
1

C H A P T E R

1
Informix Chapter, First Edition

Introduction 1
Default Environment 1

SAS/ACCESS LIBNAME Statement 2

Data Set Options: Informix Specifics 6

SQL Procedure Pass-Through Facility: Informix Specifics 8

Informix Naming Conventions 15
Informix Data Types and SAS Representations and Formats 15

Character Data 15

Numeric Data 16

Abstract Data 16

NULL and Default Values 16

LIBNAME Statement Data Conversions 16
SQL Procedure Pass-Through Facility Data Conversions 18

Overview of Informix Servers 18

Specifying Databases and Servers 18

Using the DBDATABASE Environment Variable 19

Using Fully Qualified Table Names 19

Introduction
This chapter introduces SAS System users to Informix, which is a relational

database management system. It accompanies and should be used with SAS/ACCESS
Software for Relational Databases: Reference (order #57204).*

This chapter focuses on the terms and concepts that help you use the SAS/ACCESS
Interface to Informix. The SAS/ACCESS Interface to Informix connects you to Informix
data through the LIBNAME statement and the SQL Procedure Pass-Through Facility.

For general information about database management systems, including information
for the database administrator about how the SAS/ACCESS interfaces work, refer to
Appendix 2, "DBMS Overview and Information for the Database Administrator". For
more information about Informix, refer to your Informix documentation.

Default Environment
When you access Informix tables by using the SAS/ACCESS Interface to Informix,

the default Informix read isolation level is set for committed reads, and SAS spooling is
on. Committed reads allow you to read rows unless another user or process is updating

* Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

2 SAS/ACCESS LIBNAME Statement 4 Chapter 1

the rows; reading in this manner does not lock the rows. SAS spooling guarantees that
you will get identical data each time you reread a row because SAS buffers the rows
after you read them the first time. This default environment is suitable for most users;
however, this chapter describes how to set the locking and read isolation level options if
the default environment is unsuitable for your needs.

For more details on Informix locking, see your Informix documentation. To see the
SQL statements, including locking statements, that SAS issues to the Informix server,
include the following option in your code:

option sastrace=’,,,d’;

See Chapter 5, "Macro Variables and System Options" for more information about the
SASTRACE= option.

Note: If you use quotes in your Informix SQL statements, your DELIMIDENT
environment variable should be set to DELIMIDENT=YES, or your statements could be
rejected by Informix. Because some of the SAS options that preserve case generate SQL
statements that contain quotes, DELIMIDENT=YES should be set in your
environment. 4

SAS/ACCESS LIBNAME Statement
Chapter 3, "SAS/ACCESS LIBNAME Statement" describes options that you specify

in the LIBNAME statement to associate a SAS libref with a DBMS database, schema,
server, or group of tables and views. The following section describes DBMS-specific
options and option values that you can use in the SAS/ACCESS Interface to Informix.

LIBNAME Statement: Informix Specifics
Associates a SAS libref with a DBMS database, schema, server, or group of tables and views.

Valid: Anywhere

Syntax
LIBNAME libref SAS/ACCESS-engine-name

<SAS/ACCESS-engine-connection-options>
<SAS/ACCESS-LIBNAME-options>;

Arguments

libref
is any SAS name that serves as an alias to associate the SAS System with a
database, schema, server, or group of tables and views.

SAS/ACCESS-engine-name
is a SAS/ACCESS engine name for your DBMS, in this case, informix.
SAS/ACCESS engines are implemented differently in different operating
environments. The engine name is required.

Informix Chapter, First Edition 4 LIBNAME Statement: Informix Specifics 3

SAS/ACCESS-engine-connection-options
are options that you specify to connect to a particular database; these options are
different for each database. If the connection options contain characters that are not
allowed in SAS names, enclose the values of the options in quotation marks. If you
specify the appropriate system options or environment variables for your database,
you can often omit the connection options. See your Informix documentation for
details.

SAS/ACCESS-LIBNAME-options
are options that apply to the processing of objects and data in a DBMS, such as its
tables or indexes. For example, the LOCKTABLE= option enables you to lock or
unlock tables in a libref. Support for many of these options is DBMS specific.

Some SAS/ACCESS LIBNAME options have the same names as SAS/ACCESS
data set options. When you specify an option in the LIBNAME statement, it applies
to objects and data that are referenced by the libref. A SAS/ACCESS data set option
applies only to the data set on which it is specified. If a like-named option is specified
in both the SAS/ACCESS LIBNAME statement and after a data set name (which
references a DBMS table or view), the SAS System uses the value that is specified
later, on the data set name. See “Data Set Options: Informix Specifics” on page 6 for
more information.

Details The LIBNAME statement associates a libref with a SAS/ACCESS engine to
access tables or views in a database management system (DBMS). The SAS/ACCESS
engine enables you to connect to a particular DBMS and to specify a DBMS table or
view name in a two-level SAS name. For example, in MYDBLIB.EMPLOYEES_Q2,
MYDBLIB is a SAS libref that points to a particular group of DBMS objects, and
EMPLOYEES_Q2 is a DBMS table name. When you specify
MYDBLIB.EMPLOYEES_Q2 in a DATA step or procedure, you dynamically access the
DBMS table. In Version 7 and higher, SAS software supports reading, updating,
creating, and deleting DBMS tables.

To disassociate or clear a libref from a DBMS, use a LIBNAME statement, specifying
the libref (for example, MYDBLIB) and the CLEAR option as follows:

libname mydblib CLEAR;

The database engine will disconnect from the database and close any threads or
resources that are associated with that connection.

See for more information on arguments that you can use in the LIBNAME statement.

SAS/ACCESS Engine Connection Options The SAS/ACCESS engine connection options
for Informix are as follows:

USER= on page 3
USING= on page 3
DATABASE= on page 4
SERVER= on page 4

USER=<’>Informix-user-name<’>
specifies the Informix user name that you use to connect to the database that
contains the tables and views that you want to access. If you omit the USER=
option, your operating system account name is used, if applicable to your operating
environment.

USING=<’>Informix-password<’>
specifies the password that is associated with the Informix user. If you omit the
password, Informix uses the password in the /etc/password file.

USING can also be specified with the PASSWORD= and PWD=aliases.

4 LIBNAME Statement: Informix Specifics 4 Chapter 1

DATABASE=<’>database-name<’>
specifies the name of the Informix database that contains the tables and views
that you want to access. If you omit the DATABASE= option, the value of the SAS
environment variable DBDATABASE is used as the database name. An error
occurs if neither the DATABASE= option nor the DBDATABASE environment
variable is set. See “Using the DBDATABASE Environment Variable” on page 19
for more information.

DATABASE= can also be specified with the DB= alias.

SERVER=<’>server-name<’>
specifies the server with which to connect. This server accesses the database that
contains the tables and views that you want to access. If you omit the SERVER=
option, the value of the environment variable INFORMIXSERVER is used as the
server name. An error occurs if neither the SERVER= option nor the
INFORMIXSERVER environment variable is set.

You can use the DBDATABASE environment variable to specify database/server
combinations, such as database@server or //server/database.

SAS/ACCESS LIBNAME Options When you specify any of the following options in the
LIBNAME statement, the option is applied to all objects (such as tables, views, and
indexes) in the database that the libref represents.

The SAS/ACCESS interface to Informix supports all of the SAS/ACCESS LIBNAME
options listed in Chapter 3, "SAS/ACCESS LIBNAME Statement" , except for
DBMAX_TEXT=. In addition to the supported options, the following LIBNAME options
are used only in the interface to Informix or have Informix–specific aspects to them:

LOCKTABLE= on page 4
LOCKTIME= on page 4
LOCKWAIT= on page 4
PRESERVE_COL_NAMES= on page 5
PRESERVE_TAB_NAMES= on page 5
READ_ISOLATION_LEVEL= on page 5
SCHEMA= on page 6
SPOOL= on page 6

LOCKTABLE=EXCLUSIVE | SHARE
places exclusive or shared locks on tables. You may lock tables only if you are the
owner or have been granted the necessary privilege.

If you omit LOCKTABLE=, no locking occurs. If you specify
LOCKTABLE=EXCLUSIVE, other users are prevented from accessing each table
that you open in the libref.

If you specify LOCKTABLE=SHARE, other users or processes can read data
from the tables, but they cannot update the data.

LOCKTABLE= can also be specified with the TABLELOCK= alias.

LOCKTIME=integer
specifies the number of seconds to wait until rows are available for locking.

You must specify LOCKWAIT=YES for LOCKTIME= to have an effect. If you
omit the LOCKTIME= option and use LOCKWAIT=YES, SAS suspends your
process indefinitely until a lock can be obtained.

See also: LOCKWAIT=.

LOCKWAIT=YES | NO
specifies whether to wait until rows are available for locking.

By default, the SAS/ACCESS Interface to Informix returns an error if another
user holds a lock on the rows that you want to lock. If you specify

Informix Chapter, First Edition 4 LIBNAME Statement: Informix Specifics 5

LOCKWAIT=YES, SAS waits until rows are available for locking, or until the
number of seconds specified by using the LOCKTIME= option has passed. In the
latter case, an error is returned.

If you specify LOCKWAIT=NO or omit this option, SAS does not wait and
returns an error to indicate that the lock is not available.

Note: If you specify LOCKWAIT= and do not limit the wait time by using the
LOCKTIME= option, your process might suspend indefinitely if the lock cannot be
obtained. 4

See also: LOCKTIME=.

PRESERVE_COL_NAMES=YES | NO
preserves spaces, special characters, and mixed case in column names.

If you omit PRESERVE_COL_NAMES=, the default value is
PRESERVE_COL_NAMES=NO, which means that column names are created and
referenced in lowercase. If you want to preserve the case or allow characters that
are not supported in SAS names, such as ’$’, in your column names, set
PRESERVE_COL_NAMES=YES.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

PRESERVE_TAB_NAMES=YES | NO
preserves spaces, special characters, and mixed case in table names.

If you omit PRESERVE_TAB_NAMES=, the default value is
PRESERVE_TAB_NAMES=NO, which means that table names are created and
referenced in lowercase. If you want to preserve case or allow characters that are
not supported in SAS names, such as ’$’, in your object names, including table
names, schema names, and link names, set PRESERVE_TAB_NAMES=YES.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

READ_ISOLATION_LEVEL=COMMITTED_READ | REPEATABLE_READ |
DIRTY_READ | CURSOR_STABILITY

specifies the method of read locking for Informix to use when it reads tables and
views.

If you omit the READ_ISOLATION_LEVEL= option, the default value is
READ_ISOLATION_LEVEL= COMMITTED_READ, which retrieves only
committed rows. No locks are acquired, and rows can be locked exclusively for
update by other users or processes.

If you specify READ_ISOLATION_LEVEL=REPEATABLE_READ, you acquire
a shared lock on every row that is selected during the transaction. Other users or
processes can also acquire a shared lock, but no other process can modify any row
that is selected by your transaction. If you repeat the query during the
transaction, you reread the same information. The shared locks are released only
when the transaction commits or rolls back. Another process cannot update or
delete a row that is accessed by using a repeatable read.

If you specify READ_ISOLATION_LEVEL=DIRTY_READ, you retrieve
committed and uncommitted rows that might include phantom rows, which are
rows that are created or modified by another user or process that might
subsequently be rolled back. This type of read is most appropriate for tables that
are not frequently updated.

If you specify READ_ISOLATION_LEVEL=CURSOR_STABILITY, you acquire a
shared lock on the selected row. Another user or process can acquire a shared lock
on the same row, but no process can acquire an exclusive lock to modify data in the
row. When you retrieve another row or close the cursor, the shared lock is released.

Note: For current Informix releases, READ_ISOLATION_LEVEL= is only
valid when transaction logging is enabled. If transaction logging is not enabled, an

6 Data Set Options: Informix Specifics 4 Chapter 1

error is generated when you use this option. Also, locks placed when
READ_ISOLATION_LEVEL=REPEATABLE READ or CURSOR_STABILITY are
not freed until the libref is cleared.

In most situations, spooling, which is on by default, provides the data
consistency you need. However, if you want to use
READ_ISOLATION_LEVEL=REPEATABLE_READ or CURSOR_STABILITY, it is
recommended that you assign a separate libref with this option, and that you clear
the libref when you have finished working with the tables. This technique
minimizes the negative performance impact on other users that occurs when you
lock the tables. To clear the libref, include the following code:

LIBNAME libref CLEAR;

4

SCHEMA=username
allows you to view another user’s database tables and views.

If you omit the SCHEMA= option, you can view only your own tables and views.
SCHEMA= can also be specified with the OWNER= alias.

SPOOL=YES | NO
specifies whether SAS creates a utility spool file during read operations that are
performed with the specified libref.

If you omit SPOOL=, the default value is SPOOL=YES, which means that SAS
performs spooling. If you specify SPOOL=NO, SAS does not perform spooling.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

Example: Specifying a LIBNAME Statement to Access Informix Data
In this example, the libref MYDBLIB uses the Informix engine to connect to an
Informix database. The SAS/ACCESS engine connection options are USER=,
PASSWORD=, DATABASE=, and SERVER=.

libname mydblib informix user=testuser
using=testpass database=testdb
server=testserver;

proc print data=mydblib.customers;
where gender=’M’;

run;

Data Set Options: Informix Specifics
Chapter 4, "SAS/ACCESS Data Set Options" describes the SAS/ACCESS options

that you can use when you specify a SAS data set in a DATA or PROC step; in this
case, the SAS data set accesses data from a DBMS table or view. The following section
describes the DBMS-specific options and option values that you can use in the
SAS/ACCESS Interface to Informix. A data set option applies only to the SAS data set,
or DBMS object, on which it is specified.

Unless otherwise noted, when you omit a SAS/ACCESS data set option, and you have
specified a like-named LIBNAME option in the LIBNAME statement, the value of the
LIBNAME option applies to all data sets within the libref.

Note: Not all LIBNAME options have corresponding data set options. Refer to
Chapter 3, "SAS/ACCESS LIBNAME Statement" , Chapter 4, "SAS/ACCESS Data Set

Informix Chapter, First Edition 4 LOCKTABLE= 7

Options" , and this chapter for a full listing of SAS/ACCESS LIBNAME options, data
set options, and Informix-specific LIBNAME and data set options. 4

The SAS/ACCESS interface to Informix supports all of the SAS/ACCESS data set
options listed in Chapter 4, "SAS/ACCESS Data Set Options" , except for
DBMAX_TEXT=, READ_LOCK_TYPE, and UPDATE_LOCK_TYPE. In addition to the
supported options, the following data set options are used only in the interface to
Informix or have Informix–specific aspects to them:

“DBNULL=” on page 7
“DBTYPE=” on page 7
“LOCKTABLE=” on page 7
“SASDATEFMT=” on page 8
“SCHEMA=” on page 8

DBNULL=

Indicates whether NULL is a valid value for the specified column(s).

Default value: YES

Details For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data
Set Options".

DBTYPE=

Specifies data type(s) to override the default DBMS data type(s) during output processing.

Default value: CHAR(size) for characters, where size is derived from the SAS variable
length; FLOAT for numbers.

Details For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data
Set Options".

LOCKTABLE=

Places exclusive or shared locks on tables.

Default value: NONE

Syntax
LOCKTABLE=EXCLUSIVE | SHARE

8 SASDATEFMT= 4 Chapter 1

EXCLUSIVE
locks a table exclusively.

SHARE
locks a table in shared mode.

Details You may lock tables only if you are the owner or have been granted the
necessary privilege. If you omit LOCKTABLE=, no locking occurs.
LOCKTABLE=EXCLUSIVE prevents other users from accessing each table that you
open in the libref. LOCKTABLE=SHARE allows other users or processes to read data
from the tables, but does not allow them to update data.

LOCKTABLE= can also be specified with the TABLELOCK= alias.

SASDATEFMT=

Specifies the SAS date format to use to convert SAS date values.

Default value: DATETIME

Details For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data
Set Options".

SCHEMA=

Allows you to view another user’s database tables and views.

Default value: None

Syntax
SCHEMA=owner-name

owner-name
specifies the user name of the owner of the tables and the views that you want to
access.

Details SCHEMA= can also be specified with the OWNER= alias.

SQL Procedure Pass-Through Facility: Informix Specifics
The SQL Procedure Pass-Through facility consists of three PROC SQL statements

and one component. See the following Informix-specific sections for details:

Informix Chapter, First Edition 4 CONNECT Statement 9

CONNECT“CONNECT Statement” on page 9, EXECUTE“EXECUTE Statement” on
page 10, and CONNECTION TO“CONNECTION TO Component” on page 13. For a
complete description of the Pass-Through Facility, see Chapter 6, "SQL Procedure’s
Interaction with SAS/ACCESS Software".

CONNECT Statement

Establishes a connection with the DBMS

Optional statement

Syntax
CONNECT TO INFORMIX <AS alias> <(Informix-connection-arguments)>;

Arguments

alias
specifies an optional alias that has 1 to 32 characters. If you specify an alias, the
keyword AS must appear before the alias.

(Informix-connection-arguments)
specifies the arguments that are needed by PROC SQL in order to connect to the
Informix. These arguments must be enclosed in parentheses.

Informix Connection Arguments
The CONNECT statement establishes a connection with the DBMS. You establish a
connection to send SQL statements to the DBMS or to retrieve DBMS data. The
connection remains in effect until you issue a DISCONNECT statement or terminate
the SQL procedure.

You can connect to only one Informix database. However, you can specify multiple
CONNECT statements if they all connect to the same Informix database. If you use
multiple connections, you must use an alias to identify the different connections. If you
omit an alias, informix is automatically used.

When you omit a CONNECT statement, an implicit connection is performed when
the first EXECUTE statement or CONNECTION TO component is passed to the DBMS.

The CONNECT statement is optional when connecting to an Informix database if the
DBDATABASE environment variable has been set to include both the database and
server specification. See “Using the DBDATABASE Environment Variable” on page 19
for more information.

Any return code or message that is generated by the DBMS or by the SQL Procedure
Pass-through facility is available in the macro variables SQLXRC and SQLXMSG after
the statement executes. See Chapter 6, "SQL Procedure’s Interaction with SAS/
ACCESS Software" for more information on these macro variables.

Informix uses the following database connection arguments. These arguments must
be enclosed in parentheses.

DATABASE= | DB=<">database-name<">
specifies the name of the Informix database and optionally, database server, to
which PROC SQL connects. The database name allows optional single or double

10 EXECUTE Statement 4 Chapter 1

quotes. If the name contains special characters, national characters, or semicolons,
you must enclose the name in quotes.

By using a full pathname, you can specify a database as well as a database
server in the DATABASE argument.

You can set default values for the DATABASE= argument and therefore, the
argument is optional. See “Using the DBDATABASE Environment Variable” on
page 19 for more information.

SERVER=<’>server-name<’>
specifies the server with which to connect. This server accesses the database that
contains the tables and views that you want to access. If you omit the SERVER=
option, the value of the SAS environment variable INFORMIXSERVER is used as
the server name. An error occurs if neither the SERVER= option nor the SAS
INFORMIXSERVER environment variable is set.

You can use the DBDATABASE environment variable to specify database/server
combinations, such as database@server or //server/database.

USER=<’>Informix-user-name<’>
specifies the Informix user name that you use to connect to the database that
contains the tables and views that you want to access. If you omit the USER=
option, your operating system account name is used, if applicable to your operating
environment.

USING=<’>Informix-password<’>
specifies the password that is associated with the Informix user. If you omit the
password, Informix uses the password in the /etc/password file.

USING can also be specified with the PASSWORD= and PWD=aliases.

Example This example connects to the Informix database stores7 by using the
online server. The database name is quoted because it includes special characters.

proc sql;
connect to informix
(user=SCOTT password=TIGER database=’//online/stores7’);

Note: You can use the DBDATABASE environment variable to specify database/
server combinations, such as database@server or //server/database. 4

EXECUTE Statement

Sends DBMS-specific, nonquery SQL statements to the DBMS.

Optional statement

Syntax
EXECUTE (DBMS-specific SQL-statement) BY dbms-name | alias;

Arguments

Informix Chapter, First Edition 4 EXECUTE Statement 11

(DBMS-specific-SQL-statement)
specifies a dynamic, DBMS-specific SQL statement that does not select data. This
argument is required and must be enclosed in parentheses. The statement is case
sensitive and is passed to the DBMS exactly as you type it.

Note: If you use quotes in your Informix SQL Pass-through statements, your
DELIMIDENT environment variable must be set to DELIMIDENT=YES, or your
statements will be rejected by Informix. 4

Any return code or message that is generated by the DBMS is available in the
macro variables SQLXRC and SQLXMSG after the statement executes. See Chapter
6, "SQL Procedure’s Interaction with SAS/ACCESS Software" for more information
on these macro variables.

dbms-name
identifies the database management system to which you direct the DBMS-specific
SQL statement, in this case, informix. The keyword BY must appear before the
dbms-name argument. You must specify either a DBMS name or an alias in the
EXECUTE statement.

alias
specifies an alias that was defined in the CONNECT statement. (You cannot use an
alias if the CONNECT statement was omitted.)

The EXECUTE statement sends dynamic, non-query DBMS-specific SQL statements
to the DBMS and processes those statements.

In some SAS/ACCESS interfaces, you can issue an EXECUTE statement directly
without first connecting to a DBMS. If you omit the CONNECT statement, an implicit
connection is performed (by using default values for all connection arguments) when the
first EXECUTE statement is passed to the DBMS.

The EXECUTE statement cannot be stored as part of a Pass-Through query in a
PROC SQL view.

Useful Statements to Include in EXECUTE Statements
This section lists some of the statements that you can pass to the DBMS by using the
Pass-Through facility’s EXECUTE statement.

Note: The statements passed using the EXECUTE statement cannot contain a
semicolon (;) because to SAS software a semicolon represents the end of a statement. 4

CREATE
creates a DBMS table, view, index, or other DBMS objects, depending on how the
statement is specified.

DELETE
deletes rows from a DBMS table.

DROP
deletes a DBMS table, view, or other DBMS objects, depending on how the
statement is specified.

GRANT
gives users the authority to access or modify objects such as tables or views.

INSERT
adds rows to a DBMS table.

REVOKE
revokes the access or modifies privileges that were given to users by the GRANT
statement.

12 EXECUTE Statement 4 Chapter 1

UPDATE
modifies the data in columns of a row in a DBMS table.

For more information and restrictions on these and other SQL statements, see your
Informix SQL documentation.

Special Informix Considerations
The Pass-Through Facility recognizes two types of stored procedures in Informix that
perform only database functions. The method for executing the two types of stored
procedures is different.

� Procedures that return no values to the calling application:
Stored procedures that do not return values can be executed directly by using

the Informix SQL EXECUTE statement. Stored procedure execution is initiated
with the Informix EXECUTE PROCEDURE statement. The following example
executes the stored procedure make_table. The stored procedure has no input
parameters and returns no values.

execute (execute procedure make_table())
by informix;

� Procedures that return values to the calling application:
Stored procedures that return values must be executed by using the PROC SQL

SELECT statement with a CONNECTION TO component. The following example
executes the stored procedure read_address, which has one parameter,

"Putnum".

The values that are returned by read_address serve as the contents of a
virtual table for the PROC SQL SELECT statement.

select * from connection to informix
(execute procedure read_address ("Putnum"));

For example, when you try to execute a stored procedure that returns values
from a PROC SQL EXECUTE statement, you get the following error message:

execute (execute procedure read_address
("Putnum")) by informix;

ERROR: Informix EXECUTE Error: Procedure
(read_address) returns too many values.

Examples

The following example grants UPDATE and INSERT authority to user gomez on the
Informix ORDERS table. Because the CONNECT statement is omitted, an implicit
connection is made that uses a default value of informix as the connection alias and
default values for the DATABASE and SERVER arguments. Informix is a case-sensitive
database; therefore, the database object ORDERS is in uppercase, as it was created.

proc sql;
execute (grant update, insert on ORDERS
to gomez) by informix;

quit;

The next example connects to Informix and drops (that is, removes) the table
tempdata from the stores7 database. The alias temp5 that is specified in the
CONNECT statement is used in the EXECUTE statement’s BY clause.

Informix Chapter, First Edition 4 CONNECTION TO Component 13

proc sql;
connect to informix as temp5
(database=’//online/stores7’);
execute (drop table tempdata) by temp5;
disconnect from temp5;

quit;

CONNECTION TO Component

Retrieves and uses DBMS data in a PROC SQL query or view.

Optional component

Syntax
CONNECTION TO INFORMIX | alias (DBMS-SQL-query)

Arguments

alias
specifies an alias, if one was defined in the CONNECT statement.

(DBMS-SQL-query)
specifies the query that you are sending to the DBMS. The query can use any
DBMS-specific SQL statement or syntax that is valid for the DBMS. However, the
query cannot contain a semicolon because to the SAS System a semicolon represents
the end of a statement.

You must specify a dbms-SQL-query argument in the CONNECTION TO
component, and the query must be enclosed in parentheses. The query is passed to
the DBMS exactly as you type it; therefore, if your DBMS is case-sensitive, you must
use the correct case for DMBS object names, enclosing them in quotes, if necessary.
Quoted character strings are limited to 200 characters.

On some DBMSs, the dbms-SQL-query argument can be a DBMS-specific SQL
EXECUTE statement that executes a DBMS stored procedure. However, if the stored
procedure contains more than one query, only the first query is processed.

The CONNECTION TO component specifies the DBMS connection that you want to
use or that you want to establish (if you have omitted the CONNECT statement).
CONNECTION TO enables you to retrieve DBMS data directly through a PROC SQL
query.

You use the CONNECTION TO component in the FROM clause of a PROC SQL
SELECT statement:

PROC SQL;

SELECT column-list

FROM CONNECTION TO dbms-name(DBMS-SQL-query) other optional PROC SQL
clauses;

CONNECTION TO can be used in any FROM clause, including those that are in
nested queries (that is, subqueries).

14 CONNECTION TO Component 4 Chapter 1

You can store a Pass-Through query in a PROC SQL view and then use that view in
SAS programs. When you create a PROC SQL view, any options that you specify in the
corresponding CONNECT statement are stored too. Thus, when the PROC SQL view is
used in a SAS program, the SAS System can establish the appropriate connection to the
DBMS.

On many DBMSs, you can issue a CONNECTION TO component in a PROC SQL
SELECT statement directly without first connecting to a DBMS. If you omit the
CONNECT statement, an implicit connection is performed when the first PROC SQL
SELECT statement that contains a CONNECTION TO component is passed to the
DBMS. Default values are used for all connection arguments.

Because DBMSs and the SAS System have different naming conventions, some
DBMS column names may be truncated when you retrieve DBMS data through the
CONNECTION TO component. Default SAS variable names follow these rules:

� If the column name is longer than 32 characters, the SAS System uses only the
first 32 characters. If truncating results in duplicate names, sequential numbers
(starting with zero) are appended to the ends of the names.

� If the column name contains characters that are invalid in SAS names (such as
national characters), the SAS System replaces the invalid characters with
underscores (_). For example, the column name func$ becomes the SAS variable
name func_.

Examples

The following example sends an SQL query, shown in italics, to the database for
processing. The results from the SQL query serve as a virtual table for the PROC SQL
FROM clause. In this example, DBCON is a connection alias.

proc sql;
connect to informix as dbcon

(user=testuser using=testpass db=testdb
server=testserver);

select *
from connection to dbcon

(select empid, lastname, firstname,
hiredate, salary

from employees
where hiredate>=’31JAN88’);

disconnect from dbcon;
quit;

The following example gives the previous query a name and stores it as the PROC
SQL view SLIB.HIRES88. The CREATE VIEW statement appears in italics.

libname slib ’SAS-data-library’;

proc sql;
connect to informix as mycon

(user=testuser using=testpass db=testdb
server=testserver);

create view slib.hires88 as
select *

from connection to mycon

Informix Chapter, First Edition 4 Character Data 15

(select empid, lastname, firstname,
hiredate, salary from employees
where hiredate>=’31JAN88’);

disconnect from mycon;
quit;

The next example connects to Informix and executes the stored procedure testproc.
The select * clause displays the results from the stored procedure.

proc sql;
connect to informix as mydb

(database=’//dbserver/corpdb’);
select * from connection to mydb

(execute procedure testproc(’123456’));
disconnect from mydb;

quit;

Informix Command Restrictions for the Pass-Through Facility
Informix SQL contains extensions to the ANSI-89 standards. Some of these extensions,
such as LOAD FROM and UNLOAD TO, are restricted from use by any applications
other than the Informix DB-Access product. Specifying these extensions in the PROC
SQL EXECUTE statement generates this error: -201 A syntax error has
occurred.

Informix Naming Conventions

� Table and column names must begin with a letter or an underscore followed by
letters, numbers, or underscores. However, if the name appears within quotes and
the PRESERVE_TAB_NAMES option has been set to
PRESERVE_TAB_NAMES=YES when applicable, it may start with any character.

� Table and column names can contain up to 18 characters.

Informix Data Types and SAS Representations and Formats

Every column in a table has a name and a data type. The data type tells Informix
how much physical storage to set aside for the column and the form in which the data
is stored. Informix data types fall into three categories: types for character data, types
for numeric data, and types for abstract values such as dates. Each of these types is
described in the following sections.

This section describes how the LIBNAME statement and the SQL Procedure
Pass-Through Facility treat each of these types during input operations.

Character Data
CHAR(n), NCHAR(n)

contains character string data from 1 to 32,767 characters in length and can
include tabs and spaces.

16 Numeric Data 4 Chapter 1

VARCHAR(m, n), NVARCHAR(m, n)
contains character string data from 1 to 255 characters in length.

TEXT
contains unlimited text data, depending on memory capacity.

Numeric Data
DECIMAL, MONEY, NUMERIC

contains numeric data with definable scale and precision. The amount of storage
that is allocated depends on the size of the number.

FLOAT, DOUBLE PRECISION
contains double-precision numeric data up to 8 bytes.

INTEGER
contains an integer up to 32 bits (from -231 to 231—1).

REAL, SMALLFLOAT
contains single-precision, floating-point numbers up to 4 bytes.

SERIAL
stores sequential integers up to 32 bits.

SMALLINT
contains integers up to 2 bytes.

Abstract Data
DATE

contains a calendar date in the form of a signed integer value.

DATETIME
contains a calendar date and time of day stored in 2 to 11 bytes, depending on
precision.

INTERVAL
contains a span of time stored in 2 to 12 bytes, depending on precision.

NULL and Default Values
If you do not indicate a default value for a column, the default value is NULL. You

can specify the keywords NOT NULL after the data type of the column when you create
a table to prevent NULL values from being stored in the column.

LIBNAME Statement Data Conversions
The following table shows the default SAS variable formats that the LIBNAME

statement applies to Informix data types during input operations. You can override
these default data types by using the DBTYPE= data set option on a specific data set.

Informix Chapter, First Edition 4 LIBNAME Statement Data Conversions 17

Table 1.1 LIBNAME Statement: Default SAS Formats for Informix Data Types

Informix Column Type Default SAS Format

CHAR(n) $n

DATE DATE9.

DATETIME** DATETIME24.5

DECIMAL none

DOUBLE PRECISION none

FLOAT none

INTEGER none

INTERVAL $n

MONEY none

NCHAR(n) $n

NLS support required

NUMERIC none

NVARCHAR(m,n)* $m

NLS support required

REAL none

SERIAL none

SMALLFLOAT none

SMALLINT none

TEXT* $n

VARCHAR(m,n)* $m

* Only supported by Informix-Online databases
** If the Informix field qualifier specifies either HOUR, MINUTE, SECOND, or FRACTION as the

largest unit, the value is converted to a SAS TIME value. All others, such as YEAR, MONTH,
or DAY, are converted to a SAS DATETIME value.

The following table shows the default Informix data types that the LIBNAME
statement applies to SAS variable formats during output operations.

Table 1.2 LIBNAME Statement: Default Informix Data Types for SAS Variable
Formats

SAS Variable Format Informix Data Type

$w. CHAR(w).

w. with SAS format name of NULL FLOAT

w.d with SAS format name of NULL FLOAT

all other numerics FLOAT

datetimew.d DATETIME YEAR TO FRACTION(5)

18 SQL Procedure Pass-Through Facility Data Conversions 4 Chapter 1

SAS Variable Format Informix Data Type

datew. DATE

time. DATETIME HOUR TO FRACTION(5)

SQL Procedure Pass-Through Facility Data Conversions

The SQL Procedure Pass-Through Facility uses the same default conversion formats
as the LIBNAME statement. See “LIBNAME Statement Data Conversions” on page 16
for the conversion tables.

Overview of Informix Servers

There are two Informix database servers, the Informix-Online and Informix-SE
server. Informix-Online database servers can support many users and provide tools that
ensure high availability, high reliability, and that support critical applications.
Informix-SE database servers are designed to manage relatively small databases that
are used privately by individuals or shared among a small number of users.

Specifying Databases and Servers

To connect to an Informix database, the Pass-Through Facility executes an Informix
SQL DATABASE statement. The value that you specify in the DATABASE= argument
of the CONNECT statement is passed as a parameter to the Informix SQL DATABASE
statement. Your Informix environment must be properly configured in order for this
DATABASE= statement to execute correctly. The environment variables that are
required for local or remote processing must be set correctly. For a full explanation of
database name and path specifications, see your Informix documentation.

To connect to an Informix-SE database, you must either be in the directory that
contains the database or you must specify the full pathname of the database in the
DATABASE= argument. The following example connects to the database mydb in the
current directory.

proc sql;
connect to informix(db=mydb);

The following example connects to the database groupdb in the directory /usr/
projects on the remote Informix-SE server rmtse. Notice that the DB= argument is
quoted because the SAS System does not accept slashes (/) in names.

proc sql;
connect to informix
(db=’//rmtse/usr/projects/groupdb’);

For Informix-Online, only the database server name and the database name are
required. This example connects to the database corpdb that resides on the online
server.

proc sql;
connect to informix
(db=’//online/corpdb’);

Informix Chapter, First Edition 4 Using Fully Qualified Table Names 19

Using the DBDATABASE Environment Variable
The Pass-Through Facility supports the environment variable DBDATABASE, which

is an extension to the Informix environment variable. If you set DBDATABASE, you
can omit the CONNECT statement. The value of DBDATABASE is used instead of the
DATABASE= argument in the CONNECT statement. The syntax for setting
DBDATABASE is like the syntax of the DATABASE= argument.

Bourne shell: DBDATABASE=’//online/corpdb’
export DBDATABASE

C shell: setenv DBDATABASE //online/corpdb

If you set DBDATABASE, you can issue a PROC SQL SELECT or EXECUTE
statement without first connecting to Informix with the CONNECT statement. If you
omit the CONNECT statement, an implicit connection is performed when the SELECT
or EXECUTE statement is passed to Informix. If you create a PROC SQL Pass-Through
view without an explicit CONNECT statement, the view can dynamically connect to
different databases, depending on the value of the DBDATABASE environment variable.

If you specify both the DBDATABASE environment variable and the DATABASE=
argument in the CONNECT statement, the DATABASE= argument takes precedence.

You can also use the DBDATABASE environment variable to specify database/server
combinations, such as database@server instead of //server/database.

Using Fully Qualified Table Names
Informix supports a connection to only one database. If you have data that span

multiple databases, you must use fully qualified table names to work within the
Informix single-connection constraints.

In the following example, the tables tab1 and tab2 reside in different databases,
mydb1 and mydb2, respectively.

proc sql;
connect to informix
(database=corpdb server=online);

create view tab1v as
select * from connection
to informix

(select * from mydb1.tab1);

create view tab2v as
select * from connection
to informix

(select * from mydb2.tab2);
quit;

data getboth;
merge tab1v tab2v;
by common;

run;

Because the tables reside in separate databases, you cannot connect to each database
with a PROC SQL CONNECT statement and then retrieve the data in a single step.
Using the fully qualified table name (that is, database.table) enables you to use any

20 Using Fully Qualified Table Names 4 Chapter 1

Informix database in the CONNECT statement and access Informix tables in the same
or different databases in a single SAS procedure or DATA step.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8 (Informix
Chapter), Cary, NC: SAS Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8 (Informix
Chapter)
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–537–X
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

