
1193

A P P E N D I X

3
DATA Step Debugger

Introduction 1194
Definition: What is Debugging? 1194

Definition: The DATA Step Debugger 1194

Basic Usage 1195

How a Debugger Session Works 1195

Using the Windows 1195
Entering Commands 1195

Working with Expressions 1196

Assigning Commands to Function Keys 1196

Advanced Usage: Using the Macro Facility with the Debugger 1196

Using Macros as Debugging Tools 1196

Creating Customized Debugging Commands with Macros 1196
Debugging a DATA Step Generated by a Macro 1197

Examples 1197

Example 1: Debugging a Simple DATA Step 1197

Discovering a Problem 1197

Using the DEBUG Option 1198
Examining Data Values after the First Iteration 1198

Examining Data Values after the Second Iteration 1199

Ending the Debugger 1200

Correcting the DATA Step 1200

Example 2: Working with Formats 1201
Example 3: Debugging DO Loops 1204

Example 4: Examining Formatted Values of Variables 1204

Commands 1205

List of Debugger Commands 1205

Debugger Commands by Category 1205

Dictionary 1206
BREAK 1206

CALCULATE 1208

DELETE 1209

DESCRIBE 1210

ENTER 1211
EXAMINE 1211

GO 1213

HELP 1214

JUMP 1214

LIST 1215
QUIT 1216

SET 1217

STEP 1218

1194 Introduction 4 Appendix 3

SWAP 1218
TRACE 1219

WATCH 1220

Introduction

Definition: What is Debugging?
Debugging is the process of removing logic errors from a program. Unlike syntax

errors, logic errors do not stop a program from running. Instead, they cause the
program to produce unexpected results. For example, if you create a DATA step that
keeps track of inventory, and your program shows that you are out of stock but your
warehouse is full, you have a logic error in your program.

To debug a DATA step, you could

� copy a few lines of the step into another DATA step, execute it, and print the
results of those statements

� insert PUT statements at selected places in the DATA step, submit the step, and
examine the values that are displayed in the SAS log.

� use the DATA step debugger.

While the SAS log can help you identify data errors, the DATA step debugger offers
you an easier, interactive way to identify logic errors, and sometimes data errors, in
DATA steps.

Definition: The DATA Step Debugger
The DATA step debugger is part of base SAS software and consists of windows and a

group of commands. By issuing commands, you can execute DATA step statements one
by one and pause to display the resulting variable values in a window. By observing the
results that are displayed, you can determine where the logic error lies. Because the
debugger is interactive, you can repeat the process of issuing commands and observing
the results as many times as needed in a single debugging session. To invoke the
debugger, add the DEBUG option to the DATA statement and execute the program.

The DATA step debugger enables you to perform the following tasks:

� execute statements one by one or in groups

� bypass execution of one or more statements

� suspend execution at selected statements, either in each iteration of DATA step
statements or on a condition you specify, and resume execution on command

� monitor the values of selected variables and suspend execution at the point a
value changes

� display the values of variables and assign new values to them

� display the attributes of variables

� receive help for individual debugger commands

� assign debugger commands to function keys

� use the macro facility to generate customized debugger commands.

DATA Step Debugger 4 Entering Commands 1195

Basic Usage

How a Debugger Session Works
When you submit a DATA step with the DEBUG option, SAS compiles the step,

displays the debugger windows, and pauses until you enter a debugger command to
begin execution. If you begin execution with the GO command, for example, SAS
executes each statement in the DATA step. To suspend execution at a particular line in
the DATA step, use the BREAK command to set breakpoints at statements you select.
Then issue the GO command. The GO command starts or resumes execution until the
breakpoint is reached.

To execute the DATA step one statement at a time or a few statements at a time, use
the STEP command. By default, the STEP command is mapped to the ENTER key.

In a debugging session, statements in a DATA step can iterate as many times as they
would outside the debugging session. When the last iteration has finished, a message
appears in the DEBUGGER LOG window.

You cannot restart DATA step execution in a debugging session after the DATA step
finishes executing. You must resubmit the DATA step in your SAS session. However,
you can examine the final values of variables after execution has ended.

You can debug only one DATA step at a time. You can use the debugger only with a
DATA step, and not with a PROC step.

Using the Windows
The DATA step debugger contains two primary windows, the DEBUGGER LOG and

the DEBUGGER SOURCE windows. The windows appear when you execute a DATA
step with the DEBUG option.

The DEBUGGER LOG window records the debugger commands you issue and their
results. The last line is the debugger command line, where you issue debugger
commands. The debugger command line is marked with a greater than (>) prompt.

The DEBUGGER SOURCE window contains the SAS statements that comprise the
DATA step you are debugging. The window enables you to view your position in the
DATA step as you debug your program. In the window, the SAS statements have the
same line numbers as they do in the SAS log.

You can enter windowing environment commands on the window command lines.
You can also execute commands by using function keys.

Entering Commands
Enter DATA step debugger commands on the debugger command line. For a list of

commands and their descriptions, refer to “Debugger Commands by Category” on page
1205. Follow these rules when you enter a command:

� A command can occupy only one line (except for a DO group).

� A DO group can extend over more than one line.

� To enter multiple commands, separate the commands with semicolons:

examine _all_; set letter=’bill’; examine letter

1196 Working with Expressions 4 Appendix 3

Working with Expressions
All SAS operators that are described in Appendix 2, “SAS Operators,” on page 1189,

are valid in debugger expressions. Debugger expressions cannot contain functions.
A debugger expression must fit on one line. You cannot continue an expression on

another line.

Assigning Commands to Function Keys
To assign debugger commands to function keys, open the Keys window. Position your

cursor in the Definitions column of the function key you want to assign, and begin the
command with the term DSD. To assign more than one command to a function key,
enclose the commands (separated by semicolons) in quotation marks. Be sure to save
your changes. These examples show commands assigned to function keys:

�

dsd step3

�

dsd ’examine cost saleprice; go 120;’

Advanced Usage: Using the Macro Facility with the Debugger
You can use the SAS macro facility with the debugger to invoke macros from the

DEBUGGER LOG command line. You can also define macros and use macro program
statements, such as %LET, on the debugger command line.

Using Macros as Debugging Tools
Macros are useful for storing a series of debugger commands. Executing the macro at

the DEBUGGER LOG command line then generates the entire series of debugger
commands. You can also use macros with parameters to build different series of
debugger commands based on various conditions.

Creating Customized Debugging Commands with Macros
You can create a customized debugging command by defining a macro on the

DEBUGGER LOG command line. Then invoke the macro from the command line. For
example, to examine the variable COST, to execute five statements, and then to
examine the variable DURATION, define the following macro (in this case the macro is
called EC). Note that the example uses the alias for the EXAMINE command.

%macro ec; ex cost; step 5; ex duration; %mend ec;

To issue the commands, invoke macro EC from the DEBUGGER LOG command line:

%ec

The DEBUGGER LOG displays the value of COST, executes the next five statements,
and then displays the value of DURATION.

DATA Step Debugger 4 Example 1: Debugging a Simple DATA Step 1197

Note: Defining a macro on the DEBUGGER LOG command line allows you to use
the macro only during the current debugging session, because the macro is not
permanently stored. To create a permanently stored macro, use the Program Editor. 4

Debugging a DATA Step Generated by a Macro
You can use a macro to generate a DATA step, but debugging a DATA step that is

generated by a macro can be difficult. The SAS log displays a copy of the macro, but not
the DATA step that the macro generated. If you use the DEBUG option at this point,
the text that the macro generates appears as a continuous stream to the debugger. As a
result, there are no line breaks where execution can pause.

To debug a DATA step that is generated by a macro, use the following steps:

1 Use the MPRINT and MFILE system options when you execute your program.
2 Assign the fileref MPRINT to an existing external file. MFILE routes the program

output to the external file. Note that if you rerun your program, current output
appends to the previous output in your file.

3 Invoke the macro from a SAS session.
4 In the Program Editor window, issue the INCLUDE command or use the File

menu to open your external file.
5 Add the DEBUG option to the DATA statement and begin a debugging session.
6 When you locate the logic error, correct the portion of the macro that generated

that statement or statements.

Examples

Example 1: Debugging a Simple DATA Step
This example shows how to debug a DATA step when output is missing.

Discovering a Problem
This program creates information about a travel tour group. The data files contain

two types of records. One type contains the tour code, and the other type contains
customer information. The program creates a report listing tour number, name, age,
and sex for each customer.

/* first execution */
data tours (drop=type);

input @1 type $ @;
if type=’H’ then do;

input @3 Tour $20.;
return;
end;

else if type=’P’ then do;
input @3 Name $10. Age 2. +1 Sex $1.;
output;
end;

datalines;
H Tour 101

1198 Example 1: Debugging a Simple DATA Step 4 Appendix 3

P Mary E 21 F
P George S 45 M
P Susan K 3 F
H Tour 102
P Adelle S 79 M
P Walter P 55 M
P Fran I 63 F
;

proc print data=tours;
title ’Tour List’;

run;

Tour List 1
Obs Tour Name Age Sex

1 Mary E 21 F
2 George S 45 M
3 Susan K 3 F
4 Adelle S 79 M
5 Walter P 55 M
6 Fran I 63 F

The program executes without error, but the output is unexpected. The output does not
contain values for the variable Tour. Viewing the SAS log will not help you debug the
program because the data are valid and no errors appear in the log. To help identify the
logic error, run the DATA step again using the DATA step debugger.

Using the DEBUG Option

To invoke the DATA step debugger, add the DEBUG option to the DATA statement
and resubmit the DATA step:

data tours (drop=type) / debug;

The following display shows the resulting two debugger windows.

The upper window is the DEBUGGER LOG window. Issue debugger commands in
this window by typing commands on the debugger command line (the bottom line,
marked by a >). The debugger displays the command and results in the upper part of
the window.

The lower window is the DEBUGGER SOURCE window. It displays the DATA step
submitted with the DEBUG option. Each line in the DATA step is numbered with the
same line number used in the SAS log. One line appears in reverse video (or other
highlighting, depending on your monitor). DATA step execution pauses just before the
execution of the highlighted statement.

At the beginning of your debugging session, the first executable line after the DATA
statement is highlighted. This means that SAS has compiled the step and will begin to
execute the step at the top of the DATA step loop.

Examining Data Values after the First Iteration

To debug a DATA step, create a hypothesis about the logic error and test it by
examining the values of variables at various points in the program. For example, issue

DATA Step Debugger 4 Example 1: Debugging a Simple DATA Step 1199

the EXAMINE command from the debugger command line to display the values of all
variables in the program data vector before execution begins:

examine _all_

Note: Most debugger commands have abbreviations, and you can assign commands
to function keys. The examples in this section, however, show the full command name
to help you find the commands in “Debugger Commands by Category” on page 1205. 4

When you press ENTER, the following display appears:

The values of all variables appear in the DEBUGGER LOG window. SAS has
compiled, but not yet executed, the INPUT statement.

Use the STEP command to execute the DATA step statements one at a time. By
default, the STEP command is assigned to the ENTER key. Press ENTER repeatedly to
step through the first iteration of the DATA step, and stop when the RETURN
statement in the program is highlighted in the DEBUGGER SOURCE window.

Because Tour information was missing in the program output, enter the EXAMINE
command to view the value of the variable Tour for the first iteration of the DATA step.

examine tour

The following display shows the results:

The variable Tour contains the value Tour 101, showing you that Tour was read. The
first iteration of the DATA step worked as intended. Press ENTER to reach the top of
the DATA step.

Examining Data Values after the Second Iteration
You can use the BREAK command (also known as setting a breakpoint) to suspend

DATA step execution at a particular line you designate. In this example, suspend
execution before executing the ELSE statement by setting a breakpoint at line 7.

break 7

When you press ENTER, an exclamation point appears at line 7 in the DEBUGGER
SOURCE window to mark the breakpoint:

Execute the GO command to continue DATA step execution until it reaches the
breakpoint (in this case, line 7):

go

The following display shows the result:

SAS suspended execution just before the ELSE statement in line 7. Examine the
values of all the variables to see their status at this point.

examine _all_

The following display shows the values:

You expect to see a value for Tour, but it does not appear. The program data vector
gets reset to missing values at the beginning of each iteration and therefore does not

1200 Example 1: Debugging a Simple DATA Step 4 Appendix 3

retain the value of Tour. To solve the logic problem, you need to include a RETAIN
statement in the SAS program.

Ending the Debugger
To end the debugging session, issue the QUIT command on the debugger command

line:

quit

The debugging windows disappear, and the original SAS session resumes.

Correcting the DATA Step
Correct the original program by adding the RETAIN statement. Delete the DEBUG

option from the DATA step, and resubmit the program:

/* corrected version */
data tours (drop=type);

retain Tour;
input @1 type $ @;
if type=’H’ then do;

input @3 Tour $20.;
return;
end;

else if type=’P’ then do;
input @3 Name $10. Age 2. +1 Sex $1.;
output;
end;

datalines;
H Tour 101
P Mary E 21 F
P George S 45 M
P Susan K 3 F
H Tour 102
P Adelle S 79 M
P Walter P 55 M
P Fran I 63 F
;

run;

proc print;
title ’Tour List’;

run;

The values for Tour now appear in the output:

DATA Step Debugger 4 Example 2: Working with Formats 1201

Tour List 1
Obs Tour Name Age Sex

1 Tour 101 Mary E 21 F
2 Tour 101 George S 45 M
3 Tour 101 Susan K 3 F
4 Tour 102 Adelle S 79 M
5 Tour 102 Walter P 55 M
6 Tour 102 Fran I 63 F

Example 2: Working with Formats
This example shows how to debug a program when you use format statements to

format dates. The following program creates a report that lists travel tour dates for
specific countries.

options yearcutoff=1920;

data tours;
length Country $ 10;
input Country $10. Start : mmddyy. End : mmddyy.;
Duration=end-start;

datalines;
Italy 033000 041300
Brazil 021900 022800
Japan 052200 061500
Venezuela 110300 11800
Australia 122100 011501
;

proc print data=tours;
format start end date9.;
title ’Tour Duration’;

run;

Tour Duration 1

Obs Country Start End Duration

1 Italy 30MAR2000 13APR2000 14
2 Brazil 19FEB2000 28FEB2000 9
3 Japan 22MAY2000 15JUN2000 24
4 Venezuela 03NOV2000 18JAN2000 -290
5 Australia 21DEC2000 15JAN2001 25

The value of Duration for the tour to Venezuela shows a negative number, -290 days.
To help identify the error, run the DATA step again using the DATA step debugger. SAS
displays the following debugger windows:

At the DEBUGGER LOG command line, issue the EXAMINE command to display
the values of all variables in the program data vector before execution begins:

1202 Example 2: Working with Formats 4 Appendix 3

examine _all_

Initial values of all variables appear in the DEBUGGER LOG window. SAS has not
yet executed the INPUT statement.

Press ENTER to issue the STEP command. SAS executes the INPUT statement, and
the assignment statement is now highlighted.

Issue the EXAMINE command to display the current value of all variables:

examine _all_

The following display shows the results:

Because a problem exists with the Venezuela tour, suspend execution before the
assignment statement when the value of Country equals Venezuela. Set a breakpoint to
do this:

break 4 when country=’Venezuela’

Execute the GO command to resume program execution:

go

SAS stops execution when the country name is Venezuela. You can examine Start
and End tour dates for the Venezuela trip. Because the assignment statement is
highlighted (indicating that SAS has not yet executed that statement), there will be no
value for Duration.

Execute the EXAMINE command to view the value of the variables after execution:

examine _all_

The following display shows the results:

To view formatted SAS dates, issue the EXAMINE command using the DATEw.
format:

examine start date7. end date7.

The following display shows the results:

Because the tour ends on November 18, 2000, and not on January 18, 2000, there is
an error in the variable End. Examine the source data in the program and notice that
the value for End has a typographical error. By using the SET command, you can
temporarily set the value of End to November 18 to see if you get the anticipated result.
Issue the SET command using the DDMMMYYw. format:

set end=’18nov00’d

Press ENTER to issue the STEP command and execute the assignment statement.
Issue the EXAMINE command to view the tour date and Duration fields:

examine start date7. end date7. duration

The following display shows the results:

DATA Step Debugger 4 Example 2: Working with Formats 1203

The Start, End, and Duration fields contain correct data.
End the debugging session by issuing the QUIT command on the DEBUGGER LOG

command line. Correct the original data in the SAS program, delete the DEBUG option,
and resubmit the program.

/* corrected version */
options yearcutoff=1920;

data tours;
length Country $ 10;
input Country $10. Start : mmddyy. End : mmddyy.;
duration=end-start;

datalines;
Italy 033000 041300
Brazil 021900 022800
Japan 052200 061500
Venezuela 110300 111800
Australia 122100 011501
;

proc print data=tours;
format start end date9.;
title ’Tour Duration’;

run;

Tour Duration 1

Obs Country Start End duration

1 Italy 30MAR2000 13APR2000 14
2 Brazil 19FEB2000 28FEB2000 9
3 Japan 22MAY2000 15JUN2000 24
4 Venezuela 03NOV2000 18NOV2000 15
5 Australia 21DEC2000 15JAN2001 25

1204 Example 3: Debugging DO Loops 4 Appendix 3

Example 3: Debugging DO Loops
An iterative DO, DO WHILE, or DO UNTIL statement can iterate many times

during a single iteration of the DATA step. When you debug DO loops, you can examine
several iterations of the loop by using the AFTER option in the BREAK command. The
AFTER option requires a number that indicates how many times the loop will iterate
before it reaches the breakpoint. The BREAK command then suspends program
execution. For example, consider this data set:

data new / debug;
set old;
do i=1 to 20;

newtest=oldtest+i;
output;

end;
run;

To set a breakpoint at the assignment statement (line 4 in this example) after every
5 iterations of the DO loop, issue this command:

break 4 after 5

When you issue the GO commands, the debugger suspends execution when I has the
values of 5, 10, 15, and 20 in the DO loop iteration.

In an iterative DO loop, select a value for the AFTER option that can be divided
evenly into the number of iterations of the loop. For example, in this DATA step, 5 can
be evenly divided into 20. When the DO loop iterates the second time, I again has the
values of 5, 10, 15, and 20.

If you do not select a value that can be evenly divided (such as 3 in this example),
the AFTER option causes the debugger to suspend execution when I has the values of 3,
6, 9, 12, 15, and 18. When the DO loop iterates the second time, I has the values of 1, 4,
7, 10, 13, and 16.

Example 4: Examining Formatted Values of Variables
You can use a SAS format or a user-created format when you display a value with

the EXAMINE command. For example, assume the variable BEGIN contains a SAS
date value. To display the day of the week and date, use the SAS WEEKDATEw.
format with EXAMINE:

examine begin weekdate17.

When the value of BEGIN is 033001, the debugger displays

Sun, Mar 30, 2001

As another example, you can create a format named SIZE:

proc format;
value size 1-5=’small’

6-10=’medium’
11-high=’large’;

run;

To debug a DATA step that applies the format SIZE. to the variable STOCKNUM,
use the format with EXAMINE:

DATA Step Debugger 4 Debugger Commands by Category 1205

examine stocknum size.

When the value of STOCKNUM is 7, for example, the debugger displays

STOCKNUM = medium

Commands

List of Debugger Commands

BREAK JUMP

CALCULATE LIST

DELETE QUIT

DESCRIBE SET

ENTER STEP

EXAMINE SWAP

GO TRACE

HELP WATCH

Debugger Commands by Category

Table A3.1 Categories and Descriptions of Debugger Commands

Category DATA Step Debugger Description

Controlling Program
Execution

“GO” on page 1213 Starts or resumes execution of the DATA step

“JUMP” on page 1214 Restarts execution of a suspended program

“STEP” on page 1218 Executes statements one at a time in the active program

Controlling the Windows “HELP” on page 1214 Displays information about debugger commands

“SWAP” on page 1218 Switches control between the SOURCE window and the
LOG window

Manipulating DATA Step
Variables

“CALCULATE” on page
1208

Evaluates a debugger expression and displays the result

“DESCRIBE” on page 1210 Displays the attributes of one or more variables

“EXAMINE” on page 1211 Displays the value of one or more variables

“SET” on page 1217 Assigns a new value to a specified variable

Manipulating Debugging
Requests

“BREAK” on page 1206 Suspends program execution at an executable statement

1206 Dictionary 4 Appendix 3

“DELETE” on page 1209 Deletes breakpoints or the watch status of variables in
the DATA step

“LIST” on page 1215 Displays all occurrences of the item that is listed in the
argument

“TRACE” on page 1219 Controls whether the debugger displays a continuous
record of the DATA step execution

“WATCH” on page 1220 Suspends execution when the value of a specified
variable changes

Tailoring the Debugger “ENTER” on page 1211 Assigns one or more debugger commands to the ENTER
key

Terminating the Debugger “QUIT” on page 1216 Terminates a debugger session

Dictionary

BREAK

Suspends program execution at an executable statement

Category: Manipulating Debugging Requests

Alias: B

Syntax
BREAK location <AFTER count> <WHEN expression> <DO group >

Arguments

location
specifies where to set a breakpoint. Location must be one of these:

label a statement label. The breakpoint is set at the statement that
follows the label.

line-number the number of a program line at which to set a breakpoint.

* the current line.

AFTER count
honors the breakpoint each time the statement has been executed count times. The
counting is continuous. That is, when the AFTER option applies to a statement
inside a DO loop, the count continues from one iteration of the loop to the next. The
debugger does not reset the count value to 1 at the beginning of each iteration.

If a BREAK command contains both AFTER and WHEN, AFTER is evaluated
first. If the AFTER count is satisfied, the WHEN expression is evaluated.

Tip: The AFTER option is useful in debugging DO loops.

DATA Step Debugger 4 BREAK 1207

WHEN expression
honors a breakpoint when the expression is true.

DO group
is one or more debugger commands enclosed by a DO and an END statement. The
syntax of the DO group is

DO; command-1 < ... ; command-n; >END;

command
specifies a debugger command. Separate multiple commands by semicolons.

A DO group can span more than one line and can contain IF-THEN/ELSE
statements, as shown:

IF expression THEN command; <ELSE command;>
IF expression THEN DO group; <ELSE DO group;>

IF evaluates an expression. When the condition is true, the debugger command
or DO group in the THEN clause executes. An optional ELSE command gives an
alternative action if the condition is not true. You can use these arguments with IF:

expression
specifies a debugger expression. A nonzero, nonmissing result causes the
expression to be true. A result of zero or missing causes the expression to be
false.

command
specifies a single debugger command.

DO group
specifies a DO group.

Details
The BREAK command suspends execution of the DATA step at a specified statement.
Executing the BREAK command is called setting a breakpoint.

When the debugger detects a breakpoint, it
� checks the AFTER count value, if present, and suspends execution if count

breakpoint activations have been reached
� evaluates the WHEN expression, if present, and suspends execution if the

condition that is evaluated is true
� suspends execution if neither an AFTER nor a WHEN clause is present
� displays the line number at which execution is suspended
� executes any commands that are present in a DO group
� returns control to the user with a > prompt.

If a breakpoint is set at a source line that contains more than one statement, the
breakpoint applies to each statement on the source line. If a breakpoint is set at a line
that contains a macro invocation, the debugger breaks at each statement generated by
the macro.

Examples

� Set a breakpoint at line 5 in the current program:

1208 CALCULATE 4 Appendix 3

b 5

� Set a breakpoint at the statement after the statement label
eoflabel:

b eoflabel

� Set a breakpoint at line 45 that will be honored after every third execution of line
45:

b 45 after 3

� Set a breakpoint at line 45 that will be honored after every third execution of that
line only when the values of both DIVISOR and DIVIDEND are 0:

b 45 after 3
when (divisor=0 and dividend=0)

� Set a breakpoint at line 45 of the program and examine the values of variables
NAME and AGE:

b 45 do; ex name age; end;

� Set a breakpoint at line 15 of the program. If the value of DIVISOR is greater
than 3, execute STEP; otherwise, display the value of DIVIDEND.

b 15 do; if divisor>3 then st;
else ex dividend; end;

See Also

Commands:
“DELETE” on page 1209
“WATCH” on page 1220

CALCULATE
Evaluates a debugger expression and displays the result

Category: Manipulating DATA Step Variables

Syntax
CALC expression

Arguments

expression
specifies any debugger expression.
Restriction: Debugger expressions cannot contain functions.

Details
The CALCULATE command evaluates debugger expressions and displays the result.
The result must be numeric.

DATA Step Debugger 4 DELETE 1209

Examples

� Add 1.1, 1.2, 3.4 and multiply the result by 0.5:

calc (1.1+1.2+3.4)*0.5

� Calculate the sum of STARTAGE and DURATION:

calc startage+duration

� Calculate the values of the variable SALE minus the variable DOWNPAY and
then multiply the result by the value of the variable RATE. Divide that value by
12 and add 50:

calc (((sale-downpay)*rate)/12)+50

See Also
“Working with Expressions” on page 1196 for information on debugger expressions

DELETE

Deletes breakpoints or the watch status of variables in the DATA step

Category: Manipulating Debugging Requests
Alias: D

Syntax
DELETE BREAK location

DELETE WATCH variable(s) | _ALL_

Arguments

BREAK
deletes breakpoints.
Alias: B

location
specifies a breakpoint location to be deleted. Location can have one of these values:

ALL all current breakpoints in the DATA step.

label the statement after a statement label.

line-number the number of a program line.

* the breakpoint from the current line.

WATCH
deletes watched status of variables.
Alias: W

1210 DESCRIBE 4 Appendix 3

variable
names one or more watched variables for which the watch status is deleted.

ALL
specifies that the watch status is deleted for all watched variables.

Examples

� Delete the breakpoint at the statement label

eoflabel:

d b eoflabel

� Delete the watch status from the variable ABC in the current DATA step:

d w abc

See Also

Commands:

“BREAK” on page 1206

“WATCH” on page 1220

DESCRIBE

Displays the attributes of one or more variables

Category: Manipulating DATA Step Variables

Alias: DESC

Syntax
DESCRIBE variable(s) | _ALL_

Arguments

variable
identifies a DATA step variable.

ALL
indicates all variables that are defined in the DATA step.

Details
The DESCRIBE command displays the attributes of one or more specified variables.

DESCRIBE reports the name, type, and length of the variable, and, if present, the
informat, format, or variable label.

DATA Step Debugger 4 EXAMINE 1211

Examples

� Display the attributes of variable ADDRESS:

desc address

� Display the attributes of array element ARR{i + j}:

desc arr{i+j}

ENTER

Assigns one or more debugger commands to the ENTER key

Category: Tailoring the Debugger

Syntax
ENTER <command-1 <. . . ; command-n>>

Arguments

command
specifies a debugger command.
Default: STEP 1

Details
The ENTER command assigns one or more debugger commands to the ENTER key.
Assigning a new command to the ENTER key replaces the existing command
assignment. If you assign more than one command, separate the commands with
semicolons.

Examples

� Assign the command STEP 5 to the ENTER key:

enter st 5

� Assign the commands EXAMINE and DESCRIBE, both for the variable CITY, to
the ENTER key:

enter ex city; desc city

EXAMINE
Displays the value of one or more variables

1212 EXAMINE 4 Appendix 3

Category: Manipulating DATA Step Variables
Alias: E

Syntax
EXAMINE variable-1 <format-1> <. . . variable-n <format-n>>

EXAMINE _ALL_ <format>

Arguments

variable
identifies a DATA step variable.

format
identifies a SAS format or a user-created format.

ALL
identifies all variables that are defined in the current DATA step.

Details
The EXAMINE command displays the value of one or more specified variables. The
debugger displays the value using the format currently associated with the variable,
unless you specify a different format.

Examples

� Display the values of variables N and STR:

ex n str

� Display the element i of the array TESTARR:

ex testarr{i}

� Display the elements i+1, j*2, and k-3 of the array CRR:

ex crr{i+1}; ex crr{j*2}; ex crr{k−3}

� Display the SAS date variable T_DATE with the DATE7. format:

ex t_date date7.

� Display the values of all elements in array NEWARR:

ex newarr{*}

DATA Step Debugger 4 GO 1213

See Also

Command:

“DESCRIBE” on page 1210

GO

Starts or resumes execution of the DATA step

Category: Controlling Program Execution

Alias: G

Syntax
GO <line-number | label>

Without Arguments

If you omit arguments, GO resumes execution of the DATA step and executes its
statements continuously until a breakpoint is encountered, until the value of a watched
variable changes, or until the DATA step completes execution.

Arguments
line-number

gives the number of a program line at which execution is to be suspended next.

label
is a statement label. Execution is suspended at the statement following the
statement label.

Details
The GO command starts or resumes execution of the DATA step. Execution continues
until all observations have been read, a breakpoint specified in the GO command is
reached, or a breakpoint set earlier with a BREAK command is reached.

Examples

� Resume executing the program and execute its statements continuously:

g

� Resume program execution and then suspend execution at the statement in line
104:

g 104

1214 HELP 4 Appendix 3

See Also

Commands:
“JUMP” on page 1214
“STEP” on page 1218

HELP

Displays information about debugger commands

Category: Controlling the Windows

Syntax
HELP

Without Arguments
The HELP command displays a directory of the debugger commands. Select a

command name to view information about the syntax and usage of that command. You
must enter the HELP command from a window command line, from a menu, or with a
function key.

JUMP
Restarts execution of a suspended program

Category: Controlling Program Execution
Alias: J

Syntax
JUMP line-number | label

Arguments

line-number
indicates the number of a program line at which to restart the suspended program.

label
is a statement label. Execution resumes at the statement following the label.

Details
The JUMP command moves program execution to the specified location without
executing intervening statements. After executing JUMP, you must restart execution
with GO or STEP. You can jump to any executable statement in the DATA step.

DATA Step Debugger 4 LIST 1215

CAUTION:
Do not use the JUMP command to jump to a statement inside a DO loop or to a label that
is the target of a LINK-RETURN group. In such cases you bypass the controls set up at the
beginning of the loop or in the LINK statement, and unexpected results can appear. 4

JUMP is useful in two situations:

� when you want to bypass a section of code that is causing problems in order to
concentrate on another section. In this case, use the JUMP command to move to a
point in the DATA step after the problematic section.

� when you want to re-execute a series of statements that have caused problems. In
this case, use JUMP to move to a point in the DATA step before the problematic
statements and use the SET command to reset values of the relevant variables to
the values they had at that point. Then re-execute those statements with STEP or
GO.

Examples

� Jump to line 5: j 5

See Also

Commands:
“GO” on page 1213

“STEP” on page 1218

LIST

Displays all occurrences of the item that is listed in the argument

Category: Manipulating Debugging Requests

Alias: L

Syntax
LIST _ALL_ | BREAK | DATASETS | FILES | INFILES | WATCH

Arguments

ALL
displays the values of all items.

BREAK
displays breakpoints.
Alias: B

1216 QUIT 4 Appendix 3

DATASETS
displays all SAS data sets used by the current DATA step.

FILES
displays all external files to which the current DATA step writes.

INFILES
displays all external files from which the current DATA step reads.

WATCH
displays watched variables.

Alias: W

Examples

� List all breakpoints, SAS data sets, external files, and watched variables for the
current DATA step:

l _all_

� List all breakpoints in the current DATA step:

l b

See Also

Commands:

“BREAK” on page 1206

“DELETE” on page 1209

“WATCH” on page 1220

QUIT

Terminates a debugger session

Category: Terminating the Debugger

Alias: Q

Syntax
QUIT

Without Arguments
The QUIT command terminates a debugger session and returns control to the SAS

session.

DATA Step Debugger 4 SET 1217

Details
SAS creates data sets built by the DATA step that you are debugging. However, when
you use QUIT to exit the debugger, SAS does not add the current observation to the
data set.

You can use the QUIT command at any time during a debugger session. After you
end the debugger session, you must resubmit the DATA step with the DEBUG option to
begin a new debugging session; you cannot resume a session after you have ended it.

SET

Assigns a new value to a specified variable

Category: Manipulating DATA Step Variables
Alias: None

Syntax
SET variable=expression

Arguments

variable
specifies the name of a DATA step variable or an array reference.

expression
is any debugger expression.
Tip: Expression can contain the variable name that is used on the left side of the

equal sign. When a variable appears on both sides of the equal sign, the debugger
uses the original value on the right side to evaluate the expression and stores the
result in the variable on the left.

Details
The SET command assigns a value to a specified variable. When you detect an error
during program execution, you can use this command to assign new values to variables.
This enables you to continue the debugging session.

Examples

� Set the variable A to the value of 3:

set a=3

� Assign to the variable B the value
12345 concatenated with the previous value of B:

set b=’12345’ || b

� Set array element ARR{1} to the result of the expression a+3:

1218 STEP 4 Appendix 3

set arr{1}=a+3

� Set array element CRR{1,2,3} to the result of the expression crr{1,1,2} + crr{1,1,3}:

set crr{1,2,3} = crr{1,1,2} + crr{1,1,3}

� Set variable A to the result of the expression a+c*3:

set a=a+c*3

STEP
Executes statements one at a time in the active program

Category: Controlling Program Execution
Alias: ST

Syntax
STEP <n>

Without Arguments
STEP executes one statement.

Arguments
n

specifies the number of statements to execute.

Details
The STEP command executes statements in the DATA step, starting with the statement
at which execution was suspended.

When you issue a STEP command, the debugger:
� executes the number of statements that you specify
� displays the line number
� returns control to the user and displays the > prompt.

Note: By default, you can execute the STEP command by pressing the ENTER key.
4

See Also

Commands:
“GO” on page 1213
“JUMP” on page 1214

SWAP
Switches control between the SOURCE window and the LOG window

DATA Step Debugger 4 TRACE 1219

Category: Controlling the Windows
Alias: None

Syntax
SWAP

Without Arguments
The SWAP command switches control between the LOG window and the SOURCE

window when the debugger is running. When you begin a debugging session, the LOG
window becomes active by default. While the DATA step is still being executed, the
SWAP command enables you to switch control between the SOURCE and LOG window
so that you can scroll and view the text of the program and also continue monitoring
the program execution. You must enter the SWAP command from a window command
line, from a menu, or with a function key.

TRACE

Controls whether the debugger displays a continuous record of the DATA step execution

Category: Manipulating Debugging Requests

Alias: T
Default: OFF

Syntax
TRACE <ON | OFF>

Without Arguments
TRACE displays the current status of the TRACE command.

Arguments
ON

prepares for the debugger to display a continuous record of DATA step execution.
The next statement that resumes DATA step execution (such as GO) records all
actions taken during DATA step execution in the DEBUGGER LOG window.

OFF
stops the display.

Examples

� Determine whether TRACE is ON or OFF:

1220 WATCH 4 Appendix 3

trace

� Prepare to display a record of debugger execution:

trace on

WATCH

Suspends execution when the value of a specified variable changes

Category: Manipulating Debugging Requests
Alias: W

Syntax
WATCH variable(s)

Arguments

variable
specifies a DATA step variable.

Details
The WATCH command specifies a variable to monitor and suspends program execution
when its value changes.

Each time the value of a watched variable changes, the debugger:
� suspends execution
� displays the line number where execution has been suspended
� displays the variable’s old value
� displays the variable’s new value
� returns control to the user and displays the > prompt.

Examples

� Monitor the variable DIVISOR for value changes:

w divisor

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Language Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Language Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–369–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

