
151

C H A P T E R

8
Introducing the IMS-DL/I DATA
Step Interface

Introduction 151
Overview of the DATA Step Statement Extensions 152

DL/I Input and Output Buffers 152

An Introductory Example of a DATA Step Program 153

Using DATA Step Views 157

The DL/I INFILE Statement 160
PCB Selection Options 161

Other Options 162

Using the DL/I INFILE Statement 166

The DL/I INPUT Statement 170

Example 1: A Get Call 171

Using the DL/I INPUT Statement 173
Checking Status Codes 173

Use of the Trailing @ 174

Example 2: Using the Trailing @ 175

The DL/I FILE Statement 176

The DL/I PUT Statement 177
Example 3: An Update Call 178

Using the DL/I PUT Statement 179

REPL Call 179

Example 4: Issuing REPL Calls 180

DLET Call 181
Example 5: Issuing DLET Calls 182

IMS-DL/I DATA Step Examples 182

Example 6: Issuing Path Calls 183

Example 7: Updating Information in the CUSTOMER Segment 186

Example 8: Using the Blank INPUT Statement 189

Example 9: Using the Qualified SSA 192

Introduction
Special SAS System extensions for the standard SAS INFILE and FILE statements

enable you to format DL/I calls in a SAS DATA step. These extended SAS statements
and their corresponding INPUT and PUT statements are called DL/I INFILE, DL/I
INPUT, DL/I FILE, and DL/I PUT to distinguish them from the standard SAS
statements. An IMS-DL/I DATA step can contain standard SAS statements as well as
the SAS statements that are used with the SAS/ACCESS interface to IMS-DL/I.

The first section of this chapter describes the syntax of the SAS statement extensions
that are used with the SAS/ACCESS interface to IMS-DL/I. The next section describes
basic DATA step programming techniques and considerations for this IMS-DL/I

152 Overview of the DATA Step Statement Extensions 4 Chapter 8

interface. The last section consists of sample DATA step programs that access DL/I
databases. The sample programs integrate many of the concepts that are discussed
throughout the chapter.

This chapter assumes that you understand the SAS DATA step and the statements
used in the DATA step. See SAS Language Reference: Dictionary for details of the
statements, options, and syntax in SAS DATA steps.

There are many references to DL/I processing in this description, such as DL/I calls
and status codes. If you are not familiar with the DL/I information, be sure to refer to
the appropriate IBM documentation for complete descriptions. You should also read this
book’s Chapter 2, “Understanding IMS-DL/I Essentials,” on page 11 which gives an
overview of DL/I concepts that are important in writing DATA step programs for the
DATA step interface to IMS-DL/I .

Overview of the DATA Step Statement Extensions
In a DATA step, the SAS/ACCESS interface to IMS-DL/I uses special extensions of

standard SAS INFILE and FILE statements to access DL/I resources. These extended
statements are referred to as the DL/I INFILE and DL/I FILE statements, and their
corresponding INPUT and PUT statements are referred to as DL/I INPUT and DL/I
PUT statements.

DL/I INFILE and DL/I INPUT statements work together to issue DL/I get calls. The
DL/I INFILE, DL/I FILE, and DL/I PUT statements work together to issue update calls.

The DL/I INFILE statement tells the SAS System where to find the parameters
needed to build DL/I calls. Special DL/I INFILE statement extensions

� name the PSB
� specify a SAS variable or a number that selects the appropriate PCB in the PSB
� specify a SAS variable that contains DL/I call functions (for example, GN or REPL)
� specify SAS variables that contain SSAs for the DL/I call
� name SAS variables to contain information returned by the call, for example, the

status code and retrieved segment name.

The DL/I INFILE statement is necessary to identify the parameters for a call.
However, the call is not actually formatted and issued until a DL/I INPUT statement is
executed for get calls or DL/I FILE and DL/I PUT statements are executed for update
calls.

The DL/I INFILE statement is required in any DATA step that accesses a DL/I
database because the special extensions of the DL/I INFILE statement specify variables
that set up the DL/I calls. When a DL/I INFILE statement is used with a DL/I INPUT
statement, get calls are issued. When a DL/I INFILE statement is used with DL/I FILE
and DL/I PUT statements, update calls are issued. Both get and update calls can be
issued in one DATA step.

The syntax and use of the DL/I INFILE, DL/I FILE, DL/I INPUT, and DL/I PUT
statements are described in detail later in this chapter.

DL/I Input and Output Buffers
Two separate buffers are allocated by the SAS System as I/O areas for data transfer.

The input buffer is for DL/I segments retrieved by get calls. The output buffer is for
data written by an update call. The length of each buffer is specified by the LRECL=
option in the DL/I INFILE statement. The default length for each buffer is 1,000 bytes.

The input buffer is formatted by DL/I in the same way an I/O area for any DL/I
program is formatted. If a fixed-length segment is retrieved, the fixed-length segment

Introducing the IMS-DL/I DATA Step Interface 4 An Introductory Example of a DATA Step Program 153

begins in column 1 of the input buffer. If a segment of varying length is retrieved, the
length field (LL field) in IB2. format (half-word binary) begins in column 1 and the
varying-length segment data follow immediately. If a path of segments is retrieved, the
buffer contains the concatenated segments.

The format of the output buffer is like that of the input buffer. If a fixed-length
segment is written, the fixed-length segment begins in column 1 of the output buffer. If
a varying-length segment is written, the length field in IB2. format (half-word binary)
begins in column 1. The varying-length segment data immediately follow the length
field. If a path of segments is written, the buffer contains the concatenated segments.

The segment data format in the output buffer is determined by the DL/I PUT
statement and must match the original segment data format. See “Using the DL/I PUT
Statement” on page 179 for more information on how to format segment data in the
output buffer.

The format of the data in a segment is determined by the application program that
wrote the data segment originally, just as the data format in any other record is
determined by the program that writes the record. When you write an IMS-DL/I DATA
step program you must know the segment’s format in order to read data from the
segment with a DL/I INPUT statement or to write data to the segment with a DL/I
PUT statement.

In most cases, you are probably not the person who originally determined the
segment data format. Segment data format information is stored in different ways at
different installations. For example, the information may be obtained from a data
dictionary, COBOL or Assembler copy libraries, source programs, a SAS macro library,
or other documentation sources. DBA staff at your installation can help you find the
segment data formats you need.

An Introductory Example of a DATA Step Program
The following example is a simple IMS-DL/I DATA step program that reads segments

from a DL/I database and creates a SAS data set from data in the retrieved segments.
Next, the program processes the SAS data set with PROC SORT and PROC PRINT.

The example accesses the ACCTDBD database with a PSB called ACCTSAM.
ACCTSAM contains five PCBs; the second PCB contains a view of the ACCTDBD
database in which the CUSTOMER segment is the only sensitive segment. See
Appendix 2 for information on the databases, PSBs, segments, and fields used in this
example and other examples in this book. This example uses the DLI option of the
INFILE statement, which tells the SAS System that the INFILE statement refers to a
DL/I database. Other nondefault region and execution parameters in effect include
these:

� The second PCB in the specified PSB is used.
� Status codes are examined.

Defaults for other region and execution parameters in this example include these:
� A DL/I region is used.

� The DL/I calls issued are all GN (get-next) calls.
� No SSAs are used.

� Program access is sequential.
� PCB feedback mask data are not examined.

If you do not want to use these defaults, the special statement and product options
that you can specify for IMS-DL/I are described later in this chapter.

The numbered comments following this program correspond to the numbered
statements in the program:

154 An Introductory Example of a DATA Step Program 4 Chapter 8

u data work.custlist;
v infile acctsam dli status=st pcbno=2;
w input @1 soc_sec_number $char11.

@12 customer_name $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@142 country $char20.
@162 zip_code $char10.
@172 home_phone $char12.
@184 office_phone $char12.;

x if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
run;

y proc sort data=work.custlist;
by customer_name;

U options linesize=132;
proc print data=work.custlist;

var home_phone office_phone;
id customer_name;
title2 ’Customer Phone List’;

V proc print data=work.custlist;
var addr_line_1 addr_line_2 city

state country zip_code;
id customer_name;
title2 ’Customer Address List’;

run;

u The DATA statement references a temporary SAS data set called
CUSTLIST, which is to be opened for output.

v The INFILE statement tells SAS to use a PSB called ACCTSAM.
The DLI option tells SAS that ACCTSAM is a DL/I PSB instead of a
fileref. The statement also tells the IMS-DL/I interface to use the
second PCB and to return the DL/I STATUS code in the ST variable.

w The INPUT statement causes a GN (get-next) call to be issued. The
PCB being used is sensitive only to the CUSTOMER segment, so the
get-next calls retrieve only CUSTOMER segments. When the
INPUT statement executes, data are retrieved from a CUSTOMER
segment and placed in the input buffer. The data are then moved to
the specified SAS variables in the program data vector
(SOC_SEC_NUMBER, CUSTOMER_NAME, and so on).

As the DATA step executes, CUSTOMER segments are retrieved
from ACCTDBD, and SAS observations that contain the

Introducing the IMS-DL/I DATA Step Interface 4 An Introductory Example of a DATA Step Program 155

CUSTOMER data are written to the CUSTLIST data set. Because
program access is sequential, the DATA step stops executing when
the DL/I STATUS code indicates an end-of-file condition.

x The status code is checked for non-blank values. For any non-blank
status code except GB, all values from the program data vector are
written to the SAS log, and the DATA step aborts. If the status code
variable value is GB, the DATA step will terminate with an end-of-file
condition if the processing was sequential (using non-qualified
SSAs). Since this example uses no SSA, the database is processed
sequentially and no check for a status code of GB is required.

y The SORT procedure sorts the CUSTLIST data set alphabetically by
customer name.

U The PRINT procedure first prints a Customer Phone List.

V The procedure is invoked again to print a Customer Address List.

Output 8.1 on page 155 shows the SAS log for this example.

156 An Introductory Example of a DATA Step Program 4 Chapter 8

Output 8.1 SAS LOG for ACCTSAM Example

12 data work.custlist;
13 infile acctsam dli status=st pcbno=2;
14 input @1 soc_sec_number $char11.
15 @12 customer_name $char40.
16 @52 addr_line_1 $char30.
17 @82 addr_line_2 $char30.
18 @112 city $char28.
19 @140 state $char2.
20 @142 country $char20.
21 @162 zip_code $char10.
22 @172 home_phone $char12.
23 @184 office_phone $char12.;
24 if st ^= ’ ’ then
25 do;
26 file log;
27 put _all_;
28 abort;
29 end;
30

NOTE: The infile ACCTSAM is:
(system-specific pathname),
(system-specific file attributes)

NOTE: GB -End of database encountered
NOTE: 10 records were read from the infile (system-specific pathname).

The minimum record length was 225.
The maximum record length was 225.

NOTE: The data set WORK.CUSTLIST has 10 observations and 10 variables.

31 proc sort data=work.custlist;
32 by customer_name;
33
34 options linesize=132;

NOTE: The data set WORK.CUSTLIST has 10 observations and 10 variables.

35 proc print data=work.custlist;
36 var home_phone office_phone;
37 id customer_name;
38 title2 ’Customer Phone List’;
39

NOTE: The PROCEDURE PRINT printed page 1.

40 proc print data=work.custlist;
41 var addr_line_1 addr_line_2 city state country zip_code;
42 id customer_name;
43 title2 ’Customer Address List’;
44 run;

NOTE: The PROCEDURE PRINT printed page 2.

Output 8.2 on page 156 and Output 8.3 on page 157 show the output of this example.

Introducing the IMS-DL/I DATA Step Interface 4 Using DATA Step Views 157

Output 8.2 Customer Phone List

Customer Phone List

customer_name home_phone office_phone

BARNHARDT, PAMELA S. 803-345-4346 803-355-2543
BOOKER, APRIL M. 803-657-1346
COHEN, ABRAHAM 803-657-7435 803-645-4234
LITTLE, NANCY M. 803-657-3566
O’CONNOR, JOSEPH 803-657-5656 803-623-4257
PATTILLO, RODRIGUES 803-657-1346 803-657-1345
SMITH, JAMES MARTIN 803-657-3437
SUMMERS, MARY T. 803-657-1687
WALLS, HOOPER J. 803-657-3098 803-645-4418
WIKOWSKI, JONATHAN S. 803-467-4587 803-654-7238

Output 8.3 Customer Address List

Customer Address List

addr_

customer_name line_1 addr_line_2 city state country zip_code

BARNHARDT, PAMELA S. RT 2 BOX 324 CHARLOTTESVILLE VA USA 25804-0997

BOOKER, APRIL M. 9712 WALLINGFORD PL. GORDONSVILLE VA USA 26001-0670

COHEN, ABRAHAM 2345 DUKE ST. CHARLOTTESVILLE VA USA 25804-0997

LITTLE, NANCY M. 4543 ELGIN AVE. RICHMOND VA USA 26502-3317

O’CONNOR, JOSEPH 235 MAIN ST. ORANGE VA USA 26042-1650

PATTILLO, RODRIGUES 9712 COOK RD. ORANGE VA USA 26042-1650

SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA USA 26001-0670

SUMMERS, MARY T. 4322 LEON ST. GORDONSVILLE VA USA 26001-0670

WALLS, HOOPER J. 4525 CLARENDON RD RAPIDAN VA USA 22215-5600

WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE RICHMOND VA USA 26502-5317

Using DATA Step Views
The preceding introductory DATA step example can also be made into a DATA step

view. A DATA step view is a SAS data set of type VIEW. It contains only a definition of
data that are stored elsewhere, in this case, in a DL/I database; the view does not
contain the physical data.

A DATA step view is a stored, named DATA step program that you can specify in
other SAS procedures to access IMS-DL/I data directly. A view’s input data can come
from one or more sources, including external files and other SAS data sets.

The following DATA step code is contained in a macro that is invoked twice to create
two distinct DATA step views. When the DATA step views are executed, CUSTOMER
segments are read from the ACCTDBD DL/I database and selected data values are
placed in two SAS data sets. Then each SAS data set is processed with PROC SORT
and PROC PRINT to produce the same outputs as the introductory example in “An
Introductory Example of a DATA Step Program” on page 153.

The numbered comments following this program correspond to the numbered
statements in the program:

158 Using DATA Step Views 4 Chapter 8

u %macro custview(viewname=,p1=,p2=,p3=,p4=,p5=,
p6=,p7=,p8=,p9=,p10=);

v data &viewname / view=&viewname;
w keep &p1 &p2 &p3 &p4 &p5 &p6 &p7 &p8 &p9 &p10;
x infile acctsam dli status=st pcbno=2;

input @1 soc_sec_number $char11.
@12 customer_name $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@142 country $char20.
@162 zip_code $char10.
@172 home_phone $char12.
@184 office_phone $char12.;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
y %mend;

U %custview(viewname=work.phone,
p1=customer_name,
p2=home_phone,
p3=office_phone);

V %custview(viewname=work.address,
p1=customer_name,
p2=addr_line_1,
p3=addr_line_2,
p4=city,
p5=state,
p6=country,
p7=zip_code);

options linesize=132;

W data work.phonlist;
set work.phone;

run;

X proc sort data=work.phonlist;
by customer_name;

run;

proc print data=work.phonlist;
title2 ’Customer Phone List’;

run;

at data work.addrlist;
set work.address;

Introducing the IMS-DL/I DATA Step Interface 4 Using DATA Step Views 159

run;

ak proc sort data=work.addrlist;
by customer_name;

run;

proc print data=work.addrlist;
title2 ’Customer Address List’;

run;

u %MACRO defines the start of the macro CUSTVIEW which allows
11 input overrides. VIEWNAME is the name of the DATA step view
to be created. The other 10 overrides are:

P1 name of the 1st data item name to keep

P2 name of the 2nd data item name to keep

P3 name of the 3rd data item name to keep

P4 name of the 4th data item name to keep

P5 name of the 5th data item name to keep

P6 name of the 6th data item name to keep

P7 name of the 7th data item name to keep

P8 name of the 8th data item name to keep

P9 name of the 9th data item name to keep

P10 name of the 10th data item name to keep.

Ten data items are allowed because there are 10 input fields in
the INPUT statement for the database.

v The DATA statement names the DATA step view as specified by the
macro variable &VIEWNAME.

w The KEEP statement identifies the variables that will comprise the
observations in the output data set. In this case, there will be as
many as 10.

x This is the same code that was executed in the introductory example
in “An Introductory Example of a DATA Step Program” on page 153.

y %MEND defines the end of macro CUSTVIEW.

U %CUSTVIEW generates a DATA step view named WORK.PHONE,
which when executed produces observations containing the data
items CUSTOMER_NAME, HOME_PHONE, and OFFICE_PHONE.

V %CUSTVIEW generates a DATA step view named
WORK.ADDRESS, which when executed produces observations
containing the data items CUSTOMER_NAME, ADDR_LINE_1,
ADDR_LINE_2, CITY, STATE, COUNTRY, and ZIP_CODE.

W Data set WORK.PHONLIST is created by obtaining data using the
DATA step view WORK.PHONE.

X PROC SORT sorts WORK.PHONLIST and PROC PRINT prints it
out.

160 The DL/I INFILE Statement 4 Chapter 8

at Data set WORK.ADDRLIST is created by obtaining data using the
DATA step view WORK.ADDRESS.

ak PROC SORT sorts WORK.ADDRLIST and PROC PRINT prints it
out.

The DL/I INFILE Statement
If you are unfamiliar with the standard INFILE statement, refer to SAS Language

Reference: Dictionary for more information.
A standard INFILE statement specifies an external file to be read by an INPUT

statement. A DL/I INFILE statement specifies a PSB, which in turn identifies DL/I
databases or message queues to be accessed with DL/I calls. Special extensions in the
DL/I INFILE statement specify SAS variables and constants that are used to build a
DL/I call and to handle the data returned by the call. A limited selection of the
standard INFILE statement options can also be specified in a DL/I INFILE statement.

To issue get calls, use the DL/I INFILE statement with the DL/I INPUT statement.
To issue update calls, use the DL/I FILE and DL/I PUT statements with the DL/I
INFILE statement.

Note that there is an important difference between the standard INFILE statement
and the DL/I INFILE statement: you must use a corresponding INPUT statement with
a standard INFILE statement, but you can use a DL/I INFILE statement without a DL/
I INPUT statement. The standard INFILE statement has no effect without a
corresponding INPUT statement because the standard INFILE statement points to a
file to be read with INPUT statements. However, a DL/I INFILE statement does not
always have an accompanying DL/I INPUT statement. Instead, it may be grouped with
DL/I FILE and DL/I PUT statements. When combined with DL/I FILE and DL/I PUT
statements, the DL/I INFILE statement points to a PSB and specifies SAS variables
and constants that are used to build update calls. In other words, a DL/I INFILE does
not always imply that you are reading from a DL/I database; it is also used if you are
writing to the database.

Use the following syntax when issuing a DL/I INFILE statement:

INFILE PSBname DLI options;

where

PSBname
specifies the name of the PSB used to communicate with DL/I in the current DATA
step. A PSBname must be specified in a DL/I INFILE statement and must
immediately follow the keyword INFILE. (A standard INFILE statement would
specify a fileref in this position.)

All DL/I INFILE statements in the same DATA step must specify the same PSB
name. You cannot use more than one PSB in a DATA step. Therefore, the PSB
must be sensitive to all DL/I databases or message queues that you want to access.
Different PSBs can be used in different DATA steps.

Note: The PSB name cannot be the same name as a fileref on a JCL
statement. 4

DLI
tells the SAS System that this INFILE statement refers to DL/I databases or
message queues. DLI must be specified immediately following the PSB name in a
DL/I INFILE statement.

The options described in the next two sections can appear in the DL/I INFILE
statement but are not required. Many of these options identify a SAS variable that

Introducing the IMS-DL/I DATA Step Interface 4 PCB Selection Options 161

contains DL/I information. These variables are not added automatically to a SAS
output data set (that is, they have the status of variables that are dropped with the
DROP option). If you want to include the variables in an output SAS data set, you will
need to create separate variables and assign values to them. Most of the variables do
not need to be predefined before specification in the DL/I INFILE statement. SAS
allocates them automatically with the correct type and length. However, the SSA
variables are an exception.

PCB Selection Options

PCBNO=number
defines the first eligible PCB in the PSB (specified by PSBname). For example, if
you specify PCBNO=3, the first eligible PCB is the third PCB in the PSB. This
option allows you to bypass PCBs that are inappropriate for your program. You
can combine PCBNO= with the DBNAME= option or the PCB= option (described
later in this section) to select a particular PCB for your program.

If PCBNO= is not specified, the first eligible PCB is the first PCB in the PSB.

DBNAME=variable
specifies a SAS variable that contains a DL/I DBD name. The value of the variable
determines which of the eligible PCBs is used for the DL/I call. When DBNAME=
is specified, the eligible PCBs are searched sequentially, starting with the first
eligible PCB. Refer to the description of the PCBNO= option earlier in this section
for more information. The first eligible PCB with a DBD name that matches the
value of the DBNAME= variable is used. You must enter the variable in uppercase
letters.

For example, if PCBNO=5, DBNAME=DB, and the value of the DB variable is
ACCOUNT, SAS searches for a PCB with the DBD name ACCOUNT beginning
with the fifth PCB, which is the first eligible PCB.

The DBNAME= variable must be assigned a valid eight-character DBD name
(padded with blanks if necessary) or a blank character string prior to execution of
a DL/I INPUT or DL/I PUT statement that issues a DL/I call. The value of the
variable specified by the DBNAME= option can be changed between calls.

If the DBNAME= option is not specified or the DBNAME= variable contains a
blank character string, the PCB= option (described later in this section) is used to
select the appropriate PCB, if specified. If neither the DBNAME= option nor the
PCB= option is specified, the first PCB in the PSB is used for every DL/I call.

DBNAME= is convenient because you do not have to know which PCB refers to
a particular database; you need to know only the DBD name for the database you
want to access. However, if more than one eligible PCB refers to the same
database, only the first of these PCBs is used. You must specify the PCB= option
rather than DBNAME= if more than one eligible PCB refers to the same database
and you want to use any PCB other than the first one for the database.

PCB=variable
names a SAS variable that is an index for the list of eligible PCBs as defined by
the PCBNO= option. The value of the PCB= variable indicates which PCB in the
eligible list to use. The specified variable must be numeric and must be assigned a
value prior to execution of a DL/I INPUT or DL/I PUT statement. The value of the
specified variable can be changed between calls.

Consider an example that uses the PCBNO= and PCB= options. Assume that
PCBNO=3, PCB=PCBNDX, and PCBNDX has a value of 2. Since PCBNO=3, the

162 Other Options 4 Chapter 8

third PCB in the PSB is the first eligible PCB, and since PCBNDX has a value of
2, the second eligible PCB (that is, the fourth PCB in the PSB) is used.

If the DBNAME= option is also specified and the DBNAME= variable’s value is
non-blank, the PCB= variable value is not used. If neither the DBNAME= option
nor the PCB= option is specified, the first eligible PCB is used for every DL/I call
by default.

Other Options

CALL=variable
names a SAS variable that contains the DL/I call function used when a DL/I
INPUT or DL/I PUT statement is executed. Variable must be assigned a valid
four-character DL/I call function code before a DL/I INPUT or DL/I PUT statement
is executed. The value must be entered in capital letters and be a valid get call
function for any DL/I INPUT statement execution (for example, ’GU ’). It must
be a valid update call function for any DL/I PUT statement execution (for example,
’REPL’). Table 8.1 on page 162 shows the calls executed by DL/I INPUT
statements and those executed by DL/I PUT statements.

The value of the CALL= variable can be changed between calls.
If CALL= is not specified, the call function defaults to GN (get next). In this

case, a DL/I PUT statement would not have a valid call function because DL/I
PUT statements execute update calls, and should not be used.

Table 8.1 Calls Executed by DL/I INPUT and DL/I PUT Statements

DL/I INPUT Statement DL/I PUT Statement

GU ISRT

GHU REPL

GN DLET

GHN CHKP

GNP ROLL

GHNP ROLB

GCMD CHNG

STAT LOG

POS PURG

CMD

DEQ

FLD

OPEN

CLSE

FSARC=variable
specifies a SAS variable that contains the concatenated status code bytes of each
Field Search Argument (FSA) of an MVS IMS/VS Fast Path FLD call. The first

Introducing the IMS-DL/I DATA Step Interface 4 Other Options 163

character of variable contains the first FSA status code value, the second character
contains the second FSA status code value, and so forth. The specified variable is
a character variable with a default length of 200. Since each status code is one
byte in length, as many as 200 FSA status codes can be stored.

If FSARC= is not specified, the FSA status codes are not returned.

LENGTH=variable
specifies a SAS variable that contains the length of the segment or path of
segments retrieved when a DL/I get call is executed. The variable that is specified
must be numeric.

You can find the length of fixed-length segments in the DBD for the database. If
a segment has a varying length, the length information is contained in the first two
bytes of the segment, that is, in the LL field. To obtain the length data from the
LL field of the segment, simply specify the LL field in the DL/I INPUT statement:

input @1 ll pib2.
@3 loan_num
@10 terms;

Be aware that in some cases the value that is returned for the LENGTH=
variable or INFILE notes may not represent the length of the segment data
correctly. This is due to the method the SAS System uses to determine the length.
The entire input buffer is filled with the hex characters X’2E’ before the call is
executed. When DL/I executes the get call, segment data overwrite the X’2E’
characters until the segment data end. SAS scans the buffer, looking for the first
occurrence of the X’2E’ sequence. If the remainder of the buffer is filled with X’2E’
or if there are 256 consecutive X’2E’s, SAS assumes that the sequence indicates
the end of the returned data and calculates the segment length. However, if the
segment data happen to contain 256 consecutive bytes of X’2E’ or end with one or
more bytes with this value, the returned length value is incorrect.

LRECL=length
specifies the length of the SAS buffers used as I/O areas when DL/I calls are
executed. The length must be greater than or equal to the length of the longest
segment or path of segments accessed. If LRECL= is not specified, the default
buffer length is 1000 bytes.

If a retrieved segment or path of segments is longer than the value of LRECL=,
DL/I overlays other data or instruction storage areas. Unpredictable results can
occur if this happens.

PCBF=variable
names a SAS variable that contains feedback values from the PCB mask data
generated by each DL/I call. The specified variable is a character variable with a
default length of 200.

Some of the data returned in the PCBF= variable are the same as those
returned in the SEGMENT= variable and STATUS= variable described below.
Separate options are available for segment and status data because they are more
commonly used in controlling the program flow.

If the DL/I call uses a database PCB, the mask data returned in the PCBF=
variable are formatted as shown in Table 8.2. The format of the PCBF= variable is
different when a non-database PCB (an I/O PCB or TP PCB) is used in the DL/I

164 Other Options 4 Chapter 8

call. See Chapter 10, “Advanced Topics for the IMS-DL/I DATA Step Interface,” on
page 219 for information on the format of the mask data for a non-database PCB.

If PCBF= is not specified, the mask data are not returned (except segment and
status information if the SEGMENT= and STATUS= options are specified).

Particular data can be extracted from the mask data using the SAS function
SUBSTR. For example, this assignment statement extracts the value of the first
eight bytes, the DBD name. PCBMASK is the PCBF= variable:

dbdname=substr(pcbmask,1,8);

To extract data stored in a nonstandard format, use the INPUT and SUBSTR
functions. For example, this assignment statement extracts the value of bytes 9
and 10, the segment level number:

seglev=input(substr(pcbmask,9,2),ib2.);

Table 8.2 Format of Data Returned in the PCBF= Variable for a Database PCB

Bytes Description

1-8 These bytes of the PCBF= variable contain the DBD name.

9-10 The level number of the last segment accessed is contained in bytes 9 and 10 in IB2. format. Level
number refers to a segment’s level in the hierarchical structure. For example, your program might
issue a qualified GN call with these SSAs:
CUSTOMER*D-(SSNUMBER =667-73-8275)
CHCKACCT*D- (ACNUMBER =345620145345)
CHCKCRDT (CRDTDATE =033195)

If segments exist to satisfy the CUSTOMER and CHCKACCT SSAs but there is no CHCKCRDT
segment with a CRDTDATE field value of 033195, the last segment accessed is the CHCKACCT
segment. CHCKACCT is at the second level of the hierarchy; therefore, the level number is 2.

11–12 The DL/I status code is contained in these bytes of the PCBF= variable. The status code can also
be obtained by specifying the STATUS= option.

13–16 Bytes 13–16 contain the DL/I processing options defined for this PCB in the PSBGEN with the
PROCOPT= parameter.

17-24 These bytes contain the name of the last segment accessed. (Normally, the reserved area of the
PCB mask occupies bytes 17-20, but the reserved data have been removed.) Consider the example
for the level number of data in bytes 9-10 (see above). In that example there are SSAs for
CUSTOMER, CHCKACCT, and CHCKCRDT segments; however, only the SSAs for CUSTOMER
and CHCKACCT are satisfied. Since CHCKACCT is the last segment accessed, these bytes contain
a value of CHCKACCT.

The name of the last segment accessed can also be obtained from the variable specified by the
SEGMENT= option.

25-28 The length of the key feedback data is contained in these bytes in IB4. format. The key feedback
data are described in this table under bytes 33-200.

Introducing the IMS-DL/I DATA Step Interface 4 Other Options 165

Bytes Description

29-32 The number of sensitive segments in the PCB is contained in these bytes in IB4. format. For
example, if you use a PCB that defines CUSTOMER and SAVEACCT as sensitive segments, these
bytes contain a value of 2.

33-200 The key feedback data are contained in bytes 33-200. Key feedback data consist of the key field of
the last segment accessed and the key field of each segment along the path to the last segment.
This is also called the concatenated key. For example, if you issue a GN call qualified with SSAs for
the CUSTOMER and CHCKACCT segments, the concatenated key consists of the values from the
SSNUMBER field of the CUSTOMER segment and the ACNUMBER field of the CHCKACCT
segment.

The maximum length of the PCBF= variable is 200. Since 32 of the 200 bytes are used by other
data from the PCB mask, the maximum length of the key feedback data in the PCBF= variable is
168 bytes. If the length of the concatenated key is greater than 168 bytes, the data are truncated.
(However, the value in bytes 25-28 reflects the actual length, not the truncated length.)

SEGMENT=variable
specifies a SAS variable that contains the name of the last segment accessed by the
DL/I call. The specified variable is a character variable with a default length of 8.

If the DL/I call is qualified (that is, if one or more SSAs are used), the name of
the lowest-level segment encountered that satisfied a qualification of the call is
returned. For example, assume that a GN call is issued with these two SSAs:

SAVEACCT*D-(ACNUMBER =345620145345)
SAVECRDT(CRDTDATE =033195)

If a SAVEACCT segment is encountered with the correct value for ACNUMBER
but there is no segment with the correct CRDTDATE, then the value SAVEACCT
is returned to the SEGMENT= variable.

If the call is unqualified (no SSAs used), the name of the retrieved segment is
returned. This information can be useful in sequential-access programs with more
than one sensitive segment type. For example, assume that a program employs a
PCB that is sensitive to the CUSTOMER, CHCKACCT, and CHKCRDT segments
and issues unqualified calls. You can specify the SEGMENT= option so that the
name of the returned segment is available.

If SEGMENT= is not specified, the last segment’s name is not returned to the
program unless the PCBF= option is used.

SSA=variable
SSA=(variable, variable,...)

specifies from 1 to 15 SAS variables that contain values used as DL/I SSAs for the
calls executed by DL/I INPUT or DL/I PUT statements. Each SSA= variable value
must be entered in capital letters and must be assigned a complete DL/I SSA
value (qualified or unqualified) or be set to blanks prior to the execution of the DL/
I INPUT or DL/I PUT statement. Each SSA= variable value must be character
and must be assigned a length (for example, with a LENGTH statement) prior to
execution of the DL/I INFILE statement. The minimum length of an SSA variable
is 9 bytes, and the maximum length is 200 bytes.

The value of an SSA= variable can be changed between calls.
SSA= variables must be character variables, but you can qualify an SSA with

data from a numeric field in a segment. In this case, you can use the PUT function
to insert a numeric value into an SSA= variable. See “Using SSAs in IMS-DL/I
DATA Step Programs” on page 234 for more information.

If SSA= is not specified, SSAs are not used in any DL/I call in the DATA step.

166 Using the DL/I INFILE Statement 4 Chapter 8

STATUS=variable
names a SAS variable to which the DL/I status code is assigned after each DL/I
call. The variable is a character variable with a length of 2. This option provides a
convenient way to check status codes, for example, when you are writing a
random-access program and need to check for the end-of-file condition. (See
“Checking Status Codes” on page 173 for more information on checking status
codes in IMS-DL/I DATA step programs.)

If STATUS= is not specified, status codes are not returned to the program
unless the PCBF= option is used.

The following standard INFILE statement options can also be specified in a DL/I
INFILE statement:

EOF=label
specifies a statement label that is the object of an implicit GO TO when the input
file reaches an end-of-file condition in a sequential-access IMS-DL/I DATA step
program. Random-access programs do not cause the end-of-file condition to be set
and, thus, do not execute this option. In random-access programs, you must check
the status code variable for a value of GB (end-of-file) and explicitly branch to the
labeled statements.

OBS=n
specifies the last line to be read from the INFILE. In an IMS-DL/I DATA step
program, n specifies the maximum number of DL/I get calls to execute.

START=variable
defines the starting column of the input buffer when you use the _INFILE_
specification in a DL/I PUT statement.

STOPOVER
stops processing if the segment returned to the input buffer does not contain
values for all variables that are specified in the DL/I INPUT statement.

Refer to SAS Language Reference: Dictionary for complete descriptions of these
options. Note that EOF=, OBS=, START=, and STOPOVER are the only standard
INFILE options that can be specified in a DL/I INFILE statement.

One other standard INFILE statement option, the MISSOVER option, is the default
for DL/I INFILE statements and does not have to be specified. The MISSOVER option
prevents the SAS System from reading past the current segment data in the input
buffer if values for all variables specified by the DL/I INPUT statement are not found.
Variables for which data are not found are assigned missing values. Without the default
action of the MISSOVER option, SAS would issue another get call when values for some
variables are missing.

Table 8.3 on page 167 summarizes the DLI INFILE statement options and other
options that affect the DATA step interface to IMS-DL/I, and it also describes the
purpose of each option along with its default value and any additional comments.

Using the DL/I INFILE Statement
You can have more than one input source in a DATA step; for example, you can read

from a DL/I database and a SAS data set in the same DATA step. If you want to use
several external files (data sets other than SAS data sets) in a DATA step, use separate
INFILE statements for each source. The input source is set (or reset) whenever an
INFILE statement is executed. The file or DL/I PSB referenced in the most recently
executed INFILE statement is the current input source for INPUT statements. The
current input source does not change until a different INFILE statement executes,
regardless of the number of INPUT statements executed.

Introducing the IMS-DL/I DATA Step Interface 4 Using the DL/I INFILE Statement 167

When you change input sources by executing multiple INFILE statements and you
want to return to an earlier input source, it is not necessary to repeat all options
specified in the original INFILE statement. The SAS System remembers options from
the first INFILE statement with the same fileref or PSB name. In a standard INFILE
statement it is sufficient to specify only the fileref; in a DL/I INFILE, specify the PSB
and DLI. Options specified in a previous INFILE statement with the same fileref or
PSB name cannot be altered.

Note: The PSB name cannot be the same name as a fileref on a JCL DD statement
or TSO ALLOC, or a filename’s fileref. 4

Table 8.3 Summary of DL/I INFILE Statement Specifications and Options

Option Purpose Default Comments

CALL= variable specify variable containing call function GN (get-next) required to change call function
from default

DBNAME=
variable

specifies which eligible database PCB to
use

n/a overrides PCB= option if variable
value is nonblank

DLI indicates DL/I resource is data source n/a required; must follow PSB name

FSARC=
variable

specifies variable containing FSA status
codes

n/a MVS IMS/VS Fast Path FLD
calls only

LENGTH=
variable

specifies variable containing length of
returned segment(s)

n/a

LRECL= length specifies length of I/O buffers 1000 bytes if too short, unpredictable results
may occur

PCB= variable specifies variable containing numeric
index to choose eligible PCB

n/a

PCBF= variable specifies variable containing PCB
feedback data

n/a

PCBNO=n defines first eligible PCB 1

PSBname specify PSB to use n/a required; must follow INFILE
keyword; cannot match active
fileref or DDname

SEGMENT=
variable

specifies variable containing last
segment accessed

n/a segment name also available
through PCBF= variable

SSA= variable or
(variable,
variable,. . .)

specifies 1 to 15 variables containing
SSAs

n/a must have length defined prior
to INFILE execution

EOF= label specifies label for subroutine executed
at end-of-file

n/a for sequential access only

MISSOVER assigns missing values for missing data yes forced for DL/I INFILE, does not
have to be specified

OBS=n specifies maximum number of get calls n/a

168 Using the DL/I INFILE Statement 4 Chapter 8

START= variable specifies variable containing start
column for _INFILE_

n/a

STOPOVER stops processing if some variable values
missing

n/a

Consider this DATA step:

filename employ ’<your.sas.employ>’ disp=shr;
data test (drop = socsec);

ssa1 = ’CUSTOMER ’;
func = ’GN ’;
infile acctsam dli call=func

ssa=ssa1 pcbno=3 status=st;
input @1 soc_sec_number $char11.

@12 customer_name $char40.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@162 zip_code $char10.
@172 home_phone $char12.;

if st = ’ ’ then
link abendit;

prt = 0;
do until (soc_sec_number = socsec);

infile employ ls=53 ;
input @1 socsec $11.

@13 employer $3.;
if soc_sec_number = socsec then

do until (st = ’GE’);
infile acctsam dli;
func = ’GNP ’;
ssa1 = ’SAVEACCT ’;
input @1 savings_account_number 12.

@13 savings_amount pd5.2
@18 savings_date mmddyy6.
@26 savings_balance pd5.2;

if st = ’ ’ then
do;

output test;
prt = 1;

end;
else
if st = ’GE’ then

do;
error = 0;
if prt = 0 then

output test;
end;

else
link abendit;

end;
end;

return;

Introducing the IMS-DL/I DATA Step Interface 4 Using the DL/I INFILE Statement 169

abendit:
file log;
put _all_;
abort;

run;

proc print data=test;
title2 ’2 Files Combined’;

run;

filename employ clear;

The input source for the first INPUT statement is the DL/I PSB called ACCTSAM.
When the second INFILE statement is executed, an external file referenced by the
fileref EMPLOY becomes the current input source for the next INPUT statement. Then,
the input source switches back to the ACCTSAM PSB after soc_sec_number =
socsec. Notice the entire DL/I INFILE statement is not repeated; only the PSBname
and DLI are specified.

Remember that only one PSB can be used in a given DATA step, although that PSB
can be referenced in multiple INFILE statements.

Since the IMS database is being processed sequentially, the DATA step will
terminate as soon as either a GB status is returned from IMS or an end-of-file is
encountered when processing file EMPLOY.

Note: For the purposes of this example, the data in the EMPLOY file is in the same
order as the HDAM database used in the example and there is a one-to-one
correspondence between the values of SOC_SEC_NUMBER and SOCSEC. 4

Output 8.4 on page 169 shows the output of this example.

170 The DL/I INPUT Statement 4 Chapter 8

Output 8.4 Multiple Input Sources in a DATA Step

The SAS System

2 Files Combined

soc_sec_

OBS number customer_name addr_line_2 city state

1 667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD RAPIDAN VA

2 434-62-1234 SUMMERS, MARY T. 4322 LEON ST. GORDONSVILLE VA

3 436-42-6394 BOOKER, APRIL M. 9712 WALLINGFORD PL. GORDONSVILLE VA

4 434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA

5 434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA

6 178-42-6534 PATTILLO, RODRIGUES 9712 COOK RD. ORANGE VA

7 156-45-5672 O’CONNOR, JOSEPH 235 MAIN ST. ORANGE VA

8 657-34-3245 BARNHARDT, PAMELA S. RT 2 BOX 324 CHARLOTTESVILLE VA

9 667-82-8275 COHEN, ABRAHAM 2345 DUKE ST. CHARLOTTESVILLE VA

10 456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE. RICHMOND VA

11 234-74-4612 WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE RICHMOND VA

savings_

account_ savings_ savings_ savings_

OBS zip_code home_phone prt employer number amount date balance

1 22215-5600 803-657-3098 0 AAA 459923888253 784.29 12870 672.63

2 26001-0670 803-657-1687 0 NBC 345689404732 8406.00 12869 8364.24

3 26001-0670 803-657-1346 0 CTG 144256844728 809.45 12863 1032.23

4 26001-0670 803-657-3437 0 CBS 345689473762 130.64 12857 261.64

5 26001-0670 803-657-3437 1 CBS 345689498217 9421.79 12858 9374.92

6 26042-1650 803-657-1346 0 UMW 345689462413 950.96 12857 946.23

7 26042-1650 803-657-5656 0 AFL 345689435776 136.40 12869 284.97

8 25804-0997 803-345-4346 0 ITT 859993641223 845.35 12860 2553.45

9 25804-0997 803-657-7435 0 IBM 884672297126 945.25 12868 793.25

10 26502-3317 803-657-3566 0 SAS 345689463822 929.24 12867 924.62

11 26502-5317 803-467-4587 0 UNC

The DL/I INPUT Statement

If you are unfamiliar with the INPUT statement, refer to SAS Language Reference:
Dictionary for more information.

An INPUT statement reads from the file that is specified by the most recently
executed INFILE statement. If the INFILE statement is a DL/I INFILE statement, the
INPUT statement issues a DL/I get call and retrieves a segment or segments.

There are no special options for the DL/I INPUT statement as there are for the DL/I
INFILE statement. The form of the DL/I INPUT statement is the same as that of the
standard INPUT statement:

input variable optional specifications;

For example, suppose you are issuing a qualified get call for the CUSTOMER
segment. The DL/I INPUT statement might be coded like this:

input @1 soc_sec_number $char11.
@12 customer_name $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@142 country $char20.

Introducing the IMS-DL/I DATA Step Interface 4 Example 1: A Get Call 171

@162 zip_code $char10.
@172 home_phone $char12.
@184 office_phone $char12.;

When this DL/I INPUT statement executes, DL/I retrieves a CUSTOMER segment and
places it in the input buffer. Data for the variables specified in the DL/I INPUT
statement are then moved from the input buffer to SAS variables in the program data
vector by the SAS System.

Different forms of the INPUT statement can have different results:
� When an INPUT statement specifies variable names (as in the previous example),

the segment is usually retrieved and placed in the input buffer and the values are
moved immediately to SAS variables in the program data vector unless this form
of the INPUT statement is preceded by an INPUT statement with a trailing @
sign, for example, input@. The INPUT statement with a trailing @ sign is
described below.

� If the INPUT statement does not specify any variable names or options, as in this
example:

input;

a segment or segments are retrieved by the call and placed in the input buffer
but no data are mapped to the program data vector. Or, if the previous INPUT
statement was input@, this clears the hold.

� If the INPUT statement does not specify variable names but does have a trailing @:

input @;

a call is issued and one or more segments are retrieved and placed in the input
buffer. The trailing @ tells the SAS System to use the data just placed in the input
buffer when the next DL/I INPUT statement in that execution of the DATA step is
executed. In other words, the trailing @ tells SAS not to issue another call the
next time a DL/I INPUT statement is executed. Instead, SAS uses the data that
are already in the input buffer. This form of the INPUT statement is very useful
in IMS-DL/I DATA step programs. Refer to “Using the DL/I INPUT Statement” on
page 173 for more information.

� You can combine the form that names variables with the form that uses a trailing
@. In this example, a call is issued, a segment is retrieved and placed in the input
buffer, and values for the named variables are moved to SAS variables in the
program data vector:

input soc_sec_number $char11. @;

Because of the trailing @, SAS holds the segment in the input buffer for the
next INPUT statement.

Although the syntax of the DL/I INPUT statement and the standard INPUT
statement are the same, your use of the DL/I INPUT statement is often different.
Suggested uses of the DL/I INPUT statement are discussed in “Using the DL/I INPUT
Statement” on page 173.

Example 1: A Get Call
The following DATA step illustrates how to issue get calls using the DL/I INFILE

and DL/I INPUT statements:

data custchck;
retain ssa1 ’CUSTOMER*D ’

ssa2 ’CHCKACCT ’;

172 Example 1: A Get Call 4 Chapter 8

infile acctsam dli ssa=(ssa1,ssa2) status=st
pcbno=3;

input @1 soc_sec_number $char11.
@12 customer_name $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@142 country $char20.
@162 zip_code $char10.
@172 home_phone $char12.
@184 office_phone $char12.
@226 check_account_number $char12.
@238 check_amount pd5.2
@243 check_date mmddyy6.
@251 check_balance pd5.2;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
run;

proc print data=custchck;
title2 ’Customer Checking Accounts’;

run;

This DATA step creates a SAS data set, CUSTCHCK, with one observation for each
checking account in the ACCTDBD database. To build the data set, the program issues
qualified get-next path calls using unqualified SSAs for the CUSTOMER and
CHCKACCT segments. The path call is indicated by the *D command code in the
CUSTOMER SSA, SSA1. The PCBNO= option specifies the first eligible PCB that
permits path calls for the CUSTOMER segment of the ACCTDBD database.

The DL/I INFILE statement points to the ACCTSAM PSB and specifies two SSA
variables, SSA1 and SSA2. The SSA variables have already been assigned values and
lengths by the preceding RETAIN statement. Since these SSAs are not qualified, the
program access is sequential. In this get call, the status code is checked and the third
PCB is specified. Defaults are in effect for the other DL/I INFILE options: only get-next
calls are issued, the input buffer length is 1000 bytes, and segment names and PCB
mask data are not returned.

When the DL/I INPUT statement executes and status = ’ ’, the qualified GN call
is issued, the concatenated CUSTOMER and CHCKACCT segments are placed in the
input buffer, and data from both segments are moved to SAS variables in the program
data vector.

Output 8.5 on page 172 shows the output of this example.

Introducing the IMS-DL/I DATA Step Interface 4 Using the DL/I INPUT Statement 173

Output 8.5 Customer Checking Accounts

The SAS System

Customer Checking Accounts

soc_sec_ addr_

OBS number customer_name line_1 addr_line_2 city state

1 667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD RAPIDAN VA

2 667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD RAPIDAN VA

3 434-62-1234 SUMMERS, MARY T. 4322 LEON ST. GORDONSVILLE VA

4 436-42-6394 BOOKER, APRIL M. 9712 WALLINGFORD PL. GORDONSVILLE VA

5 434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA

6 434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA

7 178-42-6534 PATTILLO, RODRIGUES 9712 COOK RD. ORANGE VA

8 156-45-5672 O’CONNOR, JOSEPH 235 MAIN ST. ORANGE VA

9 657-34-3245 BARNHARDT, PAMELA S. RT 2 BOX 324 CHARLOTTESVILLE VA

10 667-82-8275 COHEN, ABRAHAM 2345 DUKE ST. CHARLOTTESVILLE VA

11 456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE. RICHMOND VA

12 234-74-4612 WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE RICHMOND VA

check_

account_ check_ check_ check_

OBS country zip_code home_phone office_phone number amount date balance

1 USA 22215-5600 803-657-3098 803-645-4418 345620145345 1702.19 12857 1266.34

2 USA 22215-5600 803-657-3098 803-645-4418 345620154633 1303.41 12870 1298.04

3 USA 26001-0670 803-657-1687 345620104732 826.05 12869 825.45

4 USA 26001-0670 803-657-1346 345620135872 220.11 12868 234.89

5 USA 26001-0670 803-657-3437 345620134564 2392.93 12858 2645.34

6 USA 26001-0670 803-657-3437 345620134663 0.00 12866 143.78

7 USA 26042-1650 803-657-1346 803-657-1345 745920057114 1404.90 12944 1502.78

8 USA 26042-1650 803-657-5656 803-623-4257 345620123456 353.65 12869 463.23

9 USA 25804-0997 803-345-4346 803-355-2543 345620131455 1243.25 12871 1243.25

10 USA 25804-0997 803-657-7435 803-645-4234 382957492811 7462.51 12876 7302.06

11 USA 26502-3317 803-657-3566 345620134522 608.24 12867 831.65

12 USA 26502-5317 803-467-4587 803-654-7238 345620113263 672.32 12870 13.28

Refer to “Example 6: Issuing Path Calls” on page 183 later in this chapter for a
detailed explanation of a sample IMS-DL/I DATA step program that includes a similar
DATA step.

Using the DL/I INPUT Statement
When a DL/I INPUT statement is executed, a DL/I get call is issued as formatted by

variables specified in the DL/I INFILE statement.

Checking Status Codes
A get call may or may not successfully retrieve the requested segments. For each

call issued, DL/I returns a status code that indicates whether or not the call was
successful. Since the success of a call can affect the remainder of the program, it is a
good idea to check status codes, especially in programs that use random access. You can
obtain the status code returned by DL/I with the STATUS= option or the PCBF= option
of the DL/I INFILE statement. Refer to your IBM documentation for explanations of
DL/I status codes.

In general, a call has been successful and the segment(s) has been obtained if the
automatic SAS variable _ERROR_ has a value of zero. This corresponds to a blank DL/I
return code, or codes of CC, GA, or GK. The SAS System sets _ERROR_ to 1 if any other
DL/I status code is returned or if the special SAS status code SE is returned. (The SE
code is generated when the SAS System cannot format a proper DL/I call from the

174 Using the DL/I INPUT Statement 4 Chapter 8

options specified.) If _ERROR_ is set to 1, the contents of the input buffer and the
program data vector are printed on the SAS log when another INPUT statement is
executed or when control returns to the beginning of the DATA step, whichever comes
first.

Some of the DL/I status codes that set _ERROR_ may not be errors to your SAS
program. When this is the case, you should check the actual return code as well as the
value of _ERROR_. For example, suppose you are writing a program that looks for a
segment with a particular value for a sequence field. If the segment is found, a replace
call (REPL) is issued to update the segment. If the segment is not found, _ERROR_ is
set to 1, but you do not consider the status code to be an error. Instead, you issue an
insert call (ISRT) to add a new segment.

If a status code sets _ERROR_ but you do not consider the status code to be an error,
you should reset _ERROR_ to zero prior to executing another INPUT or PUT statement
or returning to the beginning of the DATA step. Otherwise, the contents of the input
buffer and program data vector are printed on the SAS log.

Use of the Trailing @

You can use different forms of the DL/I INPUT statement to perform these general
functions:

� issue a DL/I get call

� place the retrieved segment in the input buffer

� move data from the input buffer to SAS variables in the program vector if
variables are named in the INPUT statement.

In some programs, it is important to check the values of the _ERROR_ or STATUS=
variables before moving data from the input buffer to SAS variables in the program
data vector. For example, if a get call fails to retrieve the expected segment, the input
buffer might still contain data from a previous get call or be filled with missing values.
You may not want to move these values to SAS variables. By checking the STATUS= or
ERROR variable, you determine whether or not the call was successful and can
decide whether or not to move the input buffer data to SAS variables.

Similarly, if you issue unqualified get calls with a PCB that is sensitive to more than
one segment type, you may need to know what type of segment was retrieved in order
to move data to the appropriate SAS variables.

When you want to issue a get call but you need to check _ERROR_ or STATUS=
variable values before moving data to SAS variables, use a DL/I INPUT statement with
a trailing @ to issue the call:

input @;

The trailing @ pointer control causes the SAS System to hold the current record
(segment) in the input buffer for the next DL/I INPUT statement. The next DL/I
INPUT statement to be executed does not issue another call and does not place a new
segment in the input buffer. Instead, the second INPUT statement uses the data placed
in the input buffer by the first INPUT statement.

If no variables are named in the first DL/I INPUT statement (as in the statement
shown in the previous paragraph), data are not moved from the buffer to SAS variables
until another DL/I INPUT statement specifying the variables is executed. Therefore,
before executing a second INPUT statement, you can check the value of the STATUS=
or PCBF= variable to determine whether or not the call was successful. You can also
check the _ERROR_ automatic variable and the SEGMENT= variable. After checking
these values, execute a second DL/I INPUT statement to move data to SAS variables, if
appropriate.

Introducing the IMS-DL/I DATA Step Interface 4 Using the DL/I INPUT Statement 175

Example 2: Using the Trailing @

This example shows the use of the trailing @. This DATA step creates two SAS data
sets, CHECKING and SAVINGS, from data in the CHCKACCT and SAVEACCT
segments of the ACCTDBD database. The PCB used defines CUSTOMER, CHCKACCT,
and SAVEACCT as sensitive segments. Since no CALL= or SSA= variables are
specified, all calls are unqualified get-next calls, and access is sequential.

Each call is issued by a DL/I INPUT statement with a trailing @, so the retrieved
segment is placed in the buffer and held there. Two variables are checked: ST and SEG
(the SEGMENT= variable). If a call results in an error, the job terminates. If a call is
successful, the program checks SEG to determine the type of the retrieved segment.
Because this is a sequential access program, a GB (end-of-file) status code is not treated
as an error by the program. Therefore, the program resets _ERROR_ to 0.

When SEG=’CUSTOMER’, execution returns to the beginning of the DATA step.
When the SEG value is CHCKACCT or SAVEACCT, another DL/I INPUT statement
moves the data to SAS variables in the program data vector, and the observation is
written to the appropriate SAS data set.

Output 8.6 on page 175 shows the output of this example:

data checking savings;
infile acctsam dli segment=seg status=st

pcbno=3;
input @;
if st = ’ ’ and

st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

do;
file log;
put _all_;
abort;

end;
if seg = ’CUSTOMER’ then

return;
else

do;
input @1 account_number $char12.

@13 amount pd5.2
@18 date mmddyy6.
@26 balance pd5.2;

if seg = ’CHCKACCT’ then
output checking;

else
output savings;

end;
run;

proc print data=checking;
title2 ’Checking Accounts’;

run;

proc print data=savings;
title2 ’Savings Accounts’;

run;

176 The DL/I FILE Statement 4 Chapter 8

Output 8.6 Checking and Savings Accounts

The SAS System
Checking Accounts

account_
OBS number amount date balance

1 345620145345 1702.19 12857 1266.34
2 345620154633 1303.41 12870 1298.04
3 345620104732 826.05 12869 825.45
4 345620135872 220.11 12868 234.89
5 345620134564 2392.93 12858 2645.34
6 345620134663 0.00 12866 143.78
7 745920057114 1404.90 12944 1502.78
8 345620123456 353.65 12869 463.23
9 345620131455 1243.25 12871 1243.25

10 382957492811 7462.51 12876 7302.06
11 345620134522 608.24 12867 831.65
12 345620113263 672.32 12870 13.28

The SAS System
Savings Accounts

account_
OBS number amount date balance

1 459923888253 784.29 12870 672.63
2 345689404732 8406.00 12869 8364.24
3 144256844728 809.45 12863 1032.23
4 345689473762 130.64 12857 261.64
5 345689498217 9421.79 12858 9374.92
6 345689462413 950.96 12857 946.23
7 345689435776 136.40 12869 284.97
8 859993641223 845.35 12860 2553.45
9 884672297126 945.25 12868 793.25

10 345689463822 929.24 12867 924.62

Note: If the DL/I call is issued by a DL/I INPUT statement with a trailing @ and
the status code sets _ERROR_, but you do not consider the status code to be an error
and you want to issue another get call in the same execution of the DATA step, then
you must first execute a blank DL/I statement: 4

input;

The blank DL/I INPUT statement clears the input buffer. If the buffer is not cleared by
issuing a blank INPUT statement, the next DL/I INPUT statement assumes that the
data to be retrieved are already in the buffer and does not issue a DL/I call. See
“Example 8: Using the Blank INPUT Statement” on page 189 for an example that
includes a blank INPUT statement.

The DL/I FILE Statement
If you are unfamiliar with the FILE statement, refer to SAS Language Reference:

Dictionary for more information.
The FILE statement identifies an external file to which information specified by a

PUT statement is written. In an IMS-DL/I DATA step, the DL/I FILE statement
specifies a PSB, which in turn identifies a DL/I database or message queue to be
accessed by a DL/I update call. The call is formatted using the values and variables

Introducing the IMS-DL/I DATA Step Interface 4 The DL/I PUT Statement 177

specified in the DL/I INFILE statement, which must precede the DL/I FILE statement
in the DATA step. The update call is issued when the corresponding DL/I PUT
statement is executed. In other words, to issue an update call you use a DL/I INFILE,
DL/I FILE, and DL/I PUT statement.

The form of the DL/I FILE statement is:

FILE PSBname DLI;

where

PSBname
specifies the same PSB referenced in the DATA step’s DL/I INFILE statement.
Refer to “The DL/I INFILE Statement” on page 160 for more information. A PSB
name must be specified.

DLI
tells the SAS System that the output file is a DL/I database or message queue.
DL/I must be specified and must be after the PSB name.

No other options (including standard FILE statement options) are recognized in the DL/
I FILE statement.

The DL/I FILE statement references a PSB that identifies a database or message
queue to which a corresponding DL/I PUT statement writes.

The most recently executed FILE statement determines the current output file. If you
are using more than one output file in a DATA step, there must be a FILE statement
for each file. Change the current output file from one to another by executing a
different FILE statement. To return to the original output file, repeat the original FILE
statement. The current output file does not change until a new FILE statement
executes, regardless of the number of PUT statements executed.

The DL/I PUT Statement
If you are unfamiliar with the PUT statement, refer to SAS Language Reference:

Dictionary for more information.
A PUT statement writes information to the file specified by the most recently

executed FILE statement. If the FILE statement is a DL/I FILE statement, the
corresponding PUT statement issues a DL/I update call.

There are no special options for a DL/I PUT statement as there are for the DL/I
INFILE and DL/I FILE statements. The form of the DL/I PUT statement is the same
as that of the standard PUT statement:

PUT variable optional specifications;

For example, assume that you are issuing an insert call for the CUSTOMER segment
of the ACCTDBD database. The following DL/I PUT statement (which looks just like a
standard PUT statement) formats a CUSTOMER segment and issues the ISRT call:

put @1 ssnumber $char11.
@12 custname $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 custcity $char28.
@140 custstat $char2.
@142 custland $char20.
@162 custzip $char10.
@172 h_phone $char12.
@184 o_phone $char12.;

178 Example 3: An Update Call 4 Chapter 8

Although the syntax of the DL/I PUT statement is identical to that of the standard PUT
statement, your use of the DL/I PUT is often different. Segment format and suggested
uses of the DL/I PUT statement are discussed in “Using the DL/I PUT Statement” on
page 179.

Example 3: An Update Call
This DATA step reads MYDATA.CUSTOMER, an existing SAS data set containing

information on new customers, and updates the ACCTDBD database with the data in
the SAS data set:

data _null_;
set mydata.customer;
length ssa1 $9;
infile acctsam dli call=func ssa=ssa1

status=st pcbno=4;
file acctsam dli;
func = ’ISRT’;
ssa1 = ’CUSTOMER’;
put @1 ssnumber $char11.

@12 custname $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 custcity $char28.
@140 custstat $char2.
@142 custland $char20.
@162 custzip $char10.
@172 h_phone $char12.
@184 o_phone $char12.;

if st = ’ ’ then
if st = ’LB’ or st = ’II’ then

error = 0;
else

do;
file log;
put _all_;
abort;

end;
run;

To update ACCTDBD with new occurrences of the CUSTOMER segment type, this
program issues qualified insert calls that add observations from MYDATA.CUSTOMER
to the database. The DL/I INFILE statement defines ACCTSAM as the PSB. Options in
the INFILE statement specify that

� the SAS variable FUNC contains the call function
� PCBNO= specifies the database PCB to use
� SSA1 contains the SSA that specifies the segment name of the segment to be

inserted
� STATUS= specifies where the status code is returned.

Defaults are in effect for the other DL/I INFILE options: the output buffer length is
1000 bytes, and segment names and PCB mask data are not returned.

If the ISRT call is not successful, the status code variable ST is set with the DL/I
status code and the automatic variable _ERROR_ is set to 1. After the ISRT call, the
status code variable ST is checked for non-blanks. If the variable value is either LB or

Introducing the IMS-DL/I DATA Step Interface 4 Using the DL/I PUT Statement 179

II, which indicate that the segment occurrence already exists, the automatic variable
ERROR is reset to 0 and processing continues. Otherwise, all values from the
program data vector are written to the SAS log, and the DATA step aborts.

Using the DL/I PUT Statement
A PUT statement writes data to the current output file, which is determined by the

most recently executed FILE statement. A DL/I PUT statement writes to a DL/I
database or message queue by issuing a DL/I update call. If you are unfamiliar with
the PUT statement, refer to SAS Language Reference: Dictionary for more information.

In order for a DL/I update call to be executed, the CALL= option must be specified in
the DL/I INFILE statement. The value of the CALL= variable must be set to the
appropriate update call before the DL/I PUT statement is executed. If CALL= is not
specified, the call function defaults to GN and no update calls can be issued.

The update call issued by a DL/I PUT statement may or may not be successful. DL/I
returns various status codes that indicate whether or not the update call was
successful. It is always a good idea to check the status code, but it is especially
important in an update program. If you are unfamiliar with DL/I status codes, consult
your IBM documentation for descriptions. Your SAS program can obtain the return
code if the STATUS= option of the INFILE statement is specified. The _ERROR_ and
STATUS= variable checking guidelines discussed in “Using the DL/I INPUT Statement”
on page 173 are also applicable to DL/I PUT statements.

REPL Call
When you replace a segment (REPL call) with a DL/I PUT statement, you must

place the entire segment in the output buffer, even if all fields are not being changed.
One way the buffer can be formatted is by specifying all fields and their locations.

For example, this DL/I PUT statement formats the entire CUSTOMER segment of the
ACCTDBD database:

put @1 ssnumber $char11.
@12 custname $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 custcity $char28.
@140 custstat $char2.
@142 custland $char20.
@162 custzip $char10.
@172 h_phone $char12.
@184 o_phone $char12.;

Another way to format the output buffer is with the _INFILE_ specification. If the
current input source is a DL/I INFILE and the last DL/I INPUT statement retrieved
the DL/I segment to be replaced, then the following DL/I PUT statement formats the
output buffer with the contents of the retrieved segment and holds the segment in the
output buffer until another DL/I PUT statement is executed:

put _infile_ @;

180 Using the DL/I PUT Statement 4 Chapter 8

A subsequent DL/I PUT statement can modify the data in the output buffer and
execute the REPL call.* Example 4 illustrates this technique.

Example 4: Issuing REPL Calls
In this example, CUSTOMER segments are updated with change-of-address

information from a Version 6 SAS data set called MYDATA.NEWADDR. The Version 6
DATA step interface works exactly like the Version 7 DATA step interface, except that
the Version 7 DATA step interface supports SAS variable and member names of up to
32 characters. The interface will work as long as the SAS variable names specified in
the DL/I INPUT statement match those specified in the DL/I PUT statement. Variables
in this SAS data set are SSN (social security number), NEWADDR1, NEWADDR2,
NEWCITY, NEWSTATE, and NEWZIP. After the CUSTOMER segment is retrieved, the
PUT statement formatting the output buffer is issued. The segment is held in the
output buffer until a second PUT statement is issued that executes a REPL call to
update the CUSTOMER segment.

Notice that SSA1, a qualified SSA, is constructed by concatenating the SSA
specification with the value of the SSN variable in the SAS data set. SSA1 is set to
blanks after the GHU call because an SSA is not needed for the REPL call. (Since the
program issues get calls with qualified SSAs, access is random.)

data _null_;
set mydata.newaddr;
length ssa1 $31;
infile acctsam dli ssa=ssa1 call=func

status=st pcbno=4;
ssa1 = ’CUSTOMER(SSNUMBER =’ || ssn || ’)’;
func = ’GHU ’;
input;
if st = ’ ’ then

do;
func = ’REPL’;
ssa1 = ’ ’;
file acctsam dli;
put _infile_ @;
put @52 newaddr1 $char30.

@82 newaddr2 $char30.
@112 newcity $char28.
@140 newstate $char2.
@162 newzip $char10.;

if st = ’ ’ then
link abendit;

end;
else

if st = ’GE’ then
error = 0;

else
link abendit;

return;

* The effect of a trailing @ in a DL/I PUT statement is slightly different from one in a DL/I INPUT statement. A trailing @ in
a DL/I PUT statement causes data to be moved to the output buffer but does not issue the update call. Instead, the call is
issued by the next DL/I PUT statement that does not terminate with a trailing @. In a DL/I INPUT statement with a
trailing @, the get call is issued, and data are moved to the input buffer. The next DL/I INPUT statement can then move
data to the program data vector.

Introducing the IMS-DL/I DATA Step Interface 4 Using the DL/I PUT Statement 181

abendit:
file log;
put _all_;
abort;

run;

Alternatively, the two DL/I PUT statements can be combined into one without the
trailing @ sign. For example:

data _null_;
set mydata.newaddr;
length ssa1 $31;
infile acctsam dli ssa=ssa1 call=func

status=st pcbno=4;
ssa1 = ’CUSTOMER(SSNUMBER =’||ssn||’)’;
func = ’GHU ’;
input;
if st = ’ ’ then

do;
func = ’REPL’;
ssa1 = ’ ’;
file acctsam dli;
put @1 _infile_

@52 newaddr1 $char30.
@82 newaddr2 $char30.
@112 newcity $char28.
@140 newstate $char2.
@162 newzip $char10.;

if st = ’ ’ then
link abendit;

end;
else

if st = ’GE’ then
error = 0;

else
link abendit;

return;

abendit:
file log;
put _all_;
abort;

run;

DLET Call
When issuing a delete call (DLET), DL/I requires that the sequence field of the

segment be formatted in the output buffer. The DL/I PUT statement can explicitly
format the sequence field. Alternatively, if the current INFILE is a DL/I INFILE and
the last DL/I INPUT statement retrieved the DL/I segment to be deleted, then the
following SAS statement formats the output buffer with the contents of the retrieved
segment (including the sequence field) and executes the DLET call:

put _infile_;

“Example 5: Issuing DLET Calls” on page 182 demonstrates this technique.

182 IMS-DL/I DATA Step Examples 4 Chapter 8

Example 5: Issuing DLET Calls
The following example deletes all WIRETRAN segments with a transaction date of

03/31/95:

data _null_;
length ssa1 $30;
retain db ’WIRETRN ’ ;
infile acctsam dli call=func dbname=db

ssa=ssa1 status=st;
func = ’GHN ’;
ssa1 = ’WIRETRAN(WIREDATE =03/31/95) ’;
input;
if st = ’ ’ then

do;
file acctsam dli;
func = ’DLET’;
ssa1 = ’ ’;
put _infile_;
if st = ’ ’ then

link abendit;
end;

else
if st = ’GB’ then

do;
error = 0;
stop;

end;
else

link abendit;
return;

abendit:
file log;
put _all_;
abort;

run;

Note: A check for a status code of GB is required in this DATA step because it uses a
qualified SSA and random access processing. In example 5, the DATA step does not set
the end-of-file condition, and the source logic must check for it to stop the DATA step
normally. 4

IMS-DL/I DATA Step Examples
Complete IMS-DL/I DATA step examples are presented in this section. Each example

illustrates one or more of the concepts described earlier in this chapter.
All of these examples are based on the sample databases, DBDs, and PSBs described

in Appendix 2. If you have not read the sample database descriptions, you should do so
before continuing this section.

It is assumed that the installation default values for IMS-DL/I DATA step system
options are the same as the default values described in Appendix 1. Statement options
used in these examples that are not IMS-DL/I DATA step statement extensions (for

Introducing the IMS-DL/I DATA Step Interface 4 Example 6: Issuing Path Calls 183

example, the HEADER= option in the FILE statement) are described in SAS Language
Reference: Dictionary.

Example 6: Issuing Path Calls
This example produces a report that shows the distribution of checking account

balances by ZIP code in the ACCTDBD database. SAS data set DISTRIBC is created
from data in the CUSTOMER and CHCKACCT segments. The segments are retrieved
with get-next calls using an unqualified SSA for the CUSTOMER segment with an *D
command code and an SSA for the CHCKACCT segment. Thus, both the CUSTOMER
and CHCKACCT segments are returned. The new SAS data set contains three
variables: CHECK_AMOUNT (from the CHCKACCT segment), ZIPRANGE (created
from the CUSTZIP value in the CUSTOMER segment), and BALRANGE (created from
the BALANCE variable). The distribution information is produced by the TABULATE
procedure from the DISTRIBC data set.

The numbered comments following this program correspond to the numbered
statements in the program:

u data distribc;
v length ziprange $11;
w keep ziprange

check_amount
balrange;

x retain ssa1 ’CUSTOMER*D ’
ssa2 ’CHCKACCT ’;

y infile acctsam dli ssa=(ssa1,ssa2) status=st
pcbno=3;

U input @162 zip_code $char10.
@238 check_amount pd5.2;

V if st = ’ ’ and
st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

W if st = ’GE’ then
do;

error = 0;
stop;

end;
X else

do;
file log;
put _all_;

at abort;
end;

ak balrange=check_amount;
al ziprange=substr(zip_code,1,4)

||’0-’||substr(zip_code,1,4)||’9’;
title ’Checking Account Balance Distribution

By ZIP Code’;

am proc format;
value balrang

184 Example 6: Issuing Path Calls 4 Chapter 8

low-249.99 = ’under $250’
250.00-1000.00 = ’$250 - $1000’
1000.01-high = ’over $1000’;

an proc tabulate data=distribc;
class ziprange balrange;
var check_amount;
label balrange=’balance range’;
label ziprange=’ZIP code range’;
format ziprange $char11. balrange balrang.;
keylabel sum= ’$ total’ mean =’$ average’

n=’# of accounts’;
table ziprange*(balrange all),

check_amount*(sum*f=14.2 mean*f=10.2 n*f=4);
run;

u The DATA statement specifies DISTRIBC as the name of the SAS
data set created by this DATA step.

v The length of the new variable ZIPRANGE is set.

w The new data set will contain only the three variables specified in
the KEEP statement.

x The RETAIN statement specifies values for the two SSA variables,
SSA1 and SSA2. SSA1 is an unqualified SSA for the CUSTOMER
segment with the command code for a path call, *D. This command
code means that the CUSTOMER segment is returned along with
the CHCKACCT segment that is its child. SSA2 is an unqualified
SSA for the CHCKACCT segment. Without the *D command code in
SSA1, only the target segment, CHCKACCT, would be returned.

These values are retained for each iteration of the DATA step.
The RETAIN statement, which initializes the variables, satisfies the
requirement that the length of an SSA variable be specified before
the DL/I INFILE statement is executed.

y The INFILE statement specifies ACCTSAM as the PSB. The DLI
specification tells the SAS System that the step will access DL/I
resources. Two variables containing SSAs are identified by the SSA=
option, SSA1 and SSA2. Their values were set by the earlier
RETAIN statement. The STATUS= option specifies the ST variable
for status codes returned by DL/I. The PCBNO= option specifies
which PCB to use.

These defaults are in effect for the other DL/I INFILE options: all
calls are get-next calls, the input buffer has a length of 1000 bytes,
and the segment, and PCB mask data are not returned. No qualified
SSAs are used; therefore, program access is sequential.

U The DL/I INPUT statement specifies positions and informats for the
necessary variables in both the CUSTOMER and CHCKACCT
segments because the path call returns both segments. When this
statement executes, the GN call is issued. If successful,
CUSTOMER and CHCKACCT segments are placed in the input
buffer and the ZIP_CODE and CHECK_AMOUNT values are then
moved to SAS variables in the program data vector.

Introducing the IMS-DL/I DATA Step Interface 4 Example 6: Issuing Path Calls 185

V If the qualified GN call issued by the DL/I INPUT statement is not
successful (that is, it obtains any return code other than blank, CC,
GA, or GK), the automatic SAS variable _ERROR_ is set to 1 and the
DO group (statements 8 through 10) is executed.

W If the ST variable value is GE (a status code meaning that the
segment or segments were not found), the SAS System stops
execution of the DATA step. _ERROR_ is reset to 0 so that the
contents of the input buffer and program data vector are not printed
on the SAS log. This statement is included because of a DL/I
feature. In a program issuing path calls, DL/I sometimes returns a
GE status code when it reaches end-of-database. The GB
(end-of-database) code is returned if another get call is issued after
the GE code. Therefore, in this program, the GE code can be
considered the end-of-file signal rather than an error condition.

X For any other non-blank status code, all values from the program
data vector are written to the SAS log.

at The DATA step execution terminates and the job aborts.

ak If the qualified GN call is successful, BALRANGE is assigned the
value of CHECK_AMOUNT.

al The ZIPRANGE variable is created using the SUBSTR function with
the ZIP_CODE variable.

am PROC FORMAT is invoked to create a format for the BALRANGE
variable. These formats are used in the PROC TABULATE output.

an PROC TABULATE is invoked to process the DISTRIBC data set.

Output 8.7 on page 185 shows the output of this example.

186 Example 7: Updating Information in the CUSTOMER Segment 4 Chapter 8

Output 8.7 Checking Account Balance Distribution by ZIP Code

Checking Account Balance Distribution By ZIP code

--
	check_amount		

			# of
			acc-
			oun-
	$ total	$ average	ts
-------------------------------+--------------+----------+----			
ZIP code range	balance range		
---------------+---------------			
22210-22219	over $1000	4410.50	1470.17
	---------------+--------------+----------+----		
	All	4410.50	1470.17
---------------+---------------+--------------+----------+----			
25800-25809	balance range		

	over $1000	8705.76	4352.88
	---------------+--------------+----------+----		
	All	8705.76	4352.88
---------------+---------------+--------------+----------+----			
26000-26009	balance range		

	under $250	220.11	110.06
	---------------+--------------+----------+----		
	$250 - $1000	826.05	826.05
	---------------+--------------+----------+----		
	over $1000	2392.93	2392.93
	---------------+--------------+----------+----		
	All	3439.09	859.77
---------------+---------------+--------------+----------+----			
26040-26049	balance range		

	$250 - $1000	353.65	353.65
	---------------+--------------+----------+----		
	All	353.65	353.65
---------------+---------------+--------------+----------+----			
26500-26509	balance range		

	$250 - $1000	1280.56	640.28
	---------------+--------------+----------+----		
	All	1280.56	640.28
--

Example 7: Updating Information in the CUSTOMER Segment

This example uses GHN calls to retrieve CUSTOMER segments and then tests the
values of the STATE and COUNTRY fields. If a segment has a valid value for STATE
but does not have COUNTRY=’UNITED STATES’, the COUNTRY value is changed to
UNITED STATES and the corrected segment is replaced using a REPL call.

Follow the notes corresponding to the numbered statements in the following code for
a detailed explanation of this example:

filename tranrept ’<your.sas.tranrept>’ disp=old;
data _null_;
u length ssa1 $ 9;
v infile acctsam dli ssa=ssa1 call=func pcbno=4

status=st;
w func = ’GHN ’;
x ssa1 = ’CUSTOMER’;

Introducing the IMS-DL/I DATA Step Interface 4 Example 7: Updating Information in the CUSTOMER Segment 187

y input @12 customer_name $char40.
@140 state $char2.
@142 country $char20.;

U if st = ’ ’ and
st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

link abendit;
V if country = ’UNITED STATES’ &

state < ’Z ’ &
state > ’A ’ then

do;
W oldland = country;
X country = ’UNITED STATES’;
at file acctsam dli;
ak func = ’REPL’;
al ssa1 = ’ ’;
am put @1 _infile_

@142 country;
an if st = ’ ’ then

link abendit;
ao file tranrept header=newpage notitles;
ap put @10 customer_name

@60 state
@65 oldland;

aq end;
ar return;

as newpage: put / @15
’Customers Whose Country was Changed to

UNITED STATES’
// @17 ’Name’ @58 ’State’ @65 ’old Country’;

bt return;

abendit:
file log;
put _all_;
abort;

run;
filename tranrept clear;

u The length of SSA1, an SSA variable specified in the INFILE
statement, is set prior to execution of the DL/I INFILE statement,
as required.

v The INFILE statement specifies ACCTSAM as the PSB, and the DLI
specification tells the SAS System that this step will access DL/I
resources. The SSA= option identifies SSA1 as a variable that
contains a Segment Search Argument. (The length of SSA1 was
established by the LENGTH statement.) The CALL= option specifies
FUNC as the variable containing DL/I call functions, and STATUS
is used to return the status code. The value of PCBNO is used to
select the appropriate PCB for this program. This value is carried
over in successive executions of the DATA step.

188 Example 7: Updating Information in the CUSTOMER Segment 4 Chapter 8

These defaults are in effect for other DL/I INFILE options: the
input and output buffers are 1000 bytes in length, and segment
names and PCB mask data are not returned. Program access is
sequential.

w The FUNC variable is assigned a value of GHN, so the next DL/I
INPUT statement issues a get-hold-next call.

x The SSA1 variable is assigned a value of CUSTOMER. The GHN call
is qualified to retrieve a CUSTOMER segment.

y The DL/I INPUT statement specifies positions and informats for
some of the fields in the CUSTOMER segment. When this statement
executes, a qualified GHN call is issued. If the call is successful, a
CUSTOMER segment is retrieved and placed in the input buffer.
Since variables are named in the INPUT statement, the segment
data are moved to SAS variables in the program data vector.

U When a call is not successful (that is, when the DL/I status code is
something other than blank, CC, GA, or GK), the automatic SAS
variable _ERROR_ is set to 1. If the status code is set to GB
(indicating end of database), and if the DATA step is processing
sequentially (as this one is), the DATA step is stopped automatically
with an end-of-file return code sent to the SAS System.

V If the call is successful, the values of COUNTRY and STATE are
checked. If COUNTRY is not UNITED STATES, and the STATE
value is alphabetic, a DO group (statements 8 through 17) executes.

W The value of COUNTRY is assigned to a new variable called
OLDLAND.

X COUNTRY’s value is changed to UNITED STATES.

at A DL/I FILE statement indicates that an update call is to be issued.
Notice that the FILE statement specifies the same PSB named in
the DL/I INFILE statement, as required.

ak The value of FUNC is changed from GHN to REPL. If the FUNC
value is not changed, an update call cannot be issued.

al The value of SSA1 is changed from CUSTOMER to blanks. Since
the REPL call uses the segment retrieved by the GHN call, an SSA
is not needed.

am The DL/I PUT statement formats the CUSTOMER segment in the
output buffer and issues the REPL call. The entire segment must be
formatted, even though the value of only one field, COUNTRY, is
changed.

an If the REPL call is not successful (that is, the status code from DL/I
was not blank), all values from the program data vector are written
to the SAS log and the DATA step aborts.

ao If the REPL call is successful, the step goes on to execute another
FILE statement. This is not a DL/I FILE statement; instead, it
specifies the fileref (TRANREPT) of an output file for a printed
report on the replaced segments. The HEADER= option points to
the NEWPAGE subroutine. Each time a new page of the update
report is started, the SAS System links to NEWPAGE and executes
the statement.

Introducing the IMS-DL/I DATA Step Interface 4 Example 8: Using the Blank INPUT Statement 189

ap The PUT statement specifies variables and positions to be written to
the TRANREPT output file.

aq The DO group is terminated by the END statement.

ar Execution returns to the beginning of the DATA step when this
RETURN statement executes.

as This PUT statement executes when a new page starts in the output
file TRANREPT. The HEADER= option in the FILE TRANREPT
statement points to the NEWPAGE label, so when a new page
begins, the SAS System links to this labeled statement and prints
the specified heading.

bt After printing the heading, the SAS System returns to the PUT
statement immediately after the FILE TRANREPT statement (item
16) and continues execution of the step.

Example 8: Using the Blank INPUT Statement
This program calculates customer balances by retrieving a CUSTOMER segment

and then all CHCKACCT and SAVEACCT segments for that customer record. The
CUSTOMER segments are retrieved by qualified get-next calls, and the CHCKACCT
and SAVEACCT segments are retrieved by qualified get-next-within-parent calls. A GE
or GB status when retrieving the CHCKACCT and SAVEACCT segments indicates that
there are no more of that segment type for the current parent segment (CUSTOMER).

The numbered comments following this program correspond to the numbered
statements in the program:

u data balances;
v length ssa1 $9;
w keep soc_sec_number

chck_bal
save_bal;

x chck_bal = 0;
save_bal = 0;

y infile acctsam dli pcbno=4 call=func ssa=ssa1
status=st;

U func = ’GN ’;
V ssa1 = ’CUSTOMER ’;

W input @;
X if st = ’ ’ and

st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

link abendit;

at input @1 soc_sec_number $char11.;
ak st = ’ ’;
al func = ’GNP ’;
am ssa1 = ’CHCKACCT ’;

an do while (st = ’ ’);

190 Example 8: Using the Blank INPUT Statement 4 Chapter 8

ao input @;
ap if st = ’ ’ then

do;
aq input @13 check_amount pd5.2;
ar chck_bal=chck_bal + check_amount;
as end;
bt end;

bk if st = ’GE’ then
link abendit;

bl st = ’ ’;
bm _error_ = 0;
bn input;
bo ssa1 = ’SAVEACCT ’;

bp do while (st = ’ ’);
input @;
if st = ’ ’ then

do;
input @13 savings_amount pd5.2;
save_bal = save_bal + savings_amount;

end;
end;

if st = ’GE’ then
error = 0;

else
link abendit;

return;

bq abendit:
file log;
put _all_;
abort;

run;

br proc print data=balances;
title2 ’Customer Balances’;

run;

u The DATA step creates a new SAS data set called BALANCES.

v The length of SSA1, an SSA variable specified in the INFILE
statement, is set prior to execution of the DL/I INFILE statement,
as required.

w The KEEP statement tells the SAS System that the variables
SOC_SEC_NUMBER, CHCK_BAL, and SAVE_BAL are the only
variables to be included in the BALANCES data set.

x The CHCK_BAL and SAVE_BAL variables are assigned an initial
value of 0 and are reset to 0 for each new customer.

y The INFILE statement specifies ACCTSAM as the PSB, and the DLI
specification tells the SAS System that this step will access DL/I
resources. The SSA= option identifies SSA1 as a variable that

Introducing the IMS-DL/I DATA Step Interface 4 Example 8: Using the Blank INPUT Statement 191

contains an SSA. (The length of SSA1 was established by the
LENGTH statement.) The CALL= option specifies FUNC as the
variable containing DL/I call functions, and the PCBNO= option
specifies which database PCB should be used.

These defaults are in effect for the other DL/I INFILE statement
options: the input buffer is 1000 bytes in length, and segment
names and PCB mask data are not returned. There are no qualified
SSAs in the program, so access is sequential.

U The FUNC variable is assigned a value of GN, so the next DL/I
INPUT statement will issue a get-next call.

V The SSA1 variable is assigned a value of CUSTOMER, so the GN
call will retrieve the CUSTOMER segment.

W The only specification in the DL/I INPUT statement is the trailing @
sign. When the statement executes, the GN call is issued and, if the
call is successful, a CUSTOMER segment is retrieved and placed in
the input buffer. Since no variables are named in the INPUT
statement, the segment data are not moved to SAS variables in the
program data vector. Instead, the segment is held in the input
buffer for the next DL/I INPUT statement that executes (that is, the
next DL/I INPUT statement does not issue a call but uses the data
already in the buffer).

X When a call is not successful (that is, when the DL/I status code is
something other than blank, CC, GA, or GK), the automatic SAS
variable _ERROR_ is set to 1. If the status code is set to GB
(indicating end of database) and if the DATA step is processing
sequentially (as this one is), the DATA step is stopped automatically
with an end-of-file return code sent to the SAS System.

at If the call is successful, this DL/I INPUT statement executes. It
moves the SOC_SEC_NUMBER value from the input buffer (where
the segment was placed by the previous DL/I INPUT statement) to a
SAS variable in the program data vector.

ak The value of the ST variable for status codes is reset to blanks.

al The value of the FUNC variable is reset to GNP. The next call issued
will be a get-next-within-parent call.

am The SSA1 variable is reset to CHCKACCT, so the next call will be for
CHCKACCT.

an This DO/WHILE statement initiates a DO-loop (statements 15
through 20) that iterates as long as blank status codes are returned.

ao Again, the only specification in this DL/I INPUT statement is the
trailing @ sign. When the statement executes, the GNP call is
issued for a CHCKACCT segment. If the call is successful, a
CHCKACCT segment is retrieved and placed in the input buffer.
The segment data are not moved to SAS variables in the program
data vector. Instead, the segment is held in the input buffer for the
next DL/I INPUT statement that executes.

ap If a blank status code is returned, the GNP call was successful, and
a DO-group (statements 17 and 18) executes.

aq This DL/I INPUT statement moves the CHECK_AMOUNT value (in
the PD5.2 format) from the input buffer to a SAS variable in the
program data vector.

192 Example 9: Using the Qualified SSA 4 Chapter 8

ar The variable CHCK_BAL is assigned a new value by adding the
value of CHECK_AMOUNT just obtained from the CHCKACCT
segment.

as The END statement signals the end of the DO-group.

bt This END statement ends the DO-loop.

bk If the GNP call is not successful and returns a non-blank status code
other than GE, the DATA step stops and the job abends.

bl If the GNP call is not successful and returns a GE status code, the
remainder of the step executes. (The GE status code indicates that
all checking accounts for the customer have been processed.) In this
statement, the ST= variable is reset to blanks.

bm _ERROR_ is reset to 0 to prevent the SAS System from printing the
contents of the input buffer and program data vector to the SAS log.

bn The blank INPUT statement releases the hold placed on the input
buffer by the last INPUT @; statement. This allows you to issue
another call with the next DL/I INPUT statement.

bo The SSA1 variable is reset to SAVEACCT, so the next call will be
qualified for SAVEACCT.

bp This DO/WHILE statement initiates a DO loop that is identical to
the one described in items 14 through 20, except that the GNP calls
retrieve SAVEACCT segments rather than CHCKACCT segments.
The GNP calls also update SAVE_BAL.

bq The ABENDIT code, if linked to, aborts the DATA step.

br The PROC PRINT step prints the BALANCES data set created by
the IMS-DL/I DATA step.

Output 8.8 on page 192 shows the output of this example.

Output 8.8 Customer Balances

Customer Balances

soc_sec_
OBS chck_bal save_bal number

1 3005.60 784.29 667-73-8275
2 826.05 8406.00 434-62-1234
3 220.11 809.45 436-42-6394
4 2392.93 9552.43 434-62-1224
5 0.00 0.00 232-62-2432
6 1404.90 950.96 178-42-6534
7 0.00 0.00 131-73-2785
8 353.65 136.40 156-45-5672
9 1243.25 845.35 657-34-3245

10 7462.51 945.25 667-82-8275
11 608.24 929.24 456-45-3462
12 672.32 0.00 234-74-4612

Example 9: Using the Qualified SSA
In this example, path calls with qualified SSAs are used to produce a report showing

which accounts in the ACCTDBD database had checking account debits on March 28,

Introducing the IMS-DL/I DATA Step Interface 4 Example 9: Using the Qualified SSA 193

1995. The numbered comments following this program correspond to the numbered
statements in the program:

filename tranrept ’your.sas.tranrept’ disp=old;
data _null_;
u retain ssa1 ’CHCKACCT*D ’

ssa2 ’CHCKDEBT(DEBTDATE =032895) ’;

v infile acctsam dli ssa=(ssa1,ssa2) status=st
pcbno=4;

w input @1 check_account_number $char12.
@13 check_amount pd5.2
@18 check_date mmddyy8.
@26 check_balance pd5.2
@41 check_debit_amount pd5.2
@46 check_debit_date mmddyy8.
@54 check_debit_time time8.
@62 check_debit_desc $char40.;

x if st = ’ ’ and
st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

y if st = ’GB’ | st = ’GE’ then
do;

error = 0;
stop;

end;
U else

do;
file log;
put _all_;

V abort;
end;

W file tranrept header=newpage notitles;
X put @10 check_account_number

@30 check_debit_amount dollar13.2
@45 check_debit_time time8.
@55 check_debit_desc;

at return;
ak newpage: put / @15 ’Checking Account Debits

Occurring on 03/28/95’
// @08 ’Account Number’ @37 ’Amount’

@49 ’Time’ @55 ’Description’ //;
al return;
run;
filename tranrept clear;

u The RETAIN statement specifies values for the two SSA variables,
SSA1 and SSA2.

SSA1 is an SSA for the CHCKACCT segment with the command
code for a path call, *D. This command code means that the
CHCKACCT segment is returned as well as the target segment,

194 Example 9: Using the Qualified SSA 4 Chapter 8

CHCKDEBT. SSA2 is a qualified SSA specifying that CHCKDEBT
segments for which DEBTDATE=032895 be retrieved.

These values are retained for each iteration of the DATA step.
The RETAIN statement satisfies the requirement that the length of
an SSA variable be specified before the DL/I INFILE statement.

v The INFILE statement specifies ACCTSAM as the PSB. The DLI
specification tells the SAS System that the step will access DL/I
resources. Two variables containing SSAs are identified by the SSA=
option, SSA1 and SSA2. (Their values were set by the earlier
RETAIN statement.) The STATUS= option specifies the ST variable
for status codes returned by DL/I, and the PCBNO= option specifies
the PCB selection.

These defaults are in effect for the other DL/I INFILE options: all
calls are get-next calls, the input buffer length is 1000, and the
segment names and PCB mask data are not returned.

w When the DL/I INPUT statement executes, the GN call is issued. If
successful, CHCKACCT and CHCKDEBT segments are placed in the
input buffer, and the values are then moved to SAS variables in the
program data vector. The DL/I INPUT statement specifies positions
and informats for the variables in both the CHCKACCT and
CHCKDEBT segments because the path call returns both segments.

x If the qualified GN call issued by the DL/I INPUT statement is not
successful (that is, it obtains any return code other than blank, CC,
GA, or GK), _ERROR_ is set to 1 and the program does further
checking.

y If the ST variable value is GB (a status code meaning that the
end-of-file has been reached) or GE (segment not found), _ERROR_ is
reset to 0 so that the contents of the input buffer and program data
vector are not printed to the SAS log, and the SAS System stops
processing the DATA step. In a program issuing path calls with
qualified SSAs, DL/I may first return a GE status code when it
reaches end-of-file. Then, if another get call is issued, DL/I returns
the GB status code. Therefore, in this program, we treat a GE code
as a GB code.

In a sequential-access program with unqualified SSAs, this
statement is not necessary because the end-of-file condition stops
processing automatically. However, when a program uses qualified
SSAs, the end-of-file condition is not set on because DL/I may not be
at the end of the database. Therefore, you need to check status
codes and explicitly stop the step.

U For any other non-blank return code, all values from the program
data vector are written to the SAS log.

V The DATA step execution terminates, and the job abends.

W If the GN call is successful, the step goes on to execute another
FILE statement. This is not a DL/I FILE statement; instead, it
specifies the fileref (TRANREPT) of an output file for a printed
report on the retrieved segments.

The HEADER= option points to the NEWPAGE statement label
(statement 11). When a new page begins, the SAS System links to
the labeled statement and prints the specified heading.

Introducing the IMS-DL/I DATA Step Interface 4 Example 9: Using the Qualified SSA 195

X The PUT statement specifies variables and positions to be written to
the output file.

at Execution returns to the beginning of the DATA step when this
RETURN statement executes.

ak The PUT statement labeled NEWPAGE executes when a new page
is started in the output file TRANREPT. This PUT statement writes
the title for the report at the top of the new page.

al After printing the heading, the SAS System returns to the PUT
statement immediately after the FILE TRANREPT statement
(statement 8) and continues execution of the step.

196 Example 9: Using the Qualified SSA 4 Chapter 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS ® Interface to IMS-DL/I Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. 316 pp.

SAS/ACCESS® Interface to IMS-DL/I Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–548–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

