
49

C H A P T E R

3
Formats

Definition 51
Syntax 52

Using Formats 52

Ways to Specify Formats 52

PUT Statement 53

PUT Function 53
%SYSFUNC 53

FORMAT Statement 53

ATTRIB Statement 54

Permanent versus Temporary Association 54

User-Defined Formats 54

Byte Ordering on Big Endian and Little Endian Platforms 55
Definitions 55

How Bytes are Ordered Differently 55

Writing Data Generated on Big Endian or Little Endian Platforms 55

Integer Binary Notation and Different Programming Languages 56

Working with Packed Decimal and Zoned Decimal Data 57
Definitions 57

Types of Data 57

Packed Decimal Data 57

Zoned Decimal Data 58

Packed Julian Dates 58
Platforms Supporting Packed Decimal and Zoned Decimal Data 58

Languages Supporting Packed Decimal and Zoned Decimal Data 58

Summary of Packed Decimal and Zoned Decimal Formats and Informats 59

International Date and Datetime Formats 60

Formats by Category 66

Dictionary 71
$ASCIIw. 71

$BINARYw. 72

$CHARw. 72

$EBCDICw. 73

$HEXw. 74
$KANJIw. 75

$KANJIXw. 76

$MSGCASEw. 76

$OCTALw. 77

$QUOTEw. 78
$REVERJw. 79

$REVERSw. 79

$UPCASEw. 80

50 WRITE= 4 Chapter 3

$VARYINGw. 81
$w. 83

BESTw. 83

BINARYw. 84

COMMAw.d 85

COMMAXw.d 86
Dw.s 87

DATEw. 89

DATEAMPMw.d 90

DATETIMEw.d 91

DAYw. 93

DDMMYYw. 94
DDMMYYxw. 95

DOLLARw.d 97

DOLLARXw.d 98

DOWNAMEw. 99

Ew. 100
EURDFDDw. 101

EURDFDEw. 103

EURDFDNw. 105

EURDFDTw.d 106

EURDFDWNw. 108
EURDFMNw. 110

EURDFMYw. 111

EURDFWDXw. 113

EURDFWKXw. 115

FLOATw.d 118

FRACTw. 119
HEXw. 120

HHMMw.d 121

HOURw.d 123

IBw.d 124

IBRw.d 125
IEEEw.d 127

JULDAYw. 128

JULIANw. 129

MINGUOw. 130

MMDDYYw. 131
MMDDYYxw. 132

MMSSw.d 134

MMYYxw. 135

MONNAMEw. 136

MONTHw. 137

MONYYw. 138
NEGPARENw.d 139

NENGOw. 140

NUMXw.d 141

OCTALw. 143

PDw.d 144
PDJULGw. 145

PDJULIw. 146

PERCENTw.d 148

PIBw.d 149

PIBRw.d 150

Formats 4 Definition 51

PKw.d 152
PVALUEw.d 153

QTRw. 154

QTRRw. 155

RBw.d 155

ROMANw. 157
SSNw. 157

S370FFw.d 158

S370FIBw.d 159

S370FIBUw.d 161

S370FPDw.d 162

S370FPDUw.d 163
S370FPIBw.d 164

S370FRBw.d 166

S370FZDw.d 167

S370FZDLw.d 168

S370FZDSw.d 169
S370FZDTw.d 170

S370FZDUw.d 171

TIMEw.d 172

TIMEAMPMw.d 174

TODw.d 175
w.d 176

WEEKDATEw. 177

WEEKDATXw. 179

WEEKDAYw. 180

WORDDATEw. 181

WORDDATXw. 182
WORDFw. 183

WORDSw. 184

YEARw. 185

YENw.d 186

YYMMxw. 187
YYMMDDw. 188

YYMMDDxw. 190

YYMONw. 192

YYQxw. 193

YYQRxw. 194
Zw.d 195

ZDw.d 196

Definition
A format is an instruction that SAS uses to write data values. You use formats to

control the written appearance of data values, or, in some cases, to group data values
together for analysis. For example, the WORDS22. format, which converts numeric
values to their equivalent in words, writes the numeric value 692 as six hundred
ninety-two.

52 Syntax 4 Chapter 3

Syntax
SAS formats have the following form:

<$>format<w>.< d>

where

$
indicates a character format; its absence indicates a numeric format.

format
names the format. The format is a SAS format or a user-defined format that was
previously defined with the VALUE statement in PROC FORMAT. For more
information on user-defined formats, see the FORMAT procedure in the SAS
Procedures Guide.

w
specifies the format width, which for most formats is the number of columns in the
output data.

d
specifies an optional decimal scaling factor in the numeric formats.

Formats always contain a period (.) as a part of the name. If you omit the w and the d
values from the format, SAS uses default values. The d value that you specify with a
format tells SAS to display that many decimal places, regardless of how many decimal
places are in the data. Formats never change or truncate the internally stored data
values.

For example, in DOLLAR10.2, the w value of 10 specifies a maximum of 10 columns
for the value. The d value of 2 specifies that two of these columns are for the decimal
part of the value, which leaves eight columns for all the remaining characters in the
value. This includes the decimal point, the remaining numeric value, a minus sign if
the value is negative, the dollar sign, and commas, if any.

If the format width is too narrow to represent a value, SAS tries to squeeze the value
into the space available. Character formats truncate values on the right. Numeric
formats sometimes revert to the BESTw.d format. SAS prints asterisks if you do not
specify an adequate width. In the following example, the result is x=**.

x=123;
put x= 2.;

If you use an incompatible format, such as using a numeric format to write character
values, SAS first attempts to use an analogous format of the other type. If this is not
feasible, an error message that describes the problem appears in the SAS log.

Using Formats

Ways to Specify Formats
You can use formats in the following ways:

� in a PUT statement

� with the PUT, PUTC, or PUTN functions

Formats 4 Ways to Specify Formats 53

� with the %SYSFUNC macro function
� in a FORMAT statement in a DATA step or a PROC step
� in an ATTRIB statement in a DATA step or a PROC step.

PUT Statement
The PUT statement with a format after the variable name uses a format to write

data values in a DATA step. For example, this PUT statement uses the DOLLAR.
format to write the numeric value for AMOUNT as a dollar amount:

amount=1145.32;
put amount dollar10.2;

The DOLLARw.d format in the PUT statement produces this result:

$1,145.32

See “PUT” on page 962 for more information.

PUT Function
The PUT function writes a numeric variable, a character variable, or a constant with

any valid format and returns the resulting character value. For example, the following
statement converts the value of a numeric variable into a two-character hexadecimal
representation:

num=15;
char=put(num,hex2.);

The PUT function creates a character variable named CHAR that has a value of 0F.
The PUT function is useful for converting a numeric value to a character value. See

“PUT” on page 503 for more information.

%SYSFUNC
The %SYSFUNC (or %QSYSFUNC) macro function executes SAS functions or

user-defined functions and applies an optional format to the result of the function
outside a DATA step. For example, the following program writes a numeric value in a
macro variable as a dollar amount.

%macro tst(amount);
%put %sysfunc(putn(&amount,dollar10.2));

%mend tst;

%tst (1154.23);

For more information, see SAS Macro Language: Reference.

FORMAT Statement
The FORMAT statement permanently associates a format with a variable. SAS uses

the format to write the values of the variable that you specify. For example, the
following statement in a DATA step associates the COMMAw.d numeric format with
the variables SALES1 through SALES3:

format sales1-sales3 comma10.2;

Because the FORMAT statement permanently associates a format with a variable, any
subsequent DATA step or PROC step uses COMMA10.2 to write the values of SALES1,
SALES2, and SALES3. See “FORMAT” on page 843 for more information.

54 Permanent versus Temporary Association 4 Chapter 3

Note: Formats that you specify in a PUT statement behave differently from those
that you associate with a variable in a FORMAT statement. The major difference is
that formats that are specified in the PUT statement preserve leading blanks. If you
assign formats with a FORMAT statement prior to a PUT statement, all leading blanks
are trimmed. The result is the same as if you used the colon (:) format modifier. For
details about using the colon (:) format modifier, see “PUT, List” on page 983. 4

ATTRIB Statement
The ATTRIB statement can also associate a format, as well as other attributes, with

one or more variables. For example, in the following statement the ATTRIB statement
permanently associates the COMMAw.d format with the variables SALES1 through
SALES3:

attrib sales1-sales3 format=comma10.2;

Because the ATTRIB statement permanently associates a format with a variable, any
subsequent DATA step or PROC step uses COMMA10.2 to write the values of SALES1,
SALES2, and SALES3. See “ATTRIB” on page 762 for more information.

Permanent versus Temporary Association
When you specify a format in a PUT statement, SAS uses the format to write data

values during the DATA step but does not permanently associate the format with a
variable. To permanently associate a format with a variable, use a FORMAT statement
or an ATTRIB statement in a DATA step. SAS permanently associates a format with
the variable by modifying the descriptor information in the SAS data set.

Using a FORMAT statement or an ATTRIB statement in a PROC step associates a
format with a variable for that PROC step, as well as for any output data sets that the
procedure creates that contain formatted variables. For more information on using
formats in SAS procedures, see the SAS Procedures Guide.

User-Defined Formats
In addition to the formats that are supplied with base SAS software, you can create

your own formats. In base SAS software, PROC FORMAT allows you to create your
own formats for both character and numeric variables. For more information, see the
FORMAT procedure in the SAS Procedures Guide .

When you execute a SAS program that uses user-defined formats, these formats
should be available. The two ways to make these formats available are

� to create permanent, not temporary, formats with PROC FORMAT
� to store the source code that creates the formats (the PROC FORMAT step) with

the SAS program that uses them.

To create permanent SAS formats, see the FORMAT procedure in the SAS Procedures
Guide.

If you execute a program that cannot locate a user-defined format, the result depends
on the setting of the FMTERR system option. If the user-defined format is not found,
then these system options produce these results:

Formats 4 Writing Data Generated on Big Endian or Little Endian Platforms 55

System Options Results

FMTERR SAS produces an error that causes the current DATA or
PROC step to stop.

NOFMTERR SAS continues processing and substitutes a default format,
usually the BESTw. or $w. format.

Although using NOFMTERR enables SAS to process a variable, you lose the
information that the user-defined format supplies.

To avoid problems, make sure that your program has access to all user-defined
formats that are used.

Byte Ordering on Big Endian and Little Endian Platforms

Definitions
Integer values are typically stored in one of three sizes: one-byte, two-byte, or

four-byte. The ordering of the bytes for the integer varies depending on the platform
(operating environment) on which the integers were produced.

The ordering of bytes differs between the “big endian” and “little endian” platforms.
These colloquial terms are used to describe byte ordering for IBM mainframes (big
endian) and for Intel-based platforms (little endian). In the SAS System, the following
platforms are considered big endian: AIX, HP-UX, IBM mainframe, Macintosh, and
Solaris. The following platforms are considered little endian: AXP/VMS, Digital UNIX,
Intel ABI, OS/2, VAX/VMS, and Windows.

How Bytes are Ordered Differently
On big endian platforms, the value 1 is stored in binary and is represented here in

hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00
00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same
as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the “two’s complement” representation is used. The
high-order bit of the most significant byte of the integer will be set on. For example, –2
would be represented in one, two, and four bytes on big endian platforms as FE, FF FE,
and FF FF FF FE respectively. On little endian platforms, the representation would be
FE, FE FF, and FE FF FF FF.

Writing Data Generated on Big Endian or Little Endian Platforms
SAS can read signed and unsigned integers regardless of whether they were

generated on a big endian or a little endian system. Likewise, SAS can write signed
and unsigned integers in both big endian and little endian format. The length of these
integers can be up to eight bytes.

The following table shows which format to use for various combinations of platforms.
In the Sign? column, “no” indicates that the number is unsigned and cannot be
negative. “Yes” indicates that the number can be either negative or positive.

56 Integer Binary Notation and Different Programming Languages 4 Chapter 3

Table 3.1 SAS Formats and Byte Ordering

Data created
for…

Data written
by…

Sign? Format

big endian big endian yes IB or S370FIB

big endian big endian no PIB, S370FPIB,
S370FIBU

big endian little endian yes S370FIB

big endian little endian no S370FPIB

little endian big endian yes IBR

little endian big endian no PIBR

little endian little endian yes IB or IBR

little endian little endian no PIB or PIBR

big endian either yes S370FIB

big endian either no S370FPIB

little endian either yes IBR

little endian either no PIBR

Integer Binary Notation and Different Programming Languages
The following table compares integer binary notation according to programming

language.

Table 3.2 Integer Binary Notation and Programming Languages

Language 2 Bytes 4 Bytes

SAS IB2. , IBR2., PIB2., PIBR2.,
S370FIB2., S370FIBU2.,
S370FPIB2.

IB4., IBR4., PIB4., PIBR4.,
S370FIB4., S370FIBU4.,
S370FPIB4.

PL/I FIXED BIN(15) FIXED BIN(31)

FORTRAN INTEGER*2 INTEGER*4

COBOL COMP PIC 9(4) COMP PIC 9(8)

Formats 4 Types of Data 57

Language 2 Bytes 4 Bytes

IBM assembler H F

C short long

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal specifies a method of encoding decimal numbers by using each byte
to represent two decimal digits. Packed decimal representation
stores decimal data with exact precision. The fractional part of the
number is determined by the informat or format because there is no
separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision
can be maintained. However, computations involving decimal data
may become inexact due to the lack of native instructions.

Zoned decimal specifies a method of encoding decimal numbers in which each digit
requires one byte of storage. The last byte contains the number’s
sign as well as the last digit. Zoned decimal data produces a
printable representation.

Nibble specifies 1/2 of a byte.

Types of Data

Packed Decimal Data
A packed decimal representation stores decimal digits in each “nibble” of a byte.

Each byte has two nibbles, and each nibble is indicated by a hexadecimal digit. For
example, the value 15 is stored in two nibbles, using the hexadecimal digits 1 and 5.

The sign indication is dependent on your operating environment. On IBM
mainframes, the sign is indicated by the last nibble. With formats, C indicates a
positive value, and D indicates a negative value. With informats, A, C, E, and F
indicate positive values, and B and D indicate negative values. Any other nibble is
invalid for signed packed decimal data. In all other operating environments, the sign is
indicated in its own byte. If the high-order bit is 1, then the number is negative.
Otherwise, it is positive.

The following applies to packed decimal data representation:

� You can use the S370FPD format on all platforms to obtain the IBM mainframe
configuration.

� You can have unsigned packed data with no sign indicator. The packed decimal
format and informat handles the representation. It is consistent between ASCII
and EBCDIC platforms.

� Note that the S370FPDU format and informat expects to have an F in the last
nibble, while packed decimal expects no sign nibble.

58 Platforms Supporting Packed Decimal and Zoned Decimal Data 4 Chapter 3

Zoned Decimal Data
The following applies to zoned decimal data representation:

� A zoned decimal representation stores a decimal digit in the low order nibble of
each byte. For all but the byte containing the sign, the high-order nibble is the
numeric zone nibble (F on EBCDIC and 3 on ASCII).

� The sign can be merged into a byte with a digit, or it can be separate, depending
on the representation. But the standard zoned decimal format and informat
expects the sign to be merged into the last byte.

� The EBCDIC and ASCII zoned decimal formats produce the same printable
representation of numbers. There are two nibbles per byte, each indicated by a
hexadecimal digit. For example, the value 15 is stored in two bytes. The first byte
contains the hexadecimal value F1 and the second byte contains the hexadecimal
value C5.

Packed Julian Dates
The following applies to packed Julian dates:

� The two formats and informats that handle Julian dates in packed decimal
representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year
computation, while PDJULG uses the Gregorian computation.

� The IBM mainframe computation considers 1900 to be the base year, and the year
values in the data indicate the offset from 1900. For example, 98 means 1998, 100
means 2000, and 102 means 2002. 1998 would mean 3898.

� The Gregorian computation allows for 2-digit or 4-digit years. If you use 2-digit
years, SAS uses the setting of the YEARCUTOFF value to determine the true year.

Platforms Supporting Packed Decimal and Zoned Decimal Data
Some platforms have native instructions to support packed and zoned decimal data,

while others must use software to emulate the computations. For example, the IBM
mainframe has an Add Pack instruction to add packed decimal data, but the
Intel-based platforms have no such instruction and must convert the decimal data into
some other format.

Languages Supporting Packed Decimal and Zoned Decimal Data
Several different languages support packed decimal and zoned decimal data. The

following table shows how COBOL picture clauses correspond to SAS formats and
informats.

IBM VS COBOL II clauses Corresponding S370Fxxx
formats/informats

PIC S9(X) PACKED-DECIMAL S370FPDw.

PIC 9(X) PACKED-DECIMAL S370FPDUw.

PIC S9(W) DISPLAY S370ZDw.

PIC 9(W) DISPLAY S370ZDUw.

PIC S9(W) DISPLAY SIGN LEADING S370FZDLw.

Formats 4 Summary of Packed Decimal and Zoned Decimal Formats and Informats 59

IBM VS COBOL II clauses Corresponding S370Fxxx
formats/informats

PIC S9(W) DISPLAY SIGN LEADING SEPARATE S370FZDSw.

PIC S9(W) DISPLAY SIGN TRAILING SEPARATE S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits
represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is
ceil((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil(x/2). For example, PIC
S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles are
needed. ceil((5+1)/2) has a length of three bytes, and the value of W is 3.

Note that you can substitute COMP-3 for PACKED-DECIMAL.
In IBM assembly language, the P directive indicates packed decimal, and the Z

directive indicates zoned decimal. The following shows an excerpt from an assembly
language listing, showing the offset, the value, and the DC statement:

offset value (in hex) inst label directive

+000000 00001C 2 PEX1 DC PL3’1’
+000003 00001D 3 PEX2 DC PL3’-1’
+000006 F0F0C1 4 ZEX1 DC ZL3’1’
+000009 F0F0D1 5 ZEX2 DC ZL3’1’

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal
data. You must use the PICTURE specification to represent zoned decimal data. There
is no standardized representation of decimal data for the FORTRAN or the C languages.

Summary of Packed Decimal and Zoned Decimal Formats and
Informats

SAS uses a group of formats and informats to handle packed and zoned decimal data.
The following table lists the type of data representation for these formats and
informats. Note that the formats and informats that begin with S370 refer to IBM
mainframe representation.

Format Type of data
representation

Corresponding
informat

Comments

PD Packed decimal PD Local signed packed decimal

PK Packed decimal PK Unsigned packed decimal; not
specific to your operating
environment

ZD Zoned decimal ZD Local zoned decimal

none Zoned decimal ZDB Translates EBCDIC blank
(hex 40) to EBCDIC zero (hex
F0), then corresponds to the
informat as zoned decimal

none Zoned decimal ZDV Non-IBM zoned decimal
representation

S370FPD Packed decimal S370FPD Last nibble C (positive) or D
(negative)

60 International Date and Datetime Formats 4 Chapter 3

Format Type of data
representation

Corresponding
informat

Comments

S370FPDU Packed decimal S370FPDU Last nibble always F
(positive)

S370FZD Zoned decimal S370FZD Last byte contains sign in
upper nibble: C (positive) or
D (negative)

S370FZDU Zoned decimal S370FZDU Unsigned; sign nibble always
F

S370FZDL Zoned decimal S370FZDL Sign nibble in first byte in
informat; separate leading
sign byte of hex C0 (positive)
or D0 (negative) in format

S370FZDS Zoned decimal S370FZDS Leading sign of - (hex 60) or +
(hex 4E)

S370FZDT Zoned decimal S370FZDT Trailing sign of - (hex 60) or +
(hex 4E)

PDJULI Packed decimal PDJULI Julian date in packed
representation - IBM
computation

PDJULG Packed decimal PDJULG Julian date in packed
representation - Gregorian
computation

none Packed decimal RMFDUR Input layout is: mmsstttF

none Packed decimal SHRSTAMP Input layout is:
yyyydddFhhmmssth, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal SMFSTAMP Input layout is:
xxxxxxxxyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal PDTIME Input layout is: 0hhmmssF

none Packed decimal RMFSTAMP Input layout is:
0hhmmssFyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

International Date and Datetime Formats
The SAS supports international formats that are equivalent to some of the most

commonly used English-language date formats. In each case the format works like the
corresponding English-language format. Only the maximum, minimum, and default
width are different.

Formats 4 International Date and Datetime Formats 61

Table 3.3 International Date and Datetime Formats

Language English Format International Format Min Max Default

Afrikaans (AFR) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWK. 2 38 28

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFDE. 3 37 29

Catalan (CAT) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 8

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 2 40 27

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EUDFWDX. 3 40 16

Croatian (CRO) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 8

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 3 40 27

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 40 16

Czech (CSY) DATE. EURDFDE. 10 14 12

DATETIME. EURDFDT. 12 40 21

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFWN. 1 32 7

MONNAME. EURDFMN. 1 32 8

MONYY. EURDFMY. 10 32 10

WEEKDATX. EURDFWKX. 2 40 25

62 International Date and Datetime Formats 4 Chapter 3

Language English Format International Format Min Max Default

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 8 40 16

Danish (DAN) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 7

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 2 31 31

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 18 18

Dutch (NLD) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 2 38 28

WORDDATX. EURDFWDX. 3 37 29

WEEKDAY. EURDFDN. 1 32 1

Finnish (FIN) DATE. EURDFDE. 9 10 9

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 10

DOWNAME. EURDFDWN. 1 32 11

MONNAME. EURDFMN. 1 32 11

MONYY. EURDFMY. 8 8 8

WEEKDATX. EURDFWKX. 2 37 37

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 20 20

French (FRA) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 8

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 27 27

WEEKDAY. EURDFDN. 1 32 1

Formats 4 International Date and Datetime Formats 63

Language English Format International Format Min Max Default

WORDDATX. EURDFWDX. 3 18 18

German (DEU) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 30 30

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 18 18

Hungarian (HUN) DATE. EURDFDE. 8 12 10

DATETIME. EURDFDT. 0 40 19

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 10

MONYY. EURDFMY. 8 32 8

WEEKDATX. EURDFWKX. 3 40 28

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 6 40 18

Italian (ITA) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 28 28

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 17 17

Macedonian (MAC) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 3 40 29

WEEKDDATX. EURDFWDX. 1 32 1

WORDDATX. EURDFDN. 3 40 17

64 International Date and Datetime Formats 4 Chapter 3

Language English Format International Format Min Max Default

Norwegian (NOR) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 7

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 26 26

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 17 17

Polish (POL) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 12

MONNAME. EURDFMN. 1 32 12

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 2 40 34

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 40 17

Portuguese (PTG) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 13

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 38 38

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 37 23

Russian (RUS) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 11

MONNAME. EURDFMN. 1 32 8

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 2 40 29

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 40 16

Spanish (ESP) DATE. EURDFDE. 5 9 7

Formats 4 International Date and Datetime Formats 65

Language English Format International Format Min Max Default

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 10

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 1 35 35

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 24 24

Slovenian (SLO) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 3 40 29

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 40 17

Swedish (SVE) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 7

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 26 26

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 17 17

Swiss_French (FRS) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 8

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 26 26

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 17 17

Swiss_German (DES) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

66 Formats by Category 4 Chapter 3

Language English Format International Format Min Max Default

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 30 30

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 18 18

Formats by Category
There are four categories of formats in SAS:

Category Description

CHARACTER instructs SAS to write character data values from character variables.

DATE and TIME instructs SAS to write data values from variables that represent dates,
times, and datetimes.

DBCS instructs SAS to handle various Asian languages

NUMERIC instructs SAS to write numeric data values from numeric variables.

USER-DEFINED instructs SAS to write data values by using a format that is created with
PROC FORMAT.

Storing user-defined formats is an important consideration if you associate these
formats with variables in permanent SAS data sets, especially those shared with other
users. For information on creating and storing user-defined formats, see the FORMAT
procedure in the SAS Procedures Guide.

The following table provides brief descriptions of the SAS formats. For more detailed
descriptions, see the dictionary entry for each format.

Table 3.4 Categories and Descriptions of Formats

Category Format Description

Character “$ASCIIw.” on page 71 Converts native format character data to ASCII
representation

“$BINARYw.” on page 72 Converts character data to binary representation

“$CHARw.” on page 72 Writes standard character data

“$EBCDICw.” on page 73 Converts native format character data to EBCDIC
representation

“$HEXw.” on page 74 Converts character data to hexadecimal representation

“$MSGCASEw.” on page
76

Writes character data in uppercase when the MSGCASE
system option is in effect

“$OCTALw.” on page 77 Converts character data to octal representation

Formats 4 Formats by Category 67

“$QUOTEw.” on page 78 Writes data values that are enclosed in double quotation
marks

“$REVERJw.” on page 79 Writes character data in reverse order and preserves
blanks

“$REVERSw.” on page 79 Writes character data in reverse order and left aligns

“$UPCASEw.” on page 80 Converts character data to uppercase

“$VARYINGw.” on page 81 Writes character data of varying length

“$w.” on page 83 Writes standard character data

DBCS “$KANJIw.” on page 75 Adds shift-code data to DBCS data

“$KANJIXw.” on page 76 Removes shift code data from DBCS data

Date and Time “DATEw.” on page 89 Writes date values in the form ddmmmyy or ddmmmyyyy

“DATEAMPMw.d ”on page
90

Writes datetime values in the form
ddmmmyy:hh:mm:ss.ss with AM or PM

“DATETIMEw.d” on page
91

Writes datetime values in the form
ddmmmyy:hh:mm:ss.ss

“DAYw.” on page 93 Writes date values as the day of the month

“DDMMYYw.” on page 94 Writes date values in the form ddmmyy or ddmmyyyy

“DDMMYYxw.” on page 95 Writes date values in the form ddmmyy or ddmmyyyy
with a specified separator

“DOWNAMEw.” on page
99

Writes date values as the name of the day of the week

“EURDFDDw.” on page
101

Writes international date values in the form dd.mm.yy or
dd.mm.yyyy

“EURDFDEw.” on page
103

Writes international date values in the form ddmmmyy
or ddmmmyyyy

“EURDFDNw.” on page
105

Writes international date values as the day of the week

“EURDFDTw.d” on page
106

Writes international datetime values in the form
ddmmmyy:hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

“EURDFDWNw.” on page
108

Writes international date values as the name of the day

“EURDFMNw.” on page
110

Writes international date values as the name of the
month

“EURDFMYw.” on page
111

Writes international date values in the form mmmyy or
mmmyyyy

“EURDFWDXw.” on page
113

Writes international date values as the name of the
month, the day, and the year in the form dd month-name
yy (or yyyy)

“EURDFWKXw.” on page
115

Writes international date values as the name of the day
and date in the form day-of-week, dd month-name yy (or
yyyy)

“HHMMw.d” on page 121 Writes time values as hours and minutes in the form
hh:mm

68 Formats by Category 4 Chapter 3

“HOURw.d” on page 123 Writes time values as hours and decimal fractions of
hours

“JULDAYw.” on page 128 Writes date values as the Julian day of the year

“JULIANw.” on page 129 Writes date values as Julian dates in the form yyddd or
yyyyddd

“MINGUOw.” on page 130 Writes date values as Taiwanese dates in the form
yyymmdd

“MMDDYYw.” on page 131 Writes date values in the form mmddyy or mmddyyyy

“MMDDYYxw.” on page
132

Writes date values in the form mmddyy or mmddyyyy
with a specified separator

“MMSSw.d” on page 134 Writes time values as the number of minutes and
seconds since midnight

“MMYYxw.” on page 135 Writes date values as the month and the year and
separates them with a character

“MONNAMEw.” on page
136

Writes date values as the name of the month

“MONTHw.” on page 137 Writes date values as the month of the year

“MONYYw.” on page 138 Writes date values as the month and the year in the
form mmmyy or mmmyyyy

“NENGOw.” on page 140 Writes date values as Japanese dates in the form
e.yymmdd

“PDJULGw.” on page 145 Writes packed Julian date values in the hexadecimal
format yyyydddF for IBM

“PDJULIw.” on page 146 Writes packed Julian date values in the hexadecimal
format ccyydddF for IBM

“QTRw.” on page 154 Writes date values as the quarter of the year

“QTRRw.” on page 155 Writes date values as the quarter of the year in Roman
numerals

“TIMEw.d” on page 172 Writes time values as hours, minutes, and seconds in the
form hh:mm:ss.ss

“TIMEAMPMw.d ”on page
174

Writes time values as hours, minutes, and seconds in the
form hh:mm:ss.ss with AM or PM

“TODw.d” on page 175 Writes the time portion of datetime values in the form
hh:mm:ss.ss

“WEEKDATEw.” on page
177

Writes date values as the day of the week and the date
in the form day-of-week, month-name dd, yy (or yyyy)

“WEEKDATXw.” on page
179

Writes date values as day of week and date in the form
day-of-week, dd month-name yy (or yyyy)

“WEEKDAYw.” on page
180

Writes date values as the day of the week

“WORDDATEw. ”on page
181

Writes date values as the name of the month, the day,
and the year in the form month-name dd, yyyy

“WORDDATXw.” on page
182

Writes date values as the day, the name of the month,
and the year in the form dd month-name yyyy

Formats 4 Formats by Category 69

“YEARw.” on page 185 Writes date values as the year

“YYMMxw.” on page 187 Writes date values as the year and month and separates
them with a character

“YYMMDDw.” on page 188 Writes date values in the form yymmdd or yyyymmdd

“YYMMDDxw.” on page
190

Writes date values in the form yymmdd or yyyymmdd
with a specified separator

“YYMONw.” on page 192 Writes date values as the year and the month
abbreviation

“YYQxw.” on page 193 Writes date values as the year and the quarter and
separates them with a character

“YYQRxw.” on page 194 Writes date values as the year and the quarter in Roman
numerals and separates them with characters

Numeric “BESTw.” on page 83 SAS chooses the best notation

“BINARYw.” on page 84 Converts numeric values to binary representation

“COMMAw.d ”on page 85 Writes numeric values with commas and decimal points

“COMMAXw.d” on page 86 Writes numeric values with periods and commas

“Dw.s” on page 87 Prints variables, possibly with a great range of values,
lining up decimal places for values of similar magnitude

“DOLLARw.d” on page 97 Writes numeric values with dollar signs, commas, and
decimal points

“DOLLARXw.d” on page
98

Writes numeric values with dollar signs, periods, and
commas

“Ew.” on page 100 Writes numeric values in scientific notation

“FLOATw.d” on page 118 Generates a native single-precision, floating-point value
by multiplying a number by 10 raised to the dth power

“FRACTw.” on page 119 Converts numeric values to fractions

“HEXw.” on page 120 Converts real binary (floating-point) values to
hexadecimal representation

“IBw.d” on page 124 Writes native integer binary (fixed-point) values,
including negative values

“IBRw.d” on page 125 Writes integer binary (fixed-point) values in Intel and
DEC formats

“IEEEw.d” on page 127 Generates an IEEE floating-point value by multiplying a
number by 10 raised to the dth power

“NEGPARENw.d” on page
139

Writes negative numeric values in parentheses

“NUMXw.d” on page 141 Writes numeric values with a comma in place of the
decimal point

“OCTALw.” on page 143 Converts numeric values to octal representation

“PDw.d” on page 144 Writes data in packed decimal format

“PERCENTw.d” on page
148

Writes numeric values as percentages

“PIBw.d” on page 149 Writes positive integer binary (fixed-point) values

70 Formats by Category 4 Chapter 3

“PIBRw.d” on page 150 Writes positive integer binary (fixed-point) values in
Intel and DEC formats

“PKw.d” on page 152 Writes data in unsigned packed decimal format

“PVALUEw.d” on page 153 Writes p-values

“RBw.d” on page 155 Writes real binary data (floating-point) in real binary
format

“ROMANw.” on page 157 Writes numeric values as Roman numerals

“SSNw.” on page 157 Writes Social Security numbers

“S370FFw.d” on page 158 Writes native standard numeric data in IBM mainframe
format

“S370FIBw.d” on page 159 Writes integer binary (fixed-point) values, including
negative values, in IBM mainframe format

“S370FIBUw.d” on page
161

Writes unsigned integer binary (fixed-point) values in
IBM mainframe format

“S370FPDw.d” on page 162 Writes packed decimal data in IBM mainframe format

“S370FPDUw.d” on page
163

Writes unsigned packed decimal data in IBM mainframe
format

“S370FPIBw.d” on page
164

Writes positive integer binary (fixed-point) values in IBM
mainframe format

“S370FRBw.d” on page 166 Writes real binary (floating-point) data in IBM
mainframe format

“S370FZDw.d” on page 167 Writes zoned decimal data in IBM mainframe format

“S370FZDLw.d” on page
168

Writes zoned decimal leading sign data in IBM
mainframe format

“S370FZDSw.d” on page
169

Writes zoned decimal separate leading-sign data in IBM
mainframe format

“S370FZDTw.d” on page
170

Writes zoned decimal separate trailing-sign data in IBM
mainframe format

“S370FZDUw.d” on page
171

Writes unsigned zoned decimal data in IBM mainframe
format

“ w.d” on page 176 Writes standard numeric data one digit per byte

“WORDFw.” on page 183 Writes numeric values as words with fractions that are
shown numerically

“WORDSw.” on page 184 Writes numeric values as words

“YENw.d” on page 186 Writes numeric values with yen signs, commas, and
decimal points

Formats 4 $ASCIIw. 71

“Zw.d” on page 195 Writes standard numeric data with leading 0s

“ZDw.d” on page 196 Writes numeric data in zoned decimal format

Dictionary

$ASCIIw.

Converts native format character data to ASCII representation

Category: Character
Alignment: left

Syntax
$ASCIIw.

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–32767

Details
If ASCII is the native format, no conversion occurs.

Comparisons
� On EBCDIC systems, $ASCIIw. converts EBCDIC character data to ASCIIw.
� On all other systems, $ASCIIw. behaves like the $CHARw. format.

Examples

put x $ascii3.;

Values Results*

abc 616263

ABC 414243

(); 28293B

* The results are hexadecimal representations of ASCII codes for characters. Each two
hexadecimal digits correspond to one byte of binary data, and each byte corresponds to one
character.

72 $BINARYw. 4 Chapter 3

$BINARYw.
Converts character data to binary representation

Category: Character
Alignment: left

Syntax
$BINARYw.

Syntax Description

w
specifies the width of the output field.
Default: The default width is calculated based on the length of the variable to be

printed.
Range: 1–32767

Comparisons
The $BINARYw. format converts character values to binary representation. The
BINARYw. format converts numeric values to binary representation.

Examples

put @1 name $binary16.;

Values Results

ASCII EBCDIC

----+----1----+----2 ----+----1----+----2

AB 0100000101000010 1100000111000010

$CHARw.
Writes standard character data

Category: Character
Alignment: left

Syntax
$CHARw.

Formats 4 $EBCDICw. 73

Syntax Description

w
specifies the width of the output field.
Default: 8 if the length of variable is undefined; otherwise, the length of the variable
Range: 1–32767

Comparisons
� The $CHARw. format is identical to the $w. format.
� The $CHARw. and $w. formats do not trim leading blanks. To trim leading

blanks, use the LEFT function to left align character data prior to output, or use
the PUT statement with the colon (:) format modifier and the format of your choice
to produce list output.

� Use the following table to compare the SAS format $CHAR8. with notation in
other programming languages:

Language Notation

SAS $CHAR8.

C char [8]

COBOL PIC x(8)

FORTRAN A8

PL/I A(8)

Examples

put @7 name $char4.;

Values Results

----+----1

XYZ XYZ

$EBCDICw.

Converts native format character data to EBCDIC representation

Category: Character
Alignment: left

Syntax
$EBCDICw.

74 $HEXw. 4 Chapter 3

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32767

Details
If EBCDIC is the native format, no conversion occurs.

Comparisons
� On ASCII systems, $EBCDICw. converts ASCII character data to EBCDIC.

� On all other systems, $EBCDICw. behaves like the $CHARw. format.

Examples

put name $ebcdic3.;

Values Results*

qrs 9899A2

QRS D8D9E2

+;> 4E5E6E

* The results are shown as hexadecimal representations of EBCDIC codes for characters. Each
two hexadecimal digits correspond to one byte of binary data, and each byte corresponds to one
character.

$HEXw.

Converts character data to hexadecimal representation

Category: Character

Alignment: left

Syntax
$HEXw.

Syntax Description

Formats 4 $KANJIw. 75

w
specifies the width of the output field.

Default: The default width is calculated based on the length of the variable to be
printed.

Range: 1–32767

Tip: To ensure that SAS writes the full hexadecimal equivalent of your data, make
w twice the length of the variable or field that you want to represent.

Tip: If w is greater than twice the length of the variable that you want to represent,
$HEXw. pads it with blanks.

Details
The $HEXw. format converts each character into two hexadecimal digits. Each blank
counts as one character, including trailing blanks.

Comparisons
The HEXw. format converts real binary numbers to their hexadecimal equivalent.

Examples

put @5 name $hex4.;

Values Results

EBCDIC ASCII

----+----1 ----+----1

AB C1C2 4142

$KANJIw.

Adds shift-code data to DBCS data

Category: DBCS

Alignment: left

Syntax
$KANJIw.

Syntax Description

w
specifies the width of the output field.

76 $KANJIXw. 4 Chapter 3

Restriction: The width must be an even number. If it is an odd number, it is
truncated.

Range: The minimum width of the format is 2 + (length of shift code used on the
current DBCSTYPE= setting)*2.

$KANJIXw.

Removes shift code data from DBCS data

Category: DBCS
Alignment: left

Syntax
$KANJIXw.

Syntax Description

w
specifies the width of the output field.
Restriction: The width must be an even number. If it is an odd number, it is

truncated.
Range: The minimum width of the format is 2.

Details
The input data length must be 2 + (SO/SI length)*2. The data must start with SO and
end with SI, unless single-byte data are returned. This format always returns a blank
for DBCSTYPE data that do not use a shift-code mechanism.

$MSGCASEw.

Writes character data in uppercase when the MSGCASE system option is in effect

Category: Character
Alignment: left

Syntax
$MSGCASEw.

Syntax Description

Formats 4 $OCTALw. 77

w
specifies the width of the output field.

Default: 8 if the length of the variable is undefined; otherwise, the length of the
variable

Range: 1–32767

Details
When the MSGCASE= system option is in effect, all notes, warnings, and error
messages that SAS generates appear in uppercase. Otherwise, all notes, warnings, and
error messages appear in mixed case. You specify the MSGCASE= system option in the
configuration file or during the SAS invocation.

Operating Environment Information: For more information about the MSGCASE=
system option, see the SAS documentation for your operating environment. 4

Examples

put name $msgcase.;

Values Results

sas SAS

$OCTALw.

Converts character data to octal representation

Category: Character

Alignment: left

Syntax
$OCTALw.

Syntax Description

w
specifies the width of the output field.

Default: The default width is calculated based on the length of the variable to be
printed.

Range: 1–32767

Tip: Because each character value generates three octal characters, increase the
value of w three times the length of the character value.

78 $QUOTEw. 4 Chapter 3

Comparisons
The $OCTALw. format converts character values to the octal representation of their
character codes. The OCTALw. format converts numeric values to octal representation.

Examples

put @2 name $octal9.;

The character # represents a blank space.

Values Results

EBCDIC ASCII

----+----1 ----+----1

A## 301100100 101040040

B## 302100100 102040040

$QUOTEw.

Writes data values that are enclosed in double quotation marks

Category: Character
Alignment: left

Syntax
$QUOTEw.

Syntax Description

w
specifies the width of the output field.
Default: 8 if the length of the variable is undefined; otherwise, the length of the

variable + 2
Range: 2–32767
Tip: Make w wide enough to include the left and right quotation marks.

Examples

put name $quote7.;

Formats 4 $REVERSw. 79

Values Results

----+----1

SAS "SAS"

SAS’s "SAS’s"

$REVERJw.
Writes character data in reverse order and preserves blanks

Category: Character
Alignment: right

Syntax
$REVERJw.

Syntax Description

w
specifies the width of the output field.
Default: 1 if the length of the variable is undefined; otherwise, the length of the

variable
Range: 1–32767

Comparisons
The $REVERJw. format is similar to the $REVERSw. format except that $REVERSw.
left aligns the result by trimming all leading blanks.

Examples

put @1 name $reverj7.;

Values* Results

----+----1

ABCD### DCBA

###ABCD DCBA

* The character # represents a blank space.

$REVERSw.
Writes character data in reverse order and left aligns

80 $UPCASEw. 4 Chapter 3

Category: Character
Alignment: left

Syntax
$REVERSw.

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–32767

Comparisons
The $REVERSw. format is similar to the $REVERJw. format except that $REVERJw.
does not left align the result.

Examples

put @1 name $revers7.;

Values* Results

----+----1

ABCD### DCBA

###ABCD DCBA

* The character # represents a blank space.

$UPCASEw.

Converts character data to uppercase

Category: Character
Alignment: left

Syntax
$UPCASEw.

Syntax Description

Formats 4 $VARYINGw. 81

w
specifies the width of the output field.

Default: 8 if the length of the variable is undefined; otherwise, the length of the
variable

Range: 1–32767

Details
Special characters, such as hyphens and other symbols, are not altered.

Examples

put @1 name $upcase9.;

Values Results

----+----1

coxe-ryan COXE-RYAN

$VARYINGw.

Writes character data of varying length

Valid: in DATA step

Category: Character

Alignment: left

Syntax
$VARYINGw. length-variable

Syntax Description

w
specifies the maximum width of the output field for any output line or output file
record.

Default: 8 if the length of the variable is undefined; otherwise, the length of the
variable

Range: 1–32767

length-variable
specifies a numeric variable that contains the length of the current value of the
character variable. SAS obtains the value of the length-variable by reading it directly
from a field that is described in an INPUT statement, reading the value of a variable
in an existing SAS data set, or calculating its value.

82 $VARYINGw. 4 Chapter 3

Requirement: You must specify length-variable immediately after $VARYINGw. in
a SAS statement.

Restriction: Length-variable cannot be an array reference.
Tip: If the value of length-variable is 1 or missing, SAS writes nothing to the output

field. If the value of length-variable is greater than 0 but less than w, SAS writes
the number of characters that are specified by length-variable.

Details
Use $VARYINGw. when the length of a character value differs from record to record.
After writing a data value with $VARYINGw., the pointer’s position is the first column
after the value.

Examples

Example 1: Obtaining a Variable Length Directly An existing data set variable
contains the length of a variable. The data values and the results follow the
explanation of this SAS statement:

put @10 name $varying12. varlen;

NAME is a character variable of length 12 that contains values that vary from 1 to 12
characters in length. VARLEN is a numeric variable in the same data set that contains
the actual length of NAME for the current observation.

Values* Results

----+----1----+----2----+

New York 8 New York

Toronto 7 Toronto

Buenos Aires 12 Buenos Aires

Tokyo 5 Tokyo

* The value of NAME appears before the value of VARLEN.

Example 2: Obtaining a Variable Length Indirectly Use the LENGTH function to
determine the length of a variable. The data values and the results follow the
explanation of these SAS statements:

varlen=length(name);
put @10 name $varying12. varlen;

The assignment statement determines the length of the varying-length variable. The
variable VARLEN contains this length and becomes the length-variable argument to the
$VARYING12. format.

Values* Results

----+----1----+----2----+

New York New York

Toronto Toronto

Buenos Aires Buenos Aires

Tokyo Tokyo

* The value of NAME appears before the value of VARLEN.

Formats 4 BESTw. 83

$w.

Writes standard character data

Category: Character
Alignment left
Alias: $Fw.

Syntax
$w.

Syntax Description

w
specifies the width of the output field. You can specify a number or a column range.
Default: 1 if the length of the variable is undefined; otherwise, the length of the

variable
Range: 1–32767

Comparisons
The $w. format and the $CHARw. format are identical, and they do not trim leading
blanks. To trim leading blanks, use the LEFT function to left align character data prior
to output, or use list output with the colon (:) format modifier and the format of your
choice.

Examples

put @10 name $5.;
put name $ 10-15;

Values* Results

----+----1----+----2

#Cary Cary

Tokyo Tokyo

* The character # represents a blank space.

BESTw.

SAS chooses the best notation

Category: Numeric

84 BINARYw. 4 Chapter 3

Alignment: right

Syntax
BESTw.

Syntax Description

w
specifies the width of the output field.

Default: 12

Tip: If you print numbers between 0 and .01 exclusive, use a field width of at least
7 to avoid excessive rounding. If you print numbers between 0 and -.01 exclusive,
use a field width of at least 8.

Range: 1–32

Details
The BESTw. format is the default format for writing numeric values. When there is no
format specification, SAS chooses the format that provides the most information about
the value according to the available field width. BESTw. rounds the value, and if SAS
can display at least one significant digit in the decimal portion, within the width
specified, BESTw. produces the result in decimal. Otherwise it produces the result in
scientific notation. SAS always stores the complete value regardless of the format that
you use to represent it.

Examples

put @1 x best6.;
put @1 x best3.;

Values Results

----+----1----+----2

1257000 1.26E6

1E6

BINARYw.

Converts numeric values to binary representation

Category: Numeric

Alignment: left

Formats 4 COMMAw.d 85

Syntax
BINARYw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–64

Details
The BINARYw. format writes any negative numbers as all 1s.

Comparisons
BINARYw. converts numeric values to binary representation. The $BINARYw. format
converts character values to binary representation.

Examples

put @1 x binary8.;

Values Results

----+----1

123.45 01111011

123 01111011

-123 10000101

COMMAw.d

Writes numeric values with commas and decimal points

Category: Numeric
Alignment: right

Syntax
COMMAw.d

86 COMMAXw.d 4 Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 2–32
Tip: Make w wide enough to write the numeric values, the commas, and the

optional decimal point.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Range: 0–31
Requirement: must be less than w

Details
The COMMAw.d format writes numeric values with commas that separate every three
digits and a period that separates the decimal fraction.

Comparisons
� The COMMAw.d format is similar to the COMMAXw.d format, but the

COMMAXw.d format reverses the roles of the decimal point and the comma. This
convention is common in European countries.

� The COMMAw.d format is similar to the DOLLARw.d format except that the
COMMAw.d format does not print a leading dollar sign.

Examples

put @10 sales comma10.2;

Values Results

----+----1----+----2

23451.23 23,451.23

123451.234 123,451.23

See Also

Formats:
“COMMAXw.d” on page 86
“DOLLARw.d” on page 97

COMMAXw.d
Writes numeric values with periods and commas

Formats 4 Dw.s 87

Category: Numeric
Alignment: right

Syntax
COMMAXw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 2–32
Tip: Make w wide enough to write the numeric values, the commas, and the

optional decimal point.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Range: 0–31
Requirement: must be less than w

Details
The COMMAXw.d format writes numeric values with periods that separate every three
digits and with a comma that separates the decimal fraction.

Comparisons
The COMMAw.d format is similar to the COMMAXw.d format, but the COMMAXw.d
format reverses the roles of the decimal point and the comma. This convention is
common in European countries.

Examples

put @10 sales commax10.2;

Values Results

----+----1----+----2

23451.23 23.451,23

123451.234 123.451,23

Dw.s
Prints variables, possibly with a great range of values, lining up decimal places for values of
similar magnitude

88 Dw.s 4 Chapter 3

Category: Numeric

Alignment: right

Syntax
Dw.s

Syntax Description

w
optionally specifies the width of the output field.

Default: 12

Range: 1–32

s
optionally specifies the significant digits.

Default: 3

Range; 0–16

Requirement: must be less than w

Details
The Dw.s format writes numbers so that the decimal point aligns in groups of values
with similar magnitude.

Comparisons
� The BESTw. format writes as many significant digits as possible in the output

field, but if the numbers vary in magnitude, the decimal points do not line up.

� Dw.s writes numbers with the desired precision and more alignment than BESTw.

� The w.d format aligns decimal points, if possible, but does not necessarily show
the same precision for all numbers.

Examples

put @1 x d10.4;

Values Results

----+----1----+----2

12345 12345.0

1234.5 1234.5

123.45 123.45000

12.345 12.34500

Formats 4 DATEw. 89

Values Results

1.2345 1.23450

.12345 0.12345

DATEw.
Writes date values in the form ddmmmyy or ddmmmyyyy

Category: Date and Time
Alignment: right

Syntax
DATEw.

Syntax Description

w
specifies the width of the output field.
Default: 7
Range: 5–9
Tip: Use a width of 9 to print a 4–digit year.

Details
The DATEw. format writes SAS date values in the form ddmmmyy or ddmmmyyyy,
where

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1----+

put day date5.; 16MAR

put day date6.; 16MAR

put day date7.; 16MAR02

90 DATEAMPMw.d 4 Chapter 3

SAS Statements Results

put day date8.; 16MAR02

put day date9.; 16MAR2002

See Also

Function:

“DATE” on page 312

Informat:

“DATEw.” on page 666

DATEAMPMw.d

Writes datetime values in the form ddmmmyy:hh:mm:ss.ss with AM or PM

Category: Date and Time

Alignment: right

Syntax
DATEAMPMw.d

Syntax Description

w
specifies the width of the output field.

Default: 19

Range: 7–40

Tip: SAS requires a minimum w value of 13 to write AM or PM. For widths
between 10 and 12, SAS writes a 24-hour clock time.

d
optionally specifies the number of digits to the right of the decimal point in the
seconds value.

Requirement: must be less than w

Range: 0–39

Note: If w–d< 17, SAS truncates the decimal values. 4

Details
The DATEAMPMw.d format writes SAS datetime values in the form
ddmmmyy:hh:mm:ss.ss, where

dd
is an integer that represents the day of the month.

Formats 4 DATETIMEw.d 91

mmm
is the first three letters of the month name.

yy
is a two-digit integer that represents the year.

hh
is an integer that represents the hour.

mm
is an integer that represents the minutes.

ss.ss
is the number of seconds to two decimal places.

Comparisons
The DATEAMPMw.d format is similar to the DATETIMEMw.d format except that
DATEAMPMw.d prints AM or PM at the end of the time.

Examples

The example table uses the input value of 1347453583, which is the SAS datetime
value that corresponds to 12:39:43 PM on September 12, 2002.

SAS Statements Results

----+----1----+----2----+

put event dateampm.; 12SEP02:12:39:43 PM

put event dateampm7.; 12SEP02

put event dateampm10.; 12SEP02:12

put event dateampm13.; 12SEP02:12 PM

put event dateampm22.2; 12SEP02:12:39:43.00 PM

See Also

Format:
“DATETIMEw.d” on page 91

DATETIMEw.d

Writes datetime values in the form ddmmmyy:hh:mm:ss.ss

Category: Date and Time
Alignment: right

Syntax
DATETIMEw.d

92 DATETIMEw.d 4 Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 7–40
Tip: SAS requires a minimum w value of 16 to write a SAS datetime value with the

date, hour, and seconds. Add an additional two places to w to return values with
optional decimal fractions of seconds.

d
optionally specifies the number of digits to the right of the decimal point in the
seconds value.
Requirement: must be less than w
Range: 0–39
Note: If w–d< 17, SAS truncates the decimal values. 4

Details
The DATETIMEw.d format writes SAS datetime values in the form
ddmmmyy:hh:mm:ss.ss, where

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy
is a two-digit integer that represents the year.

hh
is an integer that represents the hour.

mm
is an integer that represents the minutes.

ss.ss
is the number of seconds to two decimal places.

Examples

The example table uses the input value of 1347453583, which is the SAS datetime
value that corresponds to September 12, 2002, at 12:39:43 PM.

SAS Statements Results

----+----1----+----2

put event datetime.; 12SEP02:12:39:43

put event datetime7.; 12SEP02

put event datetime12.; 12SEP02:12

put event datetime18.; 12SEP02:12:39:43

Formats 4 DAYw. 93

SAS Statements Results

put event datetime18.1; 12SEP02:12:39:43.0

put event datetime19; 12SEP2002:12:39:43

put event datetime20.1; 12SEP2002:12:39:43.0

put event datetime21.2; 12SEP2002:12:39:43.00

See Also

Formats:

“DATEw.” on page 89

“TIMEw.d” on page 172

Function:

“DATETIME” on page 315

Informats:

“DATEw.” on page 666

“DATETIMEw. ”on page 667

“TIMEw.” on page 727

DAYw.

Writes date values as the day of the month

Category: Date and Time

Alignment: right

Syntax
DAYw.

Syntax Description

w
specifies the width of the output field.

Default: 2

Range: 2–32

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

94 DDMMYYw. 4 Chapter 3

SAS Statements Results

----+----1

put date day2.; 16

DDMMYYw.

Writes date values in the form ddmmyy or ddmmyyyy

Category: Date and Time

Alignment: right

Syntax
DDMMYYw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 2–10

Tip: When w is from 2 to 5, SAS prints as much of the month and day as possible.
When w is 7, the date appears as a two-digit year without slashes, and the value
is right aligned in the output field.

Details
The DDMMYYw. format writes SAS date values in the form ddmmyy or ddmmyyyy,
where

dd
is an integer that represents the day of the month.

mm
is an integer that represents the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

Formats 4 DDMMYYxw. 95

SAS Statements Results

----+----1----+

put date ddmmyy5.; 16/03

put date ddmmyy6.; 160302

put date ddmmyy7.; 160302

put date ddmmyy8.; 16/03/02

put date ddmmyy10.; 16/03/2002

See Also

Formats:

“DATEw.” on page 89

“MMDDYYw.” on page 131

“YYMMDDw.” on page 188

Function:

“MDY” on page 443

Informats:

“DATEw.” on page 666

“DDMMYYw.” on page 669

“MMDDYYw.” on page 687

“YYMMDDw.” on page 733

DDMMYYxw.

Writes date values in the form ddmmyy or ddmmyyyy with a specified separator

Category: Date and Time

Alignment: right

Syntax
DDMMYYxw.

Syntax Description

x
specifies a separator or no separator, where

B
separates with a blank

C
separates with a colon

96 DDMMYYxw. 4 Chapter 3

D
separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a slash.

w
specifies the width of the output field.
Default: 8
Range: 2–10
Tip: When w is from 2 to 5, SAS prints as much of the month and day as possible.

When w is 7, the date appears as a two-digit year without separators, and the
value is right aligned in the output field.

Note: When x is N, the width range is 2–8. 4

Details
The DDMMYYxw. format writes SAS date values in the form ddmmyy or ddmmyyyy,
where

dd
is an integer that represents the day of the month.

mm
is an integer that represents the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1----+

put date ddmmyyc5.; 16:03

put date ddmmyyd8.; 16-03-02

Formats 4 DOLLARw.d 97

SAS Statements Results

put date ddmmyyp10.; 16.03.2002

put date ddmmyyn8.; 16032002

See Also

Formats:
“DATEw.” on page 89
“MMDDYYxw.” on page 132
“YYMMDDxw.” on page 190

Functions:
“DAY” on page 315
“MDY” on page 443
“MONTH” on page 451
“YEAR” on page 618

Informat:
“DDMMYYw.” on page 669

DOLLARw.d

Writes numeric values with dollar signs, commas, and decimal points

Category: Numeric
Alignment: right

Syntax
DOLLARw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 2–32

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Range: 0–31
Requirement: must be less than w

Details
The DOLLARw.d format writes numeric values with a leading dollar sign, with a comma
that separates every three digits, and a period that separates the decimal fraction.

98 DOLLARXw.d 4 Chapter 3

The hexadecimal representation of the code for the dollar sign character ($) is 5B on
EBCDIC systems and 24 on ASCII systems. The monetary character that these codes
represent may be different in other countries, but DOLLARw.d always produces one of
these codes. If you need another monetary character, define your own format with the
FORMAT procedure. See “The FORMAT Procedure” in SAS Procedures Guide for more
details.

Comparisons
� The DOLLARw.d format is similar to the DOLLARXw.d format, but the

DOLLARXw.d format reverses the roles of the decimal point and the comma. This
convention is common in European countries.

� The DOLLARw.d format is the same as the COMMAw.d format except that the
COMMAw.d format does not write a leading dollar sign.

Examples

put @3 netpay dollar10.2;

Values Results

----+----1----+

1254.71 $1,254.71

See Also

Formats:
“COMMAw.d ”on page 85
“DOLLARXw.d” on page 98

DOLLARXw.d

Writes numeric values with dollar signs, periods, and commas

Category: Numeric
Alignment: right

Syntax
DOLLARXw.d

Syntax Description

w
specifies the width of the output field.

Formats 4 DOWNAMEw. 99

Default: 6
Range: 2–32

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Default: 6
Range: 2–32

Details
The DOLLARXw.d format writes numeric values with a leading dollar sign, with a
period that separates every three digits, and with a comma that separates the decimal
fraction.

The hexadecimal representation of the code for the dollar sign character ($) is 5B on
EBCDIC systems and 24 on ASCII systems. The monetary character that these codes
represent may be different in other countries, but DOLLARXw.d always produces one of
these codes. If you need another monetary character, define your own format with the
FORMAT procedure. See “The FORMAT Procedure” in SAS Procedures Guide for more
details.

Comparisons
� The DOLLARXw.d format is similar to the DOLLARw.d format, but the

DOLLARXw.d format reverses the roles of the decimal point and the comma. This
convention is common in European countries.

� The DOLLARXw.d format is the same as the COMMAXw.d format except that the
COMMAw.d format does not write a leading dollar sign.

Examples

put @3 netpay dollarx10.2;

Values Results

----+----1----+

1254.71 $1.254,71

See Also

Formats:
“COMMAXw.d” on page 86
“DOLLARw.d” on page 97

DOWNAMEw.

Writes date values as the name of the day of the week

100 Ew. 4 Chapter 3

Category: Date and Time
Alignment: right

Syntax
DOWNAMEw.

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32
Tip: If you omit w, SAS prints the entire name of the day.

Details
If necessary, SAS truncates the name of the day to fit the format width. For example,
the DOWNAME2. prints the first two letters of the day name.

Examples

The example table uses the input value of 13589, which is the SAS date value that
corresponds to March 16, 1997.

SAS Statements Results

----+----1

put date downame.; Sunday

See Also

Format:
“WEEKDAYw.” on page 180

Ew.

Writes numeric values in scientific notation

Category: Numeric
Alignment: right

Syntax
Ew.

Formats 4 EURDFDDw. 101

Syntax Description

w
specifies the width of the output field.
Default: 12
Range: 7–32

Details
SAS reserves the first column of the result for a minus sign.

Examples

put @1 x e10.;

Values Results

----+----1----+

1257 1.257E+03

-1257 -1.257E+03

EURDFDDw.

Writes international date values in the form dd.mm.yy or dd.mm.yyyy

Category: Date and Time
Alignment: right

Syntax
EURDFDDw.

Syntax Description

w
specifies the width of the output field.
Default: 8 (except Finnish)
Range: 2–10
Tip: When w is from 2 to 5, SAS prints as much of the month and day as possible.

When w is 7, the date appears as a two-digit year without slashes, and the value
is right aligned in the output field.

Note: If you use the Finnish (FIN) language prefix, the default w is 10. 4

102 EURDFDDw. 4 Chapter 3

Details
The EURDFDDw. format writes SAS date values in the form dd.mm.yy or dd.mm.yyyy,
where

dd
is the two-digit integer that represents the day of the month.

mm
is the two-digit integer that represents the month.

yy or yyyy
is a two-or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes. When you specify the language prefix in the format,
SAS ignores the DFLANG= system option.

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
international date value. The third PUT statement uses the French language prefix in
the format to write the international date value. The value of the DFLANG= option,
therefore, is ignored.

Formats 4 EURDFDEw. 103

SAS Statements Results

----+----1

put date eurdfdd8.; 02.01.02

put date espdfdd8.; 02.01.02

put date fradfdd8.; 02/01/02

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131
“YYMMDDw.” on page 188

Function:
“MDY” on page 443

Informats:
“DATEw.” on page 666
“DDMMYYw.” on page 669
“MMDDYYw.” on page 687
“YYMMDDw.” on page 733

System Option:
“DFLANG=” on page 1085

EURDFDEw.

Writes international date values in the form ddmmmyy or ddmmmyyyy

Category: Date and Time
Alignment: right

Syntax
EURDFDEw.

Syntax Description

w
specifies the width of the output field.
Default: 7 (except Finnish)
Range: 5–9 (except Finnish)
Note: If you use the Finnish (FIN) language prefix, the w range is 9–10 and the

default is 9. 4

104 EURDFDEw. 4 Chapter 3

Details
The EURDFDEw. format writes SAS date values in the form ddmmmyy or
ddmmmyyyy, where

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two– or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes. When you specify the language prefix in the format,
SAS ignores the DFLANG= option.

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
international date value in Spanish. The third PUT statement uses the French
language prefix in the format to write the international date value in French. The value
of the DFLANG= option, therefore, is ignored.

SAS Statements Results

----+----1

put date eurdfde9.; 02ene2002

Formats 4 EURDFDNw. 105

SAS Statements Results

put date espdfde9.; 02ene2002

put date fradfde9.; 02jan2002

See Also

Format:
“DATEw.” on page 89

Function:
“DATE” on page 312

Informat:
“EURDFDEw. ”on page 671

System Option:
“DFLANG=” on page 1085

EURDFDNw.

Writes international date values as the day of the week

Category: Date and Time
Alignment: right

Syntax
EURDFDNw.

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–32

Details
The EURDFDNw. format writes SAS date values in the form day-of-the-week, where

day-of-the-week
is represented as 1=Monday, 2=Tuesday, and so on.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes. When you specify the language prefix in the format,
SAS ignores the DFLANG= option.

106 EURDFDTw.d 4 Chapter 3

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
day of the week in Spanish. The third PUT statement uses the Italian lanaguage prefix
in the format to write the day of the week in Italian. The value of the DFLANG=
option, therefore, is ignored.

SAS Statements Results

----+----1

put day eurdfdn.; 3

put day espdfdn.; 3

put day itadfdn.; 3

See Also

Formats:
“DOWNAMEw.” on page 99
“WEEKDAYw.” on page 180

System Option:
“DFLANG=” on page 1085

EURDFDTw.d

Writes international datetime values in the form ddmmmyy:hh:mm:ss.ss or
ddmmmyyyy hh:mm:ss.ss

Category: Date and Time
Alignment: right

Syntax
EURDFDTw.d

Syntax Description

w
specifies the width of the output field.
Default: 16

Formats 4 EURDFDTw.d 107

Range: 7–40

Tip: If you want to write a SAS datetime value with the date, hour, and seconds,
the width of w must be at least 16. Add an additional two places to the width if
you want to return values with optional decimal fractions of seconds.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Range: 1–39

Restriction: must be less than w

Restriction: If w – d < 17, SAS truncates the decimal values.

Details
The EURDFDTw. format writes SAS datetime values in the form
ddmmmyy:hh:mm:ss.ss, where

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

ss.ss
is the number of seconds that range from 00 through 59 with the fraction of a
second following the decimal point.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes. When you specify the language prefix in the format,
SAS ignores the DFLANG= option.

Examples

The example table uses the input value of 1347453583, which is the SAS datetime
value that corresponds to September 12, 2002, at 12:39:43 PM. The first PUT statement
assumes the DFLANG= system option is set to German.

options dflang=german;

The second PUT statement uses the German language prefix in the format to write the
international datetime value in German. The third PUT statement uses the Italian
language prefix in the format to write the international datetime value in Italian. The
value of the DFLANG= option, therefore, is ignored.

108 EURDFDWNw. 4 Chapter 3

SAS Statements Results

----+----1----+----2

put date eurdfdt20.; 12Sep2002:12:39:43

put date deudfdt20.; 12Sep2002:12:39:43

put date itadfdt20.; 12Set2002:12:39:43

See Also

Formats:
“DATEw.” on page 89
“DATETIMEw.d” on page 91
“TIMEw.d” on page 172

Function:
“DATETIME” on page 315

Informats:
“DATEw.” on page 666
“DATETIMEw. ”on page 667
“EURDFDTw.” on page 673
“TIMEw.” on page 727

System Option:
“DFLANG=” on page 1085

EURDFDWNw.
Writes international date values as the name of the day

Category: Date and Time
Alignment: right

Syntax
EURDFDWNw.

Syntax Description

w
specifies the width of the output field.
Default: depends on the language prefix you use. The following table shows the

default for each language:

Language Default

Afrikaans (AFR) 9

Catalan (CAT) 9

Croatian (CRO) 10

Formats 4 EURDFDWNw. 109

Language Default

Czech (CSY) 7

Danish (DAN) 7

Dutch (NLD) 9

Finnish (FIN) 11

French (FRA) 8

German (DEU) 10

Hungarian (HUN) 9

Italian (ITA) 9

Macedonian (MAC) 10

Norwegian (NOR) 7

Polish (POL) 12

Portuguese (PTG) 13

Russian (RUS) 11

Slovenian (SLO) 10

Spanish (ESP) 9

Swedish (SVE) 7

Swiss-French (FRS) 8

Swiss-German (DES) 10

Range: 1–32

Tip: If you omit w, SAS prints the entire name of the day.

Details
If necessary, SAS truncates the name of the day to fit the format width. The
EURDFDWNw. format writes SAS date values in the form day-name, where

day-name
is the name of the day.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes. When you specify the language prefix in the format,
SAS ignores the DFLANG= option.

Examples

The following example table uses the input value 15344, which is the SAS date value
that corresponds to January 4, 2002. The first PUT statement assumes the DFLANG=
system option is set to French.

options dflang=french;

put day eurdfdwn8.;

110 EURDFMNw. 4 Chapter 3

The second PUT statement uses the French language prefix in the format to write the
day of the week in French. The third PUT statement uses the Spanish language prefix
in the format to write the day of the week in Spanish. The value of the DFLANG=
option, therefore, is ignored.

SAS Statements Results

----+----1

put day eurdfdwn8.; Vendredi

put day fradfdwn8.; Vendredi

put day espdfdwn8.; viernes

See Also

Formats:
“DOWNAMEw.” on page 99
“WEEKDAYw.” on page 180

Informats:
“DATEw.” on page 666
“DATETIMEw. ”on page 667
“EURDFDTw.” on page 673

“TIMEw.” on page 727
System Option:

“DFLANG=” on page 1085

EURDFMNw.

Writes international date values as the name of the month

Category: Date and Time
Alignment: right

Syntax
EURDFMNw.

Syntax Description

w
specifies the width of the output field.
Default: 9 (except for Finnish and Spanish)
Range: 1–32

Formats 4 EURDFMYw. 111

Note: If you use the Finnish (FIN) language prefix, the default w is 11. If you use
the Spanish (ESP) language prefix, the default w is 10. 4

Details
If necessary, SAS truncates the name of the month to fit the format width. The
EURDFMNw. format writes SAS date values in the form month-name, where

month-name
is the name of the month.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes. When you specify the language prefix in the format,
SAS ignores the DFLANG= option.

Examples

The example table uses the input value 15344, which is the SAS date value that
corresponds to January 4, 2002. The first PUT statement assumes the DFLANG=
system option is set to Italian.

options dflang=ita;

The second PUT statement uses the Italian language prefix in the format to write the
name of the month in Italian. The third PUT statement uses German language prefix
in the format to write the name of the month in German. The value of the DFLANG=
option, therefore, is ignored.

SAS Statements Results

----+----1

put date eurdfmn10.; janvier

put date itadfmn10.; Gennaio

put date deudfmn10.; Januar

See Also

Format:
“MONNAMEw.” on page 136

Function:
“DATE” on page 312

Informat:
“EURDFDEw. ”on page 671

System Option:
“DFLANG=” on page 1085

EURDFMYw.
Writes international date values in the form mmmyy or mmmyyyy

112 EURDFMYw. 4 Chapter 3

Category: Date and Time
Alignment: right

Syntax
EURDFMYw.

Syntax Description

w
specifies the width of the output field.
Default: 5 (except for Finnish)
Range: 5–7
Note: If you use the Finnish (FIN) language prefix, w must be 8, which is the

default value. 4

Details
The EURDFMYw. format writes SAS date values in the form mmmyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes. When you specify the language prefix in the format,
SAS ignores the DFLANG= option.

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
name of the month in Spanish. The third PUT statement uses the French language
prefix in the format to write the name of the month in French. The value of the
DFLANG= option, therefore, is ignored.

Formats 4 EURDFWDXw. 113

SAS Statements Results

----+----1

put date eurdfmy7.; ene2002

put date espdfmy7.; ene2002

put date fradfmy7.; jan2002

See Also

Formats:

“DDMMYYw.” on page 94

“MMDDYYw.” on page 131

“MONYYw.” on page 138

“YYMMDDw.” on page 188

Functions:

“MONTH” on page 451

“YEAR” on page 618

Informats:

“EURDFMYw. ”on page 675

“MONYYw.” on page 689

System Option:

“DFLANG=” on page 1085

EURDFWDXw.

Writes international date values as the name of the month, the day, and the year in the form dd
month-name yy (or yyyy)

Category: Date and Time

Alignment: right

Syntax
EURDFWDXw.

Syntax Description

w
specifies the width of the output field.

Default: depends on the language prefix you use. The following table shows the
default for each language:

114 EURDFWDXw. 4 Chapter 3

Language Maximum Default

Afrikaans (AFR) 37 29

Catalan (CAT) 40 16

Croatian (CRO) 40 16

Czech (CSY) 40 16

Danish (DAN) 18 18

Dutch (NLD) 37 29

Finnish (FIN) 20 20

French (FRA) 18 18

German (DEU) 18 18

Hungarian (HUN) 40 18

Italian (ITA) 17 17

Macedonian (MAC) 40 17

Norwegian (NOR) 17 17

Polish (POL) 40 20

Portuguese (PTG) 37 23

Russian (RUS) 40 16

Slovenian (SLO) 40 17

Spanish (ESP) 24 24

Swedish (SVE) 17 17

Swiss-French (FRS) 17 17

Swiss-German (DES) 18 18

Range: 3 – maximum width
Tip: If w is too small to write the complete day of the week and the month, SAS

abbreviates as necessary.

Details
The EURDFWDXw. format writes SAS date values in the form dd month-name yy or
dd month-name yyyy, where

dd
is an integer that represents the day of the month.

month-name
is the name of the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes. When you specify the language prefix in the format,
SAS ignores the DFLANG= option.

Formats 4 EURDFWKXw. 115

Comparisons
The EURDFWKXw. format is the same as the EURDFWDXw. format except that
EURDFWKX w. prints dd after the month’s name.

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes the DFLANG=
system option is set to Dutch.

options dflang=dutch;

The second PUT statement uses the Dutch language prefix in the format to write the
name of the month in Dutch. The third PUT statement uses the Italian language prefix
in the format to write the name of the month in Italian. The value of the DFLANG=
option, therefore, is ignored.

SAS Statements Results

----+----1----+----2----+----3

put day eurdfwdx29.; 2 januari 2002

put day nlddfwdx29.; 2 januari 2002

put day itadfwdx17.; 02 Gennaio 1998

See Also

Format:
“WORDDATXw.” on page 182

System Option:
“DFLANG=” on page 1085

EURDFWKXw.

Writes international date values as the name of the day and date in the form day-of-week, dd
month-name yy (or yyyy)

Category: Date and Time
Alignment: right

Syntax
EURDFWKXw.

Syntax Description

116 EURDFWKXw. 4 Chapter 3

w
specifies the width of the output field.

Default: depends on the language prefix you use. The following table shows the
default for each language:

Language Minimum Maximum Default

Afrikaans (AFR) 2 38 28

Catalan (CAT) 2 40 27

Croatian (CRO) 3 40 27

Czech (CSY) 2 40 25

Danish (DAN) 2 31 31

Dutch (NLD) 2 38 28

Finnish (FIN) 2 37 37

French (FRA) 3 27 27

German (DEU) 3 30 30

Hungarian (HUN) 3 40 28

Italian (ITA) 3 28 28

Macedonian (MAC) 3 40 29

Norwegian (NOR) 3 26 26

Polish (POL) 2 40 34

Portuguese (PTG) 3 38 38

Russian (RUS) 2 40 29

Slovenian (SLO) 3 40 29

Spanish (ESP) 1 35 35

Swedish (SVE) 3 26 26

Swiss-French (FRS) 3 26 26

Swiss-German (DES) 3 30 30

Tip: If w is too small to write the complete day of the week and the month, SAS
abbreviates as necessary.

Details
The EURDFWKXw. format writes SAS date values in the form day-of-week, dd
month-name yy (or yyyy) where

day-of-week
is the name of day.

dd
is an integer that represents the day of the month.

month-name
is the name of the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

Formats 4 EURDFWKXw. 117

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See for the list of language
prefixes. When you specify the language prefix in the format, SAS ignores the
DFLANG= option.

Comparisons
The EURDFWKXw. format is the same as the EURDFWDXw. format except that
EURDFWKXw. prints dd after the month’s name.

Examples

The example table uses the input value 15344, which is the SAS date value that
corresponds to January 4, 2002. The first PUT statement assumes the DFLANG=
system option is set to German.

options dflang=German;

The second PUT statement uses the German language prefix in the format to write the
name of the month in German. The third PUT statement uses the Italian language
prefix in the format to write the name of the month in Italian. The value of the
DFLANG= option, therefore, is ignored.

Values Results

----+----1----+----2----+----3

put date eurdfwkx30.; Freitag, 4. Januar 2002

118 FLOATw.d 4 Chapter 3

Values Results

put date deudfwkx30.; Freitag, 4. Januar 2002

put date itadfwkx17.; Ven, 04 Gen 2002

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131

“TODw.d” on page 175
“WEEKDATXw.” on page 179
“YYMMDDw.” on page 188

Functions:
“JULDATE” on page 416
“MDY” on page 443

“WEEKDAY” on page 617
Informats:

“DATEw.” on page 666
“DDMMYYw.” on page 669
“MMDDYYw.” on page 687
“YYMMDDw.” on page 733

System Option:
“DFLANG=” on page 1085

FLOATw.d

Generates a native single-precision, floating-point value by multiplying a number by 10 raised to
the dth power

Category: Numeric
Alignment: left

Syntax
FLOATw.d

Syntax Description

w
specifies the width of the output field.
Requirement: width must be 4.

Formats 4 FRACTw. 119

d
optionally specifies the power of 10 by which to divide the value.

Details
This format is useful in operating environments where a float value is not the same as
a truncated double. Values that are written by FLOAT4. typically are those meant to
be read by some other external program that runs in your operating environment and
that expects these single-precision values.

Note: If the value that is to be formatted is a missing value, or if it is out-of-range
for a native single-precision, floating-point value, a single-precision value of zero is
generated. 4

On IBM mainframe systems, a four-byte floating point number is the same as a
truncated eight-byte floating point number. However, in operating environments using
the IEEE floating-point standard, such as IBM PC-based operating environments and
most UNIX operating environments, a four-byte floating-point number is not the same
as a truncated double. Hence, the RB4. format does not produce the same results as
the FLOAT4. format. Floating-point representations other than IEEE may have this
same characteristic.

Comparisons
The following table compares the names of float notation in several programming

languages:

Language Float Notation

SAS FLOAT4

FORTRAN REAL+4

C float

IBM 370 ASM E

PL/I FLOAT BIN(21)

Examples

put x float4.;

Values Results*

1 3F800000

* The result is a hexadecimal representation of a binary number that is stored in IEEE form.

FRACTw.

Converts numeric values to fractions

Category: Numeric
Alignment: right

120 HEXw. 4 Chapter 3

Syntax
FRACTw.

Syntax Description

w
specifies the width of the output field.

Default: 10

Range: 4–32

Details
Dividing the number 1 by 3 produces the value 0.33333333. To write this value as 1/3,
use the FRACTw. format. FRACTw. writes fractions in reduced form, that is, 1/2
instead of 50/100.

Examples

put x fract8.;

Values Results

----+----1

0.6666666667 2/3

0.2784 174/625

HEXw.

Converts real binary (floating-point) values to hexadecimal representation

Category: Numeric

Alignment: left

Syntax
HEXw.

Syntax Description

Formats 4 HHMMw.d 121

w
specifies the width of the output field.
Default: 8
Range: 1–16
Tip: If w< 16, the HEXw. format converts real binary numbers to fixed-point

integers before writing them as hexadecimal digits. It also writes negative
numbers in two’s complement notation, and right aligns digits. If w is 16, HEXw.
displays floating-point values in their hexadecimal form.

Details
In any operating environment, the least significant byte written by HEXw. is the
rightmost byte. Some operating environments store integers with the least significant
digit as the first byte. The HEXw. format produces consistent results in any operating
environment regardless of the order of significance by byte.

Note: Different operating environments store floating-point values in different ways.
However, the HEX16. format writes hexadecimal representations of floating-point
values with consistent results in the same way that your operating environment stores
them. 4

Comparisons
The HEXw. numeric format and the $HEXw. character format both generate the
hexadecimal equivalent of values.

Examples

put @8 x hex8.;

Values Results

----+----1----+----2

35.4 00000023

88 00000058

2.33 00000002

-150 FFFFFF6A

HHMMw.d
Writes time values as hours and minutes in the form hh:mm

Category: Date and Time
Alignment: right

Syntax
HHMMw.d

122 HHMMw.d 4 Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 5
Range: 2–20

d
optionally specifies the number of digits to the right of the decimal point in the
minutes value.
Requirement: must be less than w
Range: 1–19

Details
The HHMMw.d format writes SAS datetime values in the form hh:mm, where

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

SAS rounds hours and minutes that are based on the value of seconds in a SAS time
value.

Comparisons
The HHMMw.d format is similar to the TIMEw.d format except that the HHMMw.d
format does not print seconds.

Examples

The example table uses the input value of 46796, which is the SAS time value that
corresponds to 12:59:56 PM.

SAS Statements Results

----+----1

put time hhmm.; 13:00

SAS rounds up the time value four seconds based on the value of seconds in the SAS
time value.

Formats 4 HOURw.d 123

See Also

Formats:
“HOURw.d” on page 123
“MMSSw.d” on page 134
“TIMEw.d” on page 172

Functions:
“HMS” on page 394
“HOUR” on page 395
“MINUTE” on page 445
“SECOND” on page 542
“TIME” on page 563

Informat:
“TIMEw.” on page 727

HOURw.d
Writes time values as hours and decimal fractions of hours

Category: Date and Time
Alignment: right

Syntax
HOURw.d

Syntax Description

w
specifies the width of the output field.
Default: 2
Range: 2–20

d
optionally specifies the number of digits to the right of the decimal point in the hour
value. Therefore, SAS prints decimal fractions of the hour.
Requirement: must be less than w
Range: 0-19

Details
SAS rounds hours based on the value of minutes in the SAS time value.

Examples

The example table uses the input value of 41400, which is the SAS time value that
corresponds to 11:30 AM.

124 IBw.d 4 Chapter 3

SAS Statements Results

----+----1

put time hour4.1; 11.5

See Also

Formats:
“HHMMw.d” on page 121
“MMSSw.d” on page 134
“TIMEw.d” on page 172
“TODw.d” on page 175

Functions:
“HMS” on page 394
“HOUR” on page 395
“MINUTE” on page 445
“SECOND” on page 542
“TIME” on page 563

Informat:
“TIMEw.” on page 727

IBw.d

Writes native integer binary (fixed-point) values, including negative values

Category: Numeric
Alignment: left

Syntax
IBw.d

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 1–8

d
optionally specifies to multiply the number by 10d.

Details
The IBw.d format writes integer binary (fixed-point) values, including negative values
that are represented in two’s complement notation. IBw.d writes integer binary values

Formats 4 IBRw.d 125

with consistent results if the values are created in the same type of operating
environment that you use to run SAS.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 55. 4

Comparisons
The IBw.d and PIBw.d formats are used to write native format integers. (Native format
allows you to read and write values created in the same operating environment.) The
IBRw.d and PIBRw.d formats are used to write little endian integers in any operating
environment.

To view a table that shows the type of format to use with big endian and little endian
integers, see Table 3.1 on page 56.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 56.

Examples

y=put(x,ib4.);
put y $hex8.;

Values Results on Big Endian Platforms* Results on Little Endian Platforms*

----+----1 ----+----1

128 00000080 80000000

* The result is a hexadecimal representation of a four-byte integer binary number. Each byte
occupies one column of the output field.

See Also

Format:

“IBRw.d” on page 125

IBRw.d

Writes integer binary (fixed-point) values in Intel and DEC formats

Category: Numeric

Alignment: left

Syntax
IBRw.d

126 IBRw.d 4 Chapter 3

Syntax Description

w
specifies the width of the output field.

Default: 4

Range: 1–8

d
optionally specifies to multiply the number by 10d.

Details
The IBRw.d format writes integer binary (fixed-point) values, including negative values
that are represented in two’s complement notation. IBRw.d writes integer binary
values that are generated by and for Intel and DEC operating environments. Use
IBRw.d to write integer binary data from Intel or DEC environments on other operating
environments. The IBRw.d format in SAS code allows for a portable implementation for
writing the data in any operating environment.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 55. 4

Comparisons
� The IBw.d and PIBw.d formats are used to write native format integers. (Native

format allows you to read and write values that are created in the same operating
environment.)

� The IBRw.d and PIBRw.d formats are used to write little endian integers,
regardless of the operating environment you are writing on.

� In Intel and DEC operating environments, the IBw.d and IBRw.d formats are
equivalent.

To view a table that shows the type of format to use with big endian and little endian
integers, see Table 3.1 on page 56.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 56.

Examples

y=put(x,ibr4.);
put y $hex8.;

Values Results*

----+----1

128 80000000

* The result is a hexadecimal representation of a 4-byte integer binary number. Each byte occupies
one column of the output field.

Formats 4 IEEEw.d 127

See Also

Format:

“IBw.d” on page 124

IEEEw.d

Generates an IEEE floating-point value by multiplying a number by 10 raised to the dth power

Category: Numeric

Alignment: left

Syntax
IEEEw.d

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 3–8

Tip: If w is 8, an IEEE double-precision, floating-point number is written. If w is 5,
6, or 7, an IEEE double-precision, floating-point number is written, which assumes
truncation of the appropriate number of bytes. If w is 4, an IEEE single-precision
floating-point number is written. If w is 3, an IEEE single-precision, floating-point
number is written, which assumes truncation of one byte.

d
optionally specifies to multiply the number by 10d.

Details
This format is useful in operating environments where IEEEw.d is the floating-point
representation that is used. In addition, you can use the IEEEw.d format to create files
that are used by programs in operating environments that use the IEEE floating-point
representation.

Typically, programs generate IEEE values in single-precision (4 bytes) or
double-precision (8 bytes). Programs perform truncation solely to save space on output
files. Machine instructions require that the floating-point number be one of the two
lengths. The IEEEw.d format allows other lengths, which enables you to write data to
files that contain space-saving truncated data.

Examples

128 JULDAYw. 4 Chapter 3

test1=put(x,ieee4.);
put test1 $hex8.;

test2=put(x,ieee5.);
put test2 $hex10.;

Values Results*

1 3F800000

3FF0000000

* The result contains hexadecimal representations of binary numbers stored in IEEE form.

JULDAYw.

Writes date values as the Julian day of the year

Category: Date and Time
Alignment: right

Syntax
JULDAYw.

Syntax Description

w
specifies the width of the output field.
Default: 3
Range: 3–32

Details
The JULDAYw. format writes SAS date values in the form ddd, where

ddd
is the number of the day, 1–365 (or 1–366 for leap years).

Examples

The example table uses the input values of 13515, which is the SAS date value that
corresponds to January 1, 1997, and 13589, which is the SAS date value that
corresponds to March 16, 1997.

Formats 4 JULIANw. 129

SAS Statements Results

----+----1

put date julday3.; 1

put date julday3.; 75

JULIANw.

Writes date values as Julian dates in the form yyddd or yyyyddd

Category: Date and Time
Alignment: left

Syntax
JULIANw.

Syntax Description

w
specifies the width of the output field.
Default: 5
Range: 5–7
Tip: If w is 5, the JULIANw. format writes the date with a two-digit year. If w is 7,

the JULIANw. format writes the date with a four-digit year.

Details
The JULIANw. format writes SAS date values in the form yyddd or yyyyddd, where

yy or yyyy
is a two- or four-digit integer that represents the year.

ddd
is the number of the day, 1–365 (or 1–366 for leap years), in that year.

Examples

The example table uses the input value of 15342, which is the SAS date value that
corresponds to January 2, 2002 (the 2nd day of the year).

SAS Statements Results

----+----1

put date julian5.; 02002

put date julian7.; 2002002

130 MINGUOw. 4 Chapter 3

See Also

Functions:
“DATEJUL” on page 313
“JULDATE” on page 416

Informat:
“JULIANw.” on page 685

MINGUOw.

Writes date values as Taiwanese dates in the form yyymmdd

Category: Date and Time
Alignment: left

Syntax
MINGUOw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–10

Details
The MINGUOw. format writes SAS date values in the form yyyymmdd, where

yyyy
is an integer that represents the year.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

The Taiwanese calendar uses 1912 as the base year (01/01/01 is January 1, 1912).
Dates prior to 1912 appear as a series of asterisks. Year values do not roll around after
100 years; instead, they continue to increase.

Examples

The example table uses the following input values:
1 12054 is the SAS date value that corresponds to January 1, 1993.
2 18993 is the SAS date value that corresponds to January 1, 2012.
3 -20088 is the SAS date value that corresponds to January 1, 1905.

Formats 4 MMDDYYw. 131

SAS Statements Results

----+----1

put date minguo10.; 0082/01/01

0101/01/01

MMDDYYw.

Writes date values in the form mmddyy or mmddyyyy

Category: Date and Time
Alignment: right

Syntax
MMDDYYw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 2–10

Details
The MMDDYYw. format writes SAS date values in the form mmddyy or mmddyyyy,
where

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

Examples

The example table uses the input value of 15595, which is the SAS date value that
corresponds to September 12, 2002.

132 MMDDYYxw. 4 Chapter 3

SAS Statements Results

----+----1----+

put day mmddyy2.; 09

put day mmddyy3.; 09

put day mmddyy4.; 0912

put day mmddyy5.; 09/12

put day mmddyy6.; 091202

put day mmddyy7.; 091202

put day mmddyy8.; 09/12/02

put day mmddyy10.; 09/12/2002

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“YYMMDDw.” on page 188

Functions:
“DAY” on page 315
“MDY” on page 443
“MONTH” on page 451
“YEAR” on page 618

Informats:
“DATEw.” on page 666
“DDMMYYw.” on page 669
“YYMMDDw.” on page 733

MMDDYYxw.

Writes date values in the form mmddyy or mmddyyyy with a specified separator

Category: Date and Time
Alignment: right

Syntax
MMDDYYxw.

Syntax Description

x
specifies a separator or no separator, where

Formats 4 MMDDYYxw. 133

B
separates with a blank

C
separates with a colon

D
separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a slash.

w
specifies the width of the output field.
Default: 8
Range: 2–10
Tip: When w is from 2 to 5, SAS prints as much of the month and day as possible.

When w is 7, the date appears as a two-digit year without separators, and the
value is right aligned in the output field.

Note: When x is N, the width range is 2–8. 4

Details
The MMDDYYxw. format writes SAS date values in the form mmddyy or mmddyyyy,
where

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

Examples

The example table uses the input value of 15595, which is the SAS date value that
corresponds to September 12, 2002.

134 MMSSw.d 4 Chapter 3

SAS Statements Results

----+----1----+

put day mmddyyc5.; 09:12

put day mmddyyd8.; 09-12-02

put day mmddyyp10.; 09.12.2002

put day mmddyyn8.; 09122002

See Also

Formats:
“DATEw.” on page 89
“DDMMYYxw.” on page 95
“YYMMDDxw.” on page 190

Functions:
“DAY” on page 315
“MDY” on page 443
“MONTH” on page 451
“YEAR” on page 618

Informat:
“MMDDYYw.” on page 687

MMSSw.d

Writes time values as the number of minutes and seconds since midnight

Category: Date and Time
Alignment: right

Syntax
MMSSw.d

Syntax Description

w
specifies the width of the output field.
Default: 5
Range: 2–20
Tip: Make w at least 5 to write a value that represents minutes and seconds.

d
optionally specifies the number of digits to the right of the decimal point in the
seconds value. Therefore, the SAS time value includes fractional seconds.

Formats 4 MMYYxw. 135

Range: 0–19
Restriction: must be less than w

Examples

The example table uses the input value of 4530.

SAS Statements Results

----+----1

put time mmss.; 75:30

See Also

Formats:
“HHMMw.d” on page 121
“TIMEw.d” on page 172

Functions:
“HMS” on page 394
“MINUTE” on page 445
“SECOND” on page 542

Informat:
“TIMEw.” on page 727

MMYYxw.

Writes date values as the month and the year and separates them with a character

Category: Date and Time
Alignment: right

Syntax
MMYYxw.

Syntax Description

x
specifies the separators, which can be colons, dashes, periods, or other specific
characters. For a list of the possible values of x, see the table in “Details” on page 136.

w
specifies the width of the output field.
Default: 7

136 MONNAMEw. 4 Chapter 3

Range: 5–32
Interaction: when no separator is specified by setting x to N, the width range is

4–32 and the default changes to 6.

Tip: If w is too small to print a four-digit year, only the last two digits of the year
print.

Details
The following table shows the separators that correspond to the possible x values:

Syntax Separator

MMYYw. uppercase M

MMYYCw. colon

MMYYDw. dash

MMYYNw. no separator

MMYYPw. period

MMYYSw. forward slash

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1----+

put date mmyy5.; 03M02

put date mmyyc7.; 03:2002

put date mmyyd7.; 03-2002

put date mmyyn6.; 032002

put date mmyyp6.; 03.02

put date mmyys7.; 03/2002

See Also

Format:

“YYMMxw.” on page 187

MONNAMEw.

Writes date values as the name of the month

Category: Date and Time
Alignment: right

Formats 4 MONTHw. 137

Syntax
MONNAMEw.

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

Tip: Use MONNAME3. to print the first three letters of the month name.

Details
If necessary, SAS truncates the name of the month to fit the format width.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1

put date monname1.; M

put date monname3.; Mar

put date monname5.; March

See Also

Format:
“MONTHw.” on page 137

MONTHw.

Writes date values as the month of the year

Category: Date and Time

Alignment: right

Syntax
MONTHw.

138 MONYYw. 4 Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 2
Range: 1–21
Tip: Use MONTH1. to obtain a hex value.

Details
The MONTHw. format writes the month (01 through 12) of the year from a SAS date
value.

Examples

The example table uses the input value of 15656, which is the SAS date value that
corresponds to November 12, 2002.

SAS Statements Results

----+----1

put date month.; 11

See Also

Format:
“MONNAMEw.” on page 136

MONYYw.

Writes date values as the month and the year in the form mmmyy or mmmyyyy

Category: Date and Time
Alignment: right

Syntax
MONYYw.

Syntax Description

w
specifies the width of the output field.
Default: 5
Range: 5–7

Formats 4 NEGPARENw.d 139

Details
The MONYYw. format writes SAS date values in the form mmmyy or mmmyyyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1

put date monyy5.; MAR02

put date monyy7.; MAR2002

See Also

Formats:
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131
“YYMMDDw.” on page 188

Functions:
“MONTH” on page 451
“YEAR” on page 618

Informat:
“MONYYw.” on page 689

NEGPARENw.d

Writes negative numeric values in parentheses

Category: Numeric
Alignment: right

Syntax
NEGPARENw.d

Syntax Description

w
specifies the width of the output field.

140 NENGOw. 4 Chapter 3

Default: 6

Range: 1–32

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Range: 0–2

Details
The NEGPARENw.d format displays nonnegative numbers with blanks instead of
parentheses for proper column alignment. That is, NEGPARENw.d reserves the last
column for a right parenthesis, even when the value is positive. If the field is wide
enough, NEGPARENw.d places parentheses around a number to represent a negative
value. Otherwise, it uses a minus sign.

Comparisons
The NEGPARENw.d format is similar to the COMMAw.d format in that it separates
every three digits of the value with a comma.

Examples

put @1 sales negparen5.;

Values Results

----+----1----+

100 100

1000 1,000

-2000 (200)

-2000 -2,000

NENGOw.

Writes date values as Japanese dates in the form e.yymmdd

Category: Date and Time

Alignment: left

Syntax
NENGOw.

Formats 4 NUMXw.d 141

Syntax Description

w
specifies the width of the output field.
Default: 10
Range: 2–10

Details
The NENGOw. format writes SAS date values in the form e.yymmdd, where

e
is the first letter of the name of the emperor (Meiji, Taisho, Showa, or Heisei).

yy
is an integer that represents the year.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

If the width is too small, SAS omits the period.

Examples

The example table uses the input value of 15342, which is the SAS date value that
corresponds to January 2, 2002.

SAS Statements Results

----+----1

put date nengo3.; H14

put date nengo6.; H14/01

put date nengo8.; H.140102

put date nengo9.; H14/01/02

put date nengo10.; H.14/01/02

See Also

Informat:
“NENGOw. ”on page 691

NUMXw.d

Writes numeric values with a comma in place of the decimal point

Category: Numeric
Alignment: right

142 NUMXw.d 4 Chapter 3

Syntax
NUMXw.d

Syntax Description

w
specifies the width of the output field.
Default: 12
Range: 1–32

d
optionally specifies the number of digits to the right of the decimal point (comma) in
the numeric value.

Details
The NUMXw.d format writes numeric values with a comma in place of the decimal
point.

Comparisons
The NUMXw.d format is similar to the w.d format except that NUMXw.d writes
numeric values with a comma in place of the decimal point.

Examples

put x numx10.2;

Values Results

----+----1----+

896.48 896,48

64.89 64,89

3064.10 3064,10

Formats 4 OCTALw. 143

See Also

Format:
“ w.d” on page 176

Informat:
“NUMXw.d” on page 693

OCTALw.

Converts numeric values to octal representation

Category: Numeric
Alignment: left

Syntax
OCTALw.

Syntax Description

w
specifies the width of the output field.
Default: 3
Range: 1–24

Details
If necessary, the OCTALw. format converts numeric values to integers before displaying
them in octal representation. The decimal portion is truncated.

Comparisons
OCTALw. converts numeric values to octal representation. The $OCTALw. format
converts character values to octal representation.

Examples

put x octal6.;

144 PDw.d 4 Chapter 3

Values Results

----+----1

3592 007010

PDw.d

Writes data in packed decimal format

Category: Numeric
Alignment: left

Syntax
PDw.d

Syntax Description

w
specifies the width of the output field. The w value specifies the number of bytes, not
the number of digits. (In packed decimal data, each byte contains two digits.)
Default: 1
Range: 1–16

d
optionally specifies to multiply the number by 10d.

Details
Different operating environments store packed decimal values in different ways.
However, the PDw.d format writes packed decimal values with consistent results if the
values are created in the same kind of operating environment that you use to run SAS.

Comparisons
The following table compares packed decimal notation in several programming
languages:

Language Notation

SAS PD4.

COBOL COMP-3 PIC S9(7)

IBM 370 assembler PL4

PL/I FIXED DEC

Examples

Formats 4 PDJULGw. 145

y=put(x,pd4.);
put y $hex8.;

Values Results*

----+----1

128 0000128

* The result is a hexadecimal representation of a binary number written in packed decimal format.
Each byte occupies one column of the output field.

PDJULGw.

Writes packed Julian date values in the hexadecimal format yyyydddF for IBM

Category: Date and Time

Syntax
PDJULGw.

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 4

Details
The PDJULGw. format writes SAS date values in the form yyyydddF, where

yyyy
is the two-byte representation of the four-digit Gregorian year.

ddd
is the one-and-a-half byte representation of the three-digit integer that
corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F
is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

juldate = put(date,pdjulg4.);
put juldate $hex8.;

146 PDJULIw. 4 Chapter 3

SAS date value Results*

----+----1

15342 2002002F

* This value represents January 2, 2002.

See Also

Formats:

“PDJULIw.” on page 146

“JULIANw.” on page 129

“JULDAYw.” on page 128

Functions:

“JULDATE” on page 416

“DATEJUL” on page 313

Informats:

“PDJULIw.” on page 697

“PDJULGw.” on page 696

“JULIANw.” on page 685

System Option:

“YEARCUTOFF=” on page 1177

PDJULIw.

Writes packed Julian date values in the hexadecimal format ccyydddF for IBM

Category: Date and Time

Syntax
PDJULIw.

Syntax Description

w
specifies the width of the output field.

Default: 4

Range: 4

Details
The PDJULIw. format writes SAS date values in the form ccyydddF, where

Formats 4 PDJULIw. 147

cc
is the one-byte representation of a two-digit integer that represents the century.

yy
is the one-byte representation of a two-digit integer that represents the year. The
PDJULIw. format makes an adjustment for the century byte by subtracting 1900
from the 4–digit Gregorian year to produce the correct packed decimal ccyy
representation. A year value of 1998 is stored in ccyy as 0098, and a year value of
2011 is stored as 0111.

ddd
is the one-and-a-half byte representation of the three-digit integer that
corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F
is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

juldate = put(date, pdjuli4.);
put juldate $hex8.;

SAS date value Results*

13881 0098002F

18630 0111003F

* The result is a hexadecimal four-byte packed decimal Julian date in the format of ccyydddF.
The first SAS date value represents the date of January 2, 1998. The second SAS date value
represents the date of January 3, 2011.

148 PERCENTw.d 4 Chapter 3

See Also

Formats:
“PDJULGw.” on page 145
“JULIANw.” on page 129
“JULDAYw.” on page 128

Functions:
“DATEJUL” on page 313
“JULDATE” on page 416

Informats:
“PDJULGw.” on page 696
“PDJULIw.” on page 697
“JULIANw.” on page 685

System Option:
“YEARCUTOFF=” on page 1177

PERCENTw.d

Writes numeric values as percentages

Category: Numeric
Alignment: right

Syntax
PERCENTw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 4–32

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Range: 0–2

Details
The PERCENTw.d format multiplies values by 100, formats them the same as the
BESTw.d format, and adds a percent sign (%) to the end of the formatted value, while it

Formats 4 PIBw.d 149

encloses negative values in parentheses. The PERCENTw.d format allows room for a
percent sign and parentheses, even if the value is not negative.

Examples

put @10 gain percent10.;

Values Results

----+----1----+----2

0.1 10%

1.2 120%

-0.05 (5%)

PIBw.d

Writes positive integer binary (fixed-point) values

Category: Numeric
Alignment: left

Syntax
PIBw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–8

d
optionally specifies to multiply the number by 10d.

Details
All values are treated as positive. PIBw.d writes positive integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 55. 4

150 PIBRw.d 4 Chapter 3

Comparisons
� Positive integer binary values are the same as integer binary values except that

the sign bit is part of the value, which is always a positive integer. The PIBw.d
format treats all values as positive and includes the sign bit as part of the value.

� The PIBw.d format with a width of 1 results in a value that corresponds to the
binary equivalent of the contents of a byte. This is useful if your data contain
values between hexadecimal 80 and hexadecimal FF, where the high-order bit can
be misinterpreted as a negative sign.

� The PIBw.d format is the same as the IBw.d format except that PIBw.d treats all
values as positive values.

� The IBw.d and PIBw.d formats are used to write native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d formats are used to write little endian
integers in any operating environment.

To view a table that shows the type of format to use with big endian and little
endian integers, see Table 3.1 on page 56.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 56.

Examples

y=put(x,pib1.);
put y $hex2.;

Values Results*

----+----1

12 0C

* The result is a hexadecimal representation of a one-byte binary number written in positive
integer binary format, which occupies one column of the output field.

See Also

Format:
“PIBRw.d” on page 150

PIBRw.d
Writes positive integer binary (fixed-point) values in Intel and DEC formats

Category: Numeric

Syntax
PIBRw.d

Formats 4 PIBRw.d 151

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–8

d
optionally specifies to multiply the number by 10d.

Details
All values are treated as positive. PIBRw.d writes positive integer binary values that
have been generated by and for Intel and DEC operating environments. Use PIBRw.d
to write positive integer binary data from Intel or DEC environments on other
operating environments. The PIBRw.d format in SAS code allows for a portable
implementation for writing the data in any operating environment.

Note: Different operating environments store positive integer binary values in
different ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 55. 4

Comparisons
� Positive integer binary values are the same as integer binary values except that

the sign bit is part of the value, which is always a positive integer. The PIBRw.d
format treats all values as positive and includes the sign bit as part of the value.

� The PIBRw.d format with a width of 1 results in a value that corresponds to the
binary equivalent of the contents of a byte. This is useful if your data contain
values between hexadecimal 80 and hexadecimal FF, where the high-order bit can
be misinterpreted as a negative sign.

� On Intel and DEC operating environments, the PIBw.d and PIBRw.d formats are
equivalent.

� The IBw.d and PIBw.d formats are used to write native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d formats are used to write little endian
integers in any operating environment.

To view a table that shows the type of format to use with big endian and little
endian integers, see Table 3.1 on page 56.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 56.

Examples

y=put(x,pibr2.);
put y $hex4.;

152 PKw.d 4 Chapter 3

Values Results*

----+----1

128 8000

* The result is a hexadecimal representation of a two-byte binary number written in positive
integer binary format, which occupies one column of the output field.

See Also

Informat:
“PIBw.d” on page 701

PKw.d

Writes data in unsigned packed decimal format

Category: Numeric
Alignment: left

Syntax
PKw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–16

d
optionally specifies to multiply the number by 10d.

Details
Each byte of unsigned packed decimal data contains two digits.

Comparisons
The PKw.d format is similar to the PDw.d format except that PKw.d does not write the
sign in the low-order byte.

Examples

Formats 4 PVALUEw.d 153

y=put(x,pk4.);
put y $hex8.;

Values Results*

----+----1

128 00000128

* The result is a hexadecimal representation of a four-byte number written in packed decimal
format. Each byte occupies one column of the output field.

PVALUEw.d

Writes p-values

Category: Numeric

Alignment: right

Syntax
PVALUEw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 3–32

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Default: the minimum of 4 and w–2

Restriction: must be less than w

Details
The PVALUEw.d format writes p-values for the GENMOD procedure, the MIXED
procedure, and SAS/INSIGHT software.

Comparisons
The PVALUEw.d format follows the rules for the w.d format, except that

� all missing values print as "."

� negative values represent exact zero and print as "0.0"

� if the value x is such that 0 <= x < 10—d, x prints as "<.0...01" with d-1 zeros

154 QTRw. 4 Chapter 3

� if you specify the PROBSIG= option with a value of 1 or 2, and the field width is at
least 5, the PVALUEw.d format uses the BESTw. format.

Examples

put x pvalue5.3;

Values Results

----+----1

-1 0.0

0 <.001

le-8 <.001

.01232456 0.012

.5 0.5000

1 1.000

QTRw.

Writes date values as the quarter of the year

Category: Date and Time

Alignment: right

Syntax
QTRw.

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

Formats 4 RBw.d 155

SAS Statements Results

----+----1

put date qtr.; 1

See Also

Format:
“QTRRw.” on page 155

QTRRw.
Writes date values as the quarter of the year in Roman numerals

Category: Date and Time
Alignment: right

Syntax
QTRRw.

Syntax Description

w
specifies the width of the output field.
Default: 3
Range: 3–32

Examples

The example table uses the input value of 15595, which is the SAS date value that
corresponds to September 12, 2002.

SAS Statements Results

----+----1

put date qtrr.; III

See Also

Format:
“QTRw.” on page 154

RBw.d
Writes real binary data (floating-point) in real binary format

156 RBw.d 4 Chapter 3

Category: Numeric
Alignment: left

Syntax
RBw.d

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 2–8

d
optionally specifies to multiply the number by 10d.

Details
The RBw.d format writes numeric data in the same way that SAS stores them. Because
it requires no data conversion, RBw.d is the most efficient method for writing data with
SAS.

Note: Different operating environments store real binary values in different ways.
However, RBw.d writes real binary values with consistent results in the same kind of
operating environment that you use to run SAS. 4

CAUTION:
Using RB4. to write real binary data on equipment that conforms to the IEEE standard for
floating-point numbers results in a truncated eight-byte (double-precision) number rather
than a true four-byte (single-precision) floating-point number. 4

Comparisons
The following table compares the names of real binary notation in several programming
languages:

Language 4 Bytes 8 Bytes

SAS RB4. RB8.

FORTRAN REAL*4 REAL*8

C float double

COBOL COMP-1 COMP-2

IBM 370 assembler E D

Examples

y=put(x,rb8.);
put y $hex16.;

Formats 4 SSNw. 157

Values Results*

----+---1----+----2

128 4280000000000000

* The result is a hexadecimal representation of an eight-byte real binary number as it looks on
an IBM mainframe. Each byte occupies one column of the output field.

ROMANw.

Writes numeric values as Roman numerals

Category: Numeric
Alignment: left

Syntax
ROMANw.

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 2–32

Details
The ROMANw. format truncates a floating-point value to its integer component before
the value is written.

Examples

put @5 year roman10.;

Values Results

1998 MCMXCVIII

SSNw.

Writes Social Security numbers

158 S370FFw.d 4 Chapter 3

Category: Numeric
Alignment: none

Syntax
SSNw.

Syntax Description

w
specifies the width of the output field.
Default: 11
Restriction: w must be 11

Details
If the value is missing, SAS writes nine single periods with dashes between the third
and fourth periods and between the fifth and sixth periods. If the value contains fewer
than nine digits, SAS right aligns the value and pads it with zeros on the left. If the
value has more than nine digits, SAS writes it as a missing value.

Examples

put id ssn11.;

Values Results

----+----1----+

263878439 263-87-8439

S370FFw.d

Writes native standard numeric data in IBM mainframe format

Category: Numeric

Syntax
S370FFw.d

Syntax Description

w
specifies the width of the output field.

Formats 4 S370FIBw.d 159

Default: 12
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–31

Details
The S370FFw.d format writes numeric data in IBM mainframe format (EBCDIC). The
EBCDIC numeric values are represented with one byte per digit. If EBCDIC is the
native format, S370FFw.d performs no conversion.

If a value is negative, an EBCDIC minus sign precedes the value. A missing value is
represented as a single EBCDIC period.

Comparisons
On an EBCDIC system, S370FFw.d behaves like the w.d format.
On all other systems, S370FFw.d performs the same role for numeric data that the

$EBCDICw. format does for character data.

Examples

x=put(x,s370ff3.)
put y $hex10.;

Values Results*

----+----1

12345 F1F2F3F4F5

* The result is the hexadecimal representation for the integer.

See Also

Formats:
“$EBCDICw.” on page 73
“ w.d” on page 176

S370FIBw.d

Writes integer binary (fixed-point) values, including negative values, in IBM mainframe format

Category: Numeric
Alignment: left

Syntax
S370FIBw.d

160 S370FIBw.d 4 Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 1–8

d
optionally specifies to multiply the number by 10d.

Details
The S370FIBw.d format writes integer binary (fixed-point) values that are stored in IBM
mainframe format, including negative values that are represented in two’s complement
notation. S370FIBw.d writes integer binary values with consistent results if the values
are created in the same type of operating environment that you use to run SAS.

Use S370FIBw.d to write integer binary data in IBM mainframe format from data
that are created in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 55. 4

Comparisons
� If you use SAS on an IBM mainframe, S370FIBw.d and IBw.d are identical.
� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian

integers in any operating environment.
To view a table that shows the type of format to use with big endian and little

endian integers, see Table 3.1 on page 56.
To view a table that compares integer binary notation in several programming

languages, see Table 3.2 on page 56.

Examples

y=put(x,s370fib4.);
put y $hex8.;

Values Results*

----+----1

128 00000080

* The result is a hexadecimal representation of a 4-byte integer binary number. Each byte occupies
one column of the output field.

Formats 4 S370FIBUw.d 161

See Also

Formats:

“S370FIBUw.d” on page 161

“S370FPIBw.d” on page 164

S370FIBUw.d

Writes unsigned integer binary (fixed-point) values in IBM mainframe format

Category: Numeric

Alignment: left

Syntax
S370FIBUw.d

Syntax Description

w
specifies the width of the output field.

Default: 4

Range: 1–8

d
optionally specifies to multiply the number by 10d.

Details
The S370FIBUw.d format writes unsigned integer binary (fixed-point) values that are
stored in IBM mainframe format, including negative values that are represented in
two’s complement notation. Unsigned integer binary values are the same as integer
binary values, except that all values are treated as positive. S370FIBUw.d writes
integer binary values with consistent results if the values are created in the same type
of operating environment that you use to run SAS.

Use S370FIBUw.d to write unsigned integer binary data in IBM mainframe format
from data that are created in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 55. 4

Comparisons
� The S370FIBUw.d format is equivalent to the COBOL notation PIC 9(n) BINARY,

where n is the number of digits.

� The S370FIBUw.d format is the same as the S370FIBw.d format except that the
S370FIBUw.d format always uses the absolute value instead of the signed value.

162 S370FPDw.d 4 Chapter 3

� The S370FPIBw.d format writes all negative numbers as FFs, while the
S370FIBUw.d format writes the absolute value.

� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian
integers in any operating environment.

To view a table that shows the type of format to use with big endian and little
endian integers, see Table 3.1 on page 56.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 56.

Examples

y=put(x,s370fibu1.);
put y $hex2.;

Values Results*

245 F5

-245 F5

* The result is a hexadecimal representation of a one-byte integer binary number. Each byte
occupies one column of the output field.

See Also

Formats:
“S370FIBw.d” on page 159
“S370FPIBw.d” on page 164

S370FPDw.d

Writes packed decimal data in IBM mainframe format

Category: Numeric

Alignment: left

Syntax
S370FPDw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–16

Formats 4 S370FPDUw.d 163

d
optionally specifies to multiply the number by 10d.

Details
Use S370FPDw.d in other operating environments to write packed decimal data in the
same format as on an IBM mainframe computer.

Comparisons
The following table shows the notation for equivalent packed decimal formats in several
programming languages:

Language Packed Decimal Notation

SAS S370FPD4.

PL/I FIXED DEC(7,0)

COBOL COMP-3 PIC S9(7)

IBM 370 assembler PL4

Examples

y=put(x,s370fpd4.);
put y $hex8.;

Values Results*

----+----1

128 0000128C

* The result is a hexadecimal representation of a binary number written in packed decimal format.
Each byte occupies one column of the output field.

S370FPDUw.d

Writes unsigned packed decimal data in IBM mainframe format

Category: Numeric
Alignment: left

Syntax
S370FPDUw.d

Syntax Description

164 S370FPIBw.d 4 Chapter 3

w
specifies the width of the output field.
Default: 1
Range: 1–16

d
optionally specifies to multiply the number by 10d.

Details
Use S370FPDUw.d in other operating environments to write unsigned packed decimal
data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FPDUw.d format is similar to the S370FPDw.d format except that the

S370FPDw.d format always uses the absolute value instead of the signed value.
� The S370FPDUw.d format is equivalent to the COBOL notation PIC 9(n)

PACKED-DECIMAL, where the n value is the number of digits.

Examples

y=put(x,s370fpdu2.);
put y $hex4.;

Values Results*

123 123F

-123 123F

* The result is a hexadecimal representation of a binary number written in packed decimal format.
Each two hexadecimal digits correspond to one byte of binary data, and each byte corresponds
to one column of the output field.

S370FPIBw.d

Writes positive integer binary (fixed-point) values in IBM mainframe format

Category: Numeric
Alignment: left

Syntax
S370FPIBw.d

Syntax Description

Formats 4 S370FPIBw.d 165

w
specifies the width of the output field.
Default: 4
Range: 1–8

d
optionally specifies to multiply the number by 10d.

Details
Positive integer binary values are the same as integer binary values, except that all
values are treated as positive. S370FPIBw.d writes integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Use S370FPIBw.d to write positive integer binary data in IBM mainframe format
from data that are created in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 55. 4

Comparisons
� If you use SAS on an IBM mainframe, S370FPIBw.d and PIBw.d are identical.
� The S370FPIBw.d format is the same as the S370FIBw.d format except that the

S370FPIBw.d format treats all values as positive values.
� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian

integers in any operating environment.
To view a table that shows the type of format to use with big endian and little

endian integers, see Table 3.1 on page 56.
To view a table that compares integer binary notation in several programming

languages, see Table 3.2 on page 56.

Examples

y=put(x,s370fpib1.);
put y $hex2.;

Values Results*

----+----1

12 0C

* The result is a hexadecimal representation of a one-byte binary number written in positive
integer binary format, which occupies one column of the output field.

166 S370FRBw.d 4 Chapter 3

See Also

Formats:

“S370FIBw.d” on page 159

“S370FIBUw.d” on page 161

S370FRBw.d

Writes real binary (floating-point) data in IBM mainframe format

Category: Numeric

Alignment: left

Syntax
S370FRBw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 2–8

d
optionally specifies to multiply the number by 10d.

Details
A floating-point value consists of two parts: a mantissa that gives the value and an
exponent that gives the value’s magnitude.

Use S370FRBw.d in other operating environments to write floating-point binary data
in the same format as on an IBM mainframe computer.

Comparisons
The following table shows the notation for equivalent floating-point formats in several
programming languages:

Language 4 Bytes 8 Bytes

SAS S370FRB4. S370FRB8.

PL/I FLOAT BIN(21) FLOAT BIN(53)

FORTRAN REAL*4 REAL*8

COBOL COMP-1 COMP-2

Formats 4 S370FZDw.d 167

Language 4 Bytes 8 Bytes

IBM 370 assembler E D

C float double

Examples

y=put(x,s370frb6.);
put y $hex8.;

Values Results*

128 42800000

-123 C2800000

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDw.d

Writes zoned decimal data in IBM mainframe format

Category: Numeric

Alignment: left

Syntax
S370FZDw.d

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 1–32

d
optionally specifies to multiply the number by 10d.

Details
Use S370FZDw.d in other operating environments to write zoned decimal data in the
same format as on an IBM mainframe computer.

168 S370FZDLw.d 4 Chapter 3

Comparisons
The following table shows the notation for equivalent zoned decimal formats in several
programming languages:

Language Zoned Decimal Notation

SAS S370FZD3.

PL/I PICTURE ’99T’

COBOL PIC S9(3) DISPLAY

assembler ZL3

Examples

y=put(x,s370fzd3.);
put y $hex6.;

Values Results*

123 F1F2C3

-123 F1F2D3

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDLw.d

Writes zoned decimal leading sign data in IBM mainframe format

Category: Numeric
Alignment: left

Syntax
S370FZDLw.d

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–32

Formats 4 S370FZDSw.d 169

d
optionally specifies to multiply the number by 10d.

Details
Use S370FZDLw.d in other operating environments to write zoned decimal leading-sign
data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FZDLw.d format is similar to the S370FZDw.d format except that the

S370FZDLw.d format displays the sign of the number in the first byte of the
formatted output.

� The S370FZDLw.d format is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN LEADING, where the n value is the number of digits.

Examples

y=put(x,s370fzdl3.);
put y $hex6.;

Values Results*

123 C1F2F3

-123 D1F2F3

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDSw.d

Writes zoned decimal separate leading-sign data in IBM mainframe format

Category: Numeric
Alignment: left

Syntax
S370FZDSw.d

Syntax Description

w
specifies the width of the output field.

170 S370FZDTw.d 4 Chapter 3

Default: 8
Range: 2–32

d
optionally specifies to multiply the number by 10d.

Details
Use S370FZDSw.d in other operating environments to write zoned decimal separate
leading-sign data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FZDSw.d format is similar to the S370FZDLw.d format except that the

S370FZDSw.d format does not embed the sign of the number in the zoned output.
� The S370FZDSw.d format is equivalent to the COBOL notation PIC S9(n)

DISPLAY SIGN LEADING SEPARATE, where the n value is the number of digits.

Examples

y=put (x,s370fzds4.);
put y $hex8.;

Values Results*

123 4EF1F2F3

-123 60F1F2F3

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDTw.d

Writes zoned decimal separate trailing-sign data in IBM mainframe format

Category: Numeric
Alignment: left

Syntax
S370FZDTw.d

Syntax Description

w
specifies the width of the output field.

Formats 4 S370FZDUw.d 171

Default: 8
Range: 2–32

d
optionally specifies to multiply the number by 10d.

Details
Use S370FZDTw.d in other operating environments to write zoned decimal separate
trailing-sign data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FZDTw.d format is similar to the S370FZDSw.d format except that the

S370FZDTw.d format displays the sign of the number at the end of the formatted
output.

� The S370FZDTw.d format is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN TRAILING SEPARATE, where the n value is the number of digits.

Examples

y=put (x,s370fzdt4.); ;
put y $hex8.;

Values Results*

123 F1F2F34E

-123 F1F2F360

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDUw.d

Writes unsigned zoned decimal data in IBM mainframe format

Category: Numeric
Alignment: left

Syntax
S370FZDUw.d

Syntax Description

172 TIMEw.d 4 Chapter 3

w
specifies the width of the output field.
Default: 8
Range: 1–32

d
optionally specifies to multiply the number by 10d.

Details
Use S370FZDUw.d in other operating environments to write unsigned zoned decimal
data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FZDUw.d format is similar to the S370FZDw.d format except that the

S370FZDUw.d format always uses the absolute value of the number.
� The S370FZDUw.d format is equivalent to the COBOL notation PIC 9(n)

DISPLAY, where the n value is the number of digits.

Examples

y=put (x,s370fzdu3.);
put y $hex6.;

Values Results*

123 F1F2F3

-123 F1F2F3

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

TIMEw.d

Writes time values as hours, minutes, and seconds in the form hh:mm:ss.ss

Category: Date and Time
Alignment: right

Syntax
TIMEw.d

Syntax Description

Formats 4 TIMEw.d 173

w
specifies the width of the output field.
Default: 8
Range: 2–20

d
optionally specifies the number of digits to the right of the decimal point in the
seconds value.
Requirement: must be less than w
Range: 1–19

Details
The TIMEw.d format writes SAS time values in the form hh:mm:ss.ss, where

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

ss.ss
is the number of seconds that range from 00 through 59 with the fraction of a
second following the decimal point.

Make w large enough to produce the desired results. To obtain a complete time value
with three decimal places, you must allow at least 12 spaces: 8 spaces to the left of the
decimal point, 1 space for the decimal point itself, and 3 spaces for the decimal fraction
of seconds.

Comparisons
The TIMEw.d format is similar to the HHMMw.d format except that TIMEw.d prints
seconds.

Examples

The example table uses the input value of 59083, which is the SAS time value that
corresponds to 4:24:43 PM.

SAS Statements Results

----+----1

put begin time.; 16:24:43

174 TIMEAMPMw.d 4 Chapter 3

See Also

Formats:
“HHMMw.d” on page 121
“HOURw.d” on page 123
“MMSSw.d” on page 134

Functions:
“HOUR” on page 395
“MINUTE” on page 445
“SECOND” on page 542
“TIME” on page 563

Informat:
“TIMEw.” on page 727

TIMEAMPMw.d

Writes time values as hours, minutes, and seconds in the form hh:mm:ss.ss with AM or PM

Category: Date and Time
Alignment: right

Syntax
TIMEAMPMw.d

Syntax Description

w
specifies the width of the output field.
Default: 11
Range: 2–20

d
optionally specifies the number of digits to the right of the decimal point in the
seconds value.
Requirement: must be less than w

Details
The TIMEAMPMw.d format writes SAS time values in the form hh:mm:ss.ss with AM
or PM, where

hh
is an integer that represents the hour.

mm
is an integer that represents the minutes.

Formats 4 TODw.d 175

ss.ss
is the number of seconds to two decimal places.

Times greater than 23:59:59 PM appear as the next day.
Make w large enough to produce the desired results. To obtain a complete time value

with three decimal places and AM or PM, you must allow at least 11 spaces (hh:mm:ss
PM). If w is less than 5, SAS writes AM or PM only.

Comparisons
� The TIMEAMPMMw.d format is similar to the TIMEMw.d format except, that

TIMEAMPMMw.d prints AM or PM at the end of the time.
� TIMEw.d writes hours greater than 23:59:59 PM, and TIMEAMPMw.d does not.

Examples

The example table uses the input value of 59083, which is the SAS time value that
corresponds to 4:24:43 PM.

SAS Statements Results

----+----1----+

put begin timeampm3.; PM

put begin timeampm5.; 4 PM

put begin timeampm7.; 4:24 PM

put begin timeampm11.; 4:24:43 PM

See Also

Format:
“TIMEw.d” on page 172

TODw.d

Writes the time portion of datetime values in the form hh:mm:ss.ss

Category: Date and Time
Alignment: right

Syntax
TODw.d

Syntax Description

w
specifies the width of the output field.

176 w.d 4 Chapter 3

Default: 8

Range: 2–20

d
optionally specifies the number of digits to the right of the decimal point in the
seconds value.

Requirement: must be less than w

Details
The TODw.d format writes SAS datetime values in the form hh:mm:ss.ss, where

hh
is an integer that represents the hour.

mm
is an integer that represents the minutes.

ss.ss
is the number of seconds to two decimal places.

Examples

The example table uses the input value of 1347453583, which is the SAS datetime
value that corresponds to September 12, 2002, at 12:39:43 PM.

SAS Statements Results

----+----1

put begin tod9.2; 12:39:43

See Also

Formats:

“TIMEw.d” on page 172

“TIMEAMPMw.d ”on page 174

Function:
“TIMEPART” on page 564

Informat:

“TIMEw.” on page 727

w.d

Writes standard numeric data one digit per byte

Category: Numeric

Alignment: right

Formats 4 WEEKDATEw. 177

Syntax
w.d

Syntax Description

w
specifies the width of the output field.
Range: 1–32
Tip: Allow enough space to write the value, the decimal point, and a minus sign, if

necessary.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Range: 0–31
Tip: If d is 0 or you omit d, w.d writes the value without a decimal point.

Details
The w.d format rounds to the nearest number that fits in the output field. If w.d is too
small, SAS may shift the decimal to the BESTw. format. The w.d format writes
negative numbers with leading minus signs. In addition, w.d right aligns before writing
and pads the output with leading blanks.

Comparisons
The Zw.d format is similar to the w.d format except that Zw.d pads right-aligned
output with 0s instead of blanks.

Examples

put @7 x 6.3;

Values Results

----+----1----+

23.45 23.450

WEEKDATEw.

Writes date values as the day of the week and the date in the form day-of-week, month-name dd,
yy (or yyyy)

Category: Date and Time

178 WEEKDATEw. 4 Chapter 3

Alignment: right

Syntax
WEEKDATEw.

Syntax Description

w
specifies the width of the output field.
Default: 29
Range: 3–37

Details
The WEEKDATEw. format writes SAS date values in the form day-of-week,
month-name dd, yy (or yyyy), where

dd
is an integer that represents the day of the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

If w is too small to write the complete day of the week and month, SAS abbreviates as
needed.

Comparisons
The WEEKDATEw. format is the same as the WEEKDATXw. format except that
WEEKDATEXw. prints dd before the month’s name.

Examples

The example table uses the input value of 15415 which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1----+----2

put date weekdate3.; Sat

put date weekdate9.; Saturday

Formats 4 WEEKDATXw. 179

SAS Statements Results

put date weekdate15.; Sat, Mar 16, 02

put date weekdate17.; Sat, Mar 16, 2002

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131
“TODw.d” on page 175
“WEEKDATXw.” on page 179
“YYMMDDw.” on page 188

Functions:
“JULDATE” on page 416
“MDY” on page 443
“WEEKDAY” on page 617

Informats:
“DATEw.” on page 666

“DDMMYYw.” on page 669
“MMDDYYw.” on page 687
“YYMMDDw.” on page 733

WEEKDATXw.

Writes date values as day of week and date in the form day-of-week, dd month-name yy (or yyyy)

Category: Date and Time
Alignment: right

Syntax
WEEKDATXw.

Syntax Description

w
specifies the width of the output field.
Default: 29
Range: 3–37

Details
The WEEKDATXw. format writes SAS date values in the form day-of-week, dd
month-name , yy (or yyyy), where

180 WEEKDAYw. 4 Chapter 3

dd
is an integer that represents the day of the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

If w is too small to write the complete day of the week and month, SAS abbreviates as
needed.

Comparisons
The WEEKDATEw. format is the same as the WEEKDATXw. format except that
WEEKDATEw. prints dd after the month’s name.

Examples

The example table uses the input value of 15415 which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1----+----2----+----3

put date weekdatex.; Saturday, March 16, 2002

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131
“TODw.d” on page 175
“WEEKDATEw.” on page 177
“YYMMDDw.” on page 188

Functions:
“JULDATE” on page 416
“MDY” on page 443
“WEEKDAY” on page 617

Informats:
“DATEw.” on page 666

“DDMMYYw.” on page 669
“MMDDYYw.” on page 687
“YYMMDDw.” on page 733

WEEKDAYw.

Writes date values as the day of the week

Category: Date and Time

Formats 4 WORDDATEw. 181

Alignment: right

Syntax
WEEKDAYw.

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32

Details
The WEEKDAYw. format writes a SAS date value as the day of the week (where
1=Sunday, 2=Monday, and so on).

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statement Results

----+----1

put date weekday.; 7

See Also

Format:

“DOWNAMEw.” on page 99

WORDDATEw.

Writes date values as the name of the month, the day, and the year in the form month-name dd,
yyyy

Category: Date and Time

Alignment: right

Syntax
WORDDATEw.

182 WORDDATXw. 4 Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 18
Range: 3–32

Details
The WORDDATEw. format writes SAS date values in the form month-name dd, yyyy,
where

dd
is an integer that represents the day of the month.

yyyy
is a four-digit integer that represents the year.

If the width is too small to write the complete month, SAS abbreviates as necessary.

Comparisons
The WORDDATEw. format is the same as the WORDDATXw. format except that
WORDDATXw. prints dd before the month’s name.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1----+----2

put term worddate3.; Mar

put term worddate9.; March

put term worddate12.; Mar 16, 2002

put term worddate20.; March 16, 2002

See Also

Format:
“WORDDATXw.” on page 182

WORDDATXw.

Writes date values as the day, the name of the month, and the year in the form dd month-name
yyyy

Category: Date and Time

Formats 4 WORDFw. 183

Alignment: right

Syntax
WORDDATXw.

Syntax Description

w
specifies the width of the output field.
Default: 18
Range: 3–32

Details
The WORDDATXw. format writes SAS date values in the form dd month-name, yyyy,
where

dd
is an integer that represents the day of the month.

yyyy
is a four-digit integer that represents the year.

If the width is too small to write the complete month, SAS abbreviates as necessary.

Comparisons
The WORDDATXw. format is the same as the WORDDATEw. format except that
WORDDATEw. prints dd after the month’s name.

Examples

The example table uses the input value of 15595, which is the SAS date value that
corresponds to September 12, 2002.

SAS Statement Results

----+----1----+----2

put term worddatx.; 12 September 2002

See Also

Format:
“WORDDATEw. ”on page 181

WORDFw.

Writes numeric values as words with fractions that are shown numerically

184 WORDSw. 4 Chapter 3

Category: Numeric
Alignment: left

Syntax
WORDFw.

Syntax Description

w
specifies the width of the output field.
Default: 10
Range: 5–32767

Details
The WORDFw. format converts numeric values to their equivalent in English words,
with fractions that are represented numerically in hundredths. For example, 8.2 prints
as eight and 20/100.

Negative numbers are preceded by the word minus. When the value’s equivalent in
words does not fit into the specified field, it is truncated on the right and the last
character prints as an asterisk.

Comparisons
The WORDFw. format is similar to the WORDSw. format except that WORDFw.
prints fractions as numbers instead of words.

Examples

put price wordf15.;

Values Results

----+----1----+

2.5 two and 50/100

See Also

Format:
“WORDSw.” on page 184

WORDSw.

Writes numeric values as words

Formats 4 YEARw. 185

Category: Numeric
Alignment: left

Syntax
WORDSw.

Syntax Description

w
specifies the width of the output field.
Default: 10
Range: 5–32767

Details
You can use the WORDSw. format to print checks with the amount written out below
the payee line.

Negative numbers are preceded by the word minus. If the number is not an integer,
the fractional portion is represented as hundredths. For example, 5.3 prints as five and
thirty hundredths. When the value’s equivalent in words does not fit into the specified
field, it is truncated on the right and the last character prints as an asterisk.

Comparisons
The WORDSw. format is similar to the WORDFw. format except that WORDSw. prints
fractions as words instead of numbers.

Examples

put price words23.;

Values Results

----+----1----+----2----+

2.1 two and ten hundredths

See Also

Format:
“WORDFw.” on page 183

YEARw.

Writes date values as the year

186 YENw.d 4 Chapter 3

Category: Date and Time
Alignment: right

Syntax
YEARw.

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 2–32
Tip: If w is less than 4, the last two digits of the year print; otherwise, the year

value prints as four digits.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1

put date year2.; 02

put date year4.; 2002

YENw.d

Writes numeric values with yen signs, commas, and decimal points

Category: Numeric
Default width: right

Syntax
YENw.d

Syntax Description

w
specifies the width of the output field.

Formats 4 YYMMxw. 187

Default: 1
Range: 1–32

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Restriction: must be either 0 or 2
Tip: If d is 2, YENw.d writes a decimal point and two decimal digits. If d is 0,

YENw.d does not write a decimal point or decimal digits.

Details
The YENw.d format writes numeric values with a leading yen sign and with a comma
that separates every three digits of each value.

The hexadecimal representation of the code for the yen sign character is 5B on
EBCDIC systems and 5C on ASCII systems. The monetary character these codes
represent may be different in other countries.

Examples

put cost yen10.2;

Value Results

----+----1

1254.71 ¥1,254.71

YYMMxw.

Writes date values as the year and month and separates them with a character

Category: Date and Time
Alignment: right

Syntax
YYMMxw.

Syntax Description

x
specifies the separators, which can be colons, dashes, periods, or other specific
characters. For a list of the possible values of x, see the table in “Details” on page 188.

w
specifies the width of the output field.

188 YYMMDDw. 4 Chapter 3

Default: 7
Range: 5–32
Interaction: when no separator is specified by setting x to N, the width range is

4–32 and the default changes to 6.
Tip: If w is too small to print a four-digit year, only the last two digits of the year

print.

Details
The following table shows the separators that correspond to the possible x values:

Syntax Separator

YYMMw. uppercase M

YYMMCw. colon

YYMMDw. dash

YYMMNw. no separator

YYMMPw. period

YYMMSw. forward slash

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1----+

put date yymm7.; 2002M03

put date yymmc7.; 2002:03

put date yymmd7.; 2002-03

put date yymmn6.; 200203

put date yymmp7.; 2002.03

put date yymms7.; 2002/03

See Also

Format:
“MMYYxw.” on page 135

YYMMDDw.

Writes date values in the form yymmdd or yyyymmdd

Category: Date and Time

Formats 4 YYMMDDw. 189

Alignment: right

Syntax
YYMMDDw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 2–10

Details
The YYMMDDw. format writes SAS date values in the form yymmdd or yyyymmdd,
where

yy or yyyy
is a two- or four-digit integer that represents the year.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

Examples

The example table uses the input value of 15595, which is the SAS date value that
corresponds to September 12, 2002.

SAS Statements Results

----+----1----+

put day yymmdd2.; 02

put day yymmdd3.; 02

put day yymmdd4.; 0209

put day yymmdd5.; 02-09

put day yymmdd6.; 020912

put day yymmdd7.; 020912

190 YYMMDDxw. 4 Chapter 3

SAS Statements Results

put day yymmdd8.; 02-09-12

put day yymmdd10.; 2002-09-12

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131

Functions:
“DAY” on page 315
“MDY” on page 443
“MONTH” on page 451
“YEAR” on page 618

Informats:
“DATEw.” on page 666
“DDMMYYw.” on page 669
“MMDDYYw.” on page 687

YYMMDDxw.

Writes date values in the form yymmdd or yyyymmdd with a specified separator

Category: Date and Time
Alignment: right

Syntax
YYMMDDxw.

Syntax Description

x
specifies a separator or no separator, where

B
separates with a blank

C
separates with a colon

D
separates with a dash

N
indicates no separator

Formats 4 YYMMDDxw. 191

P
separates with a period

S
separates with a slash.

w
specifies the width of the output field.
Default: 8
Range: 2–10
Tip: When w is from 2 to 5, SAS prints as much of the month and day as possible.

When w is 7, the date appears as a two-digit year without separators, and the
value is right aligned in the output field.

Note: When x is N, the width range is 2–8. 4

Details
The YYMMDDxw. format writes SAS date values in the form yymmdd or yyyymmdd,
where

yy or yyyy
is a two- or four-digit integer that represents the year.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

Examples

The example table uses the input value of 15595, which is the SAS date value that
corresponds to September 12, 2002.

SAS Statements Results

----+----1----+

put day yymmddc5.; 02:09

put day yymmddd8.; 02-09-12

192 YYMONw. 4 Chapter 3

SAS Statements Results

put day yymmddp10.; 2002.09.12

put day yymmddn8.; 20020912

See Also

Formats:
“DATEw.” on page 89
“DDMMYYxw.” on page 95
“MMDDYYxw.” on page 132

Functions:
“DAY” on page 315
“MDY” on page 443
“MONTH” on page 451
“YEAR” on page 618

Informat:
“YYMMDDw.” on page 733

YYMONw.
Writes date values as the year and the month abbreviation

Category: Date and Time
Alignment: right

Syntax
YYMONw.

Syntax Description

w
specifies the width of the output field. If the format width is too small to print a
four-digit year, only the last two digits of the year are printed.
Default: 7
Range: 5–32

Details
The YYMONw. format abbreviates the month’s name to three characters.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

Formats 4 YYQxw. 193

SAS Statement Results

----+----1

put date yymon6.; 02MAR

put date yymon7.; 2002MAR

See Also

Format:
“MMYYxw.” on page 135

YYQxw.

Writes date values as the year and the quarter and separates them with a character

Category: Date and Time
Alignment: right

Syntax
YYQxw.

Syntax Description

x
specifies the separators, which can be colons, dashes, periods, or other specific
characters. For a list of the possible values of x, see the table in “Details” on page 193.

w
specifies the width of the output field.
Default: 7
Range: 5–32
Interaction: when no separator is specified by setting x to N, the width range is

4–32 and the default changes to 6.
Tip: If w is too small to print a four-digit year, only the last two digits of the year

print.

Details
The following table shows the separators that correspond to the possible x values:

Syntax Separator

YYQw. * uppercase Q

YYQCw. colon

YYQDw. dash

194 YYQRxw. 4 Chapter 3

Syntax Separator

YYQNw. no separator

YYQPw. period

YYQSw. forward slash

* For compatibility with previous versions, the width range of YYQw. without x is 4-6.

Examples

The example table uses the input value of 15415, which is the SAS date value that
corresponds to March 16, 2002.

SAS Statements Results

----+----1----+

put date yyq6.; 2002Q1

put date yyqc6.; 2002:1

put date yyqd6.; 2002-1

put date yyqn5.; 20021

put date yyqp6.; 2002.1

put date yyqs6.; 2002/1

See Also

Format:

“YYQRxw.” on page 194

YYQRxw.

Writes date values as the year and the quarter in Roman numerals and separates them with
characters

Category: Date and Time

Alignment: right

Syntax
YYQRxw.

Syntax Description

x
specifies the separators, which can be colons, dashes, periods, or other specific
characters. For a list of the possible values of x, see the table in “Details” on page 195.

Formats 4 Zw.d 195

w
specifies the width of the output field.
Default: 5
Range: 3–32
Tip: If w is too small to print a four-digit year, only the last two digits of the year

print.

Details
The following table shows the separators that correspond to the possible x values:

Syntax Separator

YYQRw. uppercase Q

YYQRCw. colon

YYQRDw. dash

YYQRNw. no separator

YYQRPw. period

YYQRSw. forward slash

Examples

The example table uses the input value of 15431, which is the SAS date value that
corresponds to April 1, 2002.

SAS Statements Results

----+----1----+

put date yyqr8.; 2002QII

put date yyqrc8.; 2002:II

put date yyqrd8.; 2002-II

put date yyqrn7.; 2002II

put date yyqrp8.; 2002.II

put date yyqrs8.; 2002/II

See Also

Format:
“YYQxw.” on page 193

Zw.d

Writes standard numeric data with leading 0s

Category: Numeric
Alignment: right

196 ZDw.d 4 Chapter 3

Syntax
Zw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–32
Tip: Allow enough space to write the value, the decimal point, and a minus sign, if

necessary.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Range: 0–31
Tip: If d is 0 or you omit d, Zw.d writes the value without a decimal point.

Details
The Zw.d format writes standard numeric values one digit per byte and fills in 0s to the
left of the data value.

The Zw.d format rounds to the nearest number that will fit in the output field. If w.d
is too large to fit, SAS may shift the decimal to the BESTw. format. The Zw.d format
writes negative numbers with leading minus signs. In addition, it right aligns before
writing and pads the output with leading zeros.

Comparisons
The Zw.d format is similar to the w.d format except that Zw.d pads right-aligned
output with 0s instead of blanks.

Examples

put @5 seqnum z8.;

Values Results

----+----1

1350 00001350

ZDw.d
Writes numeric data in zoned decimal format

Formats 4 ZDw.d 197

Category: Numeric
Alignment: left

Syntax
ZDw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–32

d
optionally specifies to multiply the number by 10d.

Details
The zoned decimal format is similar to standard numeric format in that every digit
requires one byte. However, the value’s sign is in the last byte, along with the last digit.

Note: Different operating environments store zoned decimal values in different
ways. However, the ZDw.d format writes zoned decimal values with consistent results
if the values are created in the same kind of operating environment that you use to run
SAS. 4

Comparisons
The following table compares the zoned decimal format with notation in several
programming languages:

Language Zoned Decimal Notation

SAS ZD3.

PL/I PICTURE ’99T’

COBOL DISPLAY PIC S 999

IBM 370 assembler ZL3

Examples

y=put(x,zd4.);
put y $hex8.;

Values Results*

120 F0F1F2C0

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each byte occupies one column of the output field.

198 ZDw.d 4 Chapter 3

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Language Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Language Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–369–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

