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Chapter 39
Fit Analyses

—

ChoosingAnalyze:Fit (Y X ) gives you access to a variety of techniques for fitting

models to data. These provide methods for examining the relationship between a

response (dependent) variable and a set of explanatory (independent) variables.

You can use least-squares methods for simple and multiple linear regression with
various diagnostic capabilities when the response is hormally distributed.

You can use generalized linear models to analyze the data when the response is from a

distribution of the exponential family and a function can be used to link the response
mean to a linear combination of the explanatory variables.

You can use spline and kernel smoothers for nonparametric regression when the

model has one or two explanatory variables.

File Edit Analyze Tables Graphs

SAS: Fit SASUSER.FITNESS
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Part 3. Introduction

Statistical Models

The relationship between a response variable and a set of explanatory variables can
be studied through a regression model

yi = f(xi) + &

wherey; is theith observed response valug,is theith vector of explanatory values,
andg;’s are uncorrelated random variables with zero mean and a common variance.

If the form of the regression functiofi is known except for certain parameters, the
model is called gparametric regression modeFurthermore, if the regression func-
tion is linear in the unknown parameters, the model is calligear model

In the case of linear models with the error terpassumed to be normally distributed,
you can use classical linear models to explore the relationship between the response
variable and the explanatory variables.

A nonparametric modeajenerally assumes only thitbelongs to some infinite- di-
mensional collection of functions. For exampjemay be assumed to be differen-
tiable with a square-integrable second derivative.

When there is only one explanatory X variable, you can use nonparametric smooth-
ing methods, such as smoothing splines, kernel estimators, and local polynomial
smoothers. You can also request confidence ellipses and parametric fits (mean, linear
regression, and polynomial curves) with a linear model. These are added to a scatter
plot generated fronY by a singleX and are described in the “Fit Curves” section.

When there are two explanatory variables in the model, you can create parametric
and nonparametric (kernel and thin-plate smoothing spline) response surface plots.
With more than two explanatory variables in the model, a parametric profile response
surface plot with two selected explanatory variables can be created.

When the responsg has a distribution from the exponential family (normal, inverse
Gaussian, gamma, Poisson, binomial), and the meaithe response variablg is
assumed to be related to a linear predictor through a monotone fumgction

9(pi) = x;p

whereg is a vector of unknown parameters, you can explore the relationship by using
generalized linear models.
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Chapter 39. Linear Models

Linear Models

SAS/INSIGHT fit analysis provides the traditional parametric regression analysis as-
suming that the regression function is linear in the unknown parameters. The rela-
tionship is expressed as an equation that predicts a response variable from a linear
function of explanatory variables.

Besides the usual estimators and test statistics produced for a regression, a fit analysis
can produce many diagnostic statistics. Collinearity diagnostics measure the strength
of the linear relationship among explanatory variables and how this affects the stabil-
ity of the estimates. Influence diagnostics measure how each individual observation
contributes to determining the parameter estimates and the fitted values.

In matrix algebra notation, a linear model is written as
y=XB+e¢€

wherey is then x 1 vector of responses is then x p design matrix (rows are
observations and columns are explanatory variabteis)thep x 1 vector of unknown
parameters, andis then x 1 vector of unknown errors.

Each effect in the model generates one or more columns in a design Xaffixe

first column ofX is usually a vector of 1's used to estimate the intercept term. In
general, no-intercept models should be fit only when theoretical justification exists.
Refer to the chapter on the GLM procedure in BA&S/STAT User's Guider a
description of the model parameterization.

The classical theory of linear models is based on some strict assumptions. Ideally, the
response is measured with all the explanatory variables controlled in an experimen-
tally determined environment. If the explanatory variables do not have experimen-
tally fixed values but are stochastic, the conditional distributiop gi’en X must be
normal in the appropriate form.

Less restrictive assumptions are as follows:

The form of the model is correct (all important X variables have been included).

Explanatory variables are measured without error.

The expected value of the errors is 0.

The variance of the errors (and thus the response variable) is constant across
observations (denoted ).

The errors are uncorrelated across observations.

If all the necessary assumptions are met, the least-squares estimétemathe

best linear unbiased estimates (BLUE); in other words, the estimates have minimum

variance among the class of estimators that are unbiased and are linear functions of
the responses. In addition, when the error term is assumed to be normally distributed,

sampling distributions for the computed statistics can be derived. These sampling

distributions form the basis for hypothesis tests on the parameters.

569
SAS OnlineDocl]: Version 8



Part 3. Introduction

The method used to estimate the parameters is to minimize the sum of squares of the
differences between the actual response values and the values predicted by the model.
An estimatorb for 3 is generated by solving the resulting normal equations

(X'X)b = X'y
yielding
b= (X'X)"'X'y

Let H be the projection matrix for the space spanneXbgometimes called the hat
matrix,

H=X(X'X) X’
Then the predicted mean vector of th@bservation responses is
y = Xb = Hy

The sum of squares for error is

n

SSE=(y-3)(y—¥9) =) (v: —x;b)’
i=1

wherex; is theith row of theX matrix.

Assume thak is of full rank. The variance? of the error is estimated by the mean
square error

_ SSE
==

s2=MSE

The parameter estimates are unbiased:
E(b)=§
E(s%) = %

The covariance matrix of the estimates is
Var(b) = (X'X) 1¢?

The estimate of the covariance matr@(b), is obtained by replacing? with its
estimates?, in the preceding formula:

Var(b) = (X'X)"'s?
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Chapter 39. Linear Models

The correlations of the estimates,
Sfl/2(Xlx)flsfl/2

are derived by scaling to one on the diagonal, wigerediag ((X'X)1).

If the model is not full rank, the matriX’X is singular. A generalized (g2) inverse
(Pringle and Raynor 1971), denoted (@'X), is then used to solve the normal
equations, as follows:

b= (X'X) X'Y

However, this solution is not unique, and there are an infinite number of solutions
using different generalized inverses. In SAS/INSIGHT software, the fit analysis
chooses a basis of all variables that are linearly independent of previous variables
and a zero solution for the remaining variables.

@ Related Reading:Multiple Regression, Chapter 14.
@ Related Reading:Analysis of Variance, Chapter 15.

571
SAS OnlineDocl]: Version 8



Part 3. Introduction

Generalized Linear Models

Generalized linear modelssume that the respongéehas a distribution from the ex-
ponential family (normal, inverse Gaussian, gamma, Poisson, binomial) and a func-
tion can be used to link the expected response mean and a linear function of the X
effects. In SAS/INSIGHT software, a generalized linear model is written as

y=pn+e
n=g(p) =mn +Xp

wherey is then x 1 vector of responseg, is then x 1 expected response means, and
e is then x 1 vector of unknown errors.

The monotone functio links the response meanwith a linear predictom from
the effects, and it is called thimk function Then x 1 vectorny is the offset X is the

n X p design matrix, ang is thep x 1 vector of unknown parameters. The design
matrix is generated the same way as for linear models.

You specify the response distribution, the link function, and the offset variable in the
fit method options dialog.

The Exponential Family of Distributions

The distribution of a random variab¥belongs to the exponential family if its prob-
ability (density) function can be written in the form

yo — b(0)

f(y;0,¢) = exp ( ()

o)

wheref is the natural or canonical parametgiis the dispersion parameter, aad
andc are specific functions.

The mean and variance ®fare then given by (McCullagh and Nelder 1989)
E(y) = n=1b'(9)
Var(y) = a(¢)b" ()

The functionbd”(6) can be expressed as a functionoft”(6) = V(u), and it is
called thevariance function Different choices of the functiob(#) generate different
distributions in the exponential family. For a binomial distribution wittirials, the
functiona(¢) = ¢/m. For other distributions in the exponential family¢) = ¢.
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Chapter 39. Generalized Linear Models

SAS/INSIGHT software includes normal, inverse Gaussian, gamma, Poisson, and bi-
nomial distributions for the response distribution. For these response distributions,
the density functiong (y), the variance function® (1), and the dispersion parame-
ters¢ with functiona(¢) are

Normal

Inverse Gaussian

Gamma

Poisson

Binomial

fy) = = exp (—5(%5#)?)  for —co <y < oo
Vip)=1
a(p) = ¢ =o”

V() = p?

a(¢p)=¢p=v""

fly) =22 fory=0,1,2,...
Vip)=p

a(@) =¢=1

fy) =) (1—pm" fory=r/m,r=0,1,2,..,m
Vip) = p(l—p)
) = ¢m = 1/m

Link Function

The link function links the response meartto the linear predicton. SAS/INSIGHT
software provides six types of link functions:

Identity

Log

Logit

Probit

Comp. Log-log

Power

g(p) = p

g(p) = log(u

9(n) = log(7£;)

g(p) =27 (n)

g9(p) = log(—1log(1 — p))

g(u) = p* where) is the value in théower entry field.
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Part 3. Introduction

For each response distribution in the exponential family, there exists a special link
function, the canonical link, for which = n. The canonical links expressed in terms
of the mean parametgrare

Normal g(p) =
Inverse Gaussian  g(u) = p~2
Gamma g(p) = p !
Poisson g(pn) = log(p)
Binomial g9(p) =log({£;)

T Note: Some links are not appropriate for all distributions. For example, logit, probit,
and complementary log-log links are only appropriate for the binomial distribution.

The Likelihood Function and Maximum-Likelihood Estimation

The log-likelihood function

yo — b(0)

1O, ¢;y) = log f(y;0,¢) = e

+ c(y, ¢)

can be expressed in terms of the m@aand the dispersion parametgr

Normal (p, ¢ y) = —3 log(¢) — ﬁ(y —p)? for —co <y < 0
Inverse Gaussian I, ¢;y) = —log(y3¢) — (gy;‘éz fory >0

Gamma U, #y) = —log(yI'(3)) + g log(g) — 2% fory >0
Poisson Wp,d;y) =ylog(p) —p  fory=0,1,2,...

Binomial U, p;y) = rlog(p) + (m —r)log(l — p)

fory=r/m,r=0,1,2,....m

T Note: Some terms in the density function have been dropped in the log-likelihood
function since they do not affect the estimation of the mean and scale parameters.
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Chapter 39. Generalized Linear Models

SAS/INSIGHT software uses a ridge stabilized Newton-Raphson algorithm to maxi-
mize the log-likelihood functioh(x , ¢ ; y) with respect to the regression parameters.
On therth iteration, the algorithm updates the parameter vetctoy

by =bg—1) —H! jug

where H is the Hessian matrix and is the gradient vector, both evaluated at
B =Dbg_1).

021
H = (hjy) = (Waﬁk)

The Hessian matrikl can be expressed as
H=-XW,X

whereX is the design matrixW, is a diagonal matrix withith diagonal element

v o (4 oy gl V5L
of = Wei (Wi = 1) 3, (9)
B (wa) !
We; = B(Woi) = —F——775
ROVACAE

whereyg; is the link function,V; is the variance function, and the primes denote deriva-
tives of ¢ and V' with respect tou. All values are evaluated at the current mean
estimateu;. a;(¢) = ¢/w;, wherew; is the prior weight for théth observation.

SAS/INSIGHT software uses either the full Hessian maltix - X’ W, X or the
Fisher's scoring method in the maximum-likelihood estimation. In the Fisher’s scor-
ing method,W, is replaced by its expected valW&. with ith elementw,;.

H=XW.X
The estimated variance-covariance matrix of the parameter estimates is
S=-H!

whereH is the Hessian matrix evaluated at the model parameter estimates.

The estimated correlation matrix of the parameter estimates is derived by scaling the
estimated variance-covariance matrix to 1 on the diagonal.

T Note: A warning message appears when the specified model fails to converge. The
output tables, graphs, and variables are based on the results from the last iteration.
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Part 3. Introduction

Scale Parameter

A scale parameter is related to the dispersion parameded is given by

Normal o=+
Inverse Gaussian o=+
Gamma v=1/¢
Poisson 1
Binomial 1

The scale parameter is 1 for Poisson and binomial distributions. SAS/INSIGHT soft-
ware provides different scale parameter estimates for normal, inverse Gaussian, and
gamma distributions:

MLE the maximume-likelihood estimate
Deviance the mean deviance

Pearson the mean Pearsoy?

Constant the value in the&Constant entry field

When maximum-likelihood estimation is used, the Hesslaand the gradient also
include the term for the scale parameter.

1 Note: You can request an exponential distribution for the response variable by spec-
ifying a gamma distribution with scale parameter set to 1.

Goodness of Fit

The log-likelihood can be expressed in terms of the mean parameted the log-
likelihood-ratio statistic is the scaled deviance

D*(y; i) = —2((45 y) — fimaz; y))
where [(j1;y) is the log-likelihood under the model an@i,q..;y) is the log-
likelihood under the maximum achievable (saturated) model.

For generalized linear models, the scaled deviance can be expressed as

D*(y; ) = ;my;m

where D(y; 1) is the residual deviance for the model and is the sum of individual
deviance contributions.
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Chapter 39. Generalized Linear Models

The forms of the individual deviance contributiods, are

Normal (y — f1)?

Inverse Gaussian (y — )%/ (a%y)

Gamma ~2log(y/ i) +2(y — i)/

Poisson 2y log(y/f) —2(y — f1)

Binomial 2(rlog(y/f) + (m —r)log((1 —y)/(1 — 4))

wherey=r/m, r is the number of successesnrtrials.

For a binomial distribution withn; trials in theith observation, the Pearsqf statis-
ticis

2 : (yi —Mz’)2
X°=) mi——
; b V(i)

For other distributions, the Pearsgh statistic is

n

_ o - )
X2‘§1 V(i)

The scaled Pearsoy? statistic isy? / ¢. Either the mean deviandg(y; 1) /(n — p)

or the mean Pearsoy? statisticy?/(n — p) can be used to estimate the dispersion
parameteks. The x2 approximation is usually quite accurate for the differences of
deviances for nested models (McCullagh and Nelder 1989).

Quasi-Likelihood Functions

For binomial and Poisson distributions, the scale parameter has a value of 1. The
variance ofY is Var(y) = p(1 — u)/m for the binomial distribution an¥ar(y) = u

for the Poisson distributionOverdispersioroccurs when the variance ¥fexceeds

the Var(y) above. That is, the variance ¥fis 02V (1), whereo>1.

With overdispersion, methods based on quasi-likelihood can be used to estimate the
parameters ando. A quasi-likelihood function

Q) = /yu Uz;(i)dt

is specified by its associated variance function.
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Part 3. Introduction

SAS/INSIGHT software includes the quasi-likelihoods associated with the variance
functionsV (u) = 1, p, 2, p, andu(1 — ). The associated distributions (with the
same variance function), the quasi-likelihod@éu; y), the canonical linkg(x), and

the scale parametessandv for these variance functions are

Vip)=1 Normal
?Qu;y) = —5(y — p)?* for —oo <y < o0
g(p) = p
o=

Vip)=mnp Poisson
o*Q(u;y) = ylog(u) —p forpu >0,y >0
g(p) = log
o=V

V(p) = p? Gamma
*Q(u;y) = —y/u —log(u) foru >0,y >0
g(p) = p~
v=¢!

Vip) = pud Inverse Gaussian
a*Q(p;y) = —y/(2u?*) +1/p forp >0,y >0

V(p) =p(l—p)  Binomial
o*Q(u;y) = rlog(p) + (m —r)log(l — p)
for0<pu<l,y=r/mr=0,1,2,....m
g9(p) =log(¢£;)
c=V¢
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Chapter 39. Generalized Linear Models

SAS/INSIGHT software uses the mean deviance, the mean Pegfsonthe value
in theConstant entry field to estimate the dispersion parameterhe conventional
estimate ofp is the mean Pearsoy? statistic.

Maximum quasi-likelihood estimation is similar to ordinary maximum-likelihood es-
timation and has the same parameter estimates as the distribution with the same vari-
ance function. These estimates are not affected by the dispersion paraiaies

is used in the variance-covariance matrix of the parameter estimates. However, the
likelihood-ratio based statistics, suchBge | (LR), Type lll (LR), andC.I.(LR)

for Parameters tables, are not produced in the analysis.

@ Related Reading:Logistic Regression, Chapter 16.
@ Related Reading:Poisson Regression, Chapter 17.

579
SAS OnlineDocl]: Version 8
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Nonparametric Smoothers

For a simple regression model with one or two explanatory variables,
yi = f(xi) +&i

asmootherfA(x) is a function that summarizes the trendYohs a function oi. It
can enhance the visual perception of eithef-by-X scatter plot or a rotating plot.
The smoothing paramet@rcontrols the smoothness of the estimate.

With one explanatory variable in the modﬁ,(x) is called ascatter plot smoother
SAS/INSIGHT software provides nonparametric curve estimates from smoothing
spline, kernel, loess (nearest neighbors local polynomial), and fixed bandwidth lo-
cal polynomial smoothers.

For smoothing spline, kernel, and fixed bandwidth local polynomial smoothers,
SAS/INSIGHT software derives the smoothing parameétérom a constant that

is independent of the units of. For a loess smoother, the smoothing paramgisr

a positive constant.

With two explanatory variables in the modg‘l}(x) is called asurface smoother
SAS/INSIGHT software provides nonparametric surface estimates from thin-plate
smoothing spline and kernel smoothers. The explanatory variables are scaled by their
corresponding sample interquartile ranges. The smoothing paraméederived

from a constant and both are independent of the unitsxof

Similar to parametric regression, t## value for an estimate is calculated as

21 i (¥ — J?;\(Xz))z
S S

You can use the following methods to choose Xhalue:

DF uses the\ value that makes the resulting smoothing estimate have
the specified degrees of freedodf)(

GCV uses the\ value that minimizes the generalized cross validation
(GCV) mean squared error.

C Value uses the\ value derived from the specifiedvalue for nonparamet-
ric smoothers other than the loess smoother.

Alpha uses the specified value for the loess estimator.
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Chapter 39. Nonparametric Smoothers

If you specify aDF value for a smoother, an iterative procedure is used to find the
estimate with the specifiedf. You can choose a convergence criteripbased on
either the relative difference or the absolute difference. A smoother satisfying the
following conditions is then created:

|df (fitted) — df(specified)|
df(specified)

< v forrelative difference

|df (fitted) — df(specified)| < v for absolute difference

Smoother Degrees of Freedom

For a nonparametric smoother with a paramatehe fitted values can be written as
y =H)y

wherey is then x 1 vector of observed responsgs y is then x 1 vector of fitted

valuesy; = ]/c;(:ci), and the smoother matrid, is ann x n matrix that depends on
the value of\.

The degrees of freedom, or the effective number of parameters, of a smoother can be
used to compare different smoothers and to describe the flexibility of the smoother.
SAS/INSIGHT software defines the degrees of freedom of a smoother as

df\ = trace(H))

which is the sum of the diagonal elementsHbf.

1 Note: Two other popular definitions of degrees of freedom for a smoother are
trace(H,HY) andtrace(2H, — H \H/,) (Hastie and Tibshirani 1990).
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Part 3. Introduction

Smoother Generalized Cross Validation
With the degrees of freedom of an estimdfg, the mean squared error is given as

n

1 ~

MSE(\) = ——— > (vi — fa(x1))*
n — df)
i=1

Cross-validation (CV) estimates the response at eadtom the smoother that uses
only the remaining: — 1 observations. The resulting cross validation mean squared
error is

n

1
MSEcy (A nz i —
i=1

where fA(i) (x;) is the fitted value at; computed without théth observation.

The cross validation mean squared error can also be written as
18 f) )
Yi — (X
MSEcv()\) = — E _
vt n 1( 1 —hy )
whereh,; is theith diagonal element of thH , matrix (Hastie and Tibshirani 1990).

Generalized cross validation repladeg by its average valug%dfx. The generalized
cross validation mean squared error is

MSEgcv(A) = n(i— df)\/n (1 — dfy /o) Z

T Note: The functionMSEccv(A) may have multiple minima, so the value estimated
by SAS/INSIGHT software may be only a local minimum, not the global minimum.
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Chapter 39. Variables

Variables

To create a fit analysis, chooB@alyze:Fit (Y X) . If you have already selected one

or more variables, the first variable selected is the response or dependent variable,
and it is assigned th¥ variable role. The remaining variables are explanatory or
independent variables, and they are assigneXthariable role. If you do not select
any X effects, a model with only an intercept term (mean) is fit.

If you have not selected any variables, a variables dialog appears.

SAS: Fit [ ¥ X))

Figure 39.2.  Fit Variables Dialog

In the dialog, select on& variable for each fit analysis. CreaXeeffects in the
model by using th&, Cross , Nest, andExpand buttons. Areffectis a variable or
combination of variables that constitutes a term in the model. There are four ways to
specify effects in SAS/INSIGHT software. In the following discussion, assume that
X1 andX2 are interval variables andl andB are nominal variables.

You can use th& button to create regressor effects of the interval variables and main
effects of the nominal variables. Select any variable, then clickXtteitton. For
example, selectingd and then clicking th& button addsA to the effects list.

You can use th€ross button to create crossed effects. These include polynomial
effects of the interval variables, interactions of the nominal variables, and interaction
effects of interval and nominal variables. Select two or more variables, then click
the Cross button. For example, selectingll and X2 and then clicking th&Cross
button generates the crossed effgttX2.

You can use th&lest button to create nested effects. In a nested effect, a variable or
crossed effect is nested within the effects of one or more nominal variables. Select
a variable or crossed effect and one or more nominal variables, then cliblette
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Part 3. Introduction

button. For example, selectingl*X2, A, andB and then clicking théest button
generates the nested effect*X2(A B).

You can use thé&xpand button and the associated entry field to create expanded
effects. These include response surface effects for interval variables and factorial
effects for nominal variables. THexpand button expands all possible effects to the
degree of expansion specified in the entry field belowgkpeand button. The value

2 is the default degree of expansion. You can click the right button of the entry field
to increase the expansion degree by 1 or the left button to decrease it by 1.

Choose the degree of expansion, then select variables or effects and chclptred
button. For example, with degree of expansion 2 and variablesd B selected,
clicking theExpand button generates three effects

A B AB

With degree of expansion 2 and variabks and X2 selected, clicking th&xpand
button generates five effects

X1 X2 XI*X1 X1*X2  X2*X2

Intercept is checked by default to include the intercept term in the model. As a
general rule, no-intercept models should be fit only when theoretical justification
exists.

You can select one or moféroup variables if you have grouped data. This creates
a fit analysis for each group.

You can select &abel variable to label observations in the plots.

You can select &req variable. If you select &req variable, each observation is
assumed to representobservations, where is the value of thé-req variable.

You can select aVeight variable to assign relative weights for each observation
in the analysis. The details of weighted analyses are explained in the “Weighted
Analyses” section at the end of this chapter.

The fit variables dialog provides awpply button. TheApply button displays the

fit window without closing the fit variables dialog. This makes it easy to modify the
model by adding or removing variables. Each time you modify the model using the
Apply button, anewfit window is displayed so you can easily compare models. The
OK hutton also displays a new fit window but closes the dialog.
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Method

Observations with missing values gt X, Weight , or Freq variables are not used.
Observations with nonpositiweight or Freq values are not used. Only the integer
part of Freq values is used.

To view or change the response distribution and link function, clickMiethod
button in the variables dialog. This displays the dialog shown in Figure 39.3.

SAS: Fit [ ¥ )

I

o
|
P

- -
A A
A A
A~ ~
~ ~

~
~

[Coomsal | [ Wies |

I e

] |

|

:
i
I

Figure 39.3.  Fit Method Options Dialog

You can choose the response distribution and link function o¥tkariables. If you
choose a binomial distribution, specify either

e aY variable with values 1 or 0 indicating success or failure

e aY variable giving the number of successes in a certain number of trials, and a
Binomial variable to give the corresponding number of trials

If you choose a power link function, specify the power value in Bosver entry
field.

If you select arOffset variable, it is treated as afvariable with coefficient fixed at
1.0.

You can choose the scale parameter for the response distribution. If you choose a
Constant scale, specify the constant value in thenstant entry field.

With overdispersion in the model, you can specify @easi-Likelihood option to
fit the generalized linear model using the quasi-likelihood functions.
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If you choose a normal response distribution with a canonical link (identity for normal
distributions), you can specify thexact Distribution option to fit the linear model
using the usual exact distributions for the test statistics.

You can specify thé&isher’'s Scoring option to use the Fisher’s scoring method in
the maximume-likelihood estimation for the regression parameters.

By default, SAS/INSIGHT software uses tidormal response distribution and
Canonical link with the Exact Distribution option to perform a fit analysis for
the linear model.
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Output

To view or change the options associated with your fit analysis, cliclOthigput
button in the variables dialog. This displays the output options dialog shown in Figure
39.4.

SAS: Fit( ¥ X))

|
=
o
|
=
|
o
-
o
o
=
o
o

Figure 39.4.  Fit Output Options Dialog

The options you set in this dialog determine the tables and graphs that appear in
the fit window. Provided by default are tables of the model equation, summary of
fit, analysis of variance or deviance, type Il or type Il (Wald) tests, and parameter
estimates and a plot of residuals by predicted values.

When there are two explanatory variables in the model, a parametric response surface
plot is created by default. You can also generate a nonparametric kernel or a thin-plate
smoothing spline response surface plot. With more than two explanatory variables in
the model, a parametric profile response surface plot with the first two explanatory
variables can be created. The values of the remaining explanatory variables are set to
their corresponding means in the plot. You can use the sliders to change these values
of the remaining explanatory variables.
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Click on theOutput Variables button in the fit dialog to display th®utput Vari-

ables dialog shown in Figure 39.5. THeutput Variables dialog enables you to
specify variables that can be saved in the data window. Output variables include pre-
dicted values and several influence diagnostic variables based on the model you fit.

SAS: Output VYariables

12 1

o
7
o
o
o
o
7
o
=
o
o
7
o

u
i

Figure 39.5. Output Variables Dialog

When there is only one explanatory variable in the modéf;lay-X scatter plot is
generated. ThBarametric Curves andNonparametric Curves (GCV) buttons
display dialogs that enable you to fit parametric and nonparametric curves to this
scatter plot.

Click on Parametric Curves to display theParametric Curves dialog.

SAS: Parametric Curves

Figure 39.6. Parametric Curves Dialog
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A regression line fit is provided by default. You can request an 80% prediction el-
lipse and other polynomial fits in the dialog. You can also request polynomial equa-
tion tables, parameter estimates tables, and 95% mean confidence curves for fitted
polynomials.

The Nonparametric Curves (GCV) dialog in Figure 39.7 includes a smoothing
spline, a kernel smoother, and a local polynomial smoother. You must specify the
method, regression type, and weight function for a local polynomial fit.

SAS: Nonparametric Curves (GCV)

Figure 39.7. Nonparametric Curves Dialog
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Tables

You can generate tables that present the results of a model fit and diagnostics for as-
sessing how well the model fits the data. Set options in the output dialog as described
in the “Output” section or choose from tH@ables menu.

File Edit Analyze Tables Graphs Curves Vars Help

o0 Model Equation
XX Matrix

0 Summary of Fit

0 Analysis of Variance/Deviance
Type | / I(LR) Tests

o Type lll / 1ll(Wald) Tests
Type lI(LR) Tests

0 Parameter Estimates
C.l. / C.l.(Wald) for Parameters o
C.I.(LR) for Parameters 0
Collinearity Diagnostics
Estimated Cov Matrix
Estimated Corr Matrix

Figure 39.8. Tables Menu

Model Information

The first table in the fit analysis contains the model specification, the response distri-
bution, and the link function, as illustrated in Figure 39.9.

When the model contains nominal variables in its effects, the levels of the nominal
variables are displayed in tidominal Variable Information table, as shown in
Figure 39.9. The levels are determined from the formatted values of the nominal
variables. An additionaParameter Information table, as illustrated in Figure
39.9, shows the variable indices for the parameters in the model equation, the X’'X
matrix, the estimated covariance matrix, and the estimated correlation matrix.

Model Equation

The model equation table gives the fitted equation for the model. Figure 39.9 shows
an equation for a model with nominal variables, and Figure 39 shows an equation for
a model without nominal variables
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!J chang_bp
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Response Distribution:
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Link Function:

Identity
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Parameter

Variable
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INTERCEPT
drug
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D
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Equation

chang_bp
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+  13.4444 P_2 +

13.6111 P_3 =~

4.1667 FP_4

+

§8.0833 P_b

+ 5.2317

P_7

Figure 39.9.

Model Information Tables

X' X Matrix

The X'X matrix table, as illustrated by Figure 39.10, contains the X'X crossproducts
matrix for the model.

File

Edit Analyze Tables

Graphs

Durves

SAS: Fit SASUSER.FITMESS

Vars

Help

Hodel

Equation

= 93.

1262 -

1739 age -

8.0544 weight -

3.1484 yuntime

B8 MHatrix

IHTERCEPT

age

weight

runtime

INTERCEPT
aqge
weight
runtime

31.0000
1478.0000
2400 . 7800

326.1700

1478.0000
71282.0000
114158.9060
15667.2400

2400 . 7800
114158. 306
188008.197
25464.7145

328.1700
15687 . 2400
25464.7145

3531.7975

Figure 39.10.

X'X Matrix for Linear Models
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Summary of Fit for Linear Models

The Summary of Fit table for linear models, shown in Figure 39.11, includes the
following:

Mean of Response is the sample meaf, of the response variable.

Root MSE is the estimate of the standard deviation of the error term. It
is calculated as the square root of the mean square error.

R-Square R?, with values between 0 and 1, indicates the proportion of
the (corrected) total variation attributed to the fit.
Adj R-Sq An adjustedR? is a version ofR? that has been adjusted for

degrees of freedom.

= SAS: Fit SASUSER.FITNESS B I
File Edit HAnaluze Tables Graphs  aswse Yars Help
fa
LI Summary of Fit
Hean of Response 47.3758 | R-Square 6.7708
Root MSE Z2.6882 : Adj R-5q a.7454
LI Analysis of Variance
Source DF Sum of Squares | Hean Square F Stat Pr > F
Hodel 3 656.2709 218.7570 30.27 <.0001
Error 27 195.1106 7.2263
C Total 30 851.3815 |
i I~

Figure 39.11. Summary of Fit, Analysis of Variance Tables for Linear Models

With an intercept term in the modeR? is defined as
R*>=1-(SSE/CSS)
where CSS = Y%, (y; —y)? is the corrected sum of squares affE =

>, (yi — 9)* is the sum of squares for error.

The R? statistic is also the square of the multiple correlation, that is, the square of the
correlation between the response variable and the predicted values.

The adjustedr? statistic, an alternative tR2, is adjusted for the degrees of freedom
of the sums of squares associated whth It is calculated as

SSE/(n —p) _1_n—1
CSS/(n—1) n—p

AdjR?> =1 — (1— R?)
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Without an intercept term in the modét? is defined as
R?>=1-(SSE/TSS)

whereTSS = "7 | y? is the uncorrected total sum of squares.

The adjusted?? statistic is then calculated as

_SSE/(n—p) :1_L

AdjR* =1
/ TSS/n n—p

(1-R?)

t Note: Other definitions ofR? exist for models with no intercept term. Care should
be taken to ensure that this is the definition desired.

Summary of Fit for Generalized Linear Models

For generalized linear models, tBaimmary of Fit table, as illustrated by Figure
39.12, includes the following:

Mean of Response s the sample meam, of the response variable.

SCALE is the constant scale parameter specified in the method dia-
log or a value of 1.0 for maximume-likelihood estimation for
Poisson or binomial distributions.

SCALE (MLE) is the maximum-likelihood estimate of the scale parameter
for normal, gamma, and inverse Gaussian distributions.

SCALE (Deviance) is the scale parameter estimated by the mean error deviance.
SCALE (Pearson) is the scale parameter estimated by the mean Peafson
Deviance is the error deviance.

Deviance/DF is the mean error deviance, the error deviance divided by its
associated degrees of freedom.

Pearson ChiSq is the Pearson? statistic.

Pearson ChiSq / DF is the mean Pearsoy?, the Pearson? divided by its asso-
ciated degrees of freedom.

When the scale parameter is a constant specified in the method dialog, or when the
response has a Poisson or binomial distribution, the table also contains the scaled
deviance and the scaled Pearsdn

Scaled Dev is the error deviance divided by the dispersion parameter.
Scaled ChiSq is the Pearson? divided by the dispersion parameter.
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— SAS: Fit SASUSER.PATIENT r I
File Edit Analyze Tables Graphs fwauee Yars  Help |
fa
LI vemiss = cell smear infil 1li blast temp
Response Distribution: Binomial
Link Function: Logit
LI Surmary of Fit
Hean of Response 9.3333 : Deviance 21.7567 : Pearson ChiSq 19.4781
SCALE 1.0000 : Deviance / DF 1.0875  Pearson ChiSq 7 DF 9.9739
Scaled Dev 21.7387 | Scaled Chi3g 19.4781
LI Analysis of Dewviance
Source DF Deviance | Deviance 7 DF | Scaled Dev : Pr > Scaled Dev
Hodel 6 12.6211 2.1835 12.6211 0.0435
Errvor 20 21.7507 1.6875 21.7507
L Total 26 34.3718 -
L ]

Figure 39.12. Summary of Fit and Analysis of Deviance Tables for Generalized
Linear Models

Analysis of Variance for Linear Models

TheAnalysis of Variance table for linear models, shown in Figure 39.11, includes

the following:

Source

DF

Sum of Squares
Mean Square

F Stat

Pr>F

SAS OnlineDocll : Version 8

indicates the source of the variation. Sources incividelel

for the fitted regression anBrror for the residual error.C

Total is the sum of theModel andError components, and it

is the total variation after correcting for the mean. When the
model does not have an intercept term, the uncorrected total
variation U Total) is displayed.

is the degrees of freedom associated with each source of varia-
tion.

is the sum of squares for each source of variation.

is the sum of squares divided by its associated degrees of free-
dom.

is the F' statistic for testing the null hypothesis that all param-
eters are 0 except for the intercept. This is formed by dividing
the mean square for model by the mean square for error.

is the probability of obtaining a greatéf statistic than that
observed if the null hypothesis is true. This quantity is also
called ap-value. A smallp-value is evidence for rejecting the
null hypothesis.
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Analysis of Deviance for Generalized Linear Models

The Analysis of

Deviance table for generalized linear models, as illustrated by

Figure 39.12, includes the following:

Source

DF

Deviance
Deviance/DF

When the scale

indicates the source of the variation. Sources inclvielel for

the fitted regression aridrror for the residual errorC Total is
the sum of theModel andError components, and it is the total
variation after correcting for the mean. When the model does not

have an intercept term, the uncorrected total variatidf@tal ) is
printed.

is the degrees of freedom associated with each source of variation.

is the deviance for each source of variation.
is the deviance divided by its associated degrees of freedom.

parameter is a constant specified in the method dialog, or when the

response has a Poisson or binomial distribution, the table also contains the following:

Scaled Dev
Pr>Scaled Dev

is the deviance divided by the dispersion parameter.

is the probability of obtaining a greater scaled deviance statistic
than that observed if the null hypothesis is true. Under the null
hypothesis, all parameters are 0 except for the intercept, and the
scaled deviance has an approximgfedistribution.

Type | Tests

Type | tests examine the sequential incremental improvement in the fit of the model
as each effect is added. They can be computed by fitting the model in steps and
recording the difference in error sum of squares (linear models) and log-likelihood
statistics (generalized linear models). Thge | Tests table for linear models, as
illustrated by Figure 39.13, includes the following:

Source
DF
Sum of Squares

Mean Square

F Stat

Pr>F

is the name for each effect.
is the degrees of freedom associated with each effect.

is the incremental error sum of squares for the model as each
effect is added.

is the sum of squares divided by its associated degrees of free-
dom.

is the F' statistic for testing the null hypothesis that the param-
eters for the added effect are 0. This is formed by dividing the
mean square for the effect by the mean square for error from the
complete model.

is the probability of obtaining a greatét statistic than that ob-
served if the null hypothesis is true.
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SAS: Fit SASUSER.FITNESS

File Edit Arnaluze Tables Graphs e Yars  Help

!J Type I Tests
Source Sum of Squares | Hean Square
age 78.3882 78.3882

weight 49.2533 49.2533
runtime 228.0228 228.0228

Figure 39.13. Type | Tests Table

TheType | (LR) Tests table for generalized linear models, as illustrated by Figure
39.14, includes the following:

Source is the name for each effect.
DF is the degrees of freedom associated with each effect.
Chisq is thex? value for testing the null hypothesis that the parameters for

the added effect are 0. This is evaluated as twice the incremental
log-likelihood for the model as each effect is added, and it has an
asymptoticy? distribution under the null hypothesis.

Pr > ChiSq is the probability of obtaining a greatgr® statistic than that ob-
served, if the null hypothesis is true.

SAS: Fit SASUSER.PATIENT

File Edit fAnalyze Tables Graphs fweweee Mars Help

> Type 1 (LR} Tests
Source DF

cell
smear
infil
li
blast
temp

Figure 39.14. Type | Likelihood Ratio Tests
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Type lll Tests

Type Il tests examine the significance of each partial effect, that is, the significance
of an effect with all the other effects in the model. They are computed by constructing
a type Ill hypothesis matrix. and then computing statistics associated with the hy-
pothesid. 5 = 0. Refer to the chapter titled “The Four Types of Estimable Functions,”
in the SAS/STAT User’s Guider the construction of the matrix.

For linear models, the type Il or partial sum of squares
(Lb)'(L(X'X)"'L’)"!(Lb)

is used to test the hypothedis? = 0.

TheType Ill Tests table for linear models, as illustrated by Figure 39.15, includes

the following:
Source is the name for each effect.
DF is the degrees of freedom associated with each effect.

Sum of Squares s the partial sum of squares for each effect in the model.

Mean Square is the sum of squares divided by its associated degrees of free-
dom.
F Stat is the F' statistic for testing the null hypothesis that the linear

combinations of parameters described previously for the hy-
pothesis matriXL are 0. This is formed by dividing the mean
square for the hypothesis matiixy the mean square for error
from the complete model.

Pr>F is the probability of obtaining a greatdf statistic than that
observed if the null hypothesis is true.

SAS: Fit SASUSER.FITNESS

File Edit Analyze Tables Graphs iwwewe Mars Help

!J Type III Tests

Source Sum of Squares : Hean Square

age 22.0472 22.0472
weight 2.6052 2.6052
runtime 528.0228 528.0228

Figure 39.15.  Type lll Tests Table for Linear Models
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For generalized linear models, either the Wald statistic or the likelihood-ratio statistic
can be used to test the hypotheki8 = 0. For the linear model, the two tests are
equivalent.

The Wald statistic is given by
(Lb)' (LVar(b)L')~*(Lb)

where\/fz;(b) is the estimated covariance matrix of the parameters. The likelihood-
ratio statistic is computed as twice the difference between the maximum log-
likelihood achievable under the unconstrained model and the maximum log-
likelihood for the model under the restriction or constrain = 0. Both the
Wald statistic and the likelihood-ratio statistic have an asymptetidistribution.

TheType Il (Wald) Tests andType Il (LR) Tests tables, as illustrated by Figure
39.16, include the following:

Source is the name for each effect.
DF is the degrees of freedom associated with each effect.
Chisq is the Wald statistic for the Wald tests or the likelihood-ratio statis-

tic for the LR tests of the null hypothesis that the parameters for
the effect are 0. This has an asymptagtcdistribution.

Pr > ChiSq is the probability of obtaining a greatgr® statistic than that ob-
served, if the null hypothesis is true.

SAS: Fit SASUSER.PATIENT

File Edit Analyze Tables Graphs fuacvee Yars  Help

»| Type III (Hald) Tests

OF ChiSq Pr > ChiSq
. 2658 0.6062
.1108 0.7392
.1010 0.7507
.7789 0.0955
0044 0.9471
L6742 0.1957

*| III (LR} Tests
Jource ChiSgq Pr * Chisq

cell . 3202 0.5715
smear . 1186 a.7312
infil . 1065 0.7442
li . 34456 0.8371
blast 0044 09472
temp . 1264 01448

Figure 39.16. Type lll Tests Tables for Generalized Linear Models
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Parameter Estimates for Linear Models

The Parameter Estimates table for linear models, as illustrated by Figure 39.17,
includes the following:

Variable names the variable associated with the estimated parameter. The
namelNTERCEPT represents the estimate of the intercept param-
eter.

DF is the degrees of freedom associated with each parameter estimate.
There is one degree of freedom unless the model is not of full rank.
In this case, any parameter whose definition is confounded with
previous parameters in the model has its degrees of freedom set to
0.

Estimate is the parameter estimate.

Std Error is the standard error, the estimate of the standard deviation of the
parameter estimate.

t Stat is thet statistic for testing that the parameter is 0. This is computed
as the parameter estimate divided by the standard error.

Pr> |t is the probability of obtaining (by chance alone)statistic greater
in absolute value than that observed given that the true parameter
is 0. This is referred to as a two-sidpdralue. A smallp-value is
evidence for concluding that the parameter is not O.

Tolerance is the tolerance of the explanatory variable on the other variables.

Var Inflation is the variance inflation factor of the explanatory variable.

— SAS: Fit SASUSER.FITNESS e[
File Edit fAnalyze Tables Graphs fuwee Wars  Help
i
LI Parameter Estimates
Variable DF Estimate Std Evvor t Stat Pr >|1:| Tolerance | War Inflation
Intercept 1 93.1262 7£.5592 12.32 <.0081 . a
age 1 -8.1733 8.83135 -1.75 9.0321 9.8350 1.1173
weight 1 -0.0544 0.0618 -0.88  0.3862 0.9090 1.1001
runtime 1 -3.1404 @_3674 -8.55 <.8881 8.9272 1.68786 a
'\J |-

Figure 39.17.

Parameter Estimates Table for Linear Models
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The standard error of theh parameter estimatg is computed using the equation
STDERR(b;) = 4/ (X'X)j;"s?

Where(X’X)j_j1 is thejth diagonal element ofX'X) L.
Under the hypothesis that; is 0, the ratio

b
t= e
STDERR (b;)

is distributed as Studenttswith degrees of freedom equal to the degrees of freedom
for the mean square error.

When an explanatory variable is nearly a linear combination of other explanatory
variables in the model, the affected estimates are unstable and have high standard
errors. This problem is callezbllinearity or multicollinearity. A fit analysis provides
several methods for detecting collinearity.

ToleranceqTOL) andvariance inflation factorgVIF) measure the strength of inter-
relationships among the explanatory variables in the model. Tolerarice-i&?

for the R? that results from the regression of the explanatory variable on the other
explanatory variables in the model. Variance inflation factors are diagonal elements
of (X'X)~! afterX’X is scaled to correlation form. The variance inflation measures
the inflation in the variance of the parameter estimate due to collinearity between the
explanatory variable and other variables. These measures are relatédé byl /

TOL

If all variables are orthogonal to each other, both tolerance and variance inflation are
1. If a variable is closely related to other variables, the tolerance goes to 0 and the
variance inflation becomes large.

When theX’ X matrix is singular, least-squares solutions for the parameters are not
unigue. An estimate is 0 if the variable is a linear combination of previous explana-
tory variables. The degrees of freedom for the zeroed estimates are reported as 0. The
hypotheses that are not testable hatests printed as missing.
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Parameter Estimates for Generalized Linear Models

The Parameter Estimates table for generalized linear models, as illustrated by
Figure 39.18, includes the following:

Variable

DF

Estimate
Std Error
ChiSq

Pr > ChiSq

names the variable associated with the estimated parameter. The
namelNTERCEPT represents the estimate of the intercept param-
eter.

is the degrees of freedom associated with each parameter estimate.
There is one degree of freedom unless the model is not full rank. In
this case, any parameter that is confounded with previous parame-
ters in the model has its degrees of freedom set to O.

is the parameter estimate.
is the estimated standard deviation of the parameter estimate.

is the 2 test statistic for testing that the parameter is 0. This is
computed as the square of the ratio of the parameter estimate di-
vided by the standard error.

is the probability of obtaining a? statistic greater than that ob-
served given that the true parameter is 0. A smalhlue is evi-
dence for concluding that the parameter is not O.

— SAS: Fit SASUSER.PATIENT e
File Edit Analyze Tables Graphs  fwcves Mars  Help
N
LI Parameter Estimates
Variable OF Estimate Std Evvor ChiSq Py > ChiSy
Intercept 1 58.0385 71.2364 0.6638 0.4152
cell 1 24.6615 47.8377 0.2658 6.6062
smear 1 19.2936 57.9500 B.1108 8.7392
infil 1 -19.6013 61.6815 0.1019 6.75%7
li 1 3.8960 2.3371 2.7783 6.0355
blast 1 6.1511 2.2786 0.0044 6.93471
temp 1 -87.4339 67.5736 1.6742 6.1357

Figure 39.18.

Parameter Estimates Table for Generalized Linear Models
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C.l. for Parameters

The C.l. for Parameters table gives a confidence interval for each parameter for
each confidence coefficient specified. You choose the confidence interval for param-
eters either in the fit output options dialog or from ffebles menu, as shown in
Figure 39.19.

File Edit Analyze Tables Graphs Curves Vars Help |
0 Model Equation
X'X Matrix
0 Summary of Fit
0 Analysis of Variance/Deviance
Type | / I(LR) Tests
o Type lll / 1lI(Wald) Tests
Type lI(LR) Tests
0 Parameter Estimates

C.I. / C.l.(Wald) for Parameters 0 99%
C.I.(LR) for Parameters 0 98%
Collinearity Diagnostics 95%
Estimated Cov Matrix 90%
Estimated Corr Matrix 80%
Other...

Figure 39.19. C.I. for Parameters Menu

Selecting95% C.I. / C.I.(Wald) for Parameters or 95% C.I.(LR) for Parame-

ters in the fit output options dialog produces a table with a 95% confidence interval
for the parameters. This is the equivalent of choodiagles:C.I. / C.I.(Wald) for
Parameters:95% or Tables:C.I.(LR) for Parameters:95% from the Tables
menu. You can also choose other confidence coefficients fromahkes menu.
Figure 39.20 illustrates a 95% confidence intervals table for the parameters in a lin-
ear model.

SAS: Fit SASUSER.FITNESS

File Edit Analyze Tables Graphs urvas Vars Help

LI 354 C.I. for Parameters
Variable Estimate Lower Upper

INTERCEPT 33.1262 77.6160 108.6363
age -8.1733 -6.3781 0.0304
weight -0.0544 -0.1813 9.0724
runtime =-3.1404 -3.8942 -2.3866

Figure 39.20. C.I. for Parameters Table
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For linear models, 400(1 — )% confidence interval has upper and lower limits

bj £t1-a/2)8i

wheret(;_/9) is the(1—a/2) critical value of the Studentisstatistic with degrees of
freedomn-p, used in computing;, the estimated standard deviation of the parameter
estimateb;.

For generalized models, you can specify the confidence interval based on either a
Wald type statistic or the likelihood function.

A 100(1 — a)% Wald type confidence interval is constructed from

CAAY
(£22) <

Sj

where X%lfa),l is the (1 — «) critical value of they? statistic with one degree of

freedom, and; is the estimated standard deviation of the parameter esttiate

Thus,100(1 — )% upper and lower limits are
b] + Z(l—a/2)8j

wherez(;_,/2) is the(1 — «/2) critical value of the standard normal statistic.

A table of 95% Wald type confidence intervals for the parameters is shown in Figure
39.21.

SAS: Fit SASUSER.PATIENT

File Edit Analyze Tables Graphs urvas Vars Help

| 95% C.I. {(Hald} for Parameters
Variable Estimate Lower Upper

INTERCEPT 58.08385 -81.5624 197.6533
cell 24_6615 -63.8387 118.4218
smear 13.2336 -94. 2864 132.8736
=19.6013 ;| -140.4348 101.2923

3.8360 -0.6847 §.4766

8.1511 =-4.3148 4.6170
-87.4333 ¢ -213.8756 45.0078

954 C.I. (LR} for Parameters
Variable Estimate Lower Upper

INTERCEPT 58.08385 =/0.3470 222.17257
cell 24.6615 =27.4212 138.3904
smear 13.2336 -b60.2651 152.1511
infil =19.6013 | -153.7391 67.3877
li 3.48360 0.1343 1.5266
blast 8.1511 =-4.5238 4.7145
Temp =87.4333 . -244.7432 24.3513

Figure 39.21. C.I. for Parameters Tables
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Part 3. Introduction

The likelihood ratio test statistic for the null hypothesis
Hy: B = Bjo

whereg; is a specified value, is
A= —2((Bo) - 1(B))

wherel(ﬁAo) is the maximized log likelihood undéi,, and(3) is the maximized log
likelihood over alls.

In large samples, the hypothesis is rejected at leviélthe test statistic\ is greater
than the(1 — ) critical value of the chi-squared statistic with one degree of freedom.

Thus a100(1 — «)% likelihood-based confidence interval is constructed using re-
stricted maximization to find upper and lower limits satisfying

2
X(]_—a)’]_

DN | =

[(Bo) = U(B) —

An iterative procedure is used to obtain these limits. A 95% likelihood-based confi-
dence interval table for the parameters is illustrated in Figure 39.21.
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Collinearity Diagnostics

TheCollinearity Diagnostics

File

Edit

Analyze Tables

table is illustrated by Figure 39.22.

SAS: Fit SASUSER.FITNESS

Graphs

Turvas

Yars

Help

¥

Collinearity Diagnostics

Variance Proportion

Humber

Eigenvalue

Condition Index

INTERCEPT

age

weight

runtime

1

2
3
4

3.97186
6.01319
0.0114
0.0029

1.0000
16.8921
18.6347
37.2156

0.0003
0.0005
0.0213
6.9779

0.0006
0.3254
0.1416
6.5323

0.0006
6.3924
0.0405
8_5665

0.0010
0.0138
8.9753
0.0100

Figure 39.22.  Collinearity Diagnostics Table
Number is the eigenvalue number.
Eigenvalue gives the eigenvalues of th€ X matrix.

Condition Index is the square root of the ratio of the largest eigenvalue to the

corresponding eigenvalue.

Variance Proportion is the proportion of the variance of each estimate accounted

for by each component.

Detailed collinearity diagnostics use the eigenstructurng’of, which can be written
as

X'X = VD2V’ whereV is an orthogonal matrix whose columns are the eigenvec-
tors of X' X, andD? is a diagonal matrix of eigenvalues

2 2 2
B>d3>...>d?

After scaling K’ X) to correlation form, Belsley, Kuh, and Welsch (1980) construct
the condition indices as the square roots of the ratio of the largest eigenvalue to each
individual eigenvalued; /d;, 7 = 1,2,...,p.

Thecondition numbeof theX matrix is defined as the largest condition indéx d,,.
When this number is large, the data are said tdllm®nditioned A condition index
of 30 to 100 indicates moderate to strong collinearity.

For each variable, the proportion of the variance of its estimate accounted for by each
componentd; can be evaluated. A collinearity problem occurs when a component
associated with a high condition index contributes strongly to the variance of two
or more variables. Thus, for a high condition index (>30), the corresponding row
should be examined to see which variables have high values. Those would indicate
near-linear dependence.
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Part 3. Introduction

Estimated COV Matrix and Estimated CORR Matrix

The Estimated COV Matrix table contains the estimated variance-covariance ma-
trix of the parameters. Thiestimated CORR Matrix table contains the estimated
correlation matrix of the parameters. Sample tables are shown in Figure 39.23.

SAS: Fit SASUSER.FITNESS

File Edit Analyze Tables

Graphs Cuarvas  Vars

D

Estimated Cov MHatrix

INTERCEPT

age

weight

runtime

IHTERCEPT
age
weight
runtime

57.1408
-0.5108
=0.3273
-0.6806

-0.5108
06.0033
0.0017

-0.0084

-0.3273
6.0017
0.0038

-0.0045

-0.6806
-0.0084
=0.0045

9.1350

>l

Estimated Corr

Hatrix

INTERCEPT

age

weight

runtime

IHTERCEPT
age
weight
runtime

1.6000
-0.6788
=0.7005
-0.2451

-0.6788
1.0000
0.2682

-0.2310

-0.7005
0.2682
1.0000

=-0.1365

-0.2451
-0.2310
=0.1365

1.6000

Figure 39.23.  Estimated COV and CORR Matrices
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Chapter 39. Residual and Surface Plots

Residual and Surface Plots

Residual plots provide visual displays for assessing how well the model fits the data,
for evaluating the distribution of the residuals, and for identifying influential observa-
tions. Surface plots are three-dimensional displays of continuous response surfaces
on the regular grids of the explanatory variables. They are much easier to comprehend
than rotating plots.

File Edit Analyze Tables Graphs Curves Vars ﬂeIpJ
Residual by Predicted
Residual Normal QQ
Partial Leverage
Surface Plot 0 | Parametric

Spline...
Kernel...
Parametric Profile

Figure 39.24. Graphs Menu
Residual-by-Predicted Plot

A residual-by-predicted plot is commonly used to diagnose nonlinearity or noncon-
stant error variance. It is also used to find outliers. A residual-by-predicted plot, as
illustrated by the plot on the left in Figure 39.25, is a plot of residuals versus predicted
response for each observation. See the “Predicted Values” and “Residuals” sections
for a further explanation of the axis variables.

SAS: Fit SASUSER.FITNESS

Figure 39.25. Residual-by-Predicted and Residual Normal QQ Plots

607
SAS OnlineDocl]: Version 8
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Residual Normal QQ Plot

A normal quantile-quantile plot of residuals is illustrated by the plot on the right in
Figure 39.25. See the “Residual Normal Quantiles” section for an explanation of the
X axis variable.

The empirical quantiles are plotted against the quantiles of a standard normal distri-
bution. If the residuals are from a normal distribution with mean 0, the points tend
to fall along the reference line that has an intercept of 0 and a slope equal to the
estimated standard deviation.

Partial Leverage Plots

For linear models, the partial leverage plot for a selected explanatory variable can
be obtained by plotting the residuals for the response variable against the residuals
for the selected explanatory variable. The residuals for the response variable are
calculated from a model having the selected explanatory variable omitted, and the
residuals for the selected explanatory variable are calculated from a model where the
selected explanatory variable is regressed on the remaining explanatory variables.

LetX;) be then x (p—1) matrix formed from the design matri by removing thgth
column,X;. Letr,; be the partial leverag¥ variable containing the residuals that
result from regressing on X, and letr,;; be the partial leveragk variable con-
taining the residuals that result from regressKigon X ;. Then a partial leverage
plot is a scatter plot of,;; againstr,[;. Partial leverage plots for two explanatory
variables are illustrated by Figure 39.26.

SAS: Fit SASUSER.FITNESS
File Edit Analyze Tables Graphs

-
@

o
x
y
— o
1 x
n y
t @ -
e a
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t

1
—
@

6.0
B_Intercept

Figure 39.26. Partial Leverage Plots
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Chapter 39. Residual and Surface Plots

In a partial leverage plot, the partial leverageariabler,; can also be computed as

ryljli = Tolslibi + (Yi — fi)

For generalized linear models, the partial levergige also computed as
rylili = Talgib + (Yi — fi)g' (Hs)

Two reference lines are also displayed in the plots. One is the horizontal Iesof

0, and the other is the fitted regressiomrpf; againstr,;). The latter has an intercept

of 0 and a slope equal to the parameter estimate associated with the explanatory vari-
able in the model. The leverage plot shows the changes in the residuals for the model
with and without the explanatory variable. For a given data point in the plot, its resid-
ual without the explanatory variable is the vertical distance between the point and
the horizontal line; its residual with the explanatory variable is the vertical distance

between the point and the fitted line.

Parametric Surface Plot

With two explanatory interval variables in the model, a parametric surface plot is a
continuous surface plot of the predicted responses from the fitted parametric model
on a set of regular grids of the explanatory variables. Figure 39.27 shows a response

surface plot obxy as a quadratic function @ge andweight .

SAS: Fit SASUSER.FITNESS
File Edit Analyze Tables Graphs Curvuzs Vars Help

4+
x
B
Lol
R

maxpulse

Figure 39.27. Parametric Surface Plot

The response surface is displayed with optiBmawing Modes:Smooth Color
andAxes:Three Sections
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Part 3. Introduction

Smoothing Spline Surface Plot

Two criteria can be used to select an estimgﬁpfor the functionf:

e goodness of fit to the data
e smoothness of the fit

A standard measure of goodness of fit is the mean residual sum of squares

_Z f)\xz

A measure of the smoothness of a fit is an integrated squared second derivative

32f>\ Pf 2 P
mi= [ [« TV 2+ (g e

A single criterion that combines the two criteria is then given by

SO0 = 3 (i — A + Ah(fy)

i=1

wherefAA belongs to the set of all continuously differentiable functions with square
integrable second derivatives, akds a positive constant.

The estimator that results from minimizirg\) is called athin-plate smoothing
spline estimatar Wahba and Wendelberger (1980) derived a closed form expression
for the thin-plate smoothing spline estimator.

1 Note: The computations for a thin-plate smoothing spline are time intensive, espe-
cially for large data sets.

The smoothing parametarcontrols the amount of smoothing; that is, it controls the
trade-off between the goodness of fit to the data and the smoothness of the fit. You
select a smoothing parameteby specifying a constartin the formula

A = ¢/100

The values of the explanatory variables are scaled by their corresponding interquartile
ranges before the computations. This makes the computations independent of the
units of X; and X5.
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Chapter 39. Residual and Surface Plots

After choosing Graphs:Surface Plot:Spline  from the menu, you specify a
smoothing parameter selection method in$pdine Fit dialog.

SAS: Spline Fit

'
~

Figure 39.28.  Spline Surface Fit Dialog

The defaultMethod:GCV uses & value that minimizes the generalized cross val-
idation mean squared errdfSEgcv(A). Figure 39.29 displays smoothing spline
estimates wittc values of 0.0000831 (the GCV value) and 0.4127 (DF=6). Use the
slider in the table to change tlsevalue of the spline fit.

File Edit #nalyze Tables Graphs favwe Wars Help
5
80 3
oxyg
40
199 ‘189 ‘170 ‘166
\
maxpulse maxpulse
’i Spline Fit
Surface Hethod C Value Smoothing Parameter DF R-Square : HSE HSE{GCV )
— GOV §.305E-05 §.305E-07 24.737 8.3332 0.3384 46837
e 0.4127 ] 0.0041 6.801 8.3355  20.586 25.5268 i
= =

Figure 39.29. Smoothing Spline Surface Plot
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Part 3. Introduction

Kernel Surface Plot

A kernel estimatouses an explicitly defined set of weights at each pototproduce
the estimate at. The kernel estimator of has the form

n
() =D W, xi; A\, Vi )y
i-1

where Wx, x;; A, V) is the weight function that depends on the smoothing param-
eter\ and the diagonal matri¥ of the squares of the sample interquartile ranges.
The weights are derived from a single function that is independent of the design

) _ Ko((x—xi)/\ Vi)
o Vo) = o KB ) Vi)

where K is a kernel function and is the bandwidth or smoothing parameter. The
weights are nonnegative and sum to 1.

Symmetric probability density functions commonly used as kernel functions are

e Normal Ko(t,V) = 5= exp(—3t'V71t) for all t
2(1 —t'V1t) fort'vV-1t <1
e Quadratic Ky(t,V)=<¢ 7
0 otherwise
o 3(1—-t'VTit)? fort'v-1lt <1
e DBiweight Ky(t, V)=
0 otherwise
o 11—tV 1) fort'v-1t <1
o Triweight Ky(t, V)=
0 otherwise

You select a bandwidth for each kernel estimator by specifyiregn the formula
A=n"6c

wheren is the sample size. Bothandc are independent of the units Xf

SAS/INSIGHT software divides the range of each explanatory variable into a number
of evenly spaced intervals, then estimates the kernel fit on this grid. For a data point
x; that lies between two grid points, a linear interpolation is used to compute the
predicted value. Fax; that lies inside a square of grid points, a pair of points that lie
on the same vertical line ag and each lying between two grid points can be found.

A linear interpolation of these two points is used to compute the predicted value.
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Chapter 39. Residual and Surface Plots

After choosingGraphs:Surface Plot:Kernel from the menu, you specify a kernel
and smoothing parameter selection method inkbmel Fit dialog.

SAS: Kernel Fit

Figure 39.30. Kernel Surface Fit Dialog

By default, SAS/INSIGHT software divides the range of each explanatory variable
into 20 evenly spaced intervals, uses a normal weight, and usealae that min-
imizesMSEgcy (). Figure 39.31 illustrates normal kernel estimates witralues
of 0.5435 (the GCV value) and 1.0. Use the slider to change tiadue of the kernel

fit.
File Edit Analyze Tables Graphs awwe Yars  Help
A
180
180
;’L\lnpulse Ifinpulse
190
188174 o 156
maxpulse maxpulse
ﬁ Kernel Fit
Surface Height H IntervalsiHethod C Value Bandwidth DF R-Square HSE HSE{GCY)
Hormal 20 : BCY 9.5435 1= 9._3066 7.276 9._4705 19.6832 24.8314
Hormal 20 i C 1.0000 b= 9.5642 3.803 9.2130 24.6379 28.0834
/
=] L~

Figure 39.31. Kernel Surface Plot
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Parametric Profile Surface Plot

With more than two explanatory interval variables in the model, a parametric profile
surface plot is a continuous surface plot of the predicted responses from the fitted
parametric model on a set of regular grids of a pair of explanatory variables. The
values of the remaining explanatory variables are initially set at their means and can
be adjusted with the sliders.

By default, the first two explanatory variables are used in the surface plot. You
can also create profile surface plots for other explanatory variables by selecting the
two variables before choosingraphs:Surface Plot:Parametric profile . Fig-

ure 39.32 shows a parametric profile surface plodof as a quadratic function of
runpulse andmaxpulse with rstpulse =53.4516.

SAS: Fit SASUSER.FITMESS

(|
@

Edit Analyze Tables Graphs Curvas WVars Help

1
i‘
=
fud
L2
&

ﬂ Parametric Profile
rstpulse

maxpulse 53.4516 0 0 =

Figure 39.32.  Parametric Profile Surface Plot
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Chapter 39. Fit Curves

Fit Curves

When you are working with one explanatory variable, you can fit curves tg-ine

X scatter plot generated when the analysis is first created. Use the output dialog (see
Figure 39.4, Figure 39.6, and Figure 39.7) ortheves menu in Figure 39.33 to fit
curves to the scatter plot.

File Edit Analyze Tables Graphs |Curves Vars Help

Confidence Ellipse

Confidence Curves

Polynomial...

Spline...

Kernel...

Loess...

Local Polynomial, Fixed Bandwidth...

Figure 39.33.  Curves Menu

There are two types of fitting techniques: parametric and nonparametric. Parametric
techniques enable you to add confidence ellipses, fit regression polynomials, and add
confidence curves of fitted polynomials to tieby-X scatter plot. Nonparametric
technigues enable you to add spline, kernel, and local polynomial fits t6-tyeX

scatter plot.

Parametric Curves: Confidence Ellipses

SAS/INSIGHT software provides two types of confidence ellipses for each pAir of
andY variables assuming a bivariate normal distribution. One is a confidence ellipse
for the population mean, and the other is a confidence ellipse for prediction.

Let Z andS be the sample mean and the unbiased estimate of the covariance matrix
of a random sample of size from a bivariate normal distribution with meanand
covariance matrix.

The variableZ — y is distributed as a bivariate normal variate with mean 0 and co-
variancen ', and it is independent @. The confidence ellipse fqr is based on
Hotelling’s T2 statistic:

T* =n(Z —p)'S H(Z — p)
A 100(1 — a)% confidence ellipse for is defined by the equation

@S HE ) = A Faa(i )

whereF; ,, 2(1 — «) is the (1 — «) critical value of anF' variate with degrees of
freedom 2 andh — 2.
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Part 3. Introduction

A confidence ellipse for prediction is a confidence region for predicting a new obser-
vation in the population. It also approximates a region containing a specified percent-
age of the population.

ConsiderZ as a bivariate random variable for a new observation. The varfabl&
is distributed as a bivariate normal variate with mean 0 and covaridn¢el /n)X,
and it is independent @&.

A 100(1 — a)% confidence ellipse for prediction is then given by the equation

(Z-Z)s™(Z2-7Z)= 2(nq;+;nl)_(r;)— 1)F2,n—2(1 — o)

The family of ellipses generated by differdntcritical values has a common center
(the sample mean) and common major and minor axes.

The ellipses graphically indicate the correlation between two variables. When the
variable axes are standardized (by dividing the variables by their respective standard
deviations), the ratio of the two axis lengths (in Euclidean distances) reflects the
magnitude of the correlation between the two variables. A ratio of 1 between the
major and minor axes corresponds to a circular confidence contour and indicates that
the variables are uncorrelated. A larger value of the ratio indicates a larger positive
or negative correlation between the variables.

You can choose the level of the confidence region fromGbefidence Ellipse
menus, as illustrated by Figure 39.34.

Graphs Curves Vars Help

Confidence Ellipse 0 Mean: 99%
Confidence Curves O 95%
Polynomial... 90%
Spline... 80%
Kernel... 50%
Loess... Other...
Local Polynomial, Fixed Bandwidth... | prediction: 99%
95%
90%
80%
50%
Other...

Figure 39.34. Confidence Ellipse Menu
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Chapter 39. Fit Curves

A confidence ellipse for the population mean is displayed with dashed lines, and a
confidence ellipse for prediction is displayed with dotted lines. Figure 39.35 displays
a scatter plot with 50% and 80% confidence ellipses for prediction. Use the sliders in
the Confidence Ellipses table to change the coefficient of the confidence ellipses.

File Edit Analyze Tables

SAS: Fit SASUSER. MININGX

Graphs Curves

Help

FE Ly

0

Confidence Ellipses

Type

Coefficient

Ellipse

Prediction | B_8008 j _I -
Prediction ©.5000 I =

Figure 39.35.

Confidence Ellipses for Prediction
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Parametric Curves: Polynomial

ChooseCurves:Polynomial from the menu to add a polynomial regression fit to
the Y-by-X scatter plot. This displays the Polynomial Fit dialog in Figure 39.36.

8A5: Polynomial Fit

Figure 39.36.  Polynomial Fit Dialog

In thePolynomial Fit dialog, you enter the degree for the polynomial fit. Select the
Polynomial Equation or Parameter Estimates options to create Bolynomial
Equation or Parameter Estimates table for the fitted curve.

Information about the polynomial fit is displayed in a table, as illustrated by Figure
39.37 The information includes thg? value and arF statistic and its associated

value for testing the null hypothesis that all parameters are 0 except for the intercept.
A parametric regression fit table includes the following:

Curve
Degree(Polynomial)
Model DF

Model Mean Square
Error DF

Error Mean Square
R-Square

F Stat

Pr>F

SAS OnlineDocl] : Version 8

is the curve in ther-by-X scatter plot.
is the degree for the polynomial fit.
is the degrees of freedom for model.
is the mean square for model.

is the degrees of freedom for error.
is the mean square for error.

is the proportion of the (corrected) total variation attributed
to the fit.

is the F statistic for testing the null hypothesis that all pa-
rameters are zero except for the intercept. This is formed
by dividing the mean square for model by the mean square
for error.

is the probability under the null hypothesis of obtaining a
greaterF’ statistic than that observed.
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Figure 39.37 displays a quadratic polynomial fit wiRblynomial Equation and
Parameter Estimates tables.

= SAS: Fit SASUSER. MINING> ||
File Edit #nalyze Tables Graphs Curves Vars Help
iy
12
d 16
r
i
1
t
M i}
[}
6
160 260 300 460
LI depth
LI Parametric Regression Fit
Hodel Error
Curve Degree{Polynomial} DF Hean Square OF Hean Square | R-Square F Stat Pr > F
2 i = 2 37.8521 7 1.9603 9.7039 91.53 <.0001
LI Polynomial Equation, Specified Deg = 2
driltime = 6.6039 - 0.0099 depth *+ 1 + 5.5E-05 depth #*+ 2
LI Parameter Estimates, Specified Deqg = 2
Variable DF Estimate Std Evror t Stat Pr >|t]
Intercept 1 6.6099 0.3542 18.66 <.0001
depth ##* 1 1 -0.0099 0.06040 =2.46 0.6161
depth #* 2 1 5.478E-85 | 9.B657E-06 5.67 <.0001 ||
| N ]

Figure 39.37. A Quadratic Polynomial Fit

You can use th®egree(Polynomial) slider in theParametric Regression Fit

table to change the degree of the polynomial curve fit. However, these will not change
the Polynomial Equation andParameter Estimates tables. You can produce

a newPolynomial Equation or Parameter Estimates table by selecting the

Polynomial Equation or Parameter Estimates option from thePolynomial
Fit dialog.
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Parametric Curves: Confidence Curves

You can add two types of confidence curves for the predicted values. One curve
is for the mean value of the response, and the other is for the prediction of a new
observation.

For theith observation, a confidence interval that covers the expected value of the
response with probability — « has upper and lower limits

xib £ i1 a/2) Vhis

wheret(;_, /) is the(1 — «/2) critical value of the Studentsstatistic with degrees
of freedom equal to the degrees of freedom for the mean squared errby @Enithe
ith diagonal element of the hat matiik The hat matrix is described in the section
“Output Variables” later in this chapter.

The100(1 — )% upper and lower limits for prediction are

x;b+ t1—a/2)V 14 hys

You can generate confidence curves for a parametric regression fit by choosing the
confidence coefficient from th@urves:Confidence Curves menu.

.-~ Graphs Curves Vars Help

Confidence Ellipse 0 |
Confidence Curves 0 Mean: 99%
Polynomial... 95%
Spline... 90%
Kernel... 80%
Loess... 50%
Local Polynomial, Fixed Bandwidth... Other...
Prediction: 99%
95%
90%
80%
50%
Other...

Figure 39.38. Confidence Curves Menu
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Figure 39.39 displays a quadratic polynomial fit with 95% mean confidence curves
for the response. Use tl@pefficient slider to change the confidence coefficient.

—

SAS: Fit SASUSER.MININGX

.

File Edit #nalyze Tables Graphs Curves Yars  Help
i
124

d 194

s

i

1

T

Loog

[}

[
160 200 300 400
LI depth
LI Parametric Regression Fit
Hodel Error
Curve Degree{Polynomial) DF Hean Square DF Mean Square | R-Squave | F Stat Pr > F
2 i = 2 97.0521 77 1.9603 9.7039 91.53 <. 0981
LI Confidence Curves
Type | Degree{Polynomial} Coefficient Lower Curve : Upper Curve
Hean 2 0.9500 [~ W - - === =-{-====-—- a
L ]
Figure 39.39. A Quadratic Polynomial Fit with 99% Mean Confidence Curves
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Nonparametric Smoothing Spline

Two criteria can be used to select an estimgﬁpfor the functionf:

e goodness of fit to the data
e smoothness of the fit

A standard measure of goodness of fit is the mean residual sum of squares

- Z f)\ mz
A measure of the smoothness of a fit is the integrated squared second derivative

[ @ w)ras

—0o0

A single criterion that combines the two criteria is then given by

SO = 537 (i — Al + A / (A (@)2de

i=1 -

wherefAA belongs to the set of all continuously differentiable functions with square
integrable second derivatives, akds a positive constant.

The estimator that results from minimizirg)) is called thesmoothing spline esti-
mator. This estimator fits a cubic polynomial in each interval between points. At
each point;, the curve and its first two derivatives are continuous (Reinsch 1967).

The smoothing parametarcontrols the amount of smoothing; that is, it controls the
trade-off between the goodness of fit to the data and the smoothness of the fit. You
select a smoothing parameteby specifying a constartin the formula

= (Q/10)%c

whereQ is the interquartile range of the explanatory variable. This formulation makes
cindependent of the units &.
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After choosing Curves:Spline , you specify a smoothing parameter selection

method in theSpline Fit dialog.

Figure 39.40.

SAS: Spline Fit

Spline Fit Dialog

The defaultMethod:GCV uses & value that minimizes the generalized cross val-

idation mean squared errdSEgcv ().

Figure 39.41 displays smoothing spline

estimates withc values of 0.0017 (the GCV value) and 15.2219 (DF=3). Use the
slider in the table to change tleevalue of the spline fit.

File Edit Analyze Tables Graphs Curves Wars Help

L

12
d 164
°
i
1
T
Looe
e
6
160 200 300 400
|. depth
|i Spline Fit
Curve Hethod C ¥alue Smoothing Parvameter DF R-Square MSE MSE{GCY)
GLY 6.0017 13.8438 20. 446 0.8828  0.5425 0.7287
DF 15.2219 121774.809 3.014 0.6976  1.0831 1.1255
~ o~
Figure 39.41. Smoothing Spline Estimates
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Nonparametric Kernel Smoother

A kernel estimatouses an explicitly defined set of weights at each pototproduce
the estimate at. The kernel estimator of has the form

n
@) = Wi, zi; My
i=1
where Wz, z;; \) is the weight function that depends on the smoothing parameter
The weights are derived from a single function that is independent of the design

N Ko(B5Y)

Wz, zi; N)

where K is a kernel function and is the bandwidth or smoothing parameter. The
weights are nonnegative and sum to 1.

Symmetric probability density functions commonly used as kernel functions are

e Normal Ky(t) = \/Lz—w exp(—t2/2) for —oo <t < 00
) 1—|¢] for |t| <1
e Triangular Ky(t)=
0 otherwise
, 3(1-12) for |t| <1
e Quadratic  Ky(t) =
0 otherwise

You select a bandwidth for each kernel estimator by specifyiegn the formula
1
A=n"5Qc

whereQ is the sample interquartile range of the explanatory variablerargdthe
sample size. This formulation makesdependent of the units of.

SAS/INSIGHT software divides the range of the explanatory variable into 128 evenly
spaced intervals, then approximates the data on this grid and uses the fast Fourier
transformation (Silverman 1986) to estimate the kernel fit on this grid. For a data
point x; that lies between two grid points, a linear interpolation is used to compute
the predicted value. A small value af(relative to the width of the interval) may give
unstable estimates of the kernel fit.
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Chapter 39. Fit Curves

After choosingCurves:Kernel , you specify a kernel and smoothing parameter se-
lection method in th&ernel Fit dialog.

SAS: Kernel Fit

Figure 39.42.  Kernel Fit Dialog

The defaultWeight:Normal uses a normal weight, arddethod:GCV uses ac
value that minimize3ISEqgcv (). Figure 39.43 illustrates normal kernel estimates
with c values of 0.0944 (the GCV value) and 0.7546 (DF=3). Use the slider to change
thec value of the kernel fit.

File Edit @Analyze Tables Graphs Curves  Mars  Help
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|. depth
|i Kernel Fit
Curve Height | Hethod C Value Bandwidth DF R-Square HSE MSE{ GCY )
Hormal @ GCV 0.0944 7.8576 20.759 6.8820 6.5493 06.7417
Hormal : DF @.7546 B 62.8230 3.087 B_6480 1.2686 1.3899
¥i
~ —

Figure 39.43. Kernel Estimates
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Nonparametric Local Polynomial Smoother

The kernel estimator fits a local mean at each priabd thus cannot even estimate

a line without bias (Cleveland, Cleveland, Devlin and Grosse 1988). An estimator
based on locally-weighted regression lines or locally-weighted quadratic polynomials
may give more satisfactory results.

A local polynomial smoother fits a locally-weighted regression at each padiot
produce the estimate &t Different types of regression and weight functions are used
in the estimation.

SAS/INSIGHT software provides the following three types of regression:

e Mean a locally-weighted mean
e Linear a locally-weighted regression line
e (Quadratic a locally-weighted quadratic polynomial regression

The weights are derived from a single function that is independent of the design

r — Ty

W (235 0i) = Ko(“
2

)

whereKj is a weight function and,; is the local bandwidth at;.

SAS/INSIGHT software uses the following weight functions:

exp(—t2/2 for [t| < 3.5
e Normal Ky(t) = p(~#/2) <
0 otherwise
. 1— |t for |¢t] <1
e Triangular Ky(t) =
0 otherwise
_ 1— ¢t for [t| <1
e Quadratic Ky(t) =
0 otherwise
) (1—[t*)3 for t| <1
o Tri—Cube Ky(t)=
0 otherwise

T Note: The normal weight function is proportional to a truncated normal density
function.

SAS/INSIGHT software provides two methods to compute the local bandwidth

The loess estimator (Cleveland 1979; Cleveland, Devlin and Grosse 1988) evaluates
A\; based on the furthest distance fragnmearest neighbors. A fixed bandwidth local
polynomial estimator uses a constant bandwitt eache;.

For a loess estimator, you seléatearest neighbors by specifying a positive constant
a. Fora < 1, k is an truncated to an integer, whengs the number of observations.
Fora > 1, k is set ton.
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The local bandwidth\; is then computed as

\ d(k)(m,) for0<a<1
' ad(n) (:L‘Z) fora >1
whered;)(z;) is the furthest distance frony to its k£ nearest neighbors.

1 Note: Fora < 1, the local bandwidth\; is a function ofk and thus a step function
of a.

For a fixed bandwidth local polynomial estimator, you select a bandwidiyr spec-
ifying cin the formula

A=n"% Qc
whereQ is the sample interquartile range of the explanatory variablerargdthe
sample size. This formulation make#dependent of the units of.

1 Note: A fixed bandwidth local mean estimator is equivalent to a kernel smoother.

By default, SAS/INSIGHT software divides the range of the explanatory variable into
128 evenly spaced intervals, then it fits locally-weighted regressions on this grid. A
small value oft or  may give the local polynomial fit to the data points near the grid
points only and may not apply to the remaining points.

For a data point; that lies between two grid poinig;; < x; < z;;1], the predicted
value is the weighted average of the two predicted values at the two nearest grid
points:

(1= dij)gigj) + diditjia)
wherey; ;) andy;; 1) are the predicted values at the two nearest grid points and

4o T Ty
Y wij — @)

A similar algorithm is used to compute the degrees of freedom of a local polynomial
estimatedf, =traceH,). Theith diagonal element of the matrH, is

(1 = dij)hijy + dijhigj )

whereh;; andh;;, 1) are theith diagonal elements of the projection matrices of the
two regression fits.
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After choosingCurves:Loess from the menu, you specify a loess fit in theess
Fit dialog.

SAS: Loess Fit

Figure 39.44. Loess Fit Dialog

In the dialog, you can specify the number of intervals, the regression type, the
weight function, and the method for choosing the smoothing parameter. The default
Type:Linear uses a linear regressiolyeight:Tri-Cube uses a tri-cube weight
function, andMethod:GCV uses amx value that minimizedSEgcv(A).

Figure 39.45 illustrates loess estimates Wigtpe=Linear , Weight=Tri-Cube , and
a values of 0.0930 (the GCV value) and 0.7795 (DF=3). Use the slider to change the
a value of the loess fit.

File Edit Analyze Tables Graphs Curves VYars Help
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160 200 360 400
|. depth
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Linear: Tri-Cube 128 | GOV 0.093 R0 = 7 23.005 0.8927 0.5193 0.7289
———— | Linear| Tri-Cube 128 | OF 0.7795 R0 = 62 3.002 0.6984 1.0800 1.1221

o
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Figure 39.45. Loess Estimates
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The loess degrees of freedom is a function of local bandwigltH-ora < 1, A; is
a step function obx and thus the loesdf is a step function o&. The convergence
criterion applies only when the specifiell is less thandf ,—,), the loessdf for
a = 1. When the specifiedfis greater thanif (,_,), SAS/INSIGHT software uses
the o value that has itdf closest to the specifiedf.

Similarly, you can choos€urves:Local Polynomial, Fixed Bandwidth from
the menu to specify a fixed bandwidth local polynomial fit.

SAS: Local Polynomial Fit, Fixed Bandwidth

Figure 39.46. Fixed Bandwidth Local Polynomial Fit Dialog

Figure 39.47 Iillustrates fixed bandwidth local polynomial estimates with
Type=Linear , Weight=Tri-Cube , andc values of 0.2026 (the GCV value) and
2.6505 (DF=3). Use the slider to change thealue of the local polynomial fit.
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————— ! Linear: Tri-Cube 128 | DF 2.6505 Wl 0= 220_6660 3.013 0.6950 1.6923 1.1351

|

=]

=

Figure 39.47.  Fixed Bandwidth Local Polynomial Estimates
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Output Variables

Output variables based on the model you fit can be saved in the data window. From
the data window, you can store these variables in a SAS data set. This enables you,
for example, to perform additional analyses using SAS/STAT software.

Axis variables in residual plots are automatically saved in the data window used to
create the analysis. For example, when you create a residual-by-predicted plot, resid-
ual and predicted variables are always generated. These variables are deleted when
you close the analysis window.

You can save variables permanently by using the fit output options dialog Yatke
menu shown in Figure 39.48. Such variables remain stored in the data window after
you close the analysis window.

... Curves [ Vars| Help |

Hat Diag

Predicted

Linear Predictor

Predicted Surfaces 0
Predicted Curves O

Residual

Residual Normal Quantile
Standardized Residual
Studentized Residual
Generalized Residuals O Deviance Residual

Partial Leverage X Standardized Deviance Residual
Partial Leverage Y Studentized Deviance Residual
Cook's D Pearson Residual

Dffits Standardized Pearson Residual
Covratio Studentized Pearson Residual
Dfbetas Anscombe Residual

Standardized Anscombe Residual
Studentized Anscombe Residual

Figure 39.48. Vars Menu

SAS/INSIGHT software provides predicted and residual variables, a linear predictor,
a residual normal quantile variable, partial leverxgandY variables, and influence
diagnostic variables.

Influence diagnosticare measures of the influence of each observation on the pa-
rameter estimates. These diagnostics include the hat diagonal values, standardized
residuals, and studentized residuals. Cook’s D, Dffits, Covratio, and Dfbetas also
measure the effect of deleting observations.

Some influence diagnostics require a refit of the model after excluding each obser-
vation. For generalized linear models, numerical iterations are used for the fits, and
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the process can be expensive. One-step methods are used to approximate these diag-
nostics after each fit. The process involves doing one iteration of the fit without the
excluded observation, starting with the final parameter estimates and weights from
the complete fit.

You can also create generalized residuals such as Pearson, deviance, and Anscombe
residuals with generalized linear models. These residuals are applicable to the non-
normal response distributions.

Generated variables use the naming conventions described later in this section. If a
resulting variable name has more than 32 characters, only the first 32 characters are
used. Generated variables also follow the same numbering convention as the analysis
window when you create more than one fit analysis from the same data window. If
the generated variable name is longer than 32 characters, the original variable name
is truncated to the necessary length.

Hat Matrix Diagonal

Data points that are far from the centroid of tikespace are potentially influential. A
measure of the distance between a data peintand the centroid of th&-space is
the data point’s associated diagonal elemgnh the hat matrix. Belsley, Kuh, and
Welsch (1980) propose a cutoff 2p/n for the diagonal elements of the hat matrix,
wheren is the number of observations used to fit the model, gl the number
of parameters in the model. Observations witlvalues above this cutoff should be
investigated.

For linear models, the hat matrix
H=XX'X) X'

can be used as a projection matrix. The hat matrix diagonal variable contains the
diagonal elements of the hat matrix

h; = xi(X'X)_lx;
For generalized linear models, an approximate projection matrix is given by
H=W/2X(X'WX) 'X'W'/?2

whereW = W, when the full Hessian is used aW = W, when Fisher’s scoring
method is used.

The values oh; are stored in a variable namétl yname , whereyname is the
response variable name.
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Predicted Values

After the model has been fit, the predicted values are calculated from the estimated
regression equation.

For linear models, the predicted mean vector ofrtha@servation responses is
fi = Xb = Hy
i = x;b

For generalized linear models,
fii = g~ (noi +xib)

whereny; is the offset for théth observation.

The predicted values are stored in variables nafeginame for each response
variable, wherg/name is the response variable name.

Linear Predictor

Thelinear predictorvalues are the linear function valuegp, in the predicted val-
ues. The linear predictor values are stored in variables naiRegname for each
response variable, whey@ame is the response variable name.

Residuals
Theresidualsare calculated as actual response minus predicted value,
Ti = Yi — [

The residuals are stored in variables narRed/name for each response variable,
whereyname is the response variable name.

Residual Normal Quantiles

Thenormal quantileof theith ordered residual is computed as
; — 0.375
R
( n +0.25 )

where® 1 is the inverse standard cumulative normal distribution.
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If the residuals are normally distributed, the points on the residual normal quantile-
guantile plot should lie approximately on a straight line with residual mean as the

intercept and residual standard deviation as the slope.

The normal quantiles of the residuals are stored in variables n®&Negname for
each response variable, whemame is the response variable name.

Predicted Surfaces

You can output predicted values from fitted kernel and thin-plate smoothing spline

surfaces by choosingars:Predicted Surfaces from the menu.

... Curves | Vars Help |

Hat Diag

Predicted

Linear Predictor
Predicted Surfaces
Predicted Curves

J Spline...
Kernel...

O

Residual

Residual Normal Quantile
Standardized Residual
Studentized Residual

Generalized Residuals

0

Partial Leverage X
Partial Leverage Y

Cook’s D
Dffits
Covratio
Dfbetas

Figure 39.49.

Predicted Surfaces Menu

For predicted values from a spline or kernel fit, you specify the surface fit in the

dialogs, as shown in Figure 39.28 or Figure 39.30, respectively.

The predicted values for each response variable are stored in variables named
PS_yname for spline andPK_yname for kernel, whereyname is the response

variable name.
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Predicted Curves

You can output predicted values from fitted curves by chooMars:Predicted
Curves from the menu.

.. Curves | Vars Help |

Hat Diag

Predicted

Linear Predictor
Predicted Surfaces
Predicted Curves

[}

Residual

Residual Normal Quantile
Standardized Residual
Studentized Residual

Generalized Residuals

Polynomial...

Spline...

Kernel...

Loess...

Local Polynomial, Fixed Bandwidth...

O

Partial Leverage X
Partial Leverage Y

Cook’'s D
Dffits
Covratio
Dfbetas

Figure 39.50.

Predicted Curves Menu

After choosingVars:Predicted Curves:Polynomial  from the menu, you can
specify the degree of polynomial in tiolynomial Fit dialog.

SAS: Polynomial Fit

[ @ ] [Gaen

Figure 39.51.

Predicted Polynomial Fit Dialog

For predicted values from a spline, kernel, loess, or fixed bandwidth local polynomial
fit, you specify the curve fit in the dialogs, as shown in Figure 39.40, Figure 39.42,

Figure 39.44, or Figure 39.46, respectively.

The predicted values for each response variable are stored in variables named
PP_yname for polynomial, PS_yname for spline, PK_yname for kernel, and
PL_yname for loess and fixed bandwidth local polynomial, whgreame is the
response variable name.
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Standardized and Studentized Residuals

For linear models, the variance of the resideab
Var(r;) = 0%(1 — hy)
and an estimate of the standard error of the residual is

STDERR(r;) =sv/1—hy

Thus, the residuals can be modified to better detect unusual observations. The ratio
of the residual to its standard error, called gt@endardized residuals

T4
Ter == ——————
. SV 1-— hi
If the residual is standardized with an independent estimate? ofhe result has a
Student'st distribution if the data satisfy the normality assumption. If you estimate
a2 by s%i), the estimate of? obtained after deleting thigh observation, the result is
a studentized residual:

£}

Tty =

8(i) 1—h;

Observations withr;;| > 2 may deserve investigation.

For generalized linear models, the standardized and studentized residuals are

Tsi =

whered is the estimate of the dispersion parameﬁtﬂandqﬂ(i) is a one-step approxi-
mation of¢ after excluding théth observation.

The standardized residuals are stored in variables nd&%ed/name and the Stu-
dentized residuals are stored in variables naR&dyname for each response vari-
able, wheregyname is the response variable name.
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Deviance Residuals

Thedeviance residuabk the measure of deviance contributed from each observation
and is given by

rpi = sign(r;) \/E1

whered; is the individual deviance contribution.

The deviance residuals can be used to check the model fit at each observation for gen-
eralized linear models. These residuals are stored in variables rRBegname
for each response variable, whergame is the response variable name.

The standardized and studentized deviance residuals are

TDi
'Dsi = —
(b(l - hz)
TDi
TDti = ———
¢@iy (1 — hy)

The standardized deviance residuals are stored in variables iiD&dyname and
the studentized deviance residuals are stored in variables nRD&dyname for
each response variable, whgmreame is the response variable name.

Pearson Residuals

The Pearson residuais the raw residual divided by the square root of the variance
function V().

The Pearson residual is the individual contribution to the PeaySatatistic. For a
binomial distribution withm; trials in theith observation, it is defined as

For other distributions, the Pearson residual is defined as

rpi = —F/———
V()

The Pearson residuals can be used to check the model fit at each observation for gen-
eralized linear models. These residuals are stored in variables fafmeghame
for each response variable, whergame is the response variable name.
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The standardized and studentized Pearson residuals are

Tpi
TPsi = N
¢(1 - hz)
rp;
TPt = ——————
¢y (L — hy)

The standardized Pearson residuals are stored in variables rip$ed/name and
the studentized Pearson residuals are stored in variables naRiedyname for
each response variable, whemame is the response variable name.

Anscombe Residuals

For nonnormal response distributions in generalized linear models, the distribution
of the Pearson residuals is often skewed. Anscombe proposed a residual using a
function A(y) in place ofy in the residual derivation (Anscombe 1953, McCullagh
and Nelder 1989). The functioA(y) is chosen to make the distribution dfy) as

normal as possible and is given by

A = [ Vs

whereV (t) is the variance function.

For a binomial distribution withn; trials in the:th observation, th&nscombe resid-
ual is defined as

Alyi) — A(4i)

A=V )V ()

For other distributions, the Anscombe residual is defined as

Aly:) — Ali)
A'(fi)/V (4)

TAi =

whereA'(u) is the derivative ofA(u).
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For the response distributions used in the fit analysis, Anscombe residuals are

Normal TAi = Yi — Hi

Inverse Gaussian rai = (log(yi) — log(yi;))/fist/?

Gamma rai = 3((ys/ 1)/ = 1)

Poisson TA; = (yf/sﬂ A

Binomial rai = /m; (B(yi, 2, 2 ) B(fis; 3, 3)) — fig)) /8
whereB(z,a,b) = [; t*71(1 —t)b~1 dt

You can save Anscombe residuals to your data set by usin@ulygut Variables
dialog, as shown in Figure 39.5, or thlars menu, as shown in Figure 39.48. These
residuals are stored in variables nanRA4_yname for each response variable,
whereyname is the response variable name.

The standardized and studentized Anscombe residuals are

T Ai
TAsi = —F——
P(1 — hy;)
T Ai
TAti =
Gy (1 — hy)

whereg is the estimate of the dispersion parameﬁt;eandé(i) iS a one-step approxi-
mation of¢ after excluding théth observation.

The standardized Anscombe residuals are stored in variables rRAdyname
and the studentized Anscombe residuals are stored in variables RAfiegname
for each response variable, whergame is the response variable name.

Partial Leverage Variables

Thepartial leverage output variableare variables used in the partial leverage plots.

For each intervaK variable, the corresponding partial leverageariable is named
X_xname, where xname is the X variable name. For each pair of and X
variables, the corresponding partial leveraggariable is namegname _xname,
whereyname is theY variable name angname is theX variable name. Up to the

first three characters of the response variable name are used to create the new variable
name.
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Cook’'s D

Cook’s Dmeasures the change in the parameter estimates caused by deleting each
observation. For linear models,

1
D; = p(b — b)) (X'X)(b — b(;))

whereb;) is the vector of parameter estimates obtained after deletingtthabser-
vation.

Cook (1977) suggests comparify to theF distribution withp andn — p degrees
of freedom.

For generalized linear models,

1
D; = —(b—b;)) (X'WX)(b — b;)
po

whereW = W, when the full Hessian is used aWl = W, when Fisher’s scoring
method is used.

Cook’s D statistics are stored in variables nared/name for each response vari-
able, whergyname is the response variable name.

Dffits

The Dffits statisticis a scaled measure of the change in the predicted value féahthe
observation. For linear models,

Hi — [
F="10 0
S(Z) vV hz

wheref ;) is theith value predicted without using thith observation.

Large absolute values df; indicate influential observations. A general cutoff to
consider is 2; a recommended size-adjusted cut@fi®/n.

For generalized linear models,

F = Hi = B()

(i) h

The Dffits statistics are stored in variables narfregname for each response vari-
able, whergyname is the response variable name.
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Covratio

Covratiomeasures the effect of observations on the covariance matrix of the param-
eter estimates. For linear models,

©)

o |58 (XX @)
T 2(XX)

whereX; is theX matrix without theith observation.

Values ofC; near 1 indicate that the observation has little effect on the precision of the
estimates. Observations witli; — 1|>3p/n suggest a need for further investigation.

For generalized linear models,

~

_ |66) (X Wey X))
T XWX)Y

whereW(i) is the W matrix without theith observation W = W, when the full
Hessian is used, al& = W, when Fisher’s scoring method is used.

The Covratio statistics are stored in variables naf@egname for each response
variable, wherg/name is the response variable name.

Dfbetas

Dfbetasis a normalized measure of the effect of observations on the estimated regres-
sion coefficients. For linear models,

bj — bj()

e
s/ (X' X)j;

Jy?

Where(X’X)j_j1 is thejth diagonal element fX'X) 1. Values ofB;; > 2 indicate
observations that are influential in estimating a given parameter. A recommended
size-adjusted cutoff i8//n.

For generalized linear models,
bj — ;)

3= T

(i) (X'WX)

-1
73

whereW = W, when the full Hessian is used ad¥ = W, when the Fisher’s
scoring method is used.

The dfbetas statistics are stored in variables naBythme _xname for each pair

of response and explanatory variables, wharame is the response variable name
andxname is the explanatory variable name. Up to the first two characters of the
response variable name are used to create the new variable name.
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Weighted Analyses

If the errorse; do not have a common variance in the regression model

yi = f(xi) + i
a weighted analysis may be appropriate. The observation weights are the values of
the Weight variable you specified.

In parametric regression, the linear model is given by
y=XB+e¢€

Let W be ann x n diagonal matrix consisting of weights; > 0,w, > 0, ..., and

w, > 0 for the observations, and I8'/2 be am x n diagonal matrix with diagonal

1/2 1/2 1/2
elementswl/ ,w2/ ,...,andwn/.

The weighted fit analysis is equivalent to the usual (unweighted) fit analysis of the
transformed model

wherey* = W1/2y, X* = W1/2X, ande* = W1/2e.

The estimate of is then given by
b, = (X'WX)"'X'Wy

For nonparametric weighted regression, the minimizing criterion in spline estimation
is given by

S0) = s Sl = AP A [ (R @
=10 =1 T

In kernel estimation, individual weights are

w; Ko (*57)

Wiz, zi;N) = —
S Y N ey

For generalized linear models, the functigifiy) = ¢/(m;w;) for binomial distribu-

tion with m; trials in theith observationg;(¢) = ¢/w; for other distributions. The
function a;(¢) is used to compute the likelihood function and the diagonal matrices
W, andW,.
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The individual deviance contributiody is obtained by multiplying the weight; by
the unweighted deviance contribution. The deviance is the sum of these weighted
deviance contributions.

The Pearson? statistic is

X —szmz Yi ,Ufz /V(Hz)

for binomial distribution withm; trials in theith observation,

X —sz Nz /V(Nz)

for other distributions.
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