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Chapter 39
Fit Analyses

ChoosingAnalyze:Fit ( Y X ) gives you access to a variety of techniques for fitting
models to data. These provide methods for examining the relationship between a
response (dependent) variable and a set of explanatory (independent) variables.

You can use least-squares methods for simple and multiple linear regression with
various diagnostic capabilities when the response is normally distributed.

You can use generalized linear models to analyze the data when the response is from a
distribution of the exponential family and a function can be used to link the response
mean to a linear combination of the explanatory variables.

You can use spline and kernel smoothers for nonparametric regression when the
model has one or two explanatory variables.

Figure 39.1. Fit Analysis
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Part 3. Introduction

Statistical Models

The relationship between a response variable and a set of explanatory variables can
be studied through a regression model

yi = f(xi) + "i

whereyi is theith observed response value,xi is theith vector of explanatory values,
and"i’s are uncorrelated random variables with zero mean and a common variance.

If the form of the regression functionf is known except for certain parameters, the
model is called aparametric regression model. Furthermore, if the regression func-
tion is linear in the unknown parameters, the model is called alinear model.

In the case of linear models with the error term"i assumed to be normally distributed,
you can use classical linear models to explore the relationship between the response
variable and the explanatory variables.

A nonparametric modelgenerally assumes only thatf belongs to some infinite- di-
mensional collection of functions. For example,f may be assumed to be differen-
tiable with a square-integrable second derivative.

When there is only one explanatory X variable, you can use nonparametric smooth-
ing methods, such as smoothing splines, kernel estimators, and local polynomial
smoothers. You can also request confidence ellipses and parametric fits (mean, linear
regression, and polynomial curves) with a linear model. These are added to a scatter
plot generated fromY by a singleX and are described in the “Fit Curves” section.

When there are two explanatory variables in the model, you can create parametric
and nonparametric (kernel and thin-plate smoothing spline) response surface plots.
With more than two explanatory variables in the model, a parametric profile response
surface plot with two selected explanatory variables can be created.

When the responseyi has a distribution from the exponential family (normal, inverse
Gaussian, gamma, Poisson, binomial), and the mean�i of the response variableyi is
assumed to be related to a linear predictor through a monotone functiong

g(�i) = x
0
i�

where� is a vector of unknown parameters, you can explore the relationship by using
generalized linear models.
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Chapter 39. Linear Models

Linear Models

SAS/INSIGHT fit analysis provides the traditional parametric regression analysis as-
suming that the regression function is linear in the unknown parameters. The rela-
tionship is expressed as an equation that predicts a response variable from a linear
function of explanatory variables.

Besides the usual estimators and test statistics produced for a regression, a fit analysis
can produce many diagnostic statistics. Collinearity diagnostics measure the strength
of the linear relationship among explanatory variables and how this affects the stabil-
ity of the estimates. Influence diagnostics measure how each individual observation
contributes to determining the parameter estimates and the fitted values.

In matrix algebra notation, a linear model is written as

y = X� + �

wherey is then � 1 vector of responses,X is then � p design matrix (rows are
observations and columns are explanatory variables),� is thep�1 vector of unknown
parameters, and� is then� 1 vector of unknown errors.

Each effect in the model generates one or more columns in a design matrixX. The
first column ofX is usually a vector of 1’s used to estimate the intercept term. In
general, no-intercept models should be fit only when theoretical justification exists.
Refer to the chapter on the GLM procedure in theSAS/STAT User’s Guidefor a
description of the model parameterization.

The classical theory of linear models is based on some strict assumptions. Ideally, the
response is measured with all the explanatory variables controlled in an experimen-
tally determined environment. If the explanatory variables do not have experimen-
tally fixed values but are stochastic, the conditional distribution ofy givenX must be
normal in the appropriate form.

Less restrictive assumptions are as follows:

� The form of the model is correct (all important X variables have been included).

� Explanatory variables are measured without error.

� The expected value of the errors is 0.

� The variance of the errors (and thus the response variable) is constant across
observations (denoted by�2).

� The errors are uncorrelated across observations.

If all the necessary assumptions are met, the least-squares estimates of� are the
best linear unbiased estimates (BLUE); in other words, the estimates have minimum
variance among the class of estimators that are unbiased and are linear functions of
the responses. In addition, when the error term is assumed to be normally distributed,
sampling distributions for the computed statistics can be derived. These sampling
distributions form the basis for hypothesis tests on the parameters.
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Part 3. Introduction

The method used to estimate the parameters is to minimize the sum of squares of the
differences between the actual response values and the values predicted by the model.
An estimatorb for � is generated by solving the resulting normal equations

(X0X)b = X0y

yielding

b = (X0X)�1X0y

Let H be the projection matrix for the space spanned byX, sometimes called the hat
matrix,

H = X(X0X)�1X0

Then the predicted mean vector of then observation responses is

ŷ = Xb = Hy

The sum of squares for error is

SSE = (y � ŷ)0(y � ŷ) =
nX
i=1

(yi � xib)2

wherexi is theith row of theX matrix.

Assume thatX is of full rank. The variance�2 of the error is estimated by the mean
square error

s2 =MSE =
SSE

n� p

The parameter estimates are unbiased:

E(b) = �

E(s2) = �2:

The covariance matrix of the estimates is

Var(b) = (X0X)�1�2

The estimate of the covariance matrix,dVar(b), is obtained by replacing�2 with its
estimate,s2, in the preceding formula:

dVar(b) = (X0X)�1s2
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Chapter 39. Linear Models

The correlations of the estimates,

S�1=2(X0X)�1S�1=2

are derived by scaling to one on the diagonal, whereS = diag ((X0X)�1).

If the model is not full rank, the matrixX’X is singular. A generalized (g2) inverse
(Pringle and Raynor 1971), denoted as(X0X)�, is then used to solve the normal
equations, as follows:

b = (X0X)�X0Y

However, this solution is not unique, and there are an infinite number of solutions
using different generalized inverses. In SAS/INSIGHT software, the fit analysis
chooses a basis of all variables that are linearly independent of previous variables
and a zero solution for the remaining variables.

� Related Reading:Multiple Regression, Chapter 14.

� Related Reading:Analysis of Variance, Chapter 15.
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Part 3. Introduction

Generalized Linear Models

Generalized linear modelsassume that the responseyi has a distribution from the ex-
ponential family (normal, inverse Gaussian, gamma, Poisson, binomial) and a func-
tion can be used to link the expected response mean and a linear function of the X
effects. In SAS/INSIGHT software, a generalized linear model is written as

y = �+ �

� = g(�) = �0 +X�

wherey is then�1 vector of responses,� is then�1 expected response means, and
� is then� 1 vector of unknown errors.

The monotone functiong links the response mean� with a linear predictor� from
the effects, and it is called thelink function. Then� 1 vector�0 is the offset,X is the
n � p design matrix, and� is thep � 1 vector of unknown parameters. The design
matrix is generated the same way as for linear models.

You specify the response distribution, the link function, and the offset variable in the
fit method options dialog.

The Exponential Family of Distributions

The distribution of a random variableY belongs to the exponential family if its prob-
ability (density) function can be written in the form

f(y; �; �) = exp

�
y� � b(�)

a(�)
+ c(y; �)

�
where� is the natural or canonical parameter,� is the dispersion parameter, anda, b
andc are specific functions.

The mean and variance ofY are then given by (McCullagh and Nelder 1989)

E(y) = � = b0(�)

Var(y) = a(�)b00(�)

The functionb00(�) can be expressed as a function of�, b00(�) = V (�), and it is
called thevariance function. Different choices of the functionb(�) generate different
distributions in the exponential family. For a binomial distribution withm trials, the
functiona(�) = �=m. For other distributions in the exponential family,a(�) = �.
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Chapter 39. Generalized Linear Models

SAS/INSIGHT software includes normal, inverse Gaussian, gamma, Poisson, and bi-
nomial distributions for the response distribution. For these response distributions,
the density functionsf(y), the variance functionsV (�), and the dispersion parame-
ters� with functiona(�) are

Normal f(y) = 1p
2��

exp
��1

2(
y��
� )2

�
for �1 < y <1

V (�) = 1

a(�) = � = �2

Inverse Gaussian f(y) = 1p
2�y3�

exp
�
� 1

2�2y
(y��� )2

�
for y > 0

V (�) = �3

a(�) = � = �2

Gamma f(y) = 1
y�(�) (

�y
� )

� exp(��y
� ) for y > 0

V (�) = �2

a(�) = � = ��1

Poisson f(y) = �ye��

y! for y = 0; 1; 2; : : :

V (�) = �

a(�) = � = 1

Binomial f(y) =
�
m
r

�
�r(1� �)m�r for y = r=m; r = 0; 1; 2; :::;m

V (�) = �(1� �)

a(�) = �=m = 1=m

Link Function

The link function links the response mean� to the linear predictor�. SAS/INSIGHT
software provides six types of link functions:

Identity g(�) = �

Log g(�) = log(�)

Logit g(�) = log( �
1�� )

Probit g(�) = ��1(�)

Comp. Log-log g(�) = log(� log(1� �))

Power g(�) = �� where� is the value in thePower entry field.
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Part 3. Introduction

For each response distribution in the exponential family, there exists a special link
function, the canonical link, for which� = �. The canonical links expressed in terms
of the mean parameter� are

Normal g(�) = �

Inverse Gaussian g(�) = ��2

Gamma g(�) = ��1

Poisson g(�) = log(�)

Binomial g(�) = log( �
1�� )

y Note: Some links are not appropriate for all distributions. For example, logit, probit,
and complementary log-log links are only appropriate for the binomial distribution.

The Likelihood Function and Maximum-Likelihood Estimation

The log-likelihood function

l(�; �; y) = log f(y; �; �) =
y� � b(�)

a(�)
+ c(y; �)

can be expressed in terms of the mean� and the dispersion parameter�:

Normal l(�; �; y) = �1
2 log(�)� 1

2�(y � �)2 for �1 < y <1

Inverse Gaussian l(�; �; y) = � log(y3�)� (y��)2
2y�2�

for y > 0

Gamma l(�; �; y) = � log(y�( 1�)) +
1
� log(

y
�� )� y

�� for y > 0

Poisson l(�; �; y) = y log(�)� � for y = 0; 1; 2; : : :

Binomial l(�; �; y) = r log(�) + (m� r) log(1� �)

for y = r=m; r = 0; 1; 2; :::;m

y Note: Some terms in the density function have been dropped in the log-likelihood
function since they do not affect the estimation of the mean and scale parameters.

SAS OnlineDoc: Version 8
574



Chapter 39. Generalized Linear Models

SAS/INSIGHT software uses a ridge stabilized Newton-Raphson algorithm to maxi-
mize the log-likelihood functionl(� , � ; y) with respect to the regression parameters.
On therth iteration, the algorithm updates the parameter vectorb by

b(r) = b(r�1) �H�1
(r�1)u(r�1)

where H is the Hessian matrix andu is the gradient vector, both evaluated at
� = b(r�1).

H = (hjk) =

�
@2l

@�j@�k

�

u = (uj) =

�
@l

@�j

�
:

The Hessian matrixH can be expressed as

H = �X0WoX

whereX is the design matrix,Wo is a diagonal matrix withith diagonal element

woi = wei + (yi � �i)
Vig

00
i + V 0i g

0
i

V 2
i (g

0
i)
3ai(�)

wei = E(woi) =
1

ai(�)Vi(g
0
i)
2

wheregi is the link function,Vi is the variance function, and the primes denote deriva-
tives of g andV with respect to�. All values are evaluated at the current mean
estimate�i. ai(�) = �=wi, wherewi is the prior weight for theith observation.

SAS/INSIGHT software uses either the full Hessian matrixH = - X’ Wo X or the
Fisher’s scoring method in the maximum-likelihood estimation. In the Fisher’s scor-
ing method,Wo is replaced by its expected valueWe with ith elementwei.

H = X0WeX

The estimated variance-covariance matrix of the parameter estimates is

�̂ = �H�1

whereH is the Hessian matrix evaluated at the model parameter estimates.

The estimated correlation matrix of the parameter estimates is derived by scaling the
estimated variance-covariance matrix to 1 on the diagonal.

y Note: A warning message appears when the specified model fails to converge. The
output tables, graphs, and variables are based on the results from the last iteration.
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Part 3. Introduction

Scale Parameter

A scale parameter is related to the dispersion parameter� and is given by

Normal � =
p
�

Inverse Gaussian � =
p
�

Gamma � = 1=�

Poisson 1

Binomial 1

The scale parameter is 1 for Poisson and binomial distributions. SAS/INSIGHT soft-
ware provides different scale parameter estimates for normal, inverse Gaussian, and
gamma distributions:

MLE the maximum-likelihood estimate

Deviance the mean deviance

Pearson the mean Pearson�2

Constant the value in theConstant entry field

When maximum-likelihood estimation is used, the HessianH and the gradientu also
include the term for the scale parameter.

y Note: You can request an exponential distribution for the response variable by spec-
ifying a gamma distribution with scale parameter set to 1.

Goodness of Fit

The log-likelihood can be expressed in terms of the mean parameter� and the log-
likelihood-ratio statistic is the scaled deviance

D�(y; �̂) = �2(l(�̂; y)� l(�̂max; y))

where l(�̂; y) is the log-likelihood under the model andl(�̂max; y) is the log-
likelihood under the maximum achievable (saturated) model.

For generalized linear models, the scaled deviance can be expressed as

D�(y; �̂) =
1

�
D(y; �̂)

whereD(y; �̂) is the residual deviance for the model and is the sum of individual
deviance contributions.

SAS OnlineDoc: Version 8
576



Chapter 39. Generalized Linear Models

The forms of the individual deviance contributions,di, are

Normal (y � �̂)2

Inverse Gaussian (y � �̂)2=(�̂2y)

Gamma �2 log(y=�̂) + 2(y � �̂)=�̂

Poisson 2y log(y=�̂)� 2(y � �̂)

Binomial 2(r log(y=�̂) + (m� r) log((1� y)=(1� �̂))

wherey=r/m, r is the number of successes inm trials.

For a binomial distribution withmi trials in theith observation, the Pearson�2 statis-
tic is

�2 =

nX
i=1

mi
(yi � �i)

2

V (�i)

For other distributions, the Pearson�2 statistic is

�2 =
nX
i=1

(yi � �i)
2

V (�i)

The scaled Pearson�2 statistic is�2 / �. Either the mean devianceD(y; �̂)=(n� p)
or the mean Pearson�2 statistic�2=(n� p) can be used to estimate the dispersion
parameter�. The�2 approximation is usually quite accurate for the differences of
deviances for nested models (McCullagh and Nelder 1989).

Quasi-Likelihood Functions

For binomial and Poisson distributions, the scale parameter has a value of 1. The
variance ofY isVar(y) = �(1� �)=m for the binomial distribution andVar(y) = �
for the Poisson distribution.Overdispersionoccurs when the variance ofY exceeds
theVar(y) above. That is, the variance ofY is �2V (�), where�>1.

With overdispersion, methods based on quasi-likelihood can be used to estimate the
parameters� and�. A quasi-likelihood function

Q(�; y) =

Z �

y

y � t

�2V (t)
dt

is specified by its associated variance function.
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Part 3. Introduction

SAS/INSIGHT software includes the quasi-likelihoods associated with the variance
functionsV (�) = 1, �, �2, �3, and�(1� �). The associated distributions (with the
same variance function), the quasi-likelihoodsQ(�; y), the canonical linksg(�), and
the scale parameters� and� for these variance functions are

V (�) = 1 Normal

�2Q(�; y) = �1
2(y � �)2 for �1 < y <1

g(�) = �

� =
p
�

V (�) = � Poisson

�2Q(�; y) = y log(�)� � for � > 0; y � 0

g(�) = log �

� =
p
�

V (�) = �2 Gamma

�2Q(�; y) = �y=�� log(�) for � > 0; y � 0

g(�) = ��1

� = ��1

V (�) = �3 Inverse Gaussian

�2Q(�; y) = �y=(2�2) + 1=� for � > 0; y � 0

g(�) = ��2

� =
p
�

V (�) = �(1� �) Binomial

�2Q(�; y) = r log(�) + (m� r) log(1� �)

for 0 < � < 1, y = r=m, r = 0; 1; 2; : : :;m

g(�) = log( �
1�� )

� =
p
�
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Chapter 39. Generalized Linear Models

SAS/INSIGHT software uses the mean deviance, the mean Pearson�2, or the value
in theConstant entry field to estimate the dispersion parameter�. The conventional
estimate of� is the mean Pearson�2 statistic.

Maximum quasi-likelihood estimation is similar to ordinary maximum-likelihood es-
timation and has the same parameter estimates as the distribution with the same vari-
ance function. These estimates are not affected by the dispersion parameter�, but�
is used in the variance-covariance matrix of the parameter estimates. However, the
likelihood-ratio based statistics, such asType I (LR) , Type III (LR) , andC.I.(LR)
for Parameters tables, are not produced in the analysis.

� Related Reading:Logistic Regression, Chapter 16.

� Related Reading:Poisson Regression, Chapter 17.
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Part 3. Introduction

Nonparametric Smoothers

For a simple regression model with one or two explanatory variables,

yi = f(xi) + "i

a smootherbf�(x) is a function that summarizes the trend ofY as a function ofX. It
can enhance the visual perception of either aY-by-X scatter plot or a rotating plot.
The smoothing parameter� controls the smoothness of the estimate.

With one explanatory variable in the model,bf�(x) is called ascatter plot smoother.
SAS/INSIGHT software provides nonparametric curve estimates from smoothing
spline, kernel, loess (nearest neighbors local polynomial), and fixed bandwidth lo-
cal polynomial smoothers.

For smoothing spline, kernel, and fixed bandwidth local polynomial smoothers,
SAS/INSIGHT software derives the smoothing parameter� from a constantc that
is independent of the units ofX. For a loess smoother, the smoothing parameter� is
a positive constant�.

With two explanatory variables in the model,bf�(x) is called asurface smoother.
SAS/INSIGHT software provides nonparametric surface estimates from thin-plate
smoothing spline and kernel smoothers. The explanatory variables are scaled by their
corresponding sample interquartile ranges. The smoothing parameter� is derived
from a constantc and both are independent of the units ofX.

Similar to parametric regression, theR2 value for an estimate is calculated as

R2 = 1�
Pn

i=1 (yi � bf�(xi))2Pn
i=1 (yi � y)2

You can use the following methods to choose the� value:

DF uses the� value that makes the resulting smoothing estimate have
the specified degrees of freedom (df).

GCV uses the� value that minimizes the generalized cross validation
(GCV) mean squared error.

C Value uses the� value derived from the specifiedc value for nonparamet-
ric smoothers other than the loess smoother.

Alpha uses the specified� value for the loess estimator.
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If you specify aDF value for a smoother, an iterative procedure is used to find the
estimate with the specifieddf. You can choose a convergence criterion
 based on
either the relative difference or the absolute difference. A smoother satisfying the
following conditions is then created:

jdf(�tted)� df(speci�ed)j
df(speci�ed)

< 
 for relative difference

jdf(�tted)� df(speci�ed)j < 
 for absolute difference

Smoother Degrees of Freedom

For a nonparametric smoother with a parameter�, the fitted values can be written as

ŷ = H�y

wherey is then� 1 vector of observed responsesyi, ŷ is then� 1 vector of fitted
valuesŷi = bf�(xi), and the smoother matrixH� is ann� n matrix that depends on
the value of�.

The degrees of freedom, or the effective number of parameters, of a smoother can be
used to compare different smoothers and to describe the flexibility of the smoother.
SAS/INSIGHT software defines the degrees of freedom of a smoother as

df� = trace(H�)

which is the sum of the diagonal elements ofH�.

y Note: Two other popular definitions of degrees of freedom for a smoother are
trace(H�H

0
�) andtrace(2H� �H�H

0
�) (Hastie and Tibshirani 1990).
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Smoother Generalized Cross Validation

With the degrees of freedom of an estimatedf�, the mean squared error is given as

MSE(�) =
1

n� df�

nX
i=1

(yi � bf�(xi))2
Cross-validation (CV) estimates the response at eachxi from the smoother that uses
only the remainingn� 1 observations. The resulting cross validation mean squared
error is

MSECV(�) =
1

n

nX
i=1

(yi � f̂�(i)(xi))
2

wheref̂�(i)(xi) is the fitted value atxi computed without theith observation.

The cross validation mean squared error can also be written as

MSECV(�) =
1

n

nX
i=1

 
yi � bf�(xi)
1� h�i

!2

whereh�i is theith diagonal element of theH� matrix (Hastie and Tibshirani 1990).

Generalized cross validation replacesh�i by its average value,1ndf�. The generalized
cross validation mean squared error is

MSEGCV(�) =
1

n(1� df�=n)2

nX
i=1

(yi � bf�(xi))2
y Note: The functionMSEGCV(�) may have multiple minima, so the value estimated

by SAS/INSIGHT software may be only a local minimum, not the global minimum.
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Variables

To create a fit analysis, chooseAnalyze:Fit ( Y X ) . If you have already selected one
or more variables, the first variable selected is the response or dependent variable,
and it is assigned theY variable role. The remaining variables are explanatory or
independent variables, and they are assigned theX variable role. If you do not select
anyX effects, a model with only an intercept term (mean) is fit.

If you have not selected any variables, a variables dialog appears.

Figure 39.2. Fit Variables Dialog

In the dialog, select oneY variable for each fit analysis. CreateX effects in the
model by using theX, Cross , Nest , andExpand buttons. Aneffectis a variable or
combination of variables that constitutes a term in the model. There are four ways to
specify effects in SAS/INSIGHT software. In the following discussion, assume that
X1 andX2 are interval variables andA andB are nominal variables.

You can use theX button to create regressor effects of the interval variables and main
effects of the nominal variables. Select any variable, then click theX button. For
example, selectingA and then clicking theX button addsA to the effects list.

You can use theCross button to create crossed effects. These include polynomial
effects of the interval variables, interactions of the nominal variables, and interaction
effects of interval and nominal variables. Select two or more variables, then click
the Cross button. For example, selectingX1 andX2 and then clicking theCross
button generates the crossed effectX1*X2.

You can use theNest button to create nested effects. In a nested effect, a variable or
crossed effect is nested within the effects of one or more nominal variables. Select
a variable or crossed effect and one or more nominal variables, then click theNest
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button. For example, selectingX1*X2, A, andB and then clicking theNest button
generates the nested effectX1*X2(A B) .

You can use theExpand button and the associated entry field to create expanded
effects. These include response surface effects for interval variables and factorial
effects for nominal variables. TheExpand button expands all possible effects to the
degree of expansion specified in the entry field below theExpand button. The value
2 is the default degree of expansion. You can click the right button of the entry field
to increase the expansion degree by 1 or the left button to decrease it by 1.

Choose the degree of expansion, then select variables or effects and click theExpand
button. For example, with degree of expansion 2 and variablesA and B selected,
clicking theExpand button generates three effects

A B A*B

With degree of expansion 2 and variablesX1 andX2 selected, clicking theExpand
button generates five effects

X1 X2 X1*X1 X1*X2 X2*X2

Intercept is checked by default to include the intercept term in the model. As a
general rule, no-intercept models should be fit only when theoretical justification
exists.

You can select one or moreGroup variables if you have grouped data. This creates
a fit analysis for each group.

You can select aLabel variable to label observations in the plots.

You can select aFreq variable. If you select aFreq variable, each observation is
assumed to representn observations, wheren is the value of theFreq variable.

You can select aWeight variable to assign relative weights for each observation
in the analysis. The details of weighted analyses are explained in the “Weighted
Analyses” section at the end of this chapter.

The fit variables dialog provides anApply button. TheApply button displays the
fit window without closing the fit variables dialog. This makes it easy to modify the
model by adding or removing variables. Each time you modify the model using the
Apply button, anewfit window is displayed so you can easily compare models. The
OK button also displays a new fit window but closes the dialog.
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Method

Observations with missing values forY, X, Weight , or Freq variables are not used.
Observations with nonpositiveWeight or Freq values are not used. Only the integer
part ofFreq values is used.

To view or change the response distribution and link function, click theMethod
button in the variables dialog. This displays the dialog shown in Figure 39.3.

Figure 39.3. Fit Method Options Dialog

You can choose the response distribution and link function of theY variables. If you
choose a binomial distribution, specify either

� aY variable with values 1 or 0 indicating success or failure

� aY variable giving the number of successes in a certain number of trials, and a
Binomial variable to give the corresponding number of trials

If you choose a power link function, specify the power value in thePower entry
field.

If you select anOffset variable, it is treated as anX variable with coefficient fixed at
1.0.

You can choose the scale parameter for the response distribution. If you choose a
Constant scale, specify the constant value in theConstant entry field.

With overdispersion in the model, you can specify theQuasi-Likelihood option to
fit the generalized linear model using the quasi-likelihood functions.
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If you choose a normal response distribution with a canonical link (identity for normal
distributions), you can specify theExact Distribution option to fit the linear model
using the usual exact distributions for the test statistics.

You can specify theFisher’s Scoring option to use the Fisher’s scoring method in
the maximum-likelihood estimation for the regression parameters.

By default, SAS/INSIGHT software uses theNormal response distribution and
Canonical link with the Exact Distribution option to perform a fit analysis for
the linear model.
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Output

To view or change the options associated with your fit analysis, click theOutput
button in the variables dialog. This displays the output options dialog shown in Figure
39.4.

Figure 39.4. Fit Output Options Dialog

The options you set in this dialog determine the tables and graphs that appear in
the fit window. Provided by default are tables of the model equation, summary of
fit, analysis of variance or deviance, type III or type III (Wald) tests, and parameter
estimates and a plot of residuals by predicted values.

When there are two explanatory variables in the model, a parametric response surface
plot is created by default. You can also generate a nonparametric kernel or a thin-plate
smoothing spline response surface plot. With more than two explanatory variables in
the model, a parametric profile response surface plot with the first two explanatory
variables can be created. The values of the remaining explanatory variables are set to
their corresponding means in the plot. You can use the sliders to change these values
of the remaining explanatory variables.
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Click on theOutput Variables button in the fit dialog to display theOutput Vari-
ables dialog shown in Figure 39.5. TheOutput Variables dialog enables you to
specify variables that can be saved in the data window. Output variables include pre-
dicted values and several influence diagnostic variables based on the model you fit.

Figure 39.5. Output Variables Dialog

When there is only one explanatory variable in the model, aY-by-X scatter plot is
generated. TheParametric Curves andNonparametric Curves (GCV) buttons
display dialogs that enable you to fit parametric and nonparametric curves to this
scatter plot.

Click onParametric Curves to display theParametric Curves dialog.

Figure 39.6. Parametric Curves Dialog
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A regression line fit is provided by default. You can request an 80% prediction el-
lipse and other polynomial fits in the dialog. You can also request polynomial equa-
tion tables, parameter estimates tables, and 95% mean confidence curves for fitted
polynomials.

The Nonparametric Curves (GCV) dialog in Figure 39.7 includes a smoothing
spline, a kernel smoother, and a local polynomial smoother. You must specify the
method, regression type, and weight function for a local polynomial fit.

Figure 39.7. Nonparametric Curves Dialog
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Tables

You can generate tables that present the results of a model fit and diagnostics for as-
sessing how well the model fits the data. Set options in the output dialog as described
in the “Output” section or choose from theTables menu.

File Edit Analyze Tables Graphs Curves Vars Help

✔ Model Equation
X’X Matrix

✔ Summary of Fit
✔ Analysis of Variance/Deviance

Type I / I(LR) Tests
✔ Type III / III(Wald) Tests

Type III(LR) Tests
✔ Parameter Estimates

C.I. / C.I.(Wald) for Parameters ➤

C.I.(LR) for Parameters ➤

Collinearity Diagnostics
Estimated Cov Matrix
Estimated Corr Matrix

Figure 39.8. Tables Menu

Model Information

The first table in the fit analysis contains the model specification, the response distri-
bution, and the link function, as illustrated in Figure 39.9.

When the model contains nominal variables in its effects, the levels of the nominal
variables are displayed in theNominal Variable Information table, as shown in
Figure 39.9. The levels are determined from the formatted values of the nominal
variables. An additionalParameter Information table, as illustrated in Figure
39.9, shows the variable indices for the parameters in the model equation, the X’X
matrix, the estimated covariance matrix, and the estimated correlation matrix.

Model Equation

The model equation table gives the fitted equation for the model. Figure 39.9 shows
an equation for a model with nominal variables, and Figure 39 shows an equation for
a model without nominal variables
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Figure 39.9. Model Information Tables

X’X Matrix

The X’X matrix table, as illustrated by Figure 39.10, contains the X’X crossproducts
matrix for the model.

Figure 39.10. X’X Matrix for Linear Models
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Summary of Fit for Linear Models

TheSummary of Fit table for linear models, shown in Figure 39.11, includes the
following:

Mean of Response is the sample mean,y , of the response variable.

Root MSE is the estimate of the standard deviation of the error term. It
is calculated as the square root of the mean square error.

R-Square R2, with values between 0 and 1, indicates the proportion of
the (corrected) total variation attributed to the fit.

Adj R-Sq An adjustedR2 is a version ofR2 that has been adjusted for
degrees of freedom.

Figure 39.11. Summary of Fit, Analysis of Variance Tables for Linear Models

With an intercept term in the model,R2 is defined as

R2 = 1� (SSE=CSS)

where CSS =
Pn

i=1 (yi � y)2 is the corrected sum of squares andSSE =Pn
i=1 (yi � ŷ)2 is the sum of squares for error.

TheR2 statistic is also the square of the multiple correlation, that is, the square of the
correlation between the response variable and the predicted values.

The adjustedR2 statistic, an alternative toR2, is adjusted for the degrees of freedom
of the sums of squares associated withR2. It is calculated as

AdjR2 = 1� SSE=(n� p)

CSS=(n� 1)
= 1� n� 1

n� p
(1�R2)
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Without an intercept term in the model,R2 is defined as

R2 = 1� (SSE=TSS)

whereTSS =
Pn

i=1 y
2
i is the uncorrected total sum of squares.

The adjustedR2 statistic is then calculated as

AdjR2 = 1� SSE=(n� p)

TSS=n
= 1� n

n� p
(1�R2)

y Note: Other definitions ofR2 exist for models with no intercept term. Care should
be taken to ensure that this is the definition desired.

Summary of Fit for Generalized Linear Models

For generalized linear models, theSummary of Fit table, as illustrated by Figure
39.12, includes the following:

Mean of Response is the sample mean,y , of the response variable.

SCALE is the constant scale parameter specified in the method dia-
log or a value of 1.0 for maximum-likelihood estimation for
Poisson or binomial distributions.

SCALE (MLE) is the maximum-likelihood estimate of the scale parameter
for normal, gamma, and inverse Gaussian distributions.

SCALE (Deviance) is the scale parameter estimated by the mean error deviance.

SCALE (Pearson) is the scale parameter estimated by the mean Pearson�2.

Deviance is the error deviance.

Deviance/DF is the mean error deviance, the error deviance divided by its
associated degrees of freedom.

Pearson ChiSq is the Pearson�2 statistic.

Pearson ChiSq / DF is the mean Pearson�2, the Pearson�2 divided by its asso-
ciated degrees of freedom.

When the scale parameter is a constant specified in the method dialog, or when the
response has a Poisson or binomial distribution, the table also contains the scaled
deviance and the scaled Pearson�2:

Scaled Dev is the error deviance divided by the dispersion parameter.

Scaled ChiSq is the Pearson�2 divided by the dispersion parameter.
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Figure 39.12. Summary of Fit and Analysis of Deviance Tables for Generalized
Linear Models

Analysis of Variance for Linear Models

TheAnalysis of Variance table for linear models, shown in Figure 39.11, includes
the following:

Source indicates the source of the variation. Sources includeModel
for the fitted regression andError for the residual error.C
Total is the sum of theModel andError components, and it
is the total variation after correcting for the mean. When the
model does not have an intercept term, the uncorrected total
variation (U Total ) is displayed.

DF is the degrees of freedom associated with each source of varia-
tion.

Sum of Squares is the sum of squares for each source of variation.

Mean Square is the sum of squares divided by its associated degrees of free-
dom.

F Stat is theF statistic for testing the null hypothesis that all param-
eters are 0 except for the intercept. This is formed by dividing
the mean square for model by the mean square for error.

Pr > F is the probability of obtaining a greaterF statistic than that
observed if the null hypothesis is true. This quantity is also
called ap-value. A smallp-value is evidence for rejecting the
null hypothesis.
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Analysis of Deviance for Generalized Linear Models

The Analysis of Deviance table for generalized linear models, as illustrated by
Figure 39.12, includes the following:

Source indicates the source of the variation. Sources includeModel for
the fitted regression andError for the residual error.C Total is
the sum of theModel andError components, and it is the total
variation after correcting for the mean. When the model does not
have an intercept term, the uncorrected total variation (U Total ) is
printed.

DF is the degrees of freedom associated with each source of variation.

Deviance is the deviance for each source of variation.

Deviance/DF is the deviance divided by its associated degrees of freedom.

When the scale parameter is a constant specified in the method dialog, or when the
response has a Poisson or binomial distribution, the table also contains the following:

Scaled Dev is the deviance divided by the dispersion parameter.

Pr>Scaled Dev is the probability of obtaining a greater scaled deviance statistic
than that observed if the null hypothesis is true. Under the null
hypothesis, all parameters are 0 except for the intercept, and the
scaled deviance has an approximate�2 distribution.

Type I Tests

Type I tests examine the sequential incremental improvement in the fit of the model
as each effect is added. They can be computed by fitting the model in steps and
recording the difference in error sum of squares (linear models) and log-likelihood
statistics (generalized linear models). TheType I Tests table for linear models, as
illustrated by Figure 39.13, includes the following:

Source is the name for each effect.

DF is the degrees of freedom associated with each effect.

Sum of Squares is the incremental error sum of squares for the model as each
effect is added.

Mean Square is the sum of squares divided by its associated degrees of free-
dom.

F Stat is theF statistic for testing the null hypothesis that the param-
eters for the added effect are 0. This is formed by dividing the
mean square for the effect by the mean square for error from the
complete model.

Pr > F is the probability of obtaining a greaterF statistic than that ob-
served if the null hypothesis is true.
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Figure 39.13. Type I Tests Table

TheType I (LR) Tests table for generalized linear models, as illustrated by Figure
39.14, includes the following:

Source is the name for each effect.

DF is the degrees of freedom associated with each effect.

ChiSq is the�2 value for testing the null hypothesis that the parameters for
the added effect are 0. This is evaluated as twice the incremental
log-likelihood for the model as each effect is added, and it has an
asymptotic�2 distribution under the null hypothesis.

Pr > ChiSq is the probability of obtaining a greater�2 statistic than that ob-
served, if the null hypothesis is true.

Figure 39.14. Type I Likelihood Ratio Tests
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Type III Tests

Type III tests examine the significance of each partial effect, that is, the significance
of an effect with all the other effects in the model. They are computed by constructing
a type III hypothesis matrixL and then computing statistics associated with the hy-
pothesisL� = 0. Refer to the chapter titled “The Four Types of Estimable Functions,”
in theSAS/STAT User’s Guidefor the construction of the matrixL .

For linear models, the type III or partial sum of squares

(Lb)0(L(X0X)�1L0)�1(Lb)

is used to test the hypothesisL� = 0.

TheType III Tests table for linear models, as illustrated by Figure 39.15, includes
the following:

Source is the name for each effect.

DF is the degrees of freedom associated with each effect.

Sum of Squares is the partial sum of squares for each effect in the model.

Mean Square is the sum of squares divided by its associated degrees of free-
dom.

F Stat is theF statistic for testing the null hypothesis that the linear
combinations of parameters described previously for the hy-
pothesis matrixL are 0. This is formed by dividing the mean
square for the hypothesis matrixL by the mean square for error
from the complete model.

Pr > F is the probability of obtaining a greaterF statistic than that
observed if the null hypothesis is true.

Figure 39.15. Type III Tests Table for Linear Models
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For generalized linear models, either the Wald statistic or the likelihood-ratio statistic
can be used to test the hypothesisL� = 0. For the linear model, the two tests are
equivalent.

The Wald statistic is given by

(Lb)0(LdVar(b)L0)�1(Lb)
wheredVar(b) is the estimated covariance matrix of the parameters. The likelihood-
ratio statistic is computed as twice the difference between the maximum log-
likelihood achievable under the unconstrained model and the maximum log-
likelihood for the model under the restriction or constraintL� = 0. Both the
Wald statistic and the likelihood-ratio statistic have an asymptotic�2 distribution.

TheType III (Wald) Tests andType III (LR) Tests tables, as illustrated by Figure
39.16, include the following:

Source is the name for each effect.

DF is the degrees of freedom associated with each effect.

ChiSq is the Wald statistic for the Wald tests or the likelihood-ratio statis-
tic for the LR tests of the null hypothesis that the parameters for
the effect are 0. This has an asymptotic�2 distribution.

Pr > ChiSq is the probability of obtaining a greater�2 statistic than that ob-
served, if the null hypothesis is true.

Figure 39.16. Type III Tests Tables for Generalized Linear Models
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Parameter Estimates for Linear Models

TheParameter Estimates table for linear models, as illustrated by Figure 39.17,
includes the following:

Variable names the variable associated with the estimated parameter. The
nameINTERCEPT represents the estimate of the intercept param-
eter.

DF is the degrees of freedom associated with each parameter estimate.
There is one degree of freedom unless the model is not of full rank.
In this case, any parameter whose definition is confounded with
previous parameters in the model has its degrees of freedom set to
0.

Estimate is the parameter estimate.

Std Error is the standard error, the estimate of the standard deviation of the
parameter estimate.

t Stat is thet statistic for testing that the parameter is 0. This is computed
as the parameter estimate divided by the standard error.

Pr > |t| is the probability of obtaining (by chance alone) at statistic greater
in absolute value than that observed given that the true parameter
is 0. This is referred to as a two-sidedp-value. A smallp-value is
evidence for concluding that the parameter is not 0.

Tolerance is the tolerance of the explanatory variable on the other variables.

Var Inflation is the variance inflation factor of the explanatory variable.

Figure 39.17. Parameter Estimates Table for Linear Models
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The standard error of thejth parameter estimatebj is computed using the equation

STDERR(bj) =
q
(X0X)�1jj s2

where(X0X)�1jj is thejth diagonal element of(X0X)�1.

Under the hypothesis that�j is 0, the ratio

t =
bj

STDERR(bj)

is distributed as Student’st with degrees of freedom equal to the degrees of freedom
for the mean square error.

When an explanatory variable is nearly a linear combination of other explanatory
variables in the model, the affected estimates are unstable and have high standard
errors. This problem is calledcollinearity or multicollinearity. A fit analysis provides
several methods for detecting collinearity.

Tolerances(TOL) andvariance inflation factors(VIF) measure the strength of inter-
relationships among the explanatory variables in the model. Tolerance is1 � R2

for theR2 that results from the regression of the explanatory variable on the other
explanatory variables in the model. Variance inflation factors are diagonal elements
of (X0X)�1 afterX’X is scaled to correlation form. The variance inflation measures
the inflation in the variance of the parameter estimate due to collinearity between the
explanatory variable and other variables. These measures are related byVIF = 1 /
TOL.

If all variables are orthogonal to each other, both tolerance and variance inflation are
1. If a variable is closely related to other variables, the tolerance goes to 0 and the
variance inflation becomes large.

When theX’X matrix is singular, least-squares solutions for the parameters are not
unique. An estimate is 0 if the variable is a linear combination of previous explana-
tory variables. The degrees of freedom for the zeroed estimates are reported as 0. The
hypotheses that are not testable havet tests printed as missing.
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Parameter Estimates for Generalized Linear Models

The Parameter Estimates table for generalized linear models, as illustrated by
Figure 39.18, includes the following:

Variable names the variable associated with the estimated parameter. The
nameINTERCEPT represents the estimate of the intercept param-
eter.

DF is the degrees of freedom associated with each parameter estimate.
There is one degree of freedom unless the model is not full rank. In
this case, any parameter that is confounded with previous parame-
ters in the model has its degrees of freedom set to 0.

Estimate is the parameter estimate.

Std Error is the estimated standard deviation of the parameter estimate.

ChiSq is the�2 test statistic for testing that the parameter is 0. This is
computed as the square of the ratio of the parameter estimate di-
vided by the standard error.

Pr > ChiSq is the probability of obtaining an�2 statistic greater than that ob-
served given that the true parameter is 0. A smallp-value is evi-
dence for concluding that the parameter is not 0.

Figure 39.18. Parameter Estimates Table for Generalized Linear Models
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C.I. for Parameters

The C.I. for Parameters table gives a confidence interval for each parameter for
each confidence coefficient specified. You choose the confidence interval for param-
eters either in the fit output options dialog or from theTables menu, as shown in
Figure 39.19.

File Edit Analyze Tables Graphs Curves Vars Help

✔ Model Equation
X’X Matrix

✔ Summary of Fit
✔ Analysis of Variance/Deviance

Type I / I(LR) Tests
✔ Type III / III(Wald) Tests

Type III(LR) Tests
✔ Parameter Estimates

C.I. / C.I.(Wald) for Parameters ➤

C.I.(LR) for Parameters ➤

Collinearity Diagnostics
Estimated Cov Matrix
Estimated Corr Matrix

99%
98%
95%
90%
80%
Other...

Figure 39.19. C.I. for Parameters Menu

Selecting95% C.I. / C.I.(Wald) for Parameters or 95% C.I.(LR) for Parame-
ters in the fit output options dialog produces a table with a 95% confidence interval
for the parameters. This is the equivalent of choosingTables:C.I. / C.I.(Wald) for
Parameters:95% or Tables:C.I.(LR) for Parameters:95% from the Tables
menu. You can also choose other confidence coefficients from theTables menu.
Figure 39.20 illustrates a 95% confidence intervals table for the parameters in a lin-
ear model.

Figure 39.20. C.I. for Parameters Table
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For linear models, a100(1 � �)% confidence interval has upper and lower limits

bj � t(1��=2)sj

wheret(1��=2) is the(1��=2) critical value of the Student’st statistic with degrees of
freedomn-p, used in computingsj, the estimated standard deviation of the parameter
estimatebj.

For generalized models, you can specify the confidence interval based on either a
Wald type statistic or the likelihood function.

A 100(1 � �)% Wald type confidence interval is constructed from

�
�j � bj
sj

�2

� �2(1��);1

where�2(1��);1 is the (1 � �) critical value of the�2 statistic with one degree of
freedom, andsj is the estimated standard deviation of the parameter estimatebj .

Thus,100(1 � �)% upper and lower limits are

bj � z(1��=2)sj

wherez(1��=2) is the(1� �=2) critical value of the standard normal statistic.

A table of 95% Wald type confidence intervals for the parameters is shown in Figure
39.21.

Figure 39.21. C.I. for Parameters Tables
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The likelihood ratio test statistic for the null hypothesis

H0:�j = �j0

where�j0 is a specified value, is

� = �2(l( b�0)� l(�̂))

wherel( b�0) is the maximized log likelihood underH0 andl(�̂) is the maximized log
likelihood over all�.

In large samples, the hypothesis is rejected at level� if the test statistic� is greater
than the(1��) critical value of the chi-squared statistic with one degree of freedom.

Thus a100(1 � �)% likelihood-based confidence interval is constructed using re-
stricted maximization to find upper and lower limits satisfying

l( b�0) = l(�̂)� 1

2
�2(1��);1

An iterative procedure is used to obtain these limits. A 95% likelihood-based confi-
dence interval table for the parameters is illustrated in Figure 39.21.
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Collinearity Diagnostics

TheCollinearity Diagnostics table is illustrated by Figure 39.22.

Figure 39.22. Collinearity Diagnostics Table

Number is the eigenvalue number.

Eigenvalue gives the eigenvalues of theX’X matrix.

Condition Index is the square root of the ratio of the largest eigenvalue to the
corresponding eigenvalue.

Variance Proportion is the proportion of the variance of each estimate accounted
for by each component.

Detailed collinearity diagnostics use the eigenstructure ofX’X, which can be written
as

X0X = VD2V0 whereV is an orthogonal matrix whose columns are the eigenvec-
tors ofX’X, andD2 is a diagonal matrix of eigenvalues

d21�d22� : : :�d2p

After scaling (X’X) to correlation form, Belsley, Kuh, and Welsch (1980) construct
the condition indices as the square roots of the ratio of the largest eigenvalue to each
individual eigenvalue,d1=dj , j = 1; 2; : : : ; p.

Thecondition numberof theX matrix is defined as the largest condition index,d1=dp.
When this number is large, the data are said to beill conditioned. A condition index
of 30 to 100 indicates moderate to strong collinearity.

For each variable, the proportion of the variance of its estimate accounted for by each
componentdj can be evaluated. A collinearity problem occurs when a component
associated with a high condition index contributes strongly to the variance of two
or more variables. Thus, for a high condition index (>30), the corresponding row
should be examined to see which variables have high values. Those would indicate
near-linear dependence.
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Estimated COV Matrix and Estimated CORR Matrix

TheEstimated COV Matrix table contains the estimated variance-covariance ma-
trix of the parameters. TheEstimated CORR Matrix table contains the estimated
correlation matrix of the parameters. Sample tables are shown in Figure 39.23.

Figure 39.23. Estimated COV and CORR Matrices
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Residual and Surface Plots

Residual plots provide visual displays for assessing how well the model fits the data,
for evaluating the distribution of the residuals, and for identifying influential observa-
tions. Surface plots are three-dimensional displays of continuous response surfaces
on the regular grids of the explanatory variables. They are much easier to comprehend
than rotating plots.

File Edit Analyze Tables Graphs Curves Vars Help
Residual by Predicted
Residual Normal QQ
Partial Leverage
Surface Plot ➤ Parametric

Spline...
Kernel...
Parametric Profile

Figure 39.24. Graphs Menu

Residual-by-Predicted Plot

A residual-by-predicted plot is commonly used to diagnose nonlinearity or noncon-
stant error variance. It is also used to find outliers. A residual-by-predicted plot, as
illustrated by the plot on the left in Figure 39.25, is a plot of residuals versus predicted
response for each observation. See the “Predicted Values” and “Residuals” sections
for a further explanation of the axis variables.

Figure 39.25. Residual-by-Predicted and Residual Normal QQ Plots
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Residual Normal QQ Plot

A normal quantile-quantile plot of residuals is illustrated by the plot on the right in
Figure 39.25. See the “Residual Normal Quantiles” section for an explanation of the
X axis variable.

The empirical quantiles are plotted against the quantiles of a standard normal distri-
bution. If the residuals are from a normal distribution with mean 0, the points tend
to fall along the reference line that has an intercept of 0 and a slope equal to the
estimated standard deviation.

Partial Leverage Plots

For linear models, the partial leverage plot for a selected explanatory variable can
be obtained by plotting the residuals for the response variable against the residuals
for the selected explanatory variable. The residuals for the response variable are
calculated from a model having the selected explanatory variable omitted, and the
residuals for the selected explanatory variable are calculated from a model where the
selected explanatory variable is regressed on the remaining explanatory variables.

LetX[j] be then�(p�1) matrix formed from the design matrixX by removing thejth
column,Xj . Let ry[j] be the partial leverageY variable containing the residuals that
result from regressingy onX[j] and letrx[j] be the partial leverageX variable con-
taining the residuals that result from regressingXj onX[j]. Then a partial leverage
plot is a scatter plot ofry[j] againstrx[j]. Partial leverage plots for two explanatory
variables are illustrated by Figure 39.26.

Figure 39.26. Partial Leverage Plots
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In a partial leverage plot, the partial leverageY variablery[j] can also be computed as

ry[j]i = rx[j]ibj + (yi � �̂i)

For generalized linear models, the partial leverageY is also computed as

ry[j]i = rx[j]ibj + (yi � �̂i)g
0(�̂i)

Two reference lines are also displayed in the plots. One is the horizontal line ofY =
0, and the other is the fitted regression ofry[j] againstrx[j]. The latter has an intercept
of 0 and a slope equal to the parameter estimate associated with the explanatory vari-
able in the model. The leverage plot shows the changes in the residuals for the model
with and without the explanatory variable. For a given data point in the plot, its resid-
ual without the explanatory variable is the vertical distance between the point and
the horizontal line; its residual with the explanatory variable is the vertical distance
between the point and the fitted line.

Parametric Surface Plot

With two explanatory interval variables in the model, a parametric surface plot is a
continuous surface plot of the predicted responses from the fitted parametric model
on a set of regular grids of the explanatory variables. Figure 39.27 shows a response
surface plot ofoxy as a quadratic function ofage andweight .

Figure 39.27. Parametric Surface Plot

The response surface is displayed with optionsDrawing Modes:Smooth Color
andAxes:Three Sections .
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Smoothing Spline Surface Plot

Two criteria can be used to select an estimatorbf� for the functionf :

� goodness of fit to the data

� smoothness of the fit

A standard measure of goodness of fit is the mean residual sum of squares

1

n

nX
i=1

(yi � bf�(xi))2
A measure of the smoothness of a fit is an integrated squared second derivative

J2(f�) =

Z 1

�1

Z 1

�1
((
@2f�
@x21

)2 + 2(
@2f�

@x1@x2
)2 + (

@2f�
@x22

)2)dx1dx2

A single criterion that combines the two criteria is then given by

S (�) =
1

n

nX
i=1

(yi � bf�(xi))2 + �J2(f�)

where bf� belongs to the set of all continuously differentiable functions with square
integrable second derivatives, and� is a positive constant.

The estimator that results from minimizingS(�) is called athin-plate smoothing
spline estimator. Wahba and Wendelberger (1980) derived a closed form expression
for the thin-plate smoothing spline estimator.

y Note: The computations for a thin-plate smoothing spline are time intensive, espe-
cially for large data sets.

The smoothing parameter� controls the amount of smoothing; that is, it controls the
trade-off between the goodness of fit to the data and the smoothness of the fit. You
select a smoothing parameter� by specifying a constantc in the formula

� = c=100

The values of the explanatory variables are scaled by their corresponding interquartile
ranges before the computations. This makes the computations independent of the
units ofX1 andX2.
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After choosing Graphs:Surface Plot:Spline from the menu, you specify a
smoothing parameter selection method in theSpline Fit dialog.

Figure 39.28. Spline Surface Fit Dialog

The defaultMethod:GCV uses ac value that minimizes the generalized cross val-
idation mean squared errorMSEGCV(�). Figure 39.29 displays smoothing spline
estimates withc values of 0.0000831 (the GCV value) and 0.4127 (DF=6). Use the
slider in the table to change thec value of the spline fit.

Figure 39.29. Smoothing Spline Surface Plot
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Kernel Surface Plot

A kernel estimatoruses an explicitly defined set of weights at each pointx to produce
the estimate atx. The kernel estimator off has the form

bf�(x) = nX
i=1

W (x;xi;�;Vx)yi

where W(x;xi;�;Vx) is the weight function that depends on the smoothing param-
eter� and the diagonal matrixVx of the squares of the sample interquartile ranges.

The weights are derived from a single function that is independent of the design

W (x;xi;�;Vx) =
K0((x� xi)=�;Vx)Pn
j=1K0((x� xj)=�;Vx)

whereK0 is a kernel function and� is the bandwidth or smoothing parameter. The
weights are nonnegative and sum to 1.

Symmetric probability density functions commonly used as kernel functions are

� Normal K0(t;V) = 1
2� exp(�1

2t
0V�1t) for all t

� Quadratic K0(t;V) =

8<: 2
� (1� t0V�1t)

0

for t0V�1t � 1

otherwise

� Biweight K0(t;V) =

8<: 3
� (1� t0V�1t)2

0

for t0V�1t � 1

otherwise

� Triweight K0(t;V) =

8<: 4
� (1� t0V�1t)3

0

for t0V�1t � 1

otherwise

You select a bandwidth� for each kernel estimator by specifyingc in the formula

� = n�
1

6 c

wheren is the sample size. Both� andc are independent of the units ofX.

SAS/INSIGHT software divides the range of each explanatory variable into a number
of evenly spaced intervals, then estimates the kernel fit on this grid. For a data point
xi that lies between two grid points, a linear interpolation is used to compute the
predicted value. Forxi that lies inside a square of grid points, a pair of points that lie
on the same vertical line asxi and each lying between two grid points can be found.
A linear interpolation of these two points is used to compute the predicted value.
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After choosingGraphs:Surface Plot:Kernel from the menu, you specify a kernel
and smoothing parameter selection method in theKernel Fit dialog.

Figure 39.30. Kernel Surface Fit Dialog

By default, SAS/INSIGHT software divides the range of each explanatory variable
into 20 evenly spaced intervals, uses a normal weight, and uses ac value that min-
imizesMSEGCV(�). Figure 39.31 illustrates normal kernel estimates withc values
of 0.5435 (the GCV value) and 1.0. Use the slider to change thec value of the kernel
fit.

Figure 39.31. Kernel Surface Plot
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Parametric Profile Surface Plot

With more than two explanatory interval variables in the model, a parametric profile
surface plot is a continuous surface plot of the predicted responses from the fitted
parametric model on a set of regular grids of a pair of explanatory variables. The
values of the remaining explanatory variables are initially set at their means and can
be adjusted with the sliders.

By default, the first two explanatory variables are used in the surface plot. You
can also create profile surface plots for other explanatory variables by selecting the
two variables before choosingGraphs:Surface Plot:Parametric profile . Fig-
ure 39.32 shows a parametric profile surface plot ofoxy as a quadratic function of
runpulse andmaxpulse with rstpulse = 53.4516.

Figure 39.32. Parametric Profile Surface Plot
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Fit Curves

When you are working with one explanatory variable, you can fit curves to theY-by-
X scatter plot generated when the analysis is first created. Use the output dialog (see
Figure 39.4, Figure 39.6, and Figure 39.7) or theCurves menu in Figure 39.33 to fit
curves to the scatter plot.

File Edit Analyze Tables Graphs Curves Vars Help

Confidence Ellipse ➤

Confidence Curves ➤

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Figure 39.33. Curves Menu

There are two types of fitting techniques: parametric and nonparametric. Parametric
techniques enable you to add confidence ellipses, fit regression polynomials, and add
confidence curves of fitted polynomials to theY-by-X scatter plot. Nonparametric
techniques enable you to add spline, kernel, and local polynomial fits to theY-by-X
scatter plot.

Parametric Curves: Confidence Ellipses

SAS/INSIGHT software provides two types of confidence ellipses for each pair ofX
andY variables assuming a bivariate normal distribution. One is a confidence ellipse
for the population mean, and the other is a confidence ellipse for prediction.

Let Z andS be the sample mean and the unbiased estimate of the covariance matrix
of a random sample of sizen from a bivariate normal distribution with mean� and
covariance matrix�.

The variableZ � � is distributed as a bivariate normal variate with mean 0 and co-
variancen�1�, and it is independent ofS. The confidence ellipse for� is based on
Hotelling’sT 2 statistic:

T 2 = n(Z� �)0S�1(Z� �)

A 100(1 � �)% confidence ellipse for� is defined by the equation

(Z� �)0S�1(Z� �) =
2(n� 1)

n(n� 2)
F2;n�2(1� �)

whereF2;n�2(1 � �) is the (1 � �) critical value of anF variate with degrees of
freedom 2 andn� 2.
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A confidence ellipse for prediction is a confidence region for predicting a new obser-
vation in the population. It also approximates a region containing a specified percent-
age of the population.

ConsiderZ as a bivariate random variable for a new observation. The variableZ�Z
is distributed as a bivariate normal variate with mean 0 and covariance(1 + 1=n)�,
and it is independent ofS.

A 100(1 � �)% confidence ellipse for prediction is then given by the equation

(Z� Z)0S�1(Z� Z) = 2(n+ 1)(n� 1)

n(n� 2)
F2;n�2(1� �)

The family of ellipses generated by differentF critical values has a common center
(the sample mean) and common major and minor axes.

The ellipses graphically indicate the correlation between two variables. When the
variable axes are standardized (by dividing the variables by their respective standard
deviations), the ratio of the two axis lengths (in Euclidean distances) reflects the
magnitude of the correlation between the two variables. A ratio of 1 between the
major and minor axes corresponds to a circular confidence contour and indicates that
the variables are uncorrelated. A larger value of the ratio indicates a larger positive
or negative correlation between the variables.

You can choose the level of the confidence region from theConfidence Ellipse
menus, as illustrated by Figure 39.34.

� � � Graphs Curves Vars Help

Confidence Ellipse ➤

Confidence Curves ➤

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Mean: 99%
95%
90%
80%
50%
Other...

Prediction: 99%
95%
90%
80%
50%
Other...

Figure 39.34. Confidence Ellipse Menu
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A confidence ellipse for the population mean is displayed with dashed lines, and a
confidence ellipse for prediction is displayed with dotted lines. Figure 39.35 displays
a scatter plot with 50% and 80% confidence ellipses for prediction. Use the sliders in
theConfidence Ellipses table to change the coefficient of the confidence ellipses.

Figure 39.35. Confidence Ellipses for Prediction
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Parametric Curves: Polynomial

ChooseCurves:Polynomial from the menu to add a polynomial regression fit to
theY-by-X scatter plot. This displays the Polynomial Fit dialog in Figure 39.36.

Figure 39.36. Polynomial Fit Dialog

In thePolynomial Fit dialog, you enter the degree for the polynomial fit. Select the
Polynomial Equation or Parameter Estimates options to create aPolynomial
Equation or Parameter Estimates table for the fitted curve.

Information about the polynomial fit is displayed in a table, as illustrated by Figure
39.37 The information includes theR2 value and anF statistic and its associatedp-
value for testing the null hypothesis that all parameters are 0 except for the intercept.
A parametric regression fit table includes the following:

Curve is the curve in theY-by-X scatter plot.

Degree(Polynomial) is the degree for the polynomial fit.

Model DF is the degrees of freedom for model.

Model Mean Square is the mean square for model.

Error DF is the degrees of freedom for error.

Error Mean Square is the mean square for error.

R-Square is the proportion of the (corrected) total variation attributed
to the fit.

F Stat is theF statistic for testing the null hypothesis that all pa-
rameters are zero except for the intercept. This is formed
by dividing the mean square for model by the mean square
for error.

Pr > F is the probability under the null hypothesis of obtaining a
greaterF statistic than that observed.
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Figure 39.37 displays a quadratic polynomial fit withPolynomial Equation and
Parameter Estimates tables.

Figure 39.37. A Quadratic Polynomial Fit

You can use theDegree(Polynomial) slider in theParametric Regression Fit
table to change the degree of the polynomial curve fit. However, these will not change
the Polynomial Equation andParameter Estimates tables. You can produce
a newPolynomial Equation or Parameter Estimates table by selecting the
Polynomial Equation or Parameter Estimates option from thePolynomial
Fit dialog.
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Parametric Curves: Confidence Curves

You can add two types of confidence curves for the predicted values. One curve
is for the mean value of the response, and the other is for the prediction of a new
observation.

For theith observation, a confidence interval that covers the expected value of the
response with probability1� � has upper and lower limits

xib� t(1��=2)
p
his

wheret(1��=2) is the(1� �=2) critical value of the Student’st statistic with degrees
of freedom equal to the degrees of freedom for the mean squared error andhi is the
ith diagonal element of the hat matrixH. The hat matrixH is described in the section
“Output Variables” later in this chapter.

The100(1 � �)% upper and lower limits for prediction are

xib� t(1��=2)
p
1 + his

You can generate confidence curves for a parametric regression fit by choosing the
confidence coefficient from theCurves:Confidence Curves menu.

� � � Graphs Curves Vars Help

Confidence Ellipse ➤

Confidence Curves ➤

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Mean: 99%
95%
90%
80%
50%
Other...

Prediction: 99%
95%
90%
80%
50%
Other...

Figure 39.38. Confidence Curves Menu
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Figure 39.39 displays a quadratic polynomial fit with 95% mean confidence curves
for the response. Use theCoefficient slider to change the confidence coefficient.

Figure 39.39. A Quadratic Polynomial Fit with 99% Mean Confidence Curves
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Nonparametric Smoothing Spline

Two criteria can be used to select an estimatorbf� for the functionf :

� goodness of fit to the data

� smoothness of the fit

A standard measure of goodness of fit is the mean residual sum of squares

1

n

nX
i=1

(yi � bf�(xi))2
A measure of the smoothness of a fit is the integrated squared second derivativeZ 1

�1
( bf�00(x))2dx

A single criterion that combines the two criteria is then given by

S (�) =
1

n

nX
i=1

(yi � bf�(xi))2 + �

Z 1

�1
( bf�00(x))2dx

where bf� belongs to the set of all continuously differentiable functions with square
integrable second derivatives, and� is a positive constant.

The estimator that results from minimizingS(�) is called thesmoothing spline esti-
mator. This estimator fits a cubic polynomial in each interval between points. At
each pointxi, the curve and its first two derivatives are continuous (Reinsch 1967).

The smoothing parameter� controls the amount of smoothing; that is, it controls the
trade-off between the goodness of fit to the data and the smoothness of the fit. You
select a smoothing parameter� by specifying a constantc in the formula

� = (Q=10)3c

whereQ is the interquartile range of the explanatory variable. This formulation makes
c independent of the units ofX.
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After choosing Curves:Spline , you specify a smoothing parameter selection
method in theSpline Fit dialog.

Figure 39.40. Spline Fit Dialog

The defaultMethod:GCV uses ac value that minimizes the generalized cross val-
idation mean squared errorMSEGCV(�). Figure 39.41 displays smoothing spline
estimates withc values of 0.0017 (the GCV value) and 15.2219 (DF=3). Use the
slider in the table to change thec value of the spline fit.

Figure 39.41. Smoothing Spline Estimates
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Nonparametric Kernel Smoother

A kernel estimatoruses an explicitly defined set of weights at each pointx to produce
the estimate atx. The kernel estimator off has the form

bf�(x) = nX
i=1

W (x; xi;�)yi

where W(x; xi;�) is the weight function that depends on the smoothing parameter�.

The weights are derived from a single function that is independent of the design

W (x; xi;�) =
K0(

x�xi
� )Pn

j=1K0(
x�xj
� )

whereK0 is a kernel function and� is the bandwidth or smoothing parameter. The
weights are nonnegative and sum to 1.

Symmetric probability density functions commonly used as kernel functions are

� Normal K0(t) =
1p
2�

exp(�t2=2) for �1 < t <1

� Triangular K0(t) =

8<: 1� jtj
0

for jtj � 1

otherwise

� Quadratic K0(t) =

8<: 3
4(1� t2)

0

for jtj � 1

otherwise

You select a bandwidth� for each kernel estimator by specifyingc in the formula

� = n�
1

5Qc

whereQ is the sample interquartile range of the explanatory variable andn is the
sample size. This formulation makesc independent of the units ofX.

SAS/INSIGHT software divides the range of the explanatory variable into 128 evenly
spaced intervals, then approximates the data on this grid and uses the fast Fourier
transformation (Silverman 1986) to estimate the kernel fit on this grid. For a data
point xi that lies between two grid points, a linear interpolation is used to compute
the predicted value. A small value of� (relative to the width of the interval) may give
unstable estimates of the kernel fit.
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After choosingCurves:Kernel , you specify a kernel and smoothing parameter se-
lection method in theKernel Fit dialog.

Figure 39.42. Kernel Fit Dialog

The defaultWeight:Normal uses a normal weight, andMethod:GCV uses ac
value that minimizesMSEGCV(�). Figure 39.43 illustrates normal kernel estimates
with c values of 0.0944 (the GCV value) and 0.7546 (DF=3). Use the slider to change
thec value of the kernel fit.

Figure 39.43. Kernel Estimates
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Nonparametric Local Polynomial Smoother

The kernel estimator fits a local mean at each pointx and thus cannot even estimate
a line without bias (Cleveland, Cleveland, Devlin and Grosse 1988). An estimator
based on locally-weighted regression lines or locally-weighted quadratic polynomials
may give more satisfactory results.

A local polynomial smoother fits a locally-weighted regression at each pointx to
produce the estimate atx. Different types of regression and weight functions are used
in the estimation.

SAS/INSIGHT software provides the following three types of regression:

� Mean a locally-weighted mean

� Linear a locally-weighted regression line

� Quadratic a locally-weighted quadratic polynomial regression

The weights are derived from a single function that is independent of the design

W (x; xi;�i) = K0(
x� xi
�i

)

whereK0 is a weight function and�i is the local bandwidth atxi.

SAS/INSIGHT software uses the following weight functions:

� Normal K0(t) =

8<: exp(�t2=2)
0

for jtj � 3:5

otherwise

� Triangular K0(t) =

8<: 1� jtj
0

for jtj � 1

otherwise

� Quadratic K0(t) =

8<: 1� t2

0

for jtj � 1

otherwise

� Tri� Cube K0(t) =

8<: (1� jtj3)3

0

for jtj � 1

otherwise

y Note: The normal weight function is proportional to a truncated normal density
function.

SAS/INSIGHT software provides two methods to compute the local bandwidth�i.
The loess estimator (Cleveland 1979; Cleveland, Devlin and Grosse 1988) evaluates
�i based on the furthest distance fromk nearest neighbors. A fixed bandwidth local
polynomial estimator uses a constant bandwidth� at eachxi.

For a loess estimator, you selectk nearest neighbors by specifying a positive constant
�. For� � 1, k is�n truncated to an integer, wheren is the number of observations.
For� > 1, k is set ton.
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The local bandwidth�i is then computed as

�i =

8<: d(k)(xi) for 0 < � � 1

�d(n)(xi) for � > 1

whered(k)(xi) is the furthest distance fromxi to itsk nearest neighbors.

y Note: For� � 1, the local bandwidth�i is a function ofk and thus a step function
of �.

For a fixed bandwidth local polynomial estimator, you select a bandwidth� by spec-
ifying c in the formula

� = n�
1

5Qc

whereQ is the sample interquartile range of the explanatory variable andn is the
sample size. This formulation makesc independent of the units ofX.

y Note: A fixed bandwidth local mean estimator is equivalent to a kernel smoother.

By default, SAS/INSIGHT software divides the range of the explanatory variable into
128 evenly spaced intervals, then it fits locally-weighted regressions on this grid. A
small value ofc or� may give the local polynomial fit to the data points near the grid
points only and may not apply to the remaining points.

For a data pointxi that lies between two grid pointsxi[j] � xi < xi[j+1], the predicted
value is the weighted average of the two predicted values at the two nearest grid
points:

(1� dij)ŷi[j] + dij ŷi[j+1]

whereŷi[j] andŷi[j+1] are the predicted values at the two nearest grid points and

dij =
xi � xi[j]

xi[j+1] � xi[j]

A similar algorithm is used to compute the degrees of freedom of a local polynomial
estimate,df� = trace(H�). Theith diagonal element of the matrixH� is

(1� dij)hi[j] + dijhi[j+1]

wherehi[j] andhi[j+1] are theith diagonal elements of the projection matrices of the
two regression fits.
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After choosingCurves:Loess from the menu, you specify a loess fit in theLoess
Fit dialog.

Figure 39.44. Loess Fit Dialog

In the dialog, you can specify the number of intervals, the regression type, the
weight function, and the method for choosing the smoothing parameter. The default
Type:Linear uses a linear regression,Weight:Tri-Cube uses a tri-cube weight
function, andMethod:GCV uses an� value that minimizesMSEGCV(�).

Figure 39.45 illustrates loess estimates withType=Linear , Weight=Tri-Cube , and
� values of 0.0930 (the GCV value) and 0.7795 (DF=3). Use the slider to change the
� value of the loess fit.

Figure 39.45. Loess Estimates
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The loess degrees of freedom is a function of local bandwidth�i. For� � 1, �i is
a step function of� and thus the loessdf is a step function of�. The convergence
criterion applies only when the specifieddf is less thandf (�=1), the loessdf for
� = 1. When the specifieddf is greater thandf (�=1), SAS/INSIGHT software uses
the� value that has itsdf closest to the specifieddf.

Similarly, you can chooseCurves:Local Polynomial, Fixed Bandwidth from
the menu to specify a fixed bandwidth local polynomial fit.

Figure 39.46. Fixed Bandwidth Local Polynomial Fit Dialog

Figure 39.47 illustrates fixed bandwidth local polynomial estimates with
Type=Linear , Weight=Tri-Cube , andc values of 0.2026 (the GCV value) and
2.6505 (DF=3). Use the slider to change thec value of the local polynomial fit.

Figure 39.47. Fixed Bandwidth Local Polynomial Estimates
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Output Variables

Output variables based on the model you fit can be saved in the data window. From
the data window, you can store these variables in a SAS data set. This enables you,
for example, to perform additional analyses using SAS/STAT software.

Axis variables in residual plots are automatically saved in the data window used to
create the analysis. For example, when you create a residual-by-predicted plot, resid-
ual and predicted variables are always generated. These variables are deleted when
you close the analysis window.

You can save variables permanently by using the fit output options dialog or theVars
menu shown in Figure 39.48. Such variables remain stored in the data window after
you close the analysis window.

� � � Curves Vars Help

Hat Diag
Predicted
Linear Predictor
Predicted Surfaces ➤

Predicted Curves ➤

Residual
Residual Normal Quantile
Standardized Residual
Studentized Residual
Generalized Residuals ➤

Partial Leverage X
Partial Leverage Y
Cook’s D
Dffits
Covratio
Dfbetas

Deviance Residual
Standardized Deviance Residual
Studentized Deviance Residual
Pearson Residual
Standardized Pearson Residual
Studentized Pearson Residual
Anscombe Residual
Standardized Anscombe Residual
Studentized Anscombe Residual

Figure 39.48. Vars Menu

SAS/INSIGHT software provides predicted and residual variables, a linear predictor,
a residual normal quantile variable, partial leverageX andY variables, and influence
diagnostic variables.

Influence diagnosticsare measures of the influence of each observation on the pa-
rameter estimates. These diagnostics include the hat diagonal values, standardized
residuals, and studentized residuals. Cook’s D, Dffits, Covratio, and Dfbetas also
measure the effect of deleting observations.

Some influence diagnostics require a refit of the model after excluding each obser-
vation. For generalized linear models, numerical iterations are used for the fits, and
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the process can be expensive. One-step methods are used to approximate these diag-
nostics after each fit. The process involves doing one iteration of the fit without the
excluded observation, starting with the final parameter estimates and weights from
the complete fit.

You can also create generalized residuals such as Pearson, deviance, and Anscombe
residuals with generalized linear models. These residuals are applicable to the non-
normal response distributions.

Generated variables use the naming conventions described later in this section. If a
resulting variable name has more than 32 characters, only the first 32 characters are
used. Generated variables also follow the same numbering convention as the analysis
window when you create more than one fit analysis from the same data window. If
the generated variable name is longer than 32 characters, the original variable name
is truncated to the necessary length.

Hat Matrix Diagonal

Data points that are far from the centroid of theX-space are potentially influential. A
measure of the distance between a data point,xi, and the centroid of theX-space is
the data point’s associated diagonal elementhi in the hat matrix. Belsley, Kuh, and
Welsch (1980) propose a cutoff of2p=n for the diagonal elements of the hat matrix,
wheren is the number of observations used to fit the model, andp is the number
of parameters in the model. Observations withhi values above this cutoff should be
investigated.

For linear models, the hat matrix

H = X(X0X)�1X0

can be used as a projection matrix. The hat matrix diagonal variable contains the
diagonal elements of the hat matrix

hi = xi(X
0X)�1x0i

For generalized linear models, an approximate projection matrix is given by

H =W1=2X(X0WX)�1X0W1=2

whereW =Wo when the full Hessian is used andW =We when Fisher’s scoring
method is used.

The values ofhi are stored in a variable namedH–yname , whereyname is the
response variable name.
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Predicted Values

After the model has been fit, the predicted values are calculated from the estimated
regression equation.

For linear models, the predicted mean vector of then observation responses is

�̂ = Xb = Hy

�̂i = xib

For generalized linear models,

�̂i = g�1(�0i + xib)

where�0i is the offset for theith observation.

The predicted values are stored in variables namedP–yname for each response
variable, whereyname is the response variable name.

Linear Predictor

The linear predictorvalues are the linear function values,xib, in the predicted val-
ues. The linear predictor values are stored in variables namedLP–yname for each
response variable, whereyname is the response variable name.

Residuals

Theresidualsare calculated as actual response minus predicted value,

ri = yi � �̂i

The residuals are stored in variables namedR–yname for each response variable,
whereyname is the response variable name.

Residual Normal Quantiles

Thenormal quantileof theith ordered residual is computed as

��1
�
i� 0:375

n+ 0:25

�

where��1 is the inverse standard cumulative normal distribution.
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If the residuals are normally distributed, the points on the residual normal quantile-
quantile plot should lie approximately on a straight line with residual mean as the
intercept and residual standard deviation as the slope.

The normal quantiles of the residuals are stored in variables namedRN–yname for
each response variable, whereyname is the response variable name.

Predicted Surfaces

You can output predicted values from fitted kernel and thin-plate smoothing spline
surfaces by choosingVars:Predicted Surfaces from the menu.

� � � Curves Vars Help

Hat Diag
Predicted
Linear Predictor
Predicted Surfaces ➤

Predicted Curves ➤

Residual
Residual Normal Quantile
Standardized Residual
Studentized Residual
Generalized Residuals ➤

Partial Leverage X
Partial Leverage Y
Cook’s D
Dffits
Covratio
Dfbetas

Spline...
Kernel...

Figure 39.49. Predicted Surfaces Menu

For predicted values from a spline or kernel fit, you specify the surface fit in the
dialogs, as shown in Figure 39.28 or Figure 39.30, respectively.

The predicted values for each response variable are stored in variables named
PS–yname for spline andPK–yname for kernel, whereyname is the response
variable name.
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Predicted Curves

You can output predicted values from fitted curves by choosingVars:Predicted
Curves from the menu.

� � � Curves Vars Help

Hat Diag
Predicted
Linear Predictor
Predicted Surfaces ➤

Predicted Curves ➤

Residual
Residual Normal Quantile
Standardized Residual
Studentized Residual
Generalized Residuals ➤

Partial Leverage X
Partial Leverage Y
Cook’s D
Dffits
Covratio
Dfbetas

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Figure 39.50. Predicted Curves Menu

After choosingVars:Predicted Curves:Polynomial from the menu, you can
specify the degree of polynomial in thePolynomial Fit dialog.

Figure 39.51. Predicted Polynomial Fit Dialog

For predicted values from a spline, kernel, loess, or fixed bandwidth local polynomial
fit, you specify the curve fit in the dialogs, as shown in Figure 39.40, Figure 39.42,
Figure 39.44, or Figure 39.46, respectively.

The predicted values for each response variable are stored in variables named
PP–yname for polynomial, PS–yname for spline,PK–yname for kernel, and
PL–yname for loess and fixed bandwidth local polynomial, whereyname is the
response variable name.
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Standardized and Studentized Residuals

For linear models, the variance of the residualri is

Var(ri) = �2(1� hi)

and an estimate of the standard error of the residual is

STDERR(ri) = s
p
1� hi

Thus, the residuals can be modified to better detect unusual observations. The ratio
of the residual to its standard error, called thestandardized residual, is

rsi =
ri

s
p
1� hi

If the residual is standardized with an independent estimate of�2, the result has a
Student’st distribution if the data satisfy the normality assumption. If you estimate
�2 by s2(i), the estimate of�2 obtained after deleting theith observation, the result is
a studentized residual:

rti =
ri

s(i)
p
1� hi

Observations withjrtij > 2 may deserve investigation.

For generalized linear models, the standardized and studentized residuals are

rsi =
riq

�̂(1� hi)

rti =
riq

�̂(i)(1� hi)

where�̂ is the estimate of the dispersion parameter�, and�̂(i) is a one-step approxi-
mation of� after excluding theith observation.

The standardized residuals are stored in variables namedRS–yname and the Stu-
dentized residuals are stored in variables namedRT–yname for each response vari-
able, whereyname is the response variable name.
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Deviance Residuals

Thedeviance residualis the measure of deviance contributed from each observation
and is given by

rDi = sign(ri)
p
di

wheredi is the individual deviance contribution.

The deviance residuals can be used to check the model fit at each observation for gen-
eralized linear models. These residuals are stored in variables namedRD–yname
for each response variable, whereyname is the response variable name.

The standardized and studentized deviance residuals are

rDsi =
rDiq

�̂(1� hi)

rDti =
rDiq

�̂(i)(1� hi)

The standardized deviance residuals are stored in variables namedRDS–yname and
the studentized deviance residuals are stored in variables namedRDT–yname for
each response variable, whereyname is the response variable name.

Pearson Residuals

The Pearson residualis the raw residual divided by the square root of the variance
functionV (�).

The Pearson residual is the individual contribution to the Pearson�2 statistic. For a
binomial distribution withmi trials in theith observation, it is defined as

rPi =
p
mi

rip
V (�̂i)

For other distributions, the Pearson residual is defined as

rPi =
rip
V (�̂i)

The Pearson residuals can be used to check the model fit at each observation for gen-
eralized linear models. These residuals are stored in variables namedRP–yname
for each response variable, whereyname is the response variable name.
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The standardized and studentized Pearson residuals are

rPsi =
rPiq

�̂(1� hi)

rPti =
rPiq

�̂(i)(1� hi)

The standardized Pearson residuals are stored in variables namedRPS–yname and
the studentized Pearson residuals are stored in variables namedRPT–yname for
each response variable, whereyname is the response variable name.

Anscombe Residuals

For nonnormal response distributions in generalized linear models, the distribution
of the Pearson residuals is often skewed. Anscombe proposed a residual using a
functionA(y) in place ofy in the residual derivation (Anscombe 1953, McCullagh
and Nelder 1989). The functionA(y) is chosen to make the distribution ofA(y) as
normal as possible and is given by

A(�) =

Z �

�1
V �1=3(t)dt

whereV (t) is the variance function.

For a binomial distribution withmi trials in theith observation, theAnscombe resid-
ual is defined as

rAi =
p
mi

A(yi)�A(�̂i)

A0(�̂i)
p
V (�̂i)

For other distributions, the Anscombe residual is defined as

rAi =
A(yi)�A(�̂i)

A0(�̂i)
p
V (�̂i)

whereA0(�) is the derivative ofA(�).
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For the response distributions used in the fit analysis, Anscombe residuals are

Normal rAi = yi � �̂i

Inverse Gaussian rAi = (log(yi)� log(�̂i))=�̂i
1=2

Gamma rAi = 3((yi=�̂i)
1=3 � 1)

Poisson rAi =
3
2(y

2=3
i �̂i

�1=6 � �̂i
1=2)

Binomial rAi =
p
mi

�
B(yi;

2
3 ;

2
3 )�B(�̂i;

2
3 ;

2
3)
�
(�̂i(1� �̂i))

�1=6

whereB(z; a; b) =
R z
0 t

a�1(1� t)b�1 dt

You can save Anscombe residuals to your data set by using theOutput Variables
dialog, as shown in Figure 39.5, or theVars menu, as shown in Figure 39.48. These
residuals are stored in variables namedRA–yname for each response variable,
whereyname is the response variable name.

The standardized and studentized Anscombe residuals are

rAsi =
rAiq

�̂(1� hi)

rAti =
rAiq

�̂(i)(1� hi)

where�̂ is the estimate of the dispersion parameter�, and�̂(i) is a one-step approxi-
mation of� after excluding theith observation.

The standardized Anscombe residuals are stored in variables namedRAS–yname
and the studentized Anscombe residuals are stored in variables namedRAT–yname
for each response variable, whereyname is the response variable name.

Partial Leverage Variables

Thepartial leverage output variablesare variables used in the partial leverage plots.
For each intervalX variable, the corresponding partial leverageX variable is named
X–xname , where xname is the X variable name. For each pair ofY and X
variables, the corresponding partial leverageY variable is namedyname –xname ,
whereyname is theY variable name andxname is theX variable name. Up to the
first three characters of the response variable name are used to create the new variable
name.
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Cook’s D

Cook’s Dmeasures the change in the parameter estimates caused by deleting each
observation. For linear models,

Di =
1

ps2
(b� b(i))0(X0X)(b� b(i))

whereb(i) is the vector of parameter estimates obtained after deleting theith obser-
vation.

Cook (1977) suggests comparingDi to theF distribution withp andn � p degrees
of freedom.

For generalized linear models,

Di =
1

p�̂
(b� b(i))0(X0WX)(b� b(i))

whereW =Wo when the full Hessian is used andW =We when Fisher’s scoring
method is used.

Cook’s D statistics are stored in variables namedD–yname for each response vari-
able, whereyname is the response variable name.

Dffits

TheDffits statisticis a scaled measure of the change in the predicted value for theith
observation. For linear models,

Fi =
�̂i � �̂(i)

s(i)
p
hi

where�̂(i) is theith value predicted without using theith observation.

Large absolute values ofFi indicate influential observations. A general cutoff to
consider is 2; a recommended size-adjusted cutoff is2

p
p=n.

For generalized linear models,

Fi =
�̂i � �̂(i)q
�̂(i)hi

The Dffits statistics are stored in variables namedF–yname for each response vari-
able, whereyname is the response variable name.
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Covratio

Covratiomeasures the effect of observations on the covariance matrix of the param-
eter estimates. For linear models,

Ci =
js2(i)(X0

(i)X(i))
�1j

js2(X0X)�1j

whereX(i) is theX matrix without theith observation.

Values ofCi near 1 indicate that the observation has little effect on the precision of the
estimates. Observations withjCi � 1j�3p=n suggest a need for further investigation.

For generalized linear models,

Ci =
j�̂(i)(X0

(i)W(i)X(i))
�1j

j�̂(X0WX)�1j

whereW(i) is theW matrix without theith observation,W =Wo when the full
Hessian is used, andW =We when Fisher’s scoring method is used.

The Covratio statistics are stored in variables namedC–yname for each response
variable, whereyname is the response variable name.

Dfbetas

Dfbetasis a normalized measure of the effect of observations on the estimated regres-
sion coefficients. For linear models,

Bj;i =
bj � bj(i)

s(i)

q
(X0X)�1jj

where(X0X)�1jj is thejth diagonal element of(X0X)�1. Values ofBj;i > 2 indicate
observations that are influential in estimating a given parameter. A recommended
size-adjusted cutoff is2=

p
n.

For generalized linear models,

Bj;i =
bj � bj(i)q

�̂(i)(X0WX)�1jj

whereW =Wo when the full Hessian is used andW =We when the Fisher’s
scoring method is used.

The dfbetas statistics are stored in variables namedByname –xname for each pair
of response and explanatory variables, whereyname is the response variable name
andxname is the explanatory variable name. Up to the first two characters of the
response variable name are used to create the new variable name.
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Weighted Analyses

If the errors"i do not have a common variance in the regression model

yi = f(xi) + "i

a weighted analysis may be appropriate. The observation weights are the values of
theWeight variable you specified.

In parametric regression, the linear model is given by

y = X� + �

Let W be ann � n diagonal matrix consisting of weightsw1 > 0; w2 > 0; : : :, and
wn > 0 for the observations, and letW1=2 be ann�n diagonal matrix with diagonal

elementsw1=2
1 ; w

1=2
2 ; : : :, andw1=2

n .

The weighted fit analysis is equivalent to the usual (unweighted) fit analysis of the
transformed model

y� = X�� + ��

wherey� =W1=2y,X� =W1=2X, and�� =W1=2�.

The estimate of� is then given by

bw = (X0WX)�1X0Wy

For nonparametric weighted regression, the minimizing criterion in spline estimation
is given by

S(�) =
1Pn

i=1 wi

nX
i=1

wifyi � bf�(xi)g2 + �

Z 1

�1
f bf�00(x)g2dx

In kernel estimation, individual weights are

W (x; xi;�) =
wiK0(

x�xi
� )Pn

j=1wjK0(
x�xj
� )

For generalized linear models, the functionai(�) = �=(miwi) for binomial distribu-
tion with mi trials in theith observation,ai(�) = �=wi for other distributions. The
functionai(�) is used to compute the likelihood function and the diagonal matrices
Wo andWe.
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The individual deviance contributiondi is obtained by multiplying the weightwi by
the unweighted deviance contribution. The deviance is the sum of these weighted
deviance contributions.

The Pearson�2 statistic is

�2 =
nX
i=1

wimi(yi � �i)
2=V (�i)

for binomial distribution withmi trials in theith observation,

�2 =
nX
i=1

wi(yi � �i)
2=V (�i)

for other distributions.
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