
197

C H A P T E R

9
Using the SAS/ACCESS Interface
to IMS-DL/I DATA Step Interface

Introduction 197
Fast Path DL/I Database Access 198

FLD Call 198

POS Call 199

Non-Database Access Calls 199

Basic CHKP Call 200
CHKP Calls in IMS/ESA BMP Regions 200

I/O PCBs 202

TP PCBs 202

Feedback Data 203

OS/390 DL/I System Calls 204

LOG Call 205
ROLL Call 206

ROLB Call 206

IMS/ESA BMP System Calls 207

DEQ Call 207

ROLB Call 208
CMD Call 210

GCMD Call 211

IMS/ESA Message Queue Access 212

Get Calls That Use the I/O PCB 212

ISRT Calls to Message Queues 214
Notes on Inserting Message Segments 215

PURG Calls for Message Segments 216

CHNG Call to TP PCBs 216

Introduction

The SAS/ACCESS interface to IMS-DL/I can access databases through a DLI or DBB
batch region, and an IMS/ESA DB/DC BMP region.* Chapter 8, “Introducing the
IMS-DL/I DATA Step Interface,” on page 151 describes DATA step programming
statements and DL/I statements that are available with the IMS-DL/I DATA step
interface. This chapter describes Fast Path DL/I database access and non-database
access calls.

* Beginning with Version 6, the SLI region type is not supported; SLI functionality is supported through BMP regions.
Databases that are allocated to CICS control regions can be accessed by SAS applications through a BMP region by using
the DBCTL facility of IMS/ESA and CICS/ESA.

198 Fast Path DL/I Database Access 4 Chapter 9

Fast Path DL/I Database Access

The following two Fast Path database types are supported by the IMS-DL/I DATA
step interface by using a BMP region:

� Main Storage Data Bases (MSDBs) store and provide access to an installation’s
most frequently used data, which reside in virtual storage during execution. The
data are stored in segments, and each segment can be available to all terminals or
to specific terminals.

� Data Entry Data Bases (DEDBs) provide a high level of availability for, and
efficient access to, large volumes of detailed data. They are hierarchic structures
that contain a special type of segment that is used for the fast collection of
detailed information. The segments are called sequential dependent segments
because they are stored in time sequence as they are committed to the database.

Standard DL/I database calls can be used with a PCB that references an MSDB or
DEDB to access database segments. Two additional calls are available:

� The FLD call allows read and update access to a field in an MSDB.

� The POS call returns information about the position of the current sequential
dependent segment in a DEDB and free space in the DEDB area.

The IMS-DL/I DATA step interface supports the FLD and POS calls from a BMP
region.

FLD Call
The FLD call is used to verify and, optionally, to update the contents of one or more

fields in an MSDB segment. Individual field verification or change specifications are
specified in Field Search Arguments (FSAs). (The format and use of FSAs are described
in the IBM publication IMS/ESA: Application Programming: EXEC DLI Commands
for CICS and IMS.) FSAs are passed to DL/I in the I/O area. Therefore, in the IMS-DL/
I DATA step interface, the PUT statement is used to format the FSAs in the output
buffer and to execute the FLD call.

Like any DL/I call, the FLD call returns a status code. In addition, DL/I returns
abnormal status information for each FSA in the call. If a non-blank status code is
returned from a FLD call, it may be necessary to examine the contents of the FSA
return codes. The DL/I INFILE statement option FSARC= specifies a 200-byte
character variable to which the first 200 FSA status code bytes can be returned.

The following example issues a FLD call against an MSDB called INVNTORY:

ssa1=’PRODUCT (PRODUCT = LOCKS)’;
infile msdbpsb dli call=cfunc dbname=database

ssa=ssa1 fsarc=fsa_rc;
file msdbpsb dli;
cfunc = ’FLD ’;
database = ’INVNTORY’;
put @1 ’QUANTITY H100*QUANTITY -100*ORDERS +1 ’;

The call accesses a segment called PRODUCT containing data on locks. The FLD call
performs these functions:

� verifies that the QUANTITY field is greater than 100

� updates the QUANTITY field by subtracting 100 from its current value

� updates the ORDERS field by adding 1 to its value.

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 Non-Database Access Calls 199

If the QUANTITY field value is not greater than 100 when the FLD call is executed,
the return code for the first FSA contains a D. The following statements check for
errors in the call and print an appropriate message on the SAS log for this error:

if _error_ then do;
file log;
if substr(fsa_rc,1,1) = ’D’
then put / ’*** Quantity of Product Locks Less

Than 100 ***’;
put _all_;
error=0;
end;

POS Call
The POS call is used with a DEDB to perform one of the following:
� retrieve the position of a specific sequential dependent segment
� retrieve the position of the last inserted sequential dependent segment
� find out how much free space is available within a DEDB area.

In an IMS-DL/I DATA step program, the POS call is issued with a DL/I INPUT
statement and a DB PCB. After a POS call is issued, the input buffer is formatted with
the requested data as explained in the IBM publication IMS/ESA: Application
Programming: EXEC DLI Commands for CICS and IMS.

The SAS statements below execute a POS call for a DEDB called ORDERS:

retain ssa1 ’PRODUCT (PRODUCT = LOCKS)’;
infile dedbpsb dli call=cfunc dbname=database

ssa=ssa1;
cfunc = ’POS ’;
database = ’ORDERS ’;
input @3 areaname $char8.

@11 cycl_cnt $pib4.
@15 vsam_rba $pib4.;

The call obtains the position of the last inserted ORDRITEM sequential dependent
segment for the locks PRODUCT segment.

Non-Database Access Calls
Some DL/I calls communicate with DL/I for reasons other than database access. This

section describes how to use the non-database calls in IMS-DL/I DATA step programs.
Most non-database calls can be used only in particular DL/I region types. An

exception is the basic CHKP call, which is supported in all DL/I region types that can
be accessed through OS/390. The basic CHKP call is described in the next section.

Most of the other DL/I calls in this section require an I/O PCB or TP PCBs, so
descriptions of the I/O and TP PCBs follow the section on the basic CHKP call.
Following that section is a section on calls that can be issued by all OS/390 DL/I region
types. Finally, calls that can be executed only from an IMS/ESA BMP region are
described.

200 Basic CHKP Call 4 Chapter 9

Basic CHKP Call
The basic CHKP call can be issued in batch DL/I regions as well as in online DL/I

regions. This call establishes a program synchronization point.* (Synchronization
points are described in “General Considerations for Sharing Resources” on page 34.)

The following example shows SAS programming statements that issue a CHKP call.
The example is run using the SAS system option IMSREGTP=DLI:

data _null_;
retain chkpnum 0;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’CHKP’;
pcbindex = 1;
chkpnum = chkpnum +1;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then

return;
file log;
put _all_;
abort;

run;

The CHKPNUM variable, first referenced in the RETAIN statement, is used to build
a checkpoint ID. A checkpoint ID is an 8-byte value that is written to the DL/I log record
to identify the program checkpoint. A checkpoint ID is not required but is very useful
and should be included routinely in programs that issue CHKP calls. In this example,
the checkpoint ID is built in the output buffer. If the same sequence of statements is
used for each CHKP call, the checkpoint ID is incremented by 1 for each call.

The PCB= variable, PCBINDEX, has a value of 1. This indicates that the first
eligible PCB is used for the CHKP call. A CHKP call requires the I/O PCB that is the
first PCB in the PSB (see “I/O PCBs” on page 202).

Note: An I/O PCB is always generated for PSBs in a BMP region. If you are going
to issue a CHKP call under DL/I, you must use the CMPAT=YES option in the
PSBGEN statement for batch regions DLI and DBB. If an I/O PCB is not present, you
get the message that the call is invalid for a DB PCB. 4

The CHKP call is successful if _ERROR_=0 and the STATUS= variable (ST) is blank.
Otherwise, the STATUS= variable contains a status code that indicates the cause of the
failure. In particular, an XD status code in an IMS/ESA BMP region indicates that the
IMS/ESA control region is being shut down.

CHKP Calls in IMS/ESA BMP Regions
A CHKP call performs an additional function when it is issued in an IMS/ESA BMP

transaction-processing program (that is, when the SAS system option IMSBPIN=
specifies a valid transaction code and the PCB used is type TP). In addition to
establishing a synchronization point, the call returns the first segment of the next
message to the call’s I/O area. Since a CHKP call is issued by a DL/I PUT statement,
the I/O area is the SAS output buffer.

* The OS/VS checkpoint option of the CHKP call in an IMS/ESA DL/I region is not supported in the IMS-DL/I DATA step
interface.

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 Basic CHKP Call 201

You cannot read from the output buffer in a DATA step, but you can access the
message segments that are placed in the output buffer. You format a GU call that uses
the I/O PCB. When the DL/I INPUT statement executes, the SAS/ACCESS interface
remembers that the output buffer contains data from a previous CHKP call. Instead of
issuing the GU call, the SAS/ACCESS interface moves the segment from the output
buffer to the input buffer, where it can be read. Therefore, in a BMP
transaction-processing program, the first call issued after a CHKP call must be a GU
that references the I/O PCB.*

Consider the previous example in “Basic CHKP Call” on page 200, which shows SAS
statements that issue a CHKP call. If you issue the CHKP call in a BMP
transaction-processing program, additional statements are needed. This example issues
one CHKP call and optionally moves a message segment to the input buffer.

In this example, change trancode in the OPTIONS statement to a valid transaction
code at your site. This example is run using the SAS system options IMSREGTP=BMP
and IMSBPIN=trancode:

options imsbpin=trancode;
data _null_;

retain chkpnum 0;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’CHKP’;
pcbindex = 1;
chkpnum = chkpnum +1;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then

do;
func = ’GU ’;
input @;
if st = ’ ’ then

if st= ’QC’ then
do;

error = 0;
stop;

end;
else

link abendit;
end;

else
if st = ’QC’ then

do;
error = 0;
stop;

end;
else

link abendit;
stop;

abendit:
file log;

* This is not the call sequence that would be used if programming in PL/I, COBOL, or Assembler, but it is consistent with the
actions taken by DL/I after a CHKP call.

202 I/O PCBs 4 Chapter 9

put _all_;
abort;

run;
options imsbpin=*;

If DL/I did not return the first segment of the next message automatically after a
CHKP call, the GU call would be necessary to retrieve the next message.

I/O PCBs
An I/O PCB is a Program Communication Block that is used only in OS/390 DL/I

environments. An I/O PCB is similar to a DB PCB, but an I/O PCB communicates
non-database access requests to DL/I instead of database requests. The type of DL/I
region executed and an option specified when PSBs are generated determine whether
an I/O PCB is included in a PSB. The IMS/ESA control region automatically provides
an I/O PCB for BMP regions. The I/O PCB is generated in batch DL/I regions if the
CMPAT=YES option is specified in the PSBGEN statement when the PSB is generated.

If an I/O PCB is present, it is always the first PCB in the PSB. Therefore, be careful
in how you specify the DL/I INFILE statement options PCBNO=, PCB=, and
DBNAME= when you need the I/O PCB. The value of PCBNO= must be 1. If the
DBNAME= option is specified, that variable’s value must be set to blanks. Finally, if a
PCB= variable is specified, it must have a value of 1.

In all OS/390 DL/I regions, the I/O PCB is used to issue the CHKP and LOG calls. In
an IMS/ESA BMP region, the I/O PCB is also used to read transaction messages from
the IMS/ESA message queues, to insert response messages to the terminal that
originated the transaction, and to communicate certain system calls that are unique to
the IMS/ESA DB/DC system.

TP PCBs
A TP PCB is a Program Communication Block used with the IMS-DL/I DATA step

interface only in IMS/ESA BMP regions. It is similar to the I/O PCB, but there are two
important differences:

� A TP PCB is used only to insert messages to terminal or transaction message
queues. A TP PCB cannot be used for a Get call to a message queue.

� Unlike an I/O PCB, a TP PCB can direct a message to a destination (transaction
or terminal message queue) other than the terminal that originated the message.

There are two kinds of TP PCBs: nonmodifiable and modifiable. A nonmodifiable TP
PCB has a fixed destination that is specified when the PSB is generated. The
destination can be either a terminal or transaction message queue. A modifiable TP
PCB does not have a destination associated with it when the PSB is generated. Instead,
the program must set the destination before using the PCB to insert a message to the
message queue. The destination can be changed between messages so that more than
one destination can be accessed by one TP PCB.

When TP PCBs are present, they follow the I/O PCB (if any) and precede the DB
PCBs. Unless the TP PCB is the first PCB in the PSB, you must use the PCB= option
in the DL/I INFILE statement to select the appropriate TP PCB. You cannot use the
DBNAME= option because no DBD name is associated with a TP PCB.

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 TP PCBs 203

Feedback Data
Just as information from DB PCBs is available to the SAS program through the

STATUS= and PCBF= variables after a DL/I call, so is information from the I/O and TP
PCBs.* The format of the data in the PCBF= variable differs, however, according to the
PCB type.

If a DL/I call uses the I/O PCB, the PCBF= variable data are formatted as shown in
Table 9.1 on page 203.

If a DL/I call uses a TP PCB, the data in the PCBF= variable are formatted as shown
in Table 9.2 on page 204.

Table 9.1 Format of I/O PCB Feedback Data

Bytes Description

1-8 These bytes of the PCBF= variable contain the
name of the logical terminal (LTERM) that
issued the message.

9-10 These bytes are reserved for IMS/ESA usage.

11-12 These bytes contain the DL/I status code. The
status code may also be obtained by specifying
the STATUS= option in the DL/I INFILE
statement.

13-16 These bytes contain the date that the message
was queued. The date is in packed decimal,
right aligned, Julian date format (YYDDD).

17-20 The time that the message was queued is
contained in these bytes in packed decimal
format (HHMMSS.S).

21-24 The input message number assigned by IMS/
ESA is contained in these bytes in IB4.
(full-word binary) format.

25-32 These bytes contain the Message Output
Descriptor (MOD) name. An MOD name is
connected to this PCB if Message Format
Services (MFS) is used. If MFS is not used,
there is no MOD, and this field is blank.

33-40 These bytes contain the User identification
data. The contents vary according to the
source of the message

If a DL/I call uses a TP PCB, the data in the PCBF= variable are formatted as shown
in Table 9.2 on page 204.

* IMS/ESA: Application Programming: EXEC DLI Commands for CICS and IMS, an IBM publication, describes the PCB
mask data.

204 OS/390 DL/I System Calls 4 Chapter 9

Table 9.2 Format of TP PCB Feedback Data

Bytes Description

1-8 These bytes of the PCBF= variable contain the
name of the destination associated with the PCB.

9-10 These bytes are reserved for IMS/ESA usage.

11-12 These bytes contain the DL/I status code. The
status code may also be obtained by specifying
the STATUS= option in the DL/I INFILE
statement.

OS/390 DL/I System Calls
Table 9.3 on page 204 summarizes the functions and region types for non-database

access calls that are supported by the IMS-DL/I DATA step interface.

Table 9.3 Summary of Non-Database Access Calls

Function Purpose Valid Region Types Notes

CHKP create the synchronization point,
recovery purposes

all IMS-DL/I DATA step
interface region types

OS/VS option not supported. In
transaction-processing BMPs, next call must
be GU using I/O PCB.

CHNG change destination for messages IMS/ESA BMP regions sets the destination for a modifiable TP PCB

CMD issue IMS/ESA commands from
a program

IMS/ESA BMP regions when CC status returned, must next issue
GU to retrieve response

DEQ release a class of segments
enqueued with the Q command
code

IMS/ESA BMP regions specify class (A-J) of segments to dequeue

FLD access fields in MSDBs IMS/ESA BMP regions Fast Path Facility only

GCMD retrieve additional response
segments to a command if more
than one

IMS/ESA BMP regions functions as a GN to the queue after first
response segment retrieved with GU

GN retrieve additional segments of a
message with more than one
segment

IMS/ESA BMP regions uses I/O PCB

GU retrieve the first segment of a
message

IMS/ESA BMP regions uses I/O PCB

ISRT format and send message
segment to the queue

IMS/ESA BMP regions uses I/O or TP PCB

LOG insert a record to the DL/I
system log

MVS DL/I regions uses I/O PCB

POS return position information from
DEDBs

IMS/ESA BMP regions Fast Path Facility only.

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 OS/390 DL/I System Calls 205

Function Purpose Valid Region Types Notes

PURG terminate the current message
being inserted; optionally, insert
the first segment of the next
message

IMS/ESA BMP regions uses TP PCB

ROLB back out database updates since
last sync point

IMS/ESA BMP regions
and batch DL/I regions in
IMS/ESA Release 3

in BMP regions, also back out messages
inserted to the queue since the last
synchronization point. Next call must be GU
using I/O PCB if ROLB requested return of
previous message.

ROLL back out database updates since
last sync point, and abend

IMS/ESA BMP regions,
batch DL/I regions in
IMS/ESA Release 3, and
CICS/VS shared DL/I
regions

in BMP regions also back out messages
inserted to the queue since the last
synchronization point

LOG Call
A LOG call inserts user log records in the DL/I log with the I/O PCB (see “I/O PCBs”

on page 202). To insert a log record, you must specify
� the text of the log record
� a valid log code
� a value for the ZZ field
� the value of the LL field, which is the sum of the lengths of the log record, log

code, ZZ field, and LL field.

In an IMS-DL/I DATA step program, the LOG call is issued with the DL/I PUT
statement. The PUT statement must format the log record being inserted. The
following statements from a sample program insert a log record with a code of ’A0’x in
the IMS log. The example can be run using the SAS system options IMSREGTP=DLI or
IMSREGTP=BMP:

data _null_;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’LOG ’;
pcbindex = 1;
ll = 23;
zz = ’0000’x;
logcode = ’A0’x;
logsegm = ’Text of Log Record’;
put @1 ll pib2.

@3 zz
@5 logcode
@6 logsegm;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
stop;

206 OS/390 DL/I System Calls 4 Chapter 9

run;

After the LOG call, you can check the values of the STATUS= variable and _ERROR_
to see whether the call was successful. If _ERROR_=0, the log record was inserted
properly. Otherwise, the STATUS= variable contains an error code that indicates why
the call was not successful.

If the PSB is generated with LANG=PLI, then the PUT statement must be modified
because the LL field has a 4-byte length:

put @1 ll pib4.
@5 zz
@7 logcode
@8 logsegm;

The value of the LL variable does not change.

ROLL Call
In an online access region, the ROLL call has two purposes:
� to back out any DL/I updates to database segments or message queues that have

been made since the last program synchronization point
� to abend the program with a user 0778 completion code.

The ROLL call performs the same functions in a batch DL/I region if the following
conditions are present:

� a DASD log data set is used
� the IMS-DL/I DATA step interface option IMSDLBKO= specifies a value of Y.

Otherwise, the ROLL call in a batch DL/I region only causes the program to abend
with a user 0778 completion code. In this latter case, the database back-out utility
must be run with the log data set in order to back out any database updates made since
the last program synchronization point.

The following example shows statements that issue a ROLL call. This example is run
using the SAS system option IMSREGTP=DLI:

data _null_;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’ROLL’;
pcbindex = 1;
put;
if st = ’ ’ then

do;
file log;
put _all_;
abort;

end;
stop;

run;

ROLB Call
A ROLB call is used in a batch DL/I region to back out any DL/I database updates

that have been made since the last program synchronization point. ROLB differs from
the ROLL call because it does not cause an 0778 abend. The ROLB call requires use of
the I/O PCB (see “I/O PCBs” on page 202).

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 IMS/ESA BMP System Calls 207

The ROLB call can be issued in batch DL/I regions if
� a DASD log data set is used
� the IMS-DL/I DATA step interface option IMSDLBKO= specifies a value of Y.

Otherwise, the ROLB call can be issued only from an IMS/ESA BMP region, as
described in “IMS/ESA Message Queue Access” on page 212.

The following sequence of SAS statements issues a ROLB call. This example is run
using the SAS system options IMSREGTP=DLI and IMSDLBKO=Y:

options imsdlbko=y;
data _null_;

infile acctsam dli call=func pcb=pcbindex
status=st;

file acctsam dli;
func = ’ROLB’;
pcbindex = 1;
put;
if st = ’ ’ then

do;
file log;
put _all_;
abort;

end;
stop;

run;

The ROLB call has been successfully executed if _ERROR_=0 after the call;
otherwise, you can check the value of the STATUS= variable to see why the call did not
complete successfully.

IMS/ESA BMP System Calls

DEQ Call
The DEQ call is used in a BMP region to dequeue a class of database segments that

have been enqueued with the Q command code of a Get call. The DEQ call is issued with
the PUT statement and requires the use of the I/O PCB. The PUT statement specifies
the class of segments to be dequeued. The following sequence of SAS statements
dequeue the segments that have been enqueued to Class A with a QA command code in
a Get call. This example is run using the SAS system option IMSREGTP=BMP:

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
file tranpsb dli;
func = ’DEQ ’;
pcbindex = 1;
put @1 ’A’;
if st = ’ ’ then

do;
file log;
put _all_;
abort;

end;
stop;

208 IMS/ESA BMP System Calls 4 Chapter 9

run;

The call has been successfully executed if _ERROR_=0 after the call. Otherwise, the
STATUS= variable contains a status code that indicates the reason for the failure.

ROLB Call
The ROLB call is used in a BMP region to back out any DL/I updates to database

segments or message queues that have been made since the last program
synchronization point. The ROLB call is issued with a PUT statement and requires the
use of the I/O PCB.

Examples 1 to 3 are run using the SAS system options IMSREGTP=BMP and
IMSBPIN=trancode. Example 1 shows a sequence of SAS statements that issue a
ROLB call.

options imsbpin=trancode;
data _null_;

infile acctsam dli call=func pcb=pcbindex
status=st;

file acctsam dli;
func = ’ROLB’;
pcbindex = 1;
put;
if st = ’ ’ then

do;
file log;
put _all_;
abort;

end;
stop;

run;

The call has been successfully executed if _ERROR_=0 after the call. Otherwise, the
ST variable contains a status code that indicates the reason for the failure.

If the ROLB call is issued in a BMP transaction processing program and the DL/I
PUT statement issuing the call formats non-blank data in columns 1 through 6, the call
also returns the first segment of the previous message. Any non-blank data can be
written in columns 1 through 6 of the output buffer.

When these conditions are fulfilled, the IMS-DL/I DATA step interface saves the
returned message segment. The next call must be a GU that uses the I/O PCB. The
DATA step interface intercepts the GU call when the INPUT statement executes, so the
call is not actually issued. Instead, the returned segment is moved to the input buffer
where it can be read.

Example 2 shows a sequence of SAS statements that issue a ROLB call and then a
GU call with the I/O PCB:

/* put a message in the queue */
data _null_;

infile tranpsb dli call=func pcb=pcbindex
status=st;

file tranpsb dli;
func = ’ISRT’;
pcbindex = 2;
ll = 33;
zz = ’0000’x;
msgsegm = ’trancode Message for Example # 2.’;
put @1 ll pib2.

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 IMS/ESA BMP System Calls 209

@3 zz
@5 msgsegm;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
stop;

run;
data _null_;

infile acctsam dli call=func pcb=pcbindex
status=st;

pcbindex = 1;
file acctsam dli;
func = ’ROLB’;
put @1 ’SAVEIO’;
if st = ’ ’ then

if st = ’QC’ then
error = 0;

else
link abendit;

func = ’GU ’;
input @;
if st = ’ ’ then

error = 0;
else

link abendit;
stop;

abendit:
file log;
put _all_;
abort;

run;

Example 3 shows a sequence of SAS statements that issue a ROLB call and with no
GU call to the message queue:

data _null_;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’ROLB’;
pcbindex = 1;
put @1 ’SAVEIO’;
if st = ’ ’ and

st = ’QC’ then
link abendit;

return;

abendit:
file log;
put _all_;
abort;

210 IMS/ESA BMP System Calls 4 Chapter 9

run;
options imsbpin=*;

The message segment has been successfully moved if _ERROR_=0 after the INPUT
statement executes.

If the PUT statement above is changed to PUT;, the message segment would not be
returned by the ROLB call.

CMD Call

A SAS program that executes in a BMP region can insert commands to IMS/ESA
with the CMD call if

� the IMS/ESA security allows the PSB and transaction to do so and

� BMPREAD= does not specify Y.

The CMD call is issued by a PUT statement and uses the I/O PCB.
For example, the following sequence of SAS statements issues the ’/START DB

ACCTDBD. ’ command. This example is run using the SAS system options
IMSREGTP=BMP and IMSBPIN=trancode :

options imsbpin=trancode;
data _null_;

infile tranpsb dli call=func pcb=pcbindex
status=st;

file tranpsb dli;
func = ’CMD ’;
pcbindex = 1;
ll = 23;
zz = ’0000’x;
put @1 ll pib2.

@3 zz
@5 ’/START DB ACCTDBD. ’;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
run;
options imsbpin=*;

If _ERROR_=0 after the call, the command was issued properly. If a blank STATUS=
code is returned, the command may have completed or it may be in progress, depending
on the IMS/ESA command issued.

If a CC status code is returned, the command returned a response message to the
output buffer and the IMS-DL/I DATA step interface saved the response. To retrieve
the response, the next call must be a GU that uses the I/O PCB, as is done after CHKP
and ROLB calls in the IMS-DL/I DATA step interface. If subsequent response segments
are queued, a CC status code is returned as a result of the GU call. The program can
issue GCMD calls (see “GCMD Call” on page 211) to retrieve the subsequent response
segments.

See the IBM publication IMS/ESA: Application Programming: EXEC DLI
Commands for CICS and IMS for more information on the CMD call.

If the PSB is generated with LANG=PLI, the format specified for the LL field must
be changed to PIB4.:

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 IMS/ESA BMP System Calls 211

put @1 ll pib4.
@5 zz
@7 ’/START DB D1MK0001.’;

However, the value of the LL variable does not change.

GCMD Call
A SAS program that issues CMD calls can retrieve additional response segments

with the GCMD call. The GCMD call acts like a GN to the queue and is issued with an
INPUT statement. The first segment must have been retrieved with a GU call by using
the I/O PCB.

The following sequence of statements issues a GCMD call. This example is run using
the SAS system options IMSREGTP=BMP and IMSBPIN=trancode :

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
func = ’GU ’;
pcbindex = 1;
input @;
if st = ’CC’ then

do;
func = ’GCMD’;
input @;
if st = ’ ’ or

st = ’QD’ then
do;

error = 0;
stop;

end;
else

link abendit;
end;

else
if st = ’QC’ then

do;
error = 0;
stop;

end;
else

link abendit;
return;

abendit:
file log;
put _all_;
abort;

run;
options imsbpin=*;

If _ERROR_=0 after the call, the next response segment is in the input buffer. If a
QD status code is returned, there are no more response segments for this response.

212 IMS/ESA Message Queue Access 4 Chapter 9

IMS/ESA Message Queue Access
If you use the IMS-DL/I DATA step interface to access IMS-DL/I data and use that

data in programs with a BMP region, you can access the IMS/ESA control region
message queues as well as DL/I databases. A BMP program accesses message queues
in two ways:

1 A program that is transaction driven reads a transaction message from the
message queues using the I/O PCB.

2 A program can insert messages to terminal message queues or transaction
message queues. When responding to the terminal that originated a transaction,
the I/O PCB is used. When inserting a message to a terminal queue that did not
originate the message or to a transaction queue, a TP PCB is used.

See the IBM publication IMS/ESA: Application Programming: EXEC DLI
Commands for CICS and IMS for more information about IMS/ESA data
communications programming. This section describes the use of an IMS-DL/I DATA
interface to issue DL/I message queue access calls.

Get Calls That Use the I/O PCB
To retrieve message segments for transaction processing, an IMS-DL/I DATA step

interface program
� must have the IMS-DL/I DATA step interface option IMSBPIN= set to a valid

transaction code
� issues Get calls with the I/O PCB using DL/I INPUT statements.

To retrieve the first segment of any message, use a GU call. To retrieve subsequent
segments of the same transaction message, issue a GN call. You can use the same
sequence of SAS statements that issued a GU call for the first segment of a message,
but the value of FUNC must be changed to GN. (For more information on GU and GN
calls, see Table 9.3 on page 204 in “OS/390 DL/I System Calls” on page 204.)

In this example, change trancode in the OPTIONS statement to a valid transaction
code at your site. This example is run using the SAS system options IMSREGTP=BMP
and IMSBPIN=trancode :

options imsbpin=trancode;
data _null_;

infile acctsam dli call=func pcb=pcbindex
status=st;

func = ’GU ’;
pcbindex = 1;
input @;
if st = ’ ’ then

do;
func = ’GN ’;
do while (st = ’ ’);

input @;
if st = ’ ’ then

if st = ’QD’ then
do;

error = 0;
stop;

end;
else

link abendit;

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 IMS/ESA Message Queue Access 213

end;
end;

else
if st = ’QC’ then

do;
error = 0;
stop;

end;
else

link abendit;
stop;

abendit:
file log;
put _all_;
abort;

run;
options imsbpin=*;

A transaction message segment has been successfully retrieved if _ERROR_=0 or if
the STATUS= variable is blank after the call. If _ERROR_ does not equal 0, check the
value of the STATUS= variable. When _ERROR_=1 and ST=’QC’ or ST=’QD’, there are
no more messages in the queue. To find out if there are more messages in the queue,
issue another GU call.

The format of a retrieved message segment in the SAS input buffer differs depending
on the language that generated the PSB. If an Assembler PSB is used, the message
segment is formatted as shown in Table 9.4 on page 213.

Table 9.4 Assembler PSB Input Buffer Message Segment Format

Bytes Description

1-2 These bytes of the SAS buffer contain a value
that is the length of the segment data plus 4 (2
for the LL field and 2 for the ZZ field) in the
PIB2. format.

3-4 These bytes contain the ZZ fields and are
reserved for IMS usage.

5-n The segment data begin at byte 5. If this is the
first segment of the message, the transaction
code (up to 8 bytes in length) is in the first
bytes of the message data.

If a PL/I PSB is used, the message segment is formatted as shown in Table 9.5 on
page 214.

214 IMS/ESA Message Queue Access 4 Chapter 9

Table 9.5 PL/I PSB Input Buffer Message Segment Format

Bytes Description

1-4 These bytes of the SAS buffer contain a value
that is the length of the segment data plus 4 (2
for the LL field and 2 for the ZZ field) in the
PIB4. format. (The length here will be 2 bytes
less than the total message segment.)

5-6 These bytes contain the ZZ fields and are
reserved for IMS usage.

7-n The segment data begin at byte 7. If this is the
first segment of the message, the transaction
code (up to 8 bytes in length) is in the first
bytes of the message data.

ISRT Calls to Message Queues
A SAS program executing in a BMP region can insert messages to the IMS/ESA

control region message queues with an ISRT call and the I/O or TP PCBs. For message
segments to be inserted

� either IMSBPIN= or IMSBPOUT= must specify a valid IMS/ESA destination
� BMPREAD= must not equal Y
� the message segment text must be specified
� a value must be assigned to the ZZ field
� the value of the LL field must be specified. The LL field contains the length of the

message segment, which is the sum of the lengths of the text, the ZZ field, and the
LL field.

The following SAS statements insert a message segment. This example uses the
second PCB in the PSB, which is assumed to be a TP PCB. In this example, change
trancode in the OPTIONS statement to a valid transaction code at your site. This
example is run using the SAS system options IMSREGTP=BMP and
IMSBPIN=trancode :

options imsbpin=trancode;
data _null_;

infile tranpsb dli call=func pcb=pcbindex
status=st;

file tranpsb dli;
func = ’ISRT’;
pcbindex = 2;
ll = 35;
zz = ’0000’x;
msgsegm = ’trancode Text of Message Segment’;
put @1 ll pib2.

@3 zz
@5 msgsegm;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 IMS/ESA Message Queue Access 215

end;
stop;

run;

data _null_;
infile acctsam dli call=func pcb=pcbindex

status=st;
func=’GU ’;
pcbindex= 1;
input @;
if st = ’ ’ then

if st = ’QC’ then
do;

error = 0;
stop;

end;
else

do;
file log;
put _all_;
abort;

end;
stop;

run;
options imsbpin=*;

If _ERROR_=0 after the ISRT call, the segment was inserted properly. Otherwise, the
STATUS= variable contains a status code that indicates why the call was not successful.

If the PSB is generated with LANG=PLI, the PUT statement must be modified
because the length of the LL field is 4 bytes. For example:

put @1 ll pib4.
@5 zz
@7 msgsegm;

The value of the LL variable does not change.

Notes on Inserting Message Segments

� If the destination of the message is a transaction queue, the text of the first
segment of the message must contain the transaction code. This code must match
the destination in the TP PCB.

� If Message Format Services (MFS) is used, a Message Output Descriptor (MOD) is
associated with the PCB used for the call. If you want to change the MOD that is
associated with the PCB, specify an SSA value of "#MODNAME=modname" when
the first message segment is inserted.* In the previous example, you could add
this statement before the first DL/I PUT statement for the message:

SSA1=’#MODNAME=DFSMO4’;

This causes the message to be formatted with the MOD DFSMO4. The SSA1=’
’; statement should follow the first DL/I PUT so that the MOD is not re-specified
on ISRT calls for subsequent message segments.

* Although a message queue call does not use an SSA, it is provided as a way to specify the MOD.

216 IMS/ESA Message Queue Access 4 Chapter 9

PURG Calls for Message Segments
You might want your SAS DATA step program to insert multiple messages with one

TP PCB. The requirements for this may vary depending on whether the messages go to
the same destination or to different destinations.

When you insert more than one message to the same destination, you can use a
PURG call to terminate the current message and to insert the first segment of the next
message. You issue the PURG call with a PUT statement that formats the first segment
of the message to be inserted.

For example, consider the following SAS statements:

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
file tranpsb dli;
func = ’PURG’;
pcbindex = 2;
ll = 27;
zz = ’0000’x;
msgsegm = ’Text of Message’;
put @1 ll pib2.

@3 zz
@5 msgsegm;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
stop;

run;

The PCBNDX variable is set to 2, so that a TP PCB is used. The values of the LL
and ZZ fields are set by assignment statements, and then the message segment text is
specified. Notice that the PUT statement, which issues the PURG call, formats the
output buffer just as if this were an ISRT call. This example is run using the SAS
system option IMSREGTP=BMP.

If you want to change the MOD, use an SSA variable, as described in “ISRT Calls to
Message Queues” on page 214.

When you insert messages to different destinations with one TP PCB, you cannot use
the PURG call to insert the first segment of the next message. Instead, you should

� issue a PURG call with the TP PCB to end the current message. The PUT
statement that issues the PURG call must not format a message segment. The
PUT statement should simply be PUT;

� issue a CHNG call to change the TP PCB destination.
� issue an ISRT call to insert the message segment.

“CHNG Call to TP PCBs” on page 216 shows an example of this sequence of calls.
Remember that you must use a modifiable TP PCB in order to change destination
between calls.

CHNG Call to TP PCBs
A CHNG call is issued to set or change the destination for a modifiable PCB. Issue

CHNG calls to alter the destination before the ISRT calls when you need to
� set a destination for a modifiable TP PCB

Using the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface 4 IMS/ESA Message Queue Access 217

� insert message segments in more than one message queue by using one modifiable
PCB.

For example, the following SAS statements issue a CHNG call to set the destination
of the third PCB in the PSB to destname, where destname must be a valid IMS/ESA
transaction code or logical terminal name. This example is run using the SAS system
option IMSREGTP=BMP:

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
file tranpsb dli;
func = ’CHNG’;
pcbindex = 3;
put @1 ’destname’;
if st = ’ ’ then

do;
file log;
put _all_;
abort;

end;
stop;

run;

The destination has been changed successfully if _ERROR_=0 after the call.
Otherwise, the STATUS= variable contains a status code that indicates the reason for
the failure.

If a modifiable TP PCB is used to send messages to more than one destination, the
PURG call must be used to complete the current message prior to issuing a CHNG call
to alter the destination for a new message. The following example shows the PURG,
CHNG, and ISRT call sequence. It is run using the SAS system option
IMSREGTP=BMP:

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
file tranpsb dli;
func = ’PURG’;
pcbindex = 3;
put;
if st = ’ ’ then

do;
func = ’CHNG’;
put @1 ’<destname>’;
if st = ’ ’ then

do;
func = ’ISRT’;
ll = 27;
zz = ’0000’x;
msgsegm = ’Text of Message Segment’;
put @1 ll pib2.

@3 zz
@5 msgsegm;

if st = ’ ’ then
stop;

else
link abendit;

218 IMS/ESA Message Queue Access 4 Chapter 9

end;
else

link abendit;
end;

else
link abendit;

return;

abendit:
file log;
put _all_;
abort;

run;

In the above example, the PCBINDEX variable points to the third PCB, which is a
modifiable TP PCB. The PURG call is issued by a PUT statement. Because this PURG
call only terminates the current message and does not insert a message segment, the
PUT statement has no specifications. If _ERROR_=0, the PURG call is successful and
the program goes on to issue a CHNG call. The destination specified for the TP PCB is
changed.

If the CHNG call is successful, a message segment is built and an ISRT call is
issued. The PUT statement issuing the ISRT call formats the output buffer.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS ® Interface to IMS-DL/I Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. 316 pp.

SAS/ACCESS® Interface to IMS-DL/I Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–548–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

