet F. 07AUG47 X5621
11 1011 Van Hotten Gwendolyn 13SEP42 X5311
12 1012 Quintero Pedro 21FEB48 X5348
13 1015 Scholl Madison A. 19MAR45 X5419
14 1017 Waggonner Merrilee D. 27APR36 X5914
15 1020 Rudd Fred .
16 1024 Mueller Patsy 17JUN52 X5822
17 1031 Chan Tai 04JUL46 X5331
18 1049 Fernandez Sophia 11SEP44 X5847
19 1050 Ameer David 10OCT51 X5495
20 1062 Littlejohn Fannie 17MAY54 X5653
21 1067 Cahill Jacob 25DEC40 X5042
22 1071 Canady Frank A. 19NOV41 X5406
23 1074 Millsap Joel B. 12JUN36 X5224
24 1077 Gibson Teddy B. 23APR46 X5703
25 1078 Gibson George J. 23APR46 X5703
26 1083 Savage William D. 20JAN53 X5505
27 1086 Schmidt Penny 19FEB27 X5822
28 1092 Polanski Ivan L. 11OCT47 X5621
29 1101 Nathaniel Darryl 21MAR44 X5544
30 1105 Faulkner Carrie Ann 17AUG51 X5417
31 1112 Jones Rita M. 24DEC48 X5271
32 1119 Goodson Alan F. 21JUN50 X5512
33 1120 Reid David G. 15AUG45 X5369
34 1123 Freeman Leopold 09FEB35 X5604
35 1133 Williamson Janice L. 19MAY52 X5802
36 1139 Seaton Gary 03OCT56 X5545
37 1145 Juarez Armando 28MAY47 X5987
38 1156 Reed Kenneth D. 05JAN55 X5307
39 1161 Richardson Travis Z. 30NOV37 X5325
40 1213 Johnson Bradford 15APR54 X5446
41 1217 Rodriguez Romualdo R. 09FEB29 X5874
42 1219 Kaatz Freddie 21JUN57 X5387
43 1234 Shropshire Leland G. 04SEP49 X5616
44 1238 Throckmort Stewart Q. 04AUG31 X5391
45 1247 Garcia Francisco 05MAY55 X5348
46 1261 Collins Lillian 01MAY51 X5616
47 1265 Slye Leonard R. 18DEC60 X5123
48 1266 Redfox Richard B. 04APR44 X5386
49 1272 Smith Garland P. 05APR54 X5415
50 1313 Smith Jerry Lee 13SEP42 X5169
51 1327 Brooks Ruben R. 25FEB52 X5347
52 1900 Smith John .

Browsing and Updating IMS-DL/I Data 4 Updating SAS Files with IMS-DL/I Data 85

Output 5.9 Data in the New Data Set MYDATA.NEWBDAY

The SAS System
SAS Data Set MYDATA.NEWBDAY

employee_ PHONE_
OBS id last_name birthday FIRST_NAME EXTENSION

1 1001 Waterhouse 01JAN48 Clifton P. X5109
2 1002 Bowman 14JUL31 Hugh E. X5901
3 1003 Salazar 12DEC40 Yolanda X5169
4 1004 Knight 09APR50 Althea X5218
5 1005 Knapp 04OCT37 Patrice R. X5012
6 1006 Garrett 23JAN35 Olan M. X5208
7 1007 Brown 24MAY46 Virgina P. X5258
8 1008 Hernandez 26MAR33 Jesse L. X5448
9 1009 Jones 21MAY31 Michael Y. X5713
10 1010 Smith 07AUG47 Janet F. X5621
11 1011 Van Hotten 13SEP42 Gwendolyn X5311
12 1012 Quintero 21FEB48 Pedro X5348
13 1015 Scholl 19MAR45 Madison A. X5419
14 1017 Waggonner 27APR36 Merrilee D. X5914
15 1020 Rudd . Fred
16 1024 Mueller 17JUN52 Patsy X5822
17 1031 Chan 04JUL46 Tai X5331
18 1049 Fernandez 11SEP44 Sophia X5847
19 1050 Ameer 10OCT51 David X5495
20 1062 Littlejohn 17MAY54 Fannie X5653
21 1067 Cahill 25DEC40 Jacob X5042
22 1071 Canady 19NOV41 Frank A. X5406
23 1074 Millsap 12JUN36 Joel B. X5224
24 1077 Gibson 23APR46 Teddy B. X5703
25 1078 Gibson 23APR46 George J. X5703
26 1083 Savage 20JAN53 William D. X5505
27 1086 Schmidt 19FEB27 Penny X5822
28 1092 Polanski 11OCT47 Ivan L. X5621
29 1101 Nathaniel 21MAR44 Darryl X5544
30 1105 Faulkner 17AUG51 Carrie Ann X5417
31 1112 Jones 24DEC48 Rita M. X5271
32 1119 Goodson 21JUN50 Alan F. X5512
33 1120 Reid 15AUG45 David G. X5369
34 1123 Freeman 09FEB35 Leopold X5604

35 1133 Williamson 19MAY52 Janice L. X5802
36 1139 Seaton 03OCT56 Gary X5545
37 1145 Juarez 28MAY47 Armando X5987
38 1156 Reed 05JAN55 Kenneth D. X5307
39 1161 Richardson 30NOV37 Travis Z. X5325
40 1213 Johnson 15APR54 Bradford X5446
41 1217 Rodriguez 09FEB29 Romualdo R. X5874
42 1219 Kaatz 21JUN57 Freddie X5387
43 1234 Shropshire 04SEP49 Leland G. X5616
44 1238 Throckmort 04AUG31 Stewart Q. X5391
45 1247 Garcia 05MAY55 Francisco X5348
46 1261 Collins 01MAY51 Lillian X5616
47 1265 Slye 18DEC60 Leonard R. X5123
48 1266 Redfox 04APR44 Richard B. X5386
49 1272 Smith 05APR54 Garland P. X5415
50 1313 Smith 13SEP42 Jerry Lee X5169
51 1327 Brooks 25FEB52 Ruben R. X5347
52 1900 Smith . John

86 Appending Data with the APPEND Procedure 4 Chapter 5

Appending Data with the APPEND Procedure

You can append data described by SAS/ACCESS view descriptors and PROC SQL
views to SAS data files and vice versa. You can also append data from one view
descriptor to the data from another.

In the following example, two branch managers have kept separate records on
customers’ checking accounts. One manager has kept records in the CUSTOMER and
CHCKACCT segments of the IMS-DL/I database ACCTDBD, described by the view
descriptor VLIB.CHCKACCT. The other manager has kept records in a Version 7 SAS
data set, MYDATA.CHECKS. Due to a corporate reorganization, the two sources of data
must be combined so that all customer data are stored in the IMS-DL/I database
ACCTDBD. A branch manager can use the APPEND procedure to perform this task, as
the following example demonstrates.

The data described by the VLIB.CHCKACCT view descriptor and the data in the
SAS data set MYDATA.CHECKS are displayed in Output 5.10 on page 86 and Output
5.11 on page 86.

options linesize=120;

proc print data=vlib.chckacct;
title2 ’Data Described by VLIB.CHCKACCT’;

run;

proc print data=mydata.checks;
title2 ’Data in MYDATA.CHECKS Data Set’;

run;

Note: To use PROC APPEND, you must use a view descriptor that describes the
entire path of data from the root segment down to the level where you want to append
data. If a parent segment already exists with a key value equal to that specified in the
input data set, the IMS-DL/I engine inserts the remaining path of data under the
parent segment. 4

Output 5.10 Data Described by the VLIB.CHCKACCT View Descriptor

The SAS System

Data Described by VLIB.CHCKACCT

SOC_SEC_ CHECK_ACCOUNT_ CHECK_ CHECK_

OBS NUMBER CUSTOMER_NAME NUMBER DATE BALANCE

1 667-73-8275 WALLS, HOOPER J. 345620145345 15MAR95 1266.34

2 667-73-8275 WALLS, HOOPER J. 345620154633 28MAR95 1298.04

3 434-62-1234 SUMMERS, MARY T. 345620104732 27MAR95 825.45

4 436-42-6394 BOOKER, APRIL M. 345620135872 26MAR95 234.89

5 434-62-1224 SMITH, JAMES MARTIN 345620134564 16MAR95 2645.34

6 434-62-1224 SMITH, JAMES MARTIN 345620134663 24MAR95 143.78

7 178-42-6534 PATTILLO, RODRIGUES 745920057114 10JUN95 1502.78

8 156-45-5672 O’CONNOR, JOSEPH 345620123456 27MAR95 463.23

9 657-34-3245 BARNHARDT, PAMELA S. 345620131455 29MAR95 1243.25

10 667-82-8275 COHEN, ABRAHAM 382957492811 03APR95 7302.06

11 456-45-3462 LITTLE, NANCY M. 345620134522 25MAR95 831.65

Browsing and Updating IMS-DL/I Data 4 Appending Data with the APPEND Procedure 87

Output 5.11 Data in the MYDATA.CHECKS Data Set

The SAS System
Data in MYDATA.CHECKS Data Set

check_
soc_sec_ account_ check_ check_

OBS customer_name number number balance date

1 COWPER, KEITH 241-98-4542 183352795865 862.31 25MAR95
2 OLSZEWSKI, STUART 309-22-4573 382654397566 486.00 02APR95
3 NAPOLITANO, BARBARA 250-36-8831 284522378774 104.20 10APR95
4 MCCALL, ROBERT 367-34-1543 644721295973 571.92 05APR95

The manager can combine the data from these two sources using the APPEND
procedure, as shown in the following example:

proc append base=vlib.chckacct data=mydata.checks;
run;

proc print data=vlib.chckacct;
title2 ’Appended Data’;

run;

proc sql;
delete from vlib.account
where soc_sec_number in(’241--98--4542’

’250--36--8831’
’309--22--4573’
’367--34--1543’)

run;

The database type determines where the segments are inserted. In this case, the
database type is not an indexed database type, so the data in MYDATA.CHECKS are
intermixed with the data described by VLIB.CHCKACCT. Output 5.12 on page 87
displays the updated data described by the view descriptor, VLIB.CHCKACCT.

88 Appending Data with the APPEND Procedure 4 Chapter 5

Output 5.12 Appended Data

The SAS System

Appended Data

SOC_SEC_ CHECK_ACCOUNT_ CHECK_ CHECK_

OBS NUMBER CUSTOMER_NAME NUMBER DATE BALANCE

1 667-73-8275 WALLS, HOOPER J. 345620145345 15MAR95 1266.34

2 667-73-8275 WALLS, HOOPER J. 345620154633 28MAR95 1298.04

3 434-62-1234 SUMMERS, MARY T. 345620104732 27MAR95 825.45

4 250-36-8831 NAPOLITANO, BARBARA 284522378774 10APR95 104.20

5 241-98-4542 COWPER, KEITH 183352795865 25MAR95 862.31

6 436-42-6394 BOOKER, APRIL M. 345620135872 26MAR95 234.89

7 434-62-1224 SMITH, JAMES MARTIN 345620134564 16MAR95 2645.34

8 434-62-1224 SMITH, JAMES MARTIN 345620134663 24MAR95 143.78

9 178-42-6534 PATTILLO, RODRIGUES 745920057114 10JUN95 1502.78

10 367-34-1543 MCCALL, ROBERT 644721295973 05APR95 571.92

11 156-45-5672 O’CONNOR, JOSEPH 345620123456 27MAR95 463.23

12 657-34-3245 BARNHARDT, PAMELA S. 345620131455 29MAR95 1243.25

13 667-82-8275 COHEN, ABRAHAM 382957492811 03APR95 7302.06

14 456-45-3462 LITTLE, NANCY M. 345620134522 25MAR95 831.65

15 309-22-4573 OLSZEWSKI, STUART 382654397566 02APR95 486.00

Note: The APPEND procedure issues a warning message when a variable in the
view descriptor does not have a corresponding variable in the input data set. 4

The PROC SQL code deletes the appended data so the next PROC APPEND example
will work without reinitializing the database.

You can use the APPEND procedure’s FORCE option to force PROC APPEND to
concatenate two data sets that have different variables or variable attributes.

The APPEND procedure also accepts a SAS WHERE statement to retrieve a subset
of the data. In the following example, a subset of the observations from the DATA=
data set is added to the BASE= data set.

proc append base=vlib.chckacct data=mydata.checks
(where=(check_date >=’26MAR95’d));

run;

proc print data=vlib.chckacct;
title2 ’Appended Data with a WHERE Data Set

Option’;
run;

Note that the WHERE data set option applies only to the DATA= data set. Output
5.13 on page 88 displays the results.

Browsing and Updating IMS-DL/I Data 4 Appending Data with the APPEND Procedure 89

Output 5.13 Appended Data with a WHERE Data Set Option

The SAS System

Appended Data with a WHERE= Data Set Option

SOC_SEC_ CHECK_ACCOUNT_ CHECK_ CHECK_

OBS NUMBER CUSTOMER_NAME NUMBER DATE BALANCE

1 667-73-8275 WALLS, HOOPER J. 345620145345 15MAR95 1266.34

2 667-73-8275 WALLS, HOOPER J. 345620154633 28MAR95 1298.04

3 434-62-1234 SUMMERS, MARY T. 345620104732 27MAR95 825.45

4 250-36-8831 NAPOLITANO, BARBARA 284522378774 10APR95 104.20

5 436-42-6394 BOOKER, APRIL M. 345620135872 26MAR95 234.89

6 434-62-1224 SMITH, JAMES MARTIN 345620134564 16MAR95 2645.34

7 434-62-1224 SMITH, JAMES MARTIN 345620134663 24MAR95 143.78

8 178-42-6534 PATTILLO, RODRIGUES 745920057114 10JUN95 1502.78

9 367-34-1543 MCCALL, ROBERT 644721295973 05APR95 571.92

10 156-45-5672 O’CONNOR, JOSEPH 345620123456 27MAR95 463.23

11 657-34-3245 BARNHARDT, PAMELA S. 345620131455 29MAR95 1243.25

12 667-82-8275 COHEN, ABRAHAM 382957492811 03APR95 7302.06

13 456-45-3462 LITTLE, NANCY M. 345620134522 25MAR95 831.65

14 309-22-4573 OLSZEWSKI, STUART 382654397566 02APR95 486.00

Note that the IMS-DL/I engine has no way to determine how large a database is.
Therefore, if you use the APPEND procedure to add a database to itself, a loop can
result. For more information on the APPEND procedure, see "The APPEND Procedure"
in the SAS Procedures Guide.

90 Appending Data with the APPEND Procedure 4 Chapter 5

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS ® Interface to IMS-DL/I Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. 316 pp.

SAS/ACCESS® Interface to IMS-DL/I Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–548–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

