93

CHAPTER

AGCESS Procedure Reference

Introduction 93
ACCESS Procedure Syntax 94
Description 95
PROC ACCESS Statement Options 95
Options 95
SAS System Passwords for SAS/ACCESS Descriptors 96
Assigning Passwords 96
Procedure Statements 98
Database-Description Statements 99
Editing Statements 100
Dictionary 100
Tools for Creating Access Descriptors 121
COB2SAS Tool 121
SAS Macro and DATA Step Code 122
Performance and Efficient View Descriptors 122
General Information 122
Extracting Data Using a View 123
Deciding How to Subset Your Data 123
View Descriptor WHERE Expression 123
Application WHERE Expression 124
DATA Step IF Statement 124
Combination of Methods 124
Writing Efficient WHERE Statements 124
Identifying Inefficient SAS WHERE Conditions 125
Identifying SAS WHERE Conditions That Are Not Acceptable to IMS-DL/I 126

Introduction

The ACCESS procedure enables you to create and edit the descriptor files used by
the SAS/ACCESS interface view engine to IMS-DL/I (hereafter referred to as the
IMS-DI/I engine). The ACCESS procedure can be used in the PROGRAM EDITOR and
in batch, interactive line, and noninteractive modes.

This chapter provides complete reference information for the ACCESS procedure.
The PROC ACCESS statement is presented first, followed by the statement options and
procedure statements. For examples of how to use the statement options, refer to
Chapter 3, “Defining SAS/ACCESS Descriptor Files,” on page 39. “Performance and
Efficient View Descriptors” on page 122 presents several efficiency considerations for
using the SAS/ACCESS interface to IMS-DL/I.

94 ACCESS Procedure Syntax A Chapter 6

Refer to the SAS Language Reference: Dictionary and the SAS Companion for the
0S/390 Environment for information about SAS data sets, data libraries, and their
naming conventions, or for help with the terminology used in this procedure description.

Remember that help is available from within the ACCESS procedure if you type
HELP on any command line.

ACCESS Procedure Syntax

PROC ACCESS <options>;

Creating or Updating Statement
CREATE [libref.member-name. ACCESS | VIEW,
UPDATE [libref.-member-name. ACCESS | VIEW,

Database-Definition Statements
DATABASE=database-name DBTYPE=database-type;

RECORD-=record-name SEGMENT=segment-name
SEGLNG=segment-length,;

GROUP=group-name LEVEL=level-number
KEY=Y |N|U OCCURS=number-of-repeats
SEARCH=search-name;

ITEM=item-name LEVEL=level-number
DBFORMAT=database-format
FORMAT=SAS-format SEARCH=search-name
KEY=Y |N|U OCCURS=number-of-repeats
DBCONTENT=database-content;

DELETE item-name |index-number;
INSERT:tem-name | index-number;
REPLACE item-name |index-number;

Editing Statements
AN=Y |N;
UN=Y|N;
DROP item-name |index-number-... ;
FORMAT item-name |index-number <=> format... ;
LIST ALL | VIEW |index-number | item-name <blanks|DB|DESC>;
QUIT;
RENAME item-name |index-number <=> SAS-name... ;
RESET ALL |item-name |index-number ... ;
SELECT ALL |item-name |index-number-... ;
SUBSET selection-criteria;

RUN;

ACCESS Procedure Reference /A PROC ACCESS Statement Options 95

Description

The ACCESS procedure is used to create and edit access descriptors and view
descriptors, and to create SAS data files. Descriptor files describe DBMS data so that
you can read, update, or extract the DBMS data directly from within a SAS session or
in a SAS program.

The following sections provide more information about the syntax of the PROC
ACCESS statement.

PROC ACCESS Statement Options

To create and edit access and view descriptor files, you must issue the PROC
ACCESS statement with options and procedure statements. The statement has this
format:

PROC ACCESS <options>;
required-procedure-statements;
optional-procedure-statements;

This section describes PROC ACCESS options. For information on the procedure
statements, see “Procedure Statements” on page 98.

Options

Depending on which options you choose, the ACCESS procedure performs several
tasks. To create and edit access and view descriptors, use the following options:

DBMS=IMS
specifies the name of the database management system that the access descriptor
will access. Specify DBMS=IMS since you are using the SAS/ACCESS interface to
IMS-DI/I.

ACCDESC=libref.access-descriptor
specifies the name of an access descriptor.

ACCDESC= is used with the DBMS= option to create a view descriptor that is
based on the specified access descriptor. You specify the view descriptor’s name in
the CREATE statement. You can also use a data set option on the ACCDESC=
option to specify any passwords that have been assigned to the access descriptor.

The access descriptor that you name must exist.
The ACCDESC= option has two aliases: AD= and ACCESS=.

The following options allow you to extract IMS-DL/I data with a view descriptor:

VIEWDESC=<libref.>view-descriptor
specifies the name of the view descriptor from which to extract the IMS-DIL/I data.

OUT=<libref.>member-name
specifies the SAS data file to which DBMS data are written. OUT= is used only
with the VIEWDESC= option.

CAUTION:
Altering an IMS-DL/I database invalidates descriptors. Altering an IMS-DL/I database
that has descriptor files defined on it may cause these descriptors to be out-of-date or
invalid. For example, if you add an item to a database segment and an existing
access descriptor is defined on that database, the access descriptor does not reflect
the new item. A

96 SAS System

Passwords for SAS/ACCESS Descriptors A Chapter 6

SAS System Passwords for SAS/ACCESS Descriptors

Table 6.1 Passw

The SAS System enables you to control access to SAS data sets and access
descriptors by associating one or more SAS System passwords with them. You must
first create the descriptor files before assigning SAS passwords to them, as described in
“Assigning Passwords” on page 96.

Table 6.1 on page 96 summarizes the levels of protection that SAS System
passwords have and their effects on access descriptors and view descriptors.

ord and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor

view descriptor

no effect on descriptor no effect on descriptor protects descriptor from
being read or edited

protects DBMS data from being protects DBMS data protects descriptor from
read or updated from being updated being read or edited

When you create view descriptors, you can use a SAS data set option after the
ACCDESC= option to specify the access descriptor’s password (if one exists). In this
case, you are not assigning a password to the view descriptor that is being created;
rather, using the password grants you permission to use the access descriptor to create
the view descriptor. For example:

proc access dbms=ims accdesc=mylib.account(alter=rouge);
create vlib.customer.view;
select all;

run;

By specifying the ALTER-level password, you can read the MYLIB.ACCOUNT access
descriptor and therefore create the VLIB.CUSTOMER view descriptor.

For detailed information about the levels of protection and the types of passwords
you can use, refer to SAS Language Reference: Dictionary. The following section
describes how you assign SAS System passwords to descriptors.

Assigning Passwords

You can assign, change, or clear a password for an access descriptor, a view
descriptor, or another SAS file by using the DATASETS procedure’s MODIFY
statement. Here is the basic syntax for using PROC DATASETS to assign a password
to an access descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY= libref MEMTYPE= member-type ;

MODIFY member-name (password-level = password-modification);
RUN;

In this syntax statement, the password-level argument can have one or more of the
following values: READ=, WRITE=, ALTER=, or PW=. PW= assigns read, write, and
alter privileges to a descriptor or data file. The password-modification argument
enables you to assign a new password or to change or delete an existing password.

For example, this PROC DATASETS statement assigns the password REWARD with
the ALTER level of protection to the access descriptor MYLIB.EMPLOYEE:

ACCESS Procedure Reference /A Assigning Passwords 97

proc datasets library=mylib memtype=access;
modify employee (alter=reward);
run;

In this case, users are prompted for the password whenever they try to browse or
edit the access descriptor or to create view descriptors that are based on
MYLIB.EMPLOYEE.

You can assign multiple levels of protection to a descriptor or SAS data file. See
“Ensuring Data Security” on page 130 for more information about how to prevent
unauthorized access to the data in your IMS-DL/I databases.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.CUSTACCT:

proc datasets library=vlib memtype=view;
modify custacct (read=mypw alter=mydept);
run;

In this case, users are prompted for the SAS password when they try to read the
DBMS data, or try to browse or edit the view descriptor VLIB.CUSTACCT itself. You
need both levels to protect the data and descriptor from being read. However, a user
could still update the data accessed by VLIB.CUSTACCT, for example, by using a
PROC SQL UPDATE. Assign a WRITE level of protection to prevent data updates.

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

proc datasets library=vlib memtype=view;
modify custacct (read=mypw/ alter=mydept/);
run;

In the following example, PROC DATASETS sets a READ and ALTER password for
view descriptor VLIB.CUSTINFO. PROC PRINT tries to use the view descriptor with
both an invalid and valid password. PROC ACCESS tries to update the view descriptor
with and without a password.

/* Assign passwords */

proc datasets library=vlib memtype=view;
modify custinfo (read=r2d2 alter=c3po);

run;

/* Invalid password given */
proc print data=vlib.custinfo (pw=r2dq);

where soc_sec_number = '178-42-6534';
title2 ’'Data for 178-42-6534"';
run;

/* Valid password given */
proc print data=vlib.custinfo (pw=r2d2);

where soc_sec_number = '178-42-6534';
title2 ’'Data for 178-42-6534"';
run;

/* Missing password */
proc access dbms=ims;
update vlib.custinfo.view;
drop country;
list all;
run;

98 Procedure Statements A Chapter 6

/* Valid password given */
proc access dbms=ims;
update vlib.custinfo.view (alter=c3po);
drop country;
list all;
run;

Refer to SAS Language Reference: Dictionary for more examples of assigning,
changing, deleting, and using SAS System passwords.

Procedure Statements

To invoke the ACCESS procedure you use the options described in “Options” on page
95 and certain procedure statements. The options and statements you choose are
defined by your task.

o0 To create an access descriptor:

PROC ACCESS DBMS=IMS;

CREATE Ilibref. member-name. ACCESS;
required database-description statements;
optional editing statements;

RUN;
0 To create an access descriptor and a view descriptor:

PROC ACCESS DBMS=IMS;

CREATE Ilibref. member-name. ACCESS;
required database-description statements;
optional editing statements;

CREATE Ilibref. member-name . VIEW;
SELECT item-list;
optional editing statements;

RUN;

0 To create a view descriptor from an existing access descriptor:

PROC ACCESS DBMS=IMS ACCDESC=libref.access-descriptor;

CREATE Ilibref. member-name VIEW;
SELECT item-list;
optional editing statements;

RUN;
o To update an access descriptor:

PROC ACCESS DBMS=IMS;

UPDATE Ilibref.member-name . ACCESS;
procedure statements;

ACCESS Procedure Reference /A Database-Description Statements 99

RUN;
o To update a view descriptor:

PROC ACCESS DBMS=IMS;

UPDATE [ibref. member-name VIEW;
procedure statements;

RUN;

Database-Description Statements
The following statements define the IMS-DL/I database in an access descriptor.

DATABASE=database-name DBTYPE=database-type;

RECORD-=record-name SEGMENT=segment-name
SEGLNG=segment-length,;

GROUP=group-name LEVEL=level-number
KEY=Y|N|U OCCURS=number-of-repeats
SEARCH=search-name;

ITEM=item-name LEVEL=level-number
DBFORMAT=database-format
FORMAT=SAS-format SEARCH=search-name
KEY=Y|N|U OCCURS=number-of-repeats
DBCONTENT=database-content;

DELETE item-name |index-number;
INSERT item-name |index-number;

REPLACE item-name | index-number;

The DATABASE=, RECORD=, and ITEM= statements are required to create an
access descriptor with the CREATE statement; the GROUP= statement is optional. The
INSERT, DELETE, and REPLACE statements are used with the UPDATE statement to
change an existing access descriptor. At least one of the GROUP=, RECORD=, or
ITEM= statements must be used with the INSERT, DELETE, and REPLACE
statements to change an access descriptor. The DATABASE= statement cannot be used
in an UPDATE statement.

Whether you are creating or changing an access descriptor, the RECORD=, ITEM=,
and GROUP= statements must be used in the same order as they appear in the
database.

Because IMS-DL/I does not have a dictionary or store descriptive information about
the database, you need to provide the DBD information. To provide this information,
you need to have a COBOL copybook or layout of the database.

For logical databases, the access descriptor definitions are mapped to the logical DBD
and not to one or more physical DBDs. This enables the IMS-DIL/I engine to build

100 Editing Statements A Chapter 6

correct calls and for the SSAs (segmented search arguments) to navigate the logical
structure of the database.

Note: See “Tools for Creating Access Descriptors” on page 121 for tools that SAS
Institute supplies to automate the database definition process. A

Editing Statements

SAS/ACCESS editing statements enable you to drop or rename items, list items,
reset names, and so on in a descriptor. All of the statements can be used when you are
creating a descriptor. The ASSIGN=, SELECT, RESET, and UNIQUE= statements
cannot be used when you are changing a descriptor.

When creating or changing an access descriptor, place editing statements after the
last database definition statement. All editing statements are optional.
The following list shows the basic syntax of each editing statement:

ASSIGN=Y| N;

UNIQUE=Y| N;

DROP item-name | index-number. . .

FORMAT item-name | index-number <=> format. . . ;

LIST ALL | VIEW | index-number | item-name <blanks | DB | DESC>;
QUIT | EXIT;

RENAME item-name | index-number <=>
SAS-name. . . ;

RESET ALL | item-name | index-number. . . ;
SELECT ALL | item-name | index-number. . . ;

SUBSET selection-criteria;

These statements are described in detail in the following sections.

Dictionary

ASSIGN= | AN=

Generates SAS names and formats that are based on item names and DB Formats

ACCESS Procedure Reference /A CREATE (Access Descriptor) 101

Optional statement
Applies to: access descriptor

Syntax
ASSIGN | AN=Y | N;

Details

The ASSIGN= statement causes view descriptors to inherit the SAS variable names and
formats of the parent access descriptor at the time that the descriptor is created. That
is, if ASSIGN=Y, the variable names generated for the access descriptor will be used in
all derived view descriptors, regardless of the naming conventions used.

If ASSIGN=N, which is the default value, you specify the SAS variable names and
formats when you create a view descriptor from this access descriptor. The naming
conventions used by the view descriptors are determined by examining the
VALIDVARNAME SAS System option. The VALIDVARNAME SAS System option lets
users specify what naming conventions will be allowed in a SAS session, either Version
6, Version 7, or a Version 7 option, and enforces them by converting variable names that
do not conform to the necessary format. For more information on the VALIDVARNAME
SAS System option, see “Overview of Using the Interface” on page 4 and SAS Language
Reference: Dictionary.

If you enter a value of Y for this statement, you cannot specify the RENAME,
FORMAT, and UN= statements when creating view descriptors that are based on this
access descriptor.

When a new CREATE statement is entered, the ASSIGN= statement is reset to the
default value, N.

CREATE (Access Descriptor)

Creates an access descriptor

Required statement
Applies to: access descriptor

Syntax
CREATE libref.member. ACCESS;

Details

The CREATE statement specifies a one- or two-level name for the access descriptor you
want to create. The suffix specifies the member type ACCESS. You can use the
CREATE statement in one procedure execution as many times as necessary.

To create an access descriptor, the CREATE statement must follow the PROC
ACCESS statement. It is specified before any of the database description or editing
statements, which are described later in this chapter.

102

CREATE (View Descriptor) A Chapter 6

When you submit a CREATE statement for processing, the statement is checked for
errors and, if none are found, the access descriptor specified in the previous CREATE
statement (if there is one) is saved. If errors are found, error messages are written to
the SAS log and processing is terminated. After you correct the error, resubmit the
statements or batch job for processing.

CREATE (View Descriptor)

Creates a view descriptor

Required statement
Applies to: view descriptor

Syntax

CREATE libref.member.VIEW PSBNAME=psb-name < PCBINDEX=pcb-index>
<GSAM>

Details

The CREATE statement specifies a one- or two-level name for the view descriptor you
want to create. The suffix specifies the member type VIEW. This statement is required
to create and save a view descriptor.

To create a view descriptor, add the CREATE statement after the procedure
statements that create the access descriptor on which this view descriptor is based. If
you are creating a view based on an existing access descriptor, specify the access
descriptor’s name in the ACCDESC= option in the PROC ACCESS statement.

Place any editing statement and view-descriptor-specific statements, such as the
SELECT and SUBSET statements, after the view descriptor’s CREATE statement. You
can submit more than one CREATE statement in one execution of the PROC ACCESS
statement. As with other SAS procedures, end the ACCESS procedure with a RUN
statement.

When you submit a CREATE statement for processing, the statement is checked for
errors and, if none are found, the view descriptor specified in the previous CREATE
statement (if there is one) is saved. If errors are found, error messages are written to
the SAS log and processing is terminated. After you correct the error, resubmit the
statements or batch job for processing.

Arguments

The following list explains the arguments that can appear in a CREATE statement for
a view descriptor:

PSBNAME= PSB=
specifies the name of the PSB that references the IMS-DL/I database on which this
view descriptor is based. This is a required argument.

PCBINDEX= PCB=
specifies the PCB in the PSB that references the database. This argument is
optional; you need to specify a PCB index only if the PSB references the database

ACCESS Procedure Reference /\ DATABASE= 103

more than once. If you do not specify a PCB index and the PSB references the
database more than once, the first PCB in the PSB that references the database is
used.

GSAM
specifies that the database on which this descriptor is based is a GSAM database.
Specify this argument only if you have a GSAM database.

DATABASE=

Specifies the DBD name of the IMS-DL/I database on which this access descriptor is based

Required statement
Applies to: access descriptor

Syntax
DATABASE=database-name DBTYPE=database-type;

Details

The DATABASE= statement specifies the DBD name of the IMS-DL/I database on
which this access descriptor is based. DBD= is an alias for the DATABASE= statement.
If you are creating an access descriptor, the DATABASE= statement must be the first
statement after the CREATE= statement.

For logical databases, the access descriptor definitions are mapped to the logical DBD
(database description) and not to one or more physical DBDs. This enables the IMS-DL/
I engine to build correct database calls and for the SSAs (segmented search arguments)
to navigate the logical structure of the database.

Note: See “Tools for Creating Access Descriptors” on page 121 for tools that SAS
Institute supplies to automate the database definition process. A

Arguments

The following list explains the arguments that can appear in a DATABASE= statement
for an access descriptor:

DBTYPE= DBT=
specifies the type of database and is required with the DATABASE= statement.
Valid database types are HDAM, HIDAM, HSAM, HISAM, GSAM, SHSAM, and
SHISAM. See “IMS-DL/I Database Types” on page 21 for a description of each
database type. You can use DBT= as an alias for DBTYPE=.

DBTYPE= tells the IMS-DL/I engine how to handle WHERE clauses that

generate SSAs for database calls. If you omit DBTYPE= from your DATABASE=
statement, you receive the following error:

ERROR 22-322: Expecting one of the following:
DBTYPE = NAME. The statement is being ignored.

ERROR: Must enter database name first.

104 DELETE A Chapter 6

An example of the DATABASE= statement is
database=acctdbd dbtype=hisam;

DELETE

Removes records, groups, or items from an existing access descriptor

Optional statement
Applies to: access descriptor
Interacts with: UPDATE statement

Syntax
DELETE | DEL numeric-list;
DELETE | DEL item-name <... item-name-n>;

Details

The DELETE statement deletes the specified record, group, or item from an access
descriptor. You can specify as many records, groups, or items as you want in one
DELETE statement. When you delete a group or record, all of the items in that group
or record are deleted as well.

Note that if the first record of a descriptor is deleted, then the first item in the
descriptor must still be a RECORD.

Arguments

The following arguments can appear in a DELETE statement. You can mix item names
and quoted strings in the same DELETE statement, but you cannot mix index numbers
and names. Referencing a list of index numbers is an efficient way to delete items like
OCCURS clauses, which by definition are not unique.

numeric-list
is a list of index numbers, optionally separated by logical operators, that represent
the item’s place in the access descriptor. You can obtain the index number of an
item using the LIST statement described later in this section.

item-name
is the name of the IMS-DL/I group, record, or item to be deleted. This field can
also contain a quoted string.

Examples

The following are examples of DELETE statements:
DELETE 15 2 8 TO 12; /* deletes a numeric list */
DELETE 1 TO 23 BY 2; /* deletes a numeric list */
DELETE CITY STATE ZIP; /* deletes by name */

DELETE CITY 'FIRST-ORDER-DATE’;
/* deletes a name and quoted string */

ACCESS Procedure Reference /A FORMAT 105

DROP

Drops the specified item so that it is no longer available for selection

Optional statement
Applies to: access descriptor or view descriptor

Syntax
DROP numeric-list;

DROP item-name <... item-name-n>;

Details

The DROP statement drops the specified item so that the item is no longer available for
selection. When used in an access descriptor, it prevents the specified item from being
available to a view descriptor. The DROP statement is used with the UPDATE
statement in a view descriptor.

You can specify as many items to be dropped as necessary by using one DROP
statement. You can identify items by their index number or by their name or a quoted
string, but you cannot mix index numbers and names. If you drop a record or group, all
the items in that record or group are dropped.

Arguments
The following arguments can appear in the DROP statement:

numeric-list
is a list of index numbers, optionally separated by logical operators, that represent
the item’s place in the descriptor. You can get the index number of an item by
using the LIST statement described later in this section.

item-name
is the name of the IMS-DL/I item to be dropped or a quoted string.

FORMAT

Assigns a SAS format to an IMS-DL/I item

Optional statement
Applies to: access descriptor or view descriptor

Syntax

FORMAT item-name |index-number <=> format <... item-name-n | index-number-n <=>
format-n>;

106 GROUP=

A Chapter 6

Details

The FORMAT statement assigns a SAS format to an IMS-DL/I item. You can assign
formats to as many items as necessary using one FORMAT statement. Note that the
equal sign (=) between arguments is optional. You cannot use the FORMAT statement
for a record or group.

Arguments
The following list explains the arguments that can appear in the FORMAT statement:

item-name
is the name of the IMS-DL/I item for which you want to assign or change the SAS
format.

index-number
is the index number of the IMS-DL/I item for which you want to assign or change
the SAS format. The index number represents the item’s place in the access
descriptor. You can get the index number of an item using the LIST statement
described later in this section.

format
is the SAS format that you want to assign to the specified IMS-DL/I item.

GROUP=

Defines the groups within the record

Optional statement
Applies to: access descriptor

Syntax

GROUP= group-name LEVEL=level-number <KEY=Y |N | U>
<OCCURS=number-of-repeats> <SEARCH=search-name>;

Details

The GROUP= statement defines the groups within the record. This statement is
optional.

See “Handling GROUP Keys in Descriptor Files” on page 135 for information about
how to reference GROUP keys in a view descriptor’'s WHERE statement.

Arguments

In the GROUP= statement, you must enter the group name and level number. The
other arguments are used to further define the group and are not required. The
following list explains each argument that can appear in a GROUP= statement:

GROUP=

GR=
is the name that you want to assign to the group item in an IMS-DL/I database.
This name can be a maximum of 32 characters. If any special characters or blanks

ACCESS Procedure Reference /A INSERT 107

are included in the name, enclose the entire name in quotation marks. This is a
required argument.

LEVEL=

LV=
is the two-character numeric level of the IMS-DL/I item. This level number is
similar to the COBOL level number. Groups have levels greater than 01, and their
level numbers are less than the level numbers of the items within the group. This
is a required argument.

KEY=

K=
indicates with an Y, N, or a U whether this item is defined in the DBD as a
sequence or key field and whether the key sequence field is unique. The default
setting, N, indicates the field is not a key sequence field. You must assign one key
sequence field per segment if you plan to use the view descriptors that are created
from this access descriptor to update the IMS-DL/I database. Keys are
recommended, but not required, for all segments except the lowest hierarchical
level if the view descriptors will be used only for data retrieval. When KEY=U,
retrieval calls to IMS will be reduced because the IMS engine will know that there
is only one segment in the database for this key.

OCCURS=

O=
indicates the number of times a repeating group occurs. This is an optional
argument.

SEARCH=

SE=
is the search field name defined for the group item in the DBMS DBD. If you want
the IMS-DL/I engine to create SSAs directly from a WHERE statement or
command, you must enter the search field names. Otherwise, the WHERE
statement is passed to the SAS System and all of the segments in the database
that are referenced in the view descriptor are read. SEARCH= is an optional
argument, but it is recommended where applicable.

Note: See “Handling GROUP Keys in Descriptor Files” on page 135 for
important information about searching at the GROUP level. Also see
“Performance and Efficient View Descriptors” on page 122 for more information

about SSAs and WHERE statements. for important information about searching
at the GROUP level. A

INSERT

Adds new records, groups, or items to an existing access descriptor.

Optional statement
Applies to: access descriptor
Interacts with: UPDATE statement

Syntax
INSERT | INS index-number;

108 ITEM=

A Chapter 6

INSERT|INS item-name <... item-name-n>;

Details

The INSERT statement is a positioning statement; it inserts the RECORD=, GROUP=,
or ITEM= statements following it after the item it references. The syntax and use of
the RECORD=, GROUP=, and ITEM= statements are the same in update mode as they
are in create mode.

Although the INSERT statement can reference only one item, more than one
RECORD=, GROUP=, or ITEM= statement can follow an INSERT statement. The
INSERT statement retains control until it encounters an editing, LIST, DELETE, or
REPLACE statement, or the ACCESS procedure ends through a QUIT, RUN, or other
procedure statement. Multiple INSERT statements can be used in one UPDATE
statement. When more than one INSERT statement references the same item, the most
recent update displays as first.

Arguments
The following arguments can appear in a INSERT statement:

item-number
is an index number that represents the item’s place in the access descriptor. You
can get the index number of an item by using the LIST statement described later
in this section.

item-name
is the name of the IMS-DL/I group, record, or item after which subsequent groups,
records, or items will be inserted. This field can also contain a quoted string.

Example

The following is an example of an INSERT statement. A new record and item are
inserted at the beginning of access descriptor ADLIB.CUSTINS. “INSERT 0” inserts
items at the beginning of the descriptor. The first item in an access descriptor must
always be a record. Also in the example, note that the first LIST statement prints a
pre-update listing of the database as defined by the access descriptor, while the second
prints a post-update listing.

proc access dbms=ims;
update adlib.custins.access;
list all db;
insert 0;
record=newfrec sg=newrecsg s1=400;
item=newfitem lv=3 dbf=$12. se=custfsti;
list all db;
run;

ITEM=

Defines the fields within the record

Required statement

ACCESS Procedure Reference /A ITEM= 109

Applies to: access descriptor

Syntax

ITEM= item-name LEVEL=level-number
DBFORMAT=database-format <SASNAME=SAS-name>
<FORMAT=SAS-format > <SEARCH=search-name>
<KEY=Y|N|U> <OCCURS=number-of-repeats>
<DBCONTENT=database-content >;

Details
The ITEM= statement defines the fields within the record.

Arguments

In the ITEM= statement, you must enter the item name, level number, and the
DBFORMAT= argument. The other arguments are used to further define the item and
are not required. The following list explains each argument that can appear in the
ITEM= statement:

ITEM=

IT=
is the name that you want to assign to the field in an IMS-DL/I database segment
and which the SAS/ACCESS software will use to generate a SAS variable name.
This name can be a maximum of 32 characters. If any special characters or blanks
are included in the name, enclose the entire name in single quotes. This is a
required argument.

The generated SAS variable name will use the following naming conventions

specified by the VALIDVARNAME SAS System option:

o If VALIDVARNAME=V7, then the variable names will consist of mixed-case,
alphanumeric characters and underscores for non-conforming characters,
with a letter or underscore in the first position.

o If VALIDVARNAME=UPCASE, then the variable names will use Version 7
conventions with uppercase letters.

o If VALIDVARNAME= ANY, then the variable names can consist of any
characters as long as they are enclosed in quotes and are followed by an
n-literal, for example, ’string’n.

o If VALIDVARNAME=V6, then the SASNAME= argument assigns your SAS
variables names, if used, or the ITEM name is truncated to 8 characters.

If you specified the AN= statement with a value of Y, you will not be able to
change the SAS variable names when you create a view descriptor from this access
descriptor after the access descriptor statements have been entered.

If you specified the UN= statement with a value of Y, the variable names will be
unique. Any duplicate names will be resolved as follows: the name will be
truncated to the legal length and a number appended to the end to identify it as
unique. For example, two instances of CUSTOMER_ADDRESS would be changed
to CUSTOMER_ADDRESS and CUSTOMER_ADDRESSO0.

Sites commonly refer to undesired portions of the data buffer by using the
FILLER notation in the ITEM= statement and by defining the DBC (DB Content)
as $CHAR. See “Using Filler Notation in ITEM=" on page 137 for information.

110 ITEM= A Chapter 6

LEVEL=

LV=
is the two-character numeric level of the IMS-DL/I field. This level number is
similar to the COBOL level number. To indicate that a field is in a group, it should
have a level number greater than the group’s level number. This is a required
argument.

DBFORMAT=

DBF=
is used to specify how the IMS-DL/I field is stored in the database. See “Using
IMS-DL/I Data Types in SAS/ACCESS Descriptors” on page 22 for a table of
recommended DB formats to use for COBOL and PL/I data types. This table also
shows the SAS variable formats that the SAS/ACCESS interface to IMS-DL/I
generates for the DB Formats.

You must specify one of the following valid SAS informats in this argument. For

character data, the valid SAS informats are

$w. $HEXw.
$CHARw. $PHEXw.
$CHARZBw.

For numeric data, the valid SAS informats are

w.d ZDBw.d RBw.d
Fw.d 1Bw.d PDw.d
BZw.d PIBw.d PKw.d
ZDw.d HEXw.

SASNAME=

SN=

this argument is supported for Version 6 compatibility only. It assigns a SAS
variable name to this IMS-DL/I field. When VALIDVARNAME=V6, the name
assigned to this argument is also used as input to the subsetting WHERE
statement.

FORMAT=
FMT=
assigns a SAS format to the SAS variable. This is an optional argument.

If you specified the AN= statement with a value of Y, the SAS System assigns
default formats (based on the field’s database format) to the variables when the
access descriptor is created. If you want, you can enter formats using the
FORMAT= argument in the ITEM= statement at that time. However, you will not
be able to change these formats when you create a view descriptor from this access
descriptor once the access descriptor is created.

SEARCH=

SE=
is the search field name defined for the field in the DBMS DBD. If you want the
IMS-DI/I engine to create SSAs directly from a WHERE statement or command
that references the named item, then you must assign search field names.
Otherwise, the WHERE statement is passed to the SAS System, and all
occurrences of the segments referenced in the view descriptor in the database are
read and passed to the SAS System for further processing. See “Performance and

ACCESS Procedure Reference /A ITEM= 1

Efficient View Descriptors” on page 122 for more information about SSAs and
WHERE statements. This is an optional argument.

KEY=

K=
indicates with an Y, N, or a U whether this field is defined in the DBD as a
sequence or key field and whether the key sequence field is unique. The default
setting, N, indicates the field is not a key sequence field. You must assign one key
sequence field per segment if you plan to use the view descriptors created from
this access descriptor to update the IMS-DL/I database. Keys are recommended,
but not required, for all segments except the lowest hierarchical level if the view
descriptors will be used only for data retrieval. When KEY=U, retrieval calls to
IMS will be reduced because the IMS engine will know that there is only one
segment in the database for this key.

OCCURS=

O=
indicates the number of times a repeating field occurs. This is an optional
argument.

DBCONTENT=

DBC=
indicates that the values for this field need special handling by the IMS-DL/I
engine. This is an optional argument. You can use this argument to specify a SAS
format that indicates the way date values are represented internally in the
IMS-DL/I database, or to indicate how a field is initialized or stored in the
database. This is not the same as the value you entered in the DBFORMAT=
argument.

For example, you would use the DBFORMAT= argument to specify that a date
is stored as a packed decimal. You would then use the DBCONTENT= argument
to indicate where the month, day, and year are stored in that packed decimal.
Valid parameters for date values are

YYMMDDS6. MMDDYYS. JULIANS.
YYMMDDS. DDMMYY6. JULIANT.
MMDDYY6. DDMMYYS.

Valid parameters for special formats values that indicate how a field is
initialized are

B when values are blanks for zero
H for high values
L for low values.

These special formats affect how the SAS System displays and updates the
fields in the database. Use special format B to indicate to the IMS-DL/I engine
that a numeric variable has blanks when its value is zero. Use the special codes H
and L to indicate that a variable is initialized to high or low values, respectively.

For example, if you specify L for a variable, the SAS System displays a missing
value when it finds low values (hexadecimal zeroes) in the variable. If you update
that variable with a missing value, the IMS-DL/I engine writes low values to the
variable in the database. If you specify H for a variable, the SAS System displays
a missing value when it finds high values (hexadecimal Fs) in the variable. If you

112

LIST A Chapter 6

update that variable with a missing value, the IMS-DL/I engine writes high values
to the variable in the database.

You can also use the special formats values when a date is initialized in a
special way. For example, if you had a date initialized to low values, you would
enter, enclosed in single quotes, the date format followed by a slash (/) and an
initialization code. For example, for an eight-digit date in the MMDDYY8. form
initialized to low values, you would enter the following value for the DBCONTENT
argument:

'MMDDYYS8. /L’
Do not specify a DBCONTENT for records and groups.

LIST

Lists all or selected items in the descriptor and information about the items

Optional statement
Applies to: access descriptor or view descriptor

Syntax
LIST <ALL | VIEW |index-number |item-name> <blanks| DB | DESC>;

Details

The LIST statement lists all or selected items in the descriptor and information about
the items.

Arguments

The LIST statement consists of two sets of arguments. Select one argument from the
first set to select the items to be displayed, and select one argument from the second set
to specify the type of information to be displayed about the selected items.

The first set includes the following arguments:

ALL
lists all the items in the access descriptor that are available for selection. If an
item is dropped, NON-DISPLAY is displayed next to the item’s description when
listing an access descriptor. When listing a view descriptor, dropped items are not
displayed.

VIEW
lists all the items in the access descriptor that are selected for the view descriptor.

index-number
specifies the index number that corresponds to the IMS-DL/I item for which you
want to display the current status. The index number represents the item’s place
in the descriptor.

item-name
specifies the name of an IMS-DL/I item for which you want to display the current
status.

ACCESS Procedure Reference /A REGORD= 113

The second set includes the following arguments:

blanks

DB

DESC

Note:

lists the SAS information, including the DB Format and SAS format
information, for the specified items. To use this argument, include
only the ALL, VIEW, item-name, or index-number argument from
the first set to specify the items.

lists the database information, including the DB Content, segment
name, search field, segment length, key field, and occur field
information, for the specified items. Use the ALL, VIEW, item-name
or index-number argument before this argument to specify which
items to list.

lists both SAS and database information for the specified items. Use
the ALL, VIEW, item-name or index-number argument before this
argument to specify which items to list.

The LIST statement output is written to the SAS log. A

QuIT

Terminates the procedure without any further descriptor creation

Optional statement

Syntax
QUIT | EXIT,;

Details

The QUIT statement terminates the procedure without any further descriptor creation.
EXIT is an alias for the QUIT statement.

RECORD=

Defines an IMS-DL/I segment

Required statement
Applies to:

access descriptor

Syntax

RECORD-=record-name SEGMENT=segment-name SEGLNG=segment-length,;

114

RENAME A Chapter 6

Details

The RECORD= statement defines an IMS-DL/I segment. A value of 01 is automatically
assigned as the level number of a record, so the RECORD= statement does not include
a level number argument. You should begin your database definition with a RECORD=
statement immediately after the DATABASE= statement.

Arguments

The following list explains each of the arguments that can appear in a RECORD=
statement.

RECORD= RE=
specifies an arbitrary name for the segment. A record name can be a maximum of
32 characters. If special characters or blanks are included in the name, enclose the
entire name in single quotes. This is a required argument.

SEGMENT= SG=
specifies the name of the segment as defined in the DBD. A segment name can be
a maximum of eight characters. If your database is a GSAM database, enter GSAM
as the segment name. This is a required argument.

SEGLNG= SL=
specifies the segment length as defined in the DBD. This is a required argument.
See “Handling Segments of Varying Length” on page 135 for more information.

RENAME

Enters or modifies the SAS name for an item

Optional statement
Applies to: access descriptor or view descriptor

Syntax

RENAME item-name |index-number <=> SAS-name
<... item-name-n | index-number-n <=> SAS-name-n>;

Details

The RENAME statement enters or modifies the SAS variable name for an item. If you
are creating a view descriptor from an existing access descriptor with an ASSIGN value
of Y, you cannot use the RENAME= statement. You can rename as many items as
necessary using one RENAME= statement.

Note: 1If the VALIDVARNAME SAS System option is set to V6, this statement
affects the SAS name parameter; if VALIDVARNAME=V7, it affects the item name. A

Arguments
The following list explains the arguments that appear in the RENAME= statement:

ACCESS Procedure Reference /A REPLACE 115

item-name
is the name of the IMS-DL/I item that you want to rename.

index-number
is the index number of the IMS-DL/I item that you want to rename. The index
number represents the item’s place in the descriptor. You can get the index
number of an item using the LIST statement described earlier in this section.

SAS-name
is the new SAS variable name that you want to assign to the specified item.

REPLACE

Modifies record, group, and item definitions in an existing access descriptor

Optional statement
Applies to: access descriptor
Interacts with: UPDATE statement

Syntax
REPLACE | REPL index-number

<GROUP= new-group-name ITEM=new-item-name
LEVEL=level-number
DBFORMAT=database-format
FORMAT=SAS-format SEARCH=search-name
KEY=Y|N|U DBCONTENT=database-content>;

|
<RECORD=new-record-name
SEGMENT= segment-name
SEGLNG= segment-length>;

REPLACE | REPL item-name

<LEVEL=level-number DBFORMAT=database-format
FORMAT=SAS-format SEARCH=search-name
KEY=Y|N|U DBCONTENT=database-content>;

|
<SEGMENT=segment-name SEGLNG=segment-length>;

Details

The REPLACE statement replaces or modifies existing records, groups, and items in
existing access descriptors. Any item that can be entered on RECORD, GROUP=, and
ITEM= statements can be modified, except the OCCURS option.

Unlike the INSERT and DELETE statements, each data item to be modified needs a
separate REPLACE statement, although any number of REPLACE statements can occur
in any order with INSERT and DELETE statements within an UPDATE statement

116 RESET A Chapter 6

Arguments

The only required item on the REPLACE statement is the index number, name, or
quoted string used to identify it. However, the optional arguments are recommended for
data definition. Except for the following optional arguments, the arguments follow the
same editing rules as they would in create mode or in an update insert situation.

o KEY=N will remove an item as a designated key field.

o Specifying blanks on a SEARCH or DBCONTENT parameter removes their value,
effectively dropping the parameters.

0 The FORMAT parameter currently cannot be reset to its default value.

Examples
The following are examples of replacement statements:

replace shipped dbc=mmddyyé6.; /* modifies dbcontent */
replace 5 se=' ' /* drops search field parameter */

replace ’'old-record-name’ record='new-record-name;
sSg='new-ims-segname’; /* replaces record */

replace 2 item='cust-item’; /* renames item */
14

RESET

Resets specified or all items to their default settings

Optional statement
Applies to: access descriptor or view descriptor

Syntax

RESET ALL |item-name |index-number
<... item-name-n |index-number-n>;

Details

The RESET statement resets specified or all items to their default settings. You can
reset as many items as necessary using one RESET statement or the ALL option to
reset all the items. The RESET statement has different effects on access and view
descriptors.

Access descriptors In access descriptors, the default setting for a SAS variable
name is a blank unless you included the AN= statement. If you used the AN=
statement, the names are reset to those generated. The default setting for SAS formats
in access descriptors is determined by the DB Formats of the items. Any dropped items
will be included again.

View descriptors In view descriptors, the RESET statement deselects items and
resets the SAS name and format values to those defined in the access descriptor on

ACCESS Procedure Reference /A SELECT 117

which the view descriptor is based. The SAS names and formats are unaffected by the
RESET statement if you specified the AN= statement with a value of Y when you
created the access descriptor on which this view descriptor is based.

Arguments
The following list explains the arguments that appear in the RESET statement:

ALL
resets all the items defined in the access descriptor to their default setting. For a
view descriptor, the ALL option resets only the items that are selected.

item-name
specifies the name of the item that you want to reset. If you specify a record or
group name, all the items in that record or group are reset.

index-number
specifies the index number of the item that you want to reset. The index number
represents the item’s place in the access descriptor. You can get the index number
of an item using the LIST statement described earlier in this section. If you specify
a record or group index number, all the items in that record or group are reset.

SELECT

Selects the items in the access descriptor that are to be included in the view descriptor

Optional statement
Applies to: view descriptor

Syntax

SELECT ALL | item-name | index-number <... item-name-n |index-number-n>;

Details

The SELECT statement selects the items in the access descriptor that are to be included
in the view descriptor. Use the SELECT statement only when you are defining view
descriptors. You can select as many items as necessary using one SELECT statement.

Arguments
The following list explains the arguments that appear in the SELECT statement:

ALL
includes in the view descriptor all of the items that are defined in the access
descriptor that were not dropped.

CAUTION:
If the access descriptor contains segments representing more than one path, using
ALL will create an invalid view descriptor. ~

118 SUBSET A Chapter 6

item-name
specifies the name of the item you want to select to be included in the view
descriptor. If you specify a record or group name, all the items in that record or
group are selected.

index-number
specifies the index number of the item you want to select. The index number
represents the item’s place in the access descriptor. You can get the index number
of an item using the LIST statement described earlier in this section. If you specify
a record or group index number, all the items in that record or group are selected.

SUBSET

Adds or modifies selection criteria defined for a view descriptor

Optional statement
Applies to: view descriptor

Syntax
SUBSET <selection-criteria>;

Details

The SUBSET statement specifies the selection criteria for the view descriptor. If you do
not use the SUBSET statement, the view will include all occurrences of the segments
included in the view descriptor.

Arguments

The selection-criteria argument can be new or modified selection criteria that you want
to define for the view descriptor. Only a WHERE statement can be used with the
SUBSET statement.

Use SAS variable names in the SAS WHERE statement to specify selection criteria.
Any variable specified in the WHERE statement must also be selected in the view
descriptor. If your statement includes a date or time representation, use the SAS date
or time constant representation, such as ’01JAN91’D.

To improve performance, use WHERE statements from which the IMS-DL/I engine
can generate SSAs. For more information about creating efficient view descriptors, see
“Performance and Efficient View Descriptors” on page 122. For more information about
the WHERE statement and the expressions it allows, see SAS Language Reference:
Dictionary.

You can delete the current selection criteria by issuing the SUBSET statement
without an argument.

UNIQUE | UN=

Generates unique SAS names based on item names

ACCESS Procedure Reference /A UPDATE 119

Optional statement
Applies to: view descriptor

Syntax
UNIQUE |[UN =Y | N;

Details

The UNIQUE= statement specifies whether unique SAS variable names should be
generated for items. The UNIQUE= statement can be used only when creating a view
descriptor.

The default value, N, allows you to enter duplicate SAS variable names. You must
resolve these duplicate names before you create view descriptors based on the access
descriptor.

If you specify a value of Y and duplicate SAS variable names exist, numbers are
appended to any SAS names that are duplicated as the result of truncation. For
example, if you enter a value of Y for the UNIQUE= statement, two instances of the
item ADDRESS would be changed to ADDRESS and ADDRESSO0.

Note: If you specified a value of Y for the ASSIGN= statement when you created the
access descriptor on which this view descriptor is based, you cannot specify a UNIQUE=
statement. A

UPDATE

Updates a SAS/ACCESS descriptor file.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
UPDATE [libref.-member. ACCESS | VIEW;

Details

The UPDATE statement identifies an existing access descriptor or view descriptor that
you want to change. The descriptor can exist in a temporary (WORK) or permanent
SAS data library. If the descriptor has been protected with a SAS password that
prohibits editing of the access or view descriptor, then the password must be specified
on the UPDATE statement.

To update a descriptor, use its three-level name. The first level identifies the libref of
the data library where you stored the descriptor. The second level is the descriptor’s
member name. The third level is the type of SAS file: ACCESS or VIEW. For a view
descriptor, you can optionally specify the PSBNAME and PCBINDEX arguments.

120

UPDATE A Chapter 6

You can use the UPDATE statement as many times as necessary in one procedure.
Use these guidelines to write the UPDATE statement:

O

Like the CREATE statement, the UPDATE statement should immediately follow
PROC ACCESS and precede any database definition and editing statements. Also,
all database definition statements should precede any editing statements.

Within the database definition group, the DELETE, INSERT, and REPLACE
statements can be specified in any order and can occur multiple times with an
UPDATE sequence. The order has no effect on processing.

When using index numbers, the numbers specified with the UPDATE statement
refer to the original pre-update order. Index numbers used with editing
statements always apply to the post-update, “ready to rewrite” order. See “Editing
Statements” on page 100 for a list of editing statements.

Use the LIST statement after the UPDATE statement and avoid using
intermediate LIST statements, particularly in batch mode. The LIST statement
forces a reorganization of the in-memory layout of the access or view descriptor.
Intermediate list statements change the index numbering at each invocation and
can cause an error.

Do not attempt to create a view descriptor after you have updated a view

descriptor in the same procedure execution. You can create a view descriptor after
updating or creating an access descriptor or after creating a view descriptor.

The following examples edit the access descriptor IMSLIB.CUSTS. Despite the order of
the INSERT, DELETE, and REPLACE statements in the update sequence, the
examples produce identical results.

/* ————example l-———-- */
proc access dbms=ims;

update imslib.custs.access;
insert address;
item=address?2 1lv=3 dbf=$12 se=custadd2;
delete contact;
repl 23 se=custphon;

ins 23;
item=newitem 1lv=3 dbf=$30 se=custlsti;
run;
/* ———example 2--- */

proc access dbms=ims;

update imslib.custs.access;
delete contact;
repl 23 se=custphon;

ins 23;
item=newitem 1lv=3 dbf=$30 se=custlsti;
insert address;
item=address?2 1lv=3 dbf=$12 se=custadd2;
run;

The following example shows how index numbers are interpreted by different parts
of an UPDATE statement. In the example, the DELETE statement processes the third
item in the original descriptor. The DROP statement, however, processes the fourth
item in the post-update order, which in this case would have been the fifth item in the
original sequence.

proc access dbms=ims;

update imslib.custs.access;
delete 3; /* pre-update item 3 */

drop 4;

list all;

run;

ACCESS Procedure Reference /A C0OB2SAS Tool 121

/* post-update item 4 */

Pre-update and post-update listings are shown below.

/* —--prior to UPDATE --- */

IMS Database: CUSTOMER

Function: Create Descriptors-access: CUSTS1 view:
L# Item Name DBFormat Format

1 01 CUSTOMER *RECORD* *RECORD*

2 02 CUSTOMER-INFO *GROUP* *GROUP*

3 03 CUSTOMER-CODE $8. $8.

4 03 STATE $2. $2.

5 03 ZIP 10.0 12.0

6 03 COUNTRY $20. $20.

/* —--after UPDATE --- */

IMS Database: CUSTOMER

Function: Create Descriptors-access: CUSTS1 view:
L# Item Name DBFormat Format

1 01 CUSTOMER *RECORD* *RECORD*

2 02 CUSTOMER-INFO *GROUP* *GROUP*

3 03 STATE $2. $2.

4 03 ZIP *NON-DISPLAY* 10.0 12.0

5 03 COUNTRY $20. $20.

Tools for Creating Access Descriptors

The SAS/ACCESS interface to IMS-DL/I is different from other SAS/ACCESS
interfaces in that it requires you to define the database in your access descriptor. Other
SAS/ACCESS interfaces are able to query a data dictionary or other information
repository to acquire detailed information about the database object that is being
accessed.

Defining access descriptors for IMS-DL/I databases can be time consuming because
the data have to be entered manually. To automate this process, especially in cases
where many access descriptors must be defined, there are several tools available for
your use.

COB2SAS Tool

The COB2SAS tool uses the COB2SAS utility to process COBOL copybook database
definitions and to store them in a permanent SAS data file. This data file is then
processed by a DATA step program that is supplied in the installed prefix. SAMPLE
PDS, called IMSS2A. The IMSS2A program processes the observations in the data file
and generates most of the syntax required by the PROC ACCESS procedure statements
that create an access descriptor for the database.

The generated statements are written to a host file (physical sequential or PDS
member) where they can be edited. The statements written to the host file require some
editing because the copybook file does not contain all the information that is necessary
to create the access descriptor. You need to add DBD-specific information such as
segment lengths, search and sequence field names, DBD name, DBTYPE, and segment
names, in order to complete the code. You can then either submit the generated

122

SAS Macro and DATA Step Code A Chapter 6

statements with JCL in a batch execution, or submit them from the SAS PROGRAM
EDITOR window.

The COB2SAS tool is available from SAS Institute free of charge for download from
the World Wide Web, from an FTP site, or in the form of a mailer tape. This tool was
originally designed to aid in converting COBOL file copybooks to INPUT statements for
SAS DATA steps. For access descriptor creation, it is not necessary to complete all of
the steps outlined in the COB2SAS usage instructions. Typically, after the copybook is
processed, the results are stored in a temporary SAS file, which is then used to
generate the INPUT statement. For IMS-DL/I access descriptor creation, only the steps
up to and including creation of the SAS file (dictionary file) are necessary. A
modification is made to make the dictionary file permanent, and from there the
IMSS2A program is used to complete the process.

Note that only steps R2COB1-R2COB5 are needed to create the dictionary file.
Member R2MVS is the file to edit to make the dictionary a permanent file. R2MVS is
also the main program that drives all of the other steps. It is well documented, and
comments provide information on what each step does.

For more information about using the COB2SAS tool and about the IMSS2A sample
program, call SAS Institute’s Technical Support Division.

SAS Macro and DATA Step Code

The second tool was donated by a SAS user.* The tool consists of SAS macro and
DATA step code that processes the database DBD directly. The benefit of this tool is
that the file of generated PROC ACCESS code does not need further editing before
being submitted for execution. This tool is available by request from SAS Institute’s
Technical Support Division.

Performance and Efficient View Descriptors

When you create and use view descriptors, follow these guidelines to minimize the
use of IMS-DL/I and OS/390 system resources and to reduce the time IMS-DL/I takes to
access data.

General Information

Select only the items your program needs. Selecting unnecessary fields adds extra
processing time.

Sorting data can be resource-intensive, even if it is done using the SORT procedure.
You should sort data only when sorted data are needed for your program. Note that
IMS-DI/I does not support the ORDER BY clause or a BY statement in an application,
such as PROC PRINT ... BYvariable ...;. If you have an IMS-DL/I database that
does not have an index and you want to use a SAS procedure that requires the data to
be sorted, you must first extract the data to sort them. If you have an IMS-DL/I
database that does have an index and you want to use a BY variable other than an index
key, you must also extract the data to sort them before executing the SAS procedure.

Where possible, specify selection criteria that can be converted into SSAs to subset
the amount of data IMS-DL/I returns to the SAS System.

* Bruce Babbitt of New England Power Service Company

ACCESS Procedure Reference /A Deciding How to Subset Your Data 123

Extracting Data Using a View

If a view descriptor describes a large IMS-DL/I database and you will use the
temporary or permanent view descriptor many times, it may be more efficient to extract
the data and place them in a SAS data file. Under the following circumstances you
should probably extract data:

o If you plan to use the same IMS-DL/I data in several procedures, you may improve
performance by extracting the IMS-DL/I data. Placing the IMS-D1L/I data into a
SAS data file requires disk space to store the data and I/O to write the data.
However, SAS data files are organized to provide optimal I/O performance with
PROC and DATA steps. Programs using SAS data files often use less CPU time
than programs that directly read IMS-DL/I data.

o If you plan to read a large amount of data from a large IMS-DL/I database and the
database is being shared by several users, your direct reading of the data could
adversely affect all users’ response time. Extracting data can improve response
time.

0 If you think directly reading this data would present a security risk, you may want
to extract the data and not distribute information about either the access
descriptor or view descriptor.

Deciding How to Subset Your Data

There are many reasons why you may want to subset or filter the data being
returned from a database path defined by a view descriptor. The main benefit is
performance. Retrieving a portion of the data in the database path is more efficient
than retrieving all of the data in the path. Another reason is to enforce security
measures, such as restricting users of view descriptors to certain subsets of data.

Once you determine that your application can benefit from using a subset of data,
there are several ways that you can subset data in the SAS System. Use the following
guidelines to determine when to use a view descriptor WHERE expression, an
application WHERE expression, a DATA step subsetting IF statement, and when to use
a combination of the methods.

Note: Regardless of the method that you choose, for performance reasons you should
always attempt to choose selection criteria that can be converted by the engine into
SSAs. If the engine cannot build SSAs for your data request, then a sequential access
method is used to retrieve all path data defined by the view descriptor. A

View Descriptor WHERE Expression

Include a WHERE expression in your view descriptor by using a SUBSET statement
when you want to

0 have selection criteria that you want to always apply, regardless of the application
that references the view descriptor.

O restrict access to data in a way that the selection criteria cannot be viewed,
modified, or deleted.

Selection criteria stored in a view descriptor can be protected with a password as well
as operating system security. If an application specifies additional subset criteria, it is
combined with the view descriptor selection criteria and treated as an AND search
argument.

124

Writing Efficient WHERE Statements A Chapter 6

Application WHERE Expression

Use an application WHERE expression (SAS WHERE statement, clause, or data set
option) when the guidelines specified in the previous section do not apply and you

O want to use the same view descriptor for various tasks (includes DATA steps,
procedures, and SCL), where each requires a different subset of data

O need to generate dynamic selection criteria for the data defined by the view
descriptor.

For a more detailed description of how the WHERE expressions work, see “WHERE
Statement Processing” on page 142.

DATA Step IF Statement

Use a subsetting IF statement in a DATA step execution when you

O need to impose selection criteria that would result in a sequential retrieval of the
data defined by the view descriptor. This type of criteria does not meet SSA
eligibility requirements.

The IMS-DL/I engine generates SSAs only when all of the conditions in a WHERE
expression meet eligibility requirements. The DATA step IF statement allows you to
perform filtering that does not meet SSA eligibility requirements, while using a view
descriptor WHERE expression or application WHERE expression to obtain the
performance benefits from SSAs.

Combination of Methods

There are some comparison operators in the SAS System that cannot be incorporated
into SSAs for DL/I function calls and that cannot be used with the DATA step IF
statement. In these cases, you will have to evaluate the impact of a sequential retrieval
to see if that method is acceptable. If it is not, then you can extract a subset of view
descriptor data into a SAS data set (or define a DATA step view) using eligible selection
criteria, then subset the data set using an application task to achieve the desired
performance gains.

If needed, you can mix all of the filtering methods. For example,

data work.subset;
set vlib.imsview; /*View can contain subset criteria*/

where (additional eligible conditions for IMS SSAs);
if (ineligible criteria that would not generate SSAs);
run;

For all methods, it is possible that a change in criteria can cause an application that
once produced SSAs to no longer produce them and resort to using a sequential access
method. You can prevent this from happening with the SAS system option
IMSWHST=Y. IMSWHST= is an invocation option that can be placed in the restricted
options table so that it cannot be changed or overridden. Should the engine detect that
no SSAs can be generated when this option is in effect, it will issue a message to the
SAS log and terminate the executing task.

Writing Efficient WHERE Statements

Specifying a WHERE statement from which the IMS-DL/I engine can generate SSAs
improves performance. The IMS-DL/I engine returns to the SAS System only those

ACCESS Procedure Reference /A ldentifying Inefficient SAS WHERE Conditions 125

database segments that meet your selection criteria. If the IMS-DL/I engine cannot
generate SSAs, all segment occurrences for each IMS record (as defined by the path of
segments in the view descriptor) are returned to the SAS System for further processing.

To determine whether SSAs are being generated by your WHERE statement, set the
option IMSDEBUG=Y or set the number of calls for which you want debugging
information.

To ensure that your WHERE statements generate SSAs, do the following:

0 When creating descriptors, specify a search field name for all variables you plan to

include in your application’s WHERE statements, when possible.
0 Use one of the eight operators supported by IMS-DL/I in your WHERE

statements. The eight operators supported by IMS-DL/I are listed in the following
table, along with their alternate forms.

Operator Alternate Form

= =or EQ

> > or GT

< <or LT

>= => or GE

<= =>or LE

- = or NE

& * or AND (dependent AND)

| + or OR (logical OR)

* Pad the =, >, and < operators with blanks on the right or left.

The ability of the IMS-DL/I engine to generate SSAs also depends on the database
type and on the operators that you use in your WHERE expression.
0 For GSAM databases, no SSAs can be generated.
0 For other database types, the following rules apply:
0O SSAs are generated only for WHERE expressions that involve a variable, an

operator, and a literal value. Multiple expressions that use Boolean operators
are also allowed. For example:

where partnum > 1000
where partnum > 1000 and
orddate = ’31JAN94'd

0 The following operators generate SSAs: = (EQ), > (GT), < (LT), >= (GE), <=
(LE), IN, BETWEEN, IS NULL, and IS MISSING. For HDAM databases,
only the equals (=), IS MISSING, and IN operators generate SSAs.

0 Compound expressions generate SSAs, except when the expressions are
joined by OR and the fields involved are in different segments.

For a more detailed description of how WHERE statements work, see “WHERE
Statement Processing” on page 142.

Identifying Inefficient SAS WHERE Conditions

When your view descriptor
0 uses WHERE clauses that have multiple values for a search field, and

126 Identifying SAS WHERE Conditions That Are Not Acceptable to IMS-DL/l A Chapter 6

O specifies a path that does not originate from the root segment in the IMS-DL/I
database

the view descriptor forces the IMS-DIL/I engine to reposition itself to the beginning of
the IMS-DL/I database for each value.

In this example, the WHERE statement tries to find two checking account records in
the ACCTDBD database.

where chckacct = 345620145345
or chckacct = "345620134663"';

Because the CUSTOMER segment is the root segment and the CHCKACCT segment
is a child of CUSTOMER, the IMS-DL/I engine must issue a GU call for each checking
account number that it wants to find. It does this in order to reposition itself at the
start of the database. If it used GN calls, it might pass by one of the records because
they are not in sequential order.

Specifying multiple values for a search field in a WHERE statement for HDAM
IMS-DL/I databases permits the IMS-DL/I engine to create a WHERE key list. The
IMS-DL/I engine issues calls that use, at a minimum, the first segment level SSA with
a WHERE key list value. When no more data are retrieved from the IMS-DL/I database
for a WHERE key list value, a GU call is used to reposition to the beginning of the
database and the next WHERE key list value is used. Processing stops when all
WHERE key list values have been used.

The following conditions do not allow the IMS-DL/I engine to generate SSAs. They
cause all data from the IMS-DL/I database as defined by the view descriptor to be
returned to the SAS System for further processing:

o HDAM WHERE statements that use a WHERE key list and an OR operator with
another search field or key list in the first segment level of the view descriptor, for
example,

where custcode in ('24589689’ 29834248")
| state in (’'CA’ 'VA');

0 an OR between two segment levels.

Identifying SAS WHERE Conditions That Are Not Acceptable to IMS-DL/I

The following examples are SAS WHERE conditions that are passed to the SAS
System for further processing.

O arithmetic expressions, for example:

where cl=c4*3
where c4-c5

O expressions in which a variable or combination of variables assumes a value of 1
or 0 to signify true or false, for example:

where cl
where (cl=c2)*20

O concatenation of character variables, for example, where c2=D2||D3.
o LIKE, BETWEEN, CONTAINS, SOUNDS LIKE operators, for example:

where lastname=*'SMITH'
where lastname like ’'D A%’

ACCESS Procedure Reference /A Identifying SAS WHERE Conditions That Are Not Acceptable to IMS-DL/I 127

O truncated comparison, for example, where cl=:abc.
o DATETIME and TIME formats, for example:

where ctime= '12:00't
where ctime= '01jan60:12:00'dt

O comparisons using operators other than equivalence (=) for character variables, for
example:

where name>'A’
where ssn<='251-09-7384"

O comparisons using operators other than equivalence (=) for date variables not in
the YYMMDD format, for example, where stmtdate>’01JANO1’D. STMTDATE
has a DB Content of MMDDYY®6.

o references to missing values. This includes the period (.) for numeric variables,
and the IS MISSING and IS NULL operators.

where stmtdate = . (numeric)

where name = (character)

0 OR requests for conditions in two hierarchical levels of the database, for example,
where name=’'Smith’ or stmtamt>0. In this example, the NAME field is in the
root segment, and the STMTAMT field is in a child segment.

0 any WHERE statement for a GSAM database, for example, where var1<200.

O Any reference to a variable that does not have a SEARCH or SEQ field assigned to
it in the access descriptor.

128 Identifying SAS WHERE Conditions That Are Not Acceptable to IMS-DL/l A Chapter 6

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS?® Interface to IMS-DL/I Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. 316 pp.

SAS/ACCESS’ Interface to IMS-DL/I Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-548-5

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

