
219

C H A P T E R

10
Advanced Topics for the IMS-DL/
I DATA Step Interface

Introduction 219
Restarting an Update Program 219

Examples 220

Example 1 220

Example 2 226

Example 3 230
Using SSAs in IMS-DL/I DATA Step Programs 234

The Concatenation Operator 235

The PUT Function 235

Setting SSAs Conditionally 237

Changing SSA Variable Values between Calls 237

Introduction
This chapter discusses the use of the IMS-DL/I DATA step interface in some of the

more advanced areas of DL/I programming, specifically, restarting update programs and
constructing and using SSAs in DATA step programs. Because this information is
intended for experienced DL/I programmers, there is little explanation of DL/I concepts
and facilities in this chapter. The purpose of this information is to explain how SAS
programs can be used to perform advanced DL/I functions, not to explain these
functions.

Restarting an Update Program
There is always a risk of abnormal termination in any program. If an update

program ends before processing is completed, you can complete processing by restarting
the program, but you do not want to repeat updates that have already been made. DL/
I’s synchronization point feature helps to prevent duplicate updating in a restarted
program.

If an online access region program or control region abends, the DL/I control region
restores databases up to the last synchronization point. In a batch subsystem, a batch
back-out utility must be executed to back out updates made since the last
synchronization point. After backing out updates, any updates made by the program
prior to the last synchronization point are intact and any made after the last
synchronization point are not. When an update program is restarted after an abend,
processing must resume at the synchronization point or duplicate updating may occur.

When building synchronization points into an online access region program, keep
these things in mind:

220 Examples 4 Chapter 10

� If the program updates a large number of database records between
synchronization points, the DL/I control region enqueue tables can overflow and
cause the online DL/I system to abend.

� The DL/I control region dynamic log can also overflow, which can cause the online
access region or the whole online system to abend, depending on the online system
used.

� On the other hand, if synchronization points are too frequent, they can tie up the
master console and prevent other IMS messages from being sent.

Your database administration staff can help you determine how frequently
synchronization points should be executed.

Examples
Programs that update DL/I databases should be designed to avoid the problem of

duplicating updates if a restart is required. A DATA step program can be written to be
inherently restartable, as in “Example 1” on page 220 or additional recovery logic can
be built in for restarts, as in “Example 3” on page 230.

The CHKP call, which is used in these examples, is discussed in Chapter 9, “Using
the SAS/ACCESS Interface to IMS-DL/I DATA Step Interface,” on page 197.

Example 1
This sample program updates the ACCTDBD database with data from wire

transactions in the WIRETRN database. (See Chapter 3, “Defining SAS/ACCESS
Descriptor Files,” on page 39 for complete database information on the WIRETRN
database.) The program takes checkpoints and thereby releases database resources at
regular intervals. Because the program is set up with checkpoints, it is appropriate for
shared update access.

As you study this example, you will notice that the WIRETRAN segments are deleted
from the WIRETRN database as soon as the ACCTDBD segments are successfully
updated. There are no synchronization points between the ACCTDBD segment updates
and the WIRETRAN deletions. Therefore, if an abend occurs and changes are backed
out to the last synchronization point, you know that any WIRETRAN segments
remaining in the database have not been processed. There is no danger of duplicating
updates, and the program is inherently restartable. No special recovery logic is
required for restarts.

The numbered comments following this program correspond to the numbered
statements in the program:

data _null_;
length ssa1 $ 43

ssa2 $ 32
ssa3 $ 9;

retain blanks ’ ’
wirenum 0
chkpnum 0;

u infile acctsam dli ssa=(ssa1,ssa2,ssa3) call=func
pcb=pcbindex status=st segment=seg;

/* get hold next WIRETRAN segment
from WIRETRN database */

Advanced Topics for the IMS-DL/I DATA Step Interface 4 Examples 221

func = ’GHN ’;
ssa1 = ’ ’;
ssa2 = ’ ’;
ssa3 = ’ ’;

v pcbindex = 5;
w input @1 wiressn $char11.

@12 wireacct $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

if st = ’ ’ then
if st = ’GB’ then

do;
error = 0;
go to reptotal;

end;
else

link abendit;

x if wirenum/5 = chkpnum then
link chkp;

y amount = abs(wireammt);

/* insert debit or credit segment into
ACCTDBD database */

U if accttype = ’C’ then
do;

ssa2 = ’CHCKACCT
(ACNUMBER= ’|| wireacct ||’)’;

if wireammt > 0 then
ssa3 = ’CHCKCRDT’;

else
ssa3 = ’CHCKDEBT’;

end;
else

V if accttype = ’S’ then
do;

ssa2 = ’SAVEACCT
(ACNUMBER= ’ || wireacct || ’)’;

if wireammt > 0 then
ssa3 = ’SAVECRDT’;

else
ssa3 = ’SAVEDEBT’;

end;
W else

do;
file log;
put / ’***** Invalid ’ accttype= ’for ’

222 Examples 4 Chapter 10

wiressn= wireacct= ’*****’;
return;

end;

X ssa1 = ’CUSTOMER
(SSNUMBER= ’ || wiressn || ’)’;

func = ’ISRT’;
pcbindex = 4;
file acctsam dli;

at put @1 amount pd5.2
@6 wiredate mmddyy6.
@14 wiretime time8.
@22 wiredesc $char40.
@62 blanks $char19.;

ak if st = ’ ’ then
if st = ’GE’ then

do;
error = 0;
file log;
if seg = ’CUSTOMER’ then

if accttype = ’C’ then
put / ’***** No CHCKACCT segment with ’

wiressn= wireacct= ’*****’;
else

put / ’***** No SAVEACCT segment with ’
wiressn= wireacct= ’*****’;

else
put / ’***** No CUSTOMER segment with ’

wiressn= ’*****’;
return;

end;
else

link abendit;

/* get hold checking or savings segment from
ACCTDBD database */

al ssa3 = ’ ’;
func = ’GHU’;

input @1 acnumber $char12.
@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

am if st = ’ ’ then
link abendit;

/* replace checking or savings segment into
ACCTDBD database */

Advanced Topics for the IMS-DL/I DATA Step Interface 4 Examples 223

balance = balance + wireammt;
ssa1 = ’ ’;
ssa2 = ’ ’;
func = ’REPL’;

put @1 acnumber $char12.
@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

/* delete WIRETRAN segment from WIRETRN
database */

an func = ’DLET’;
ssa1 = ’ ’;
pcbindex = 5;
put @1 wiressn $char11.

@12 wireacct $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

ao if st = ’ ’ then
link abendit;

ap wirenum +1;
return;

aq reptotal:
file log;
put // ’Number of Wire Transactions Posted =’

wirenum 5.
/ ’ Number of CHKP Calls Issued =’

chkpnum 5.;
stop;

ar chkp:
chkpnum +1;
func = ’CHKP’;
pcbindex = 1;
file acctsam dli;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then

link abendit;
func = ’GHU ’;
ssa1 = ’WIRETRAN

224 Examples 4 Chapter 10

(SSNACCT = ’ || wiressn || wireacct || ’)’;
pcbindex = 5;
input;
if st = ’ ’ then

link abendit;
return;

as abendit:
file log;
put _all_;
abort;
run;

u The program uses the ACCTSAM PSB. It contains PCBs for the
ACCTDBD database and a PCB for the WIRETRN database, both of
which are needed in this program.

v PCBINDEX is set to point to the WIRETRN PCB.

w The INPUT statement issues the GHN call to retrieve a WIRETRAN
segment. If the call is not successful, and there is a GB status code
(end-of-database), _ERROR_ is reset to 0 and the program branches
to the REPTOTAL subroutine, which prints a summary report. For
any other non-blank status code, the program skips to the
ABENDIT subroutine, which forces an abend.

x If the GHN call is successful, the program continues with a test to
see if a CHKP call should be issued. Two accumulator variables,
WIRENUM and CHKPNUM, are evaluated. WIRENUM is a value
that is incremented each time an ACCTDBD database record is
successfully updated. CHKPNUM is a value incremented each time
a CHKP call is issued.

A CHKP call is issued any time the WIRENUM value divided by
five equals CHKPNUM. That is, after five successful updates the
program links to the subroutine labeled CHKP to issue the CHKP
call. After the CHKP call, the program repositions itself in the
database and continues processing the DATA step (see item 18).

y The program goes on to set up for the REPL call that updates the
balance information in the CHCKACCT and SAVEACCT segments
of the ACCTDBD database. The absolute value of WIREAMMT is
saved.

U The value of the ACCTTYPE field is checked. If the ACCTTYPE is C
(checking), a qualified SSA for the CHCKACCT segment is built by
concatenating literal values with the value of the WIREACCT
variable from WIRETRAN. The value of WIREAMMT is checked to
build another, unqualified SSA that specifies the segment type to
insert. If WIREAMMT is greater than 0, the SSA specifies the
CHCKCRDT segment. If WIREAMMT is less than or equal to 0, the
SSA specifies CHCKDEBT.

V These statements are identical to the preceding group of statements,
except that they build SSAs that define a savings account segment
path rather than a checking account segment path.

Advanced Topics for the IMS-DL/I DATA Step Interface 4 Examples 225

W If the value of ACCTTYPE is not C or S, the account type is not
valid for the DATA step and an explanatory message is written to
the log. Processing returns to the beginning of the DATA step again.

X A qualified SSA for the CUSTOMER segment is built by
concatenating literals with the value of WIRESSN from
WIRETRAN. An ISRT call using the ACCTDBD PCB is set up.

at The ISRT call is issued. Depending on the ACCTTYPE and the
value of WIREAMMT, the inserted segment is a CHCKCRDT,
CHCKDEBT, SAVECRDT, or SAVEDEBT segment, as specified by
the SSAs. Since all four transaction segment types have the same
format, only one PUT statement is needed.

ak This series of statements checks the status code after the ISRT call
and writes explanatory messages to the SAS log if the status code is
GE (segment not found). If the status code is a non-blank code other
than GE, the program skips to the ABENDIT subroutine. Note that
a FILE statement is issued, changing the output destination from
the DL/I database to the SAS log.

al If the ISRT call is successful, the account balance must be updated
to reflect the amount of the processed transaction. First, a GHU call
is set up. The variable SSA3 is set to blank, but SSA1 (for the
CUSTOMER segment) and SSA2 (for the CHCKACCT or
SAVEACCT segment) are still in effect. The INPUT statement
issues the GHU call, which retrieves the parent CHCKACCT or
SAVEACCT segment for the segment just added by the ISRT call.

am If the GHU call fails, the program skips to the ABENDIT
subroutine. Otherwise, the program updates the BALANCE value
by adding the value of WIREAMMT from the wire transaction and
issues a REPL call to replace the CHCKACCT or SAVEACCT
segment retrieved by the GHU call. If the REPL call fails, the
program branches to the ABENDIT subroutine.

an If the REPL call is successful, a DLET call is issued for the
WIRETRN database. The WIRETRAN segment just used to update
the ACCTDBD database (retrieved with a GHN or GHU call earlier)
is deleted. Because wire transaction segments are deleted as they
are processed, this program can be restarted. That is, if the program
stops for some reason (such as a system failure), it can be started
again without any danger of duplicate transactions being added to
the ACCTDBD database.

ao If the DLET call is not successful, the program links to the
ABENDIT subroutine.

ap If the DLET call is successful, the WIRENUM accumulator variable
is incremented, and processing returns to the beginning of the DATA
step.

aq This subroutine is executed when a get call to the WIRETRN
database returns a GB (end-of-database) status code (see item 2).

ar This subroutine issues the CHKP call after every fifth update (see
item 4). If the CHKP call is not successful, the program links to the
ABENDIT subroutine. If the CHKP call is successful, the database
position has been lost. Therefore, a GHU call is set up to re-retrieve
the WIRETRAN segment that is retrieved by the previous GHN call.

226 Examples 4 Chapter 10

Because the values from the segment are still in the program data
vector, the INPUT statement issuing the GHU call does not need to
specify variable names.

If the GHU call fails for any reason, the program links to the
ABENDIT subroutine. If the call succeeds, the program resumes
processing at the assignment statement that follows the LINK
CHKP statement.

as These statements are executed when a bad status code is returned
by one of the calls in the program. The contents of the program data
vector are printed on the SAS log, and the program abends.

Example 2
Unless a program is structured so that it can be restarted without duplicating

updates, special recovery logic should be included. The previous example shows a data
program designed so that it can be restarted if necessary. The following example is not
designed to be restarted and does not include special recovery logic. We include it as an
example of the kind of program that should not be used for updating in a shared
environment because it could result in erroneous data.

This program updates the ACCTDBD database with wire transactions that are
stored in a sequential file rather than in the WIRETRN database. The program is
similar to “Example 1” on page 220, but it is not designed to be restarted. Example
program 3 illustrates the modifications to this program to add recovery logic.

The numbered comments following this sample program correspond to the numbered
statements in the example:

filename tranin ’<your.sas.tranin>’ disp=shr;
data _null_;

length ssa1 $31
ssa2 $32
ssa3 $9;

retain blanks ’ ’
wirenum 0
chkpnum 0;

/* get data from TRANIN flatfile */

u infile tranin eof=reptotal;
input @1 cust_ssn $char11.

@12 acct_num $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

if _error_ then
link abendit;

v if wirenum/5 = chkpnum then
link chkp;

w amount = abs(wireammt);
x if accttype = ’C’ then

Advanced Topics for the IMS-DL/I DATA Step Interface 4 Examples 227

do;
ssa2 = ’CHCKACCT

(ACNUMBER =’ || acct_num || ’)’;
if wireammt < 0 then

ssa3 = ’CHCKCRDT’;
else

ssa3 = ’CHCKDEBT’;
end;

else
if accttype = ’S’ then

do;
ssa2 = ’SAVEACCT

(ACNUMBER =’ || acct_num || ’)’;
if wireammt < 0 then

ssa3 = ’SAVECRDT’;
else

ssa3 = ’SAVEDEBT’;
end;

else
do;

file log;
put / ’***** Invalid ’ accttype= ’for ’

cust_ssn= acct_num= ’*****’;
return;

end;

/* insert debit or credit segment into
ACCTDBD database */

y infile acctsam dli ssa=(ssa1,ssa2,ssa3) call=func
pcb=pcbindex status=st segment=seg;

ssa1 = ’CUSTOMER(SSNUMBER =’ || CUST_SSN || ’)’;
func = ’ISRT’;
pcbindex = 4;
file acctsam dli;
put @1 amount pd5.2

@6 wiredate mmddyy6.
@14 wiretime time8.
@22 wiredesc $char40.
@62 blanks $char19.;

U if st = ’ ’ then
if st = ’GE’ then

do;
error = 0;
file log;
if seg = ’CUSTOMER’ then

if accttype = ’C’ then
put / ’***** No CHCKACCT segment with ’

cust_ssn= acct_num= ’ *****’;
else

put / ’***** No SAVEACCT segment with ’
cust_ssn= acct_num= ’ *****’;

else

228 Examples 4 Chapter 10

put / ’***** No CUSTOMER segment with
’ cust_ssn= ’*****’;

return;
end;

else
link abendit;

/* get hold checking or savings segment from
ACCTDBD database */

ssa3 = ’ ’;
V func = ’GHU’;

input @1 acnumber $char12.
@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

balance = balance + wireammt;

/* replace checking or savings segment into
ACCTDBD database */

ssa1 = ’ ’;
ssa2 = ’ ’;
func = ’REPL’;

W put @1 acnumber $char12.
@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

X if wireammt > 0 then
debtnum +1;

else
crdtnum +1;

at wirenum +1;
return;

reptotal:
file log;
put // ’Number of debit transactions posted =’

debtnum 8.
/ ’Number of credit transactions posted =’
crdtnum 8.;

stop;

ak chkp:
chkpnum +1;

Advanced Topics for the IMS-DL/I DATA Step Interface 4 Examples 229

func = ’CHKP’;
pcbindex = 1;
file acctsam dli;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then

link abendit;
return;

abendit:
file log;
put _all_;

abort;
run;
filename tranin clear;

u The standard INFILE statement specifies the external sequential
file containing the data to update ACCTDBD. The fileref is TRANIN.
When the end-of-file condition is set, the program branches to the
REPTOTAL subroutine to print a summary report. The standard
INPUT statement reads a record from TRANIN. If any error occurs,
the program links to the ABENDIT subroutine.

v As in the previous example, this program issues CHKP calls after
every fifth update. If the value of WIRENUM divided by five is
equal to the value of CHKPNUM, the program links to a section
that issues the CHKP call.

w The DATA step sets up for the REPL call that will update balance
information in the CHCKACCT and SAVEACCT segments of the
ACCTDBD database. The absolute value of WIREAMMT is saved.

x Depending on the value of ACCTTYPE, SSAs are built for the
CHCKACCT and either the CHCKDEBT or CHCKCRDT segments,
or for the SAVEACCT and either the SAVEDEBT or SAVECRDT
segments.

y The DL/I INFILE statement specifies the ACCTSAM PSB. An ISRT
call for the ACCTDBD database is formatted and issued. Depending
on the account type and transaction type, a new CHCKCRDT,
CHCKDEBT, SAVECRDT, or SAVEDEBT segment is inserted.

U This section checks status codes and prints explanatory messages on
the SAS log if the status code is GE (segment not found). For other
non-blank status codes, the program links to the ABENDIT
subroutine.

V If the ISRT call is successful, a GHU call is issued to retrieve the
parent of the added segment. The status code is checked after the
call and, if it is not successful, the program links to the ABENDIT
routine.

W If the GHU call is successful, the account balance is updated by a
REPL call. The status code is checked after the call and, if it is not
successful, the program links to the ABENDIT routine.

X Accumulator variables count the number of debits and credits posted
by the program. These values are used to print a summary report.

230 Examples 4 Chapter 10

at The WIRENUM variable is incremented. It is used to determine
whether or not a CHKP call is needed (see item 2).

ak This section is like the one in “Example 1” on page 220, but no GHU
call is issued to re-establish database position because there is no
database position to maintain. (This is because the wire
transactions are not coming from an IMS database on which the
program can reposition.)

Example 3
This example is a modified version of “Example 2” on page 226. The modifications

consist of the recovery logic added to allow the program to be restarted. The same
sequential file is used to update the ACCTDBD database.

The numbered comments following this program describe the statements added to
allow a restart:

filename tranin ’<your.sas.tranin>’ disp=shr;
u filename restart ’<your.sas.restart>’ disp=shr;
data _null_;

length ssa1 $31
ssa2 $32
ssa3 $9
chkpnum 5;

retain wireskip
wirenum 0
chkpnum 0
first 1
debtnum
crdtnum
errnum 0
blanks ’ ’;

infile restart eof=process;
input @1 chkpid 5.

@6 chkptime datetime13.
@19 chkdebt 8.
@27 chkcrdt 8.
@35 chkerr 8.;

wireskip = chkdebt + chkcrdt + chkerr;

file log;
put ’Restarting from checkpoint ’ chkpid

’taken at ’ chkptime datetime13.
’ to bypass ’ wireskip ’trans already processed’;

do while(wireread < wireskip);
infile tranin;
input @1 cust_ssn $char11.

@12 acct_num $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

Advanced Topics for the IMS-DL/I DATA Step Interface 4 Examples 231

wireread + 1;
end;

debtnum = chkdebt;
crdtnum = chkcrdt;
wirenum = debtnum + crdtnum;
errnum = chkerr;

v process:
infile tranin eof=reptotal;
input @1 cust_ssn $char11.

@12 acct_num $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

if _error_ then
link abendit;

if wirenum/5 = chkpnum or first =1 then
do;

link chkp;
first =0;

end;

amount = abs(wireammt);

if accttype = ’C’ then
do;

ssa2 = ’CHCKACCT
(ACNUMBER= ’ || acct_num || ’)’;

if wireammt < 0 then
ssa3 = ’CHCKCRDT’;

else
ssa3 = ’CHCKDEBT’;

end;
else

if accttype = ’S’ then
do;

ssa2 = ’SAVEACCT
(ACNUMBER= ’ || acct_num || ’)’;

if wireammt < 0 then
ssa3 = ’SAVECRDT’;

else
ssa3 = ’SAVEDEBT’;

end;
w else

do;
file log;
put / ’***** Invalid ’ accttype= ’for ’

cust_ssn= acct_num= ’*****’;
go to outerr;

end;

232 Examples 4 Chapter 10

infile acctsam dli ssa=(ssa1,ssa2,ssa3) call=func
pcb=pcbindex status=st segment=seg;

ssa1 = ’CUSTOMER(SSNUMBER= ’ || cust_ssn || ’)’;
func = ’ISRT’;
pcbindex = 4;
file acctsam dli;
put @1 amount pd5.2

@6 wiredate mmddyy6.
@14 wiretime time8.
@22 wiredesc $char40.
@62 blanks $char19.;

if st = ’ ’ then
if st = ’GE’ then

do;
error = 0;
file log;
if seg = ’CUSTOMER’ then

if accttype = ’C’ then
put / ’***** No CHCKACCT segment with ’

cust_ssn= acct_num= ’*****’;
else

put / ’***** No SAVEACCT segment with ’
cust_ssn= acct_num= ’*****’;

else
put / ’***** No CUSTOMER segment with ’

cust_ssn= ’*****’;
go to outerr;

end;
else

link abendit;

ssa3 = ’ ’;
func = ’GHU ’;
input @1 acnumber $char12.

@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

balance = balance + wireammt;
ssa1 = ’ ’;
ssa2 = ’ ’;
func = ’REPL’;
put @1 acnumber $char12.

@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

Advanced Topics for the IMS-DL/I DATA Step Interface 4 Examples 233

if wireammt > 0 then
debtnum = debtnum +1;

else
crdtnum = crdtnum +1;

wirenum = wirenum +1;
return;

reptotal:
file log;
put // ’Number of debit transactions posted =’

debtnum 8.
/ ’Number of credit transactions posted =’

crdtnum 8.;
stop;

x chkp:
chkpnum +1;
chkptime = datetime();
file log;
put @1 ’Next checkpoint will be’

@25 chkpnum
@30 chkptime datetime13.
@43 debtnum
@51 crdtnum
@59 errnum;

func = ’CHKP’;
pcbindex = 1;
file acctsam dli;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then

link abendit;
return;

outerr:
errnum = errnum +1;
return;

abendit:
file log;
put _all_;
abort;

run;
filename tranin clear;
filename restart clear;

u This group of statements initiates the restart, if a restart is
necessary. The standard INFILE statement points to a file with
fileref RESTART. The RESTART file has one record, a "control card"
with data that will determine where processing should resume in the
sequential input file. The data in the RESTART file are taken from
the last checkpoint message written on the SAS log by the program
that ended before completing processing. The message includes the
number and time of the last checkpoint, and the values of the

234 Using SSAs in IMS-DL/I DATA Step Programs 4 Chapter 10

accumulator variables counting the number of debit transactions
posted (CHCKDEBT), credit transactions posted (CHCKCRDT), and
the number of bad records in the TRANIN file (CHKERR).

The RESTART DD statement can be dummied out to execute the
program normally (not as a restart). If RESTART is dummied out in
the control language, end-of-file occurs immediately, and the
program skips to the PROCESS subroutine (see item 6), as indicated
by the EOF= option.

The WIRESKIP variable is the sum of CHCKDEBT, CHCKCRDT,
and CHKERR; that is, WIRESKIP represents the number of records
in TRANIN that were processed by the program before the last
checkpoint.

A message is written to the SAS log that shows the checkpoint
from which processing resumes.

To position itself at the correct TRANIN record, the program
reads the number of records indicated by the WIRESKIP variable.
In other words, the program re-reads all records that were read in
the first execution of the program, up to the last checkpoint.

The values of DEBTNUM, CRDTNUM, WIRENUM, and
ERRNUM are reset so that the final report shows the correct
number of transactions. Otherwise, the report would show only the
number of transactions processed in the restarted execution.

v These statements are the same as the statements in “Example 2” on
page 226 except that they are labeled "PROCESS." If the program is
not being restarted, end-of-file for the INFILE RESTART occurs
immediately, and the program branches to this subroutine.

w If the value of ACCTTYPE is anything but C or S, the TRANIN
record is a bad record. The program prints a message on the SAS
log and branches to the OUTERR subroutine, which increments the
ERRNUM accumulator variable.

x The CHKP call is issued by this group of statements. This group is
like that in “Example 2” on page 226 except that a message about
the checkpoint is also printed on the SAS log. This message provides
the necessary information for a restart.

Note that the message is written to the SAS log before the CHKP
call is actually issued, so it is possible that a system failure could
occur between the time the message is written and the time the call
is issued. Therefore, if a restart is necessary, you should verify that
the last checkpoint referenced in the SAS log is the same as the last
checkpoint in the DL/I log. This can be done by comparing
checkpoint IDs.

Using SSAs in IMS-DL/I DATA Step Programs
When a DATA step program uses qualified calls, you designate variables containing

the SSAs with the SSA= option in the DL/I INFILE statement. The values of SSA
variables do not have to be constants. They can be built by the program using SAS
assignment statements, functions, and operators. You can construct SSAs conditionally
and change SSA variable values between calls.

Advanced Topics for the IMS-DL/I DATA Step Interface 4 The PUT Function 235

The Concatenation Operator
One of the techniques for building an SSA is to incorporate the value of another

variable in the SSA variable’s value. This can be accomplished with the concatenation
operator (||), as in this example:

ssa1=’CUSTOMER(SSNUMBER =’||ssn||’)’;

This statement assigns a value to SSA1 that consists of the literal
CUSTOMER(SSNUMBER =, the current value of the variable SSN, and the right
parenthesis. If the current value of SSN is 303-46-4887, the SSA is

CUSTOMER(SSNUMBER =303-46-4887)

Note: The concatenation operator acts on character values. If you use a numeric
variable or value with the concatenation operator, the numeric value is converted
automatically to character using the BEST12. format. If the value is less than 12 bytes,
it is padded with blanks and, if longer than 12 bytes, it could lose precision when
converted. If you want to insert a numeric value via concatenation, you should explicitly
convert the value to character with the PUT function (described in the next section). 4

The PUT Function
SSA variables in a DATA step program must be character variables. However, you

may sometimes need to qualify an SSA with a numeric value. To insert a numeric value
in an SSA character variable, you can use the SAS PUT function.* For more
information on the PUT statement, see SAS Language Reference: Dictionary.

The PUT function’s form is

PUT(argument1, format)

where argument1 is a variable name or a constant, and format is a valid SAS format of
the same type (numeric or character) as argument1. The PUT function writes a
character string that consists of the value of argument1 output in the specified format.
The result of the PUT function is always a character value, regardless of the type of the
function’s arguments. For example, in this statement

newdate=put(datevalu,date7.);

the result of the PUT function is a character string assigned to the variable
NEWDATE, a character variable. The result is a character value even though
DATEVALU and the DATE7. format are numeric. If DATEVALU=38096, the value of
NEWDATE is:

newdate=’20APR64’

Using the PUT function, you can translate numeric values for use in SSAs. For
example, to select WIRETRAN segments with WIREAMMT values less than $500.00,
you could construct an SSA like this:

maxamt=500;
ssa1=’WIRETRAN(WIREAMMT <’||put(maxamt,pd5.2)||’)’;

First, you assign the numeric value to be used as the search criterion to a numeric
variable. In this case, the value 500 is assigned to the numeric variable MAXAMT.

* The PUT function can also be used to format a character value with any valid character format.

236 The PUT Function 4 Chapter 10

Then you construct the qualified SSA using concatenation and the PUT function. The
PUT function’s result is a character string consisting of the value of MAXAMT in PD5.2
format.

Consider a more complicated example using the ACCTDBD database. In this case,
you want to select all checking accounts for which the last statement was issued a
month ago today or more than 31 days ago.

The following SAS statements illustrate one approach to constructing an SSA to
select the appropriate accounts. The numbered comments after this example correspond
to the numbered statements:

data _null_;
u tday = today();
v d = day(tday);

m = month(tday);
y = year(tday);

w if d = 31 then
if m = 5 or

m = 7 or
m = 10 or
m = 12 then
d = 30;

x if m = 3 then
if d < 28 then

d = 28;
if m = 1 then

do;
m = 12;
y = y - 1;

end;
else

m = m - 1;

y datpmon = mdy(m,d,y);
U datem31 = tday - 31;

V ssa1 = ’CHCKACCT
(STMTDATE= ’ || put(datpmon,mmddyy6.) ||
’| STMTDATE> ’ || put(datem31,mmddyy6.) || ’)’;

stop;
run;

u Use the SAS function TODAY to produce the current date as a SAS
date value and assign it to the variable TDAY.

v Use the SAS functions DAY, MONTH, and YEAR to extract the
corresponding parts of the current date and assign them to
appropriate variables.

w Modify D values to adjust when previous month has fewer than 31
days.

x Modify the month variable (M) to contain the prior month value.

y Assign the SAS date value for last month, the same day as today, to
the variable DATPMON.

Advanced Topics for the IMS-DL/I DATA Step Interface 4 Changing SSA Variable Values between Calls 237

U Subtract 31 from the SAS date representing today’s date and assign
the value to the variable DATEM31.

V To build the SSA, concatenate these elements:
� a literal that is composed of the segment name (CHCKACCT),

a left parenthesis, search field name (STMTDATE), and the
relational operator =.

� a character string consisting of the value of DATPMON output
in the MMDDYY6. format. The character string is the result of
the PUT function.

� a literal consisting of the Boolean operator | (or), the search
field name (STMTDATE), and the relational operator >.

� a character string consisting of the value of DATEM31 output
in the MMDDYY6. format. The character string is the result of
the PUT function.

� a literal consisting of a right parenthesis.

If these statements are executed on 28 March 1995, the value of
SSA1 is

CHCKACCT(STMTDATE =02/28/95|STMTDATE >02/28/95)

Setting SSAs Conditionally
Using SAS IF-THEN/ELSE statements, SSA variables can be assigned values

conditionally. Consider “Example 2” on page 226 in which the ACCTDBD database is
updated with transaction information stored in a standard sequential file with fileref
TRANIN. Each TRANIN record contains data for one deposit or withdrawal transaction
for a checking or savings account. The program uses the TRANIN records to construct
new CHCKDEBT, CHCKCRDT, SAVEDEBT, or SAVECRDT segments and then inserts
the new segment in the ACCTDBD database. Notice that the concatenation operator
(||) is used to incorporate the value of the ACCT_NUM variable in the SSA.

The program first reads a record from the TRANIN file and then determines whether
the data are for a checking or a savings account by evaluating the value of the variable
ACCTTYPE. If ACCTTYPE=’C’, the program constructs a qualified SSA for a
CHCKACCT segment. Next, the program determines whether the record represents a
debit or credit transaction and builds an unqualified SSA for a CHCKDEBT or
CHCKCRDT segment, as appropriate.

If ACCTTYPE=’S’, a qualified SSA for a SAVEACCT segment is built, and then an
unqualified SSA for a SAVEDEBT or SAVECRDT segment is set up.

Changing SSA Variable Values between Calls
A DATA step program can issue multiple calls within a DATA step execution, and the

value of an SSA variable can be changed between each call. An example of this is the
following code, which is used in “Example 4: Issuing REPL Calls” on page 180 in
Chapter 8, “Introducing the IMS-DL/I DATA Step Interface,” on page 151:

data _null_;
set ver6.newaddr;
length ssa1 $31;
infile acctsam dli ssa=ssa1 call=func status=st

pcbno=4;
ssa1 = ’CUSTOMER(SSN =’ || ssn || ’)’;

238 Changing SSA Variable Values between Calls 4 Chapter 10

func = ’GHU ’;
input;
if st = ’ ’ then

do;
func = ’REPL’;
ssa1 = ’ ’;
file acctsam dli;
put _infile_ @;
put @52 newaddr1 $char30.

@82 newaddr2 $char30.
@112 newcity $char28.
@140 newstate $char2.
@162 newzip $char10.;

if st = ’ ’ then
link abendit;

end;
else

if st = ’GE’ then
do;

error = 0;
stop;

end;
else

link abendit;
return;

abendit:
file log;
put _all_;
abort;

run;

These statements are part of a program that updates CUSTOMER segments in the
ACCTDBD database with information from the SAS data set VER6.NEWADDR.
CUSTOMER segments are retrieved using GHU calls with a qualified SSA, SSA1. Once
a segment is retrieved, the data from the SAS data set are overlaid on the old values of
the segment and a REPL call is issued. Since a REPL call acts on a segment retrieved
previously, no SSA is needed. Therefore, the value of the SSA1 variable is changed to
blanks before the REPL call is issued.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS ® Interface to IMS-DL/I Software: Reference, Version 8, Cary, NC: SAS Institute
Inc., 1999. 316 pp.

SAS/ACCESS® Interface to IMS-DL/I Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–548–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

