
199

C H A P T E R

4
Functions and CALL Routines

Definitions 206
Definition of Functions 206

Definition of CALL Routines 206

Syntax 206

Syntax of Functions 206

Syntax of CALL Routines 207
Using Functions 208

Restrictions on Function Arguments 208

Characteristics of Target Variables 208

Notes on Descriptive Statistic Functions 209

Notes on Financial Functions 209

Special Considerations for Depreciation Functions 209
Using DATA Step Functions within Macro Functions 210

Using Functions to Manipulate Files 210

Using Random-Number Functions and CALL Routines 211

Seed Values 211

Comparison of Random-Number Functions and CALL Routines 211
Examples 211

Example 1: Generating Multiple Streams from a CALL Routine 211

Example 2: Assigning Values from a Single Stream to Multiple Variables 212

Pattern Matching Using Regular Expression (RX) Functions and CALL Routines 213

Base SAS Functions for Web Applications 213
Functions and CALL Routines by Category 213

Dictionary 226

ABS 226

ADDR 227

AIRY 227

ARCOS 228
ARSIN 229

ATAN 230

ATTRC 230

ATTRN 233

BAND 236
BETAINV 237

BLSHIFT 238

BNOT 238

BOR 239

BRSHIFT 239
BXOR 240

BYTE 241

CALL EXECUTE 242

200 ZDw.d 4 Chapter 4

CALL LABEL 242
CALL POKE 247

CALL RANBIN 248

CALL RANCAU 250

CALL RANEXP 252

CALL RANGAM 254
CALL RANNOR 256

CALL RANPOI 257

CALL RANTBL 259

CALL RANTRI 262

CALL RANUNI 264

CALL SET 269
CALL SYMPUT 271

CALL SYSTEM 271

CALL VNAME 272

CDF 273

CEIL 286
CEXIST 287

CINV 288

CLOSE 289

CNONCT 290

COLLATE 291
COMB 293

COMPBL 294

COMPOUND 295

COMPRESS 296

CONSTANT 297

CONVX 300
CONVXP 301

COS 302

COSH 303

CSS 304

CUROBS 304
CV 305

DACCDB 306

DACCDBSL 307

DACCSL 308

DACCSYD 309
DACCTAB 310

DAIRY 311

DATDIF 311

DATE 312

DATEJUL 313

DATEPART 314
DATETIME 315

DAY 315

DCLOSE 316

DEPDB 318

DEPDBSL 319
DEPSL 320

DEPSYD 321

DEPTAB 322

DEQUOTE 323

DEVIANCE 323

Functions and CALL Routines 4 ZDw.d 201

DHMS 327
DIF 328

DIGAMMA 329

DIM 330

DINFO 331

DNUM 333
DOPEN 334

DOPTNAME 335

DOPTNUM 336

DREAD 337

DROPNOTE 338

DSNAME 339
DUR 340

DURP 341

ERF 342

ERFC 343

EXIST 344
EXP 345

FACT 346

FAPPEND 347

FCLOSE 348

FCOL 349
FDELETE 350

FETCH 352

FETCHOBS 353

FEXIST 354

FGET 355

FILEEXIST 357
FILENAME 358

FILEREF 360

FINFO 361

FINV 362

FIPNAME 364
FIPNAMEL 365

FIPSTATE 366

FLOOR 367

FNONCT 368

FNOTE 369
FOPEN 371

FOPTNAME 373

FOPTNUM 374

FPOINT 375

FPOS 377

FPUT 378
FREAD 379

FREWIND 380

FRLEN 382

FSEP 383

FUZZ 384
FWRITE 385

GAMINV 386

GAMMA 387

GETOPTION 388

GETVARC 390

202 ZDw.d 4 Chapter 4

GETVARN 391
HBOUND 392

HMS 394

HOUR 395

HTMLDECODE 396

HTMLENCODE 397
IBESSEL 398

INDEX 399

INDEXC 400

INDEXW 401

INPUT 402

INPUTC 404
INPUTN 405

INT 407

INTCK 408

INTNX 410

INTRR 412
IORCMSG 414

IRR 415

JBESSEL 415

JULDATE 416

JULDATE7 417
KCOMPARE 418

KCOMPRESS 418

KCOUNT 419

KINDEX 419

KINDEXC 420

KLEFT 421
KLENGTH 421

KLOWCASE 422

KREVERSE 422

KRIGHT 423

KSCAN 423
KSTRCAT 424

KSUBSTR 425

KSUBSTRB 425

KTRANSLATE 426

KTRIM 427
KTRUNCATE 428

KUPCASE 428

KUPDATE 429

KUPDATEB 430

KURTOSIS 431

KVERIFY 431
LAG 432

LBOUND 434

LEFT 435

LENGTH 436

LGAMMA 437
LIBNAME 437

LIBREF 438

LOG 439

LOG10 440

LOG2 440

Functions and CALL Routines 4 ZDw.d 203

LOGPDF 441
LOGSDF 441

LOWCASE 441

MAX 442

MDY 443

MEAN 444
MIN 444

MINUTE 445

MISSING 446

MOD 447

MODULEC 448

MODULEIC 449
MODULEIN 449

MODULEN 450

MONTH 451

MOPEN 452

MORT 454
N 455

NETPV 456

NMISS 457

NOTE 458

NPV 460
OPEN 460

ORDINAL 462

PATHNAME 463

PDF 464

PEEK 476

PEEKC 477
PERM 480

POINT 481

POISSON 482

POKE 483

PROBBETA 484
PROBBNML 484

PROBBNRM 485

PROBCHI 486

PROBF 487

PROBGAM 488
PROBHYPR 489

PROBIT 490

PROBMC 490

PROBNEGB 501

PROBNORM 502

PROBT 502
PUT 503

PUTC 505

PUTN 506

PVP 508

QTR 509
QUOTE 510

RANBIN 511

RANCAU 512

RANEXP 513

RANGAM 514

204 ZDw.d 4 Chapter 4

RANGE 515
RANK 516

RANNOR 516

RANPOI 517

RANTBL 518

RANTRI 520
RANUNI 521

REPEAT 522

RESOLVE 522

REVERSE 523

REWIND 523

RIGHT 524
ROUND 525

RXMATCH 526

RXPARSE 527

SAVING 540

SCAN 541
SDF 542

SECOND 542

SIN 544

SINH 544

SKEWNESS 545
SOUNDEX 546

SPEDIS 547

SQRT 549

STD 549

STDERR 550

STFIPS 551
STNAME 552

STNAMEL 553

SUBSTR (left of =) 554

SUBSTR (right of =) 555

SUM 556
SYMGET 557

SYSGET 557

SYSMSG 558

SYSPARM 559

SYSPROD 560
SYSRC 561

SYSTEM 561

TAN 562

TANH 563

TIME 563

TIMEPART 564
TINV 564

TNONCT 565

TODAY 566

TRANSLATE 567

TRANWRD 568
TRIGAMMA 570

TRIM 570

TRIMN 572

TRUNC 573

UPCASE 574

Functions and CALL Routines 4 ZDw.d 205

URLDECODE 575
URLENCODE 576

USS 577

VAR 578

VARFMT 578

VARINFMT 580
VARLABEL 581

VARLEN 582

VARNAME 583

VARNUM 584

VARRAY 585

VARRAYX 586
VARTYPE 587

VERIFY 589

VFORMAT 590

VFORMATD 591

VFORMATDX 592
VFORMATN 593

VFORMATNX 594

VFORMATW 595

VFORMATWX 596

VFORMATX 597
VINARRAY 598

VINARRAYX 599

VINFORMAT 600

VINFORMATD 601

VINFORMATDX 602

VINFORMATN 603
VINFORMATNX 604

VINFORMATW 605

VINFORMATWX 606

VINFORMATX 607

VLABEL 608
VLABELX 609

VLENGTH 611

VLENGTHX 612

VNAME 613

VNAMEX 614
VTYPE 615

VTYPEX 616

WEEKDAY 617

YEAR 618

YIELDP 618

YRDIF 620
YYQ 621

ZIPFIPS 622

ZIPNAME 623

ZIPNAMEL 624

ZIPSTATE 625
References 626

206 Definitions 4 Chapter 4

Definitions

Definition of Functions
A SAS function performs a computation or system manipulation on arguments and

returns a value. Most functions use arguments supplied by the user, but a few obtain
their arguments from the operating environment.

In base SAS software, you can use SAS functions in DATA step programming
statements, in a WHERE expression, in macro language statements, in PROC
REPORT, and in Structured Query Language (SQL).

Some statistical procedures also use SAS functions. In addition, some other SAS
software products offer functions that you can use in the DATA step. Refer to the
documentation that pertains to the specific SAS software product for additional
information about these functions.

Definition of CALL Routines
A CALL routine alters variable values or performs other system functions. CALL

routines are similar to functions, but differ from functions in that you cannot use them
in assignment statements.

All SAS CALL routines are invoked with CALL statements; that is, the name of the
routine must appear after the keyword CALL on the CALL statement.

Syntax

Syntax of Functions
The syntax of a function is

function-name (argument-1<. . .,argument-n>)

function-name (OF variable-list)

function-name (OF array-name{*})

where

function-name
names the function.

argument
can be a variable name, constant, or any SAS expression, including another
function. The number and kind of arguments allowed are described with
individual functions. Multiple arguments are separated by a comma.

Tip: If the value of an argument is invalid (for example, missing or outside the
prescribed range), SAS prints a note to the log indicating that the argument is
invalid, sets _ERROR_ to 1, and sets the result to a missing value.

Examples:

� x=max(cash,credit);

Functions and CALL Routines 4 Syntax of CALL Routines 207

� x=sqrt(1500);

� NewCity=left(upcase(City));

� x=min(YearTemperature-July,YearTemperature-Dec);

� s=repeat(’----+’,16);

� x=min((enroll-drop),(enroll-fail));

� dollars=int(cash);

� if sum(cash,credit)>1000 then
put ’Goal reached’;

(OF variable-list)
can be any form of a SAS variable list, including individual variable names. If
more than one variable list appears, separate them with a space.
Examples:

� a=sum(of x y z);

� The following two examples are equivalent.
� a=sum(of x1-x10 y1-y10 z1-z10);

a=sum(of x1-x10, of y1-y10, of z1-z10);

� z=sum(of y1-y10);

(OF array-name{*})
names a currently defined array. Specifying an array in this way causes SAS to
treat the array as a list of the variables instead of processing only one element of
the array at a time.
Examples:

� array y{10} y1-y10;
x=sum(of y{*});

Syntax of CALL Routines
The syntax of a CALL routine is

CALL routine-name (argument-1<. . .,argument-n>);

where

routine-name
names a SAS CALL routine.

argument
can be a variable name, a constant, any SAS expression, an external module
name, an array reference, or a function. Multiple arguments are separated by a
comma. The number and kind of arguments allowed are described with individual
CALL routines in the dictionary section.
Examples:

� call rxsubstr(rx,string,position);

� call set(dsid);

208 Using Functions 4 Chapter 4

� call ranbin(Seed_1,n,p,X1);

� call label(abc{j},lab);

Using Functions

Restrictions on Function Arguments
If the value of an argument is invalid, SAS prints an error message and sets the

result to a missing value. Here are some common restrictions on function arguments:

� Some functions require that their arguments be restricted within a certain range.
For example, the argument of the LOG function must be greater than 0.

� Most functions do not permit missing values as arguments. Exceptions include
some of the descriptive statistics functions and financial functions.

� In general, the allowed range of the arguments is platform-dependent, such as
with the EXP function.

� For some probability functions, combinations of extreme values can cause
convergence problems.

Characteristics of Target Variables
Some character functions produce resulting variables, or target variables, with a

default length of 200 bytes. Numeric target variables have a default length of 8.
Character functions to which the default target variable lengths do not apply are shown
in the following table.

Table 4.1 Target Variables

Function Target Variable Type Target Variable Length (bytes)

BYTE character 1

COMPRESS character length of first argument

INPUT character width of informat

numeric 8

LEFT character length of argument

PUT character width of format

REVERSE character length of argument

RIGHT character length of argument

SUBSTR character length of first argument

TRANSLATE character length of first argument

TRIM character length of argument

UPCASE, LOWCASE character length of argument

VTYPE, VTYPEX character 1

Functions and CALL Routines 4 Notes on Financial Functions 209

Notes on Descriptive Statistic Functions
SAS provides functions that return descriptive statistics. Except for the MISSING

function, the functions correspond to the statistics produced by the MEANS procedure.
The computing method for each statistic is discussed in “SAS Elementary Statistics
Procedures” in of the SAS Procedures Guide. SAS calculates descriptive statistics for
the nonmissing values of the arguments.

Notes on Financial Functions
SAS provides a group of functions that perform financial calculations. The functions

are grouped into the following types:

Table 4.2 Types of Financial Functions

Function type Functions Description

Cashflow CONVX, CONVXP calculates convexity for cashflows

DUR, DURP calculates modified duration for cashflows

PVP, YIELDP calculates present value and
yield-to-maturity for a periodic cashflow

Parameter calculations COMPOUND calculates compound interest parameters

MORT calculates amortization parameters

Internal rate of return INTRR, IRR calculates the internal rate of return

Net present and future
value

NETPV, NPV calculates net present and future values

SAVING calculates the future value of periodic
saving

Depreciation DACCxx calculates the accumulated depreciation up
to the specified period

DEPxxx calculates depreciation for a single period

Special Considerations for Depreciation Functions
The period argument for depreciation functions can be fractional for all of the

functions except DEPDBSL and DACCDBSL. For fractional arguments, the
depreciation is prorated between the two consecutive time periods preceding and
following the fractional period.

CAUTION:
Verify the depreciation method for fractional periods. You must verify whether this
method is appropriate to use with fractional periods because many depreciation
schedules, specified as tables, have special rules for fractional periods. 4

210 Using DATA Step Functions within Macro Functions 4 Chapter 4

Using DATA Step Functions within Macro Functions
The macro functions %SYSFUNC and %QSYSFUNC can call DATA step functions to

generate text in the macro facility. %SYSFUNC and %QSYSFUNC have one difference:
%QSYSFUNC masks special characters and mnemonics and %SYSFUNC does not. For
more information on these functions, see %QSYSFUNC and %SYSFUNC in SAS Macro
Language: Reference.

%SYSFUNC arguments are a single DATA step function and an optional format, as
shown in the following examples:

%sysfunc(date(),worddate.)
%sysfunc(attrn(&dsid,NOBS))

You cannot nest DATA step functions within %SYSFUNC. However, you can nest
%SYSFUNC functions that call DATA step functions. For example:

%sysfunc(compress(%sysfunc(getoption(sasautos)),
%str(%)%(%’)));

All arguments in DATA step functions within %SYSFUNC must be separated by
commas. You cannot use argument lists that are preceded by the word OF.

Because %SYSFUNC is a macro function, you do not need to enclose character values
in quotation marks as you do in DATA step functions. For example, the arguments to
the OPEN function are enclosed in quotation marks when you use the function alone,
but the arguments do not require quotation marks when used within %SYSFUNC.

dsid=open("sasuser.houses","i");
dsid=open("&mydata","&mode");
%let dsid=%sysfunc(open(sasuser.houses,i));
%let dsid=%sysfunc(open(&mydata,&mode));

You can use these functions to call all of the DATA step SAS functions except those
that pertain to DATA step variables or processing. These prohibited functions are: DIF,
DIM, HBOUND, INPUT, IORCMSG, LAG, LBOUND, MISSING, PUT, RESOLVE,
SYMGET, and all of the variable information functions (for example, VLABEL).

Using Functions to Manipulate Files
SAS manipulates files in different ways, depending on whether you use functions or

statements. If you use functions such as FOPEN, FGET, and FCLOSE, you have more
opportunity to examine and manipulate your data than when you use statements such
as INFILE, INPUT, and PUT.

When you use external files, the FOPEN function allocates a buffer called the File
Data Buffer (FDB) and opens the external file for reading or updating. The FREAD
function reads a record from the external file and copies the data into the FDB. The
FGET function then moves the data to the DATA step variables. The function returns a
value that you can check with statements or other functions in the DATA step to
determine how to further process your data. After the records are processed, the
FWRITE function writes the contents of the FDB to the external file, and the FCLOSE
function closes the file.

When you use SAS data sets, the OPEN function opens the data set. The FETCH
and FETCHOBS functions read observations from an open SAS data set into the Data
Set Data Vector (DDV). The GETVARC and GETVARN functions then move the data to
DATA step variables. The functions return a value that you can check with statements
or other functions in the DATA step to determine how you want to further process your
data. After the data is processed, the CLOSE function closes the data set.

Functions and CALL Routines 4 Examples 211

For a complete listing of functions and CALL routines, see “Functions and CALL
Routines by Category” on page 213 . For complete descriptions and examples, see the
dictionary section of this book.

Using Random-Number Functions and CALL Routines

Seed Values
Random-number functions and CALL routines generate streams of random numbers

from an initial starting point, called a seed, that either the user or the computer clock
supplies. A seed must be a nonnegative integer with a value less than 231–1 (or
2,147,483,647). If you use a positive seed, you can always replicate the stream of
random numbers by using the same DATA step. If you use zero as the seed, the
computer clock initializes the stream, and the stream of random numbers is not
replicable.

Each random-number function and CALL routine generates pseudo-random numbers
from a specific statistical distribution. Every random-number function requires a seed
value expressed as an integer constant or a variable that contains the integer constant.
Every CALL routine calls a variable that contains the seed value. Additionally, every
CALL routine requires a variable that contains the generated random numbers.

The seed variable must be initialized prior to the first execution of the function or
CALL statement. After each execution of a function, the current seed is updated
internally, but the value of the seed argument remains unchanged. After each iteration
of the CALL statement, however, the seed variable contains the current seed in the
stream that generates the next random number. With a function, it is not possible to
control the seed values, and, therefore, the random numbers after the initialization.

Comparison of Random-Number Functions and CALL Routines
Except for the NORMAL and UNIFORM functions, which are equivalent to the

RANNOR and RANUNI functions, respectively, SAS provides a CALL routine that has
the same name as each random-number function. Using CALL routines gives you
greater control over the seed values. As an illustration of this control over seed values,
all the random-number CALL routines show an example of interrupting the stream of
random numbers to change the seed value.

With a CALL routine, you can generate multiple streams of random numbers within
a single DATA step. If you supply a different seed value to initialize each of the seed
variables, the streams of the generated random numbers are computationally
independent. With a function, however, you cannot generate more than one stream by
supplying multiple seeds within a DATA step. The following two examples illustrate the
difference.

Examples

Example 1: Generating Multiple Streams from a CALL Routine
This example uses the CALL RANUNI routine to generate three streams of random

numbers from the uniform distribution with ten numbers each. See the results in
Output 4.1 on page 212.

212 Examples 4 Chapter 4

options nodate pageno=1 linesize=80 pagesize=60;

data multiple(drop=i);
retain Seed_1 1298573062 Seed_2 447801538

Seed_3 631280;
do i=1 to 10;

call ranuni (Seed_1,X1);
call ranuni (Seed_2,X2);
call ranuni (Seed_3,X3);
output;

end;
run;

proc print data=multiple;
title ’Multiple Streams from a CALL Routine’;

run;

Output 4.1 The CALL Routine Example

Multiple Streams from a CALL Routine 1

Obs Seed_1 Seed_2 Seed_3 X1 X2 X3

1 1394231558 512727191 367385659 0.64924 0.23876 0.17108
2 1921384255 1857602268 1297973981 0.89471 0.86501 0.60442
3 902955627 422181009 188867073 0.42047 0.19659 0.08795
4 440711467 761747298 379789529 0.20522 0.35472 0.17685
5 1044485023 1703172173 591320717 0.48638 0.79310 0.27536
6 2136205611 2077746915 870485645 0.99475 0.96753 0.40535
7 1028417321 1800207034 1916469763 0.47889 0.83829 0.89243
8 1163276804 473335603 753297438 0.54169 0.22041 0.35078
9 176629027 1114889939 2089210809 0.08225 0.51916 0.97286

10 1587189112 399894790 284959446 0.73909 0.18622 0.13269

Example 2: Assigning Values from a Single Stream to Multiple Variables
Using the same three seeds that were used in Example 1, this example uses a

function to create three variables. The results that are produced are different from
those in Example 1 because the values of all three variables are generated by the first
seed. When you use an individual function more than once in a DATA step, the function
accepts only the first seed value that you supply and ignores the rest.

options nodate pageno=1 linesize=80 pagesize=60;

data single(drop=i);
do i=1 to 3;

Y1=ranuni(1298573062);
Y2=ranuni(447801538);
Y3=ranuni(631280);
output;

end;
run;

proc print data=single;
title ’A Single Stream across Multiple Variables’;

run;

Functions and CALL Routines 4 Functions and CALL Routines by Category 213

Output 4.2 on page 213 shows the results. The values of Y1, Y2, and Y3 in this
example come from the same random-number stream generated from the first seed. You
can see this by comparing the values by observation across these three variables with
the values of X1 in Output 4.1 on page 212.

Output 4.2 The Function Example

A Single Stream across Multiple Variables 1

Obs Y1 Y2 Y3

1 0.64924 0.89471 0.42047
2 0.20522 0.48638 0.99475
3 0.47889 0.54169 0.08225

Pattern Matching Using Regular Expression (RX) Functions and CALL
Routines

You can use a special group of functions and CALL routines to match or change data
according to a specific pattern that you specify. By using these functions and CALL
routines, you can determine whether a given character string is in a set denoted by a
pattern, or you can search a given character string for a substring in a set denoted by a
pattern. You can also change a matched substring to a different substring.

This group consists of CALL RXCHANGE, CALL RXFREE, CALL RXSUBSTR,
RXMATCH, and RXPARSE, and comprises the character string matching category for
functions and CALL routines. For a description of these functions, see “Functions and
CALL Routines by Category” on page 213.

Base SAS Functions for Web Applications
Four functions that manipulate Web-related content are available in base SAS

software. HTMLENCODE and URLENCODE return encoded strings. HTMLDECODE
and URLDECODE return decoded strings. For information about Web-based SAS tools,
follow the Web Enablement link on the SAS Institute home page, at www.sas.com.

Functions and CALL Routines by Category

Table 4.3 Categories and Descriptions of Functions and CALL Routines

Category Functions and CALL
Routine

Description

Array “DIM” on page 330 Returns the number of elements in an array

“HBOUND” on page 392 Returns the upper bound of an array

“LBOUND” on page 434 Returns the lower bound of an array

214 Functions and CALL Routines by Category 4 Chapter 4

Bitwise Logical Operations “BAND” on page 236 Returns the bitwise logical AND of two arguments

“BLSHIFT” on page 238 Returns the bitwise logical left shift of two arguments

“BNOT” on page 238 Returns the bitwise logical NOT of an argument

“BOR” on page 239 Returns the bitwise logical OR of two arguments

“BRSHIFT” on page 239 Returns the bitwise logical right shift of two arguments

“BXOR” on page 240 Returns the bitwise logical EXCLUSIVE OR of two
arguments

Character String Matching “CALL RXCHANGE” on
page 265

Changes one or more substrings that match a pattern

“CALL RXFREE” on page
267

Frees memory allocated by other regular expression (RX)
functions and CALL routines

“CALL RXSUBSTR” on
page 268

Finds the position, length, and score of a substring that
matches a pattern

“RXMATCH” on page 526 Finds the beginning of a substring that matches a
pattern and returns a value

“RXPARSE” on page 527 Parses a pattern and returns a value

Character “BYTE” on page 241 Returns one character in the ASCII or the EBCDIC
collating sequence

“COLLATE” on page 291 Returns an ASCII or EBCDIC collating sequence
character string

“COMPBL” on page 294 Removes multiple blanks from a character string

“COMPRESS” on page 296 Removes specific characters from a character string

“DEQUOTE” on page 323 Removes quotation marks from a character value

“INDEX” on page 399 Searches a character expression for a string of characters

“INDEXC” on page 400 Searches a character expression for specific characters

“INDEXW” on page 401 Searches a character expression for a specified string as
a word

“LEFT” on page 435 Left aligns a SAS character expression

“LENGTH” on page 436 Returns the length of an argument

“LOWCASE” on page 441 Converts all letters in an argument to lowercase

“MISSING” on page 446 Returns a numeric result that indicates whether the
argument contains a missing value

“QUOTE” on page 510 Adds double quotation marks to a character value

“RANK” on page 516 Returns the position of a character in the ASCII or
EBCDIC collating sequence

“REPEAT” on page 522 Repeats a character expression

“REVERSE” on page 523 Reverses a character expression

“RIGHT” on page 524 Right aligns a character expression

“SCAN” on page 541 Selects a given word from a character expression

“SOUNDEX” on page 546 Encodes a string to facilitate searching

Functions and CALL Routines 4 Functions and CALL Routines by Category 215

“SPEDIS” on page 547 Determines the likelihood of two words matching,
expressed as the asymmetric spelling distance between
the two words

“SUBSTR (left of =)” on
page 554

Replaces character value contents

“SUBSTR (right of =)” on
page 555

Extracts a substring from an argument

“TRANSLATE” on page
567

Replaces specific characters in a character expression

“TRANWRD” on page 568 Replaces or removes all occurrences of a word in a
character string

“TRIM” on page 570 Removes trailing blanks from character expressions and
returns one blank if the expression is missing

“TRIMN” on page 572 Removes trailing blanks from character expressions and
returns a null string (zero blanks) if the expression is
missing

“UPCASE” on page 574 Converts all letters in an argument to uppercase

“VERIFY” on page 589 Returns the position of the first character that is unique
to an expression

DBCS “KCOMPARE” on page 418 Returns the result of a comparison of character strings

“KCOMPRESS” on page
418

Removes specific characters from a character string

“KCOUNT” on page 419 Returns the number of double-byte characters in a string

“KINDEX” on page 419 Searches a character expression for a string of characters

“KINDEXC” on page 420 Searches a character expression for specific characters

“KLEFT” on page 421 Left aligns a SAS character expression by removing
unnecessary leading DBCS blanks and SO/SI

“KLENGTH” on page 421 Returns the length of an argument

“KLOWCASE” on page 422 Converts all letters in an argument to lowercase

“KREVERSE” on page 422 Reverses a character expression

“KRIGHT” on page 423 Right aligns a character expression by trimming trailing
DBCS blanks and SO/SI

“KSCAN” on page 423 Selects a given word from a character expression

“KSTRCAT” on page 424 Concatenates two or more character strings

“KSUBSTR” on page 425 Extracts a substring from an argument

“KSUBSTRB” on page 425 Extracts a substring from an argument based on byte
position

“KTRANSLATE” on page
426

Replaces specific characters in a character expression

“KTRIM” on page 427 Removes trailing DBCS blanks and SO/SI from character
expressions

“KTRUNCATE” on page
428

Truncates a numeric value to a specified length

216 Functions and CALL Routines by Category 4 Chapter 4

“KUPCASE” on page 428 Converts all single-byte letters in an argument to
uppercase

“KUPDATE” on page 429 Inserts, deletes, and replaces character value contents

“KUPDATEB” on page 430 Inserts, deletes, and replaces character value contents
based on byte unit

“KVERIFY” on page 431 Returns the position of the first character that is unique
to an expression

Date and Time “DATDIF” on page 311 Returns the number of days between two dates

“DATE” on page 312 Returns the current date as a SAS date value

“DATEJUL” on page 313 Converts a Julian date to a SAS date value

“DATEPART” on page 314 Extracts the date from a SAS datetime value

“DATETIME” on page 315 Returns the current date and time of day as a SAS
datetime value

“DAY” on page 315 Returns the day of the month from a SAS date value

“DHMS” on page 327 Returns a SAS datetime value from date, hour, minute,
and second

“HMS” on page 394 Returns a SAS time value from hour, minute, and second
values

“HOUR” on page 395 Returns the hour from a SAS time or datetime value

“INTCK” on page 408 Returns the integer number of time intervals in a given
time span

“INTNX” on page 410 Advances a date, time, or datetime value by a given
interval, and returns a date, time, or datetime value

“JULDATE” on page 416 Returns the Julian date from a SAS date value

“JULDATE7” on page 417 Returns a seven-digit Julian date from a SAS date value

“MDY” on page 443 Returns a SAS date value from month, day, and year
values

“MINUTE” on page 445 Returns the minute from a SAS time or datetime value

“MONTH” on page 451 Returns the month from a SAS date value

“QTR” on page 509 Returns the quarter of the year from a SAS date value

“SECOND” on page 542 Returns the second from a SAS time or datetime value

“TIME” on page 563 Returns the current time of day

“TIMEPART” on page 564 Extracts a time value from a SAS datetime value

“TODAY” on page 566 Returns the current date as a SAS date value

“WEEKDAY” on page 617 Returns the day of the week from a SAS date value

“YEAR” on page 618 Returns the year from a SAS date value

“YRDIF” on page 620 Returns the difference in years between two dates

“YYQ” on page 621 Returns a SAS date value from the year and quarter

Descriptive Statistics “CSS” on page 304 Returns the corrected sum of squares

“CV” on page 305 Returns the coefficient of variation

“KURTOSIS” on page 431 Returns the kurtosis

Functions and CALL Routines 4 Functions and CALL Routines by Category 217

“MAX” on page 442 Returns the largest value

“MEAN” on page 444 Returns the arithmetic mean (average)

“MIN” on page 444 Returns the smallest value

“MISSING” on page 446 Returns a numeric result that indicates whether the
argument contains a missing value

“N” on page 455 Returns the number of nonmissing values

“NMISS” on page 457 Returns the number of missing values

“ORDINAL” on page 462 Returns any specified order statistic

“RANGE” on page 515 Returns the range of values

“SKEWNESS” on page 545 Returns the skewness

“STD” on page 549 Returns the standard deviation

“STDERR” on page 550 Returns the standard error of the mean

“SUM” on page 556 Returns the sum of the nonmissing arguments

“USS” on page 577 Returns the uncorrected sum of squares

“VAR” on page 578 Returns the variance

External Files “DCLOSE” on page 316 Closes a directory that was opened by the DOPEN
function and returns a value

“DINFO” on page 331 Returns information about a directory

“DNUM” on page 333 Returns the number of members in a directory

“DOPEN” on page 334 Opens a directory and returns a directory identifier value

“DOPTNAME” on page 335 Returns directory attribute information

“DOPTNUM” on page 336 Returns the number of information items that are
available for a directory

“DREAD” on page 337 Returns the name of a directory member

“DROPNOTE” on page 338 Deletes a note marker from a SAS data set or an
external file and returns a value

“FAPPEND” on page 347 Appends the current record to the end of an external file
and returns a value

“FCLOSE” on page 348 Closes an external file, directory, or directory member,
and returns a value

“FCOL” on page 349 Returns the current column position in the File Data
Buffer (FDB)

“FDELETE” on page 350 Deletes an external file or an empty directory

“FEXIST” on page 354 Verifies the existence of an external file associated with a
fileref and returns a value

“FGET” on page 355 Copies data from the File Data Buffer (FDB) into a
variable and returns a value

“FILEEXIST” on page 357 Verifies the existence of an external file by its physical
name and returns a value

“FILENAME” on page 358 Assigns or deassigns a fileref for an external file,
directory, or output device and returns a value

218 Functions and CALL Routines by Category 4 Chapter 4

“FILEREF” on page 360 Verifies that a fileref has been assigned for the current
SAS session and returns a value

“FINFO” on page 361 Returns the value of a file information item

“FNOTE” on page 369 Identifies the last record that was read and returns a
value that FPOINT can use

“FOPEN” on page 371 Opens an external file and returns a file identifier value

“FOPTNAME” on page 373 Returns the name of an item of information about a file

“FOPTNUM” on page 374 Returns the number of information items that are
available for an external file

“FPOINT” on page 375 Positions the read pointer on the next record to be read
and returns a value

“FPOS” on page 377 Sets the position of the column pointer in the File Data
Buffer (FDB) and returns a value

“FPUT” on page 378 Moves data to the File Data Buffer (FDB) of an external
file, starting at the FDB’s current column position, and
returns a value

“FREAD” on page 379 Reads a record from an external file into the File Data
Buffer (FDB) and returns a value

“FREWIND” on page 380 Positions the file pointer to the start of the file and
returns a value

“FRLEN” on page 382 Returns the size of the last record read, or, if the file is
opened for output, returns the current record size

“FSEP” on page 383 Sets the token delimiters for the FGET function and
returns a value

“FWRITE” on page 385 Writes a record to an external file and returns a value

“MOPEN” on page 452 Opens a file by directory id and member name, and
returns the file identifier or a 0

“PATHNAME” on page 463 Returns the physical name of a SAS data library or of an
external file, or returns a blank

“SYSMSG” on page 558 Returns the text of error messages or warning messages
from the last data set or external file function execution

“SYSRC” on page 561 Returns a system error number

External Routines “CALL MODULE” on page
244

Calls the external routine without any return code

“CALL MODULEI” on
page 246

Calls the external routine without any return code (in
IML environment only)

“MODULEC” on page 448 Calls an external routine and returns a character value

“MODULEIC” on page 449 Calls an external routine and returns a character value
(in IML environment only)

“MODULEIN” on page 449 Calls an external routine and returns a numeric value
(in IML environment only)

“MODULEN” on page 450 Calls an external routine and returns a numeric value

Financial “COMPOUND” on page
295

Returns compound interest parameters

Functions and CALL Routines 4 Functions and CALL Routines by Category 219

“CONVX” on page 300 Returns the convexity for an enumerated cashflow

“CONVXP” on page 301 Returns the convexity for a periodic cashflow stream,
such as a bond

“DACCDB” on page 306 Returns the accumulated declining balance depreciation

“DACCDBSL” on page 307 Returns the accumulated declining balance with
conversion to a straight-line depreciation

“DACCSL” on page 308 Returns the accumulated straight-line depreciation

“DACCSYD” on page 309 Returns the accumulated sum-of-years-digits
depreciation

“DACCTAB” on page 310 Returns the accumulated depreciation from specified
tables

“DEPDB” on page 318 Returns the declining balance depreciation

“DEPDBSL” on page 319 Returns the declining balance with conversion to a
straight-line depreciation

“DEPSL” on page 320 Returns the straight-line depreciation

“DEPSYD” on page 321 Returns the sum-of-years-digits depreciation

“DEPTAB” on page 322 Returns the depreciation from specified tables

“DUR” on page 340 Returns the modified duration for an enumerated
cashflow

“DURP” on page 341 Returns the modified duration for a periodic cashflow
stream, such as a bond

“INTRR” on page 412 Returns the internal rate of return as a fraction

“IRR” on page 415 Returns the internal rate of return as a percentage

“MORT” on page 454 Returns amortization parameters

“NETPV” on page 456 Returns the net present value as a fraction

“NPV” on page 460 Returns the net present value with the rate expressed as
a percentage

“PVP” on page 508 Returns the present value for a periodic cashflow stream,
such as a bond

“SAVING” on page 540 Returns the future value of a periodic saving

“YIELDP” on page 618 Returns the yield-to-maturity for a periodic cashflow
stream, such as a bond

Hyperbolic “COSH” on page 303 Returns the hyperbolic cosine

“SINH” on page 544 Returns the hyperbolic sine

“TANH” on page 563 Returns the hyperbolic tangent

Macro “CALL EXECUTE” on
page 242

Resolves an argument and issues the resolved value for
execution

“CALL SYMPUT” on page
271

Assigns DATA step information to a macro variable

“RESOLVE” on page 522 Returns the resolved value of an argument after it has
been processed by the macro facility

220 Functions and CALL Routines by Category 4 Chapter 4

“SYMGET” on page 557 Returns the value of a macro variable during DATA step
execution

Mathematical “ABS” on page 226 Returns the absolute value

“AIRY” on page 227 Returns the value of the airy function

“CNONCT” on page 290 Returns the noncentrality parameter from a chi-squared
distribution

“COMB” on page 293 Computes the number of combinations of n elements
taken r at a time and returns a value

“CONSTANT” on page 297 Computes some machine and mathematical constants
and returns a value

“DAIRY” on page 311 Returns the derivative of the airy function

“DEVIANCE” on page 323 Computes the deviance and returns a value

“DIGAMMA” on page 329 Returns the value of the DIGAMMA function

“ERF” on page 342 Returns the value of the (normal) error function

“ERFC” on page 343 Returns the value of the complementary (normal) error
function

“EXP” on page 345 Returns the value of the exponential function

“FACT” on page 346 Computes a factorial and returns a value

“FNONCT” on page 368 Returns the value of the noncentrality parameter of an F
distribution

“GAMMA” on page 387 Returns the value of the Gamma function

“IBESSEL” on page 398 Returns the value of the modified bessel function

“JBESSEL” on page 415 Returns the value of the bessel function

“LGAMMA” on page 437 Returns the natural logarithm of the Gamma function

“LOG” on page 439 Returns the natural (base e) logarithm

“LOG10” on page 440 Returns the logarithm to the base 10

“LOG2” on page 440 Returns the logarithm to the base 2

“MOD” on page 447 Returns the remainder value

“PERM” on page 480 Computes the number of permutations of n items taken r
at a time and returns a value

“SIGN” on page 543 Returns the sign of a value

“SQRT” on page 549 Returns the square root of a value

“TNONCT” on page 565 Returns the value of the noncentrality parameter from
the student’s t distribution

“TRIGAMMA” on page 570 Returns the value of the TRIGAMMA function

Probability “CDF” on page 273 Computes cumulative distribution functions

“LOGPDF” on page 441 Computes the logarithm of a probability (mass) function

“LOGSDF” on page 441 Computes the logarithm of a survival function

“PDF” on page 464 Computes probability density (mass) functions

“POISSON” on page 482 Returns the probability from a Poisson distribution

Functions and CALL Routines 4 Functions and CALL Routines by Category 221

“PROBBETA” on page 484 Returns the probability from a beta distribution

“PROBBNML” on page 484 Returns the probability from a binomial distribution

“PROBBNRM” on page 485 Computes a probability from the bivariate normal
distribution and returns a value

“PROBCHI” on page 486 Returns the probability from a chi-squared distribution

“PROBF” on page 487 Returns the probability from an F distribution

“PROBGAM” on page 488 Returns the probability from a gamma distribution

“PROBHYPR” on page 489 Returns the probability from a hypergeometric
distribution

“PROBMC” on page 490 Computes a probability or a quantile from various
distributions for multiple comparisons of means, and
returns a value

“PROBNEGB” on page 501 Returns the probability from a negative binomial
distribution

“PROBNORM” on page
502

Returns the probability from the standard normal
distribution

“PROBT” on page 502 Returns the probability from a t distribution

“SDF” on page 542 Computes a survival function

Quantile “BETAINV” on page 237 Returns a quantile from the beta distribution

“CINV” on page 288 Returns a quantile from the chi-squared distribution

“FINV” on page 362 Returns a quantile from the F distribution

“GAMINV” on page 386 Returns a quantile from the gamma distribution

“PROBIT” on page 490 Returns a quantile from the standard normal distribution

“TINV” on page 564 Returns a quantile from the t distribution

Random Number “CALL RANBIN” on page
248

Returns a random variate from a binomial distribution

“CALL RANCAU” on page
250

Returns a random variate from a Cauchy distribution

“CALL RANEXP” on page
252

Returns a random variate from an exponential
distribution

“CALL RANGAM” on page
254

Returns a random variate from a gamma distribution

“CALL RANNOR” on page
256

Returns a random variate from a normal distribution

“CALL RANPOI” on page
257

Returns a random variate from a Poisson distribution

“CALL RANTBL” on page
259

Returns a random variate from a tabled probability
distribution

“CALL RANTRI” on page
262

Returns a random variate from a triangular distribution

“CALL RANUNI” on page
264

Returns a random variate from a uniform distribution

222 Functions and CALL Routines by Category 4 Chapter 4

“NORMAL” on page 458 Returns a random variate from a normal distribution

“RANBIN” on page 511 Returns a random variate from a binomial distribution

“RANCAU” on page 512 Returns a random variate from a Cauchy distribution

“RANEXP” on page 513 Returns a random variate from an exponential
distribution

“RANGAM” on page 514 Returns a random variate from a gamma distribution

“RANNOR” on page 516 Returns a random variate from a normal distribution

“RANPOI” on page 517 Returns a random variate from a Poisson distribution

“RANTBL” on page 518 Returns a random variate from a tabled probability

“RANTRI” on page 520 Random variate from a triangular distribution

“RANUNI” on page 521 Returns a random variate from a uniform distribution

“UNIFORM” on page 574 Random variate from a uniform distribution

SAS File I/O “ATTRC” on page 230 Returns the value of a character attribute for a SAS data
set

“ATTRN” on page 233 Returns the value of a numeric attribute for the specified
SAS data set

“CEXIST” on page 287 Verifies the existence of a SAS catalog or SAS catalog
entry and returns a value

“CLOSE” on page 289 Closes a SAS data set and returns a value

“CUROBS” on page 304 Returns the observation number of the current
observation

“DROPNOTE” on page 338 Deletes a note marker from a SAS data set or an
external file and returns a value

“DSNAME” on page 339 Returns the SAS data set name that is associated with a
data set identifier

“EXIST” on page 344 Verifies the existence of a SAS data library member

“FETCH” on page 352 Reads the next nondeleted observation from a SAS data
set into the Data Set Data Vector (DDV) and returns a
value

“FETCHOBS” on page 353 Reads a specified observation from a SAS data set into
the Data Set Data Vector (DDV) and returns a value

“GETVARC” on page 390 Returns the value of a SAS data set character variable

“GETVARN” on page 391 Returns the value of a SAS data set numeric variable

“IORCMSG” on page 414 Returns a formatted error message for _IORC_

“LIBNAME” on page 437 Assigns or deassigns a libref for a SAS data library and
returns a value

“LIBREF” on page 438 Verifies that a libref has been assigned and returns a
value

“NOTE” on page 458 Returns an observation ID for the current observation of
a SAS data set

“OPEN” on page 460 Opens a SAS data set and returns a value

Functions and CALL Routines 4 Functions and CALL Routines by Category 223

“PATHNAME” on page 463 Returns the physical name of a SAS data library or of an
external file, or returns a blank

“POINT” on page 481 Locates an observation identified by the NOTE function
and returns a value

“REWIND” on page 523 Positions the data set pointer at the beginning of a SAS
data set and returns a value

“SYSMSG” on page 558 Returns the text of error messages or warning messages
from the last data set or external file function execution

“SYSRC” on page 561 Returns a system error number

“VARFMT” on page 578 Returns the format assigned to a SAS data set variable

“VARINFMT” on page 580 Returns the informat assigned to a SAS data set variable

“VARLABEL” on page 581 Returns the label assigned to a SAS data set variable

“VARLEN” on page 582 Returns the length of a SAS data set variable

“VARNAME” on page 583 Returns the name of a SAS data set variable

“VARNUM” on page 584 Returns the number of a variable’s position in a SAS
data set

“VARTYPE” on page 587 Returns the data type of a SAS data set variable

Special “ADDR” on page 227 Returns the memory address of a variable

“CALL POKE” on page 247 Writes a value directly into memory

“CALL SYSTEM” on page
271

Submits an operating environment command for
execution

“DIF” on page 328 Returns differences between the argument and its nth lag

“GETOPTION” on page
388

Returns the value of a SAS system or graphics option

“INPUT” on page 402 Returns the value produced when a SAS expression that
uses a specified informat expression is read

“INPUTC” on page 404 Enables you to specify a character informat at run time

“INPUTN” on page 405 Enables you to specify a numeric informat at run time

“LAG” on page 432 Returns values from a queue

“PEEK” on page 476 Stores the contents of a memory address into a numeric
variable

“PEEKC” on page 477 Stores the contents of a memory address into a character
variable

“POKE” on page 483 Writes a value directly into memory

“PUT” on page 503 Returns a value using a specified format

“PUTC” on page 505 Enables you to specify a character format at run time

“PUTN” on page 506 Enables you to specify a numeric format at run time

“SYSGET” on page 557 Returns the value of the specified operating environment
variable

“SYSPARM” on page 559 Returns the system parameter string

“SYSPROD” on page 560 Determines if a product is licensed

224 Functions and CALL Routines by Category 4 Chapter 4

“SYSTEM” on page 561 Issues an operating environment command during a SAS
session

State and ZIP Code “FIPNAME” on page 364 Converts FIPS codes to uppercase state names

“FIPNAMEL” on page 365 Converts FIPS codes to mixed case state names

“FIPSTATE” on page 366 Converts FIPS codes to two-character postal codes

“STFIPS” on page 551 Converts state postal codes to FIPS state codes

“STNAME” on page 552 Converts state postal codes to uppercase state names

“STNAMEL” on page 553 Converts state postal codes to mixed case state names

“ZIPFIPS” on page 622 Converts ZIP codes to FIPS state codes

“ZIPNAME” on page 623 Converts ZIP codes to uppercase state names

“ZIPNAMEL” on page 624 Converts ZIP codes to mixed case state names

“ZIPSTATE” on page 625 Converts ZIP codes to state postal codes

Trigonometric “ARCOS” on page 228 Returns the arccosine

“ARSIN” on page 229 Returns the arcsine

“ATAN” on page 230 Returns the arctangent

“COS” on page 302 Returns the cosine

“SIN” on page 544 Returns the sine

“TAN” on page 562 Returns the tangent

Truncation “CEIL” on page 286 Returns the smallest integer that is greater than or
equal to the argument

“FLOOR” on page 367 Returns the largest integer that is less than or equal to
the argument

“FUZZ” on page 384 Returns the nearest integer if the argument is within
1E−12

“INT” on page 407 Returns the integer value

“ROUND” on page 525 Rounds to the nearest round-off unit

“TRUNC” on page 573 Truncates a numeric value to a specified length

Variable Control “CALL LABEL” on page
242

Assigns a variable label to a specified character variable

“CALL SET” on page 269 Links SAS data set variables to DATA step or macro
variables that have the same name and data type

“CALL VNAME” on page
272

Assigns a variable name as the value of a specified
variable

Variable Information “VARRAY” on page 585 Returns a value that indicates whether the specified
name is an array

“VARRAYX” on page 586 Returns a value that indicates whether the value of the
specified argument is an array

“VFORMAT” on page 590 Returns the format that is associated with the specified
variable

“VFORMATD” on page 591 Returns the format decimal value that is associated with
the specified variable

Functions and CALL Routines 4 Functions and CALL Routines by Category 225

“VFORMATDX” on page
592

Returns the format decimal value that is associated with
the value of the specified argument

“VFORMATN” on page 593 Returns the format name that is associated with the
specified variable

“VFORMATNX” on page
594

Returns the format name that is associated with the
value of the specified argument

“VFORMATW” on page
595

Returns the format width that is associated with the
specified variable

“VFORMATWX” on page
596

Returns the format width that is associated with the
value of the specified argument

“VFORMATX” on page 597 Returns the format that is associated with the value of
the specified argument

“VINARRAY” on page 598 Returns a value that indicates whether the specified
variable is a member of an array

“VINARRAYX” on page
599

Returns a value that indicates whether the value of the
specified argument is a member of an array

“VINFORMAT” on page
600

Returns the informat that is associated with the specified
variable

“VINFORMATD” on page
601

Returns the informat decimal value that is associated
with the specified variable

“VINFORMATDX” on page
602

Returns the informat decimal value that is associated
with the value of the specified argument

“VINFORMATN” on page
603

Returns the informat name that is associated with the
specified variable

“VINFORMATNX” on page
604

Returns the informat name that is associated with the
value of the specified argument

“VINFORMATW” on page
605

Returns the informat width that is associated with the
specified variable

“VINFORMATWX” on
page 606

Returns the informat width that is associated with the
value of the specified argument

“VINFORMATX” on page
607

Returns the informat that is associated with the value of
the specified argument

“VLABEL” on page 608 Returns the label that is associated with the specified
variable

“VLABELX” on page 609 Returns the variable label for the value of a specified
argument

“VLENGTH” on page 611 Returns the compile-time (allocated) size of the specified
variable

“VLENGTHX” on page 612 Returns the compile-time (allocated) size for the value of
the specified argument

“VNAME” on page 613 Returns the name of the specified variable

“VNAMEX” on page 614 Validates the value of the specified argument as a
variable name

“VTYPE” on page 615 Returns the type (character or numeric) of the specified
variable

226 Dictionary 4 Chapter 4

“VTYPEX” on page 616 Returns the type (character or numeric) for the value of
the specified argument

Web Tools “HTMLDECODE” on page
396

Decodes a string containing HTML numeric character
references or HTML character entity references and
returns the decoded string

“HTMLENCODE” on page
397

Encodes characters using HTML character entity
references and returns the encoded string

“URLDECODE” on page
575

Returns a string that was decoded using the URL escape
syntax

“URLENCODE” on page
576

Returns a string that was encoded using the URL escape
syntax

Dictionary

ABS

Returns the absolute value

Category: Mathematical

Syntax
ABS (argument)

Arguments

argument
is numeric.

Details
The ABS function returns a nonnegative number that is equal in magnitude to that of
the argument.

Examples

Functions and CALL Routines 4 AIRY 227

SAS Statements Results

x=abs(2.4); 2.4

x=abs(-3); 3

ADDR
Returns the memory address of a variable

Category: Special

Syntax
ADDR(variable)

Arguments

variable
specifies a variable name.

Details
The return value is always numeric. Because the storage location of a variable may
vary from one execution to the next, based on many factors, the value returned by
ADDR may vary. This function is used mostly in combination with the PEEK and
PEEKC functions and the POKE CALL routine.

Examples

The following example returns the address at which the variable FIRST is stored:

data numlist;
first=3;
x=addr(first);

run;

See Also

CALL Routine:
“CALL POKE” on page 247

Functions:
“PEEK” on page 476
“PEEKC” on page 477

AIRY
Returns the value of the airy function

228 ARCOS 4 Chapter 4

Category: Mathematical

Syntax
AIRY(x)

Arguments

x
is numeric.

Details
The AIRY function returns the value of the airy function (Abramowitz and Stegun 1964;
Amos, Daniel and Weston 1977) (See “References” on page 626). It is the solution of the
differential equation

w
(2)
� xw = 0

with the conditions

w (0) =
1

3
2

3�
�
2
3

�

and

w
0 (0) = �

1

3
1

3�
�
1
3

�

Examples

SAS Statements Results

x=airy(2.0); 0.0349241304

x=airy(-2.0); 0.2274074282

ARCOS

Returns the arccosine

Category: Trigonometric

Functions and CALL Routines 4 ARSIN 229

Syntax
ARCOS (argument)

Arguments

argument
is numeric.
Range: between −1 and 1

Details
The ARCOS function returns the arccosine (inverse cosine) of the argument. The value
returned is in radians.

Examples

SAS Statements Results

x=arcos(1); 0

x=arcos(0); 1.5707963268

x=arcos(-0.5); 2.0943951024

ARSIN

Returns the arcsine

Category: Trigonometric

Syntax
ARSIN (argument)

Arguments

argument
is numeric.
Range: between −1 and 1

Details
The ARSIN function returns the arcsine (inverse sine) of the argument. The value
returned is in radians.

230 ATAN 4 Chapter 4

Examples

SAS Statements Results

x=arsin(0); 0

x=arsin(1); 1.5707963268

x=arsin(--0.5); -0.523598776

ATAN

Returns the arctangent

Category: Trigonometric

Syntax
ATAN (argument)

Arguments

argument
is numeric.

Details
The ATAN function returns the arctangent (inverse tangent) of the argument. The
value returned is in radians.

Examples

SAS Statements Results

x=atan(0); 0

x=atan(1); 0.7853981634

x=atan(-9.0); -1.460139106

ATTRC

Returns the value of a character attribute for a SAS data set

Category: SAS File I/O

Functions and CALL Routines 4 ATTRC 231

Syntax
ATTRC(data-set-id,attr-name)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

attr-name
is an attribute name. If attr-name is invalid, a missing value is returned.

Valid values for use with attr-name are:

CHARSET
returns a value for the character set of the machine that created the data set.

empty string Data set not sorted

ASCII ASCII character set

EBCDIC EBCDIC character set

ANSI OS/2 ANSI standard ASCII character set

OEM OS/2 OEM code format

ENCRYPT
returns ’YES’ or ’NO’ depending on whether the SAS data set is encrypted.

ENGINE
returns the name of the engine that is used to access the data set.

LABEL
returns the label assigned to the data set.

LIB
returns the libref of the SAS data library in which the data set resides.

MEM
returns the SAS data set name.

MODE
returns the mode in which the SAS data set was opened, such as:

I INPUT mode allows random access if the engine supports it;
otherwise, it defaults to IN mode.

IN INPUT mode reads sequentially and allows revisiting
observations.

IS INPUT mode reads sequentially but does not allow revisiting
observations.

N NEW mode creates a new data set.

U UPDATE mode allows random access if the engine supports it;
otherwise, it defaults to UN mode.

UN UPDATE mode reads sequentially and allows revisiting
observations.

232 ATTRC 4 Chapter 4

US UPDATE mode reads sequentially but does not allow revisiting
observations.

V UTILITY mode allows modification of variable attributes and
indexes associated with the data set.

MTYPE
returns the SAS data library member type.

SORTEDBY
returns an empty string if the data set is not sorted. Otherwise, it returns the names
of the BY variables in the standard BY statement format.

SORTLVL
returns a value that indicates how a data set was sorted:

Empty string Data set is not sorted.

WEAK Sort order of the data set was established by the user (for
example, through the SORTEDBY data set option). The system
cannot validate its correctness, so the order of observations
cannot be depended on.

STRONG Sort order of the data set was established by the software (for
example, through PROC SORT or the OUT= option in the
CONTENTS procedure).

SORTSEQ
returns an empty string if the data set is sorted on the native machine or if the sort
collating sequence is the default for the operating environment. Otherwise, it returns
the name of the alternate collating sequence used to sort the file.

TYPE
returns the SAS data set type.

Examples

� This example generates a message if the SAS data set has not been opened in
INPUT SEQUENTIAL mode. The message is written to the SAS log as follows:

%let mode=%sysfunc(attrc(&dsid,MODE));
%if &mode ne IS %then

%put Data set has not been opened in INPUT SEQUENTIAL mode.;

� This example tests whether a data set has been sorted and writes the result to the
SAS log.

data _null_;
dsid=open("sasdata.sortcars","i");
charset=attrc(dsid,"CHARSET");
if charset = "" then

put "Data set has not been sorted.";
else put "Data set sorted with " charset

"character set.";
rc=close(dsid);

run;

Functions and CALL Routines 4 ATTRN 233

See Also

Functions:
“ATTRN” on page 233
“OPEN” on page 460

ATTRN

Returns the value of a numeric attribute for the specified SAS data set

Category: SAS File I/O

Syntax
ATTRN(data-set-id,attr-name)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

attr-name
is a numeric attribute, as listed in the section below. If the value of attr-name is
invalid, a missing value is returned.

Valid numeric values used with attr-name are:

ALTERPW
specifies whether a password is required to alter the data set.

1 the data set is alter protected.

0 the data set is not alter protected.

ANOBS
specifies whether the engine knows the number of observations.

1 the engine knows the number of observations.

0 the engine does not know the number of observations.

ANY
specifies whether the data set has observations or variables.

−1 the data set has no observations or variables.

0 the data set has no observations.

1 the data set has observations and variables.
Alias: VAROBS

ARAND
specifies whether the engine supports random access.

1 the engine supports random access.

234 ATTRN 4 Chapter 4

0 the engine does not support random access.
Alias: RANDOM

ARWU
specifies whether the engine can manipulate files.

1 the engine is not read-only. It can create or update SAS files.

0 the engine is read-only.

CRDTE
specifies the date that the data set was created. The value returned is the internal
SAS datetime value for the creation date.
Tip: Use the DATETIME. format to display this value.

ICONST
returns information about the existenece of integrity constraints for a SAS data set.

0 no integrity constraints.

1 one or more general integrity constraints.

2 one or more referential integrity constraints.

3 both one or more general integrity constraints and one or more
referential integrity constraints

INDEX
specifies whether the data set supports indexing.

1 indexing is supported.

0 indexing is not supported.

ISINDEX
specifies whether the data set is indexed.

1 at least one index exists for the data set.

0 the data set is not indexed.

ISSUBSET
specifies whether the data set is a subset.

1 at least one WHERE clause is active.

0 no WHERE clause is active.

LRECL
specifies the logical record length.

LRID
specifies the length of the record ID.

MAXGEN
specifies the maximum number of generations.

MAXRC
specifies whether an application checks return codes.

1 an application checks return codes.

0 an application does not check return codes.

MODTE
specifies the last date and time the data set was modified. The value returned is the
internal SAS datetime value.

Functions and CALL Routines 4 ATTRN 235

Tip: Use the DATETIME. format to display this value.

NDEL
specifies the number of observations in the data set that are marked for deletion.

NEXTGEN
specifies the next generation number to generate.

NLOBS
specifies the number of logical observations (those not marked for deletion). An
active WHERE clause does not affect this number.

−1 the number of observations is not available.

NLOBSF
specifies the number of logical observations (those not marked for deletion) by forcing
a read of each observation and taking the FIRSTOBS and OBS system options, and
the WHERE clauses into account.
Tip: Passing NLOBSF to ATTRN requires the engine to read every observation

from the data set that matches the WHERE clause. Based on the file type and
size, this can be a time-consuming process.

NOBS
specifies the number of physical observations (including those that are marked for
deletion). An active WHERE clause does not affect this number.

−1 the number of observations is not available.

NVARS
specifies the number of variables in the data set.

PW
specifies whether a password is required to access the data set.

1 the data set is protected.

0 the data set is not protected.

RADIX
specifies whether access by observation number (radix addressability) is allowed.

1 access by observation number is allowed.

0 access by observation number is not allowed.
Note: A data set on a tape engine is index addressable although it cannot be accessed
by observation number.

READPW
specifies whether a password is required to read the data set.

1 the data set is read protected.

0 the data set is not read protected.

TAPE
specifies the data set tape file status.

1 the data set is a sequential file.

0 the data set is not a sequential file.

WHSTMT
specifies the active WHERE clauses.

0 no WHERE clause is active.

1 a permanent WHERE clause is active.

236 BAND 4 Chapter 4

2 a temporary WHERE clause is active.

3 both permanent and temporary WHERE clauses are active.

WRITEPW
specifies whether a password is required to write to the data set.

1 the data set is write protected.

0 the data set is not write protected.

Examples

� This example checks whether a WHERE clause is currently active for a data set.

%let iswhere=%sysfunc(attrn(&dsid,whstmt));
%if &iswhere %then

%put A WHERE clause is currently active.;

� This example checks whether a data set is protected with a password.

data _null_;
dsid=open("mydata");
pw=attrn(dsid,"pw");
if pw then put "data set is protected";

run;

See Also

Functions:

“ATTRC” on page 230

“OPEN” on page 460

BAND

Returns the bitwise logical AND of two arguments

Category: Bitwise Logical Operations

Syntax
band(argument-1,argument-2)

Arguments

argument-1,argument-2
are numeric, nonnegative, and nonmissing. Separate the arguments with a comma.

Range: 0 to the largest 32-bit unsigned integer

Functions and CALL Routines 4 BETAINV 237

Examples

SAS Statements Results

x=band(0Fx,05x);
put x=hex.;

x=00000005

BETAINV

Returns a quantile from the beta distribution

Category: Quantile

Syntax
BETAINV (p,a,b)

Arguments

p
is a numeric probability.
Range: 0 ≤ p ≤ 1

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric shape parameter.
Range: b > 0

Details
The BETAINV function returns the pth quantile from the beta distribution with shape
parameters a and b. The probability that an observation from a beta distribution is less
than or equal to the returned quantile is p.

Note: BETAINV is the inverse of the PROBBETA function. 4

238 BLSHIFT 4 Chapter 4

Examples

SAS Statements Results

x=betainv(0.001,2,4); 0.0101017879

BLSHIFT

Returns the bitwise logical left shift of two arguments

Category: Bitwise Logical Operations

Syntax
BLSHIFT(argument-1,argument-2)

Arguments

argument-1
is numeric, nonnegative, and nonmissing.

Range: 0 to the largest 32-bit unsigned integer

argument-2
is numeric, nonnegative, and nonmissing.

Range: 0 to 31, inclusive

Examples

SAS Statements Results

x=blshift(07x,2);
put x=hex.; x=0000001C

BNOT

Returns the bitwise logical NOT of an argument

Category: Bitwise Logical Operations

Syntax
BNOT(argument)

Functions and CALL Routines 4 BRSHIFT 239

Arguments

argument
is numeric, nonnegative, and nonmissing.
Range: 0 to the largest 32-bit unsigned integer

Examples

SAS Statements Results

x=bnot(0F000000Fx);
put x=hex.; x=0FFFFFF0

BOR

Returns the bitwise logical OR of two arguments

Category: Bitwise Logical Operations

Syntax
BOR(argument-1,argument-2)

Arguments

argument-1,argument-2
are numeric, non-negative, and nonmissing. Separate the arguments with a comma.
Range: 0 to the largest 32-bit unsigned integer

Examples

SAS Statements Results

x=bor(01x,0F4x);
put x=hex.; x=000000F5

BRSHIFT

Returns the bitwise logical right shift of two arguments

240 BXOR 4 Chapter 4

Category: Bitwise Logical Operations

Syntax
BRSHIFT(argument-1, argument-2)

Arguments

argument-1
is numeric, nonnegative, and nonmissing.
Range: 0 to the largest 32-bit unsigned integer

argument-2
is numeric, nonnegative, and nonmissing.
Range: 0 to 31, inclusive

Examples

SAS Statements Results

x=brshift(01Cx,2);
put x=hex.; x=00000007

BXOR

Returns the bitwise logical EXCLUSIVE OR of two arguments

Category: Bitwise Logical Operations

Syntax
BXOR(argument-1, argument-2)

Arguments

argument-1, argument-2
are numeric, nonnegative, and nonmissing. Separate the arguments with a comma.
Range: 0 to the largest 32-bit unsigned integer

Examples

Functions and CALL Routines 4 BYTE 241

SAS Statements Results

x=bxor(03x,01x);
put x=hex.; x=00000002

BYTE

Returns one character in the ASCII or the EBCDIC collating sequence

Category: Character

Syntax
BYTE (n)

Arguments

n
specifies an integer that represents a specific ASCII or EBCDIC character.
Range: 0–255

Details
For EBCDIC collating sequences, n is between 0 and 255. For ASCII collating
sequences, the characters that correspond to values between 0 and 127 represent the
standard character set. Other ASCII characters that correspond to values between 128
and 255 are available on certain ASCII operating environments, but the information
those characters represent varies from host environment.

Examples

242 CALL EXECUTE 4 Chapter 4

SAS Statements Results

ASCII EBCDIC

x=byte(80);

put x; P &

See Also

Functions:
“COLLATE” on page 291
“RANK” on page 516

CALL EXECUTE

Resolves an argument and issues the resolved value for execution

Category: Macro

Syntax
CALL EXECUTE(argument);

Arguments

argument
specifies a character expression or a constant that yields a macro invocation or a SAS
statement. Argument can be:

� a character string, enclosed in quotation marks
� the name of a DATA step character variable. Do not enclose the name of the

DATA step variable in quotation marks.
� a character expression that the DATA step resolves to a macro text expression

or a SAS statement.

Details
If argument resolves to a macro invocation, the macro executes immediately and DATA
step execution pauses while the macro executes. If argument resolves to a SAS
statement or if execution of the macro generates SAS statements, the statement(s)
execute after the end of the DATA step that contains the CALL EXECUTE routine.
CALL EXECUTE is fully documented in SAS Macro Language: Reference.

CALL LABEL

Assigns a variable label to a specified character variable

Functions and CALL Routines 4 CALL LABEL 243

Category: Variable Control

Syntax
CALL LABEL(variable-1,variable-2);

Arguments

variable-1
specifies any SAS variable. If variable-1 does not have a label, the variable name is
assigned as the value of variable-2.

variable-2
specifies any SAS character variable. Variable labels can be up to 256 characters
long; therefore, the length of variable-2 should be at least 256 characters to avoid
truncating variable labels.

Note: To conserve space, you should set the length of variable-2 to the length of
the label for variable-1, if it is known. 4

Details
The CALL LABEL routine assigns the label of the variable-1 variable to the character
variable variable-2.

Examples

This example uses the CALL LABEL routine with array references to assign the
labels of all variables in the data set OLD as values of the variable LAB in data set
NEW:

data new;
set old;

/* lab is not in either array */
length lab $256;

/* all character variables in old */
array abc{*} _character_;

/* all numeric variables in old */
array def{*} _numeric_;
do i=1 to dim(abc);

/* get label of character variable */
call label(abc{i},lab);

/* write label to an observation */
output;

end;
do j=1 to dim(def);

/* get label of numeric variable */
call label(def{j},lab);

/* write label to an observation */
output;

end;
stop;
keep lab;

244 CALL MODULE 4 Chapter 4

run;

See Also

Function:

“VLABEL” on page 608

CALL MODULE

Calls the external routine without any return code

Category: External Routines

Syntax
CALL MODULE(<cntl-string,>module-name<,argument-1, ..., argument-n>);

Arguments

cntl-string
is an optional control string whose first character must be an asterisk (*), followed by
any combination of the following characters:

I prints the hexadecimal representations of all arguments to the
CALL MODULE routine. You can use this option to help diagnose
problems caused by incorrect arguments or attribute tables. If
you specify the I option, the E option is implied.

E prints detailed error messages. Without the E option (or the I
option, which supersedes it), the only error message that the
CALL MODULE routine generates is “Invalid argument to
function,” which is usually not enough information to determine
the cause of the error. The E option is useful for a production
environment, while the I option is preferable for a development or
debugging environment.

H provides brief help information about the syntax of the CALL
MODULE routine, the attribute file format, and suggested SAS
formats and informats.

module-name
is the name of the external module to use.

argument
is one or more arguments to pass to the requested routine.

CAUTION:
Be sure to use the correct arguments and attributes. If you use incorrect arguments or
attributes, you can cause the SAS System, and possibly your operating system, to
fail. 4

Functions and CALL Routines 4 CALL MODULE 245

Details
The CALL MODULE routine executes a routine module-name that resides in an
external library with the specified arguments.

CALL MODULE builds a parameter list using the information in the arguments and
a routine description and argument attribute table that you define in a separate file.
The attribute table is a sequential text file that contains descriptions of the routines
that you can invoke with the CALL MODULE routine. The purpose of the table is to
define how CALL MODULE should interpret its supplied arguments when it builds a
parameter list to pass to the external routine. The attribute table should contain a
description for each external routine that you intend to call, and descriptions of each
argument associated with that routine.

Before you invoke CALL MODULE, you must define the fileref of SASCBTBL to
point to the external file that contains the attribute table. You can name the file
whatever you want when you create it. This way, you can use SAS variables and
formats as arguments to CALL MODULE and ensure that these arguments are
properly converted before being passed to the external routine. If you do not define this
fileref, CALL MODULE calls the requested routine without altering the arguments.

CAUTION:
Using the CALL MODULE routine without a defined attribute table can cause the SAS
System to fail or force you to reset your computer. You need to use an attribute table for
all external functions that you want to invoke. 4

Comparisons
The two CALL routines and four functions share identical syntax:

� The MODULEN and MODULEC functions return a number and a character,
respectively, while the routine CALL MODULE does not return a value.

� The CALL MODULEI routine and the functions MODULEIC and MODULEIN
permit vector and matrix arguments. Their return values are scalar. You can
invoke CALL MODULEI, MODULEIC, and MODULEIN only from the IML
procedure.

Examples

Example 1: Using the CALL MODULE Routine This example calls the xyz routine. Use
the following attribute table:

routine xyz minarg=2 maxarg=2;
arg 1 input num byvalue format=ib4.;
arg 2 output char format=$char10.;

The following is the sample SAS code that calls the xyz function:

data _null_;
call module(’xyz’,1,x);

run;

Example 2: Using the MODULEIN Function in the IML Procedure This example invokes
the changi routine from the TRYMOD.DLL module on a Windows platform. Use the
following attribute table:

routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

The following PROC IML code calls the changi function:

246 CALL MODULEI 4 Chapter 4

proc iml;
x1=J(4,5,0);
do i=1 to 4;

do j=1 to 5;
x1[i,j]=i*10+j+3;

end;
end;
y1=x1;
x2=x1;
y2=y1;
rc=modulein(’*i’,’changi’,6,x2);

Example 3: Using the MODULEN Function This example calls the Beep routine, which
is part of the Win32 API in the USER32 Dynamic Link Library on a Windows platform.
Use the following attribute table:

routine Beep
minarg=2
maxarg=2
stackpop=called
callseq=byvalue
module=user32;

arg 1 num format=pib4.;
arg 2 num format=pib4.;

The following is the sample SAS code that calls the Beep function:

filename sascbtbl ’sascbtbl.dat’;
data _null_;

rc=modulen("Beep",1380,1000);
run;

The previous code causes the computer speaker to beep.

See Also

CALL Routine:
“CALL MODULEI” on page 246

Functions:

“MODULEC” on page 448
“MODULEIC” on page 449

“MODULEIN” on page 449

“MODULEN” on page 450

CALL MODULEI

Calls the external routine without any return code (in IML environment only)

Category: External Routines
Restriction: CALL MODULEI can only be invoked from within the IML procedure

Functions and CALL Routines 4 CALL POKE 247

See: “CALL MODULE” on page 244

Syntax
CALL MODULEI(<cntl-string,>module-name<,argument-1, ..., argument-n>);

Details
For details on CALL MODULEI, see “CALL MODULE” on page 244.

See Also

CALL Routine:

“CALL MODULE” on page 244

Functions:

“MODULEC” on page 448

“MODULEIC” on page 449

“MODULEIN” on page 449

“MODULEN” on page 450

CALL POKE

Writes a value directly into memory

Category: Special

Syntax
CALL POKE(source,pointer< ,length>);

Arguments

source
specifies a SAS expression that contains a value to write into memory.

pointer
specifies a numeric SAS expression that contains the virtual address of the data that
the CALL POKE routine alters.

length
specifies a numeric SAS expression that contains the number of bytes to write from
the source to the address indicated by pointer. If you omit length, the action that the

248 CALL RANBIN 4 Chapter 4

CALL POKE routine takes depends on whether source is a character value or a
numeric value:

� If source is a character value, the CALL POKE routine copies the entire value of
source to the specified memory location.

� If source is a numeric value, the CALL POKE routine converts source into a long
integer and writes into memory the number of bytes that constitute a pointer.

Operating Environment Information: Under OS/390, pointers are 3 or 4 bytes
long, depending on the situation. 4

Details
CAUTION:

The POKE routine is intended only for experienced programmers in specific cases. If you
plan to use this routine, use extreme care both in your programming and in your
typing. Writing directly into memory can cause devastating problems. This routine
bypasses the normal safeguards that prevent you from destroying a vital element in
your SAS session or in another piece of software that is active at the time. 4

If you do not have access to the memory location that you specify, the POKE routine
returns an "Invalid argument" error.

See Also

Functions:
“ADDR” on page 227
“PEEK” on page 476
“PEEKC” on page 477
“POKE” on page 483

CALL RANBIN

Returns a random variate from a binomial distribution

Category: Random Number

Syntax
CALL RANBIN(seed,n,p,x);

Arguments

seed
is the seed value. For more information about seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANBIN is executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

Functions and CALL Routines 4 CALL RANBIN 249

n
is an integer number of independent Bernoulli trials.

Range: n > 0

p
is a numeric probability of success parameter.

Range: 0<p<1

x
is a numeric SAS variable. A new value for the random variate x is returned each
time CALL RANBIN is executed.

Details
The CALL RANBIN routine updates seed and returns a variate x that is generated from
a binomial distribution with mean np and variance np(1–p). If n�50, np�5, or
n(1–p)�5, SAS uses an inverse transform method applied to a RANUNI uniform
variate. If n>50, np>5, and n(1–p)>5, SAS uses the normal approximation to the
binomial distribution. In that case, the Box-Muller transformation of RANUNI uniform
variates is used.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

Comparisons
The CALL RANBIN routine gives greater control of the seed and random number
streams than does the RANBIN function.

Examples

This example uses the CALL RANBIN routine:

options nodate pageno=1 linesize=80 pagesize=60;

data case;
retain Seed_1 Seed_2 Seed_3 45;
n=2000;
p=.2;
do i=1 to 10;

call ranbin(Seed_1,n,p,X1);
call ranbin(Seed_2,n,p,X2);
X3=ranbin(Seed_3,n,p);
if i=5 then

do;
Seed_2=18;
Seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

250 CALL RANCAU 4 Chapter 4

Output 4.3 on page 250 shows the results.

Output 4.3 The RANBIN Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 1404437564 1404437564 45 385 385 385
2 1445125588 1445125588 45 399 399 399
3 1326029789 1326029789 45 384 384 384
4 1988843719 1988843719 45 421 421 421
5 2137808851 18 18 430 430 430
6 1233028129 991271755 18 392 374 392
7 50049159 1437043694 18 424 384 424
8 802575599 959908645 18 371 383 371
9 100573943 1225034217 18 428 388 428

10 414117170 425626811 18 402 403 402

Changing Seed_2 for the CALL RANBIN statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANBIN function, however, has no effect.

See Also

Function:
“RANBIN” on page 511

CALL RANCAU

Returns a random variate from a Cauchy distribution

Category: Random Number

Syntax
CALL RANCAU(seed,x);

Arguments

seed
is the seed value. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANCAU is executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

x
is a numeric SAS variable. A new value for the random variate x is returned each
time CALL RANCAU is executed.

Functions and CALL Routines 4 CALL RANCAU 251

Details
The CALL RANCAU routine updates seed and returns a variate x that is generated
from a Cauchy distribution that has a location parameter of 0 and scale parameter of 1.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

An acceptance-rejection procedure applied to RANUNI uniform variates is used. If u
and v are independent uniform (−1/2, 1/2) variables and u2+v2 ≤ 1/4, then u/v is a
Cauchy variate.

Comparisons
The CALL RANCAU routine gives greater control of the seed and random number
streams than does the RANCAU function.

Examples

This example uses the CALL RANCAU routine:

options nodate pageno=1 linesize=80 pagesize=60;

data case;
retain Seed_1 Seed_2 Seed_3 45;
do i=1 to 10;

call rancau(Seed_1,X1);
call rancau(Seed_2,X2);
X3=rancau(Seed_3);
if i=5 then

do;
Seed_2=18;
Seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

Output 4.4 on page 251 shows the results.

252 CALL RANEXP 4 Chapter 4

Output 4.4 The RANCAU Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 1404437564 1404437564 45 -1.14736 -1.14736 -1.14736
2 1326029789 1326029789 45 -0.23735 -0.23735 -0.23735
3 1988843719 1988843719 45 -0.15474 -0.15474 -0.15474
4 1233028129 1233028129 45 4.97935 4.97935 4.97935
5 50049159 18 18 0.20402 0.20402 0.20402
6 802575599 991271755 18 3.43645 4.44427 3.43645
7 1233458739 1437043694 18 6.32808 -1.79200 6.32808
8 52428589 959908645 18 0.18815 -1.67610 0.18815
9 1216356463 1225034217 18 0.80689 3.88391 0.80689

10 1711885541 425626811 18 0.92971 -1.31309 0.92971

Changing Seed_2 for the CALL RANCAU statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANCAU function, however, has no effect.

See Also

Function:

“RANCAU” on page 512

CALL RANEXP

Returns a random variate from an exponential distribution

Category: Random Number

Syntax
CALL RANEXP(seed,x);

Arguments

seed
is the seed value. For more information about seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANEXP is executed.

Range: seed < 231 - 1

Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANEXP is executed.

Functions and CALL Routines 4 CALL RANEXP 253

Details
The CALL RANEXP routine updates seed and returns a variate x that is generated
from an exponential distribution that has a parameter of 1.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

The CALL RANEXP routine uses an inverse transform method applied to a RANUNI
uniform variate.

Comparisons
The CALL RANEXP routine gives greater control of the seed and random number
streams than does the RANEXP function.

Examples

This example uses the CALL RANEXP routine:

options nodate pageno=1 linesize=80 pagesize=60;

data case;
retain Seed_1 Seed_2 Seed_3 45;
do i=1 to 10;

call ranexp(Seed_1,X1);
call ranexp(Seed_2,X2);
X3=ranexp(Seed_3);
if i=5 then

do;
seed_2=18;
seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

Output 4.5 on page 253 shows the results.

Output 4.5 The RANEXP Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 694315054 694315054 45 1.12913 1.12913 1.12913
2 1404437564 1404437564 45 0.42466 0.42466 0.42466
3 2130505156 2130505156 45 0.00794 0.00794 0.00794
4 1445125588 1445125588 45 0.39610 0.39610 0.39610
5 1013861398 18 18 0.75053 0.75053 0.75053
6 1326029789 417047966 18 0.48211 0.57102 0.48211
7 932142747 850344656 18 0.83457 0.92566 0.83457
8 1988843719 2067665501 18 0.07674 0.16730 0.07674
9 516966271 607886093 18 1.42407 0.51513 1.42407

10 2137808851 1550198721 18 0.00452 0.91543 0.00452

254 CALL RANGAM 4 Chapter 4

Changing Seed_2 for the CALL RANEXP statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANEXP function, however, has no effect.

See Also

Function:
“RANEXP” on page 513

CALL RANGAM

Returns a random variate from a gamma distribution

Category: Random Number

Syntax
CALL RANGAM(seed,a,x);

Arguments

seed
is the seed value. For more information about seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANGAM is executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

a
is a numeric shape parameter.
Range: a > 0

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANGAM is executed.

Details
The CALL RANGAM routine updates seed and returns a variate x that is generated
from a gamma distribution with parameter a.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

For a>1, an acceptance-rejection method (Cheng 1977) (See “References” on page 626)
is used. For a�1, an acceptance-rejection method due to (Fishman 1978) (See
“References” on page 626) is used.

Comparisons
The CALL RANGAM routine gives greater control of the seed and random number
streams than does the RANGAM function.

Functions and CALL Routines 4 CALL RANGAM 255

Examples

This example uses the CALL RANGAM routine:

options nodate pageno=1 linesize=80 pagesize=60;

data case;
retain Seed_1 Seed_2 Seed_3 45;
a=2;
do i=1 to 10;

call rangam(Seed_1,a,X1);
call rangam(Seed_2,a,X2);
X3=rangam(Seed_3,a);
if i=5 then

do;
Seed_2=18;
Seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

Output 4.6 on page 255 shows the results.

Output 4.6 The RANGAM Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 1404437564 1404437564 45 1.30569 1.30569 1.30569
2 1326029789 1326029789 45 1.87514 1.87514 1.87514
3 1988843719 1988843719 45 1.71597 1.71597 1.71597
4 50049159 50049159 45 1.59304 1.59304 1.59304
5 802575599 18 18 0.43342 0.43342 0.43342
6 100573943 991271755 18 1.11812 1.32646 1.11812
7 1986749826 1437043694 18 0.68415 0.88806 0.68415
8 52428589 959908645 18 1.62296 2.46091 1.62296
9 1216356463 1225034217 18 2.26455 4.06596 2.26455

10 805366679 425626811 18 2.16723 6.94703 2.16723

Changing Seed_2 for the CALL RANGAM statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANGAM function, however, has no effect.

256 CALL RANNOR 4 Chapter 4

See Also

Function:
“RANGAM” on page 514

CALL RANNOR

Returns a random variate from a normal distribution

Category: Random Number

Syntax
CALL RANNOR(seed,x);

Arguments

seed
is the seed value. For more information about seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANNOR is executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANNOR is executed.

Details
The CALL RANNOR routine updates seed and returns a variate x that is generated
from a normal distribution, with mean 0 and variance 1.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

The CALL RANNOR routine uses the Box-Muller transformation of RANUNI
uniform variates.

Comparisons
The CALL RANNOR routine gives greater control of the seed and random number
streams than does the RANNOR function.

Examples

This example uses the CALL RANNOR routine:

options nodate pageno=1 linesize=80 pagesize=60;

Functions and CALL Routines 4 CALL RANPOI 257

data case;
retain Seed_1 Seed_2 Seed_3 45;
do i=1 to 10;

call rannor(Seed_1,X1);
call rannor(Seed_2,X2);
X3=rannor(Seed_3);
if i=5 then

do;
Seed_2=18;
Seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

Output 4.7 on page 257 shows the results.

Output 4.7 The RANNOR Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 1404437564 1404437564 45 -0.85252 -0.85252 -0.85252
2 1445125588 1445125588 45 -0.05865 -0.05865 -0.05865
3 1326029789 1326029789 45 -0.90628 -0.90628 -0.90628
4 1988843719 1988843719 45 1.15526 1.15526 1.15526
5 2137808851 18 18 1.68697 1.68697 1.68697
6 1233028129 991271755 18 -0.47276 -1.44726 -0.47276
7 50049159 1437043694 18 1.33423 -0.87677 1.33423
8 802575599 959908645 18 -1.63511 -0.97261 -1.63511
9 100573943 1225034217 18 1.55410 -0.64742 1.55410

10 414117170 425626811 18 0.10736 0.14963 0.10736

Changing Seed_2 for the CALL RANNOR statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANNOR function, however, has no effect.

See Also

Function:

“RANNOR” on page 516

CALL RANPOI

Returns a random variate from a Poisson distribution

Category: Random Number

258 CALL RANPOI 4 Chapter 4

Syntax
CALL RANPOI(seed,m,x);

Arguments

seed
is the seed value. For more information about seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANPOI is executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

m
is a numeric mean parameter.
Range: m�0

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANPOI is executed.

Details
The CALL RANPOI routine updates seed and returns a variate x that is generated from
a Poisson distribution, with mean m.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

For m< 85, an inverse transform method applied to a RANUNI uniform variate is
used. (Fishman 1976) (See “References” on page 626). For m ≥ 85, the normal
approximation of a Poisson random variable is used. To expedite execution, internal
variables are calculated only on initial calls (that is, with each new m).

Comparisons
The CALL RANPOI routine gives greater control of the seed and random number
streams than does the RANPOI function.

Examples

This example uses the CALL RANPOI routine:

options nodate pageno=1 linesize=80 pagesize=60;

data case;
retain Seed_1 Seed_2 Seed_3 45;
m=120;
do i=1 to 10;

call ranpoi(Seed_1,m,X1);
call ranpoi(Seed_2,m,X2);
X3=ranpoi(Seed_3,m);

Functions and CALL Routines 4 CALL RANTBL 259

if i=5 then
do;

Seed_2=18;
Seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

Output 4.8 on page 259 shows the results.

Output 4.8 The RANPOI Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 1404437564 1404437564 45 111 111 111
2 1445125588 1445125588 45 119 119 119
3 1326029789 1326029789 45 110 110 110
4 1988843719 1988843719 45 133 133 133
5 2137808851 18 18 138 138 138
6 1233028129 991271755 18 115 104 115
7 50049159 1437043694 18 135 110 135
8 802575599 959908645 18 102 109 102
9 100573943 1225034217 18 137 113 137

10 414117170 425626811 18 121 122 121

Changing Seed_2 for the CALL RANPOI statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANPOI function, however, has no effect.

See Also

Function:

“RANPOI” on page 517

CALL RANTBL

Returns a random variate from a tabled probability distribution

Category: Random Number

Syntax
CALL RANTBL(seed,p1, . . . pi, . . . , pn,x);

260 CALL RANTBL 4 Chapter 4

Arguments

seed
is the seed value. For more information about seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANTBL is executed.

Range: seed < 231 - 1

Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

pi

is a numeric SAS value.

Range: 0�pi�1 for 0< i�n

x
is a numeric SAS variable. A new value for the random variate x is returned each
time CALL RANTBL is executed.

Details
The CALL RANTBL routine updates seed and returns a variate x generated from the
probability mass function defined by p1 through pn.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

An inverse transform method applied to a RANUNI uniform variate is used. The
CALL RANTBL routine returns these data:

1 with probability p1

2 with probability p2

:

:

:

n with probability pn

n + 1 with probability 1 �

nX

i=1

pi if

nX

i=1

pi � 1

If, for some index j<n,

jX

i=1

pi � 1

RANTBL returns only the indices 1 through j, with the probability of occurrence of the
index j equal to

1 �

j�1X

i=1

pi

Functions and CALL Routines 4 CALL RANTBL 261

Comparisons

The CALL RANTBL routine gives greater control of the seed and random number
streams than does the RANTBL function.

Examples

This example uses the CALL RANTBL routine:

options nodate pageno=1 linesize=80 pagesize=60;

data case;
retain Seed_1 Seed_2 Seed_3 45;
input p1-p9;
do i=1 to 10;

call rantbl(Seed_1,of p1-p9,X1);
call rantbl(Seed_2,of p1-p9,X2);
X3=rantbl(Seed_3,of p1-p9);
if i=5 then

do;
Seed_2=18;
Seed_3=18;

end;
output;

end;
datalines;

.02 .04 .06 .08 .1 .12 .14 .16 .18
;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

Output 4.9 on page 261 shows the results.

Output 4.9 The RANTBL Example

The SAS System 1
i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 694315054 694315054 45 6 6 6
2 1404437564 1404437564 45 8 8 8
3 2130505156 2130505156 45 10 10 10
4 1445125588 1445125588 45 8 8 8
5 1013861398 18 18 7 7 7
6 1326029789 707222751 18 8 6 8
7 932142747 991271755 18 7 7 7
8 1988843719 422705333 18 10 4 10
9 516966271 1437043694 18 5 8 5

10 2137808851 1264538018 18 10 8 10

Changing Seed_2 for the CALL RANTBL statement, when I=5, forces the stream of
variates for X2 to deviate from the stream of variates for X1. Changing Seed_3 on the
RANTBL function, however, has no effect.

262 CALL RANTRI 4 Chapter 4

See Also

Function:
“RANTBL” on page 518

CALL RANTRI

Returns a random variate from a triangular distribution

Category: Random Number

Syntax
CALL RANTRI(seed,h,x);

Arguments

seed
is the seed value. For more information about seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANTRI is executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

h
is a numeric SAS value.
Range: 0<h<1

x
is a numeric SAS variable. A new value for the random variate x is returned each
time CALL RANTRI is executed.

Details
The CALL RANTRI routine updates seed and returns a variate x generated from a
triangular distribution on the interval (0,1) with parameter h, which is the modal value
of the distribution.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

The CALL RANTRI routine uses an inverse transform method applied to a RANUNI
uniform variate.

Comparisons
The CALL RANTRI routine gives greater control of the seed and random number
streams than does the RANTRI function.

Examples

This example uses the CALL RANTRI routine:

Functions and CALL Routines 4 CALL RANTRI 263

options nodate pageno=1 linesize=80 pagesize=60;

data case;
retain Seed_1 Seed_2 Seed_3 45;
h=.2;
do i=1 to 10;

call rantri(Seed_1,h,X1);
call rantri(Seed_2,h,X2);
X3=rantri(Seed_3,h);
if i=5 then

do;
Seed_2=18;
Seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

Output 4.10 on page 263 shows the results.

Output 4.10 The RANTRI Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 694315054 694315054 45 0.26424 0.26424 0.26424
2 1404437564 1404437564 45 0.47388 0.47388 0.47388
3 2130505156 2130505156 45 0.92047 0.92047 0.92047
4 1445125588 1445125588 45 0.48848 0.48848 0.48848
5 1013861398 18 18 0.35015 0.35015 0.35015
6 1326029789 707222751 18 0.44681 0.26751 0.44681
7 932142747 991271755 18 0.32713 0.34371 0.32713
8 1988843719 422705333 18 0.75690 0.19841 0.75690
9 516966271 1437043694 18 0.22063 0.48555 0.22063

10 2137808851 1264538018 18 0.93997 0.42648 0.93997

Changing Seed_2 for the CALL RANTRI statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANTRI function has, however, no effect.

264 CALL RANUNI 4 Chapter 4

See Also

Function:
“RANTRI” on page 520

CALL RANUNI

Returns a random variate from a uniform distribution

Category: Random Number

Syntax
CALL RANUNI(seed,x);

Arguments

seed
is the seed value. For more information about seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211. A new value for seed
is returned each time CALL RANUNI is executed.
Range: seed < 231 - 1
Note If seed ≤ 0, the time of day is used to initialize the seed stream.

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANUNI is executed.

Details
The CALL RANUNI routine updates seed and returns a variate x that is generated
from the uniform distribution on the interval (0,1), using a prime modulus
multiplicative generator with modulus 231–1 and multiplier 397204094 (Fishman and
Moore 1982) (See “References” on page 626).

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

Comparisons
The CALL RANUNI routine gives greater control of the seed and random number
streams than does the RANUNI function.

Examples

This example uses the CALL RANUNI routine:

options nodate pageno=1 linesize=80 pagesize=60;

data case;

Functions and CALL Routines 4 CALL RXCHANGE 265

retain Seed_1 Seed_2 Seed_3 45;
do i=1 to 10;

call ranuni(Seed_1,X1);
call ranuni(Seed_2,X2);
X3=ranuni(Seed_3);
if i=5 then

do;
Seed_2=18;
Seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

Output 4.11 on page 265 shows the results.

Output 4.11 The RANUNI Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 694315054 694315054 45 0.32332 0.32332 0.32332
2 1404437564 1404437564 45 0.65399 0.65399 0.65399
3 2130505156 2130505156 45 0.99209 0.99209 0.99209
4 1445125588 1445125588 45 0.67294 0.67294 0.67294
5 1013861398 18 18 0.47212 0.47212 0.47212
6 1326029789 707222751 18 0.61748 0.32933 0.61748
7 932142747 991271755 18 0.43406 0.46160 0.43406
8 1988843719 422705333 18 0.92613 0.19684 0.92613
9 516966271 1437043694 18 0.24073 0.66918 0.24073

10 2137808851 1264538018 18 0.99549 0.58885 0.99549

Changing Seed_2 for the CALL RANUNI statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANUNI function, however, has no effect.

See Also

Function:
“RANUNI” on page 521

CALL RXCHANGE

Changes one or more substrings that match a pattern

Category: Character String Matching
Restriction: Use with the RXPARSE function

266 CALL RXCHANGE 4 Chapter 4

Syntax
CALL RXCHANGE (rx, times, old-string< , new-string>);

Arguments

rx
specifies a numeric value that is returned from the RXPARSE function.
Tip: The value of rx points to an expression that is parsed by RXPARSE. CALL

RXCHANGE uses the expression to find and change a matching substring.

times
is a numeric value that specifies the maximum number of times to change matching
substrings.
Restriction: Maximum value of times is 2,147,483,647.

old-string
specifies the character expression to be searched and changed as a result of the
change operation.

new-string
is a character variable that contains the result of the change operation.

Details
If old-string is a character variable, new-string is optional. If new-string is omitted,
old-string is changed in place.

If old-string is an expression that is not a character variable, you must specify
new-string.

Comparisons
The regular expression (RX) functions and CALL routines work together to manipulate
strings that match patterns. Use the RXPARSE function to parse a pattern you specify.
Use the RXMATCH function and the CALL RXCHANGE and CALL RXSUBSTR
routines to match or modify your data. Use the CALL RXFREE routine to free allocated
space.

Example

See the RXPARSE function “Example” on page 538.

Functions and CALL Routines 4 CALL RXFREE 267

See Also

Functions and CALL routines:
“CALL RXFREE” on page 267
“CALL RXSUBSTR” on page 268
“RXMATCH” on page 526
“RXPARSE” on page 527

CALL RXFREE

Frees memory allocated by other regular expression (RX) functions and CALL routines

Category: Character String Matching
Restriction: Use with the RXPARSE function

Syntax
CALL RXFREE (rx);

Arguments

rx
specifies a numeric value that is returned from the RXPARSE function.

Comparisons
The regular expression (RX) functions and CALL routines work together to manipulate
strings that match patterns. Use the RXPARSE function to parse a pattern you specify.
Use the RXMATCH function and the CALL RXCHANGE and CALL RXSUBSTR
routines to match or modify your data. Use the CALL RXFREE routine to free allocated
space.

Example

See the RXPARSE function “Example” on page 538.

268 CALL RXSUBSTR 4 Chapter 4

See Also

Functions and CALL routines:

“CALL RXCHANGE” on page 265

“CALL RXSUBSTR” on page 268

“RXMATCH” on page 526

“RXPARSE” on page 527

CALL RXSUBSTR

Finds the position, length, and score of a substring that matches a pattern

Category: Character String Matching

Restriction: Use with the RXPARSE function

Syntax
CALL RXSUBSTR (rx, string, position);

CALL RXSUBSTR (rx, string, position, length);

CALL RXSUBSTR (rx, string, position, length, score);

Arguments

rx
specifies a numeric value that is returned from the RXPARSE function.

string
specifies the character expression to be searched.

position
specifies a numeric position in a string where the substring that is matched by the
pattern begins. If there is no match, the result is zero.

length
specifies a numeric value that is the length of the substring that is matched by the
pattern.

score
specifies an integer value based on the number of matches for a particular pattern in
a substring.

Details
CALL RXSUBSTR searches the variable string for the pattern from RXPARSE, returns
the position of the start of the string, indicates the length of the matched string, and
returns a score value. By default, when a pattern matches more than one substring
beginning at a specific position, the longest substring is selected.

Functions and CALL Routines 4 CALL SET 269

Comparisons
CALL RXSUBSTR performs the same matching as RXMATCH, but CALL RXSUBSTR
additionally allows you to use the length and score arguments to receive more
information about the match.

The regular expression (RX) functions and CALL routines work together to
manipulate strings that match patterns. Use the RXPARSE function to parse a pattern
you specify. Use the RXMATCH function and the CALL RXCHANGE and CALL
RXSUBSTR routines to match or modify your data. Use the CALL RXFREE routine to
free allocated space.

Example

See the RXPARSE function “Example” on page 538.

See Also

Functions and CALL routines:

“CALL RXCHANGE” on page 265

“CALL RXFREE” on page 267

“RXMATCH” on page 526

“RXPARSE” on page 527

CALL SET

Links SAS data set variables to DATA step or macro variables that have the same name and data
type

Category: Variable Control

Syntax
CALL SET(data-set-id);

Arguments

data-set-id
is the identifier that is assigned by the OPEN function when the data set is opened.

Details
Using SET can significantly reduce the coding that is required for accessing variable
values for modification or verification when you use functions to read or to manipulate a
SAS file. After a CALL SET, whenever a read is performed from the SAS data set, the
values of the corresponding macro or DATA step variables are set to the values of the
matching SAS data set variables. If the variable lengths do not match, the values are
truncated or padded according to need. If you do not use SET, then you must use the

270 CALL SET 4 Chapter 4

GETVARC and GETVARN functions to move values explicitly between data set
variables and macro or DATA step variables.

As a general rule, use CALL SET immediately following OPEN if you want to link
the data set and the macro and DATA step variables.

Examples

This example uses the CALL SET routine:
� The following statements automatically set the values of the macro variables

PRICE and STYLE when an observation is fetched:

%macro setvar;
%let dsid=%sysfunc(open(sasuser.houses,i));

/* No leading ampersand with %SYSCALL */
%syscall set(dsid);
%let rc=%sysfunc(fetchobs(&dsid,10));
%let rc=%sysfunc(close(&dsid));

%mend setvar;

%global price style;
%setvar
%put _global_;

� The %PUT statement writes these lines to the SAS log:

GLOBAL PRICE 127150
GLOBAL STYLE CONDO

� The following statements obtain the values for the first 10 observations in
SASUSER.HOUSES and store them in MYDATA:

data mydata;
/* create variables for assignment */
/*by CALL SET */

length style $8 sqfeet bedrooms baths 8
street $16 price 8;

drop rc dsid;
dsid=open("sasuser.houses","i");
call set (dsid);
do i=1 to 10;

rc=fetchobs(dsid,i);
output;

end;
run;

Functions and CALL Routines 4 CALL SYSTEM 271

See Also

Functions:

“FETCH” on page 352

“FETCHOBS” on page 353

“GETVARC” on page 390

“GETVARN” on page 391

CALL SYMPUT

Assigns DATA step information to a macro variable

Category: Macro

Syntax
CALL SYMPUT(argument-1,argument-2);

Arguments

argument-1
specifies a character expression that identifies the macro variable that is assigned a
value. If the macro variable does not exist, the routine creates it.

argument-2
specifies a character expression that contains the value that is assigned.

Details
The CALL SYMPUT routine either creates a macro variable whose value is information
from the DATA step or assigns a DATA step value to an existing macro variable. CALL
SYMPUT is fully documented in SAS Macro Language: Reference.

See Also

Function:

“SYMGET” on page 557

CALL SYSTEM

Submits an operating environment command for execution

Category: Special

272 CALL VNAME 4 Chapter 4

Syntax
CALL SYSTEM(command);

Arguments

command
specifies any of the following: a system command enclosed in quotation marks
(explicit character string), an expression whose value is a system command, or the
name of a character variable whose value is a system command that is executed.

Comparisons
The behavior of the CALL SYSTEM routine is similar to that of the X command, the X
statement, and the SYSTEM function. It is useful in certain situations because it can
be conditionally executed, it accepts an expression as an argument, and it is executed at
run time.

See Also

Function:
“SYSTEM” on page 561

CALL VNAME

Assigns a variable name as the value of a specified variable

Category: Variable Control

Syntax
CALL VNAME(variable-1,variable-2);

Arguments

variable-1
specifies any SAS variable.

variable-2
specifies any SAS character variable. Because SAS variable names can contain up to
32 characters, the length of variable-2 should be at least 32.

Details
The CALL VNAME routine assigns the name of the variable-1 variable as the value of
the variable-2 variable.

Functions and CALL Routines 4 CDF 273

Examples

This example uses the CALL VNAME routine with array references to return the
names of all variables in the data set OLD:

data new(keep=name);
set old;

/* all character variables in old */
array abc{*} _character_;

/* all numeric variables in old */
array def{*} _numeric_;

/* name is not in either array */
length name $32;
do i=1 to dim(abc);

/* get name of character variable */
call vname(abc{i},name);

/* write name to an observation */
output;

end;
do j=1 to dim(def);

/* get name of numeric variable */
call vname(def{j},name);

/* write name to an observation */
output;

end;
stop;

run;

See Also

Functions:

“VNAME” on page 613

“VNAMEX” on page 614

CDF

Computes cumulative distribution functions

Category: Probability

Syntax
CDF (’dist’,quantile,parm-1, . . . ,parm-k)

Arguments

’dist’
is a character string that identifies the distribution. Valid distributions are as follows:

274 CDF 4 Chapter 4

Distribution Argument

Bernoulli ’BERNOULLI’

Beta ’BETA’

Binomial ’BINOMIAL’

Cauchy ’CAUCHY’

Chi-squared ’CHISQUARED’

Exponential ’EXPONENTIAL’

F ’F’

Gamma ’GAMMA’

Geometric ’GEOMETRIC’

Hypergeometric ’HYPERGEOMETRIC’

Laplace ’LAPLACE’

Logistic ’LOGISTIC’

Lognormal ’LOGNORMAL’

Negative binomial ’NEGBINOMIAL’

Normal ’NORMAL’|’GAUSS’

Pareto ’PARETO’

Poisson ’POISSON’

T ’T’

Uniform ’UNIFORM’

Wald (inverse Gaussian) ’WALD’|’IGAUSS’

Weibull ’WEIBULL’

Note: Except for T and F, any distribution can be minimally identified by its first
four characters. 4

quantile
is a numeric random variable.

parm-1, . . . ,parm-k
are shape, location, or scale parameters appropriate for the specific distribution. See
the description for each distribution in “Details” for complete information about these
parameters.

Details

Bernoulli Distribution

CDF(’BERNOULLI’,x,p)

where

x
is a numeric random variable.

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

Functions and CALL Routines 4 CDF 275

The CDF function for the Bernoulli distribution returns the probability that an
observation from a Bernoulli distribution, with probability of success equal to p, is less
than or equal to x. The equation follows:

CDF
�

0BERN 0; x; p
�
=

(
0 x < 0

1� p 0 � x < 1

1 x � 1

Note: There are no location or scale parameters for this distribution. 4

Beta Distribution

CDF(’BETA’,x,a,b< ,l,r>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric shape parameter, with b > 0.
Range: b > 0

l
is an optional numeric left location parameter.

r
is an optional right location parameter.
Range: r > l

The CDF function for the beta distribution returns the probability that an
observation from a beta distribution, with shape parameters a and b, is less than or
equal to x. The following equation describes the CDF function of the Beta distribution:

CDF
�

0BETA0; x; a; b; l; r
�
=

8><
>:
0 x � 1

1
�(a;b)

xR
l

(x�1)a�1(r�x)b�1

(r�l)a+b�1
dx l < x � r

1 x > r

where

� (a; b) =
� (a) � (b)

� (a+ b)

and

� (a) =

1Z

0

xa�1e�xdx

276 CDF 4 Chapter 4

Note: The default values for l and r are 0 and 1, respectively. 4

Binomial Distribution

CDF(’BINOMIAL’,m,p,n)

where

m
is an integer random variable that counts the number of successes.

p
is a numeric parameter that is the probability of success.
Range: 0 ≤ p ≤ 1

n
is an integer parameter that counts the number of independent Bernoulli trials.
Range: n > 0

The CDF function for the binomial distribution returns the probability that an
observation from a binomial distribution, with parameters p and n, is less than or equal
to m. The equation follows:

CDF
�

0BINOM 0;m; p; n
�
=

8><
>:
0 m < 0
mP
j=0

�
n
i

�
pj (1� p)

n�j
0 � m � n

1 m > n

Note: There are no location or scale parameters for the binomial distribution. 4

Cauchy Distribution

CDF(’CAUCHY’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter.

�

is an optional numeric scale parameter.
Range: � > 0

The CDF function for the Cauchy distribution returns the probability that an
observation from a Cauchy distribution, with location parameter � and scale parameter
�, is less than or equal to x. The equation follows:

CDF
�
0CAUCHY 0; x; �; �

�
=

1

2
+

1

�
tan�1

�
x� �

�

�

Note: The default values for � and � are 0 and 1, respectively. 4

Chi-squared Distribution

CDF(’CHISQUARED’,x,df <,nc>)

Functions and CALL Routines 4 CDF 277

where

x
is a numeric random variable.

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric noncentrality parameter.
Range: nc ≥ 0

The CDF function for the chi-squared distribution returns the probability that an
observation from a chi-squared distribution, with df degrees of freedom and
noncentrality parameter nc, is less than or equal to x. This function accepts noninteger
degrees of freedom. If nc is omitted or equal to zero, the value returned is from the
central chi-squared distribution. The following equation describes the CDF function of
the chi-squared distribution:

CDF
�

0CHISQ0; x; �; �
�
=

(0 x < 0
1P
j=0

e�
�

2

(�
2
)
j

j!
Pc (x; � + 2j) x � 0

where Pc(.,.) denotes the probability from the central chi-squared distribution:

Pc (x; a) = Pg

�x
2
;
a

2

�

and where Pg(y,b) is the probability from the Gamma distribution given by

Pg (y; b) =
� (b)

yZ

0

e�vvb�dv

Exponential Distribution

CDF(’EXPONENTIAL’,x <,�>)

where

x
is a numeric random variable.

�

is an optional scale parameter.
Range: � > 0

The CDF function for the exponential distribution returns the probability that an
observation from an exponential distribution, with scale parameter �, is less than or
equal to x. The equation follows:

CDF
�
0EXPO0; x; �

�
=
n
0 x < 0
1 � e�

x

� x � 0

278 CDF 4 Chapter 4

Note: The default value for � is 1. 4

F Distribution

CDF(’F’,x,ndf,ddf <,nc>)

where

x
is a numeric random variable.

ndf
is a numeric numerator degrees of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.
Range: ddf > 0

nc
is a numeric noncentrality parameter.
Range: nc ≥ 0

The CDF function for the F distribution returns the probability that an observation
from an F distribution, with ndf numerator degrees of freedom, ddf denominator
degrees of freedom, and noncentrality parameter nc, is less than or equal to x. This
function accepts noninteger degrees of freedom for ndf and ddf. If nc is omitted or equal
to zero, the value returned is from a central F distribution. The following equation
describes the CDF function of the F distribution:

CDF
�

0F 0; x; v1; v2; �
�
=

(
0 x < 0
1P
j=0

e�
�

2

(�
2
)
j

j!
Pf (f; v1 + 2j; v2) x � 0

where Pf(f,u1,u2) is the probability from the central F distribution with

Pf (f;u1; u2) = PB

�
u1f

u1f + u2

;
u1

2
;
u2

2

�

and PB(x,a,b) is the probability from the standard Beta distribution.

Note: There are no location or scale parameters for the F distribution. 4

Gamma Distribution

CDF(’GAMMA’,x,a<,�>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

Functions and CALL Routines 4 CDF 279

�

is an optional numeric scale parameter.
Range: � > 0

The CDF function for the Gamma distribution returns the probability that an
observation from a Gamma distribution, with shape parameter a and scale parameter
�, is less than or equal to x. The equation follows:

CDF
�

0GAMMA0; x; a; �
�
=

(
0 x < 0

1

�a�(a)

xR
0
va�1e�

v

�dv x � 0

Note: The default value for � is 1. 4

Geometric Distribution

CDF(’GEOMETRIC’,m,p)

where

m
is a numeric random variable that denotes the number of failures.
Range: m ≥ 0

p
is a numeric probability.
Range: 0 ≤ p ≤ 1

The CDF function for the geometric distribution returns the probability that an
obervation from a geometric distribution, with parameter p, is less than or equal to m.
The equation follows:

CDF
�

0GEOM 0;m; p
�
=

8<
:

0 m < 0
j�mP
j=0

p (1 � p)j m � 0

Note: There are no location or scale parameters for this distribution. 4

Hypergeometric Distribution

CDF(’HYPER’,x,m,k,n<,r>)

where

x
is an integer random variable.

m
is an integer population size parameter, with m ≥ 1.
Range:

k
is an integer number of items in the category of interest.
Range: 0 ≤ k ≤m

n
is an integer sample size parameter.

280 CDF 4 Chapter 4

Range: 0 ≤ n ≤ m

r
is an optional numeric odds ratio parameter.
Range: r > 0

The CDF function for the hypergeometric distribution returns the probability that an
observation from an extended hypergeometric distribution, with population size m,
number of items k, sample size n, and odds ratio r, is less than or equal to x. If r is
omitted or equal to 1, the value returned is from the usual hypergeometric distribution.
The equation follows:

CDF
�

0HY PER0; x;m;k; n; r
�
=8>>>>>><

>>>>>>:

0 x < max (0; k + n�m)
xP
i=0

�
k
i

��
m� k
n� i

�
r
i

min(k;n)P
j=max(0;k+n�m)

�
k
j

��
m� k
n � j

�
r
j

max (0; k + n�m) � x � min (k; n)

1 x > min (k; n)

Laplace Distribution

CDF(’LAPLACE’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter.

�

is an optional numeric scale parameter.
Range: � > 0

The CDF function for the Laplace distribution returns the probability that an
observation from the Laplace distribution, with location parameter � and scale
parameter �, is less than or equal to x. The equation follows:

CDF
�

0LAPLACE 0; x; �; �
�
=

(
1

2
e

(x��)

� x > 0

1� 1

2
e(�

(x��)

�
) x � 0

Note: The default values for � and � are 0 and 1, respectively. 4

Logistic Distribution

CDF(’LOGISTIC’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter

Functions and CALL Routines 4 CDF 281

�

is an optional numeric scale parameter.

Range: � > 0

The CDF function for the logistic distribution returns the probability that an
observation from a logistic distribution, with a location parameter � and a scale
parameter �, is less than or equal to x. The equation follows:

CDF
�

0LOGISTIC 0; x; �; �
�
=

1

1 + e�
x��

�

Note: The default values for � and � are 0 and 1, respectively. 4

Lognormal Distribution

CDF(’LOGNORMAL’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter

�

is an optional numeric scale parameter.

Range: � > 0

The CDF function for the lognormal distribution returns the probability that an
observation from a lognormal distribution, with location parameter � and scale
parameter �, is less than or equal to x. The equation follows:

CDF
�
0LOGN 0; x; �; �

�
=

8<
:
0 x � 0

1

�
p
2�

log(x)R
o

exp
�
�

(v��)2

2�2

�
dv x > 0

Note: The default values for � and � are 0 and 1, respectively. 4

Negative Binomial Distribution

CDF(’NEGBINOMIAL’,m,p,n)

where

m
is a positive integer random variable that counts the number of failures.

Range: m ≥ 0

p
is a numeric probability of success parameter.

Range: 0 ≤ p ≤ 1

n
is an integer parameter that counts the number of successes.
Range: n ≥ 1

282 CDF 4 Chapter 4

The CDF function for the negative binomial distribution returns the probability that
an observation from a negative binomial distribution, with probability of success p and
number of successes n, is less than or equal to m. The equation follows:

CDF
�

0NEGB 0;m; p; n
�
=

8<
:
0 m < 0

pn
mP
j=0

�
n+ j � 1

j

�
(1 � p)j m � 0

Note: There are no location or scale parameters for the negative binomial
distribution. 4

Normal Distribution

CDF(’NORMAL’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter.

�

is an optional numeric scale parameter.
Range: � > 0

The CDF function for the normal distribution returns the probability that an
observation from the normal distribution, with location parameter � and scale
parameter �, is less than or equal to x. The equation follows:

CDF
�

0NORMAL0; x; �; �
�
=

1

�
p
2�

xZ
�1

exp

�
(v � �)2

2�2

!
dv

Note: The default values for � and � are 0 and 1, respectively. 4

Pareto Distribution

CDF(’PARETO’,x,a<,k>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

k
is an optional numeric scale parameter.
Range: k > 0

The CDF function for the Pareto distribution returns the probability that an
observation from a Pareto distribution, with shape parameter a and scale parameter k,
is less than or equal to x. The equation follows:

Functions and CALL Routines 4 CDF 283

CDF
�

0PARETO0; x; a; k
�
=

�
0 x < k
1�

�
k

x

�a
x � k

Note: The default value for k is 1. 4

Poisson Distribution

CDF(’POISSON’,n,m)

where

n
is an integer random variable.

m
is a numeric mean parameter.
Range: m > 0

The CDF function for the Poisson distribution returns the probability that an
observation from a Poisson distribution, with mean m, is less than or equal to n. The
equation follows:

CDF
�

0POISSON 0; n;m
�
=

(
0 n < 0
nP
i=0

exp (�m) m
i

i!
n � 0

Note: There are no location or scale parameters for the Poisson distribution. 4

T Distribution

CDF(’T’,t,df<,nc>)

where

t
is a numeric random variable.

df
is a numeric degrees of freedom parameter
Range: df > 0

nc
is an optional numeric noncentrality parameter.

The CDF function for the T distribution returns the probability that an observation
from a T distribution, with degrees of freedom df and noncentrality parameter nc, is
less than or equal to x. This function accepts noninteger degrees of freedom. If nc is
omitted or equal to zero, the value returned is from the central T distribution. The
equation follows:

CDF
�

0T 0; t; v; �
�
=

2(
1

2
v�)�

�
v

2

�
1Z

0

xv�1e�
1

2
x
2 1p

2�

tx
p
vZ

�1

e
�

1

2
(u��)2

dudx

Note: There are no location or scale parameters for the T distribution. 4

284 CDF 4 Chapter 4

Uniform Distribution

CDF(’UNIFORM’,x<,l,r>)

where

x
is a numeric random variable.

l
is an optional numeric left location parameter.

r
is an optional numeric right location parameter.
Range: r > l

The CDF function for the uniform distribution returns the probability that an
observation from a uniform distribution, with left location parameter l and right
location parameter r, is less than or equal to x. The equation follows:

CDF
�

0UNIFORM 0; x; l; r
�
=

(
0 x < l
x�l

r�l
l � x < r

x � r

Note: The default values for l and r are 0 and 1, respectively. 4

Wald (Inverse Gaussian) Distribution

CDF(’WALD’,x,d)

CDF(’IGAUSS’,x,d)

where

x
is a numeric random variable.

d
is a numeric shape parameter.
Range: d > 0

The CDF function for the Wald distribution returns the probability that an
observation from a Wald distribution, with shape parameter d, is less than or equal to
x. The equation follows:

CDF
�
0WALD0; x; d

�
=

(0 x � 0

�

�
(x� 1)

q
d

x

�
+ e2d�

�
� (x+ 1)

q
d

x

�
x > 0

where �(.) denotes the probability from the standard normal distribution.

Note: There are no location or scale parameters for the Wald distribution. 4

Weibull Distribution

CDF(’WEIBULL’,x,a<,�>)

where

x
is a numeric random variable.

Functions and CALL Routines 4 CDF 285

a
is a numeric shape parameter.
Range: a > 0

�

is an optional numeric scale parameter.
Range: � > 0

The CDF function for the Weibull distribution returns the probability that an
observation from a Weibull distribution, with shape parameter a and scale parameter �
is less than or equal to x. The equation follows:

CDF
�

0WEIBULL0; x; a;�
�
=

n
0 x < 0

1� e�(
x

�
)
a

x � 0

Note: The default value for � is 1. 4

Examples

SAS Statements Results

y=cdf(’ BERN’ ,0,.25); 0.75

y=cdf(’ BERN’ ,1,.25); 1.0

y=cdf(’ BETA’ ,0.2,3,4); 0.09888

y=cdf(’ BINOM’ ,4,.5,10); 0.37695

y=cdf(’ CAUCHY’ ,2); 0.85242

y=cdf(’ CHISQ’ ,11.264,11); 0.57858

y=cdf(’ EXPO’ ,1); 0.63212

y=cdf(’ F’ ,3.32,2,3); 0.82639

y=cdf(’ GAMMA’ ,1,3); 0.080301

y=cdf(’ HYPER’ ,2,200,50,10); 0.52367

y=cdf(’ LAPLACE’ ,1); 0.81606

y=cdf(’ LOGISTIC’ ,1); 0.73106

y=cdf(’ LOGNORMAL’ ,1); 0.5

y=cdf(’ NEGB’ ,1,.5,2); 0.5

y=cdf(’ NORMAL’ ,1.96); 0.97500

y=cdf(’ PARETO’ ,1,1); 0

y=cdf(’ POISSON’ ,2,1); 0.91970

y=cdf(’ T’ ,.9,5); 0.79531

y=cdf(’ UNIFORM’ ,0.25); 0.25

286 CEIL 4 Chapter 4

SAS Statements Results

y=cdf(’WALD’,1,2); 0.62770

y=cdf(’WEIBULL’,1,2); 0.63212

CEIL

Returns the smallest integer that is greater than or equal to the argument

Category: Truncation

Syntax
CEIL (argument)

Arguments

argument
is numeric.

Details
If the argument is within 10**(–12) of an integer, the function returns that integer.

Examples

The following SAS statements produce these results:

SAS Statements Results

var1=2.1;
a=ceil(var1);
put a=; 3

var2=3;
b=ceil(var2);
put b=; 3

c=ceil(-2.4);
put c=; −2

d=ceil(1+1.e-11);
put d=; 2

Functions and CALL Routines 4 CEXIST 287

SAS Statements Results

e=ceil(-1+1.e-11);
put e=; 0

f=ceil(1+1.e-13);
put f=; 1

CEXIST

Verifies the existence of a SAS catalog or SAS catalog entry and returns a value

Category: SAS File I/O

Syntax
CEXIST(entry<,’U’>)

Arguments

entry
specifies a SAS catalog, or the name of an entry in a catalog. If the entry value is a
one- or two-level name, then it is assumed to be the name of a catalog. Use a three-
or four-level name to test for the existence of an entry within a catalog.

’U’
tests whether the catalog can be opened for updating.

Details
CEXIST returns 1 if the SAS catalog or catalog entry exists, or 0 if the SAS catalog or
catalog entry does not exist.

Examples

� This example verifies the existence of the entry X.PROGRAM in LIB.CAT1:

data _null_;
if cexist("lib.cat1.x.program") then
put "Entry X.PROGRAM exists";

run;

� This example tests whether the catalog LIB.CAT1 exists and can be opened for
update (see Example Code 4.1 on page 288). If the catalog does not exist, a
message is written to the SAS log. Note that in a macro statement you do not
enclose character strings in quotation marks.

288 CINV 4 Chapter 4

Example Code 4.1 Determining if LIB.CAT1 Can Be Opened for Update

%if %sysfunc(cexist(lib.cat1,u)) %then
%put The catalog LIB.CAT1 exists and can be opened for update.;

%else
%put %sysfunc(sysmsg());

See Also

Function:
“EXIST” on page 344

CINV

Returns a quantile from the chi-squared distribution

Category: Quantile

Syntax
CINV (p,df< ,nc>)

Arguments

p
is a numeric probability.
Range: 0 ≤ p < 1

df
is a numeric degrees of freedom parameter.
Range: df> 0

nc
is a numeric noncentrality parameter.
Range: nc ≥ 0

Details
The CINV function returns the pth quantile from the chi-square distribution with
degrees of freedom df and a noncentrality parameter nc. The probability that an
observation from a chi-square distribution is less than or equal to the returned quantile
is p. This function accepts a noninteger degrees of freedom parameter df.

If the optional parameter nc is not specified or has the value 0, the quantile from the
central chi-square distribution is returned. The noncentrality parameter nc is defined
such that if X is a normal random variable with mean � and variance 1, X2 has a
noncentral chi-square distribution with df=1 and nc = �

2.

CAUTION:
For large values of nc, the algorithm could fail; in that case, a missing value is
returned. 4

Functions and CALL Routines 4 CLOSE 289

Note: CINV is the inverse of the PROBCHI function. 4

Examples

These statements show how to find the 95th percentile from a central chi-square
distribution with 3 degrees of freedom and the 95th percentile from a noncentral
chi-square distribution with 3.5 degrees of freedom and a noncentrality parameter
equal to 4.5.

SAS Statements Results

q1=cinv(.95,3); 7.8147279033

a2=cinv(.95,3.5,4.5); 7.504582117

CLOSE

Closes a SAS data set and returns a value

Category: SAS File I/O

Syntax
CLOSE(data-set-id)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

Details
CLOSE returns 0 if the operation was successful, ≠0 if it was not successful. Close all
SAS data sets as soon as they are no longer needed by the application.

Note: All data sets opened within a DATA step are closed automatically at the end
of the DATA step. 4

Examples

� This example uses OPEN to open the SAS data set PAYROLL. If the data set
opens successfully, indicated by a positive value for the variable PAYID, the
example uses CLOSE to close the data set.

%let payid=%sysfunc(open(payroll,is));
macro statements

%if &payid > 0 %then
%let rc=%sysfunc(close(&payid));

290 CNONCT 4 Chapter 4

� This example opens the SAS data set MYDATA within a DATA step. MYDATA is
closed automatically at the end of the DATA step. You do not need to use CLOSE
to close the file.

data _null_;
dsid=open(’mydata’,’i’);
if dsid > 0 then do;

...more statements...
end;

run;

See Also

Function:
“OPEN” on page 460

CNONCT

Returns the noncentrality parameter from a chi-squared distribution

Category: Mathematical

Syntax
CNONCT(x,df,prob)

Arguments

x
is a numeric random variable.
Range: x ≥ 0

df
is a numeric degrees of freedom parameter.
Range: df > 0

prob
is a probability.
Range: 0 < prob < 1

Details
The CNONCT function returns the nonnegative noncentrality parameter from a
noncentral chi-square distribution whose parameters are x, df, and nc. If prob is greater
than the probability from the central chi-square distribution with the parameters x and
df, a root to this problem does not exist. In this case a missing value is returned. A
Newton-type algorithm is used to find a nonnegative root nc of the equation

P
c
(xjdf; nc)� prob = 0

Functions and CALL Routines 4 COLLATE 291

where

Pc (xjdf; nc) = e
�nc

2

1X

j=0

�
nc
2

�j
j!

Pg

�
x

2
j
df

2
+ j

�

where Pg (xja) is the probability from the gamma distribution given by

Pg (xja) =
1

� (a)

xZ
0

ta�1e�tdt

If the algorithm fails to converge to a fixed point, a missing value is returned.

Examples

data work;
x=2;
df=4;
do nc=1 to 3 by .5;

prob=probchi(x,df,nc);
ncc=cnonct(x,df,prob);
output;

end;
run;
proc print;
run;

Output 4.12 Computations of the Noncentrality Parameters from the Chi-squared
Distribution

OBS x df nc prob ncc

1 2 4 1.0 0.18611 1.0
2 2 4 1.5 0.15592 1.5
3 2 4 2.0 0.13048 2.0
4 2 4 2.5 0.10907 2.5
5 2 4 3.0 0.09109 3.0

COLLATE
Returns an ASCII or EBCDIC collating sequence character string

Category: Character

Syntax
COLLATE (start-position<,end-position>) |

292 COLLATE 4 Chapter 4

(start-position<,,length>)

Arguments

start-position
specifies the numeric position in the collating sequence of the first character to be
returned.
Interaction: If you specify only start-position, COLLATE returns consecutive

characters from that position to the end of the collating sequence or up to 255
characters, whichever comes first.

end-position
specifies the numeric position in the collating sequence of the last character to be
returned.

The maximum end-position for the EBCDIC collating sequence is 255. For ASCII
collating sequences, the characters that correspond to end-position values between 0
and 27 represent the standard character set. Other ASCII characters that
correspond to end-position values between 128 and 255 are available on certain
ASCII operating environments, but the information those characters represents
varies from host environment.
Tip: end-position must be larger than start-position

Tip: If you specify end-position, COLLATE returns all character values in the
collating sequence between start-position and end-position, inclusive.

Tip: If you omit end-position and use length, mark the end-position place with a
comma.

length
specifies the number of characters in the collating sequence.
Default: 200
Tip: If you omit end-position, use length to specify the length of the result explicitly.

Details
If you specify both end-position and length, COLLATE ignores length. If you request a
string longer than the remainder of the sequence, COLLATE returns a string through
the end of the sequence.

Examples

SAS Statements Results

ASCII ----+----1----+-----2--

x=collate(48,,10);
y=collate(48,57);
put @1 x @14 y; 0123456789 0123456789

Functions and CALL Routines 4 COMB 293

SAS Statements Results

EBCDIC

x=collate(240,,10);
y=collate(240,249);
put @1 x @14 y; 0123456789 0123456789

See Also

Functions:

“BYTE” on page 241

“RANK” on page 516

COMB

Computes the number of combinations of n elements taken r at a time and returns a value

Category: Mathematical

Syntax
COMB(n, r)

Arguments

n
is an integer that represents the total number of elements from which the sample is
chosen.

r
is an integer that represents the number of chosen elements.

Restriction: r ≤ n

Details
The mathematical representation of the COMB function is given by the following
equation:

COMB (n; r) =
�
n

r

�
=

n!

r ! (n � r)!

with n ≥ 0, r ≥ 0, and n≥ r.
If the expression cannot be computed, a missing value is returned.

294 COMPBL 4 Chapter 4

Examples

SAS Statements Result

x=comb(5,1); 5

See Also

Functions:

“FACT” on page 346

“PERM” on page 480

COMPBL

Removes multiple blanks from a character string

Category: Character

Syntax
COMPBL(source)

Arguments

source
specifies the source string to compress.

Details
The COMPBL function removes multiple blanks in a character string by translating
each occurrence of two or more consecutive blanks into a single blank.

The value that the COMPBL function returns has a default length of 200. You can
use the LENGTH statement, before calling COMPBL, to set the length of the value.

Comparisons
The COMPRESS function removes every occurrence of the specific character from a
string. If you specify a blank as the character to remove from the source string, the
COMPRESS function is similar to the COMPBL function. However, the COMPRESS
function removes all blanks from the source string, while the COMPBL function
compresses multiple blanks to a single blank and has no affect on a single blank.

Examples

Functions and CALL Routines 4 COMPOUND 295

SAS Statements Results

----+----1----+-----2--

string=’Hey
Diddle Diddle’;

string=compbl(string);
put string; Hey Diddle Diddle

string=’125 E Main St’;
length address $10;
address=compbl(string);
put address; 125 E Main

See Also

Function:

“COMPRESS” on page 296

COMPOUND

Returns compound interest parameters

Category: Financial

Syntax
COMPOUND(a,f,r,n)

Arguments

a
is numeric, the initial amount.
Range: a ≥ 0

f
is numeric, the future amount (at the end of n periods).
Range: f ≥ 0

r
is numeric, the periodic interest rate expressed as a fraction.
Range: r ≥ 0

n
is an integer, the number of compounding periods.
Range: n≥ 0

Details
The COMPOUND function returns the missing argument in the list of four arguments
from a compound interest calculation. The arguments are related by

296 COMPRESS 4 Chapter 4

f = a (1 + r)n

One missing argument must be provided. It is then calculated from the remaining
three. No adjustment is made to convert the results to round numbers.

Examples

The accumulated value of an investment of $2000 at a nominal annual interest rate
of 9 percent, compounded monthly after 30 months, can be expressed as

future=compound(2000,.,0.09/12,30);

The value returned is 2502.54. The second argument has been set to missing,
indicating that the future amount is to be calculated. The 9 percent nominal annual
rate has been converted to a monthly rate of 0.09/12. The rate argument is the
fractional (not the percentage) interest rate per compounding period.

COMPRESS
Removes specific characters from a character string

Category: Character

Syntax
COMPRESS(source<, characters-to-remove>)

Arguments

source
specifies a source string that contains the characters to remove.

characters-to-remove
specifies the character or characters that SAS removes from the character string.
Tip: Enclose a literal string of characters in quotation marks.
Tip: If you specify nothing, SAS removes blanks from source.

Examples

Example 1: Compressing Blanks

SAS Statements Results

----+----1

a=’AB C D ’;
b=compress(a);
put b; ABCD

Example 2: Compressing Special Characters

Functions and CALL Routines 4 CONSTANT 297

SAS Statements Results

----+----1

x=’A.B (C=D);’;
y=compress(x,’.;()’);
put y; AB C=D

See Also

Functions:
“COMPBL” on page 294
“LEFT” on page 435
“TRIM” on page 570

CONSTANT

Computes some machine and mathematical constants and returns a value

Category: Mathematical

Syntax
CONSTANT(constant<, parameter>)

Arguments

constant
is a character string that identifies the constant. Valid constants are

Constant Argument

The natural base ’E’

Euler constant ’EULER’

Pi ’PI’

Exact integer ’EXACTINT’ <,nbytes>

The largest double-precision number ’BIG’

The log with respect to base of BIG ’LOGBIG’ <,base>

The square root of BIG ’SQRTBIG’

The smallest double-precision number ’SMALL’

The log with respect to base of SMALL ’LOGSMALL’ <,base>

The square root of SMALL ’SQRTSMALL’

Machine precision constant ’MACEPS’

298 CONSTANT 4 Chapter 4

Constant Argument

The log with respect to base of MACEPS ’LOGMACEPS’ <,base>

The square root of MACEPS ’SQRTMACEPS’

parameter
is an optional numeric parameter. Some of the constants specified in constant have
an optional argument that alters the functionality of the CONSTANT function.

Details

The natural base

CONSTANT(’E’)

The natural base is described by the following equation:

lim
x!0

(1 + x)
1

x
� 2:718281828459045

Euler constant

CONSTANT(’EULER’)

Euler’s constant is described by the following equation:

lim
n!1

8<
:

j=nX
j=0

1

j
� log (n)

9=
; � 0:577215664901532860

Pi

CONSTANT(’PI’)

Pi is the well-known constant in trigonometry that is the ratio between the
circumference and the diameter of a circle. Many expressions exist for computing this
constant. One such expression for the series is described by the following equation:

4

j=1X
j=0

(�1)j

2j + 1
� 3:14159265358979323846

Exact Integer

CONSTANT(’EXACTINT’ <, nbytes>)

where

nbytes
is a numeric value that is the number of bytes.
Range: 2 ≤ nbytes ≤ 8
Default: 8

The exact integer is the largest integer k such that all integers less than or equal to
k in absolute value have an exact representation in a SAS numeric variable of length

Functions and CALL Routines 4 CONSTANT 299

nbytes. This information can be useful to know before you trim a SAS numeric variable
from the default 8 bytes of storage to a lower number of bytes to save storage.

The largest double-precision number

CONSTANT(’BIG’)

This case returns the largest double-precision floating point number (8-bytes) that is
representable on your computer.

CONSTANT(’LOGBIG’ <, base>)

where

base
is a numeric value that is the base of the logarithm.

Restriction: The base that you specify must be greater than the value of
1+SQRTMACEPS.

Default: the natural base, E.
This case returns the logarithm with respect to base of the largest double-precision

floating point number (8-bytes) that is representable on your computer.
It is safe to exponentiate the given base raised to a power less than or equal to

CONSTANT(’LOGBIG’, base) by using the power operation (**) without causing any
overflows.

It is safe to exponentiate any floating point number less than or equal to
CONSTANT(’LOGBIG’) by using the exponential function, EXP, without causing any
overflows.

CONSTANT(’SQRTBIG’)

This case returns the square root of the largest double-precision floating point
number (8-bytes) that is representable on your computer.

It is safe to square any floating point number less than or equal to
CONSTANT(’SQRTBIG’) without causing any overflows.

The smallest double-precision number

CONSTANT(’SMALL’)

This case returns the smallest double-precision floating point number (8-bytes) that is
representable on your computer.

CONSTANT(’LOGSMALL’ <, base>)

where

base
is a numeric value that is the base of the logarithm.
Restriction: The base that you specify must be greater than the value of

1+SQRTMACEPS.
Default: the natural base, E.

This case returns the logarithm with respect to base of the smallest double-precision
floating point number (8-bytes) that is representable on your computer.

It is safe to exponentiate the given base raised to a power greater than or equal to
CONSTANT(’LOGSMALL’, base) by using the power operation (**) without causing any
underflows or 0.

It is safe to exponentiate any floating point number greater than or equal to
CONSTANT(’LOGSMALL’) by using the exponential function, EXP, without causing
any underflows or 0.

300 CONVX 4 Chapter 4

CONSTANT(’SQRTSMALL’)

This case returns the square root of the smallest double-precision floating point
number (8-bytes) that is representable on the machine.

It is safe to square any floating point number greater than or equal to
CONSTANT(’SQRTBIG’) without causing any underflows or 0.

Machine precision

CONSTANT(’MACEPS’)

This case returns the smallest double-precision floating point number (8-bytes) � = 2�j

for some integer j, such that 1 + � > 1.
This constant is important in finite precision computations. A number n1 is

considered larger than another number n2 if the (8-byte) representation of n1 + n2 is
identical to n1. This constant can be used in summing series to implement a machine
dependent stopping criterion.

CONSTANT(’LOGMACEPS’ <, base>)

where

base
is a numeric value that is the base of the logarithm.
Restriction: The base that you specify must be greater than the value of

1+SQRTMACEPS.
Default: the natural base, E.

This case returns the logarithm with respect to base of CONSTANT(’MACEPS’).

CONSTANT(’SQRTMACEPS’)

This case returns the square root of CONSTANT(’MACEPS’).

CONVX

Returns the convexity for an enumerated cashflow

Category: Financial

Syntax
CONVX(y,f,c(1), ... ,c(k))

Arguments

y
the effective per-period yield-to-maturity, expressed as a fraction.
Range: 0 < y < 1

f
the frequency of cashflows per period.
Range: f > 0

Functions and CALL Routines 4 CONVXP 301

c(1), ... ,c(k)
a list of cashflows.

Details
The CONVX function returns the value

C =

KP
k=1

k
f

c(k)

(1+fy)
k
f

P (1 + y)
2

where

P =
KX

k=1

c (k)

(1 + fy)
k

f

Examples

c=convx(1/20,1,.33,.44,.55,.49,.50,.22,.4,.8,.01,.36,.2,.4);

The value returned is 42.3778.

CONVXP

Returns the convexity for a periodic cashflow stream, such as a bond

Category: Financial

Syntax
CONVXP(A,c,n,K,k0,y)

Arguments

A
the par value.
Range: A > 0

c
the nominal per-period coupon rate, expressed as a fraction.
Range: 0 < c < 1

n
the number of coupons per period.

302 COS 4 Chapter 4

Range: n > 0 and is an integer

K
the number of remaining coupons.
Range: K > 0 and is an integer

k0

the time from present to the first coupon date, expressed in terms of the number of
periods.
Range: 0 < k0 > 1/n

y
the nominal per-period yield-to-maturity, expressed as a fraction.
Range: y > 0

Details
The CONVXP function returns the value

C =
1

n

KP
k=1

tk
c(k)

(1+ y

n
)
tk

P
�
1 + y

n

�2

where
tk = k � (1 � nk0)

c (k) = c
n
A for k=1, ..., K-1

c (K) =
�
1 + c

n

�
A

and where

P =

KX

k=1

c (k)

(1 + y)tk

Examples

c=convxp(1000,1/100, 4,14,.33/2,.10);

The value returned is 11.6023.

COS

Returns the cosine

Category: Trigonometric

Functions and CALL Routines 4 COSH 303

Syntax

COS (argument)

Arguments

argument
is numeric and is specified in radians.

Examples

SAS Statements Results

x=cos(0.5); 0.8775825619

x=cos(0); 1

x=cos(3.14159/3); 0.500000766

COSH

Returns the hyperbolic cosine

Category: Hyperbolic

Syntax

COSH(argument)

Arguments

argument
is numeric.

Details

The COSH function returns the hyperbolic cosine of the argument, given by

�
e
argument

+ e
�argument

�
=2

304 CSS 4 Chapter 4

Examples

SAS Statements Results

x=cosh(0); 1

x=cosh(-5.0); 74.209948525

x=cosh(0.5); 1.1276259652

CSS

Returns the corrected sum of squares

Category: Descriptive Statistics

Syntax
CSS(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=css(5,9,3,6); 18.75

x2=css(5,8,9,6,.); 0

x3=css(8,9,6,.); 4.6666666667

x4=css(of x1-x3); 101.11574074

CUROBS

Returns the observation number of the current observation

Category: SAS File I/O

Syntax
CUROBS(data-set-id)

Functions and CALL Routines 4 CV 305

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

Details
CAUTION:

Use this function only with an uncompressed SAS data set that is accessed using a native
library engine. 4

If the engine being used does not support observation numbers, the function returns
a missing value.

With a SAS data view, the function returns the relative observation number, that is,
the number of the observation within the SAS data view (as opposed to the number of
the observation within any related SAS data set).

Examples

This example uses the FETCHOBS function to fetch the tenth observation in the
data set MYDATA. The value of OBSNUM returned by CUROBS is 10.

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetchobs(&dsid,10));
%let obsnum=%sysfunc(curobs(&dsid));

See Also

Functions:
“FETCHOBS” on page 353
“OPEN” on page 460

CV

Returns the coefficient of variation

Category: Descriptive Statistics

Syntax
CV(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

306 DACCDB 4 Chapter 4

Examples

SAS Statements Results

x1=cv(5,9,3,6); 43.47826087

x2=cv(5,8,9,6,.); 26.082026548

x3=cv(8,9,6,.); 19.924242152

x4=cv(of x1-x3); 40.953539216

DACCDB
Returns the accumulated declining balance depreciation

Category: Financial

Syntax
DACCDB(p,v,y,r)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.
Range: y > 0

r
is numeric, the rate of depreciation expressed as a decimal.
Range: r > 0

Details
The DACCDB function returns the accumulated depreciation by using a declining
balance method. The formula is

DACCDB(p; v ; y; r) =

(
0 p � 0

v

�
�

�
1� r

y

�int(p)��
1 � (p� int (p)) r

y

�
p > 0

Note that int(p) is the integer part of p. The p and y arguments must be expressed
by using the same units of time. A double-declining balance is obtained by setting r
equal to 2.

Functions and CALL Routines 4 DACCDBSL 307

Examples

An asset has a depreciable initial value of $1000 and a fifteen-year lifetime. Using a
200 percent declining balance, the depreciation throughout the first 10 years can be
expressed as

a=daccdb(10,1000,15,2);

The value returned is 760.93. The first and the third arguments are expressed in
years.

DACCDBSL

Returns the accumulated declining balance with conversion to a straight-line depreciation

Category: Financial

Syntax
DACCDBSL(p,v,y,r)

Arguments

p
is numeric, the period for which the calculation is to be done.

v
is numeric, the depreciable initial value of the asset.

y
is an integer, the lifetime of the asset.
Range: y > 0

r
is numeric, the rate of depreciation that is expressed as a fraction.
Range: r > 0

Details
The DACCDBSL function returns the accumulated depreciation by using a declining
balance method, with conversion to a straight-line depreciation function that is defined
by

DACCDBSL (p; v; y; r) =

pX

i=1

DEPDBSL (i; v; y; r)

The declining balance with conversion to a straight-line depreciation chooses for each
time period the method of depreciation (declining balance or straight-line on the

308 DACCSL 4 Chapter 4

remaining balance) that gives the larger depreciation. The p and y arguments must be
expressed by using the same units of time.

Examples

An asset has a depreciable initial value of $1,000 and a ten-year lifetime. Using a
declining balance rate of 150 percent, the accumulated depreciation of that asset in its
fifth year can be expressed as

y5=daccdbsl(5,1000,10,1.5);

The value returned is 564.99. The first and the third arguments are expressed in
years.

DACCSL

Returns the accumulated straight-line depreciation

Category: Financial

Syntax
DACCSL(p,v,y)

Arguments

p
is numeric, the period for which the calculation is to be done. For fractional p, the
depreciation is prorated between the two consecutive time periods that precede and
follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.
Range: y > 0

Details
The DACCSL function returns the accumulated depreciation by using the straight-line
method, which is given by

DACCSL (p; v; y) =

8<
:
0 p < 0

v

�
p

y

�
0 � p � y

v p > y

The p and y arguments must be expressed by using the same units of time.

Functions and CALL Routines 4 DACCSYD 309

Example

An asset, acquired on 01APR86, has a depreciable initial value of $1000 and a
ten-year lifetime. The accumulated depreciation in the value of the asset through
31DEC87 can be expressed as

a=daccsl(1.75,1000,10);

The value returned is 175.00. The first and the third arguments are expressed in
years.

DACCSYD

Returns the accumulated sum-of-years-digits depreciation

Category: Financial

Syntax
DACCSYD(p,v,y)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.

Range: y > 0

Details
The DACCSYD function returns the accumulated depreciation by using the
sum-of-years-digits method. The formula is

DACCSYD(p; v; y) =

8<
:
0 p < 0

v
int(p)(y� int(p)�1

2)+(p�int(p))(y�int(p))

int(y)(y� int(y)�1

2)+(y�int(y))2
0 � p � y

v p > y

Note that int(y) indicates the integer part of y. The p and y arguments must be
expressed by using the same units of time.

310 DACCTAB 4 Chapter 4

Examples

An asset, acquired on 01OCT86, has a depreciable initial value of $1,000 and a
five-year lifetime. The accumulated depreciation of the asset throughout 01JAN88 can
be expressed as

y2=daccsyd(15/12,1000,5);

The value returned is 400.00. The first and the third arguments are expressed in
years.

DACCTAB

Returns the accumulated depreciation from specified tables

Category: Financial

Syntax
DACCTAB(p,v,t1, . . . ,tn)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

t1,t2, . . . ,tn
are numeric, the fractions of depreciation for each time period.

Details
The DACCTAB function returns the accumulated depreciation by using user-specified
tables. The formula for this function is

DACCTAB (p; v; t1; t2; :::; tn) =

(
0 p � 0

v
�
t1 + t2 + :::+ tint(p) + (p� int (p)) tint(p)+1

�
0 < p < n

v p � n

For a given p, only the arguments t1; t2; . . . ; tk need to be specified with k=ceil(p).

Examples

An asset has a depreciable initial value of $1000 and a five-year lifetime. Using a
table of the annual depreciation rates of .15, .22, .21, .21, and .20 during the first,

Functions and CALL Routines 4 DATDIF 311

second, third, fourth, and fifth years, respectively, the accumulated depreciation
throughout the third year can be expressed as

y3=dacctab(3,1000,.15,.22,.21,.24,.20);

The value returned is 580.00. The fourth rate, .24, and the fifth rate, .20, can be
omitted because they are not needed in the calculation.

DAIRY

Returns the derivative of the airy function

Category: Mathematical

Syntax
DAIRY(x)

Arguments

x
is numeric.

Details
The DAIRY function returns the value of the derivative of the airy function
(Abramowitz and Stegun 1964; Amos, Daniel, and Weston 977).

Examples

SAS Statements Results

x=dairy(2.0); -0.053090384

x=dairy(-2.0); 0.6182590207

DATDIF

Returns the number of days between two dates

Category: Date and Time

Syntax
DATDIF(sdate,edate,basis)

312 DATE 4 Chapter 4

Arguments

sdate
specifies a SAS date value that identifies the starting date.

edate
specifies a SAS date value that identifies the ending date.

basis
identifies a character constant or variable that describes how SAS calculates the date
difference. The following character strings are valid:

’30/360’
specifies a 30 day month and a 360 day year. Each month is considered to have 30
days, and each year 360 days, regardless of the actual number of days in each
month or year.
Alias: ’360’
Tip: If either date falls at the end of a month, SAS treats the date as if it were the

last day of a 30-day month.

’ACT/ACT’
uses the actual number of days between dates.
Alias: ’Actual’

Examples

In the following example, DATDIF returns the actual number of days between two
dates, and the number of days based on a 30-month and 360-day year.

data _null;
sdate=’16oct78’d;
edate=’16feb96’d;
actual=datdif(sdate, edate, ’act/act’);
days360=datdif(sdate, edate, ’30/360’);
put actual= days360=;

run;

SAS Statements Results

put actual=;
put days360=;

6332
6240

See Also

Functions:
“YRDIF” on page 620

DATE

Returns the current date as a SAS date value

Functions and CALL Routines 4 DATEJUL 313

Category: Date and Time

Syntax

DATE()

Details

The DATE function produces the current date in the form of a SAS date value, which is
the number of days since January 1, 1960.

Examples

These statements illustrate a practical use of the DATE function:

tday=date();
if (tday-datedue)> 15 then

do;
put ’As of ’ tday date9. ’ Account #’

account ’is more than 15 days overdue.’;
end;

DATEJUL

Converts a Julian date to a SAS date value

Category: Date and Time

Syntax

DATEJUL(julian-date)

Arguments

julian-date
specifies a SAS numeric expression that represents a Julian date. A Julian date in
SAS is a date in the form yyddd or yyyyddd, where yy or yyyy is a two- or four-digit
integer that represents the year and ddd is the number of the day of the year. The
value of ddd must be between and 365 (or 366 for a leap year).

Examples

The following SAS statements produce these results:

314 DATEPART 4 Chapter 4

SAS Statements Results

Xstart=datejul(94365);
put Xstart / Xstart date9.; 12783

31DEC1994

Xend=datejul(2001001);
put Xend / Xend date9.; 14976

01JAN2001

See Also

Function:
“JULDATE” on page 416

DATEPART

Extracts the date from a SAS datetime value

Category: Date and Time

Syntax
DATEPART(datetime)

Arguments

datetime
specifies a SAS expression that represents a SAS datetime value.

Examples

The following SAS statements produce this result:

Functions and CALL Routines 4 DAY 315

SAS Statements Results

conn=’01feb94:8:45’dt;
servdate=datepart(conn);
put servdate worddate.; February 1, 1994

See Also

Functions:
“DATETIME” on page 315
“TIMEPART” on page 564

DATETIME

Returns the current date and time of day as a SAS datetime value

Category: Date and Time

Syntax
DATETIME()

Examples

This example returns a SAS value that represents the number of seconds between
January 1, 1960 and the current time:

when=datetime();
put when=;

See Also

Functions:
“DATE” on page 312
“TIME” on page 563

DAY

Returns the day of the month from a SAS date value

Category: Date and Time

Syntax
DAY(date)

316 DCLOSE 4 Chapter 4

Arguments

date
specifies a SAS expression that represents a SAS date value.

Details
The DAY function produces an integer from 1 to 31 that represents the day of the month.

Examples

The following SAS statements produce this result:

SAS Statements Results

now=’05may97’d;
d=day(now);
put d; 5

See Also

Functions:
“MONTH” on page 451
“YEAR” on page 618

DCLOSE

Closes a directory that was opened by the DOPEN function and returns a value

Category: External Files

Syntax
DCLOSE(directory-id)

Argument

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Details
DCLOSE returns 0 if the operation was successful, ≠0 if it was not successful. The
DCLOSE function closes a directory that was previously opened by the DOPEN
function. DCLOSE also closes any open members.

Functions and CALL Routines 4 DCLOSE 317

Note: All directories or members opened within a DATA step are closed
automatically when the DATA step ends. 4

Examples

Example 1: Using DCLOSE to Close a Directory This example opens the directory to
which the fileref MYDIR has previously been assigned, returns the number of members,
and then closes the directory:

%macro memnum(filrf,path);
%let rc=%sysfunc(filename(filrf,&path));
%if %sysfunc(fileref(&filrf)) = 0 %then

%do;
/* Open the directory. */

%let did=%sysfunc(dopen(&filrf));
%put did=&did;

/* Get the member count. */
%let memcount=%sysfunc(dnum(&did));
%put &memcount members in &filrf.;

/* Close the directory. */
%let rc= %sysfunc(dclose(&did));

%end;
%else %put Invalid FILEREF;
%mend;
%memnum(MYDIR,physical-filename)

Example 2: Using DCLOSE within a DATA Step This example uses the DCLOSE
function within a DATA step:

%let filrf=MYDIR;
data _null_;

rc=filename("&filrf","physical-filename");
if fileref("&filrf") = 0 then

do;
/* Open the directory. */

did=dopen("&filrf");
/* Get the member count. */

memcount=dnum(did);
put memcount "members in &filrf";

/* Close the directory. */
rc=dclose(did);

end;
else put "Invalid FILEREF";

run;

318 DEPDB 4 Chapter 4

See Also

Functions:

“DOPEN” on page 334

“FCLOSE” on page 348

“FOPEN” on page 371

“MOPEN” on page 452

DEPDB

Returns the declining balance depreciation

Category: Financial

Syntax
DEPDB(p,v,y,r)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.

Range: y > 0

r
is numeric, the rate of depreciation that is expressed as a fraction.

Range: r ≥ 0

Details
The DEPDB function returns the depreciation by using the declining balance method,
which is given by

DEPDB(p; v; y; r) = DACCDB (p; v; y; r)

�DACCDB(p� 1; v; y; r)

The p and y arguments must be expressed by using the same units of time. A
double-declining balance is obtained by setting r equal to 2.

Functions and CALL Routines 4 DEPDBSL 319

Examples

An asset has an initial value of $1,000 and a fifteen-year lifetime. Using a declining
balance rate of 200 percent, the depreciation of the value of the asset for the tenth year
can be expressed as

y10=depdb(10,1000,15,2);

The value returned is 36.78. The first and the third arguments are expressed in
years.

DEPDBSL

Returns the declining balance with conversion to a straight-line depreciation

Category: Financial

Syntax
DEPDBSL(p,v,y,r)

Arguments

p
is an integer, the period for which the calculation is to be done.

v
is numeric, the depreciable initial value of the asset.

y
is an integer, the lifetime of the asset.
Range: y > 0

r
is numeric, the rate of depreciation that is expressed as a fraction.
Range: r ≥ 0

Details
The DEPDBSL function returns the depreciation by using the declining balance method
with conversion to a straight-line depreciation, which is given by

DEPDBSL (p; v; y; r) =

8>>>><
>>>>:

0 p < 0

v
r

y

�
1�

r

y

�p�1
p < t

v

�
�

r

y

� t�1

y�t+1

p � t

0 p > y

where

320 DEPSL 4 Chapter 4

t = int
�
y �

y

r
+ 1

�

and int()denotes the integer part of a numeric argument.
The p and y arguments must be expressed by using the same units of time. The

declining balance that changes to a straight-line depreciation chooses for each time
period the method of depreciation (declining balance or straight-line on the remaining
balance) that gives the larger depreciation.

Examples

An asset has a depreciable initial value of $1,000 and a ten-year lifetime. Using a
declining balance rate of 150 percent, the depreciation of the value of the asset in the
fifth year can be expressed as

y5=depdbsl(5,1000,10,1.5);

The value returned is 87.00. The first and the third arguments are expressed in
years.

DEPSL

Returns the straight-line depreciation

Category: Financial

Syntax
DEPSL(p,v,y)

Arguments

p
is numeric, the period for which the calculation is to be done. For fractional p, the
depreciation is prorated between the two consecutive time periods that precede and
follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.

Range: y > 0

Details
The DEPSL function returns the straight-line depreciation, which is given by

Functions and CALL Routines 4 DEPSYD 321

DEPSY (p; v; y) = DACCSL (p; v; y)

�DACCSL (p � 1; v; y)

The p and y arguments must be expressed by using the same units of time.

Examples

An asset, acquired on 01APR86, has a depreciable initial value of $1,000 and a
ten-year lifetime. The depreciation in the value of the asset for the year 1986 can be
expressed as

d=depsl(9/12,1000,10);

The value returned is 75.00. The first and the third arguments are expressed in
years.

DEPSYD

Returns the sum-of-years-digits depreciation

Category: Financial

Syntax
DEPSYD(p,v,y)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset in number of depreciation periods.
Range: y > 0

Details
The DEPSYD function returns the sum-of-years-digits depreciation, which is given by

DEPSYD (p; v; y) = DACCSYD(p; v; y)

�DACCSYD(p� 1; v; y)

The p and y arguments must be expressed by using the same units of time.

322 DEPTAB 4 Chapter 4

Examples

An asset, acquired on 01OCT86, has a depreciable initial value of $1,000 and a
five-year lifetime. The depreciations in the value of the asset for the years 1986 and
1987 can be expressed as

y1=depsyd(3/12,1000,5);
y2=depsyd(15/12,1000,5);

The values returned are 83.33 and 316.67, respectively. The first and the third
arguments are expressed in years.

DEPTAB

Returns the depreciation from specified tables

Category: Financial

Syntax
DEPTAB(p,v,t1, . . . ,tn)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

t1,t2, . . . ,tn
are numeric, the fractions of depreciation for each time period.

Details
The DEPTAB function returns the depreciation by using specified tables. The formula is

DEPTAB (p; v; t1; t2; :::; tn) = DACCTAB (p; v; t1; t2; :::; tn)

�DACCTAB (p� 1; v; t1; t2; :::; tn)

For a given p, only the arguments t1; t2; . . . ; tk need to be specified with k=ceil(p).

Examples

An asset has a depreciable initial value of $1,000 and a five-year lifetime. Using a
table of the annual depreciation rates of .15, .22, .21, .21, and .21 during the first,

Functions and CALL Routines 4 DEVIANCE 323

second, third, fourth, and fifth years, respectively, the depreciation in the third year can
be expressed as

y3=deptab(3,1000,.15,.22,.21,.21,.21);

The value returned is 210.00.

DEQUOTE

Removes quotation marks from a character value

Category: Character

Syntax
DEQUOTE(argument)

Arguments

argument
specifies a character value.

Details
The DEQUOTE function removes single or double quotation marks from a character
value. SAS also reduces any multiple quotation marks within the character-expression.

Examples

SAS Statements Results

x="A’B";
y=dequote(x);
put y; A’B

x="A""B";
y=dequote(x);
put y; A"B

x=’A’’B’;
y=dequote(x);
put y; A’B

DEVIANCE

Computes the deviance and returns a value

324 DEVIANCE 4 Chapter 4

Category: Mathematical

Syntax
DEVIANCE(distribution, variable, shape-parameter(s)<,">)

Arguments

distribution
is a character string that identifies the distribution. Valid distributions are

Distribution Argument

Bernoulli ’BERNOULLI’ | ’BERN’

Binomial ’BINOMIAL’ | ’BINO’

Gamma ’GAMMA’

Inverse Gauss (Wald) ’IGAUSS’ | ’WALD’

Normal ’NORMAL’ | ’GAUSSIAN’

Poisson ’POISSON’ | ’POIS’

variable
is a numeric random variable.

shape-parameter(s)
are one or more distribution-specific numeric parameters that characterize the shape
of the distribution.

"

is an optional numeric small value used for all of the distributions, except for the
normal distribution.

Details

The Bernoulli Distribution

DEVIANCE(’BERNOULLI’, variable, p<, ">)

where

variable
is a binary numeric random variable that has the value of 1 for success and 0 for
failure.

p
is a numeric probability of success with " ≤ p ≤ 1–".

"

is an optional positive numeric value that is used to bound p. Any value of p in the
interval 0 ≤ p ≤ " is replaced by ". Any value of p in the interval 1 – " ≤ p ≤ 1 is
replaced by 1 – ".

The DEVIANCE function returns the deviance from a Bernoulli distribution with a
probability of success p, where success is defined as a random variable value of 1. The
equation follows:

Functions and CALL Routines 4 DEVIANCE 325

DEVIANCE
�

0BERN 0; variable; p; �
�
=

(
�2 log (1� p) x = 0
�2 log (p) x = 1
: otherwise

The Binomial Distribution

DEVIANCE(’BINO’, variable, �, n<, ">)

where

variable
is a numeric random variable that contains the number of successes.
Range: 0 ≤ variable ≤ 1

�

is a numeric mean parameter.
Range: n" ≤ � ≤ n(1–")

n
is an integer number of Bernoulli trials parameter
Range: n ≥ 0

"

is an optional positive numeric value that is used to bound �. Any value of � in
the interval 0 ≤ � ≤ n" is replaced by n". Any value of � in the interval n(1 – ") ≤ �

≤ n is replaced by n(1 – ").

The DEVIANCE function returns the deviance from a binomial distribution, with a
probability of success p, and a number of independent Bernoulli trials n. The following
equation describes the DEVIANCE function for the Binomial distribution, where x is
the random variable.

DEVIANCE
�

0
BINO

0; x ; �;n
�
=

(
: x < 0

2
�
x log

�
x

�

�
+ (n � x) log

�
n�x

n��

��
0 � x � n

: x > n

The Gamma Distribution

DEVIANCE(’GAMMA’, variable, � <, ">)

where

variable
is a numeric random variable.
Range: variable ≥ "

�

is a numeric mean parameter.
Range: � ≥"

"

is an optional positive numeric value that is used to bound variable and �. Any
value of variable in the interval 0 ≤ variable ≤ " is replaced by ". Any value of � in
the interval 0 ≤ � ≤ " is replaced by ".

The DEVIANCE function returns the deviance from a gamma distribution with a
mean parameter �. The following equation describes the DEVIANCE function for the
gamma distribution, where x is the random variable:

326 DEVIANCE 4 Chapter 4

DEVIANCE
�

0
GAMMA

0
; x ; �

�
=

�
: x < 0

2
�
� log

�
x

�

�
+ x��

�

�
x � �; � � �

The Inverse Gauss (Wald) Distribution

DEVIANCE(’IGAUSS’ | ’WALD’, variable, �<, ">)

where

variable
is a numeric random variable.
Range: variable ≥ "

�

is a numeric mean parameter.
Range: � ≥"

"

is an optional positive numeric value that is used to bound variable and �. Any
value of variable in the interval 0 ≤ variable ≤ " is replaced by ". Any value of � in
the interval 0 ≤ � ≤ " is replaced by ".

The DEVIANCE function returns the deviance from an inverse Gaussian distribution
with a mean parameter �. The following equation describes the DEVIANCE function
for the inverse Gaussian distribution, where x is the random variable:

DEVIANCE
�

0
IGAUSS

0
; x ; �

�
=

�
: x < 0
(x��)2

�2x
x � �; � � �

The Normal Distribution

DEVIANCE(’NORMAL’ | ’GAUSSIAN’, variable, �)

where

variable
is a numeric random variable.

�

is a numeric mean parameter.

The DEVIANCE function returns the deviance from a normal distribution with a
mean parameter �. The following equation describes the DEVIANCE function for the
normal distribution, where x is the random variable:

DEVIANCE
�
0
NORMAL

0
; x ;�

�
= (x � �)2

The Poisson Distribution

DEVIANCE(’POISSON’, variable, �<, ">)

where

variable
is a numeric random variable.

Functions and CALL Routines 4 DHMS 327

Range: variable ≥ 0

�

is a numeric mean parameter.
Range: � ≥"

"

is an optional positive numeric value that is used to bound �. Any value of � in
the interval 0 ≤ � ≤ " is replaced by ".

The DEVIANCE function returns the deviance from a Poisson distribution with a
mean parameter �. The following equation describes the DEVIANCE function for the
Poisson distribution, where x is the random variable:

DEVIANCE
�

0
POISSON

0
; x ; �

�
=

�
: x < 0

2
�
x log

�
x

�

�
� (x � �)

�
x � 0 ; � � �

DHMS

Returns a SAS datetime value from date, hour, minute, and second

Category: Date and Time

Syntax
DHMS(date,hour,minute,second)

Arguments

date
specifies a SAS expression that represents a SAS date value.

hour
specifies a SAS expression that represents an integer from 0 through 23.

minute
specifies a SAS expression that represents an integer from 0 through 59.

second
specifies a SAS expression that represents an integer from 0 through 59.

Examples

The following SAS statements produce these results:

328 DIF 4 Chapter 4

SAS Statements Results

dtid=dhms(’01jan89’d,15,30,15);
put dtid / dtid datetime.; 915291015

01JAN89:15:30:15

The following SAS statements show how to combine a SAS date value with a SAS
time value into a SAS datetime value. If you execute these statements on August 13,
1997 at the time of 15:55:50, it produces these results:

SAS Statements Result

day=date();
time=time();
sasdt=dhms(day,0,0,time);
put sasdt datetime.;

13AUG97:15:55:50

See Also

Function:
“HMS” on page 394

DIF
Returns differences between the argument and its nth lag

Category: Special

Syntax
DIF<n>(argument)

Arguments

n
specifies the number of lags.

argument
is numeric.

Details
The DIF functions, DIF1, DIF2, . . . , DIF100, return the first differences between the
argument and its nth lag. DIF1 can also be written as DIF. DIFn is defined as
DIFN(x)=x-LAGN(x) .

For details on storing and returning values from the LAGn queue, see the LAG
function.

Comparisons
The function DIF2(X) is not equivalent to the second difference DIF(DIF(X)).

Functions and CALL Routines 4 DIGAMMA 329

Examples

This example demonstrates the difference between the LAG and DIF functions.

data two;
input X @@;
Z=lag(x);
D=dif(x);
datalines;

2 6 4 7
;
proc print data=two;
run;

Results of the PROC PRINT step follow:

OBS X Z D
1 1 . .
2 2 1 1
3 6 2 4
4 4 6 - 2
5 7 4 3

See Also

Function:
“LAG” on page 432

DIGAMMA

Returns the value of the DIGAMMA function

Category: Mathematical

Syntax
DIGAMMA(argument)

Arguments

argument
is numeric.
Restriction: Nonpositive integers are invalid.

Details
The DIGAMMA function returns the ratio that is given by

	 (x) = �0 (x) =� (x)

330 DIM 4 Chapter 4

where � (:) and �0 (:) denote the Gamma function and its derivative, respectively. For
argument>0, the DIGAMMA function is the derivative of the LGAMMA function.

Example

SAS Statements Results

x=digamma(1.0); -0.577215665

DIM

Returns the number of elements in an array

Category: Array

Syntax
DIM<n>(array-name)

DIM(array-name,bound-n)

Arguments

n
specifies the dimension, in a multidimensional array, for which you want to know the
number of elements. If no n value is specified, the DIM function returns the number
of elements in the first dimension of the array.

array-name
specifies the name of an array that was previously defined in the same DATA step.

bound-n
specifies the dimension, in a multidimensional array, for which you want to know the
number of elements. Use bound-n only when n is not specified.

Details
The DIM function returns the number of elements in a one-dimensional array or the
number of elements in a specified dimension of a multidimensional array when the lower
bound of the dimension is 1. Use DIM in array processing to avoid changing the upper
bound of an iterative DO group each time you change the number of array elements.

Comparisons
� DIM always returns a total count of the number of elements in an array dimension.
� HBOUND returns the literal value of the upper bound of an array dimension.

Note: This distinction is important when the lower bound of an array dimension has
a value other than 1 and the upper bound has a value other than the total number of
elements in the array dimension. 4

Functions and CALL Routines 4 DINFO 331

Examples

Example 1: One-dimensional Array In this example, DIM returns a value of 5.
Therefore, SAS repeats the statements in the DO loop five times.

array big{5} weight sex height state city;
do i=1 to dim(big);

more SAS statements;
end;

Example 2: Multidimensional Array This example shows two ways of specifying the
DIM function for multidimensional arrays. Both methods return the same value for
DIM, as shown in the table that follows the SAS code example.

array mult{5,10,2} mult1-mult100;

Syntax Alternative Syntax Value

DIM(MULT) DIM(MULT,1) 5

DIM2(MULT) DIM(MULT,2) 10

DIM3(MULT) DIM(MULT,3) 2

See Also

Functions:

“HBOUND” on page 392

“LBOUND” on page 434

Statements:

“ARRAY” on page 755

“Array Reference” on page 759

“Array Processing” in SAS Language Reference: Concepts

DINFO

Returns information about a directory

Category: External Files

Syntax
DINFO(directory-id,info-item)

Arguments

332 DINFO 4 Chapter 4

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

info-item
specifies the information item to be retrieved. DINFO returns a blank if the value of
the info-item argument is invalid. The information available varies according to the
operating environment. This is a character value.

Details
Use DOPTNAME to determine the names of the available system-dependent directory
information items. Use DOPTNUM to determine the number of directory information
items available.

Operating Environment Information: DINFO returns the value of a system-dependent
directory parameter. See the SAS documentation for your operating environment for
information about system-dependent directory parameters. 4

Examples

Example 1: Using DINFO to Return Information about a Directory This example opens
the directory MYDIR, determines the number of directory information items available,
and retrieves the value of the last one:

%let filrf=MYDIR;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let numopts=%sysfunc(doptnum(&did));
%let foption=%sysfunc(doptname(&did,&numopts));
%let charval=%sysfunc(dinfo(&did,&foption));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DINFO within a DATA Step This example creates a data set that
contains the name and value of each directory information item:

data diropts;
length foption $ 12 charval $ 40;
keep foption charval;
rc=filename("mydir","physical-name");
did=dopen("mydir");
numopts=doptnum(did);
do i=1 to numopts;

foption=doptname(did,i);
charval=dinfo(did,foption);
output;

end;
run;

Functions and CALL Routines 4 DNUM 333

See Also

Functions:
“DOPEN” on page 334
“DOPTNAME” on page 335
“DOPTNUM” on page 336
“FINFO” on page 361
“FOPTNAME” on page 373
“FOPTNUM” on page 374

DNUM

Returns the number of members in a directory

Category: External Files

Syntax
DNUM(directory-id)

Argument

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Details
You can use DNUM to determine the highest possible member number that can be
passed to DREAD.

Examples

Example 1: Using DNUM to Return the Number of Members This example opens the
directory MYDIR, determines the number of members, and closes the directory:

%let filrf=MYDIR;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let memcount=%sysfunc(dnum(&did));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DNUM within a DATA Step This example creates a DATA step that
returns the number of members in a directory called MYDIR:

data _null_;
rc=filename("mydir","physical-name");
did=dopen("mydir");

334 DOPEN 4 Chapter 4

memcount=dnum(did);
rc=dclose(did);

run;

See Also

Functions:
“DOPEN” on page 334
“DREAD” on page 337

DOPEN

Opens a directory and returns a directory identifier value

Category: External Files

Syntax
DOPEN(fileref)

Argument

fileref
specifies the fileref assigned to the directory.
Restriction: You must associate a fileref with the directory before calling DOPEN.

Details
DOPEN opens a directory and returns a directory identifier value (a number greater
than 0) that is used to identify the open directory in other SAS external file access
functions. If the directory could not be opened, DOPEN returns 0. The directory to be
opened must be identified by a fileref. You can assign filerefs using the FILENAME
statement or the FILENAME external file access function. Under some operating
environments, you can also assign filerefs using system commands.

Operating Environment Information: The term directory used in the description of this
function and related SAS external file access functions refers to an aggregate grouping
of files managed by the operating environment. Different operating environments
identify such groupings with different names, such as directory, subdirectory, MACLIB,
or partitioned data set. For details, see the SAS documentation for your operating
environment. 4

Examples

Example 1: Using DOPEN to Open a Directory This example assigns the fileref MYDIR
to a directory. It uses DOPEN to open the directory. DOPTNUM determines the
number of system-dependent directory information items available, and DCLOSE closes
the directory:

Functions and CALL Routines 4 DOPTNAME 335

%let filrf=MYDIR;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPEN within a DATA Step This example opens a directory for
processing within a DATA step.

data _null_;
drop rc did;
rc=filename("mydir","physical-name");
did=dopen("mydir");
if did > 0 then do;

...more statements...
end;

run;

See Also

Functions:
“DCLOSE” on page 316
“DOPTNUM” on page 336
“FOPEN” on page 371
“MOPEN” on page 452

DOPTNAME
Returns directory attribute information

Category: External Files

Syntax
DOPTNAME(directory-id,nval)

Arguments

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.
Restriction: To use DOPTNAME on a directory, the directory must have been

previously opened by using DOPEN.

nval
specifies the sequence number of the option.

Details
Operating Environment Information: The number, names, and nature of the directory
information varies between operating environments. The number of options that are

336 DOPTNUM 4 Chapter 4

available for a directory varies depending on the operating environment. For details,
see the SAS documentation for your operating environment. 4

Examples

Example 1: Using DOPTNAME to Retrieve Directory Attribute Information This example
opens the directory with the fileref MYDIR, retrieves all system-dependent directory
information items, writes them to the SAS log, and closes the directory:

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%do j=1 %to &infocnt;

%let opt=%sysfunc(doptname(&did,&j));
%put Directory information=&opt;

%end;
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPTNAME within a DATA Step This example creates a data set that
contains the name and value of each directory information item:

data diropts;
length optname $ 12 optval $ 40;
keep optname optval;
rc=filename("mydir","physical-name");
did=dopen("mydir");
numopts=doptnum(did);
do i=1 to numopts;

optname=doptname(did,i);
optval=dinfo(did,optname);
output;

end;
run;

See Also

Functions:
“DINFO” on page 331
“DOPEN” on page 334
“DOPTNUM” on page 336

DOPTNUM

Returns the number of information items that are available for a directory

Category: External Files

Syntax
DOPTNUM(directory-id)

Functions and CALL Routines 4 DREAD 337

Argument

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Restriction: The directory must have been previously opened by using DOPEN.

Details
Operating Environment Information: The number, names, and nature of the directory
information varies between operating environments. The number of options that are
available for a directory varies depending on the operating environment. For details,
see the SAS documentation for your operating environment. 4

Examples

Example 1: Retrieving the Number of Information Items This example retrieves the
number of system-dependent directory information items that are available for the
directory MYDIR and closes the directory:

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPTNUM within a DATA Step This example creates a data set that
retrieves the number of system-dependent information items that are available for the
MYDIR directory:

data _null_;
rc=filename("mydir","physical-name");
did=dopen("mydir");
infocnt=doptnum(did);
rc=dclose(did);

run;

See Also

Functions:

“DINFO” on page 331

“DOPEN” on page 334

“DOPTNAME” on page 335

DREAD

Returns the name of a directory member

Category: External Files

338 DROPNOTE 4 Chapter 4

Syntax
DREAD(directory-id,nval)

Arguments

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Restriction: The directory must have been previously opened by using DOPEN.

nval
specifies the sequence number of the member within the directory.

Details
DREAD returns a blank if an error occurs (such as when nval is out-of-range). Use
DNUM to determine the highest possible member number that can be passed to
DREAD.

Examples

This example opens the directory identified by the fileref MYDIR, retrieves the
number of members, and places the number in the variable MEMCOUNT. It then
retrieves the name of the last member, places the name in the variable LSTNAME , and
closes the directory:

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let lstname=;
%let memcount=%sysfunc(dnum(&did));
%if &memcount > 0 %then

%let lstname=%sysfunc(dread(&did,&memcount));
%let rc=%sysfunc(dclose(&did));

See Also

Functions:

“DNUM” on page 333

“DOPEN” on page 334

DROPNOTE

Deletes a note marker from a SAS data set or an external file and returns a value

Category: SAS File I/O

Functions and CALL Routines 4 DSNAME 339

Category: External Files

Syntax
DROPNOTE(data-set-id|file-id,note-id)

Arguments

data-set-id|file-id
specifies the identifier that was assigned when the data set or external file was
opened, generally by the OPEN function or the FOPEN function.

note-id
specifies the identifier that was assigned by the NOTE or FNOTE function.

Details
DROPNOTE deletes a marker set by NOTE or FNOTE. It returns a 0 if successful and
≠0 if not successful.

Examples

This example opens the SAS data set MYDATA, fetches the first observation, and
sets a note ID at the beginning of the data set. It uses POINT to return to the first
observation, and then uses DROPNOTE to delete the note ID:

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetch(&dsid));
%let noteid=%sysfunc(note(&dsid));

more macro statements
%let rc=%sysfunc(point(&dsid,¬eid));
%let rc=%sysfunc(fetch(&dsid));
%let rc=%sysfunc(dropnote(&dsid,¬eid));

See Also

Functions:
“FETCH” on page 352
“FNOTE” on page 369
“FOPEN” on page 371
“FPOINT” on page 375
“NOTE” on page 458
“OPEN” on page 460
“POINT” on page 481

DSNAME

Returns the SAS data set name that is associated with a data set identifier

340 DUR 4 Chapter 4

Category: SAS File I/O

Syntax
DSNAME(data-set-id)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

Details
DSNAME returns the data set name that is associated with a data set identifier, or a
blank if the data set identifier is not valid.

Examples

This example determines the name of the SAS data set that is associated with the
variable DSID and displays the name in the SAS log.

%let dsid=%sysfunc(open(sasuser.houses,i));
%put The current open data set
is %sysfunc(dsname(&dsid)).;

See Also

Function:
“OPEN” on page 460

DUR

Returns the modified duration for an enumerated cashflow

Category: Financial

Syntax
DUR(y,f,c(1), ... ,c(k))

Arguments

y
the effective per-period yield-to-maturity, expressed as a fraction.
Range: y > 0

Functions and CALL Routines 4 DURP 341

f
the frequency of cashflows per period.
Range: f > 0

c(1), ... ,c(k)
a list of cashflows.

Details
The DUR function returns the value

D =

KP
k=1

k
f

c(k)

(1+fy)
k
f

P (1 + y)

where

P =

KX

k=1

c (k)

(1 + fy)
k

f

Examples

d=dur(1/20,1,.33,.44,.55,.49,.50,.22,.4,.8,.01,.36,.2,.4);

The value returned is 5.28402.

DURP

Returns the modified duration for a periodic cashflow stream, such as a bond

Category: Financial

Syntax
DURP(A,c,n,K,k0,y)

Arguments

A
the par value.
Range: A > 0

c
the nominal per-period coupon rate, expressed as a fraction.

342 ERF 4 Chapter 4

Range: 0 < c < 1

n
the number of coupons per period.
Range: n > 0 and is an integer

K
the number of remaining coupons.
Range: K > 0 and is an integer

k0

the time from present to the first coupon date, expressed in terms of the number of
periods.
Range: 0 < k0 < 1/n

y
the nomimal per-period yield-to-maturity, expressed as a fraction.
Range: y > 0

Details
The DURP function returns the value

D =
1

n

KP
k=1

tk
c(k)

(1+ y

n)
tk

P
�
1 + y

n

�

where
tk = k � (1 � nk0)
c (k) = c

n
A for k=1, ..., K-1

c (K) =
�
1 + c

n

�
A

and where

P =
KX

k=1

c (k)
�
1 + y

n

�tk

Examples

d=durp(1000,1/100,4,14,.33/2,.10);

The value returned is 3.26496.

ERF

Returns the value of the (normal) error function

Functions and CALL Routines 4 ERFC 343

Category: Mathematical

Syntax
ERF(argument)

Arguments

argument
is numeric.

Details
The ERF function returns the integral, given by

ERF (x) =
2
p
�

xZ

0

e
�z

2

dz

Examples

You can use the ERF to find the probability (p) that a normally distributed random
variable with mean 0 and standard deviation will take on a value less than X. For
example, the quantity that is given by the following statement is equivalent to
PROBNORM(X):

p=.5+.5*erf(x/sqrt(2));

SAS Statements Results

y=erf(1.0); 0.8427007929

y=erf(-1.0); -0.842700793

ERFC
Returns the value of the complementary (normal) error function

Category: Mathematical

Syntax
ERFC(argument)

Arguments

344 EXIST 4 Chapter 4

argument
is numeric.

Details
The ERFC function returns the complement to the ERF function (that is, 1 −
ERF(argument)).

Examples

SAS Statements Results

x=erfc(1.0); 0.1572992071

x=erfc(-1.0); .8427007929

EXIST

Verifies the existence of a SAS data library member

Category: SAS File I/O

Syntax
EXIST(member-name< ,member-type>)

Arguments

member-name
specifies the SAS data library member. If member-name is blank or a null string,
EXIST uses the member specified by the system variable _LAST_ .

member-type
specifies the type of SAS data library member:

ACCESS an access descriptor created using SAS/ACCESS software.

CATALOG a SAS catalog or catalog entry.

DATA a SAS data file (default).

VIEW a SAS data view.

Details
EXIST returns 1 if the library member exists, or 0 if member-name does not exist or
member-type is invalid. Use CEXIST to verify the existence of an entry in a catalog.

Examples

Functions and CALL Routines 4 EXP 345

� This example verifies the existence of a data set. If the data set does not exist, the
example displays a message in the log.

%let dsname=sasuser.houses;
%if %sysfunc(exist(&dsname)) %then

%let dsid=%sysfunc(open(&dsname,i));
%else %put Data set &dsname does not exist.;

� This example verifies the existence of the SAS data view TEST.MYVIEW. If the
view does not exist, the example displays a message in the log.

data _null_;
dsname="test.myview";

if (exist(dsname,"VIEW")) then
dsid=open(dsname,"i");

else put dsname ’does not exist.’;
run;

See Also

Functions:
“CEXIST” on page 287
“FEXIST” on page 354
“FILEEXIST” on page 357

EXP

Returns the value of the exponential function

Category: Mathematical

Syntax
EXP(argument)

Arguments

argument
is numeric.

Details
The EXP function raises the constant e, which is approximately given by 2.71828, to the
power that is supplied by the argument. The result is limited by the maximum value of
a floating-point decimal value on the computer.

Examples

346 FACT 4 Chapter 4

SAS Statements Results

x=exp(1.0); 2.7182818285

x=exp(0); 1

FACT

Computes a factorial and returns a value

Category: Mathematical

Syntax
FACT(n)

Arguments

n
is an integer that represents the number of elements for which the factorial is
computed.

Details
The mathematical representation of the FACT function is given by the following
equation:

FACT (n) = n!

with n ≥ 0.
If the expression cannot be computed, a missing value is returned.

Functions and CALL Routines 4 FAPPEND 347

Examples

SAS Statements Result

x=fact(5); 120

See Also

Functions:

“COMB” on page 293
“PERM” on page 480

FAPPEND

Appends the current record to the end of an external file and returns a value

Category: External Files

Syntax
FAPPEND(file-id<,cc>)

Arguments

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

cc
specifies a carriage control character:

blank indicates that the record starts a new line.

0 skips one blank line before this new line.

- skips two blank lines before this new line.

1 specifies that the line starts a new page.

+ specifies that the line overstrikes a previous line.

P specifies that the line is a terminal prompt.

= specifies that the line contains carriage control information.

all else specifies that the line record starts a new line.

Details
FAPPEND adds the record that is currently contained in the File Data Buffer (FDB) to
the end of an external file. FAPPEND returns a 0 if the operation was successful and
≠0 if it was not successful.

348 FCLOSE 4 Chapter 4

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, it moves data into the File Data Buffer, appends a
record, and then closes the file. Note that in a macro statement you do not enclose
character strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,a));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fput(&fid,

Data for the new record));
%let rc=%sysfunc(fappend(&fid));
%let rc=%sysfunc(fclose(&fid));

%end;
%else

%do;
/* unsuccessful open processing */

%end;

See Also

Functions:
“DOPEN” on page 334
“FCLOSE” on page 348
“FGET” on page 355
“FOPEN” on page 371
“FPUT” on page 378
“FWRITE” on page 385
“MOPEN” on page 452

FCLOSE

Closes an external file, directory, or directory member, and returns a value

Category: External Files

Syntax
FCLOSE(file-id)

Argument

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Functions and CALL Routines 4 FCOL 349

Details
FCLOSE returns a 0 if the operation was successful and ≠0 if it was not successful. If
you open a file within a DATA step, it is closed automatically when the DATA step ends.

Operating Environment Information: On some operating environments you must close
the file with the FCLOSE function at the end of the DATA step. For details, see the
SAS documentation for your operating environment. 4

Examples

This example assigns the fileref MYFILE to an external file, and attempts to open
the file. If the file is opened successfully, indicated by a positive value in the variable
FID, the program reads the first record, closes the file, and deassigns the fileref:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fread(&fid));
%let rc=%sysfunc(fclose(&fid));

%end;
%else

%do;
%put %sysfunc(sysmsg());

%end;
%let rc=%sysfunc(filename(filrf));

See Also

Functions:
“DCLOSE” on page 316
“DOPEN” on page 334
“FOPEN” on page 371
“FREAD” on page 379
“MOPEN” on page 452

FCOL
Returns the current column position in the File Data Buffer (FDB)

Category: External Files

Syntax
FCOL(file-id)

Argument

350 FDELETE 4 Chapter 4

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Details
Use FCOL combined with FPOS to manipulate data in the File Data Buffer (FDB).

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is successfully opened, indicated by a positive value in the variable FID,
it puts more data into the FDB relative to position POS, writes the record, and closes
the file:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,o));
%if (&fid > 0) %then

%do;
%let record=This is data for the record.;
%let rc=%sysfunc(fput(&fid,&record));
%let pos=%sysfunc(fcol(&fid));
%let rc=%sysfunc(fpos(&fid,%eval(&pos+1)));
%let rc=%sysfunc(fput(&fid,more data));
%let rc=%sysfunc(fwrite(&fid));
%let rc=%sysfunc(fclose(&fid));

%end;
%let rc=%sysfunc(filename(filrf));

The new record written to the external file is

This is data for the record. more data

See Also

Functions:

“FCLOSE” on page 348

“FOPEN” on page 371

“FPOS” on page 377

“FPUT” on page 378

“FWRITE” on page 385

“MOPEN” on page 452

FDELETE

Deletes an external file or an empty directory

Category: External Files

Functions and CALL Routines 4 FDELETE 351

Syntax
FDELETE(fileref | directory)

Argument

fileref
specifies the fileref that you assigned to the external file. You can assign filerefs by
using the FILENAME statement or the FILENAME external file access function.
Restriction: The fileref that you use with FDELETE can not be a concatenation.

Operating Environment Information: In some operating environments, you can
specify a fileref that was assigned with an environment variable. You can also assign
filerefs using system commands. For details, see the SAS documentation for your
operating environment. 4

directory
specifies an empty directory that you want to delete.
Restriction: You must have authorization to delete the directory.

Details
FDELETE returns 0 if the operation was successful or ≠0 if it was not successful.

Examples

Example 1: Deleting an External File This example generates a fileref for an external
file in the variable FNAME. Then it calls FDELETE to delete the file and calls the
FILENAME function again to deassign the fileref.

data _null_;
fname="tempfile";
rc=filename(fname,"physical-filename");
if rc = 0 and fexist(fname) then

rc=fdelete(fname);
rc=filename(fname);

run;

Example 2: Deleting a Directory This example uses FDELETE to delete an empty
directory to which you have write access. If the directory is not empty, the optional
SYSMSG function returns an error message stating that SAS is unable to delete the file.

filename testdir ’physical-filename’;
data _null_;

rc=fdelete(’testdir’);
put rc=;
msg=sysmsg();
put msg=;

run;

352 FETCH 4 Chapter 4

See Also

Functions:
“FEXIST” on page 354
“FILENAME” on page 358

Statement:
“FILENAME” on page 821

FETCH

Reads the next nondeleted observation from a SAS data set into the Data Set Data Vector (DDV)
and returns a value

Category: SAS File I/O

Syntax
FETCH(data-set-id <,’NOSET’>)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

’NOSET’
prevents the automatic passing of SAS data set variable values to macro or DATA
step variables even if the SET routine has been called.

Details
FETCH returns a 0 if the operation was successful, ≠0 if it was not successful, and − 1
if the end of the data set is reached. FETCH skips observations marked for deletion.

If the SET routine has been called previously, the values for any data set variables
are automatically passed from the DDV to the corresponding DATA step or macro
variables. To override this behavior temporarily so that fetched values are not
automatically copied to the DATA step or macro variables, use the NOSET option.

Examples

This example fetches the next observation from the SAS data set MYDATA. If the
end of the data set is reached or if an error occurs, SYSMSG retrieves the appropriate
message and writes it to the SAS log. Note that in a macro statement you do not
enclose character strings in quotation marks.

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetch(&dsid));
%if &rc ne 0 %then

%put %sysfunc(sysmsg());
%else

Functions and CALL Routines 4 FETCHOBS 353

%do;
...more macro statements...

%end;
%let rc=%sysfunc(close(&dsid));

See Also

CALL Routine:

“CALL SET” on page 269

Functions:

“FETCHOBS” on page 353

“GETVARC” on page 390

“GETVARN” on page 391

FETCHOBS

Reads a specified observation from a SAS data set into the Data Set Data Vector (DDV) and
returns a value

Category: SAS File I/O

Syntax
FETCHOBS(data-set-id,obs-number< ,options>)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

obs-number
specifies the number of the observation to read. FETCHOBS treats the observation
value as a relative observation number unless you specify the ABS option. The
relative observation numbert may or may not coincide with the physical observation
number on disk, because the function skips observations marked for deletion. When
a WHERE clause is active, the function counts only observations that meet the
WHERE condition.

Default: FETCHOBS skips deleted observations.

options
names one or more options, separated by blanks and enclosed in quotation marks:

’ABS’ specifies that the value of obs-number is absolute; that is, deleted
observations are counted.

’NOSET’ prevents the automatic passing of SAS data set variable values to
DATA step or macro variables even if the SET routine has been
called.

354 FEXIST 4 Chapter 4

Details
FETCHOBS returns 0 if the operation was successful, ≠0 if it was not successful, and
−1 if the end of the data set is reached. To retrieve the error message that is associated
with a nonzero return code, use the SYSMSG function. If the SET routine has been
called previously, the values for any data set variables are automatically passed from
the DDV to the corresponding DATA step or macro variables. To override this behavior
temporarily, use the NOSET option.

If obs-number is less than 1, the function returns an error condition. If obs-number is
greater than the number of observations in the SAS data set, the function returns an
end-of-file condition.

Examples

This example fetches the tenth observation from the SAS data set MYDATA. If an
error occurs, the SYSMSG function retrieves the error message and writes it to the SAS
log. Note that in a macro statement you do not enclose character strings in quotation
marks.

%let rc = %sysfunc(fetchobs(&mydataid,10));
%if &rc = −1 %then

%put End of data set has been reached.;
%if &rc > 0 %then %put %sysfunc(sysmsg());

See Also

CALL Routine:
“CALL SET” on page 269

Functions:
“FETCH” on page 352
“GETVARC” on page 390
“GETVARN” on page 391

FEXIST

Verifies the existence of an external file associated with a fileref and returns a value

Category: External Files

Syntax
FEXIST(fileref)

Argument

fileref
specifies the fileref assigned to an external file.
Restriction: The fileref must have been previously assigned.

Functions and CALL Routines 4 FGET 355

Operating Environment Information: In some operating environments, you can specify
a fileref that was assigned with an environment variable. For details, see the SAS
documentation for your operating environment. 4

Details
FEXIST returns 1 if the external file that is associated with fileref exists, and 0 if the
file does not exist. You can assign filerefs by using the FILENAME statement or the
FILENAME external file access function. In some operating environments, you can also
assign filerefs by using system commands.

Comparison
FILEEXIST verifies the existence of a file based on its physical name.

Examples

This example verifies the existence of an external file and writes the result to the
SAS log:

%if %sysfunc(fexist(&fref)) %then
%put The file identified by the fileref

&fref exists.;
%else

%put %sysfunc(sysmsg());

See Also

Functions:
“EXIST” on page 344
“FILEEXIST” on page 357
“FILENAME” on page 358
“FILEREF” on page 360

Statement:
“FILENAME” on page 821

FGET

Copies data from the File Data Buffer (FDB) into a variable and returns a value

Category: External Files

Syntax
FGET(file-id,variable<,length>)

Arguments

356 FGET 4 Chapter 4

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

variable
in a DATA step, specifies a character variable to hold the data. In a macro, specifies
a macro variable to hold the data. If variable is a macro variable and it does not
exist, it is created.

length
specifies the number of characters to retrieve from the FDB. If length is specified,
only the specified number of characters is retrieved (or the number of characters
remaining in the buffer i f that number is less than length). If length is omitted, all
characters in the FDB from the current column position to the next delimiter are
returned. The default delimiter is a blank. The delimiter is not retrieved. See
“FSEP” on page 383 for more information on delimiters.

Details
FGET returns 0 if the operation was successful, or −1 if the end of the FDB was
reached or no more tokens were available.

After FGET is executed, the column pointer moves to the next read position in the
FDB.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, it reads the first record into the File Data Buffer,
retrieves the first token of the record and stores i t in the variable MYSTRING, and
then closes the file. Note that in a macro statement you do not enclose character strings
in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fread(&fid));
%let rc=%sysfunc(fget(&fid,mystring));
%put &mystring;
%let rc=%sysfunc(fclose(&fid));

%end;
%let rc=%sysfunc(filename(filrf));

Functions and CALL Routines 4 FILEEXIST 357

See Also

Functions:

“FCLOSE” on page 348

“FILENAME” on page 358

“FOPEN” on page 371

“FPOS” on page 377

“FREAD” on page 379

“FSEP” on page 383

“MOPEN” on page 452

FILEEXIST

Verifies the existence of an external file by its physical name and returns a value

Category: External Files

Syntax
FILEEXIST(file-name)

Argument

file-name
specifies a fully qualified physical filename of the external file in the operating
environment. In a DATA step, file-name can be a character string in quotation marks
or it can be a DATA ste p variable. In a macro, file-name is a macro variable.

Details
FILEEXIST returns 1 if the external file exists and 0 if the external file does not exist.
The specification of the physical name for file-name varies according to the operating
environment.

Although your operating environment utilities may recognize partial physical
filenames, you must always use fully qualified physical filenames with FILEEXIST.

Examples

This example verifies the existence of an external file. If the file exists, FILEEXIST
opens the file. If the file does not exist, FILEEXIST displays a message in the SAS log.
Note that in a macro statement you do not enclose chara cter strings in quotation marks.

%if %sysfunc(fileexist(&myfilerf)) %then
%let fid=%sysfunc(fopen(&myfilerf));

%else
%put The external file &myfilerf does not exist.;

358 FILENAME 4 Chapter 4

See Also

Functions:
“EXIST” on page 344
“FEXIST” on page 354
“FILENAME” on page 358
“FILEREF” on page 360
“FOPEN” on page 371

FILENAME

Assigns or deassigns a fileref for an external file, directory, or output device and returns a value

Category: External Files

Syntax
FILENAME(fileref,file-name<,device-type<,host-options<,dir-ref>>>)

Arguments

fileref
in a DATA step, specifies the fileref to assign to the external file. In a macro (for
example, in the %SYSFUNC function), fileref is the name of a macro variable
(without an ampersand) whose value contains the fileref to assign to the external file.
Tip: A blank fileref (’’)causes an error. If the fileref is a DATA step character

variable with a blank value and a minimum length of 8 characters, a fileref is
generated for you.

Tip: If a macro variable named in fileref has a null value, a fileref is generated for
you.

file-name
specifies the external file. Specifying a blank file-name deassigns one that was
assigned previously.

device-type
specifies the type of device or the access method that is used if the fileref points to an
input or output device or location that is not a physical file:

DISK specifies that the device is a disk drive.
Tip: When you assign a fileref to a file on disk, you are not

required to specify DISK.
Alias: BASE

DUMMY specifies that the output to the file is discarded.
Tip: Specifying DUMMY can be useful for testing.

GTERM indicates that the output device-type is a graphics device that will
be receiving graphics data.

Functions and CALL Routines 4 FILENAME 359

PIPE specifies an unnamed pipe.

Note: Some operating environments do not support pipes. 4

PLOTTER specifies an unbuffered graphics output device.

PRINTER specifies a printer or printer spool file.

TAPE specifies a tape drive.

TEMP creates a temporary file that exists only as long as the filename is
assigned. The temporary file can be accessed only through the
logical name and is available only while the logical name exists.
Restriction: Do not specify a physical pathname. If you do, SAS

returns an error.
Tip: Files manipulated by the TEMP device can have the same

attributes and behave identically to DISK files.

TERMINAL specifies the user’s terminal.

The FILENAME function also supports operating environment specific devices. For
details, see the SAS documentation for your operating environment.

host-options
specifies host-specific details such as file attributes and processing attributes. For
details, see the SAS documentation for your operating environment.

dir-ref
specifies the fileref that was assigned to the directory or partitioned data set in which
the external file resides.

Details
FILENAME returns 0 if the operation was successful, ≠0 if it was not successful. The
name associated with the file or device is called a fileref (file reference name). Other
system functions that manipulate external files and directories require that the files be
identified by fileref rather than by physical filename.

Operating Environment Information: The term directory in this description refers to
an aggregate grouping of files managed by the operating environment. Different
operating environments identify such groupings with different names, such as directory,
subdirectory, MACLIB, or partitioned data set. For details, see the SAS documentation
for your operating environment.

Under some operating environments, you can also assign filerefs by using system
commands. Depending on the operating environment, FILENAME may be unable to
change or deassign filerefs assigned outside the SAS System. 4

The association between a fileref and a physical file lasts only for the duration of the
current SAS session or until you change or discontinue the association by using
FILENAME. You can deassign filerefs by specifying a null string for the file-name
argument in FILENAME.

Examples

Example 1: Assigning a Fileref to an External File This example assigns the fileref
MYFILE to an external file, then deassigns the fileref. Note that in a macro statement
you do not enclose character strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf, physical-filename));

360 FILEREF 4 Chapter 4

%if &rc ne 0 %then
%put %sysfunc(sysmsg());

%let rc=%sysfunc(filename(filrf));

Example 2: Assigning a System-Generated Fileref This example assigns a
system-generated fileref to an external file. The fileref is stored in the variable FNAME.
Note that in a macro statement you do not enclose character strings in quotation marks.

%let rc=%sysfunc(filename(fname, physical-filename));
%if &rc %then

%put %sysfunc(sysmsg());
%else

%do;
more macro statements

%end;

Example 3: Assigning a Fileref to a Pipe File This example assigns the fileref
MYPIPE for a pipe file with the output from the UNIX command LS, which lists the
files in the directory /u/myid. Note that in a macro statement you do not enclose
character strings in quotation marks.

%let filrf=mypipe;
%let rc=%sysfunc(filename(filrf, %str(ls /u/myid), pipe));

See Also

Functions:

“FEXIST” on page 354

“FILEEXIST” on page 357

“FILEREF” on page 360

“SYSMSG” on page 558

FILEREF

Verifies that a fileref has been assigned for the current SAS session and returns a value

Category: External Files

Syntax
FILEREF(fileref)

Argument

fileref
specifies the fileref to be validated.

Range: 1 to 8 characters

Functions and CALL Routines 4 FINFO 361

Details
A negative return code indicates that the fileref exists but the physical file associated
with the fileref does not exist. A positive value indicates that the fileref is not assigned.
A value of zero indicates that the fileref and external file both exist.

A fileref can be assigned to an external file by using the FILENAME statement or
the FILENAME function.

Operating Environment Information: Under some operating environments, filerefs can
also be assigned by using system commands. For details, see the SAS documentation
for your operating environment. 4

Examples

Example 1: Verifying that a Fileref is Assigned This example tests whether the fileref
MYFILE is currently assigned to an external file. A system error message is issued if
the fileref is not currently assigned:

%if %sysfunc(fileref(myfile))>0 %then
%put MYFILE is not assigned;

Example 2: Verifying that Both a Fileref and a File Exist This example tests for a zero
value to determine if both the fileref and the file exist:

%if %sysfunc(fileref(myfile)) ne 0 %then
%put %sysfunc(sysmsg());

See Also

Functions:

“FEXIST” on page 354

“FILEEXIST” on page 357
“FILENAME” on page 358

“SYSMSG” on page 558

Statement:
“FILENAME” on page 821

FINFO

Returns the value of a file information item

Category: External Files

Syntax
FINFO(file-id,info-item)

Arguments

362 FINV 4 Chapter 4

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

info-item
specifies the name of the file information item to be retrieved. This is a character
value.

Details
FINFO returns the value of a system-dependent information item for an external file.
FINFO returns a blank if the value given for info-item is invalid.

Operating Environment Information: The information available on files depends on the
operating environment. 4

Comparisons
� FOPTNAME determines the names of the available file information items.
� FOPTNUM determines the number of system-dependent information items

available.

Examples

This example stores information items about an external file in a SAS data set:

data info;
length infoname infoval $60;
drop rc fid infonum i close;
rc=filename(’abc’,’physical-filename’);
fid=fopen(’abc’);
infonum=foptnum(fid);
do i=1 to infonum;

infoname=foptname(fid,i);
infoval=finfo(fid,infoname);
output;

end;
close=fclose(fid);

run;

See Also

Functions:
“FCLOSE” on page 348
“FOPTNUM” on page 374
“MOPEN” on page 452

FINV

Returns a quantile from the F distribution

Functions and CALL Routines 4 FINV 363

Category: Quantile

Syntax
FINV (p, ndf, ddf <,nc>)

Arguments

p
is a numeric probability.
Range: 0 ≤ p < 1

ndf
is a numeric numerator degrees of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.
Range: ddf > 0

nc
is an optional numeric noncentrality parameter.
Range: nc ≥ 0

Details
The FINV function returns the pth quantile from the F distribution with numerator
degrees of freedom ndf, denominator degrees of freedom ddf, and noncentrality
parameter nc. The probability that an observation from the F distribution is less than
the quantile is p. This function accepts noninteger degrees of freedom parameters ndf
and ddf.

If the optional parameter nc is not specified or has the value 0, the quantile from the
central F distribution is returned. The noncentrality parameter nc is defined such that
if X and Y are normal random variables with means � and 0, respectively, and variance
1, then X2=Y 2 has a noncentral F distribution with nc = �

2.

CAUTION:
For large values of nc,the algorithm could fail; in that case, a missing value is

returned. 4

Note: FINV is the inverse of the PROBF function. 4

Examples

These statements compute the 95th quantile value of a central F distribution with 2
and 10 degrees of freedom and a noncentral F distribution with 2 and 10 degrees of
freedom and a noncentrality parameter equal to 3.2:

364 FIPNAME 4 Chapter 4

SAS Statements Results

q1=finv(.95,2,10); 4.1028210151

q2=finv(.95,2,10.3,2); 7.583766024

FIPNAME

Converts FIPS codes to uppercase state names

Category: State and ZIP Code

Syntax
FIPNAME(expression)

Arguments

expression
specifies a numeric expression that represents a U.S. FIPS code.

Details
The FIPNAME function converts a U.S. Federal Information Processing Standards
(FIPS) code to the corresponding state or U.S. territory name in uppercase, returning a
value of up to 20 characters.

Comparisons
The FIPNAME, FIPNAMEL, and FIPSTATE functions take the same argument but
return different values. FIPNAME returns uppercase state names. FIPNAMEL returns
mixed case state names. FIPSTATE returns a two-character state postal code (or
world-wide GSA geographic code for U.S. territories) in uppercase.

Examples

The examples show the differences when using FIPNAME, FIPNAMEL, and
FIPSTATE.

Functions and CALL Routines 4 FIPNAMEL 365

SAS Statements Results

x=fipname(37);
put x; NORTH CAROLINA

x=fipnamel(37);
put x; North Carolina

x=fipstate(37);
put x; NC

See Also

Functions:

“FIPNAMEL” on page 365

“FIPSTATE” on page 366

“STFIPS” on page 551

“STNAME” on page 552

“STNAMEL” on page 553

FIPNAMEL

Converts FIPS codes to mixed case state names

Category: State and ZIP Code

Syntax
FIPNAMEL(expression)

Arguments

expression
specifies a numeric expression that represents a U.S. FIPS code.

Details
The FIPNAMEL function converts a U.S. Federal Information Processing Standards
(FIPS) code to the corresponding state or U.S. territory name in mixed case, returning a
value of up to 20 characters.

Comparisons
The FIPNAME, FIPNAMEL, and FIPSTATE functions take the same argument but
return different values. FIPNAME returns uppercase state names. FIPNAMEL returns
mixed case state names. FIPSTATE returns a two-character state postal code (or
world-wide GSA geographic code for U.S. territories) in uppercase.

366 FIPSTATE 4 Chapter 4

Examples

The examples show the differences when using FIPNAME, FIPNAMEL, and
FIPSTATE.

SAS Statements Results

x=fipname(37);
put x; NORTH CAROLINA

x=fipnamel(37);
put x; North Carolina

x=fipstate(37);
put x; NC

See Also

Functions:
“FIPNAME” on page 364
“FIPSTATE” on page 366
“STFIPS” on page 551
“STNAME” on page 552
“STNAMEL” on page 553

FIPSTATE

Converts FIPS codes to two-character postal codes

Category: State and ZIP Code

Syntax
FIPSTATE(expression)

Arguments

expression
specifies a numeric expression that represents a U.S. FIPS code.

Details
The FIPSTATE function converts a U.S. Federal Information Processing Standards
(FIPS) code to a two-character state postal code (or world-wide GSA geographic code for
U.S. territories) in uppercase.

Comparisons
The FIPNAME, FIPNAMEL, and FIPSTATE functions take the same argument but
return different values. FIPNAME returns uppercase state names. FIPNAMEL returns

Functions and CALL Routines 4 FLOOR 367

mixed case state names. FIPSTATE returns a two-character state postal code (or
world-wide GSA geographic code for U.S. territories) in uppercase.

Examples

The examples show the differences when using FIPNAME, FIPNAMEL, and
FIPSTATE.

SAS Statements Results

x=fipname(37);
put x; NORTH CAROLINA

x=fipnamel(37);
put x; North Carolina

x=fipstate(37);
put x; NC

See Also

Functions:

“FIPNAME” on page 364

“FIPNAMEL” on page 365

“STFIPS” on page 551

“STNAME” on page 552

“STNAMEL” on page 553

FLOOR

Returns the largest integer that is less than or equal to the argument

Category: Truncation

Syntax
FLOOR(argument)

Arguments

argument
is numeric.

Details
If the argument is within 10**(–12) of an integer, the function returns that integer.

368 FNONCT 4 Chapter 4

Examples

SAS Statements Results

var1=2.1;
a=floor(var1);
put a; 2

var2=-2.4;
b=floor(var2);
put b; -3

c=floor(3);
put c; 3

d=floor(-1.6);
put d; -2

e=floor(1.-1.e-13);
put e; 1

FNONCT
Returns the value of the noncentrality parameter of an F distribution

Category: Mathematical

Syntax
FNONCT(x,ndf,ddf,prob)

Arguments

x
is a numeric random variable.
Range: x ≥ 0

ndf
is a numeric numerator degrees-of-freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees-of-freedom parameter.
Range: ddf > 0

prob
is a probability.
Range: 0 < prob < 1

Details
The FNONCT function returns the nonnegative noncentrality parameter from a
noncentral F distribution whose parameters are x, ndf, ddf, and nc. If prob is greater

Functions and CALL Routines 4 FNOTE 369

than the probability from the central F distribution whose parameters are x, ndf, and
ddf, a root to this problem does not exist. In this case a missing value is returned. A
Newton-type algorithm is used to find a nonnegative root nc of the equation

Pf (xjndf; ddf; nc)� prob = 0

where

Pf (xjndf; ddf; nc) = e
�nc

2

1X

j=0

�
nc
2

�j
j!

I (ndf)x

ddf+(ndf)x

�
ddf

2
+ j;

ddf

2

�

where I (. . .) is the probability from the beta distribution that is given by

Ix (a; b) = �(a)�(b)
�(a+b)

xZ
0

ta�1 (1 � t)b�1 dt

If the algorithm fails to converge to a fixed point, a missing value is returned.

Examples
data work;

x=2;
df=4;
ddf=5;
do nc=1 to 3 by .5;

prob=probf(x,df,ddf,nc);
ncc=fnonct(x,df,ddf,prob);
output;

end;
run;
proc print;
run;

OBS x df ddf nc prob ncc
1 2 4 5 1.0 0.69277 1.0
2 2 4 5 1.5 0.65701 1.5
3 2 4 5 2.0 0.62232 2.0
4 2 4 5 2.5 0.58878 2.5
5 2 4 5 3.0 0.55642 3.0

FNOTE

Identifies the last record that was read and returns a value that FPOINT can use

370 FNOTE 4 Chapter 4

Category: External Files

Syntax
FNOTE(file-id)

Argument

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Details
You can use FNOTE like a bookmark, marking the position in the file so that your
application can later return to that position using FPOINT. The value returned by
FNOTE is required by the FPOINT function to reposition the file pointe r on a specific
record.

To free the memory associated with each FNOTE identifier, use DROPNOTE.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, indicated by a positive value in the variable FID,
then it reads the records, stores in the variable NOTE 3 the position of the third record
read, and then later uses FPOINT to point back to NOTE3 to update the file. After
updating the record, it closes the file:

%let
fref=MYFILE;
%let rc=%sysfunc(filename(fref,

physical-filename));
%let fid=%sysfunc(fopen(&fref,u));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fread(&fid));

/* Read second record. */
%let rc=%sysfunc(fread(&fid));

/* Read third record. */
%let rc=%sysfunc(fread(&fid));

/* Note position of third record. */
%let note3=%sysfunc(fnote(&fid));

/* Read fourth record. */
%let rc=%sysfunc(fread(&fid));

/* Read fifth record. */
%let rc=%sysfunc(fread(&fid));

/* Point to third record. */
%let rc=%sysfunc(fpoint(&fid,¬e3));

/* Read third record. */
%let rc=%sysfunc(fread(&fid));

/* Copy new text to FDB. */
%let rc=%sysfunc(fput(&fid,New text));

Functions and CALL Routines 4 FOPEN 371

/* Update third record */
/* with data in FDB. */

%let rc=%sysfunc(fwrite(&fid));
/* Close file. */

%let rc=%sysfunc(fclose(&fid));
%end;

%let rc=%sysfunc(filename(fref));

See Also

Functions:
“DROPNOTE” on page 338
“FCLOSE” on page 348
“FILENAME” on page 358
“FOPEN” on page 371
“FPOINT” on page 375
“FPUT” on page 378
“FREAD” on page 379
“FREWIND” on page 380
“FWRITE” on page 385
“MOPEN” on page 452

FOPEN

Opens an external file and returns a file identifier value

Category: External Files

Syntax
FOPEN(fileref<,open-mode<,record-length<,record-format>>>)

Arguments

fileref
specifies the fileref assigned to the external file.

open-mode
specifies the type of access to the file:

A APPEND mode allows writing new records after the current end
of the file.

I INPUT mode allows reading only (default).

O OUTPUT mode defaults to the OPEN mode specified in the host
option in the FILENAME statement or function. If no host option
is specified, it allows writing new records at the beginning of the
file.

372 FOPEN 4 Chapter 4

S Sequential input mode is used for pipes and other sequential
devices such as hardware ports.

U UPDATE mode allows both reading and writing.
Default: I

record-length
specifies the logical record length of the file. To use the existing record length for the
file, specify a length of 0, or do not provide a value here.

record-format
specifies the record format of the file. To use the existing record format, do not
specify a value here. Valid values are:

B data are to be interpreted as binary data.

D use default record format.

E use editable record format.

F file contains fixed length records.

P file contains printer carriage control in host-dependent record
format. Note: For OS/390 data sets with FBA or VBA record
format, specify ‘P’ for the record-format argument.

V file contains variable length records.

Details
CAUTION:

Use OUTPUT mode with care. Opening an existing file for output overwrites the
current contents of the file without warning. 4

The FOPEN function opens an external file for reading or updating and returns a file
identifier value that is used to identify the open file to other functions. You must
associate a fileref with the external file before calling the F OPEN function. FOPEN
returns a 0 if the file could not be opened. You can assign filerefs by using the
FILENAME statement or the FILENAME external file access function. Under some
operating environments, you can also assign filerefs by using system comman ds.

Operating Environment Information: On some operating environments you must close
the file at the end o f the DATA step using the FCLOSE function. For details, see the
SAS documentation for your operating environment. 4

Examples

Example 1: Opening a File Using Defaults This example assigns the fileref MYFILE to
an external file and attempts to open the file for input using all defaults. Note that in a
macro statement you do not enclose character strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));

Example 2: Opening a File without Using Defaults This example attempts to open a
file for input without using defaults. Note that in a macro statement you do not enclose
character strings in quotation marks.

%let fid=%sysfunc(fopen(file2,o,132,e));

Functions and CALL Routines 4 FOPTNAME 373

See Also

Functions:
“DOPEN” on page 334
“FCLOSE” on page 348
“FILENAME” on page 358
“FILEREF” on page 360
“MOPEN” on page 452

Statement:
“FILENAME” on page 821

FOPTNAME

Returns the name of an item of information about a file

Category: External Files

Syntax
FOPTNAME(file-id,nval)

Arguments

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

nval
specifies the number of the information item.

Details
FOPTNAME returns a blank if an error occurred.

Operating Environment Information: The number, value, and type of information
items that are available depend on the operating environment. 4

Examples

Example 1: Retrieving File Information Items and Writing Them to the Log This
example retrieves the system-dependent file information items that are available and
writes them to the log:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%let infonum=%sysfunc(foptnum(&fid));
%do j=1 %to &infonum;

374 FOPTNUM 4 Chapter 4

%let name=%sysfunc(foptname(&fid,&j));
%let value=%sysfunc(finfo(&fid,&name));
%put File attribute &name equals &value;

%end;
%let rc=%sysfunc(fclose(&fid));
%let rc=%sysfunc(filename(filrf));

Example 2: Creating a Data Set with Names and Values of File Attributes This example
creates a data set that contains the name and value of the available file attributes:

data fileatt;
length name $ 20 value $ 40;
drop rc fid j infonum;
rc=filename("myfile","physical-filename");
fid=fopen("myfile");
infonum=foptnum(fid);
do j=1 to infonum;

name=foptname(fid,j);
value=finfo(fid,name);
put ’File attribute ’ name

’has a value of ’ value;
output;

end;
rc=filename("myfile");

run;

See Also

Functions:

“DINFO” on page 331

“DOPTNAME” on page 335

“DOPTNUM” on page 336

“FCLOSE” on page 348

“FILENAME” on page 358

“FINFO” on page 361

“FOPEN” on page 371

“FOPTNUM” on page 374

“MOPEN” on page 452

FOPTNUM

Returns the number of information items that are available for an external file

Category: External Files

Syntax
FOPTNUM(file-id)

Functions and CALL Routines 4 FPOINT 375

Argument

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Details
Operating Environment Information: The number, value, and type of information
items that are available depend on the operating environment. 4

Comparisons
� Use FOPTNAME to determine the names of the items that are available for a

particular operating environment.

� Use FINFO to retrieve the value of a particular information item.

Examples

This example opens the external file with the fileref MYFILE and determines the
number of system-dependent file information items available:

%let fid=%sysfunc(fopen(myfile));
%let infonum=%sysfunc(foptnum(&fid));

See Also

Functions:

“DINFO” on page 331

“DOPTNAME” on page 335

“DOPTNUM” on page 336

“FINFO” on page 361

“FOPEN” on page 371

“FOPTNAME” on page 373

“MOPEN” on page 452

See the “Examples” on page 373 in the FOPTNAME Function.

FPOINT

Positions the read pointer on the next record to be read and returns a value

Category: External Files

Syntax
FPOINT(file-id,note-id)

376 FPOINT 4 Chapter 4

Arguments

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

note-id
specifies the identifier that was assigned by the FNOTE function.

Details
FPOINT returns 0 if the operation was successful, or ≠0 if it was not successful.
FPOINT determines only the record to read next. It has no impact on which record is
written next. When you open the file for update, FWRITE writes to the most recently
read record.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, it reads the records and uses NOTE3 to store the
position of the third record read. Later, it points back to NOTE3 to update the file, and
closes the file afterward:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,u));
%if &fid > 0 %then

%do;
/* Read first record. */

%let rc=%sysfunc(fread(&fid));
/* Read second record. */

%let rc=%sysfunc(fread(&fid));
/* Read third record. */

%let rc=%sysfunc(fread(&fid));
/* Note position of third record. */

%let note3=%sysfunc(fnote(&fid));
/* Read fourth record. */

%let rc=%sysfunc(fread(&fid));
/* Read fifth record. */

%let rc=%sysfunc(fread(&fid));
/* Point to third record. */

%let rc=%sysfunc(fpoint(&fid,¬e3));
/* Read third record. */

%let rc=%sysfunc(fread(&fid));
/* Copy new text to FDB. */

%let rc=%sysfunc(fput(&fid,New text));
/* Update third record */
/* with data in FDB. */

%let rc=%sysfunc(fwrite(&fid));
/* Close file. */

%let rc=%sysfunc(fclose(&fid));
%end;

%let rc=%sysfunc(filename(filrf));

Functions and CALL Routines 4 FPOS 377

See Also

Functions:

“DROPNOTE” on page 338

“FCLOSE” on page 348

“FILENAME” on page 358
“FNOTE” on page 369

“FOPEN” on page 371

“FPUT” on page 378

“FREAD” on page 379
“FREWIND” on page 380

“FWRITE” on page 385

“MOPEN” on page 452

FPOS

Sets the position of the column pointer in the File Data Buffer (FDB) and returns a value

Category: External Files

Syntax
FPOS(file-id,nval)

Arguments

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

nval
specifies the column at which to set the pointer.

Details
FPOS returns 0 if the operation was successful, ≠0 if it was not successful. If the
specified position is past the end of the current record, the size of the record is
increased appropriately. However, in a fixed block or VBA file, if you specify a column
position beyond the end of the record, the record size does not change and the text
string is not written to the file.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, indicated by a positive value in the variable FID,
it places data into the file’s buffer at column 12, writes the record, and closes the file:

378 FPUT 4 Chapter 4

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,o));
%if (&fid > 0) %then

%do;
%let dataline=This is some data.;

/* Position at column 12 in the FDB. */
%let rc=%sysfunc(fpos(&fid,12));

/* Put the data in the FDB. */
%let rc=%sysfunc(fput(&fid,&dataline));

/* Write the record. */
%let rc=%sysfunc(fwrite(&fid));

/* Close the file. */
%let rc=%sysfunc(fclose(&fid));

%end;
%let rc=%sysfunc(filename(filrf));

See Also

Functions:
“FCLOSE” on page 348
“FCOL” on page 349
“FILENAME” on page 358
“FOPEN” on page 371
“FPUT” on page 378
“FWRITE” on page 385
“MOPEN” on page 452

FPUT

Moves data to the File Data Buffer (FDB) of an external file, starting at the FDB’s current column
position, and returns a value

Category: External Files

Syntax
FPUT(file-id,cval)

Arguments

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

cval
specifies the file data. In a DATA step, cval can be a character string in quotation
marks or a DATA step variable. In a macro, cval is a macro variable.

Functions and CALL Routines 4 FREAD 379

Details
FPUT returns 0 if the operation was successful, ≠0 if it was not successful. The number
of bytes moved to the FDB is determined by the length of the variable. The value of the
column pointer is then increased to one position pas t the end of the new text.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file in APPEND mode. If the file is opened successfully, indicated by a positive value in
the variable FID, it moves data to the FDB using FPUT, ap pends a record using
FWRITE, and then closes the file. Note that in a macro statement you do not enclose
character strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,a));
%if &fid > 0 %then

%do;
%let mystring=This is some data.;
%let rc=%sysfunc(fput(&fid,&mystring));
%let rc=%sysfunc(fwrite(&fid));
%let rc=%sysfunc(fclose(&fid));

%end;
%else

%put %sysfunc(sysmsg());
%let rc=%sysfunc(filename(filrf));

See Also

Functions:
“FCLOSE” on page 348
“FILENAME” on page 358
“FNOTE” on page 369
“FOPEN” on page 371
“FPOINT” on page 375
“FPOS” on page 377
“FWRITE” on page 385
“MOPEN” on page 452
“SYSMSG” on page 558

FREAD
Reads a record from an external file into the File Data Buffer (FDB) and returns a value

Category: External Files

Syntax
FREAD(file-id)

380 FREWIND 4 Chapter 4

Argument

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Details
FREAD returns 0 if the operation was successful, ≠0 if it was not successful. The
position of the file pointer is updated automatically after the read operation so that
successive FREAD functions read successive file records.

To position the file pointer explicitly, use FNOTE, FPOINT, and FREWIND.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file opens successfully, it lists all of the file’s records in the log:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%if &fid > 0 %then

%do %while(%sysfunc(fread(&fid)) = 0);
%let rc=%sysfunc(fget(&fid,c,200));

%put &c;
%end;

%let rc=%sysfunc(fclose(&fid));
%let rc=%sysfunc(filename(filrf));

See Also

Functions:

“FCLOSE” on page 348

“FGET” on page 355

“FILENAME” on page 358

“FNOTE” on page 369

“FOPEN” on page 371

“FREWIND” on page 380

“FREWIND” on page 380

“MOPEN” on page 452

FREWIND

Positions the file pointer to the start of the file and returns a value

Category: External Files

Functions and CALL Routines 4 FREWIND 381

Syntax
FREWIND(file-id)

Argument

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Details
FREWIND returns 0 if the operation was successful, ≠0 if it was not successful.
FREWIND has no effect on a file opened with sequential access.

Examples

This example assigns the fileref MYFILE to an external file. Then it opens the file
and reads the records until the end of the file is reached. The FREWIND function then
repositions the pointer to the beginning of the file. The first record is read again and
stored in the File Data Buffer (FDB). The first token is retrieved and stored in the
macro variable VAL:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%let rc=0;
%do %while (&rc ne −1);

/* Read a record. */
%let rc=%sysfunc(fread(&fid));

%end;
/* Reposition pointer to beginning of file. */

%if &rc = −1 %then
%do;

%let rc=%sysfunc(frewind(&fid));
/* Read first record. */

%let rc=%sysfunc(fread(&fid));
/* Read first token */
/* into macro variable VAL. */

%let rc=%sysfunc(fget(&fid,val));
%put val=&val;

%end;
%else

%put Error on fread=%sysfunc(sysmsg());
%let rc=%sysfunc(fclose(&fid));
%let rc=%sysfunc(filename(filrf));

382 FRLEN 4 Chapter 4

See Also

Functions:
“FCLOSE” on page 348
“FGET” on page 355
“FILENAME” on page 358
“FOPEN” on page 371
“FREAD” on page 379
“MOPEN” on page 452
“SYSMSG” on page 558

FRLEN

Returns the size of the last record read, or, if the file is opened for output, returns the current
record size

Category: External Files

Syntax
FRLEN(file-id)

Argument

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Examples

This example opens the file that is identified by the fileref MYFILE. It determines
the minimum and maximum length of records in the external file and writes the results
to the log:

%let fid=%sysfunc(fopen(myfile));
%let min=0;
%let max=0;
%if (%sysfunc(fread(&fid)) = 0) %then

%do;
%let min=%sysfunc(frlen(&fid));
%let max=&min;
%do %while(%sysfunc(fread(&fid)) = 0);

%let reclen=%sysfunc(frlen(&fid));
%if (&reclen > &max) %then

%let max=&reclen;
%if (&reclen < &min) %then

%let min=&reclen;
%end;

Functions and CALL Routines 4 FSEP 383

%end;
%let rc=%sysfunc(fclose(&fid));
%put max=&max min=&min;

See Also

Functions:
“FCLOSE” on page 348
“FOPEN” on page 371
“FREAD” on page 379
“MOPEN” on page 452

FSEP

Sets the token delimiters for the FGET function and returns a value

Category: External Files

Syntax
FSEP(file-id,character(s))

Arguments

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

character
specifies one or more delimiters that separate items in the File Data Buffer (FDB).
Each character listed is a delimiter. That is, if character is #@, either # or @ can
separate items. Multiple consecutive delimiters, such as @#@, are treated as a single
delimiter.
Default: blank

Details
FSEP returns 0 if the operation was successful, ≠0 if it was not successful.

Examples

An external file has data in this form:

John J. Doe,Male,25,Weight Lifter
Pat O’Neal,Female,22,Gymnast

Note that each field is separated by a comma.

This example reads the file that is identified by the fileref MYFILE, using the comma
as a separator, and writes the values for NAME, GENDER, AGE, and WORK to the

384 FUZZ 4 Chapter 4

SAS log. Note that in a macro statement you do not enclose character strings in
quotation marks.

%let fid=%sysfunc(fopen(myfile));
%let rc=%sysfunc(fsep(&fid,%str(,)));
%do %while(%sysfunc(fread(&fid)) = 0);

%let rc=%sysfunc(fget(&fid,name));
%let rc=%sysfunc(fget(&fid,gender));
%let rc=%sysfunc(fget(&fid,age));
%let rc=%sysfunc(fget(&fid,work));
%put name=%bquote(&name) gender=&gender

age=&age work=&work;
%end;
%let rc=%sysfunc(fclose(&fid));

See Also

Functions:
“FCLOSE” on page 348
“FGET” on page 355
“FOPEN” on page 371
“FREAD” on page 379
“MOPEN” on page 452

FUZZ

Returns the nearest integer if the argument is within 1E−12

Category: Truncation

Syntax
FUZZ(argument)

Arguments

argument
is numeric.

Details
The FUZZ function returns the nearest integer value if the argument is within 1E−12 of
the integer (that is, if the absolute difference between the integer and argument is less
than 1E−12). Otherwise, the argument is returned.

Examples

Functions and CALL Routines 4 FWRITE 385

SAS Statements Results

var1=5.9999999999999;
x=fuzz(var1);
put x 16.14 6.000000000000000

x=fuzz(5.99999999);
put x 16.14; 5.999999990000000

FWRITE

Writes a record to an external file and returns a value

Category: External Files

Syntax
FWRITE(file-id< ,cc>)

Arguments

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

cc
specifies a carriage-control character:

blank starts the record on a new line.

0 skips one blank line before a new line.

- skips two blank lines before a new line.

1 starts the line on a new page.

+ overstrikes the line on a previous line.

P interprets the line as a terminal prompt.

= interprets the line as carriage control information.

all else starts the line record on a new line.

Details
FWRITE returns 0 if the operation was successful, ≠0 if it was not successful. FWRITE
moves text from the File Data Buffer (FDB) to the external file. In order to use the
carriage control characters, you must open the file with a record format of P (print
format) in FOPEN.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, it writes the numbers 1 to 50 to the external file,

386 GAMINV 4 Chapter 4

skipping two blank lines. Note that in a macro statement you do not enclose character
strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,o,0,P));

%do i=1 %to 50;
%let rc=%sysfunc(fput(&fid,

%sysfunc(putn(&i,2.))));

%if (%sysfunc(fwrite(&fid,-)) ne 0) %then
%put %sysfunc(sysmsg());

%end;

%let rc=%sysfunc(fclose(&fid));

See Also

Functions:
“FAPPEND” on page 347
“FCLOSE” on page 348
“FGET” on page 355
“FILENAME” on page 358
“FOPEN” on page 371
“FPUT” on page 378
“SYSMSG” on page 558

GAMINV

Returns a quantile from the gamma distribution

Category: Quantile

Syntax
GAMINV(p,a)

Arguments

p
is a numeric probability.
Range: 0 ≤ p < 1

a
is a numeric shape parameter.
Range: a > 0

Functions and CALL Routines 4 GAMMA 387

Details
The GAMINV function returns the pth quantile from the gamma distribution, with
shape parameter a. The probability that an observation from a gamma distribution is
less than or equal to the returned quantile is p.

Note: GAMINV is the inverse of the PROBGAM function. 4

Examples

SAS Statements Results

q1=gaminv(0.5,9); 8.6689511844

q2=gaminv(0.1,2.1); 0.5841932369

GAMMA

Returns the value of the Gamma function

Category: Mathematical

Syntax
GAMMA(argument)

Arguments

argument
is numeric.
Restriction: Nonpositive integers are invalid.

Details
The GAMMA function returns the integral, which is given by

GAMMA(x) =

1Z

0

t
x�1

e
�1

dt:

For positive integers, GAMMA(x) is (x − 1)!. This function is commonly denoted by
� (x).

388 GETOPTION 4 Chapter 4

Example

SAS Statements Results

x=gamma(6); 120

GETOPTION

Returns the value of a SAS system or graphics option

Category: Special

Syntax
GETOPTION(option-name<,reporting-options<,…>>)

Arguments

option-name
is the name of the system option.
Note: Do not put an equal sign after the name. For example, write PAGESIZE= as

PAGESIZE.

reporting-options
specifies the reporting options. You can separate the options with blanks, or you can
specify each reporting option as a separate argument to the GETOPTION function.
The reporting options are

IN reports graphic units of measure in inches.

CM reports graphic units of measure in centimeters.

KEYWORD returns option values in a KEYWORD= format that would be
suitable for direct use in the SAS OPTIONS or GOPTIONS global
statements.

Examples

� This example saves the initial value of the YEARCUTOFF option and then resets
the value to 1920. The DATA step that follows verifies the option setting and
performs date processing. When the DATA step ends, the YEARCUTOFF option is
set to its original value.

%let cutoff=%sysfunc(getoption
(yearcutoff,keyword));

options yearcutoff=1920;
data ages;

if getoption(’yearcutoff’) = ’1920’ then
do;

...more statements...

Functions and CALL Routines 4 GETOPTION 389

end;
else put ’Set Option YEARCUTOFF to 1920’;

run;

options &cutoff;

� This example defines a macro to illustrate the use of the GETOPTION function to
obtain the value of system and graphics options by using different reporting
options.

%macro showopts;
%put PAGESIZE= %sysfunc(

getoption(PAGESIZE));
%put PS= %sysfunc(

getoption(PS));
%put LS= %sysfunc(

getoption(LS));
%put PS(keyword form)= %sysfunc(

getoption(PS,keyword));
%put LS(keyword form)= %sysfunc(

getoption(LS,keyword));
%put FORMCHAR= %sysfunc(

getoption(FORMCHAR));
%put HSIZE= %sysfunc(

getoption(HSIZE));
%put VSIZE= %sysfunc(

getoption(VSIZE));
%put HSIZE(in/keyword form)= %sysfunc(

getoption(HSIZE,in,keyword));
%put HSIZE(cm/keyword form)= %sysfunc(

getoption(HSIZE,cm,keyword));
%put VSIZE(in/keyword form)= %sysfunc(

getoption(VSIZE,in,keyword));
%put HSIZE(cm/keyword form)= %sysfunc(

getoption(VSIZE,cm,keyword));
%mend;
goptions VSIZE=8.5 in HSIZE=11 in;

%showopts;

The following is SAS output from the example.

PAGESIZE= 23
PS= 23
LS= 76
PS(keyword form)= PS=23
LS(keyword form)= LS=76
FORMCHAR= |----|+|---+=|-/\<>*
HSIZE= 11.0000 in.
VSIZE= 8.5000 in.
HSIZE(in/keyword form)= HSIZE=11.0000 in.
HSIZE(cm/keyword form)= HSIZE=27.9400 cm.
VSIZE(in/keyword form)= VSIZE=8.5000 in.
HSIZE(cm/keyword form)= VSIZE=21.5900 cm.

390 GETVARC 4 Chapter 4

Note: The default settings for pagesize and linesize depend on the mode you use to
run SAS. 4

GETVARC

Returns the value of a SAS data set character variable

Category: SAS File I/O

Syntax
GETVARC(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
is the number of the variable in the Data Set Data Vector (DDV).
Tip: You can obtain this value by using the VARNUM function.
Tip: This value is listed next to the variable when you use the CONTENTS

procedure.

Details
Use VARNUM to obtain the number of a variable in a SAS data set. VARNUM can be
nested or it can be assigned to a variable that can then be passed as the second
argument, as shown in the following examples. GETVARC reads the value of a
character variable from the current observation in the Data Set Data Vector (DDV) into
a macro or DATA step variable.

Examples

� This example opens the SASUSER.HOUSES data set and gets the entire tenth
observation. The data set identifier value for the open data set is stored in the
macro variable MYDATAID. This example nests VARNUM to return the position of
the variable in the DDV, and reads in the value of the character variable STYLE.

%let mydataid=%sysfunc(open
(sasuser.houses,i));

%let rc=%sysfunc(fetchobs(&mydataid,10));
%let style=%sysfunc(getvarc(&mydataid,

%sysfunc(varnum
(&mydataid,STYLE))));

%let rc=%sysfunc(close(&mydataid));

� This example assigns VARNUM to a variable that can then be passed as the
second argument. This example fetches data from observation 10.

Functions and CALL Routines 4 GETVARN 391

%let namenum=%sysfunc(varnum(&mydataid,NAME));
%let rc=%sysfunc(fetchobs(&mydataid,10));
%let user=%sysfunc(getvarc

(&mydataid,&namenum));

See Also

Functions:
“FETCH” on page 352
“FETCHOBS” on page 353
“GETVARN” on page 391
“VARNUM” on page 584

GETVARN

Returns the value of a SAS data set numeric variable

Category: SAS File I/O

Syntax
GETVARN(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
is the number of the variable in the Data Set Data Vector (DDV).
Tip: You can obtain this value by using the VARNUM function.
Tip: This value is listed next to the variable when you use the CONTENTS

procedure.

Details
Use VARNUM to obtain the number of a variable in a SAS data set. You can nest
VARNUM or you can assign it to a variable that can then be passed as the second
argument, as shown in the "Examples" section. GETVARN reads the value of a numeric
variable from the current observation in the Data Set Data Vector (DDV) into a macro
variable or DATA step variable.

Examples

� This example obtains the entire tenth observation from a SAS data set. The data
set must have been previously opened using OPEN. The data set identifier value

392 HBOUND 4 Chapter 4

for the open data set is stored in the variable MYDATAID. This example nests
VARNUM, and reads in the value of the numeric variable PRICE from the tenth
observation of an open SAS data set.

%let rc=%sysfunc(fetchobs(&mydataid,10));
%let price=%sysfunc(getvarn(&mydataid,

%sysfunc(varnum
(&mydataid,price))));

� This example assigns VARNUM to a variable that can then be passed as the
second argument. This example fetches data from observation 10.

%let pricenum=%sysfunc(varnum
(&mydataid,price));

%let rc=%sysfunc(fetchobs(&mydataid,10));
%let price=%sysfunc(getvarn

(&mydataid,&pricenum));

See Also

Functions:
“FETCH” on page 352
“FETCHOBS” on page 353
“GETVARC” on page 390
“VARNUM” on page 584

HBOUND

Returns the upper bound of an array

Category: Array

Syntax
HBOUND<n>(array-name)

HBOUND(array-name,bound-n)

Arguments

n
specifies the dimension for which you want to know the upper bound. If no n value is
specified, the HBOUND function returns the upper bound of the first dimension of
the array.

array-name
specifies the name of an array defined previously in the same DATA step.

bound-n
specifies the dimension for which you want to know the upper bound. Use bound-n
only if n is not specified.

Functions and CALL Routines 4 HBOUND 393

Details
The HBOUND function returns the upper bound of a one-dimensional array or the
upper bound of a specified dimension of a multidimensional array. Use HBOUND in
array processing to avoid changing the upper bound of an iterative DO group each time
you change the bounds of the array. HBOUND and LBOUND can be used together to
return the values of the upper and lower bounds of an array dimension.

Comparisons
� HBOUND returns the literal value of the upper bound of an array dimension.
� DIM always returns a total count of the number of elements in an array dimension.

Note: This distinction is important when the lower bound of an array
dimension has a value other than 1 and the upper bound has a value other than
the total number of elements in the array dimension. 4

Examples

Example 1: One-dimensional Array In this example, HBOUND returns the upper
bound of the dimension, a value of 5. Therefore, SAS repeats the statements in the DO
loop five times.

array big{5} weight sex height state city;
do i=1 to hbound(big5);

more SAS statements;
end;

Example 2: Multidimensional Array This example shows two ways of specifying the
HBOUND function for multidimensional arrays. Both methods return the same value
for HBOUND, as shown in the table that follows the SAS code example.

array mult{2:6,4:13,2} mult1-mult100;

Syntax Alternative Syntax Value

HBOUND(MULT) HBOUND(MULT,1) 6

HBOUND2(MULT) HBOUND(MULT,2) 13

HBOUND3(MULT) HBOUND(MULT,3) 2

394 HMS 4 Chapter 4

See Also

Functions:
“DIM” on page 330
“LBOUND” on page 434

Statements:
“ARRAY” on page 755
“Array Reference” on page 759

“Array Processing ”in SAS Language Reference: Concepts

HMS

Returns a SAS time value from hour, minute, and second values

Category: Date and Time

Syntax
HMS(hour,minute,second)

Arguments

hour
specifies a SAS expression that represents an integer from 0 through 23.

minute
specifies a SAS expression that represents an integer from 0 through 59.

second
specifies a SAS expression that represents an integer from 0 through 59.

Examples

The following SAS statements produce these results:

Functions and CALL Routines 4 HOUR 395

SAS Statements Results

hrid=hms(12,45,10);
put hrid
/ hrid time.;

45910
2:45:10

See Also

Functions:
“DHMS” on page 327
“HOUR” on page 395
“MINUTE” on page 445
“SECOND” on page 542

HOUR

Returns the hour from a SAS time or datetime value

Category: Date and Time

Syntax
HOUR(<time | datetime>)

Arguments

time
specifies a SAS expression that represents a SAS time value.

datetime
specifies a SAS expression that represents a SAS datetime value.

Details
The HOUR function returns a numeric value that represents the hour from a SAS time
or datetime value. Numeric values can range from 0 through 23. HOUR always returns
a positive number.

Examples

The following SAS statements produce these results:

396 HTMLDECODE 4 Chapter 4

SAS Statements Results

now=’1:30’t;
h=hour(now);
put h; 1

See Also

Functions:
“MINUTE” on page 445

“SECOND” on page 542

HTMLDECODE

Decodes a string containing HTML numeric character references or HTML character entity
references and returns the decoded string

Category: Web Tools

Syntax
HTMLDECODE(argument)

Arguments

argument
specifies any character expression.

Details
The HTMLDECODE function recognizes the following character entity references:

Character entity reference … decodes as …

& &

< <

> >

" "

 (space)

Numeric character references have one of the following forms:

&#nnn; where nnn specifies a decimal number that contains one or more
digits.

Functions and CALL Routines 4 HTMLENCODE 397

&#Xnnn; where nnn specifies a hexadecimal number that contains one or
more digits.

Operating Environment Information: Numeric character references greater than zero
and less than or equal to 255 are converted to the corresponding character in the
character set supported by your operating environment. In all operating environments,
references greater than 255 are converted to a question mark (?). 4

Operating Environment Information: In operating environments that use EBCDIC,
SAS performs an extra translation step after it recognizes an HTML numeric character
reference. The specified reference is assumed to be an ASCII encoding. SAS uses the
transport-to-local translation table to convert this character to an EBCDIC character in
operating environments that use EBCDIC. If the translation table does not specify a
corresponding EBCDIC character, SAS inserts a question mark (?). For more
information see “TRANTAB=” on page 1171. 4

Examples

SAS Statements Results

x1=htmldecode (’not a <tag>’);
put x1; not a <tag>

x2=htmldecode (’&’);
put x2; &

x3=htmldecode (’ABC’);
put x3; ABC

See Also

Function:

“HTMLENCODE” on page 397

HTMLENCODE

Encodes characters using HTML character entity references and returns the encoded string

Category: Web Tools

Syntax
HTMLENCODE(argument)

Arguments

argument
specifies any character expression.

398 IBESSEL 4 Chapter 4

Details
HTMLENCODE can encode the following three characters:

Character encodes as …

& &

< <

> >

Note: The encoded string may be longer than the original string. Ensure that you
consider the additional length when you use this function. 4

Examples

SAS Statements Results

x1=htmlencode (’not a <tag>’);
put x1; not a <tag>

x2=htmlencode (’&’);
put x2; &

x3=htmlencode (’normal text’);
put x3; normal text

See Also

Function:

“HTMLDECODE” on page 396

IBESSEL

Returns the value of the modified bessel function

Category: Mathematical

Syntax
IBESSEL(nu,x,kode)

Arguments

nu
is numeric.

Range: nu ≥ 0

Functions and CALL Routines 4 INDEX 399

x
is numeric.
Range: x ≥ 0

kode
is a nonnegative integer.

Details
The IBESSEL function returns the value of the modified bessel function of order nu
evaluated at x (Abramowitz, Stegun 1964; Amos, Daniel, Weston 1977). When kode
equals 0, the bessel function is returned. Otherwise, the value of the following function
is returned:

e
�x

I
nm

(x)

Examples

SAS Statements Results

x=ibessel(2,2,0); 0.6889484477

x=ibessel(2,2,1); 0.0932390333

INDEX

Searches a character expression for a string of characters

Category: Character

Syntax
INDEX(source,excerpt)

Arguments

source
specifies the character expression to search.

excerpt
specifies the string of characters to search for in the character expression.
Tip: Enclose a literal string of characters in quotation marks.

Details
The INDEX function searches source, from left to right, for the first occurrence of the
string specified in excerpt, and returns the position in source of the string’s first
character. If the string is not found in source, INDEX returns a value of 0. If there are

400 INDEXC 4 Chapter 4

multiple occurrences of the string, INDEX returns only the position of the first
occurrence.

Examples

SAS Statements Results

a=’ABC.DEF (X=Y)’;
b=’X=Y’;
x=index(a,b);
put x; 10

See Also

Functions:
“INDEXC” on page 400
“INDEXW” on page 401

INDEXC
Searches a character expression for specific characters

Category: Character

Syntax
INDEXC(source,excerpt-1<,… excerpt-n>)

Arguments

source
specifies the character expression to search.

excerpt
specifies the characters to search for in the character expression.
Tip: If you specify more than one excerpt, separate them with a comma.

Details
The INDEXC function searches source, from left to right, for the first occurrence of any
character present in the excerpts and returns the position in source of that character. If
none of the characters in excerpt-1 through excerpt-n in source are found, INDEXC
returns a value of 0.

Comparisons
The INDEXC function searches for the first occurrence of any individual character that
is present within the character string, whereas the INDEX function searches for the
first occurrence of the character string as a pattern.

Functions and CALL Routines 4 INDEXW 401

Examples

SAS Statements Results

a=’ABC.DEP (X2=Y1)’;
x=indexc(a,’0123’,’;()=.’);
put x; 4

b=’have a good day’;
x=indexc(b,’pleasant’,’very’);
put x; 2

See Also

Functions:

“INDEX” on page 399

“INDEXW” on page 401

INDEXW

Searches a character expression for a specified string as a word

Category: Character

Syntax
INDEXW(source, excerpt)

Arguments

source
specifies the character expression to search.

excerpt
specifies the string of characters to search for in the character expression. SAS
removes the leading and trailing blanks from excerpt.

Details
The INDEXW function searches source, from left to right, for the first occurrence of
excerpt and returns the position in source of the substring’s first character. If the
substring is not found in source, INDEXW returns a value of 0. If there are multiple
occurrences of the string, INDEXW returns only the position of the first occurrence.

The substring pattern must begin and end on a word boundary. For INDEXW, word
boundaries are blanks, the beginning of source, and the end of source. Punctuation
marks are not word boundaries.

402 INPUT 4 Chapter 4

Comparisons
The INDEXW function searches for strings that are words, whereas the INDEX
function searches for patterns as separate words or as parts of other words. INDEX
searches for any characters present in the excerpts.

Examples

SAS Statements Results

s=’asdf adog dog’;
p=’dog ’;
x=indexw(s,p);
put x; 11

s=’abcdef x=y’;
p=’def’;
x=indexw(s,p);
put x; 0

See Also

Functions:

“INDEX” on page 399
“INDEXC” on page 400

INPUT

Returns the value produced when a SAS expression that uses a specified informat expression is
read

Category: Special

Syntax
INPUT(source, <? | ??>informat.)

Arguments

source
contains the SAS character expression to which you want to apply a specific informat.

? or ??
The optional question mark (?) and double question mark (??) format modifiers
suppress the printing of both the error messages and the input lines when invalid
data values are read. The ? modifier suppresses the invalid data message. The ??
modifier also supresses the invalid data message and, in addition, prevents the
automatic variable _ERROR_ from being set to 1 when invalid data are read.

Functions and CALL Routines 4 INPUT 403

informat.
is the SAS informat that you want to apply to the source.

Details
The INPUT function enables you to read the value of source by using a specified
informat. The informat determines whether the result is numeric or character. Use
INPUT to convert character values to numeric values.

Comparisons
The INPUT function returns the value produced when a SAS expression is read using a
specified informat. You must use an assignment statement to store that value in a
variable. The INPUT statement uses an informat to read a data value and then
optionally stores that value in a variable.

Examples

Example 1: Converting Character Values to Numeric Values This example uses the
INPUT function to convert a character value to a numeric value and store it in another
variable. The COMMA9. informat reads the value of the SALE variable, stripping the
commas. The resulting value, 2115353, is stored in FMTSALE.

data testin;
input sale $9.;
fmtsale=input(sale,comma9.);
datalines;

2,115,353
;

Example 2: Using PUT and INPUT Functions In this example, PUT returns a numeric
value as a character string. The value 122591 is assigned to the CHARDATE variable.
INPUT returns the value of the character string as a SAS date value using a SAS date
informat. The value 11681 is stored in the SASDATE variable.

numdate=122591;
chardate=put(numdate,z6.);
sasdate=input(chardate,mmddyy6.);

Example 3: Suppressing Error Messages In this example, the question mark (?) format
modifier tells SAS not to print the invalid data error message if it finds data errors. The
automatic variable _ERROR_ is set to 1 and input data lines are written to the SAS log.

y=input(x,? 3.1);

Because the double question mark (??) format modifier suppresses printing of error
messages and input lines and prevents the automatic variable _ERROR_ from being set
to 1 when invalid data are read, the following two examples produce the same result:

� y=input(x,?? 2.);

� y=input(x,? 2.); _error_=0;

404 INPUTC 4 Chapter 4

See Also

Functions:
“INPUTC” on page 404
“INPUTN” on page 405
“PUT” on page 503
“PUTC” on page 505
“PUTN” on page 506

Statements:
“INPUT” on page 876

INPUTC

Enables you to specify a character informat at run time

Category: Special

Syntax
INPUTC(source, informat.< ,w>)

Arguments

source
is the SAS expression to which you want to apply the informat.

informat.
is an expression that contains the character informat you want to apply to source.

w
specifies a width to apply to the informat.
Interaction: If you specify a width here, it overrides any width specification in the

informat.

Comparisons
The INPUTN function enables you to specify a numeric informat at run time.

Examples

Example 1: Specifying Character Informats The PROC FORMAT step in this example
creates a format, TYPEFMT., that formats the variable values 1, 2, and 3 with the
name of one of the three informats that this step also creates. The informats store
responses of "positive," "negative," and "neutral" as different words, depending on the
type of question. After PROC FORMAT creates the format and informats, the DATA
step creates a SAS data set from raw data consisting of a number identifying the type
of question and a response. After reading a record, the DATA step uses the value of
TYPE to create a variable, RESPINF, that contains the value of the appropriate

Functions and CALL Routines 4 INPUTN 405

informat for the current type of question. The DATA step also creates another variable,
WORD, whose value is the appropriate word for a response. The INPUTC function
assigns the value of WORD based on the type of question and the appropriate informat.

proc format;
value typefmt 1=’$groupx’

2=’$groupy’
3=’$groupz’;

invalue $groupx ’positive’=’agree’
’negative’=’disagree’
’neutral’=’notsure’;

invalue $groupy ’positive’=’accept’
’negative’=’reject’
’neutral’=’possible’;

invalue $groupz ’positive’=’pass’
’negative’=’fail’
’neutral’=’retest’;

run;

data answers;
input type response $;
respinformat = put(type, typefmt.);
word = inputc(response, respinformat);
datalines;

1 positive
1 negative
1 neutral
2 positive
2 negative
2 neutral
3 positive
3 negative
3 neutral
;

The value of WORD for the first observation is agree. The value of WORD for the last
observation is retest.

See Also

Functions:
“INPUT” on page 402
“INPUTN” on page 405
“PUT” on page 503
“PUTC” on page 505
“PUTN” on page 506

INPUTN

Enables you to specify a numeric informat at run time

406 INPUTN 4 Chapter 4

Category: Special

Syntax
INPUTN(source, informat.< ,w<,d>>)

Arguments

source
is the SAS expression to which you want to apply the informat.

informat.
is an expression that contains the numeric informat you want to apply to source.

w
specifies a width to apply to the informat.
Interaction: If you specify a width here, it overrides any width specification in the

informat.

d
specifies the number of decimal places to use.
Interaction: If you specify a number here, it overrides any decimal-place

specification in the informat.

Comparisons
The INPUTC function enables you to specify a character informat at run time.

Examples

Example 1: Specifying Numeric Informats The PROC FORMAT step in this example
creates a format, READDATE., that formats the variable values 1 and 2 with the name
of a SAS date informat. The DATA step creates a SAS data set from raw data originally
from two different sources (indicated by the value of the variable SOURCE). Each
source specified dates differently. After reading a record, the DATA step uses the value
of SOURCE to create a variable, DATEINF, that contains the value of the appropriate
informat for reading the date. The DATA step also creates a new variable, NEWDATE,
whose value is a SAS date. The INPUTN function assigns the value of NEWDATE
based on the source of the observation and the appropriate informat.

proc format;
value readdate 1=’date7.’

2=’mmddyy8.’;
run;

options yearcutoff=1920;

data fixdates (drop=start dateinformat);
length jobdesc $12;
input source id lname $ jobdesc $ start $;
dateinformat=put(source, readdate.);
newdate = inputn(start, dateinformat);
datalines;

Functions and CALL Routines 4 INT 407

1 1604 Ziminski writer 09aug90
1 2010 Clavell editor 26jan95
2 1833 Rivera writer 10/25/92
2 2222 Barnes proofreader 3/26/98
;

See Also

Functions:
“INPUT” on page 402
“INPUTC” on page 404
“PUT” on page 503
“PUTC” on page 505
“PUTN” on page 506

INT

Returns the integer value

Category: Truncation

Syntax
INT(argument)

Arguments

argument
is numeric.

Details
The INT function returns the integer portion of the argument (truncates the decimal
portion). If the argument’s value is within 10**(-12) of an integer, the function results
in that integer. If the value of argument is positive, INT(argument) has the same result
as FLOOR(argument). If the value of argument is negative, INT(argument) has the
same result as CEIL(argument).

Examples

408 INTCK 4 Chapter 4

SAS Statement Results

var1=2.1;
x=int(var1);
put x=; 2

var2=-2.4;
y=int(var2);
put y=; -2

a=int(3);
put a=; 3

b=int(-1.6);
put b=; -1

See Also

Functions:

“CEIL” on page 286
“FLOOR” on page 367

INTCK

Returns the integer number of time intervals in a given time span

Category: Date and Time

Syntax
INTCK(’interval’,from,to)

Arguments

’interval’
specifies a character constant or variable. Interval can appear in upper- or lowercase.
The value of the character constant or variable must be one of those listed in this
table:

Date Intervals Datetime Intervals Time Intervals

DAY DTDAY HOUR

WEEKDAY DTWEEKDAY MINUTE

WEEK DTWEEK SECOND

Functions and CALL Routines 4 INTCK 409

Date Intervals Datetime Intervals Time Intervals

TENDAY DTTENDAY

SEMIMONTH DTSEMIMONTH

MONTH DTMONTH

QTR DTQTR

SEMIYEAR DTSEMIYEAR

YEAR DTYEAR

Requirement: The type of interval (date, datetime, or time) must match the type of
value in from.

from
specifies a SAS expression that represents a SAS date, time, or datetime value that
identifies the beginning of the time span.

to
specifies a SAS expression that represents a SAS date, time, or datetime value that
identifies the end of the time span.

Details
The INTCK function counts intervals by using a fixed starting point for the interval as
opposed to counting in multiples of the interval unit. Partial intervals are not counted.
For example, WEEK intervals are determined by the number of Sundays that begin
between the from and the to, not by how many seven-day periods fall in between the
from and the to.

Examples

SAS Statements Results

qtr=intck(’qtr’,’10jan95’d,’01jul95’d);
put qtr; 2

year=intck(’year’,’31dec94’d,
’01jan95’d);
put year; 1
year=intck(’year’,’01jan94’d,
’31dec94’d);
put year; 0

semi=intck(’semiyear’,’01jan95’d,
’01jan98’d);
put semi; 6

410 INTNX 4 Chapter 4

SAS Statements Results

weekvar=intck(’week2.2’,’01jan97’d,
’31mar97’d);

put weekvar; 6

wdvar=intck(’weekday7w’,’01jan97’d,
’01feb97’d);

put wdvar; 26

In the second example, INTCK returns a value of 1 even though only one day has
elapsed. This is because the interval from December 31, 1994 to January , 1995
contains the starting point for the YEAR interval. In the third example, however, a
value of 0 is returned even though 364 days have elapsed. This is because the period
between the two dates does not contain the starting point for the interval.

In the fourth example, SAS returns a value of 6 because the time period contains six
semiyearly intervals. (Note that if the ending date were December 31, 1997, SAS would
count five intervals.) In the fifth example, SAS returns a value of 6 because there are
six two-week intervals beginning on a first Monday during the period. In the sixth
example, SAS returns the value 26. That indicates that beginning with January 1,
1997, and counting only Saturdays as weekend days, the period contains 26 weekdays.

See Also

Function:

“INTNX” on page 410

INTNX

Advances a date, time, or datetime value by a given interval, and returns a date, time, or
datetime value

Category: Date and Time

Syntax

INTNX(’interval’,start-from,increment<,’alignment’>)

Arguments

’interval’
specifies a character constant or variable. The argument interval can appear in
upper- or lowercase.

The value of the character constant or variable must be one of those listed in this
table:

Functions and CALL Routines 4 INTNX 411

Date Intervals Datetime Intervals Time Intervals

DAY DTDAY HOUR

WEEKDAY DTWEEKDAY MINUTE

WEEK DTWEEK SECOND

TENDAY DTTENDAY

SEMIMONTH DTSEMIMONTH

MONTH DTMONTH

QTR DTQTR

SEMIYEAR DTSEMIYEAR

YEAR DTYEAR

Requirement: The type of interval (date, datetime, or time) must match the type of
value in start-from and increment.

start-from
specifies a SAS expression that represents a SAS date, time, or datetime value
identifying a starting point.

increment
specifies a negative or positive integer that represents the specific number of time
intervals.

’alignment’
specifies one of these values:

BEGINNING
specifies that the returned date is aligned to the beginning of the interval.
Alias: B

MIDDLE
specifies that the returned date is aligned to the midpoint of the interval.
Alias: M

END
specifies that the returned date is aligned to the end of the interval.
Alias: E

Default: BEGINNING

Examples

412 INTRR 4 Chapter 4

SAS Statements Results

yr=intnx(’year’,’05feb94’d,3);
put yr / yr date7.; 13515

01JAN97

x=intnx(’month’,’05jan95’d,0);
put x / x date7.; 12784

01JAN95

next=intnx(’semiyear’,’01jan97’d,1);
put next / next date7.; 13696

01JUL97

past=intnx(’month2’,’01aug96’d,-1);
put past / past date7; 13270

01MAY96

sm=intnx(’semimonth2.2’,
’01apr97’d,4);
put sm / sm date7.; 13711

6JUL97

These examples illustrate advancing a date using an alignment value:

SAS Statements Results

date1=intnx(’month’,’01jan95’d,5,
’beginning’);

put date1 / date1 date7.; 12935
01JUN95

date2=intnx(’month’,’01jan95’d,5,
’middle’);

put date2 / date2 date7.; 12949
5JUN95

date3=intnx(’month’,’01jan95’d,5,
’end’);

put date3 / date3 date7.; 12964
30JUN95

See Also

Function:
“INTCK” on page 408

INTRR

Returns the internal rate of return as a fraction

Category: Financial

Syntax
INTRR(freq,c0, c1, . . . ,cn)

Functions and CALL Routines 4 INTRR 413

Arguments

freq
is numeric, the number of payments over a specified base period of time that is
associated with the desired internal rate of return.

Range: freq > 0

Exception: The case freq = 0 is a flag to allow continuous compounding.

c0,c1, . . . ,cn
are numeric, the optional cash payments.

Details
The INTRR function returns the internal rate of return over a specified base period of
time for the set of cash payments c0, c1, ..., cn. The time intervals between any two
consecutive payments are assumed to be equal. The argument freq>0 describes the
number of payments that occur over the specified base period of time.

The internal rate of return is the interest rate such that the sequence of payments
has a 0 net present value (see the NETPV function). It is given by

r =

�
1

x
freq freq > 0
�loge (x) freq = 0

where x is the real root, nearest to 1, of the polynomial

nX
i=0

cix
i = 0

The routine uses Newton’s method to look for the internal rate of return nearest to 0.
Depending on the value of payments, a root for the equation does not always exist; in
that case, a missing value is returned.

Missing values in the payments are treated as 0 values. When freq>0, the computed
rate of return is the effective rate over the specified base period. To compute a quarterly
internal rate of return (the base period is three months) with monthly payments, set
freq to 3.

If freq is 0, continuous compounding is assumed and the base period is the time
interval between two consecutive payments. The computed internal rate of return is the
nominal rate of return over the base period. To compute with continuous compounding
and monthly payments, set freq to 0. The computed internal rate of return will be a
monthly rate.

Examples

For an initial outlay of $400 and expected payments of $100, $200, and $300 over the
following three years, the annual internal rate of return can be expressed as

rate=intrr(1,-400,100,200,300);

The value returned is 0.19438.

414 IORCMSG 4 Chapter 4

IORCMSG

Returns a formatted error message for _IORC_

Category: SAS File I/O

Syntax
character-variable=IORCMSG()

Arguments

character-variable
specifies a character variable.
Tip: If the length has been previously defined, the result will be truncated or

padded as needed.
Default: The default length is 200 characters.

Details
The IORCMSG function returns the formated error message associated with the current
value of the automatic variable _IORC_ . The _IORC_ variable is created when you use
the MODIFY statement, or when you use the SET statement with the KEY= option.

Examples

In the following program, observations are either rewritten or added to the updated
master file that contains bank accounts and current bank balance. The program queries
the _IORC_ variable and returns a formatted error message if the _IORC_ value is
unexpected.

libname bank ’SAS-data-library’;

data bank.master;
set bank.trans;
modify bank.master key=Accountnum;
if (_IORC_ EQ %sysrc(_SOK)) then

do;
balance=balance+deposit;
replace;

end;
else

if (_IORC_ = %sysrc(_DSENOM)) then
do;

balance=deposit;
output;
error=0;

end;

Functions and CALL Routines 4 JBESSEL 415

else
do;

errmsg=IORCMSG();
put ’Unknown error condition:’
errmsg;

end;
run;

IRR
Returns the internal rate of return as a percentage

Category: Financial

Syntax
IRR(freq,c0,cl, . . . ,cn)

Arguments

freq
is numeric, the number of payments over a specified base period of time associated
with the desired internal rate of return.
Range: freq > 0.
Exception: The case freq = 0 is a flag to allow continuous compounding.

c0,c1, . . . ,cn
are numeric, the optional cash payments.

Comparisons
The IRR function is identical to INTRR, except that the rate returned is a percentage.

JBESSEL
Returns the value of the bessel function

Category: Mathematical

Syntax
JBESSEL(nu,x)

Arguments

416 JULDATE 4 Chapter 4

nu
is numeric.
Range: nu ≥ 0

x
is numeric.
Range: x ≥ 0

Details
The JBESSEL function returns the value of the bessel function of order nu evaluated at
x (For more information, see Abramowitz and Stegun 1964; Amos, Daniel, and Weston
1977).

Examples

SAS Statements Results

x=jbessel(2,2); 0.3528340286

JULDATE
Returns the Julian date from a SAS date value

Category: Date and Time

Syntax
JULDATE(date)

Arguments

date
specifies a SAS date value.

Details
The JULDATE function converts a SAS date value to a five- or seven-digit Julian date.
If date falls within the 100-year span defined by the system option YEARCUTOFF=,
the result has five digits: the first two digits represent the year, and the next three
digits represent the day of the year (1 to 365, or 1 to 366 for leap years). Otherwise, the
result has seven digits: the first four digits represent the year, and the next three digits
represent the day of the year. For example, if YEARCUTOFF=1920, JULDATE would
return 97001 for January 1, 1997, and return 1878365 for December 31, 1878.

Comparisons
The function JULDATE7 is similar to JULDATE except that JULDATE7 always
returns a four digit year. Thus JULDATE7 is year 2000 compliant because it eliminates
the need to consider the implications of a two digit year.

Functions and CALL Routines 4 JULDATE7 417

Examples

The following SAS statements produce these results:

SAS Statements Results

julian=juldate(’31dec99’d); 99365

julian=juldate(’01jan2099’d); 2099001

See Also

Function:
“DATEJUL” on page 313
“JULDATE7” on page 417

System Option:
“YEARCUTOFF=” on page 1177

JULDATE7

Returns a seven-digit Julian date from a SAS date value

Category: Date and Time

Syntax
JULDATE7(date)

Arguments

date
specifies a SAS date value.

Details
The JULDATE7 function returns a seven digit Julian date from a SAS date value. The
first four digits represent the year, and the next three digits represent the day of the
year.

Comparisons
The function JULDATE7 is similar to JULDATE except that JULDATE7 always
returns a four digit year. Thus JULDATE7 is year 2000 compliant because it eliminates
the need to consider the implications of a two digit year.

Examples

The following SAS statements produce these results:

418 KCOMPARE 4 Chapter 4

SAS Statements Results

julian=juldate7(’31dec96’d); 1996366

julian=juldate7(’01jan2099’d); 2099001

See Also

Function:
“JULDATE” on page 416

KCOMPARE

Returns the result of a comparison of character strings

Category: DBCS

Syntax
KCOMPARE(source,<pos, <count,>>findstr)

Arguments

source
specifies the character string to be compared.

pos
specifies the starting position in source to begin the comparison. If pos is omitted, the
entire source is compared. If pos is less than 0, source is assumed as extended DBCS
data that does not contain any SO/SI characters.

count
specifies the number of bytes to compare. If count is omitted, all of source that
follows pos is compared, except for any trailing blanks.

findstr
specifies the character string to compare to source.

Details
KCOMPARE returns

� -1 if source is greater than findstr
� 0 if source is equal to findstr
� 1 if source is less than findstr.

KCOMPRESS

Removes specific characters from a character string

Functions and CALL Routines 4 KINDEX 419

Category: DBCS

Syntax
KCOMPRESS(source<, characters-to-remove>)

Arguments

source
specifies a character string that contains the characters to remove. When only source
is specified, KCOMPRESS returns this string with all of the single- and double-byte
blanks removed.

characters-to-remove
specifies the character or characters that KCOMPRESS removes from the character
string.
Tip: Enclose a literal string of characters in quotation marks.

See Also

Functions:
“KLEFT” on page 421
“KTRIM” on page 427

KCOUNT

Returns the number of double-byte characters in a string

Category: DBCS

Syntax
KCOUNT(source)

Arguments

source
specifies the character string to count.

KINDEX

Searches a character expression for a string of characters

420 KINDEXC 4 Chapter 4

Category: DBCS

Syntax
KINDEX(source, excerpt)

Arguments

source
specifies the character expression to search.

excerpt
specifies the string of characters to search for in the character expression.
Tip: Enclose a literal string of characters in quotation marks.

Details
The KINDEX function searches source, from left to right, for the first occurrence of the
string specified in excerpt, and returns the position in source of the string’s first
character. If the string is not found in source, KINDEX returns a value of 0. If there
are multiple occurrences of the string, KINDEX returns only the position of the first
occurrence.

See Also

Functions:
“KINDEXC” on page 420

KINDEXC

Searches a character expression for specific characters

Category: DBCS

Syntax
KINDEXC(source,excerpt-1<,… excerpt-n>)

Arguments

source
specifies the character expression to search.

excerpt
specifies the characters to search for in the character expression.
Tip: If you specify more than one excerpt, separate them with a comma.

Functions and CALL Routines 4 KLENGTH 421

Details
The KINDEXC function searches source, from left to right, for the first occurrence of
any character present in the excerpts and returns the position in source of that
character. If none of the characters in excerpt-1 through excerpt-n in source are found,
KINDEXC returns a value of 0 .

Comparisons
The KINDEXC function searches for the first occurrence of any individual character
that is present within the character string, whereas the KINDEX function searches for
the first occurrence of the character string as a pattern.

See Also

Functions:
“KINDEX” on page 419

KLEFT
Left aligns a SAS character expression by removing unnecessary leading DBCS blanks and SO/SI

Category: DBCS

Syntax
KLEFT(argument)

Arguments

argument
specifies any SAS character expression.

Details
KLEFT returns an argument with leading blanks moved to the end of the value. The
argument’s length does not change.

See Also

Functions:
“KCOMPRESS” on page 418
“KRIGHT” on page 423
“KTRIM” on page 427

KLENGTH
Returns the length of an argument

422 KLOWCASE 4 Chapter 4

Category: DBCS

Syntax
KLENGTH(argument)

Arguments

argument
specifies any SAS expression.

Details
The KLENGTH function returns an integer that represents the position of the
right-most nonblank character in the argument. If the value of the argument is
missing, KLENGTH returns a value of 1. If the argument is an uninitialized numeric
variable, KLENGTH returns a value of 12 and prints a note in the SAS log that the
numeric values have been converted to character values.

KLOWCASE

Converts all letters in an argument to lowercase

Category: DBCS

Syntax
KLOWCASE(argument)

Arguments

argument
specifies any SAS character expression.

Details
The KLOWCASE function copies a character argument, converts all uppercase letters
to lowercase letters, and returns the altered value as a result.

KREVERSE

Reverses a character expression

Functions and CALL Routines 4 KSCAN 423

Category: DBCS

Syntax
KREVERSE(argument)

Arguments

argument
specifies any SAS character expression.

KRIGHT

Right aligns a character expression by trimming trailing DBCS blanks and SO/SI

Category: DBCS

Syntax
KRIGHT(argument)

Arguments

argument
specifies any SAS character expression.

Details
The KRIGHT function returns an argument with trailing blanks moved to the start of
the value. The argument’s length does not change.

See Also

Functions:
“KCOMPRESS” on page 418

“KLEFT” on page 421
“KTRIM” on page 427

KSCAN

Selects a given word from a character expression

424 KSTRCAT 4 Chapter 4

Category: DBCS

Syntax
KSCAN(argument,n<, delimiters>)

Arguments

argument
specifies any character expression.

n
specifies a numeric expression that produces the number of the word in the character
string you want KSCAN to select.
Tip: If n is negative, KSCAN selects the word in the character string starting from

the end of the string. If |n| is greater than the number of words in the character
string, KSCAN returns a blank value.

delimiters
specifies a character expression that produces characters that you want KSCAN to
use as word separators in the character string.
Default: If you omit delimiters in an ASCII environment, SAS uses the following

characters:
blank . < (+ & ! $ *); ^ – / , % |

In ASCII environments without the ^ character, KSCAN uses the ~ character
instead.

If you omit delimiters on an EBCDIC environment, SAS uses the following
characters:

blank . < (+ | & ! $ *); – / , % | ¢
Tip: If you represent delimiters as a constant, enclose delimiters in quotation marks.

Details
Leading delimiters before the first word in the character string do not effect KSCAN. If
there are two or more contiguous delimiters, KSCAN treats them as one.

KSTRCAT

Concatenates two or more character strings

Category: DBCS

Syntax
KSTRCAT(argument-1, argument-2<, ... argument-n>)

Arguments

Functions and CALL Routines 4 KSUBSTRB 425

argument
specifies any single-byte or double-byte character string.

Details
KSTRCAT concatenates two or more single-byte or double-byte character strings. It
also removes unnecessary SO/SI pairs between the strings.

KSUBSTR
Extracts a substring from an argument

Category: DBCS

Syntax
KSUBSTR(argument,position<,n>)

Arguments

argument
specifies any SAS character expression.

position
specifies a numeric expression that is the beginning character position.

n
specifies a numeric expression that is the length of the substring to extract.
Interaction: If n is larger than the length of the expression that remains in

argument after position, SAS extracts the remainder of the expression.
Tip: If you omit n, SAS extracts the remainder of the expression.

Details
The KSUBSTR function returns a portion of an expression that you specify in
argument. The portion begins with the character specified by position and is the
number of characters specified by n.

A variable that is created by KSUBSTR obtains its length from the length of
argument.

See Also

Function:
“KSUBSTRB” on page 425

KSUBSTRB
Extracts a substring from an argument based on byte position

426 KTRANSLATE 4 Chapter 4

Category: DBCS

Syntax
KSUBSTRB(argument,position<,n>)

Arguments

argument
specifies any SAS character expression.

position
specifies the beginning character position in byte units.

n
specifies the length of the substring to extract in byte units.
Interaction: If n is larger than the length (in byte units) of the expression that

remains in argument after position, SAS extracts the remainder of the expression.
Tip: If you omit n, SAS extracts the remainder of the expression.

Details
The KSUBSTRB function returns a portion of an expression that you specify in
argument. The portion begins with the byte unit specified by position and is the
number of byte units specified by n.

A variable that is created by KSUBSTRB obtains its length from the length of
argument.

See Also

Function:
“KSUBSTR” on page 425

KTRANSLATE

Replaces specific characters in a character expression

Category: DBCS

Syntax
KTRANSLATE(source,to-1,from-1<,…to-n,from-n>)

Arguments

source
specifies the SAS expression that contains the original character value.

Functions and CALL Routines 4 KTRIM 427

to
specifies the characters that you want KTRANSLATE to use as substitutes.

from
specifies the characters that you want KTRANSLATE to replace.
Interaction: Values of to and from correspond on a character-by-character basis;

KTRANSLATE changes character one of from to character one of to, and so on. If
to has fewer characters than from, KTRANSLATE changes the extra from
characters to blanks. If to has more characters than from, KTRANSLATE ignores
the extra to characters.

Operating Environment Information: You must have pairs of to and from arguments
on some operating environments. On other operating environments, a segment of the
collating sequence replaces null from arguments. See the SAS documentation for your
operating environment for more information. 4

Details
You can use KTRANSLATE to translate a single-byte character expression to a
double-byte character expression, or translate a double-byte character expression to a
single-byte character expression.

The maximum number of pairs of to and from arguments that KTRANSLATE accepts
depends on the operating environment you use to run SAS. There is no functional
difference between using several pairs of short arguments, or fewer pairs of longer
arguments.

KTRIM

Removes trailing DBCS blanks and SO/SI from character expressions

Category: DBCS

Syntax
KTRIM(argument)

Arguments

argument
specifies any SAS character expression.

Details
KTRIM copies a character argument, removes all trailing blanks, and returns the
trimmed argument as a result. If the argument is blank, KTRIM returns one blank.
KTRIM is useful for concatenating because concatenation does not remove trailing
blanks.

Assigning the results of KTRIM to a variable does not affect the length of the
receiving variable. If the trimmed value is shorter than the length of the receiving
variable, SAS pads the value with new blanks as it assigns it to the variable.

428 KTRUNCATE 4 Chapter 4

See Also

Functions:
“KCOMPRESS” on page 418
“KLEFT” on page 421
“KRIGHT” on page 423

KTRUNCATE

Truncates a numeric value to a specified length

Category: DBCS

Syntax
KTRUNCATE(number,length)

Arguments

number
is numeric.

length
is numeric and integer.

Details
The KTRUNCATE function truncates a full-length number (stored as a double) to a
smaller number of bytes, as specified in length and pads the truncated bytes with 0s.
The truncation and subsequent expansion duplicate the effect of storing numbers in less
than full length and then reading them.

KUPCASE

Converts all single-byte letters in an argument to uppercase

Category: DBCS

Syntax
KUPCASE(argument)

Arguments

Functions and CALL Routines 4 KUPDATE 429

argument
specifies any SAS character expression.

Details
The KUPCASE function copies a character argument, converts all single-byte lowercase
letters to uppercase letters, and returns the altered value as a result.

KUPDATE

Inserts, deletes, and replaces character value contents

Category: DBCS

Syntax
KUPDATE(argument,position,n<, characters-to-replace>)

KUPDATE(argument,position<,n>, characters-to-replace)

Arguments

argument
specifies a character variable.

position
specifies a numeric expression that is the beginning character position.

n
specifies a numeric expression that is the length of the substring to be replaced.

Restriction: n can not be larger than the length of the expression that remains in
argument after position.

Restriction: n is optional, but you cannot omit both n and characters-to-replace
from the function.

Tip: If you omit n, SAS uses all of the characters in characters-to-replace to replace
the values of argument.

characters-to-replace
specifies a character expression that will replace the contents of argument.

Restriction: characters-to-replace is optional, but you cannot omit both
characters-to-replace and n from the function.

Tip: Enclose a literal string of characters in quotation marks.

Details
The KUPDATE function replaces the value of argument with the expression in
characters-to-replace. KUPDATE replaces n characters starting at the character you
specify in position.

430 KUPDATEB 4 Chapter 4

See Also

Function:

“KUPDATEB” on page 430

KUPDATEB

Inserts, deletes, and replaces character value contents based on byte unit

Category: DBCS

Syntax

KUPDATEB(argument,position,n<,characters-to-replace>)

KUPDATEB(argument,position <, n>, characters-to-replace)

Arguments

argument
specifies a character variable.

position
specifies the beginning character position in byte units.

n
specifies the length of the substring to be replaced in byte units.

Restriction: n can not be larger than the length (in bytes) of the expression that
remains in argument after position.

Restriction: n is optional, but you cannot omit both n and characters-to-replace
from the function.

Tip: If you omit n, SAS uses all of the characters in characters-to-replace to replace
the values of argument.

characters-to-replace
specifies a character expression to replace the contents of argument.

Restriction: characters-to-replace is optional, but you cannot omit both
characters-to-replace and n from the function.

Tip: Enclose a literal string of characters in quotation marks.

Details

The KUPDATEB function replaces the value of argument with the expression in
characters-to-replace. KUPDATEB replaces n byte units starting at the byte unit that
you specify in position.

Functions and CALL Routines 4 KVERIFY 431

See Also

Function:
“KUPDATE” on page 429

KURTOSIS
Returns the kurtosis

Category: Descriptive Statistics

Syntax
KURTOSIS(argument,argument, . . .)

Arguments

argument
is numeric. At least four arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=kurtosis(5,9,3,6); 0.928

x2=kurtosis(5,8,9,6,.); -3.3

x3=kurtosis(8,9,6,1); 1.5

x4=kurtosis(8,1,6,1); -4.483379501

x5=kurtosis(of
x1-x4);

-5.065692754

KVERIFY
Returns the position of the first character that is unique to an expression

Category: DBCS

Syntax
KVERIFY(source,excerpt-1<,…excerpt-n>)

Arguments

432 LAG 4 Chapter 4

source
specifies any SAS character expression.

excerpt
specifies any SAS character expression. If you specify more than one excerpt,
separate them with a comma.

Details
The KVERIFY function returns the position of the first character in source that is not
present in any excerpt. If KVERIFY finds every character in source in at least one
excerpt, it returns a 0.

LAG

Returns values from a queue

Category: Special

Syntax
LAG<n>(argument)

Arguments

n
specifies the number of lagged values.

argument
is numeric or character.

Details
The LAG functions, LAG1, LAG2, . . . , LAG100 return values from a queue. LAG1 can
also be written as LAG. A LAGn function stores a value in a queue and returns a value
stored previously in that queue. Each occurrence of a LAGn function in a program
generates its own queue of values.

The queue for LAGn is initialized with n missing values, where n is the length of the
queue (for example, a LAG2 queue is initialized with two missing values). When LAGn
is executed, the value at the top of the queue is removed and returned, the remaining
values are shifted upwards, and the new value of the argument is placed at the bottom
of the queue. Hence, missing values are returned for the first n executions of LAGn,
after which the lagged values of the argument begin to appear.

Note: Storing values at the bottom of the queue and returning values from the top
of the queue occurs only when the function is executed. A LAGn function that is
executed conditionally will store and return values only from the observations for which
the condition is satisfied. See Example 2 on page 433 . 4

If the argument of LAGn is an array name, a separate queue is maintained for each
variable in the array.

Functions and CALL Routines 4 LAG 433

Examples

Example 1: Creating a Data Set The following program creates a data set that
contains the values for X, Y, and Z.

options pagesize=25 linesize=64 nodate pageno=1;

data one;
input X @@;
Y=lag1(x);
Z=lag2(x);
datalines;

1 2 3 4 5 6
;
proc print;

title ’Lag Output’;
run;

Lag Output 1

Obs X Y Z

1 1 . .
2 2 1 .
3 3 2 1
4 4 3 2
5 5 4 3
6 6 5 4

LAG1 returns one missing value and the values of X (lagged once). LAG2 returns
two missing values and the values of X (lagged twice).

Example 2: Storing Every Other Lagged Value This example shows the difference in
output when you use conditional and unconditional logic in your program. Because the
LAG function stores values on the queue only when it is called, you must call LAG
unconditionally to get the correct answers.

options pagesize=25 linesize=64 nodate pageno=1;

title ’Store Every Other Lagged Value’;

data test;
input x @@;
if mod(x,2)=0 then a=lag(x);
b=lag(x);
if mod(x,2)=0 then c=b;
label a=’(WRONG) a’ c=’(RIGHT) c’;
datalines;

1 2 3 4 5 6 7 8
;

proc print label data=test;
run;

434 LBOUND 4 Chapter 4

Store Every Other Lagged Value 1

(WRONG) (RIGHT)
Obs x a b c

1 1 . . .
2 2 . 1 1
3 3 . 2 .
4 4 2 3 3
5 5 . 4 .
6 6 4 5 5
7 7 . 6 .
8 8 6 7 7

See Also

Function:
“DIF” on page 328

LBOUND

Returns the lower bound of an array

Category: Array

Syntax
LBOUND<n>(array-name)

LBOUND(array-name,bound-n)

Arguments

n
specifies the dimension for which you want to know the lower bound. If no n value is
specified, the LBOUND function returns the lower bound of the first dimension of the
array.

array-name
specifies the name of an array defined previously in the same DATA step.

bound-n
specifies the dimension for which you want to know the lower bound. Use bound-n
only if n is not specified.

Details
The LBOUND function returns the lower bound of a one-dimensional array or the lower
bound of a specified dimension of a multidimensional array. Use LBOUND in array

Functions and CALL Routines 4 LEFT 435

processing to avoid changing the lower bound of an iterative DO group each time you
change the bounds of the array. LBOUND and HBOUND can be used together to
return the values of the lower and upper bounds of an array dimension.

Examples

Example 1: One-dimensional Array In this example, LBOUND returns the lower
bound of the dimension, a value of 2. SAS repeats the statements in the DO loop five
times.

array big{2:6} weight sex height state city;
do i=lbound(big) to hbound(big);

...more SAS statements...;
end;

Example 2: Multidimensional Array This example shows two ways of specifying the
LBOUND function for multidimensional arrays. Both methods return the same value
for LBOUND, as shown in the table that follows the SAS code example.

array mult{2:6,4:13,2} mult1-mult100;

Syntax Alternative Syntax Value

LBOUND(MULT) LBOUND(MULT,1) 2

LBOUND2(MULT) LBOUND(MULT,2) 4

LBOUND3(MULT) LBOUND(MULT,3) 1

See Also

Functions:
“DIM” on page 330
“HBOUND” on page 392

Statements:
“ARRAY” on page 755
“Array Reference” on page 759

“Array Processing” in SAS Language Reference: Concepts

LEFT

Left aligns a SAS character expression

Category: Character

Syntax
LEFT(argument)

436 LENGTH 4 Chapter 4

Arguments

argument
specifies any SAS character expression.

Details
LEFT returns an argument with leading blanks moved to the end of the value. The
argument’s length does not change.

Examples

SAS Statements Results

----+----1----+

a=’ DUE DATE’;
b=left(a);
put a; DUE DATE

See Also

Functions:
“COMPRESS” on page 296
“RIGHT” on page 524
“TRIM” on page 570

LENGTH

Returns the length of an argument

Category: Character

Syntax
LENGTH(argument)

Arguments

argument
specifies any SAS expression.

Details
The LENGTH function returns an integer that represents the position of the right-most
nonblank character in the argument. If the value of the argument is missing, LENGTH

Functions and CALL Routines 4 LIBNAME 437

returns a value of 1. If the argument is a numeric variable (either initialized or
uninitialized), LENGTH returns a value of 12 and prints a note in the SAS log that the
numeric values have been converted to character values.

Examples

SAS Statements Results

len=length(’ABCDEF’);
put len; 6

LGAMMA

Returns the natural logarithm of the Gamma function

Category: Mathematical

Syntax
LGAMMA(argument)

Arguments

argument
is numeric.
Range: must be positive.

Examples

SAS Statements Results

x=lgamma(2); 0

x=lgamma(1.5); -0.120782238

LIBNAME

Assigns or deassigns a libref for a SAS data library and returns a value

Category: SAS File I/O

Syntax
LIBNAME(libref<,SAS-data-library<,engine<,options>>>)

438 LIBREF 4 Chapter 4

Arguments

libref
specifies the libref that is assigned to a SAS data library.

SAS-data-library
specifies the physical name of the SAS data library that is associated with the libref.
Specify this name as required by the host operating environment.

engine
specifies the engine that is used to access SAS files opened in the data library. If you
are specifying a SAS/SHARE server, then the engine should be REMOTE.

options
names one or more options honored by the specified engine, delimited with blanks.

Details
LIBNAME returns 0 if the operation was successful, ≠ 0 if it was not successful.

Operating Environment Information: Some systems allow a SAS-data-library value of
’’(with a space) to assign a libref to the current directory. The behavior of LIBNAME
when a single space is specified for SAS-data-library is host dependent.

If no value is provided for SAS-data-library or if SAS-data-library has a value of
’’(with no space), LIBNAME disassociates the libref from the data library.

Under some operating environments, the user can assign librefs using system
commands outside the SAS session. 4

Examples

� This example attempts to assign the libref NEW to the SAS data library MYLIB.
If an error or warning occurs, the message is written to the SAS log. Note that in
a macro statement you do not enclose character strings in quotation marks.

%if (%sysfunc(libname(new,MYLIB))) %then
%put %sysfunc(sysmsg());

� This example deassigns the libref NEW that has been previously associated with
the data library MYLIB in the preceding example. If an error or warning occurs,
the message is written to the SAS log. Note that in a macro statement you do not
enclose character strings in quotation marks.

%if (libname(new)) %then
%put %sysfunc(sysmsg());

See Also

Function:
“LIBREF” on page 438

LIBREF
Verifies that a libref has been assigned and returns a value

Functions and CALL Routines 4 LOG 439

Category: SAS File I/O

Syntax
LIBREF(libref)

Arguments

libref
specifies the libref to be verified.

Details
LIBREF returns 0 if the operation was successful, ≠0 if it was not successful.

Examples

This example verifies a libref. If an error or warning occurs, the message is written
to the log. Under some operating environments, the user can assign librefs by using
system commands outside the SAS session.

%if (%sysfunc(libref(sashelp))) %then
%put %sysfunc(sysmsg());

See Also

Function:

“LIBNAME” on page 437

LOG

Returns the natural (base e) logarithm

Category: Mathematical

Syntax
LOG(argument)

Arguments

argument
is numeric.

Range: must be positive.

440 LOG10 4 Chapter 4

Examples

SAS Statements Results

x=log(1.0); 0

x=log(10.0); 2.302585093

LOG10

Returns the logarithm to the base 10

Category: Mathematical

Syntax
LOG10(argument)

Arguments

argument
is numeric.
Range: must be positive.

Examples

SAS Statements Results

x=log10(1.0); 0

x=log10(10.0); 1

x=log10(100.0); 2

LOG2

Returns the logarithm to the base 2

Category: Mathematical

Syntax
LOG2(argument)

Arguments

Functions and CALL Routines 4 LOWCASE 441

argument
is numeric.
Range: must be positive (>0).

Examples

SAS Statements Results

x=log2(2.0); 1

x=log2(0.5); -1

LOGPDF
Computes the logarithm of a probability (mass) function

Category: Probability
Alias: LOGPMF
See: “PDF” on page 464

Syntax
LOGPDF(’dist’,quantile,parm-1, . . . ,parm-k)

The LOGPDF function computes the logarithm of the probability density (mass)
function.

LOGSDF
Computes the logarithm of a survival function

Category: Probability
See: “CDF” on page 273

Syntax
LOGSDF(’dist’,quantile,parm-1, . . . ,parm-k)

The LOGSDF function computes the logarithm of the survival function.

LOWCASE
Converts all letters in an argument to lowercase

442 MAX 4 Chapter 4

Category: Character

Syntax
LOWCASE(argument)

Arguments

argument
specifies any SAS character expression.

Details
The LOWCASE function copies a character argument, converts all uppercase letters to
lowercase letters, and returns the altered value as a result.

Examples

SAS Statements Results

x=’INTRODUCTION’;
y=lowcase(x);
put y; introduction

MAX

Returns the largest value

Category: Descriptive Statistics

Syntax
MAX(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

Comparisons
The MAX function returns a missing value (.) only if all arguments are missing.

Functions and CALL Routines 4 MDY 443

The MAX operator (<>) returns a missing value only if both operands are missing. In
this case, it returns the value of the operand that is higher in the sort order for missing
values.

Examples

SAS Statements Results

x=max(8,3); 8

x1=max(2,6,.); 6

x2=max(2.-3,1,-1); 2

x3=max(3,.,-3); 3

x4=max(of x1-x3); 6

MDY

Returns a SAS date value from month, day, and year values

Category: Date and Time

Syntax
MDY(month,day,year)

Arguments

month
specifies a numeric expression that represents an integer from 1 through 12.

day
specifies a numeric expression that represents an integer from 1 through 31.

year
specifies a numeric expression that represents an integer identifying a specific year.
Use the YEARCUTOFF system option to define the year range.

Examples

444 MEAN 4 Chapter 4

SAS Statements Result

m=8;
d=27;
y=90;
birthday=mdy(m,d,y);
put birthday= worddate.; birthday=August 27, 1990

See Also

Functions:
“DAY” on page 315

“MONTH” on page 451
“YEAR” on page 618

MEAN

Returns the arithmetic mean (average)

Category: Descriptive Statistics

Syntax
MEAN(argument,argument, . . .)

Arguments

argument
is numeric. At least one argument is required. The argument list may consist of a
variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=mean(2,.,.,6); 4

x2=mean(1,2,3,2); 2

x3=mean(of x1-x2); 3

MIN

Returns the smallest value

Category: Descriptive Statistics

Functions and CALL Routines 4 MINUTE 445

Syntax
MIN(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

Comparisons
The MIN function returns a missing value (.) only if all arguments are missing.

The MIN operator (><) returns a missing value only if either operand is missing. In
this case, it returns the value of the operand that is lower in the sort order for missing
values.

Examples

SAS Statements Results

x=min(7,4); 4

x1=min(2,.,6); 2

x2=min(2,-3,1,-1); -3

x3=min(0,4); 0

x4=min(of x1-x3); -3

MINUTE

Returns the minute from a SAS time or datetime value

Category: Date and Time

Syntax
MINUTE(time | datetime)

Arguments

time
specifies a SAS expression that represents a SAS time value.

datetime
specifies a SAS expression that represents a SAS datetime value.

446 MISSING 4 Chapter 4

Details
The MINUTE function returns an integer that represents a specific minute of the hour.
MINUTE always returns a positive number. Missing values are ignored.

Examples

SAS Statements Results

time=’3:19:24’t;
m=minute(time);
put m; 19

See Also

Functions:
“HOUR” on page 395
“SECOND” on page 542

MISSING

Returns a numeric result that indicates whether the argument contains a missing value

Category: Descriptive Statistics
Category: Character

Syntax
MISSING(numeric-expression | character-expression)

Arguments

numeric-expression
specifies numeric data.

character-expression
is the name of a character variable or an expression that evaluates to a character
value.

Details
� The MISSING function checks a numeric or character expression for a missing

value, and returns a numeric result. If the argument does not contain a missing
value, SAS returns a value of 0. If the argument contains a missing value, SAS
returns a value of 1.

� A character-expression is defined as having a missing value if the result of the
expression contains all blank spaces.

Functions and CALL Routines 4 MOD 447

� A numeric-expression is defined as having a missing value if the result of the
expression is missing (.), or if the expression contains special characters you used
to differentiate among missing values. The special characters are the letters A
through Z and the underscore, preceded by a period.

Comparisons
The NMISS function requires a numeric argument and returns the number of missing
values in the list of arguments.

Examples

This example uses the MISSING function to check whether the input variables
contain missing values.

data values;
input @1 var1 3. @5 var2 3.;
if missing(var1) then

do;
put ’Variable 1 is Missing.’;

end;
else if missing(var2) then

do;
put ’Variable 2 is Missing.’;

end;
datalines;

127
988 195
;

In this example, the following message appears in the SAS log.

Variable 2 is Missing.

See Also

Function:
“NMISS” on page 457

MOD

Returns the remainder value

Category: Mathematical

Syntax
MOD(argument-1,argument-2)

Arguments

448 MODULEC 4 Chapter 4

argument-1
is numeric.

argument-2
is numeric.
Restriction: cannot be 0

Details
The MOD function returns the remainder when the integer quotient of argument-1
divided by argument-2 is calculated.

Examples

SAS Statement Results

x1=mod(6,3); 0

x2=mod(10,3); 1

x3=mod(11,3.5); 0.5

x4=mod(10,-3); 1

MODULEC

Calls an external routine and returns a character value

Category: External Routines
See: “CALL MODULE” on page 244

Syntax
MODULEC(<cntl-string,>module-name<,argument-1, ..., argument-n>)

Details
For details on the MODULEC function, see “CALL MODULE” on page 244.

Functions and CALL Routines 4 MODULEIN 449

See Also

CALL Routines:
“CALL MODULE” on page 244
“CALL MODULEI” on page 246

Functions:
“MODULEIC” on page 449
“MODULEIN” on page 449
“MODULEN” on page 450

MODULEIC

Calls an external routine and returns a character value (in IML environment only)

Category: External Routines
Restriction: MODULEIC can only be invoked from within the IML procedure
See: “CALL MODULE” on page 244

Syntax
MODULEIC(<cntl-string,>module-name<,argument-1, ..., argument-n>)

Details
For details on the MODULEIC function, see “CALL MODULE” on page 244.

See Also

CALL Routines:
“CALL MODULE” on page 244
“CALL MODULEI” on page 246

Functions:
“MODULEC” on page 448
“MODULEIN” on page 449
“MODULEN” on page 450

MODULEIN

Calls an external routine and returns a numeric value (in IML environment only)

450 MODULEN 4 Chapter 4

Category: External Routines
Restriction: MODULEIN can only be invoked from within the IML procedure
See: “CALL MODULE” on page 244

Syntax
MODULEIN(<cntl-string,>module-name<,argument-1, ..., argument-n>)

Details
For details on the MODULEIN function, see “CALL MODULE” on page 244.

See Also

CALL Routines:
“CALL MODULE” on page 244
“CALL MODULEI” on page 246

Functions:
“MODULEC” on page 448
“MODULEIC” on page 449
“MODULEN” on page 450

MODULEN

Calls an external routine and returns a numeric value

Category: External Routines
See: “CALL MODULE” on page 244

Syntax
MODULEN(<cntl-string,>module-name<,argument-1, ..., argument-n>)

Details
For details on the MODULEN function, see “CALL MODULE” on page 244.

Functions and CALL Routines 4 MONTH 451

See Also

CALL Routines:
“CALL MODULE” on page 244
“CALL MODULEI” on page 246

Functions:
“MODULEC” on page 448
“MODULEIC” on page 449
“MODULEIN” on page 449

MONTH

Returns the month from a SAS date value

Category: Date and Time

Syntax
MONTH(date)

Arguments

date
specifies a SAS expression that represents a SAS date value.

Details
The MONTH function returns a numeric value that represents the month from a SAS
date value. Numeric values can range from 1 through 2.

Examples

452 MOPEN 4 Chapter 4

SAS Statements Results

date=’25jan94’d;
m=month(date);
put m; 1

See Also

Functions:
“DAY” on page 315
“YEAR” on page 618

MOPEN

Opens a file by directory id and member name, and returns the file identifier or a 0

Category: External Files

Syntax
MOPEN(directory-id,member-name<open-mode< ,record-length<,record-format>>>)

Arguments

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

member-name
specifies the member name in the directory.

open-mode
specifies the type of access to the file:

A APPEND mode allows writing new records after the current end
of the file.

I INPUT mode allows reading only. (Default)

O OUTPUT mode defaults to the OPEN mode specified in the host
option in the FILENAME statement or function. If no host option
is specified, it allows writing new records at the beginning of the
file.

S Sequential input mode is used for pipes and other sequential
devices such as hardware ports.

U UPDATE mode allows both reading and writing.

W Sequential update mode is used for pipes and other sequential
devices such as ports.

Default: I

Functions and CALL Routines 4 MOPEN 453

record-length
specifies a new logical record length for the file. To use the existing record length for
the file, specify a length of 0 or do not provide a value here.

record-format
specifies a new record format for the file. To use the existing record format, do not
specify a value here. Valid values are:

B specifies that data is to be interpreted as binary data.

D specifies the default record format.

E specifies the editable record format.

F specifies that the file contains fixed-length records.

P specifies that the file contains printer carriage control in
host-dependent record format.

V specifies that the file contains variable-length records.

Details
MOPEN returns the identifier for the file, or 0 if the file could not be opened. You can
use a file-id that is returned by the MOPEN function as you would use a file-id
returned by the FOPEN function.

CAUTION:
Use OUTPUT mode with care. Opening an existing file for output may overwrite the
current contents of the file without warning. 4

The member is identified by directory-id and member-name instead of by a fileref.
You can also open a directory member by using FILENAME to assign a fileref to the
member, followed by a call to FOPEN. However, when you use MOPEN, you do not
have to use a separate fileref for each member.

If the file already exists, the output and update modes default to the host option
(append or replace) specified with the FILENAME statement or function. For example,

%let rc=%sysfunc(filename(file,physical-name,,mod));
%let did=%sysfunc(dopen(&file));
%let fid=%sysfunc(mopen(&did,member-name,o,0,d));
%let rc=%sysfunc(fput(&fid,This is a test.));
%let rc=%sysfunc(fwrite(&fid));
%let rc=%sysfunc(fclose(&fid));

If ’file’ already exists, FWRITE appends the new record instead of writing it at
the beginning of the file. However, if there is no a host option specified with the
FILENAME function, the output mode implies that the record be replace.

If the open fails, use SYSMSG to retrieve the message text.

Operating Environment Information: The term directory in this description refers to
an aggregate grouping of files that are managed by the operating environment.
Different host operating environments identify such groupings with different names,
such as directory, subdirectory, MACLIB, or partitioned data set. For details, see the
SAS documentation for your operating environment.

Opening a directory member for output or append is not possible in some operating
environments. 4

Examples

This example assigns the fileref MYDIR to a directory. Then it opens the directory,
determines the number of members, retrieves the name of the first member, and opens

454 MORT 4 Chapter 4

that member. The last three arguments to MOPEN are the defaults. Note that in a
macro statement you do not enclose character strings in quotation marks.

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let frstname=’ ’;
%let memcount=%sysfunc(dnum(&did));
%if (&memcount > 0) %then

%do;
%let frstname =

%sysfunc(dread(&did,1));
%let fid =

%sysfunc(mopen(&did,&frstname,i,0,d));
macro statements to process the member

%let rc=%sysfunc(fclose(&fid));
%end;

%else
%put %sysfunc(sysmsg());

%let rc=%sysfunc(dclose(&did));

See Also

Functions:
“DCLOSE” on page 316
“DNUM” on page 333
“DOPEN” on page 334
“DREAD” on page 337
“FCLOSE” on page 348
“FILENAME” on page 358
“FOPEN” on page 371
“FPUT” on page 378
“FWRITE” on page 385
“SYSMSG” on page 558

MORT

Returns amortization parameters

Category: Financial

Syntax
MORT(a,p,r,n)

Arguments

Functions and CALL Routines 4 N 455

a
is numeric, the initial amount.

p
is numeric, the periodic payment.

r
is numeric, the periodic interest rate that is expressed as a fraction.

n
is an integer, the number of compounding periods.
Range: n ≥ 0

Details
The MORT function returns the missing argument in the list of four arguments from an
amortization calculation with a fixed interest rate that is compounded each period. The
arguments are related by

p =
ar (1 + r)n

(1 + r)n � 1

One missing argument must be provided. It is then calculated from the remaining
three. No adjustment is made to convert the results to round numbers.

Examples

An amount of $50,000 is borrowed for 30 years at an annual interest rate of 10
percent compounded monthly. The monthly payment can be expressed as

payment=mort(50000, . , .10/12,30*12);

The value returned is 438.79. The second argument has been set to missing, which
indicates that the future value is to be calculated. The 10 percent nominal annual rate
has been converted to a monthly rate of 0.10/12. The rate is the fractional (not the
percentage) interest rate per compounding period. The 30 years are converted into 360
months.

N

Returns the number of nonmissing values

Category: Descriptive Statistics

Syntax
N(argument,argument, . . .)

Arguments

456 NETPV 4 Chapter 4

argument
is numeric. At least one argument is required. The argument list may consist of a
variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=n(1,0,.,2,5,.); 4

x2=n(1,2); 2

x3=n(of x1-x2); 2

NETPV
Returns the net present value as a fraction

Category: Financial

Syntax
NETPV(r,freq,c0,c1, . . . ,cn)

r
is numeric, the interest rate over a specifed base period of time expressed as a
fraction.

freq
is numeric, the number of payments during the base period of time that is specified
with the rate r.
Range: freq > 0
Exception: The case freq = 0 is a flag to allow continuous discounting.

c0,c1, . . . ,cn
are numeric cash flows that represent cash outlays (payments) or cash inflows
(income) occurring at times 0, 1, ... n. These cash flows are assumed to be equally
spaced, beginning-of-period values. Negative values represent payments, positive
values represent income, and values of 0 represent no cash flow at a given time. The
c0 argument and the c1 argument are required.

Details
The NETPV function returns the net present value at time 0 for the set of cash
payments c0,c1, . . . ,cn, with a rate r over a specified base period of time. The
argument freq>0 describes the number of payments that occur over the specified base
period of time.

The net present value is given by

NETPV (r; freq; c0; c1; :::; cn) =

nX

i=0

cix
i

Functions and CALL Routines 4 NMISS 457

where

x =

�
1

(1+r)(1=freq)
freq > 0

e�r freq = 0

Missing values in the payments are treated as 0 values. When freq>0, the rate r is
the effective rate over the specified base period. To compute with a quarterly rate (the
base period is three months) of 4 percent with monthly cash payments, set freq to 3 and
set r to .04.

If freq is 0, continuous discounting is assumed. The base period is the time interval
between two consecutive payments, and the rate r is a nominal rate.

To compute with a nominal annual interest rate of 11 percent discounted
continuously with monthly payments, set freq to 0 and set r to .11/12.

Examples

For an initial investment of $500 that returns biannual payments of $200, $300, and
$400 over the succeeding 6 years and an annual discount rate of 10 percent, the net
present value of the investment can be expressed as

value=netpv(.10,.5,-500,200,300,400);

The value returned is 95.98.

NMISS

Returns the number of missing values

Category: Descriptive Statistics

Syntax
NMISS(argument,argument, . . .)

Arguments

argument
is numeric. At least one argument is required. The argument list may consist of a
variable list, which is preceded by OF.

458 NORMAL 4 Chapter 4

Examples

SAS Statements Results

x1=nmiss(1,0,.,2,5,.); 2

x2=nmiss(1,0); 0

x3=nmiss(of x1-x2); 0

NORMAL

Returns a random variate from a normal distribution

Category: Random Number
See: “RANNOR” on page 516

Syntax
NORMAL(seed)

Arguments

seed
is an integer.
Range: seed < 231 − 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

NOTE

Returns an observation ID for the current observation of a SAS data set

Category: SAS File I/O

Syntax
NOTE(data-set-id)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

Functions and CALL Routines 4 NOTE 459

Details
You can use the observation ID value to return to the current observation by using
POINT. Observations can be marked by using NOTE and then returned to later by
using POINT. Each observation ID is a unique numeric value.

To free the memory that is associated with an observation ID, use DROPNOTE.

Examples

This example calls CUROBS to display the observation number, calls NOTE to mark
the observation, and calls POINT to point to the observation that corresponds to
NOTEID.

%let dsid=%sysfunc(open(sasuser.fitness,i));
/* Go to observation 10 in data set */

%let rc=%sysfunc(fetchobs(&dsid,10));
%if %sysfunc(abs(&rc)) %then

%put FETCHOBS FAILED;
%else

%do;
/* Display observation number */
/* in the Log */

%let cur=%sysfunc(curobs(&dsid));
%put CUROBS=&cur;

/* Mark observation 10 using NOTE */
%let noteid=%sysfunc(note(&dsid));

/* Rewind pointer to beginning */
/* of data */
/* set using REWIND */

%let rc=%sysfunc(rewind(&dsid));
/* FETCH first observation into DDV */

%let rc=%sysfunc(fetch(&dsid));
/* Display first observation number */

%let cur=%sysfunc(curobs(&dsid));
%put CUROBS=&cur;

/* POINT to observation 10 marked */
/* earlier by NOTE */

%let rc=%sysfunc(point(&dsid,¬eid));
/* FETCH observation into DDV */

%let rc=%sysfunc(fetch(&dsid));
/* Display observation number 10 */
/* marked by NOTE */

%let cur=%sysfunc(curobs(&dsid));
%put CUROBS=&cur;

%end;
%if (&dsid > 0) %then

%let rc=%sysfunc(close(&dsid));

The output produced by this program is:

CUROBS=10
CUROBS=1
CUROBS=10

460 NPV 4 Chapter 4

See Also

Functions:
“DROPNOTE” on page 338
“OPEN” on page 460
“POINT” on page 481
“REWIND” on page 523

NPV

Returns the net present value with the rate expressed as a percentage

Category: Financial

Syntax
NPV(r,freq,c0,c1, . . . ,cn)

Arguments

r
is numeric, the interest rate over a specifed base period of time expressed as a
percentage.

freq
is numeric, the number of payments during the base period of time specified with the
rate r.
Range: freq > 0
Exception: The case freq = 0 is a flag to allow continuous discounting.

c0,c1, . . . ,cn
are numeric cash flows that represent cash outlays (payments) or cash inflows
(income) occurring at times 0, 1, ... n. These cash flows are assumed to be equally
spaced, beginning-of-period values. Negative values represent payments, positive
values represent income, and values of 0 represent no cash flow at a given time. The
c0 argument and the c1 argument are required.

Comparisons
The NPV function is identical to NETPV, except that the r argument is provided as a
percentage.

OPEN

Opens a SAS data set and returns a value

Functions and CALL Routines 4 OPEN 461

Category: SAS File I/O

Syntax
OPEN(<data-set-name<,mode>>)

Arguments

data-set-name
specifies the SAS data set to be opened. The name should be of the form

<libref.>member-name<(data-set-options)>

Default: The default value for data-set-name is _LAST_.
Restriction: If you specify the FIRSTOBS= and OBS= data set, they are ignored.

All other data set options are valid.

mode
specifies the type of access to the data set:

I opens the data set in INPUT mode (default). Values can be read
but not modified. ’I’ uses the strongest access mode available in
the engine. That is, if the engine supports random access, OPEN
defaults to random access. Otherwise, the file is opened in ’IN’
mode automatically. Files are opened with sequential access and
a system level warning is set.

IN opens the data set in INPUT mode. Observations are read
sequentially, and you are allowed to revisit an observation.

IS opens the data set in INPUT mode. Observations are read
sequentially, but you are not allowed to revisit an observation.

Default: I

Details
OPEN opens a SAS data set (a SAS data set or a SAS SQL view) and returns a unique
numeric data set identifier, which is used in most other data set access functions.
OPEN returns 0 if the data set could not be opened.

By default, a SAS data set is opened with a control level of RECORD. For details, see
the data set option “CNTLLEV=” on page 11. An open SAS data set should be closed
when it is no longer needed. If you open a data set within a DATA step, it will be closed
automatically when the DATA step ends.

OPEN defaults to the strongest access mode available in the engine. That is, if the
engine supports random access, OPEN defaults to random access when data sets are
opened in INPUT or UPDATE mode. Otherwise, data sets are opened with sequential
access, and a system-level warning is set.

Examples

� This example opens the data set PRICES in the library MASTER using INPUT
mode. Note that in a macro statement you do not enclose character strings in
quotation marks.

462 ORDINAL 4 Chapter 4

%let dsid=%sysfunc(open(master.prices,i));
%if (&dsid = 0) %then

%put %sysfunc(sysmsg());
%else

%put PRICES data set has been opened;

� This example passes values from macro or DATA step variables to be used on data
set options. It opens the data set SASUSER.HOUSES, and uses the WHERE=
data set option to apply a permanent WHERE clause. Note that in a macro
statement you do not enclose character strings in quotation marks.

%let choice = style="RANCH";
%let dsid=%sysfunc(open(sasuser.houses

(where=(&choice)),i));

See Also

Function:
“CLOSE” on page 289

ORDINAL

Returns any specified order statistic

Category: Descriptive Statistics

Syntax
ORDINAL(count,argument,argument, . . .)

Arguments

count
is an integer that is less than the number of elements in the list of arguments.

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, preceded by OF.

Details
The ORDINAL function sorts the list and returns the countth argument in the list.

Functions and CALL Routines 4 PATHNAME 463

Examples

SAS Statements Results

x1=ordinal(4,1,2,3,-4,5,6,7); 3

PATHNAME

Returns the physical name of a SAS data library or of an external file, or returns a blank

Category: SAS File I/O
Category: External Files

Syntax
PATHNAME(fileref | libref)

Arguments

fileref
specifies the fileref assigned to an external file.

libref
specifies the libref assigned to a SAS library.

Details
PATHNAME returns the physical name of an external file or SAS library, or blank if
fileref or libref is invalid. The default length of the target variable in the DATA step is
200 characters.

A fileref can be assigned to an external file by using the FILENAME statement or
the FILENAME function.

Operating Environment Information: Under some operating environments, filerefs can
also be assigned by using system commands. For details, see the SAS documentation
for your operating environment. 4

You can assign a libref to a SAS library using the LIBNAME statement or the
LIBNAME function. Some operating environments allow you to assign a libref using
system commands.

Examples

This example uses the FILEREF function to verify that the fileref MYFILE is
associated with an external file. Then it uses PATHNAME to retrieve the actual name
of the external file:

data _null_;
length fname $ 100;
rc=fileref("myfile");

464 PDF 4 Chapter 4

if (rc=0) then
do;

fname=pathname("myfile");
put fname=;

end;
run;

See Also

Functions:
“FEXIST” on page 354
“FILEEXIST” on page 357
“FILENAME” on page 358
“FILEREF” on page 360

Statements:
“LIBNAME” on page 913
“FILENAME” on page 821

PDF

Computes probability density (mass) functions

Category: Probability
Alias: PMF

Syntax
PDF (’dist’,quantile,parm-1, . . . ,parm-k)

Arguments

’dist’
is a character string that identifies the distribution. Valid distributions are as follows:

Distribution Argument

Bernoulli ’BERNOULLI’

Beta ’BETA’

Binomial ’BINOMIAL’

Cauchy ’CAUCHY’

Chi-squared ’CHISQUARED’

Exponential ’EXPONENTIAL’

F ’F’

Gamma ’GAMMA’

Functions and CALL Routines 4 PDF 465

Distribution Argument

Geometric ’GEOMETRIC’

Hypergeometric ’HYPERGEOMETRIC’

Laplace ’LAPLACE’

Logistic ’LOGISTIC’

Lognormal ’LOGNORMAL’

Negative binomial ’NEGBINOMIAL’

Normal ’NORMAL’|’GAUSS’

Pareto ’PARETO’

Poisson ’POISSON’

T ’T’

Uniform ’UNIFORM’

Wald (inverse Gaussian) ’WALD’|’IGAUSS’

Weibull ’WEIBULL’

Note: Except for T and F, any distribution can be minimally identified by its first
four characters. 4

quantile
is a numeric random variable.

parm-1, . . . ,parm-k
are shape, location, or scale parameters appropriate for the specific distribution. See
the description for each distribution in “Details” for complete information about these
parameters.

Details

Bernoulli Distribution

PDF(’BERNOULLI’,x,p)

where

x
is a numeric random variable.

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

The PDF function for the Bernoulli distribution returns the probability density
function of a Bernoulli distribution, with probability of success equal to p, which is
evaluated at the value x. The equation follows:

PDF
�

0BERN 0; x; p
�
=

8>><
>>:

0 x < 0

1� p x = 0

0 0 < x < 1

p x = 1

0 x > 1

Note: There are no location or scale parameters for this distribution. 4

466 PDF 4 Chapter 4

Beta Distribution

PDF(’BETA’,x,a,b<,l,r>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric shape parameter.
Range: b > 0

l
is an optional numeric left location parameter.

r
is an optional right location parameter.
Range: r > l

The PDF function for the beta distribution returns the probability density function of
a beta distribution, with shape parameters a and b, which is evaluated at the value x.
The equation follows:

PDF
�

0BETA0; x; a; b; l; r
�
=

(
0 x < 1

1

�(a;b)
(x�l)a�1(x�r)b�1

(r�l)a+b�1
l � x � r

0 x > r

Note: The quantity x�l

r�l
is forced to be � � x�l

r�l
� 1� 2�. The default values for l

and r are 0 and 1, respectively. 4

Binomial Distribution

PDF(’BINOMIAL’,m,p,n)

where

m
is an integer random variable that counts the number of successes.

p
is a numeric parameter that is the probability of success.
Range: 0 ≤ p ≤ 1

n
is an integer parameter that counts the number of independent Bernoulli trials.
Range: n > 0

The PDF function for the binomial distribution returns the probability density
function of a binomial distribution, with parameters p and n, which is evaluated at the
value m. The equation follows:

PDF
�
0
BINOM 0;m; p; n

�
=

8<
:

0 m < 0�
n
m

�
pm (1� p)n�m 0 � m � n

0 m > n

Functions and CALL Routines 4 PDF 467

Note: There are no location or scale parameters for the binomial distribution. 4

Cauchy Distribution

PDF(’CAUCHY’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter.

�

is an optional numeric scale parameter.

Range: � > 0

The PDF function for the Cauchy distribution returns the probability density
function of a Cauchy distribution, with location parameter � and scale parameter �,
which is evaluated at the value x. The equation follows:

PDF
�

0CAUCHY 0; x; �; �
�
=

1

�

�

�2 + (x� �)2

!

Note: The default values for � and � are 0 and 1, respectively. 4

Chi-squared Distribution

PDF(’CHISQUARED’,x,df <,nc>)

where

x
is a numeric random variable.

df
is a numeric degrees of freedom parameter.

Range: df > 0

nc
is an optional numeric noncentrality parameter.

Range: nc ≥ 0

The PDF function for the chi-squared distribution returns the probability density
function of a chi-squared distribution, with df degrees of freedom and noncentrality
parameter nc, which is evaluated at the value x. This function accepts noninteger
degrees of freedom. If nc is omitted or equal to zero, the value returned is from the
central chi-squared distribution. The following equation describes the PDF function of
the chi–squared distribution,

PDF
�

0CHISQ0; x; v; �
�
=

(0 x < 0
1P
j=0

e
�

�

2

(�
2
)
j

j!
pc (x; v + 2j) x � 0

where pc(.,.) denotes the density from the central chi-squared distribution:

468 PDF 4 Chapter 4

pc (x; a) =
2
pg

�x
2
;
a

2

�

and where pg(y,b) is the density from the Gamma distribution, which is given by

pg (y; b) =
� (b)

e�yyb�1

Exponential Distribution

PDF(’EXPONENTIAL’,x <,�>)

where

x
is a numeric random variable.

�

is an optional scale parameter.
Range: � > 0

The PDF function for the exponential distribution returns the probability density
function of an exponential distribution, with scale parameter �, which is evaluated at
the value x. The equation follows:

PDF
�
0EXPO0; x; �

�
=
n 0 x < 0

1

�
exp

�
�

x

�

�
x � 0

Note: The default value for � is 1. 4

F Distribution

PDF(’F’,x,ndf,ddf<,nc>)

where

x
is a numeric random variable.

ndf
is a numeric numerator degrees of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.
Range: ddf > 0

nc
is a numeric noncentrality parameter.
Range: nc ≥ 0

The PDF function for the F distribution returns the probability density function of an
F distribution, with ndf numerator degrees of freedom, ddf denominator degrees of
freedom, and noncentrality parameter nc, which is evaluated at the value x. This
function accepts noninteger degrees of freedom for ndf and ddf. If nc is omitted or equal
to zero, the value returned is from a central F distribution. The following equation
describes the PDF function of the F distribution,

Functions and CALL Routines 4 PDF 469

PDF
�

0F 0; x; v1; v2; �
�
=

(0 x < 0
1P
j=0

e�
�

2

(�
2
)
j

j!
pf (f; v1 + 2j; v2) x � 0

where pf(f,u1,u2) is the density from the central F distribution with

pf (f;u1; u2) = pB

�
u1f

uf + u2
;
u1

2
;
u2

2

�
u1u2

(u2 + u1f)
2

and where pB(x,a,b) is the density from the standard beta distribution.

Note: There are no location scale parameters for the F distribution. 4

Gamma Distribution

PDF(’GAMMA’,x,a<,�>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

�

is an optional numeric scale parameter.
Range: � > 0

The PDF function for the gamma distribution returns the probability density
function of a gamma distribution, with shape parameter a and scale parameter �, which
is evaluated at the value x. The equation follows:

PDF
�

0GAMMA0; x; a; �
�
=

�
0 x < 0

1

�a�(a)
xa�1exp

�
�

x

�

�
x � 0

Note: The default value for � is 1. 4

Geometric Distribution

PDF(’GEOMETRIC’,m,p)

where

m
is a numeric random variable that denotes the number of failures.
Range: m ≥ 0

p
is a numeric probability.
Range: 0 ≤ p ≤ 1

The PDF function for the geometric distribution returns the probability density
function of a geometric distribution, with parameter p, which is evaluated at the value
m. The equation follows:

470 PDF 4 Chapter 4

PDF
�

0GEOM 0;m; p
�
=

n
0 m < 0
p (1� p)m m � 0

Note: There are no location or scale parameters for this distribution. 4

Hypergeometric Distribution

PDF(’HYPER’,x,m,k,n<,r>)

where

x
is an integer random variable.

m
is an integer population size parameter.

Range: m ≥ 1

k
is an integer number of items in the category of interest.

Range: 0 ≤ k ≤ m

n
is an integer sample size parameter.

Range: 0 ≤ n ≤ m

r
is an optional numeric odds ratio parameter.

Range: r > 0

The PDF function for the hypergeometric distribution returns the probability density
function of an extended hypergeometric distribution, with population size m, number of
items k, sample size n, and odds ratio r, which is evaluated at the value x. If r is
omitted or equal to 1, the value returned is from the usual hypergeometric distribution.
The equation follows:

PDF
�

0HY PER0; x;m;k; n; r
�
=8>>>>>><

>>>>>>:

0 x < max (0; k + n�m)�
k
x

��
m� k
n � x

�
r
x

min(k;n)P
j=max(0;k+n�m)

�
k
j

��
m� k
n� j

�
r
j

max (0; k + n �m) � x � min (k; n)

0 x > min (k; n)

Laplace Distribution

PDF(’LAPLACE’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter.

Functions and CALL Routines 4 PDF 471

�

is an optional numeric scale parameter.

Range: � > 0

The PDF function for the Laplace distribution returns the probability density
function of the Laplace distribution, with location parameter � and scale parameter �,
which is evaluated at the value x. The equation follows:

PDF
�

0LAPLACE 0; x; �; �
�
=

1

2
exp

�
jx� �j

�

�

Note: The default values for � and � are 0 and 1, respectively. 4

Logistic Distribution

PDF(’LOGISTIC’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter.

�

is an optional numeric scale parameter.

Range: � > 0

The PDF function for the logistic distribution returns the probability density function
of a logistic distribution, with a location parameter � and a scale parameter �, which is
evaluated at the value x. The equation follows:

PDF
�

0LOGISTIC 0; x; �; �
�
=

1

�
�
1 + exp

�
x��

�

��

Note: The default values for � and � are 0 and 1, respectively. 4

Lognormal Distribution

PDF(’LOGNORMAL’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter.

�

is an optional numeric scale parameter.

Range: � > 0

The PDF function for the lognormal distribution returns the probability density
function of a lognormal distribution, with location parameter � and scale parameter �,
which is evaluated at the value x. The equation follows:

472 PDF 4 Chapter 4

PDF
�

0LOGN 0; x; �; �
�
=

�
0 x � 0

1

x

p
2��

exp
�
�

(log(x)��)2

2�2

�
x > 0

Note: The default values for � and � are 0 and 1, respectively. 4

Negative Binomial Distribution

PDF(’NEGBINOMIAL’,m,p,n)

where

m
is a positive integer random variable that counts the number of failures.
Range: m ≥ 0

p
is a numeric probability of success parameter.
Range: 0 ≤ p ≤ 1

n
is an integer parameter that counts the number of successes.
Range: n ≥ 1

The PDF function for the negative binomial distribution returns the probability
density function of a negative binomial distribution, with probability of success p and
number of successes n, which is evaluated at the value m. The equation follows:

PDF
�

0NEGB 0;m; p; n
�
=

(
0 m < 0

pn
�
n+m� 1

m

�
(1 � p)m m � 0

Note: There are no location or scale parameters for the negative binomial
distribution. 4

Normal Distribution

PDF(’NORMAL’,x<,�,�>)

where

x
is a numeric random variable.

�

is an optional numeric location parameter.

�

is an optional numeric scale parameter.
Range: � > 0

The PDF function for the normal distribution returns the probability density function
of a normal distribution, with location parameter � and scale parameter �, which is
evaluated at the value x. The equation follows:

PDF
�

0NORMAL0; x; �; �
�
=

1

�
p
2�
exp

�(x� �)2

2�2

!

Functions and CALL Routines 4 PDF 473

Note: The default values for � and � are 0 and 1, respectively. 4

Pareto Distribution

PDF(’PARETO’,x,a<,k>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.

Range: a > 0

k
is an optional numeric scale parameter.

Range: k > 0
The PDF function for the Pareto distribution returns the probability density function

of a Pareto distribution, with shape parameter a and scale parameter k, which is
evaluated at the value x. The equation follows:

PDF
�

0PARETO0; x; a; k
�
=

�
0 x < k
a

k

�
k

x

�a+1
x � k

Note: The default value for k is 1. 4

Poisson Distribution

PDF(’POISSON’,n,m)

where

n
is an integer random variable.

m
is a numeric mean parameter.

Range: m > 0

The PDF function for the Poisson distribution returns the probability density
function of a Poisson distribution, with mean m, which is evaluated at the value n. The
equation follows:

PDF
�

0POISSON 0; n;m
�
=

n
0 n < 0

e�mm
n

n!
n � 0

Note: There are no location or scale parameters for the Poisson distribution. 4

T distribution

PDF(’T’,t,df<,nc>)

where

t
is a numeric random variable.

474 PDF 4 Chapter 4

df
is a numeric degrees of freedom parameter.
range: df > 0

nc
is an optional numeric noncentrality parameter.

The PDF function for the T distribution returns the probability density function of a
T distribution, with degrees of freedom df and noncentrality parameter nc, which is
evaluated at the value x. This function accepts noninteger degrees of freedom. If nc is
omitted or equal to zero, the value returned is from the central T distribution. The
equation follows:

PDF
�

0T 0; t; v; �
�
=

2(
1

2
v�)�

�
v

2

�
1Z

0

xv�1e�
1

2
x
2 1
p
2�

e�
1

2
(tx
p
v
��)

2 x
p
v
dx

Note: There are no location or scale parameters for the T distribution. 4

Uniform Distribution

PDF(’UNIFORM’,x<,l,r>)

where

x
is a numeric random variable.

l
is an optional numeric left location parameter.

r
is an optional numeric right location parameter.
Range: r > l

The PDF function for the uniform distribution returns the probability density
function of a uniform distribution, with left location parameter l and right location
parameter r, which is evaluated at the value x. The equation follows:

PDF
�

0UNIFORM 0; x; l; r
�
=

(
0 x < l
1

r�l
l � x � r

0 x > r

Note: The default values for l and r are 0 and 1, respectively. 4

Wald (Inverse Gaussian) Distribution

PDF(’WALD’,x,d)

PDF(’IGAUSS’,x,d)

where

x
is a numeric random variable.

d
is a numeric shape parameter.

Functions and CALL Routines 4 PDF 475

Range: d > 0
The PDF function for the Wald distribution returns the probability density function

of a Wald distribution, with shape parameter d, which is evaluated at the value x. The
equation follows:

PDF
�

0WALD0; x; d
�
=

(
0 x � 0q

d

2�x
exp

�
�d

2
x+ d� d

2x

�
x > 0

Note: There are no location or scale parameters for the Wald distribution. 4

Weibull Distribution

PDF(’WEIBULL’,x,a<,�>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

�

is an optional numeric scale parameter.
Range: � > 0

The PDF function for the Weibull distribution returns the probability density
function of a Weibull distribution, with shape parameter a and scale parameter �,
which is evaluated at the value x. The equation follows:

PDF
�

0WEIBULL0; x; a;�
�
=

�
0 x < 0

exp
�
�
�
x

�

�a� a

�

�
x

�

�a�1
x � 0

Note: The default value for � is 1. 4

Examples

SAS Statements Results

y=pdf(’BERN’,0,.25); 0.75

y=pdf(’BERN’,1,.25); 0.25

y=pdf(’BETA’,0.2,3,4); 1.2288

y=pdf(’BINOM’,4,.5,10); 0.20508

y=pdf(’CAUCHY’,2); 0.063662

y=pdf(’CHISQ’,11.264,11); 0.081686

y=pdf(’EXPO’,1); 0.36788

y=pdf(’F’,3.32,2,3); 0.054027

y=pdf(’GAMMA’,1,3); 0.18394

y=pdf(’HYPER’,2,200,50,10); 0.28685

476 PEEK 4 Chapter 4

SAS Statements Results

y=pdf(’LAPLACE’,1); 0.18394

y=pdf(’LOGISTIC’,1); 0.19661

y=pdf(’LOGNORMAL’,1); 0.39894

y=pdf(’NEGB’,1,.5,2); 0.25

y=pdf(’NORMAL’,1.96); 0.058441

y=pdf(’PARETO’,1,1); 1

y=pdf(’POISSON’,2,1); 0.18394

y=pdf(’T’,.9,5); 0.24194

y=pdf(’UNIFORM’,0.25); 1

y=pdf(’WALD’,1,2); 0.56419

y=pdf(’WEIBULL’,1,2); 0.73576

PEEK

Stores the contents of a memory address into a numeric variable

Category: Special

Syntax
PEEK(address<,length>)

Arguments

address
specifies the memory address.

length
specifies the data length.

Default: a 4-byte address pointer

Range: 2 to 8

Details
If you do not have access to the memory storage location that you are requesting, the
PEEK function returns an "Invalid argument" error.

Comparisons
The PEEK function stores the contents of a memory address into a numeric variable.
The PEEKC function stores the contents of a memory address into a character variable.

Functions and CALL Routines 4 PEEKC 477

Examples

The following example, specific to the OS/390 operating environment, returns a
numeric value that represents the address of the Communication Vector Table (CVT).

data _null_;
/* 16 is the location of of the CVT address */

y=16;
x=peek(y);
put ’x= ’ x hex8.;

run;

See also the second example in the PEEKC function description.

See Also

Functions:

“ADDR” on page 227

“PEEKC” on page 477

CALL Routine:

“CALL POKE” on page 247

PEEKC

Stores the contents of a memory address into a character variable

Category: Special

Syntax
PEEKC(address<,length>)

Arguments

address
specifies the memory address.

length
specifies the data length.

Default: 8, unless the variable length has already been set (by the LENGTH
statement, for example)

Range: 1 to 32,767

Details
If you do not have access to the memory storage location that you are requesting, the
PEEKC function returns an "Invalid argument" error.

478 PEEKC 4 Chapter 4

Comparisons
The PEEKC function stores the contents of a memory address into a character variable.
The PEEK function stores the contents of a memory address into a numeric variable.

Examples

Example 1: Listing ASCB Bytes The following example, specific to the OS/390
operating environment, uses both PEEK and PEEKC, and prints the first four bytes of
the Address Space Control Block (ASCB).

data _null_;
length y $4;

/* 220x is the location of the ASCB pointer */
x=220x;
y=peekc(peek(x));
put ’y= ’ y;

run;

Example 2: Creating a DATA Step View This example, specific to the OS/390 operating
environment, also uses both the PEEK and PEEKC functions. It creates a DATA step
view that accesses the entries in the Task Input Output Table (TIOT). The PRINT
procedure is then used to print the entries. Entries in the TIOT include the three
components outlined in the following list. In this example, TIOT represents the starting
address of the TIOT entry.

TIOT+4 is the DDname. This component takes up 8 bytes.

TIOT+12 is a 3-byte pointer to the Job File Control Block (JFCB).

TIOT+134 is the volume serial number (volser) of the data set. This component
takes up 6 bytes.

Here is the program:

/* Create a DATA step view of the contents */
/* of the TIOT. The code steps through each */
/* TIOT entry to extract the DDname, JFCB, */
/* and volser of each DDname that has been */
/* allocated for the current task. The data */
/* set name is also extracted from the JFCB. */

data save.tiot/view=save.tiot;
length ddname $8 volser $6 dsname $44;

/* Get the TCB (Task Control Block)address */
/* from the PSATOLD variable in the PSA */
/* (Prefixed Save Area). The address of */
/* the PSA is 21CX. Add 12 to the address */
/* of the TCB to get the address of the */
/* TIOT. Add 24 to bypass the 24-byte */
/* header, so that TIOTVAR represents the */
/* start of the TIOT entries. */

tiotvar=peek(peek(021CX)+12)+24;

/* Loop through all TIOT entries until the */
/* TIOT entry length (indicated by the */
/* value of the first byte) is 0. */

Functions and CALL Routines 4 PEEKC 479

do while(peek(tiotvar,1));

/* Check to see whether the current TIOT */
/* entry is a freed TIOT entry (indicated */
/* by the high order bit of the second */
/* byte of the TIOT entry). If it is not */
/* freed, then proceed. */

if peek(tiotvar+1,1)NE’l.......’B then do;
ddname=peekc(tiotvar+4);
jfcb=peek(tiotvar+12,3);
volser=peekc(jfcb+134);

/* Add 16 to the JFCB value to get */
/* the data set name. The data set */
/* name is 44 bytes. */

dsname=peekc(jfcb+16);
output;
end;

/* Increment the TIOTVAR value to point */
/* to the next TIOT entry. This is done */
/* by adding the length of the current */
/* TIOT entry (indicated by first byte */
/* of the entry) to the current value */
/* of TIOTVAR. */

tiotvar+peek(tiotvar,1);
end;

/* The final DATA step view does not */
/* contain the TIOTVAR and JFCB variables. */

keep ddname volser dsname;
run;

/* Print the TIOT entries. */
proc print data=save.tiot uniform width=minimum;
run;

In the PROC PRINT statement, the UNIFORM option ensures that each page of the
output is formatted exactly the same way. WIDTH=MINIMUM causes the PRINT
procedure to use the minimum column width for each variable on the page. The column
width is defined by the longest data value in that column.

480 PERM 4 Chapter 4

See Also

CALL Routine:
“CALL POKE” on page 247

Functions:
“ADDR” on page 227
“PEEK” on page 476

PERM

Computes the number of permutations of n items taken r at a time and returns a value

Category: Mathematical

Syntax
PERM(n<,r>)

Arguments

n
is an integer that represents the total number of elements from which the sample is
chosen.

r
is an optional integer value that represents the number of chosen elements. If r is
omitted, the function returns the factorial of n.
Restriction: r ≤ n

Details
The mathematical representation of the PERM function is given by the following
equation:

PERM (n; r) =
n!

(n � r)!

with n ≥ 0, r ≥ 0, and n≥ r.
If the expression cannot be computed, a missing value is returned.

Functions and CALL Routines 4 POINT 481

Examples

SAS Statements Result

x=perm(5,1); 5

x=perm(5); 120

x=perm(5,2) 20

See Also

Functions:
“COMB” on page 293
“FACT” on page 346

POINT

Locates an observation identified by the NOTE function and returns a value

Category: SAS File I/O

Syntax
POINT(data-set-id,note-id)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

note-id
specifies the identifier assigned to the observation by the NOTE function.

Details
POINT returns 0 if the operation was successful, ≠0 if it was not successful. POINT
prepares the program to read from the SAS data set. The Data Set Data Vector is not
updated until a read is done using FETCH or FETCHOBS.

Examples

This example calls NOTE to obtain an observation ID for the most recently read
observation of the SAS data set MYDATA. It calls POINT to point to that observation,
and calls FETCH to return the observation marked by the pointer.

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetch(&dsid));

482 POISSON 4 Chapter 4

%let noteid=%sysfunc(note(&dsid));
...more macro statements...

%let rc=%sysfunc(point(&dsid,¬eid));
%let rc=%sysfunc(fetch(&dsid));

...more macro statements...
%let rc=%sysfunc(close(&dsid));

See Also

Functions:
“DROPNOTE” on page 338
“NOTE” on page 458
“OPEN” on page 460

POISSON

Returns the probability from a Poisson distribution

Category: Probability
See: “CDF” on page 273

Syntax
POISSON(m,n)

Arguments

m
is a numeric mean parameter.
Range: m ≥ 0

n
is an integer random variable.
Range: n ≥ 0

Details
The POISSON function returns the probability that an observation from a Poisson
distribution, with mean m, is less than or equal to n. To compute the probability that
an observation is equal to a given value, n, compute the difference of two probabilities
from the Poisson distribution for n and n− .

Functions and CALL Routines 4 POKE 483

Examples

SAS Statements Results

x=poisson(1,2); 0.9196986029

POKE

Writes a value directly into memory

Category: Special

Syntax
POKE(source,pointer<,length>)

Arguments

source
specifies a SAS expression that contains a value to write into memory.

pointer
specifies a numeric SAS expression that contains the virtual address of the data that
the POKE function alters.

length
specifies a numeric SAS expression that contains the number of bytes to write from
the source to the address indicated by pointer. If you omit length, the action that the
POKE function takes depends on whether source is a character value or a numeric
value:

� If source is a character value, then the POKE routine copies the entire value of
source to the specified memory location.

� If source is a numeric value, then the POKE function converts source into a long
integer and writes into memory the number of bytes that constitute a pointer.

Operating Environment Information: Under OS/390, pointers are 3 or 4 bytes
long, depending on the situation. 4

Details
CAUTION:

The POKE function is intended only for experienced programmers in specific cases. If you
plan to use this function, use extreme care both in your programming and in your
typing. Writing directly into memory can cause devastating problems. It bypasses the
normal safeguards that prevent you from destroying a vital element in your SAS
session or in another piece of software that is active at the time. 4

If you do not have access to the memory location that you specify, the POKE function
returns an "Invalid argument" error.

484 PROBBETA 4 Chapter 4

See Also

Functions:
“ADDR” on page 227
“PEEK” on page 476
“PEEKC” on page 477

CALL Routine:
“CALL POKE” on page 247

PROBBETA
Returns the probability from a beta distribution

Category: Probability
See: “CDF” on page 273

Syntax
PROBBETA(x,a,b)

Arguments

x
is a numeric random variable.
Range: 0 ≤ x ≤ 1

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric shape parameter.
Range: b > 0

Details
The PROBBETA function returns the probability that an observation from a beta
distribution, with shape parameters a and b, is less than or equal to x.

Example

SAS Statements Results

x=probbeta(.2,3,4); 0.09888

PROBBNML
Returns the probability from a binomial distribution

Functions and CALL Routines 4 PROBBNRM 485

Category: Probability
See: “CDF” on page 273, “PDF” on page 464

Syntax
PROBBNML(p,n,m)

Arguments

p
is a numeric probability of success parameter.
RANGE: 0 ≤ p ≤ 1

n
is an integer number of independent Bernoulli trials parameter.
RANGE: n > 0

m
is an integer number of successes random variable.
RANGE: 0 ≤ m ≤ n

Details
The PROBBNML function returns the probability that an observation from a binomial
distribution, with probability of success p, number of trials n, and number of successes
m, is less than or equal to m. To compute the probability that an observation is equal to
a given value m, compute the difference of two probabilities from the binomial
distribution for m and m−1 successes.

Examples

SAS Statements Results

x=probbnml(0.5,10,4); 0.376953125

PROBBNRM

Computes a probability from the bivariate normal distribution and returns a value

Category: Probability

Syntax
PROBBNRM(x, y, r)

486 PROBCHI 4 Chapter 4

Arguments

x
is a numeric variable.

y
is a numeric variable.

r
is a numeric correlation coefficient.
Range: -1 ≤ r ≤ 1

Details
The PROBBNRM function returns the probability that an observation (X, Y) from a
standardized bivariate normal distribution with mean 0, variance 1, and a correlation
coefficient r, is less than or equal to (x, y). That is, it returns the probability that X≤x
and Y≤y. The following equation describes the PROBBNRM function, where u and v
represent the random variables x and y, respectively.

PROBBNRM(x; y; r)=
1

2�
p
1� r2

xZ

�1

yZ

�1

exp

�
�
u
2
� 2ruv + v

2

2 (1� r2)

�
dv du

Examples

SAS Statements Result

p=probbnrm(.4, -3, .2); 0.2783183345

PROBCHI

Returns the probability from a chi-squared distribution

Category: Probability
See: “CDF” on page 273

Syntax
PROBCHI(x,df<,nc>)

Arguments

x
is a numeric random variable.

Functions and CALL Routines 4 PROBF 487

Range: x ≥ 0

df
is a numeric degrees of freedom parameter.

Range: df > 0

nc
is an optional numeric noncentrality parameter.
Range: nc ≥ 0

Details
The PROBCHI function returns the probability that an observation from a chi-square
distribution, with degrees of freedom df and noncentrality parameter nc, is less than or
equal to x. This function accepts a noninteger degrees of freedom parameter df. If the
optional parameter nc is not specified or has the value 0, the value returned is from the
central chi-square distribution.

Examples

SAS Statements Results

x=probchi(11.264,11); 0.5785813293

PROBF

Returns the probability from an F distribution

Category: Probability

See: “CDF” on page 273

Syntax
PROBF(x,ndf,ddf<,nc>)

Arguments

x
is a numeric random variable.
Range: x ≥ 0

ndf
is a numeric numerator degrees of freedom parameter.

Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.

488 PROBGAM 4 Chapter 4

Range: ddf > 0

nc
is an optional numeric noncentrality parameter.

Range: nc ≥ 0

Details
The PROBF function returns the probability that an observation from an F distribution,
with numerator degrees of freedom ndf, denominator degrees of freedom ddf, and
noncentrality parameter nc, is less than or equal to x. The PROBF function accepts
noninteger degrees of freedom parameters ndf and ddf. If the optional parameter nc is
not specified or has the value 0, the value returned is from the central F distribution.

The significance level for an F test statistic is given by

p=1-probf(x,ndf,ddf);

Examples

SAS Statements Results

x=probf(3.32,2,3); 0.8263933602

PROBGAM

Returns the probability from a gamma distribution

Category: Probability

See: “CDF” on page 273

Syntax
PROBGAM(x,a)

Arguments

x
is a numeric random variable.

Range: x ≥ 0

a
is a numeric shape parameter.

Range: a > 0

Details
The PROBGAM function returns the probability that an observation from a gamma
distribution, with shape parameter a, is less than or equal to x.

Functions and CALL Routines 4 PROBHYPR 489

Examples

SAS Statements Results

x=probgam(1,3); 0.0803013971

PROBHYPR

Returns the probability from a hypergeometric distribution

Category: Probability

See: “CDF” on page 273

Syntax

PROBHYPR(N,K,n,x<,r>)

Arguments

N
is an integer population size parameter, with N ≥ 1.

Range:

K
is an integer number of items in the category of interest parameter.

Range: 0 ≤ K ≤ N

n
is an integer sample size parameter.

Range: 0 ≤ n ≤ N

x
is an integer random variable.

Range: max(0, K + n−N) ≤ x ≤ min(K,n)

r
is an optional numeric odds ratio parameter.

Range: r ≥ 0

Details

The PROBHYPR function returns the probability that an observation from an extended
hypergeometric distribution, with population size N, number of items K, sample size n,
and odds ratio r, is less than or equal to x. If the optional parameter r is not specified
or is set to 1, the value returned is from the usual hypergeometric distribution.

490 PROBIT 4 Chapter 4

Examples

SAS Statements Results

x=probhypr(200,50,10,2); 0.5236734081

PROBIT

Returns a quantile from the standard normal distribution

Category: Quantile

Syntax
PROBIT(p)

Arguments

p
is a numeric probability.
Range: 0 ≤ p < 1

Details
The PROBIT function returns the pth quantile from the standard normal distribution.
The probability that an observation from the standard normal distribution is less than
or equal to the returned quantile is p.

CAUTION:
The result could be truncated to lie between -8.222 and 7.941. 4

Note: PROBIT is the inverse of the PROBNORM function. 4

Examples

SAS Statements Results

x=probit(.025); -1.959963985

x=probit(1.e-7); -5.199337582

PROBMC

Computes a probability or a quantile from various distributions for multiple comparisons of
means, and returns a value

Category: Probability

Functions and CALL Routines 4 PROBMC 491

Syntax
PROBMC(distribution, q, prob, df, nparms<, parameters>)

Arguments

distribution
is a character string that identifies the distribution. Valid distributions are

Distribution Argument

One-sided Dunnett ’DUNNETT1’

Two-sided Dunnett ’DUNNETT2’

Maximum Modulus ’MAXMOD’

Studentized Range ’RANGE’

Williams ’WILLIAMS’

q
is the quantile from the distribution.

Restriction: Either q or prob can be specified, but not both.

prob
is the left probability from the distribution.

Restriction: Either prob or q can be specified, but not both.

df
is the degrees of freedom.

Note: A missing value is interpreted as an infinite value. 4

nparms
is the number of treatments.

Note: For DUNNETT1 and DUNNETT2, the control group is not counted. 4

parameters
is an optional set of nparms parameters that must be specified to handle the case of
unequal sample sizes. The meaning of parameters depends on the value of
distribution. If parameters is not specified, equal sample sizes are assumed; this is
usually the case for a null hypothesis.

Details
The PROBMC function returns the probability or the quantile from various
distributions with finite and infinite degrees of freedom for the the variance estimate.

The prob argument is the probability that the random variable is less than q.
Therefore, p-values can be computed as 1– prob. For example, to compute the critical
value for a 5% significance level, set prob= 0.95. The precision of the computed
probability is O(10—8) (absolute error); the precision of computed quantile is O(10—5).

Note: The studentized range is not computed for finite degrees of freedom and
unequal sample sizes. 4

492 PROBMC 4 Chapter 4

Note: Williams’ test is computed only for equal sample sizes. 4

Formulas and Parameters The equations listed here define expressions used in
equations that relate the probability, prob, and the quantile, q, for different
distributions and different situations within each distribution. For these equations, let
� be the degrees of freedom, df.

d�� (x) =
�

�

2

�
�
�

2

�
2
�

2
�1

x��1e�
�x

2

2 dx

� (x) =
1
p
2�

e�
x
2

2

�(x) =

xZ
�1

� (u) du

Many-One t-Statistics: Dunnett’s One-Sided Test
� This case relates the probability, prob, and the quantile, q, for the unequal case

with finite degrees of freedom. The parameters are �1, ..., �k, the value of nparms is
set to k, and the value of df is set to �. The equation follows:

prob =

1Z

0

1Z

�1

� (y)
kY

i=1

�

0
@�iy + qxq

1� �2
i

1
A dy du� (x)

� This case relates the probability, prob, and the quantile, q, for the equal case with

finite degrees of freedom. No parameters are passed

�
� =

q
1

2

�
, the value of

nparms is set to k, and the value of df is set to �. The equation follows:

prob =

1Z
0

1Z
�1

� (y)
h
�
�
y +

p
2qx
�ik

dy du� (x)

� This case relates the probability, prob, and the quantile, q, for the unequal case
with infinite degrees of freedom. The parameters are �1, ..., �k, the value of nparms
is set to k, and the value of df is set to missing. The equation follows:

prob =

1Z
�1

� (y)

kY
i=1

�

0
@ �iy + qq

1 � �2
i

1
A dy

Functions and CALL Routines 4 PROBMC 493

� This case relates the probability, prob, and the quantile, q, for the equal case with

infinite degrees of freedom. No parameters are passed

�
� =

q
1

2

�
, the value of

nparms is set to k, and the value of df is set to missing. The equation follows:

prob =

1Z
�1

� (y)
h
�
�
y +

p
2q
�ik

dy

Many-One t-Statistics: Dunnett’s Two-sided Test
� This case relates the probability, prob, and the quantile, q, for the unequal case

with finite degrees of freedom. The parameters are �1, ..., �k, the value of nparms is
set to k, and the value of df is set to �. The equation follows:

prob =

1Z
0

1Z
�1

� (y)
kY

i=1

2
4�

0
@�iy + qxq

1 � �2
i

1
A
� �

0
@�iy � qxq

1� �2
i

1
A
3
5 dy du� (x)

� This case relates the probability, prob, and the quantile, q, for the equal case with
finite degrees of freedom. No parameters are passed, the value of nparms is set to
k, and the value of df is set to �. The equation follows:

prob =

1Z

0

1Z
�1

� (y)
h
�
�
y +

p
2qx
�
� �

�
y �

p
2qx
�ik

dy du� (x)

� This case relates the probability, prob, and the quantile, q, for the unequal case
with infinite degrees of freedom. The parameters are �1, ..., �k, the value of nparms
is set to k, and the value of df is set to missing. The equation follows:

prob =

1Z
�1

� (y)
kY

i=1

2
4�
0
@ �iy + qq

1 � �2
i

1
A
� �

0
@ �iy � qq

1 � �2
i

1
A
3
5 dy

� This case relates the probability, prob, and the quantile, q, for the equal case with
infinite degrees of freedom. No parameters are passed, the value of nparms is set
to k, and the value of df is set to missing. The equation follows:

prob =

1Z
�1

� (y)
h
�
�
y +

p
2q
�
� �

�
y �

p
2q
�ik

dy

494 PROBMC 4 Chapter 4

The Studentized Range

Note: The studentized range is not computed for finite degrees of freedom and
unequal sample sizes. 4

� This case relates the probability, prob, and the quantile, q, for the equal case with
finite degrees of freedom. No parameters are passed, the value of nparms is set to
k, and the value of df is set to �. The equation follows:

prob =

1Z

0

1Z

�1

k� (y) [� (y)��(y � qx)]k�1 dy du� (x)

� This case relates the probability, prob, and the quantile, q, for the unequal case
with infinite degrees of freedom. The parameters are �1, ..., �k, the value of nparms
is set to k, and the value of df is set to missing. The equation follows:

prob =

1Z

�1

kX
j=1

(
kY

i=1

�
�

�
y

�i

�
� �

�
y � q

�i

��)
�

�
y

�j

�
1

�j
dy

� This case relates the probability, prob, and the quantile, q, for the equal case with
infinite degrees of freedom. No parameters are passed, the value of nparms is set
to k, and the value of df is set to missing. The equation follows:

prob =

1Z
�1

k� (y) [� (y)� �(y � q)]k�1 dy

The Studentized Maximum Modulus
� This case relates the probability, prob, and the quantile, q, for the unequal case

with finite degrees of freedom. The parameters are �1, ..., �k, the value of nparms is
set to k, and the value of df is set to �. The equation follows:

prob =

1Z
0

kY
i=1

�
2�

�
qx

�i

�
� 1

�
d�� (x)

� This case relates the probability, prob, and the quantile, q, for the equal case with
finite degrees of freedom. No parameters are passed, the value of nparms is set to
k, and the value of df is set to �. The equation follows:

prob =

1Z
0

[2� (qx)� 1]k d�� (x)

Functions and CALL Routines 4 PROBMC 495

� This case relates the probability, prob, and the quantile, q, for the unequal case
with infinite degrees of freedom. The parameters are �1, ..., �k, the value of nparms
is set to k, and the value of df is set to missing. The equation follows:

prob =

kY
i=1

�
2�

�
q

�i

�
� 1

�

� This case relates the probability, prob, and the quantile, q, for the equal case with
infinite degrees of freedom. No parameters are passed, the value of nparms is set
to k, and the value of df is set to missing. The equation follows:

prob = [2� (q)� 1]k

Williams’ Test PROBMC computes the probabilities or quantiles from the
distribution defined in Williams (1971, 1972) (See “References” on page 626). It arises
when you compare the dose treatment means with a control mean to determine the
lowest effective dose of treatment.

Note: Williams’ Test is computed only for equal sample sizes. 4

Let X1, X2, ..., Xk be identical independent N(0,1) random variables. Let Yk denote
their average given by

Yk =
X1 +X2 + :::+Xk

k

It is required to compute the distribution of

(Yk � Z) =S

where

Yk is as defined previously

Z is a N(0,1) independent random variable

S is such that 1

2
�S2 is a �

2 variable with � degrees of freedom.

As described in Williams (1971) (See “References” on page 626), the full computation
is extremely lengthy and is carried out in three stages.

1 Compute the distribution of Yk. It is the fundamental (expensive) part of this
operation and it can be used to find both the density and the probability of Yk. Let
Ui be defined as

Ui =

X1 +X2 + :::+Xi

i
; i = 1; 2; :::; k

You can write a recursive expression for the probability of Yk > d, with d being any
real number.

496 PROBMC 4 Chapter 4

Pr (Yk > d) = Pr (U1 > d)

+ Pr (U2 > d;U1 < d)

+ Pr (U3 > d;U2 < d;U1 < d)
+ . . .

+ Pr (Uk > d;Uk�1 < d; . . . ; U1 < d)

= Pr (Yk�1 > d) + Pr (Xk + (k � 1)Uk�1 > kd)

To compute this probability, start from a N(0,1) density function

D (U1 = x) = � (x)

and recursively compute the convolution

D (Uk = x;Uk�1 < d; . . . ; U1 < d) =
dZ

�1

D (Uk�1 = y; Uk�2 < d; . . . ; U1 < d) (k � 1)� (kx� (k � 1) y) dy

From this sequential convolution, it is possible to compute all the elements of the
recursive equation for Pr (Yk < d), shown previously.

2 Compute the distribution of Yk – Z. This involves another convolution to compute
the probability

Pr ((Yk � Z) > d) =

1Z

�1

Pr
�
Yk >

p
2d + y

�
� (y) dy

3 Compute the distribution of (Yk – Z)/S. This involves another convolution to
compute the probability

Pr ((Yk � Z) > tS) =

1Z

0

Pr ((Yk � Z) > ty) d�� (y)

The third stage is not needed when � = ∞. Due to the complexity of the operations,
this lengthy algorithm is replaced by a much faster one when k ≤ 15 for both finite and
infinite degrees of freedom �. For k ≥ 16, the lengthy computation is carried out. It is
extremely expensive and very slow due to the complexity of the algorithm.

Comparisons
The MEANS statement in the GLM Procedure of SAS/STAT Software computes the
following tests:

� Dunnett’s one-sided test

Functions and CALL Routines 4 PROBMC 497

� Dunnett’s two-sided test

� Studentized Range.

Examples

Example 1: Using PROBMC to Compute Probabilities This example shows how to use
PROBMC in a DO loop to compute probabilities:

data probs;
array par{5};

par{1}=.5;
par{2}=.51;
par{3}=.55;
par{4}=.45;
par{5}=.2;

df=40;
q=1;
do test="dunnett1","dunnett2", "maxmod";

prob=probmc(test, q, ., df, 5, of par1--par5);
put test $10. df q e18.13 prob e18.13;

end;
run;

Output 4.13 on page 497 shows the results of this DATA step that are printed to the
SAS log.

Output 4.13 Probabilities from PROBMC

DUNNETT1 40 1.00000000000E+00 4.82992188740E-01
DUNNETT2 40 1.00000000000E+00 1.64023099613E-01
MAXMOD 40 1.00000000000E+00 8.02784203408E-01

Example 2: Comparing Means This example shows how to compare group means to
find where the significant differences lie. The data for this example is taken from a
paper by Duncan (1955) (See “References” on page 626) and can also be found in
Hochberg and Tamhane (1987) (See “References” on page 626). The group means are

49.6

71.2

67.6

61.5

71.3

58.1

61.0

For this data, the mean square error is s2 = 79.64 (s = 8.924) with � = 30.

data duncan;
array tr{7}$;
array mu{7};
n=7;
do i=1 to n;

input tr{i} $1. mu{i};
end;

498 PROBMC 4 Chapter 4

input df s alpha;
prob= 1--alpha;

/* compute the interval */
x = probmc("RANGE", ., prob, df, 7);
w = x * s / sqrt(6);

/* compare the means */
do i = 1 to n;

do j = i + 1 to n;
dmean = abs(mu{i} - mu{j});
if dmean >= w then do;

put tr{i} tr{j} dmean;
end;

end;
end;
datalines;

A 49.6
B 71.2
C 67.6
D 61.5
E 71.3
F 58.1
G 61.0

30 8.924 .05
;

Output 4.14 on page 498 shows the results of this DATA step that are printed to the
SAS log.

Output 4.14 Group Differences

A B 21.6
A C 18
A E 21.7

Example 3: Computing Confidence Intervals This example shows how to compute
95% one-sided and two-sided confidence intervals of Dunnett’s test. This example and
the data come from Dunnett (1955) (See “References” on page 626) and can also be
found in Hochberg and Tamhane (1987) (See “References” on page 626). The data are
blood count measurements on three groups of animals. As shown in the following table,
the third group serves as the control, while the first two groups were treated with
different drugs. The numbers of animals in these three groups are unequal.

Treatment Group: Drug A Drug B Control

9.76 12.80 7.40

8.80 9.68 8.50

7.68 12.16 7.20

9.36 9.20 8.24

10.55 9.84

8.32

Functions and CALL Routines 4 PROBMC 499

Treatment Group: Drug A Drug B Control

Group Mean 8.90 10.88 8.25

n 4 5 6

The mean square error s2 = 1.3805 (s = 1.175) with � = 12.

data a;
array drug{3}$;
array count{3};
array mu{3};
array lambda{2};
array delta{2};
array left{2};
array right{2};

/* input the table */
do i = 1 to 3;

input drug{i} count{i} mu{i};
end;

/* input the alpha level, */
/* the degrees of freedom, */
/* and the mean square error */

input alpha df s;

/* from the sample size, */
/* compute the lambdas */

do i = 1 to 2;
lambda{i} = sqrt(count{i}/

(count{i} + count{3}));
end;

/* run the one-sided Dunnett’s test */
test="dunnett1";

x = probmc(test, ., 1 - alpha, df,
2, of lambda1--lambda2);

do i = 1 to 2;
delta{i} = x * s *

sqrt(1/count{i} + 1/count{3});
left{i} = mu{i} - mu{3} - delta{i};

end;
put test $10. x left{1} left{2};

/* run the two-sided Dunnett’s test */
test="dunnett2";

x = probmc(test, ., 1 - alpha, df,
2, of lambda1--lambda2);

do i=1 to 2;
delta{i} = x * s *

sqrt(1/count{i} + 1/count{3});
left{i} = mu{i} - mu{3} - delta{i};
right{i} = mu{i} - mu{3} + delta{i};

end;
put test $10. left{1} right{1};

500 PROBMC 4 Chapter 4

put test $10. left{2} right{2};
datalines;

A 4 8.90
B 5 10.88
C 6 8.25
0.05 12 1.175
;

Output 4.15 on page 500 shows the results of this DATA step that are printed to the
SAS log.

Output 4.15 Confidence Intervals

DUNNETT1 2.1210786586 -0.958751705 1.1208571303
DUNNETT2 -1.256411895 2.5564118953
DUNNETT2 0.8416271203 4.4183728797

Example 4: Computing Williams’ Test Suppose that a substance has been tested at
seven levels in a randomized block design of eight blocks. The observed treatment
means are as follows:

Treatment Mean

X0 10.4

X1 9.9

X2 10.0

X3 10.6

X4 11.4

X5 11.9

X6 11.7

The mean square, with (7 – 1)(8 – 1) = 42 degrees of freedom, is s2 = 1.16.
Determine the maximum likelihood estimates Mi through the averaging process.

� Because X0 > X1, form X0,1 = (X0 + X1)/2 = 10.15.

� Because X0,1 > X2, form X0,1,2 = (X0 + X1 + X2)/3 = (2X0,1 + X2)/3 = 10.1.

� X0,1,2 < X3 < X4 < X5

� Because X5 > X6, form X5,6 = (X5 + X6)/2 = 11.8.

Now the order restriction is satisfied.
The maximum likelihood estimates under the alternative hypothesis are

M0 = M1 = M2 = X0,1,2 = 10.1

M3 = X3 = 10.6

M4 = X4 = 11.4

M5 = M6 = X5,6 = 11.8

Now compute t = (11:8 � 10:4) =
p

2s2=8 = 2:60, and the probability that
corresponds to k = 6, � = 42, and t = 2.60 is .9924467341, which shows strong evidence
that there is a response to the substance. You can also compute the quantiles for the
upper 5% and 1% tails, as shown in the following table.

Functions and CALL Routines 4 PROBNEGB 501

SAS Statements Results

prob=probmc("williams",2.6,.,42,6); 0.99244673

quant5=probmc("williams",.,.95,42,6); 1.80654052

quant1=probmc("williams",.,.99,42,6); 2.49087829

PROBNEGB

Returns the probability from a negative binomial distribution

Category: Probability
See: “CDF” on page 273

Syntax
PROBNEGB(p,n,m)

Arguments

p
is a numeric probability of success parameter.
Range: 0 ≤ p ≤ 1

n
is an integer number of successes parameter.
Range: n ≥ 1

m
is a positive integer random variable, the number of failures.
Range: m ≥ 0

Details
The PROBNEGB function returns the probability that an observation from a negative
binomial distribution, with probability of success p and number of successes n, is less
than or equal to m.

To compute the probability that an observation is equal to a given value m, compute
the difference of two probabilities from the negative binomial distribution for m and
m−1.

502 PROBNORM 4 Chapter 4

Examples

SAS Statements Results

x=probnegb(0.5,2,1); 0.5

PROBNORM

Returns the probability from the standard normal distribution

Category: Probability

See: “CDF” on page 273,

Syntax
PROBNORM(x)

Arguments

x
is a numeric random variable.

Details
The PROBNORM function returns the probability that an observation from the
standard normal distribution is less than or equal to x.

Examples

SAS Statements Results

x=probnorm(1.96); 0.9750021049

PROBT

Returns the probability from a t distribution

Category: Probability

See: “CDF” on page 273, “PDF” on page 464

Syntax
PROBT(x,df<,nc>)

Functions and CALL Routines 4 PUT 503

Arguments

x
is a numeric random variable.

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric noncentrality parameter.

Details
The PROBT function returns the probability that an observation from a Student’s t
distribution, with degrees of freedom df and noncentrality parameter nc, is less than or
equal to x. This function accepts a noninteger degree of freedom parameter df. If the
optional parameter, nc, is not specified or has the value 0, the value that is returned is
from the central Student’s t distribution.

The significance level of a two-tailed t test is given by

p=(1-probt(abs(x),df))*2;

Examples

SAS Statements Results

x=probt(0.9,5); 0.7953143998

PUT
Returns a value using a specified format

Category: Special

Syntax
PUT(source, format.)

Arguments

source
identifies the SAS variable or constant whose value you want to reformat. The source
argument can be character or numeric.

format.
contains the SAS format that you want applied to the variable or constant that is
specified in the source. To override the default alignment, you can add an alignment
specification to a format:

-L left aligns the value.

504 PUT 4 Chapter 4

-C centers the value.

-R right aligns the value.
Restriction: The format. must be of the same type as the source, either character

or numeric.

Details
The format must be the same type (numeric or character) as the value of source. The
result of the PUT function is always a character string. If the source is numeric, the
resulting string is right aligned. If the source is character, the result is left aligned.

Use PUT to convert a numeric value to a character value. PUT writes (or produces a
reformatted result) only while it is executing. To preserve the result, assign it to a
variable.

Comparisons
The PUT statement and the PUT function are similar. The PUT function returns a
value using a specified format. You must use an assignment statement to store the
value in a variable. The PUT statement writes a value to an external destination
(either the SAS log or a destination you specify).

Examples

Example 1: Converting Numeric Values to Character Value In this example, the first
statement converts the values of CC, a numeric variable, into the four-character
hexadecimal format, and the second writes the same value that the PUT function
returns.

cchex=put(cc,hex4.);
put cc hex4.;

Example 2: Using PUT and INPUT Functions In this example, the PUT function returns
a numeric value as a character string. The value 122591 is assigned to the CHARDATE
variable. The INPUT function returns the value of the character string as a SAS date
value using a SAS date informat. The value 11681 is stored in the SASDATE variable.

numdate=122591;
chardate=put(numdate,z6.);
sasdate=input(chardate,mmddyy6.);

Functions and CALL Routines 4 PUTC 505

See Also

Functions:
“INPUT” on page 402
“INPUTC” on page 404
“INPUTN” on page 405
“PUTC” on page 505,
“PUTN” on page 506

Statement:
“PUT” on page 962

PUTC

Enables you to specify a character format at run time

Category: Special

Syntax
PUTC(source, format.<,w>)

Arguments

source
is the SAS expression to which you want to apply the format.

format.
is an expression that contains the character format you want to apply to source.

w
specifies a width to apply to the format.
Interaction: If you specify a width here, it overrides any width specification in the

format.

Comparisons
The PUTN function enables you to specify a numeric format at run time.

Examples

Example 1: Specifying a Character Format The PROC FORMAT step in this example
creates a format, TYPEFMT., that formats the variable values 1, 2, and 3 with the
name of one of the three other formats that this step creates. These three formats
output responses of "positive," "negative," and "neutral" as different words, depending
on the type of question. After PROC FORMAT creates the formats, the DATA step
creates a SAS data set from raw data consisting of a number identifying the type of
question and a response. After reading a record, the DATA step uses the value of TYPE
to create a variable, RESPFMT, that contains the value of the appropriate format for

506 PUTN 4 Chapter 4

the current type of question. The DATA step also creates another variable, WORD,
whose value is the appropriate word for a response. The PUTC function assigns the
value of WORD based on the type of question and the appropriate format.

proc format;
value typefmt 1=’$groupx’

2=’$groupy’
3=’$groupz’;

value $groupx ’positive’=’agree’
’negative’=’disagree’
’neutral’=’notsure ’;

value $groupy ’positive’=’accept’
’negative’=’reject’
’neutral’=’possible’;

value $groupz ’positive’=’pass ’
’negative’=’fail’
’neutral’=’retest’;

run;

data answers;
length word $ 8;
input type response $;
respfmt = put(type, typefmt.);
word = putc(response, respfmt);
datalines;

positive
negative
neutral

2 positive
2 negative
2 neutral
3 positive
3 negative
3 neutral
;

The value of the variable WORD is agree for the first observation. The value of the
variable WORD is retest for the last observation.

See Also

Functions:
“INPUT” on page 402
“INPUTC” on page 404
“INPUTN” on page 405
“PUT” on page 503,
“PUTN” on page 506

PUTN
Enables you to specify a numeric format at run time

Functions and CALL Routines 4 PUTN 507

Category: Special

Syntax
PUTN(source, format.< ,w<,d>>)

Arguments

source
is the SAS expression to which you want to apply the format.

format.
is an expression that contains the numeric format you want to apply to source.

w
specifies a width to apply to the format.

Interaction: If you specify a width here, it overrides any width specification in the
format.

d
specifies the number of decimal places to use.

Interaction: If you specify a number here, it overrides any decimal-place
specification in the format.

Comparisons
The PUTC function enables you to specify a character format at run time.

Examples

Example 1: Specifying a Numeric Format The PROC FORMAT step in this example
creates a format, WRITFMT., that formats the variable values 1 and 2 with the name of
a SAS date format. The DATA step creates a SAS data set from raw data consisting of
a number and a key. After reading a record, the DATA step uses the value of KEY to
create a variable, DATEFMT, that contains the value of the appropriate date format.
The DATA step also creates a new variable, DATE, whose value is the formatted value
of the date. PUTN assigns the value of DATE based on the value of NUMBER and the
appropriate format.

proc format;
value writfmt 1=’date9.’

2=’mmddyy10.’;
run;
data dates;

input number key;
datefmt=put(key,writfmt.);
date=putn(number,datefmt);
datalines;

15756 1
14552 2
;

508 PVP 4 Chapter 4

See Also

Functions:
“INPUT” on page 402
“INPUTC” on page 404
“INPUTN” on page 405
“PUT” on page 503
“PUTC” on page 505

PVP

Returns the present value for a periodic cashflow stream, such as a bond

Category: Financial

Syntax
PVP(A,c,n,K,k0,y)

Arguments

A
the par value.
Range: A > 0

c
the nominal per-period coupon rate, expressed as a fraction.
Range: 0 < c < 1

n
the number of coupons per period.
Range: n > 0 and is an integer

K
the number of remaining coupons.
Range: K > 0 and is an integer

k0

the time from present to the first coupon date, expressed in terms of the number of
periods.
Range: 0 < k0< 1/n

y
the nomimal per-period yield-to-maturity, expressed as a fraction.
Range: y > 0

Details
The PVP function is based on the relationship

Functions and CALL Routines 4 QTR 509

P =

KX

k=1

c (k)
1

�
1 + y

n

�tk

where
tk = k � (1 � nk0)

c (k) = c
n
A for k=1, ..., K-1

c (K) =
�
1 + c

n

�
A

Examples

p=pvp(1000,1/100,4,14,.33/2,.10);

The value returned is 743.168.

QTR

Returns the quarter of the year from a SAS date value

Category: Date and Time

Syntax
QTR(date)

Arguments

date
specifies a SAS expression that represents a SAS date value.

Details
The QTR function returns a value of 1, 2, 3, or 4 from a SAS date value to indicate the
quarter of the year in which a date value falls.

Examples

The following SAS statements produce these results:

510 QUOTE 4 Chapter 4

SAS Statements Results

x=’20jan94’d;
y=qtr(x);
put y=; y=1

See Also

Function:
“YYQ” on page 621

QUOTE

Adds double quotation marks to a character value

Category: Character

Syntax
QUOTE(argument)

Arguments

argument
is a character value.

Details
The QUOTE function adds double quotation marks, the default character, to a character
value. If double quotation marks are found within the argument, they are doubled in
the output.

Examples

Functions and CALL Routines 4 RANBIN 511

SAS Statements Results

x=’A"B’;
y=quote(x);
put y; "A""B"

x=’A’’B’;
y=quote(x);
put y; "A’B"

x=’Paul’’s’;
y=quote(x);
put y; "Paul’s"

RANBIN

Returns a random variate from a binomial distribution

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANBIN routine instead of the RANBIN function.

Syntax
RANBIN(seed,n,p)

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.
Range: seed < 231−1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

n
is an integer number of independent Bernoulli trials parameter.
Range: n> 0

p
is a numeric probability of success parameter.
Range: 0 < p < 1

Details
The RANBIN function returns a variate that is generated from a binomial distribution
with mean np and variance np(1−p). If n ≤ 50, np ≤ 5, or n(1–p) ≤ 5, an inverse
transform method applied to a RANUNI uniform variate is used. If n > 50, np > 5, and
n(1–p) > 5, the normal approximation to the binomial distribution is used. In that case,
the Box-Muller transformation of RANUNI uniform variates is used.

512 RANCAU 4 Chapter 4

Comparisons

The CALL RANBIN routine, an alternative to the RANBIN function, gives greater
control of the seed and random number streams.

See Also

Call routine:

“CALL RANBIN” on page 248

RANCAU

Returns a random variate from a Cauchy distribution

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANCAU routine instead of the RANCAU function.

Syntax

RANCAU(seed)

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.

Range: seed < 231 −1

Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

Details

The RANCAU function returns a variate that is generated from a Cauchy distribution
with location parameter 0 and scale parameter 1. An acceptance-rejection procedure
applied to RANUNI uniform variates is used. If u and v are independent uniform (−1/2,
1/2) variables and u

2
+ v

2 � 1=4, then u/v is a Cauchy variate. A Cauchy variate X
with location parameter ALPHA and scale parameter BETA can be generated:

x=alpha+beta*rancau(seed);

Comparisons

The CALL RANCAU routine, an alternative to the RANCAU function, gives greater
control of the seed and random number streams.

Functions and CALL Routines 4 RANEXP 513

See Also

Call routine:

“CALL RANCAU” on page 250

RANEXP

Returns a random variate from an exponential distribution

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANEXP routine instead of the RANEXP function.

Syntax

RANEXP(seed)

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.

Range: seed < 231−1

Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

Details

The RANEXP function returns a variate that is generated from an exponential
distribution with parameter 1. An inverse transform method applied to a RANUNI
uniform variate is used.

An exponential variate X with parameter LAMBDA can be generated:

x=ranexp(seed)/lambda;

An extreme value variate X with location parameter ALPHA and scale parameter
BETA can be generated:

x=alpha−beta*log(ranexp(seed));

A geometric variate X with parameter P can be generated as follows:

x=floor(−ranexp(seed)/log(1−p));

Comparisons

The CALL RANEXP routine, an alternative to the RANEXP function, gives greater
control of the seed and random number streams.

514 RANGAM 4 Chapter 4

See Also

Call routine:
“CALL RANEXP” on page 252

RANGAM

Returns a random variate from a gamma distribution

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANGAM routine instead of the RANGAM function.

Syntax
RANGAM(seed,a)

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.
Range: seed < 231−1

Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

a
is a numeric shape parameter.

Range: a > 0.

Details
The RANGAM function returns a variate that is generated from a gamma distribution
with parameter a. For a > 1, an acceptance-rejection method due to Cheng (1977) (See
“References” on page 626) is used. For a ≤ 1, an acceptance-rejection method due to
Fishman is used (1978, Algorithm G2) (See “References” on page 626).

A gamma variate X with shape parameter ALPHA and scale BETA can be generated:

x=beta*rangam(seed,alpha);

If 2*ALPHA is an integer, a chi-square variate X with 2*ALPHA degrees of freedom
can be generated:

x=2*rangam(seed,alpha);

If N is a positive integer, an Erlang variate X can be generated:

x=beta*rangam(seed,N);

It has the distribution of the sum of N independent exponential variates whose
means are BETA.

And finally, a beta variate X with parameters ALPHA and BETA can be generated:

Functions and CALL Routines 4 RANGE 515

y1=rangam(seed,alpha);
y2=rangam(seed,beta);
x=y1/(y1+y2);

Comparisons
The CALL RANGAM routine, an alternative to the RANGAM function, gives greater
control of the seed and random number streams.

See Also

Call routine:
“CALL RANGAM” on page 254

RANGE

Returns the range of values

Category: Descriptive Statistics

Syntax
RANGE(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

Details
The RANGE function returns the difference between the largest and the smallest of the
nonmissing arguments.

Examples

SAS Statements Results

x0=range(.,.); .

x1=range(-2,6,3); 8

x2=range(2,6,3,.); 4

516 RANK 4 Chapter 4

SAS Statements Results

x3=range(1,6,3,1); 5

x4=range(of x1-x3); 4

RANK

Returns the position of a character in the ASCII or EBCDIC collating sequence

Category: Character

Syntax
RANK(x)

Arguments

x
specifies a character expression.

Details
The RANK function returns an integer that represents the position of the first character
in the character expression. The result depends on your operating environment.

Examples

SAS Statements Results

ASCII EBCDIC

n=rank(’A’);
put n; 65 193

See Also

Functions:
“BYTE” on page 241
“COLLATE” on page 291

RANNOR

Returns a random variate from a normal distribution

Functions and CALL Routines 4 RANPOI 517

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANNOR routine instead of the RANNOR function.

Syntax
RANNOR(seed)

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.

Range: seed < 231−1

Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

Details
The RANNOR function returns a variate that is generated from a normal distribution
with mean 0 and variance 1. The Box-Muller transformation of RANUNI uniform
variates is used.

A normal variate X with mean MU and variance S2 can be generated with this code:

x=MU+sqrt(S2)*rannor(seed);

A lognormal variate X with mean exp(MU + S2/2) and variance exp(2*MU + 2*S2)
−exp(2*MU + S2) can be generated with this code:

x=exp(MU+sqrt(S2)*rannor(seed));

Comparisons
The CALL RANNOR routine, an alternative to the RANNOR function, gives greater
control of the seed and random number streams.

See Also
Call routine:

“CALL RANNOR” on page 256

RANPOI

Returns a random variate from a Poisson distribution

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANPOI routine instead of the RANPOI function.

518 RANTBL 4 Chapter 4

Syntax
RANPOI(seed,m)

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.

Range: seed < 231−1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

m
is a numeric mean parameter.

Range: m ≥ 0

Details
The RANPOI function returns a variate that is generated from a Poisson distribution
with mean m. For m < 85, an inverse transform method applied to a RANUNI uniform
variate is used (Fishman 1976) (See “References” on page 626). For m ≥ 85, the normal
approximation of a Poisson random variable is used. To expedite execution, internal
variables are calculated only on initial calls (that is, with each new m).

Comparisons
The CALL RANPOI routine, an alternative to the RANPOI function, gives greater
control of the seed and random number streams.

See Also
Call routine:

“CALL RANPOI” on page 257

RANTBL

Returns a random variate from a tabled probability

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANTBL routine instead of the RANTBL function.

Syntax
RANTBL(seed,p1 ,… pi… ,pn)

Functions and CALL Routines 4 RANTBL 519

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.
Range: seed < 231−1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

pi

is numeric.
Range: 0 ≤ pi ≤ 1 for 0 <i ≤ n

Details
The RANTBL function returns a variate that is generated from the probability mass
function defined by p1 through pn . An inverse transform method applied to a RANUNI
uniform variate is used. RANTBL returns

1 with probability p1

2 with probability p2
:

:

:

n with probability p
n

n+ 1 with probability 1�

nP

i=1

pi if
nP

i=1

pi � 1

If, for some index j<n,
jP

i=1

pi � 1, RANTBL returns only the indices 1 through j with

the probability of occurrence of the index j equal to 1�

j�1P

i=1

pi.

Let n=3 and P1, P2, and P3 be three probabilities with P1+P2+P3=1, and M1, M2,
and M3 be three variables. The variable X in these statements

array m{3} m1-m3;
x=m{rantbl(seed,of p1-p3)};

will be assigned one of the values of M1, M2, or M3 with probabilities of occurrence P1,
P2, and P3, respectively.

Comparisons
The CALL RANTBL routine, an alternative to the RANTBL function, gives greater
control of the seed and random number streams.

520 RANTRI 4 Chapter 4

See Also

Call routine:

“CALL RANTBL” on page 259

RANTRI

Random variate from a triangular distribution

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANTRI routine instead of the RANTRI function.

Syntax

RANTRI(seed,h)

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.

Range: seed < 231−1

Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

h
is numeric.

range: 0 < h < 1

Details

The RANTRI function returns a variate that is generated from the triangular
distribution on the interval (0,1) with parameter h, which is the modal value of the
distribution. An inverse transform method applied to a RANUNI uniform variate is
used.

A triangular distribution X on the interval [A,B] with mode C, where A ≤ C ≤ B, can
be generated:

x=(b-a)*rantri(seed,(c-a)/(b-a))+a;

Comparisons

The CALL RANTRI routine, an alternative to the RANTRI function, gives greater
control of the seed and random number streams.

Functions and CALL Routines 4 RANUNI 521

See Also
Call routine:

“CALL RANTRI” on page 262

RANUNI

Returns a random variate from a uniform distribution

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANUNI routine instead of the RANUNI function.

Syntax
RANUNI(seed)

Arguments

seed
is an integer. For more information on seeds, see “Seed Values” in “Using
Random-Number Functions and CALL Routines” on page 211.
Range: seed < 231−1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

Details
The RANUNI function returns a number that is generated from the uniform distribution
on the interval (0,1) using a prime modulus multiplicative generator with modulus 231−
and multiplier 397204094 (Fishman and Moore 1982) (See “References” on page 626).

You can use a multiplier to change the length of the interval and an added constant
to move the interval. For example,

random_variate=a*ranuni(seed)+b;

returns a number that is generated from the uniform distribution on the interval
(b,a+b).

Comparisons
The CALL RANUNI routine, an alternative to the RANUNI function, gives greater
control of the seed and random number streams.

522 REPEAT 4 Chapter 4

See Also
Call routine:

“CALL RANUNI” on page 264

REPEAT

Repeats a character expression

Category: Character

Syntax
REPEAT(argument,n)

Arguments

argument
specifies any SAS character expression.

n
specifies the number of times to repeat argument.
Restriction: n must be greater than or equal to 0.

Details
The REPEAT function returns a character value consisting of the first argument
repeated n times. Thus, the first argument appears n+1 times in the result.

Examples

SAS Statements Results

x=repeat(’ONE’,2);
put x; ONEONEONE

RESOLVE
Returns the resolved value of an argument after it has been processed by the macro facility

Category: Macro

Syntax
RESOLVE(argument)

Functions and CALL Routines 4 REWIND 523

Arguments

argument
represents a macro expression.

Details
RESOLVE is fully documented in SAS Macro Language: Reference.

See Also

Function:
“SYMGET” on page 557

REVERSE

Reverses a character expression

Category: Character

Syntax
REVERSE(argument)

Arguments

argument
specifies any SAS character expression.

Examples

SAS Statements Results

----+----1

backward=reverse(’xyz ’);
put backward $5.; zyx

REWIND

Positions the data set pointer at the beginning of a SAS data set and returns a value

Category: SAS File I/O

524 RIGHT 4 Chapter 4

Syntax
REWIND(data-set-id)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.
Restriction: The data set cannot be opened in IS mode.

Details
REWIND returns 0 if the operation was successful, ≠0 if it was not successful. After a
call to REWIND, a call to FETCH reads the first observation in the data set.

If there is an active WHERE clause, REWIND moves the data set pointer to the first
observation that satisfies the WHERE condition.

Examples

This example calls FETCHOBS to fetch the tenth observation in the data set
MYDATA, then calls REWIND to return to the first observation and fetch the first
observation.

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetchobs(&dsid,10));
%let rc=%sysfunc(rewind(&dsid));
%let rc=%sysfunc(fetch(&dsid));

See Also

Functions:
“FETCH” on page 352
“FETCHOBS” on page 353
“FREWIND” on page 380
“NOTE” on page 458
“OPEN” on page 460

RIGHT

Right aligns a character expression

Category: Character

Syntax
RIGHT(argument)

Functions and CALL Routines 4 ROUND 525

Arguments

argument
specifies any SAS character expression.

Details
The RIGHT function returns an argument with trailing blanks moved to the start of the
value. The argument’s length does not change.

Examples

SAS Statements Results

----+----1----+

a=’Due Date ’;
b=right(a);
put a $10.;
put b $10.;

Due Date
Due Date

See Also

Functions:

“COMPRESS” on page 296

“LEFT” on page 435

“TRIM” on page 570

ROUND

Rounds to the nearest round-off unit

Category: Truncation

Syntax
ROUND(argument,round-off-unit)

Arguments

argument
is numeric.

round-off-unit
is numeric and nonnegative.

526 RXMATCH 4 Chapter 4

Details
The ROUND function returns a value rounded to the nearest round-off unit. If
round-off-unit is not provided, a default value of 1 is used and argument is rounded to
the nearest integer.

Examples

SAS Statement Results

var1=223.456;
x=round(var1,1);
put x 9.5; 223.00000

var2=223.456;
x=round(var2,.01);
put x 9.5; 223.46000

x=round(223.456,100);
put x 9.5; 200.00000

x=round(223.456);
put x 9.5; 223.00000

x=round(223.456,.3);
put x 9.5; 223.33333

RXMATCH

Finds the beginning of a substring that matches a pattern and returns a value

Category: Character String Matching

Restriction: Use with the RXPARSE function

Syntax
position=RXMATCH (rx, string)

Arguments

position
specifies a numeric position in a string where the substring that is matched by the
pattern begins. If there is no match, the result is zero.

rx
specifies a numeric value that is returned from the RXPARSE function.

string
specifies the character expression to be searched.

Functions and CALL Routines 4 RXPARSE 527

Details
RXMATCH searches the variable string for the pattern from RXPARSE and returns the
position of the start of the string.

Comparisons
The regular expression (RX) functions and CALL routines work together to manipulate
strings that match patterns. Use the RXPARSE function to parse a pattern you specify.
Use the RXMATCH function and the CALL RXCHANGE and CALL RXSUBSTR
routines to match or modify your data. Use the CALL RXFREE routine to free allocated
space.

Example

See the RXPARSE function “Example” on page 538.

See Also

Functions and CALL routines:
“CALL RXCHANGE” on page 265
“CALL RXFREE” on page 267
“RXPARSE” on page 527
“CALL RXSUBSTR” on page 268

RXPARSE

Parses a pattern and returns a value

Category: Character String Matching

Syntax
rx=RXPARSE(pattern-expression)

Syntax Description

Arguments
rx

specifies a numeric value that is passed to other regular expression (RX) functions
and call routines.

pattern-expression
specifies a character constant, variable, or expression whose value is a literal or a
pattern expression. A pattern-expression is composed of the following elements:

string-in-quotation-marks
matches a substring consisting of the characters in the string.

528 RXPARSE 4 Chapter 4

letter
matches the upper- or lowercase letter in a substring.

digit
matches the digit in a substring.

period (.)
matches a period (.) in a substring.

underscore (_)
matches an underscore (_) in a substring.

?
matches any one character in a substring.

colon (:)
matches any sequence of zero or more characters in a substring.

$’pattern’ or $"pattern"
matches any one character in a substring.

Tip:
Ranges of alphanumeric variables are indicated by the hyphen (-).

Example:
To match any lowercase letter, use

rx=rxparse("$’a-z’");

See:
“User-defined Character Classes” on page 531

~’character-class’ or ^’character-class’ or ~"character-class" or ^"character-class"
matches any one character that is not matched by the corresponding
character class.

Tip:
Ranges of alphanumeric variables are indicated by a hyphen (-).

Example:
To exclude the letters a-d from the match, use

rx=rxparse("^’a-d’");

See:
“Character Class Complements” on page 531

pattern1 pattern2 or pattern1 || pattern2
selects any substring matched by pattern1 followed immediately by any
substring matched by pattern2 (with no intervening blanks).

pattern1 | pattern2
selects any substring matched by pattern1 or any substring matched by
pattern2.

Tip: You can use an exclamation point (!) instead of a vertical
bar (|).

(pattern)
matches a substring that contains a pattern. You can use parentheses to
indicate the order in which operations are performed.

[pattern] or {pattern}
matches a substring that contains a pattern or null string.

Functions and CALL Routines 4 RXPARSE 529

pattern*
matches zero or more consecutive strings matched by a pattern.

pattern+
matches one or more consecutive strings matched by a pattern.

@int
matches the position of a variable if the next character is located in the
column specified by int. @0 matches end-of-line. If int is negative, it matches
-int positions from end-of-line.

reuse-character-class
reuses a character-class you previously defined.

See: “Reusing Character Classes” on page 532

pattern-abbreviaton
specifies ways to shorten pattern representation.

See: “Pattern Abbreviations” on page 533, “Default Character
Classes” on page 530

balanced-symbols
specifies the number of nested parentheses, brackets, braces, or less-than/
greater-than symbols in a mathematical expression.

See: “Matching Balanced Symbols” on page 533

special-symbol
specifies a position in a string, or a score value.

See: “Special Symbols” on page 534

score-value
selects the pattern with the highest score value.

See: “Scores” on page 535

<pattern>
retrieves a matched substring for use in a change expression.

See: “Tag Expression” on page 535

change-expression
specifies a pattern change operation that replaces a string containing a
matched substring by concatenating values to the replacement string.

See: “Change Expressions” on page 536

change-item
specifies items used for string manipulation.

See: “Change Items” on page 536

Character Classes
Using a character class element is a shorthand method for specifying a range of values
for matching. In pattern matching, you can

� use default character classes
� define your own character classes
� use character class complements
� reuse character classes.

530 RXPARSE 4 Chapter 4

Default Character Classes You specify a default character class with a dollar sign ($)
followed by a single upper- or lowercase letter. In the following list, the character class
is listed in the left column and the definition is listed in the right column.

$a or $A matches any alphabetic upper- or lowercase letter in a substring
($’a-zA-Z’).

$c or $C matches any character allowed in a version 6 SAS name that is
found in a substring ($’0-9a-zA-Z_’).

$d or $D matches any digit in a substring ($’0-9’).

$i or $I matches any initial character in a version 6 SAS name that is found
in a substring ($’a-zA-Z_’).

$l or $L matches any lowercase letter in a substring ($’a-z’).

$u or $U matches any uppercase letter in a substring ($’A-Z’).

$w or $W matches any white space character, such as blank, tab, backspace,
carriage return, etc., in a substring.

See also: “Character Class Complements” on page 531

Note: A hyphen appearing at the beginning or end of a character class is treated as
a member of the class rather than as a range symbol. 4

This statement and these values produce these matches.

rx=rxparse("$character-class");

Pattern Input string Position of match Value of match

$L or $l 3+Y STRIkeS 9 k

$U or $u 0*5x49XY 7 X (uppercase)

The following example shows how to use a default character class in a DATA step.

data _null_;
stringA=’3+Y STRIkeS’;
rx=rxparse("$L");
matchA = rxmatch(rx,stringA);
valueA=substr(stringA,matchA,1);
put ’Example A: ’ matchA = valueA= ;

run;

data _null_;
stringA2=’0*5x49XY’;
rx=rxparse("$u");
matchA2 = rxmatch(rx,stringA2);
valueA2 = substr(stringA2, matchA2,1);
put ’Example A2: ’ matchA2 = valueA2= ;

run;

The SAS log shows the following results:

Example A: matchA=9 valueA=k
Example A2: matchA2=7 valueA2=X

Functions and CALL Routines 4 RXPARSE 531

User-defined Character Classes A user-defined character class begins with a dollar
sign ($) and is followed by a string in quotation marks. A character class matches any
one character within the quotation marks.

Note: Ranges of values are indicated by a hyphen (-). 4

This statement and these values produce these matches.

rx=rxparse("$’pattern’");

Pattern Input string Position of match Value of match

$’abcde’ 3+yE strikes 11 e

$’1-9’ z0*549xy 4 5

The following example shows how to use a user-defined character class in a DATA
step.

data _null_;
stringB=’3+yE strikes’;
rx=rxparse("$’abcde’");
matchB = rxmatch(rx,stringB);
valueB=substr(stringB,matchB,1);
put ’Example B: ’ matchB= valueB= ;

run;

data _null_;
stringB2=’z0*549xy’;
rx=rxparse("$’1-9’");
matchB2=rxmatch(rx,stringB2);
valueB2=substr(stringB2,matchB2,1);
put ’Example B2: ’ matchB2= valueB2= ;

run;

The SAS log shows the following results:

Example B: matchB=11 valueB=e
Example B2: matchB2=4 valueB2=5

You can also define your own character class complements. For details about
character class complements, see “Character Class Complements” on page 531.

Character Class Complements A character class complement begins with a caret (^) or
a tilde (~) and is followed by a string in quotation marks. A character class complement
matches any one character that is not matched by the corresponding character class.
For details about character classes, see “Character Classes” on page 529.

This statement and these values produce these matches.

rx=rxparse(^character-class | ~character-class);

Pattern Input string Position of match Value of match

^u or ~u 0*5x49XY 1 0

^’A-z’ or
~’A-z’

Abc de45 4 the first space

The following example shows how to use a character class complement in a DATA
step.

532 RXPARSE 4 Chapter 4

data _null_;
stringC=’0*5x49XY’;
rx=rxparse(’^u’);
matchC = rxmatch(rx,stringC);
valueC=substr(stringC,matchC,1);
put ’Example C: ’ matchC = valueC=;

run;

data _null_;
stringC2=’Abc de45’;
rx=rxparse("~’A-z’");
matchC2=rxmatch(rx,stringC2);
valueC2=substr(stringC2,matchC2,1);
put ’Example C2: ’ matchC2= valueC2= ;

run;

The SAS log shows the following results:

Example C: matchC=1 valueC=0
Example C2: matchC2=4 valueC2=

Reusing Character Classes You can reuse character classes you previously defined by
using one of the following patterns:

$int
reuses the intth character class.

Restriction: int is a nonzero integer.

Example: If you defined a character class in a pattern and want to use the same
character class again in the same pattern, use $int to refer to the intth character
class you defined. If int is negative, count backwards from the last pattern to
identify the character class for -int. For example,

rx=rxparse("$’AB’ $1 $’XYZ’ $2 $-2");

is equivalent to

rx=rxparse("$’AB’ $’AB’ $’XYZ’ $’XYZ’ $’AB’");

� The $1 element in the first code sample is replaced by AB in the second
code sample, because AB was the first pattern defined.

� The $2 element in the first code sample is replaced by XYZ in the second
code sample, because XYZ was the second pattern defined.

� The $-2 element in the first code sample is replaced by AB in the second
code sample, because AB is the second-to-the-last pattern defined.

~int or ^int
reuses the complement of the int’th character class.

Restriction: int is a nonzero integer.

Example: This example shows character-class elements ($’Al’, $’Jo’, $’Li’) and
reuse numbers ($1, $2, $3, ~2):

rx=rxparse($’Al’ $1 $’Jo’ $2 $’Li’ $3 ~2);

is equivalent to

rx=rxparse($’Al’ $’Al’ $’Jo’ $’Jo’
$’Li’ $’Li’ $’Al’ $’Li’);

Functions and CALL Routines 4 RXPARSE 533

The ~2 matches patterns 1 (Al) and 3 (Li), and excludes pattern 2 (Jo).

Pattern Abbreviations
You can use the following list of elements in your pattern:

$f or $F matches a floating point number.

$n or $N matches a SAS name.

$p or $P indicates a prefix option.

$q or $Q matches a string in quotation marks.

$s or $S indicates a suffix option.

This statement and input string produce these matches.

rx=rxparse($pattern-abbreviation pattern);

Pattern Input string Position of
match

Value of match

$p wood woodchucks eat
wood

1 characters
"wood" in

woodchucks

wood $s woodchucks eat
wood

20 wood

The following example shows how to use a pattern abbreviation in a DATA step.

data _null_;
stringD=’woodchucks eat firewood’;
rx=rxparse("$p ’wood’");
PositionOfMatchD=rxmatch(rx,stringD);
call rxsubstr(rx,stringD,positionD,lengthD);
valueD=substr(stringD,PositionOfMatchD);
put ’Example D: ’ lengthD= valueD= ;

run;

data _null_;
stringD2=’woodchucks eat firewood’;
rx=rxparse("’wood’ $s");
PositionOfMatchD2=rxmatch(rx,stringD2);
call rxsubstr(rx,stringD2,positionD2,lengthD2);
valueD2=substr(stringD2,PositionOfMatchD2);
put ’Example D2: ’ lengthD2= valueD2= ;

run;

The SAS log shows the following results:

Example D: lengthD=4 valueD=woodchucks eat firewood
Example D2: lengthD2=4 valueD2=wood

Matching Balanced Symbols
You can match mathematical expressions containing multiple sets of balanced
parentheses, brackets, braces, and less-than/greater-than symbols. Both the symbols
and the expressions within the symbols are part of the match:

534 RXPARSE 4 Chapter 4

$(int) or $[int] or ${int} or $<int>
indicates the int level of nesting you specify.

Restriction: int is a positive integer.

Tip: Using smaller values increases the efficiency of finding a match.

Example: This statement and input string produces this match.

rx=rxparse("$(2)");

Input string Position of match Value of match

(((a+b)*5)/43) 2 ((a+b)*5)

The following example shows how to use mathematical symbol matching in a DATA
step.

data _null_;
stringE=’(((a+b)*5)/43)’;

rx=rxparse("$(2)");
call rxsubstr(rx,stringE,positionE,lengthE);
PositionOfMatchE=rxmatch(rx,stringE);
valueE=substr(stringE,PositionOfMatchE);
put ’Example E: ’ lengthE= valueE= ;

run;

The SAS log shows the following results:

Example E: lengthE=9 valueE=((a+b)*5)/43)

Special Symbols

You can use the following list of special symbols in your pattern:

\ sets the beginning of a match to the current position.

/ sets the end of a match to the current position.

Restriction: If you use a backward slash (\) in one alternative of a
union (|), you must use a forward slash (/) in all alternatives of
the union, or in a position preceding or following the union.

$# requests the match with the highest score, regardless of the starting
position.

Tip: The position of this symbol within the pattern is not
significant.

$- scans a string from right to left.

Tip: The position of this symbol within the pattern is not
significant.

Tip: Do not confuse a hyphen (-) used to scan a string with a
hyphen used in arithmetic operations.

$@ requires the match to begin where the scan of the text begins.

Tip: The position of this symbol within the pattern is not
significant.

The following table shows how a pattern matches an input string.

Functions and CALL Routines 4 RXPARSE 535

Pattern Input string Value of match

c\ow How now brown cow? characters "ow"
in cow

ow/n How now brown cow? characters "ow"
in brown

@3:\ow How now brown cow? characters "ow"
in now

The following example shows how to use special symbol matching in a DATA step.

data _null_;
stringF=’How now brown cow?’;
rx=rxparse("$’c\ow’");
matchF=rxmatch(rx,stringF);
valueF=substr(stringF,matchF,2);
put ’Example F= ’ matchF= valueF= ;

run;

data _null_;
stringF2=’How now brown cow?’;
rx=rxparse("@3:\ow");
matchF2=rxmatch(rx,stringF2);
valueF2=substr(stringF2,matchF2,2);
put ’Example F2= ’ matchF2= valueF2= ;

run;

The SAS log shows the following results:

Example F= matchF=2 valueF=ow
Example F2= matchF2=6 valueF2=ow

Scores
When a pattern is matched by more than one substring beginning at a specific position,
the longest substring is selected. To change the selection criterion, assign a score value
to each substring by using the pound sign (#) special symbol followed by an integer.

The score for any substring begins at zero. When #int is encountered in the pattern,
the value of int is added to the score. If two or more matching substrings begin at the
same leftmost position, SAS selects the substring with the highest score value. If two
substrings begin at the same leftmost position and have the same score value, SAS
selects the longer substring. The following is a list of score representations:

#int adds int to the score, where int is a positive or negative integer.

#*int multiplies the score by nonnegative int.

#/int divides the score by positive int.

#=int assigns the value of int to the score.

#>int finds a match if the current score exceeds int.

Tag Expression
You can assign a substring of the string being searched to a character variable with the
expression name=<pattern>, where pattern specifies any pattern expression. The
substring matched by this expression is assigned to the variable name.

536 RXPARSE 4 Chapter 4

If you enclose a pattern in less-than/greater-than symbols (<>) and do not specify a
variable name, SAS automatically assigns the pattern to a variable. SAS assigns the
variable _1 to the first occurrence of the pattern, _2 to the second occurrence, etc. This
assignment is called tagging. SAS tags the corresponding substring of the matched
string.

The following shows the syntax of a tag expression:

<pattern>
specifies a pattern expression. SAS assigns a variable to each occurrence of
pattern for use in a change expression.

Change Expressions
If you find a substring that matches a pattern, you can change the substring to another
value. You must specify the pattern expression, use the TO keyword, and specify the
change expression in the argument for RXPARSE. You can specify a list of pattern
change expressions by separating each expression with a comma.

A pattern change operation replaces a matched string by concatenating values to the
replacement string. The operation concatenates

� all characters to the left of the match
� the characters specified in the change expression
� all characters to the right of the match.

You can have multiple parallel operations within the RXPARSE argument. In the
following example,

rx=rxparse("x TO y, y TO x");

x in a substring is substituted for y, and y in a substring is substituted for x.
A change expression can include the items in the following list. Each item in the list

is followed by the description of the value concatenated to the replacement string at the
position of the pointer.

string in quotation marks
concatenates the contents of the string.

name
concatenates the name, possibly in a different case.

number
concatenates the number.

period (.)
concatenates the period (.).

underscore (_)
concatenates the underscore (_).

=int
concatenates the value of the intth tagged substring if int is positive, or the
-intth-from-the-last tagged substring if int is negative. In a parallel change
expression, the intth or -intth-from-the-last tag is counted within the component of
the parallel change expression that yielded the match, and not over the entire
parallel change expression.

==
concatenates the entire matched substring.

Change Items
You can use the items in the following list to manipulate the replacement string. The
items position the cursor without affecting the replacement string.

Functions and CALL Routines 4 RXPARSE 537

@int moves the pointer to column int where the next string added to the
replacement string will start.

@= moves the pointer one column past the end of the matched substring.

>int moves the pointer to the right to column int. If the pointer is
already to the right of column int, the pointer is not moved.

>= moves the pointer to the right, one column past the end of the
matched substring.

<int moves pointer to the left to column int. If the pointer is already to
the left of column int, the pointer is not moved.

<= moves the pointer to the left, one column past the end of the
matched substring.

+int moves the pointer int columns to the right.

-int moves the pointer int columns to the left.

-L left-aligns the result of the previous item or expression in
parentheses.

-R right-aligns the result of the previous item or expression in
parentheses.

-C centers the result of the previous item or expression in parentheses.

*int repeats the result of the previous item or expression in parentheses
int-1 times, producing a total of int copies.

Details

General Information
� When creating a pattern for matching, make the pattern as short as possible for

greater efficiency. The time required for matching is roughly proportional to the
length of the pattern times the length of the string that is searched.

� The algorithm used by the regular expression (RX) functions and CALL routines is
a nondeterministic finite automaton.

Using Quotation Marks in Expressions
� To specify a literal that begins with a single quotation mark, use two single

quotation marks instead of one.

� Literals inside a pattern must be enclosed by another layer of quotation marks.
For example, ‘‘ ’O’ ’’ connor’’ matches an uppercase O, followed by a single
quotation mark, followed by the letters "connor" in either upper or lower case.

Comparisons
The regular expression (RX) functions and CALL routines work together to manipulate
strings that match patterns. Use the RXPARSE function to parse a pattern you specify.
Use the RXMATCH function and the CALL RXCHANGE and CALL RXSUBSTR
routines to match or modify your data. Use the CALL RXFREE routine to free allocated
space.

Note: Use RXPARSE only with other regular expression (RX) functions and CALL
routines. 4

538 RXPARSE 4 Chapter 4

Example

The following example uses RXPARSE to parse an input string and change the value
of the string.

data test;
input string $;
datalines;

abcxyzpq
xyyzxyZx
x2z..X7z
;

data _null_;
set;
length to $20;
if _n_=1 then

rx=rxparse("‘ x < ? > ’z’ to ABC =1 ’@#%’");
retain rx;
drop rx;
put string=;
match=rxmatch(rx,string);

put @3 match=;
call rxsubstr(rx,string,position);

put @3 position=;
call rxsubstr(rx,string,position,length,score);

put @3 position= Length= Score=;
call rxchange(rx,999,string,to);

put @3 to=;
call rxchange(rx,999,string);

put @3 ’New ’ string=;

Functions and CALL Routines 4 RXPARSE 539

run;

cpu time 0.05 seconds

1 data test;
2 input string $;
3 datalines;
NOTE: The data set WORK.TEST has 3 observations and 1 variables.
NOTE: DATA statement used:

real time 0.34 seconds
cpu time 0.21 seconds

7 ;
8
9 data _null_;
10 set;
11 length to $20;
12 if _n_=1 then
13 rx=rxparse("‘ x < ? > ’z’ to ABC =1 ’@#%’");
14 retain rx;
15 drop rx;
16 put string=;
17 match=rxmatch(rx,string);
18 put @3 match=;
19 call rxsubstr(rx,string,position);
20 put @3 position=;
21 call rxsubstr(rx,string,position,length,score);
22 put @3 position= Length= Score=;
23 call rxchange(rx,999,string,to);
24 put @3 to=;
25 call rxchange(rx,999,string);
26 put @3 ’New ’ string=;
27 run;
string=abcxyzpq

match=4
position=4
position=4 length=3 score=0
to=abcabcy@#%pq
New string=abcabcy@

string=xyyzxyZx
match=0
position=0
position=0 length=0 score=0
to=xyyzxyZx
New string=xyyzxyZx

string=x2z..X7z
match=1
position=1
position=1 length=3 score=0
to=abc2@#%..Abc7@#%
New string=abc2@#%.

NOTE: DATA statement used:
real time 0.67 seconds
cpu time 0.45 seconds

540 SAVING 4 Chapter 4

See Also

Functions and CALL routines:
“CALL RXCHANGE” on page 265
“CALL RXFREE” on page 267
“RXMATCH” on page 526
“CALL RXSUBSTR” on page 268

Aho, Hopcroft, and Ullman, Chapter 9 (See “References” on page 626)

SAVING

Returns the future value of a periodic saving

Category: Financial

Syntax
SAVING(f,p,r,n)

Arguments

f
is numeric, the future amount (at the end of n periods).
Range: f ≥ 0

p
is numeric, the fixed periodic payment.
Range: p ≥ 0

r
is numeric, the periodic interest rate expressed as a decimal.
Range: r ≥ 0

n
is an integer, the number of compounding periods.
Range: n ≥ 0

Details
The SAVING function returns the missing argument in the list of four arguments from
a periodic saving. The arguments are related by

f =
p (1 + r)

�
(1 + r)n � 1

�

r

One missing argument must be provided. It is then calculated from the remaining
three. No adjustment is made to convert the results to round numbers.

Functions and CALL Routines 4 SCAN 541

Examples

A savings account pays a 5 percent nominal annual interest rate, compounded
monthly. For a monthly deposit of $100, the number of payments that are needed to
accumulate at least $12,000, can be expressed as

number=saving(12000,100,.05/12,.);

The value returned is 97.18 months. The fourth argument is set to missing, which
indicates that the number of payments is to be calculated. The 5 percent nominal
annual rate is converted to a monthly rate of 0.05/12. The rate is the fractional (not the
percentage) interest rate per compounding period.

SCAN

Selects a given word from a character expression

Category: Character

Syntax
SCAN(argument,n<, delimiters>)

Arguments

argument
specifies any character expression.

n
specifies a numeric expression that produces the number of the word in the character
string you want SCAN to select.

Tip: If n is negative, SCAN selects the word in the character string starting from
the end of the string. If |n| is greater than the number of words in the character
string, SCAN returns a blank value.

delimiters
specifies a character expression that produces characters that you want SCAN to use
as word separators in the character string.

Default: If you omit delimiters in an ASCII environment, SAS uses the following
characters:

blank . < (+ & ! $ *); ^ – / , % |

In ASCII environments without the ^ character, SCAN uses the ~ character
instead.

If you omit delimiters on an EBCDIC environment, SAS uses the following
characters:

blank . < (+ | & ! $ *); – / , % | ¢

Tip: If you represent delimiters as a constant, enclose delimiters in quotation marks.

542 SDF 4 Chapter 4

Details
Leading delimiters before the first word in the character string do not effect SCAN. If
there are two or more contiguous delimiters, SCAN treats them as one.

Examples

SAS Statements Results

arg=’ABC.DEF(X=Y)’;
word=scan(arg,3);
put word; X=Y

word=scan(arg,-3);
put word; ABC

SDF

Computes a survival function

Category: Probability
See: “CDF” on page 273

Syntax
SDF(’dist’,quantile,parm-1, . . . ,parm-k)

The SDF function computes the survival function (upper tail) for specified
distributions.

SECOND

Returns the second from a SAS time or datetime value

Category: Date and Time

Syntax
SECOND(time | datetime)

Arguments

time
specifies a SAS expression that represents a SAS time value.

Functions and CALL Routines 4 SIGN 543

datetime
specifies a SAS expression that represents a SAS datetime value.

Details
The SECOND function produces a positive, numeric value that represents a specific
second of the minute. The result ranges from 0 through 59.

Examples

SAS Statements Result

time=’3:19:24’t;
s=second(time);
put s; 24

See Also

Functions:
“HOUR” on page 395
“MINUTE” on page 445

SIGN

Returns the sign of a value

Category: Mathematical

Syntax
SIGN(argument)

Required argument

argument
is numeric.

Details
The SIGN function returns a value of

-1 if x < 0

0 if x = 0

1 if x > 0.

544 SIN 4 Chapter 4

Examples

SAS Statements Results

x=sign(-5); -1

x=sign(5); 1

x=sign(0); 0

SIN

Returns the sine

Category: Trigonometric

Syntax
SIN(argument)

Arguments

argument
is numeric and is specified in radians.

Examples

SAS Statements Results

x=sin(0.5); 0.4794255386

x=sin(0); 0

x=sin(3.14159/4); .7071063121

SINH

Returns the hyperbolic sine

Category: Hyperbolic

Syntax
SINH(argument)

Functions and CALL Routines 4 SKEWNESS 545

Arguments

argument
is numeric.

Details
The SINH function returns the hyperbolic sine of the argument, which is given by

�
e
argument

� e
�argument

�
=2

Examples

SAS Statements Results

x=sinh(0); 0

x=sinh(1); 1.1752011936

x=sinh(-1.0); -1.175201194

SKEWNESS

Returns the skewness

Category: Descriptive Statistics

Syntax
SKEWNESS(argument,argument,argument, . . .)

Arguments

argument
is numeric. At least three arguments are required. The argument list may consist of
a variable list, which is preceded by OF.

546 SOUNDEX 4 Chapter 4

Examples

SAS Statements Results

x1=skewness(0,1,1); -1.732050808

x2=skewness(2,4,6,3,1); 0.5901286564

x3=skewness(2,0,0); 1.7320508076

x4=skewness(of
x1-x3);

-0.953097714

SOUNDEX

Encodes a string to facilitate searching

Category: Character

Syntax
SOUNDEX(argument)

Arguments

argument
specifies any SAS character expression.

Details
The SOUNDEX function encodes a character string according to an algorithm originally
developed by Margaret K. Odell and Robert C. Russel (US Patents 1261167 (1918) and
1435663 (1922)). The algorithm is described in Knuth, The Art of Computer
Programming, Volume 3 (See “References” on page 626).

The SOUNDEX function returns a copy of the argument encoded by using the
following steps.

1 Retain the first letter in the argument and discard the following letters:

A E H I O U W Y
2 Assign the following numbers to these classes of letters:

1: B F P V

2: C G J K Q S X Z
3: D T

4: L
5: M N
6: R

3 If two or more adjacent letters have the same classification from Step 2, discard all
but the first. (Adjacent refers to the position in the word prior to discarding
letters.)

Functions and CALL Routines 4 SPEDIS 547

The algorithm described in Knuth adds trailing zeroes and truncates the result to
the length of 4. You can perform these operations with other SAS functions.

Examples

SAS Statements Results

x=soundex(’Paul’);
put x; P4

word=’amnesty’;
x=soundex(word);
put x; A523

SPEDIS

Determines the likelihood of two words matching, expressed as the asymmetric spelling distance
between the two words

Category: Character

Syntax

SPEDIS(query,keyword)

Arguments

query
identifies the word to query for the likelihood of a match. SPEDIS removes trailing
blanks before comparing the value.

keyword
specifies a target word for the query. SPEDIS removes trailing blanks before
comparing the value.

Details
SPEDIS returns the distance between the query and a keyword, a nonnegative value
usually less than 100, never greater than 200 with the default costs.

SPEDIS computes an asymmetric spelling distance between two words as the
normalized cost for converting the keyword to the query word via a sequence of
operations. SPEDIS(QUERY, KEYWORD) is NOT the same as SPEDIS(KEYWORD,
QUERY).

Costs for each operation that is required to convert the keyword to the query are

548 SPEDIS 4 Chapter 4

Operation Cost Explanation

match 0 no change

singlet 25 delete one of a double letter

doublet 50 double a letter

swap 50 reverse the order of two
consecutive letters

truncate 50 delete a letter from the end

append 35 add a letter to the end

delete 50 delete a letter from the middle

insert 100 insert a letter in the middle

replace 100 replace a letter in the middle

firstdel 100 delete the first letter

firstins 200 insert a letter at the beginning

firstrep 200 replace the first letter

The distance is the sum of the costs divided (in integer arithmetic) by the length of
the query.

Examples
options nodate pageno=1 linesize=64;
data words;

input oper $ query $ keyword $;
dist = spedis(query,keyword);
cost = dist * length(query);
put oper $10. query $10. keyword $10.

dist 5. cost 5.;
datalines;
match fuzzy fuzzy
singlet fuzy fuzzy
doublet fuuzzy fuzzy
swap fzuzy fuzzy
truncate fuzz fuzzy
append fuzzys fuzzy
delete fzzy fuzzy
insert fluzzy fuzzy
replace fizzy fuzzy
firstdel uzzy fuzzy
firstins pfuzzy fuzzy
firstrep wuzzy fuzzy
several floozy fuzzy
;

proc print data = words;
run;

Functions and CALL Routines 4 STD 549

The output from the DATA step is as follows:

The SAS System 1
OBS OPER QUERY KEYWORD DIST COST

1 match fuzzy fuzzy 0 0
2 singlet fuzy fuzzy 6 24
3 doublet fuuzzy fuzzy 8 48
4 swap fzuzy fuzzy 10 50
5 truncate fuzz fuzzy 12 48
6 append fuzzys fuzzy 5 30
7 delete fzzy fuzzy 12 48
8 insert fluzzy fuzzy 16 96
9 replace fizzy fuzzy 20 100

10 firstdel uzzy fuzzy 25 100
11 firstins pfuzzy fuzzy 33 198
12 firstrep wuzzy fuzzy 40 200
13 several floozy fuzzy 50 300

SQRT

Returns the square root of a value

Category: Mathematical

Syntax
SQRT(argument)

Arguments

argument
is numeric and must be nonnegative.

Examples

SAS Statements Results

x=sqrt(36); 6

x=sqrt(25); 5

x=sqrt(4.4); 2.0976176963

STD

Returns the standard deviation

550 STDERR 4 Chapter 4

Category: Descriptive Statistics

Syntax
STD(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=std(2,6); 2.8284271247

x2=std(2,6,.); 2.8284271427

x3=std(2,4,6,3,1); 1.9235384062

x4=std(of x1-x3); 0.5224377453

STDERR

Returns the standard error of the mean

Category: Descriptive Statistics

Syntax
STDERR(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

Functions and CALL Routines 4 STFIPS 551

Examples

SAS Statements Results

x1=stderr(2,6); 2

x2=stderr(2,6,.); 2

x3=stderr(2,4,6,3,1); 0.8602325267

x4=stderr(of
x1-x3);

0.3799224911

STFIPS

Converts state postal codes to FIPS state codes

Category: State and ZIP Code

Syntax
STFIPS(postal-code)

Arguments

postal-code
specifies a character expression that contains the two-character standard state postal
code. Characters can be mixed case. The function ignores trailing blanks, but
generates an error if the expression contains leading blanks.

Details
The STFIPS function converts a two-character state postal code (or world-wide GSA
geographic code for U.S. territories) to the corresponding numeric U.S. Federal
Information Processing Standards (FIPS) code.

Comparisons
The STFIPS, STNAME, and STNAMEL functions take the same argument but return
different values. STFIPS returns a numeric U.S. Federal Information Processing
Standards (FIPS) code. STNAME returns an uppercase state name. STNAMEL returns
a mixed case state name.

Examples

The examples show the differences when using STFIPS, STNAME, and STNAMEL.

552 STNAME 4 Chapter 4

SAS Statements Results

fips=stfips (’NC’);
put fips; 37

state=stname(’NC’);
put state; NORTH CAROLINA

state=stnamel(’NC’);
put state; North Carolina

See Also

Functions:
“FIPNAME” on page 364
“FIPNAMEL” on page 365
“FIPSTATE” on page 366
“STNAME” on page 552,
“STNAMEL” on page 553

STNAME

Converts state postal codes to uppercase state names

Category: State and ZIP Code

Syntax
STNAME(postal-code)

Arguments

postal-code
specifies a character expression that contains the two-character standard state postal
code. Characters can be mixed case. The function ignores trailing blanks, but
generates an error if the expression contains leading blanks.

Details
The STNAME function converts a two-character state postal code (or world-wide GSA
geographic code for U.S. territories) to the corresponding state name in uppercase.
Returned values can contain up to 20 characters.

Comparisons
The STFIPS, STNAME, and STNAMEL functions take the same argument but return
different values. STFIPS returns a numeric U.S. Federal Information Processing
Standards (FIPS) code. STNAME returns an uppercase state name. STNAMEL returns
a mixed case state name.

Functions and CALL Routines 4 STNAMEL 553

Examples

SAS Statements Results

fips=stfips (’NC’);
put fips; 37

state=stname(’NC’);
put state; NORTH CAROLINA

state=stnamel(’NC’);
put state; North Carolina

See Also

Functions:
“FIPNAME” on page 364
“FIPNAMEL” on page 365
“FIPSTATE” on page 366
“STFIPS” on page 551, “STNAMEL” on page 553

STNAMEL

Converts state postal codes to mixed case state names

Category: State and ZIP Code

Syntax
STNAMEL(postal-code)

Arguments

postal-code
specifies a character expression that contains the two-character standard state postal
code. Characters can be mixed case. The function ignores trailing blanks, but
generates an error if the expression contains leading blanks.

Details
The STNAMEL function converts a two-character state postal code (or world-wide GSA
geographic code for U.S. territories) to the corresponding state name in mixed case.
Returned values can contain up to 20 characters.

Comparisons
The STFIPS, STNAME, and STNAMEL functions take the same argument but return
different values. STFIPS returns a numeric U.S. Federal Information Processing

554 SUBSTR (left of =) 4 Chapter 4

Standards (FIPS) code. STNAME returns an uppercase state name. STNAMEL returns
a mixed case state name.

Examples

The examples show the differences when using STFIPS, STNAME, and STNAMEL.

SAS Statements Results

fips=stfips (’NC’);
put fips; 37

state=stname(’NC’);
put state; NORTH CAROLINA

state=stnamel(’NC’);
put state; North Carolina

See Also

Functions:
“FIPNAME” on page 364
“FIPNAMEL” on page 365
“FIPSTATE” on page 366
“STFIPS” on page 551

SUBSTR (left of =)

Replaces character value contents

Category: Character

Syntax
SUBSTR(argument,position<,n>)=characters-to-replace

Arguments

argument
specifies a character variable.

position
specifies a numeric expression that is the beginning character position.

n
specifies a numeric expression that is the length of the substring that will be replaced.
Restriction: n can not be larger than the length of the expression that remains in

argument after position.

Functions and CALL Routines 4 SUBSTR (right of =) 555

Tip: If you omit n SAS uses all of the characters on the right side of the assignment
statement to replace the values of argument.

characters-to-replace
specifies a character expression that will replace the contents of argument.
Tip: Enclose a literal string of characters in quotation marks.

Details
When you use the SUBSTR function on the left side of an assignment statement, SAS
places the value of argument with the expression on right side. SUBSTR replaces n
characters starting at the character you specify in position.

Examples

SAS Statements Results

a=’KIDNAP’;
substr(a,1,3)=’CAT’;
put a; CATNAP

b=a;
substr(b,4)=’TY’;
put b; CATTY

See Also

Function:
“SUBSTR (right of =)” on page 555

SUBSTR (right of =)

Extracts a substring from an argument

Category: Character

Syntax
<variable=>SUBSTR(argument,position<,n>)

Arguments

variable
specifies a valid SAS variable name.

argument
specifies any SAS character expression.

position
specifies a numeric expression that is the beginning character position.

556 SUM 4 Chapter 4

n
specifies a numeric expression that is the length of the substring to extract.

Interaction: If n is larger than the length of the expression that remains in
argument after position, SAS extracts the remainder of the expression.

Tip: If you omit n, SAS extracts the remainder of the expression.

Details

The SUBSTR function returns a portion of an expression that you specify in argument.
The portion begins with the character specified by position and is the number of
characters specified by n.

A variable that is created by SUBSTR obtains its length from the length of argument.

Examples

SAS Statements Results

----+----1----+----2

date=’06MAY98’;
month=substr(date,3,3);
year=substr(date,6,2);
put @1 month @5 year; MAY 98

See Also

Function:

“SUBSTR (left of =)” on page 554

SUM

Returns the sum of the nonmissing arguments

Category: Descriptive Statistics

Syntax

SUM(argument,argument, …)

Arguments

argument
is numeric. The argument list can consist of a variable list, which is preceded by OF.

Functions and CALL Routines 4 SYSGET 557

Examples

SAS Statements Results

x1=sum(4,9,3,8); 24

x2=sum(4,9,3,8,.); 24

x3=sum(of x1-x2); 48

x4=sum(of x1-x3, 5); 101

y1=20;
y2=30;
x5=sum(of y:);

50

SYMGET
Returns the value of a macro variable during DATA step execution

Category: Macro

Syntax
SYMGET(argument)

Arguments

argument
is a character expression that identifies the macro variable whose value you want to
retrieve.

Details
The SYMGET function returns the value of a macro variable during DATA step
execution. SYMGET is documented in SAS Macro Language: Reference.

See Also

SAS Macro Language: Reference

SYSGET
Returns the value of the specified operating environment variable

Category: Special

Syntax
SYSGET(operating-environment-variable)

558 SYSMSG 4 Chapter 4

Arguments

operating-environment-variable
is the name of an operating environment variable. The case of
operating-environment-variable must agree with the case that is stored in the
operating environment. Trailing blanks in the argument of SYSGET are significant.
Use the TRIM function to remove them.

Operating Environment Information: The term operating-environment-variable used in
the description of this function refers to a name that represents a numeric, character, or
logical value in the operating environment. Refer to the SAS documentation for your
operating environment for details. 4

Details
If the value of the operating environment variable is truncated or the variable is not
defined in the operating environment, SYSGET displays a warning message in the SAS
log.

Examples

This example obtains the value of two environment variables in the UNIX
environment:

data _null_;
length result $200;
input env_var $;
result=sysget(trim(env_var));
put env_var= result=;
datalines;

USER
PATH
;

Executing this DATA step for user ABCDEF displays these lines:

ENV_VAR=USER RESULT=abcdef
ENV_VAR=PATH RESULT=path-for-abcdef

SYSMSG

Returns the text of error messages or warning messages from the last data set or external file
function execution

Category: SAS File I/O
Category: External Files

Syntax
SYSMSG()

Functions and CALL Routines 4 SYSPARM 559

Details
SYSMSG returns the text of error messages or warning messages that are produced
when a data set or external file access function encounters an error condition. If no
error message is available, the returned value is blank. The internally stored error
message is reset to blank after a call to SYSMSG, so subsequent calls to SYSMSG
before another error condition occurs return blank values.

Example

This example uses SYSMSG to write to the SAS log the error message generated if
FETCH cannot copy the next observation into the Data Set Data Vector. The return
code is 0 only when a record is fetched successfully:

%let rc=%sysfunc(fetch(&dsid));
%if &rc ne 0 %then

%put %sysfunc(sysmsg());

See Also

Functions:
“FETCH” on page 352
“SYSRC” on page 561

SYSPARM

Returns the system parameter string

Category: Special

Syntax
SYSPARM()

Details
SYSPARM allows you to access a character string specified with the SYSPARM= system
option at SAS invocation or in an OPTIONS statement.

Note: If the SYSPARM= system option is not specified, the SYSPARM function
returns a null string. 4

Example

This example shows the SYSPARM= system option and the SYSPARM function.

options sysparm=’yes’;
data a;

560 SYSPROD 4 Chapter 4

If sysparm()=’yes’ then
do;
...SAS Statements...
end;

run;

See Also

System option:
“SYSPARM=” on page 1165

SYSPROD

Determines if a product is licensed

Category: Special

Syntax
SYSPROD(product-name)

Arguments

product-name
specifies a character expression that resolves to the name of a SAS product.

Details
The SYSPROD function returns 1 if a specific SAS Institute software product is
licensed, 0 if it is a SAS Institute software product but not licensed for your system,
and -1 if the product name is not recognized. Use SYSPROD in the DATA step, in an
IML step, or in an SCL program.

If SYSPROD indicates that a product is licensed, it means that the final license
expiration date has not passed. Use the SETINIT procedure to determine the final
expiration date for the product.

It is possible for a SAS software product to exist on your system even though the
product is no longer licensed. However, SAS cannot access this product.

You can enter the product name in uppercase, in lowercase, or in mixed case. You can
prefix the product with ’SAS/’. You can prefix SAS/ACCESS product names with ’ACC-’.
Use the SETINIT procedure to obtain a list of products available on your system.

Examples

� x=sysprod(’graph’);The value returned is 1 if SAS/GRAPH software is currently
licensed. The value returned is 0 if SAS/GRAPH software is not currently licensed.

� x=sysprod(’abc’);The value returned is -1 because ABC is not a valid product
name.

Functions and CALL Routines 4 SYSTEM 561

� x=sysprod(’base’);The value returned is always 1 because the Base product must
be licensed for the DATA step to run successfully.

SYSRC

Returns a system error number

Category: SAS File I/O
Category: External Files

Syntax
SYSRC()

Details
SYSRC returns the error number for the last system error encountered by a call to one
of the data set functions or external file functions.

Example

This example determines the error message if FILEREF does not exist:

%if %sysfunc(fileref(myfile)) ne 0 %then
%put %sysfunc(sysrc()) - %sysfunc(sysmsg());

See Also

Functions:
“FILEREF” on page 360
“SYSMSG” on page 558

SYSTEM

Issues an operating environment command during a SAS session

Category: Special

Syntax
SYSTEM(command)

Arguments

562 TAN 4 Chapter 4

command

Operating Environment Information: See the SAS documentation for your operating
environment for information on what you can specify. 4

Comparisons
The SYSTEM function is similar to the X statement, the X command, and the CALL
SYSTEM routine. In most cases, the X statement, X command, or %SYSEXEC macro
statement are preferable because they require less overhead. However, the SYSTEM
function can be executed conditionally, and accepts expressions as arguments. The X
statement is a global statement and executes as a DATA step is being compiled,
regardless of whether SAS encounters a conditional statement.

Example
Execute the host command TIMEDATA if the macro variable SYSDAY is Friday.

data _null_;
if "&sysday"="Friday" then do;

rc=system("timedata");
end;
else rc=system("errorck");

run;

See Also

CALL Routine:

“CALL SYSTEM” on page 271

Statement:

“X” on page 1043

TAN

Returns the tangent

Category: Trigonometric

Syntax
TAN(argument)

Arguments

argument
is numeric and is specified in radians.

Restriction: cannot be an odd multiple of � /2

Functions and CALL Routines 4 TIME 563

Examples

SAS Statements Results

x=tan(0.5); 0.5463024898

x=tan(0); 0

x=tan(3.14159/3); 1.7320472695

TANH

Returns the hyperbolic tangent

Category: Hyperbolic

Syntax
TANH(argument)

Arguments

argument
is numeric.

Details
The TANH function returns the hyperbolic tangent of the argument, which is given by

�
e
argument

� e
�argument

�

(eargument + e
�argument)

Examples

SAS Statements Results

x=tanh(0); 0

x=tanh(0.5); 0.4621171573

x=tanh(-0.5); -0.462117157

TIME

Returns the current time of day

Category: Date and Time

564 TIMEPART 4 Chapter 4

Syntax
TIME()

Example

SAS assigns CURRENT a SAS time value corresponding to 4:32:00 if the following
statements are executed exactly at 2:32 PM:

current=time();
put current=time.;

TIMEPART
Extracts a time value from a SAS datetime value

Category: Date and Time

Syntax
TIMEPART(datetime)

Arguments

datetime
specifies a SAS expression that represents a SAS datetime value.

Example

SAS assigns TIME a SAS value that corresponds to 10:40:17 if the following
statements are executed exactly at 10:40:17 AM on any date:

datim=datetime();
time=timepart(datim);

TINV
Returns a quantile from the t distribution

Category: Quantile

Syntax
TINV(p,df< ,nc>)

Functions and CALL Routines 4 TNONCT 565

Arguments

p
is a numeric probability.
Range: 0 ≤ p < 1

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric noncentrality parameter.

Details
The TINV function returns the pth quantile from the Student’s t distribution with
degrees of freedom df and a noncentrality parameter nc. The probability that an
observation from a t distribution is less than or equal to the returned quantile is p.

TINV accepts a noninteger degree of freedom parameter df. If the optional parameter
nc is not specified or is 0, the quantile from the central t distribution is returned.

CAUTION:
For large values of nc, the algorithm can fail; in that case, a missing value is
returned. 4

Note: TINV is the inverse of the PROBT function. 4

Examples

SAS Statements Results

x=tinv(.95,2); 2.9199855804

x=tinv(.95,2.5,3); 1.033833625

TNONCT

Returns the value of the noncentrality parameter from the student’s t distribution

Category Mathematical

Syntax
TNONCT(x,df,prob)

Arguments

x
is a numeric random variable.

566 TODAY 4 Chapter 4

df
is a numeric degrees-of-freedom parameter, with df > 0.

prob
is a probability, with 0 < prob < .

Details
The TNONCT function returns the nonnegative noncentrality parameter from a
noncentral t distribution whose parameters are x, df, and nc. A Newton-type algorithm
is used to find a root nc of the equation

Pt (xjdf; nc)� prob = 0

where

Pt (xjdf; nc) =
1

�
�
df
2

�
1Z

0

v
df

2
�1e�v

x
p

2v

dfZ
�1

e�
(u�nc)2

2 dudv

If the algorithm fails to converge to a fixed point, a missing value is returned.

Example
data work;

x=2;
df=4;
do nc=1 to 3 by .5;

prob=probt(x,df,nc);
ncc=tnonct(x,df,prob);
output;

end;
run;
proc print;
run;

Output 4.16 Computations of the Noncentrality Parameter from the t Distribution

OBS x df nc prob ncc

1 2 4 1.0 0.76457 1.0
2 2 4 1.5 0.61893 1.5
3 2 4 2.0 0.45567 2.0
4 2 4 2.5 0.30115 2.5
5 2 4 3.0 0.17702 3.0

TODAY
Returns the current date as a SAS date value

Functions and CALL Routines 4 TRANSLATE 567

Category: Date and Time

Syntax
TODAY()

TODAY is identical to the DATE function. See “DATE” on page 312.

TRANSLATE

Replaces specific characters in a character expression

Category: Character

Syntax
TRANSLATE(source,to-1,from-1<,…to-n,from-n>)

Arguments

source
specifies the SAS expression that contains the original character value.

to
specifies the characters that you want TRANSLATE to use as substitutes.

from
specifies the characters that you want TRANSLATE to replace.
Interaction: Values of to and from correspond on a character-by-character basis;

TRANSLATE changes character one of from to character one of to, and so on. If to
has fewer characters than from, TRANSLATE changes the extra from characters
to blanks. If to has more characters than from, TRANSLATE ignores the extra to
characters.

Operating Environment Information: You must have pairs of to and from arguments
on some operating environments. On other operating environments, a segment of the
collating sequence replaces null from arguments. See the SAS documentation for your
operating environment for more information. 4

Details
The maximum number of pairs of to and from arguments that TRANSLATE accepts
depends on the operating environment you use to run SAS. There is no functional
difference between using several pairs of short arguments, or fewer pairs of longer
arguments.

Comparisons
The TRANWRD function differs from TRANSLATE in that it scans for words (or
patterns of characters) and replaces those words with a second word (or pattern of
characters).

568 TRANWRD 4 Chapter 4

Examples

SAS Statements Results

x=translate(’XYZW’,’AB’,’VW’);
put x; XYZB

See Also

Function:
“TRANWRD” on page 568

TRANWRD

Replaces or removes all occurrences of a word in a character string

Category: Character

Syntax
TRANWRD(source,target,replacement)

Arguments

source
specifies the source string that you want to translate.

target
specifies the string searched for in source.

replacement
specifies the string that replaces target.

Details
The TRANWRD function replaces or removes all occurrences of a given word (or a
pattern of characters) within a character string. The TRANWRD function does not
remove trailing blanks in the target string and the replacement string.

The value that the TRANWRD function returns has a default length of 200. You can
use the LENGTH statement, before calling TRANWRD, to change the length of the
value.

Comparisons
The TRANSLATE function converts every occurrence of a user-supplied character to
another character. TRANSLATE can scan for more than one character in a single call.
In doing this, however, TRANSLATE searches for every occurrence of any of the
individual characters within a string. That is, if any letter (or character) in the target

Functions and CALL Routines 4 TRANWRD 569

string is found in the source string, it is replaced with the corresponding letter (or
character) in the replacement string.

The TRANWRD function differs from TRANSLATE in that it scans for words (or
patterns of characters) and replaces those words with a second word (or pattern of
characters).

Examples

Example 1: Replacing All Ocurrences of a Word These statements and these values
produce these results:

name=tranwrd(name, "Mrs.", "Ms.");
name=tranwrd(name, "Miss", "Ms.");
put name;

Values Results

Mrs. Joan Smith Ms. Joan Smith

Miss Alice Cooper Ms. Alice Cooper

Example 2: Removing Blanks From the Search String In this example, the TRANWRD
function does not replace the source string because the target string contains blanks.

data list;
input salelist $;
length target $10 replacement $3;
target=’FISH’;
replacement=’NIP’;
salelist=tranwrd(salelist,target,replacement);
put salelist;
datalines;

CATFISH
;

The LENGTH statement left-aligns TARGET and pads it with blanks to the length of
10. This causes the TRANWRD function to search for the character string ’FISH
’ in SALELIST. Because the search fails, this line is written to the SAS log:

CATFISH

You can use the TRIM function to exclude trailing blanks from a target or
replacement variable. Use the TRIM function with TARGET:

salelist=tranwrd(salelist,trim(target),replacement);
put salelist;

Now, this line is written to the SAS log:

CATNIP

570 TRIGAMMA 4 Chapter 4

See Also

Function:

“TRANSLATE” on page 567

TRIGAMMA

Returns the value of the TRIGAMMA function

Category: Mathematical

Syntax
TRIGAMMA(argument)

Arguments

argument
is numeric.

Restriction: Nonpositive integers are invalid.

Details
The TRIGAMMA function returns the derivative of the DIGAMMA function. For
argument > 0, the TRIGAMMA function is the second derivative of the LGAMMA
function.

Examples

SAS Statements Results

x=trigamma(3); 0.3949340668

TRIM

Removes trailing blanks from character expressions and returns one blank if the expression is
missing

Category: Character

Syntax
TRIM(argument)

Functions and CALL Routines 4 TRIM 571

Arguments

argument
specifies any SAS character expression.

Details
TRIM copies a character argument, removes all trailing blanks, and returns the
trimmed argument as a result. If the argument is blank, TRIM returns one blank.
TRIM is useful for concatenating because concatenation does not remove trailing blanks.

Assigning the results of TRIM to a variable does not affect the length of the receiving
variable. If the trimmed value is shorter than the length of the receiving variable, SAS
pads the value with new blanks as it assigns it to the variable.

Comparisons
The TRIM and TRIMN functions are similar. TRIM returns one blank for a blank
string. TRIMN returns a null string (zero blanks) for a blank string.

Examples

Example 1: Removing Trailing Blanks These statements and this data line produce
these results:

data test;
input part1 $ 1-10 part2 $ 11-20;
hasblank=part1||part2;
noblank=trim(part1)||part2;
put hasblank;
put noblank;
datalines;

Data Line Results

apple sauce ----+----1----+----2

apple sauce

applesauce

Example 2: Concatenating a Blank Character Expression

572 TRIMN 4 Chapter 4

SAS Statements Results

x="A"||trim(" ")||"B"; put x; A B

x=" "; y=">"||trim(x)||"<"; put y; > <

See Also

Functions:
“COMPRESS” on page 296
“LEFT” on page 435
“RIGHT” on page 524

TRIMN

Removes trailing blanks from character expressions and returns a null string (zero blanks) if the
expression is missing

Category: Character

Syntax
TRIMN(argument)

Arguments

argument
specifies any SAS character expression.

Details
TRIMN copies a character argument, removes all trailing blanks, and returns the
trimmed argument as a result. If the argument is blank, TRIMN returns a null string.
TRIMN is useful for concatenating because concatenation does not remove trailing
blanks.

Assigning the results of TRIMN to a variable does not affect the length of the
receiving variable. If the trimmed value is shorter than the length of the receiving
variable, SAS pads the value with new blanks as it assigns it to the variable.

Comparisons
The TRIMN and TRIM functions are similar. TRIMN returns a null string (zero blanks)
for a blank string. TRIM returns one blank for a blank string.

Examples

Functions and CALL Routines 4 TRUNC 573

SAS Statements Results

x="A"||trimn("")||"B";
put x; AB

x=" ";
z=">"||trimn(x)||"<";
put z; ><

See Also

Functions:
“COMPRESS” on page 296
“LEFT” on page 435
“RIGHT” on page 524
“TRIM” on page 570

TRUNC
Truncates a numeric value to a specified length

Category: Truncation

Syntax
TRUNC(number,length)

Arguments

number
is numeric.

length
is numeric and integer.

Details
The TRUNC function truncates a full-length number (stored as a double) to a smaller
number of bytes, as specified in length and pads the truncated bytes with 0s. The
truncation and subsequent expansion duplicate the effect of storing numbers in less
than full length and then reading them.

Comparisons
The ROUND function returns a value rounded to the nearest round-off unit. If a
round-off unit is not provided, a default value of 1 is used, and the argument is rounded
to the nearest integer.

Examples

574 UNIFORM 4 Chapter 4

data test;
length x 3;
x=1/5;

run;
data test2;

set test;
if x ne 1/5 then

put ’x ne 1/5’;
if x eq trunc(1/5,3) then

put ’x eq trunc(1/5,3)’;
run;

The variable X is stored with a length of 3 and, therefore, each of the above
comparisons is true.

UNIFORM

Random variate from a uniform distribution

Category: Random Number
See: “RANUNI” on page 521

Syntax
UNIFORM(seed)

seed
is numeric.
Range: seed < 231−1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

UPCASE

Converts all letters in an argument to uppercase

Category: Character

Syntax
UPCASE(argument)

Arguments

Functions and CALL Routines 4 URLDECODE 575

argument
specifies any SAS character expression.

Details
The UPCASE function copies a character argument, converts all lowercase letters to
uppercase letters, and returns the altered value as a result.

Examples

SAS Statements Results

name=upcase(’John B. Smith’);
put name; JOHN B. SMITH

URLDECODE

Returns a string that was decoded using the URL escape syntax

Category: Web Tools

Syntax
URLDECODE(argument)

Arguments

argument
specifies any character expression that contains a URL escape sequence, which is a
three character string of the form %nn.

Details
The URL escape syntax is used to hide characters that may otherwise be significant
when used in a URL. URLDECODE also converts plus (+) characters to spaces.

Operating Environment Information: In operating environments that use EBCDIC,
SAS performs an extra translation step after it recognizes an escape sequence. The
specified character is assumed to be an ASCII encoding. SAS uses the transport-to-local
translation table to convert this character to an EBCDIC character in operating
environments that use EBCDIC. For more information see <MAKR LINK> the
TRANTAB= system option. 4

576 URLENCODE 4 Chapter 4

Examples

SAS Statements Results

x1=urldecode (’abc+def’);
put x1; abc def

x2=urldecode (’why%3F’);
put x2; why?

x3=urldecode (’%41%42%43%23%31’);
put x3; ABC#1

See Also

Function:
“URLENCODE” on page 576

URLENCODE

Returns a string that was encoded using the URL escape syntax

Category: Web Tools

Syntax
URLENCODE(argument)

Arguments

argument
specifies any character expression.

Details
The URLENCODE function encodes characters that may otherwise be significant when
used in a URL. This function encodes all characters except for the following:

� all alphanumeric characters
� dollar sign ($)
� dash (-)
� underscore (_)
� at sign (@)
� period (.)
� exclamation point (!)
� asterisk (*)
� left parenthesis (()and right parenthesis ())
� comma (,).

Functions and CALL Routines 4 USS 577

Note: The encoded string may be longer than the original string. Ensure that you
consider the additional length when you use this function. 4

Examples

SAS Statements Results

x1=urlencode (’abc def’);
put x1; abc%20def

x2=urlencode (’why?’);
put x2; why%3F

x3=urlencode (’ABC#1’);
put x3; ABC%231

See Also

Function:
“URLDECODE” on page 575

USS

Returns the uncorrected sum of squares

Category: Descriptive Statistics

Syntax
USS(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

578 VAR 4 Chapter 4

Examples

SAS Statements Results

x1=uss(4,2,3.5,6); 68.25

x2=uss(4,2,3.5,6,.); 68.25

x3=uss(of x1-x2); 9316.125

VAR
Returns the variance

Category: Descriptive Statistics

Syntax
VAR(argument,argument, . . .)

Arguments

argument
is numeric. At least two arguments are required. The argument list may consist of a
variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=var(4,2,3.5,6); 2.7291666667

x2=var(4,6,.); 2

x3=var(of x1-x2); 0.2658420139

VARFMT
Returns the format assigned to a SAS data set variable

Category: SAS File I/O

Syntax
VARFMT(data-set-id,var-num)

Arguments

Functions and CALL Routines 4 VARFMT 579

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Details
If no format has been assigned to the variable, a blank string is returned.

Examples

� This example obtains the format of the variable NAME in the SAS data set
MYDATA.

%let dsid=%sysfunc(open(mydata,i));
%if &dsid %then

%do;
%let fmt=%sysfunc(varfmt(&dsid,

%sysfunc(varnum
(&dsid,NAME))));

%let rc=%sysfunc(close(&dsid));
%end;

� This example creates a data set that contains the name and formatted content of
each numeric variable in the SAS data set MYDATA.

data vars;
length name $ 8 content $ 12;
drop dsid i num rc fmt;
dsid=open("mydata","i");
num=attrn(dsid,"nvars");
do while (fetch(dsid)=0);

do i=1 to num;
name=varname(dsid,i);
if (vartype(dsid,i)=’N’) then do;

fmt=varfmt(dsid,i);
if fmt=’’ then fmt="BEST12.";
content=putc(putn(getvarn

(dsid,i),fmt),"$char12.");
output;
end;

end;
end;
rc=close(dsid);

run;

580 VARINFMT 4 Chapter 4

See Also

Functions:

“VARINFMT” on page 580

“VARNUM” on page 584

VARINFMT

Returns the informat assigned to a SAS data set variable

Category: SAS File I/O

Syntax
VARINFMT(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.

Tip: This number is next to the variable in the list produced by the CONTENTS
procedure.

Tip: The VARNUM function returns this number.

Details
If no informat has been assigned to the variable, a blank string is returned.

Examples

� This example obtains the informat of the variable NAME in the SAS data set
MYDATA.

%let dsid=%sysfunc(open(mydata,i));
%if &dsid %then

%do;
%let fmt=%sysfunc(varinfmt(&dsid,

%sysfunc(varnum
(&dsid,NAME))));

%let rc=%sysfunc(close(&dsid));
%end;

� This example creates a data set that contains the name and informat of the
variables in MYDATA.

Functions and CALL Routines 4 VARLABEL 581

data vars;
length name $ 8 informat $ 10 ;
drop dsid i num rc;
dsid=open("mydata","i");
num=attrn(dsid,"nvars");
do i=1 to num;

name=varname(dsid,i);
informat=varinfmt(dsid,i);
output;

end;
rc=close(dsid);

run;

See Also

Functions:
“OPEN” on page 460
“VARFMT” on page 578
“VARNUM” on page 584

VARLABEL

Returns the label assigned to a SAS data set variable

Category: SAS File I/O

Syntax
VARLABEL(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Details
If no label has been assigned to the variable, a blank string is returned.

Comparisons
VLABEL returns the label that is associated with the given variable.

582 VARLEN 4 Chapter 4

Examples

This example obtains the label of the variable NAME in the SAS data set MYDATA.

Example Code 4.2 Obtaining the Label of the Variable NAME

%let dsid=%sysfunc(open(mydata,i));
%if &dsid %then

%do;
%let fmt=%sysfunc(varlabel(&dsid,

%sysfunc(varnum
(&dsid,NAME))));

%let rc=%sysfunc(close(&dsid));
%end;

See Also

Functions:
“OPEN” on page 460
“VARNUM” on page 584

VARLEN

Returns the length of a SAS data set variable

Category: SAS File I/O

Syntax
VARLEN(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Comparisons
VLENGTH returns the compile-time (allocated) size of the given variable.

Examples

Functions and CALL Routines 4 VARNAME 583

� This example obtains the length of the variable ADDRESS in the SAS data set
MYDATA.

%let dsid=%sysfunc(open(mydata,i));
%if &dsid %then

%do;
%let len=%sysfunc(varlen(&dsid,

%sysfunc(varnum
(&dsid,ADDRESS))));

%let rc=%sysfunc(close(&dsid));
%end;

� This example creates a data set that contains the name, type, and length of the
variables in MYDATA.

data vars;
length name $ 8 type $ 1;
drop dsid i num rc;
dsid=open("mydata","i");
num=attrn(dsid,"nvars");
do i=1 to num;

name=varname(dsid,i);
type=vartype(dsid,i);
length=varlen(dsid,i);
output;

end;
rc=close(dsid);

run;

See Also

Functions:

“OPEN” on page 460

“VARNUM” on page 584

VARNAME

Returns the name of a SAS data set variable

Category: SAS File I/O

Syntax
VARNAME(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

584 VARNUM 4 Chapter 4

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Examples

This example copies the names of the first five variables in the SAS data set CITY
(or all of the variables if there are fewer than five) into a macro variable.

%let dsid=%sysfunc(open(city,i));
%let varlist=;
%do i=1 %to

%sysfunc(min(5,%sysfunc(attrn
(&dsid,nvars))));

%let varlist=&varlist %sysfunc(varname
(&dsid,&i));

%end;
%put varlist=&varlist;
%mend;

See Also

Functions:
“OPEN” on page 460
“VARNUM” on page 584

VARNUM
Returns the number of a variable’s position in a SAS data set

Category: SAS File I/O

Syntax
VARNUM(data-set-id,var-name)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-name
specifies the variable’s name.

Details
VARNUM returns the number of a variable’s position in a SAS data set, or 0 if the
variable is not in the SAS data set. This is the same variable number that is next to
the variable in the output from PROC CONTENTS.

Functions and CALL Routines 4 VARRAY 585

Examples

� This example obtains the number of a variable’s position in the SAS data set
CITY, given the name of the variable.

%let dsid=%sysfunc(open(city,i));
%let citynum=%sysfunc(varnum(&dsid,CITYNAME));
%let rc=%sysfunc(fetch(&dsid));
%let cityname=%sysfunc(getvarc

(&dsid,&citynum));

� This example creates a data set that contains the name, type, format, informat,
label, length, and position of the variables in SASUSER.HOUSES.

data vars;
length name $ 8 type $ 1

format informat $ 10 label $ 40;
drop dsid i num rc;
dsid=open("sasuser.houses","i");
num=attrn(dsid,"nvars");
do i=1 to num;

name=varname(dsid,i);
type=vartype(dsid,i);
format=varfmt(dsid,i);
informat=varinfmt(dsid,i);
label=varlabel(dsid,i);
length=varlen(dsid,i);
position=varnum(dsid,name);
output;

end;
rc=close(dsid);

run;

See Also

Functions:
“OPEN” on page 460
“VARNAME” on page 583

VARRAY
Returns a value that indicates whether the specified name is an array

Category: Variable Information

Syntax
VARRAY (name)

Arguments

586 VARRAYX 4 Chapter 4

name
specifies a name expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Details
VARRAY returns 1 if the given name is an array; it returns 0 if the given name is not
an array.

Comparisons
� VARRAY returns a value that indicates whether the specified name is an array.

VARRAYX returns a value that indicates whether the value of the specified
expression is an array.

� VARRAY does not accept an expression as an argument. VARRAYX accepts
expressions, but the value of the specified variable cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, informat, format, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

array x(3) x1-x3;
y=varray(x);
Z=varray(x1);
put y=;
put Z=; y=1

z=0

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 213

VARRAYX

Returns a value that indicates whether the value of the specified argument is an array

Category: Variable Information

Syntax
VARRAYX (expression)

Functions and CALL Routines 4 VARTYPE 587

Arguments

expression
specifies any SAS character expression.

Restriction: The value of the specified expression cannot denote an array reference.

Details
VARRAYX returns 1 if the value of the given argument is the name of an array; it
returns 0 if the value of the given argument is not the name of an array.

Comparisons
� VARRAY returns a value that indicates whether the specified name is the name of

an array. VARRAYX returns a value that indicates whether the value of the
specified expression is the name of an array.

� VARRAY does not accept an expression as an argument. VARRAYX accepts
expressions, but the value of the specified variable cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, informat, format, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

array x(3) x1-x3;
array vx(4) $6 vx1 vx2 vx3 vx4

(’x’ ’x1’ ’x2’ ’x3’);
y=varrayx(vx(1));
z=varrayx(vx(2));
put y=;
put z=; y=1

z=0

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 213

VARTYPE

Returns the data type of a SAS data set variable

Category: SAS File I/O

588 VARTYPE 4 Chapter 4

Syntax
VARTYPE(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Details
VARTYPE returns C for a character variable or N for a numeric variable.

Examples

� This example places the names of all the numeric variables of the SAS data set
MYDATA into a macro variable.

%let dsid=%sysfunc(open(mydata,i));
%let varlist=;
%do i=1 %to %sysfunc(attrn(&dsid,nvars));

%if (%sysfunc(vartype(&dsid,&i)) = N) %then
%let varlist=&varlist %sysfunc(varname

(&dsid,&i));
%end;
%let rc=%sysfunc(close(&dsid));

� This example creates a data set that contains the name and formatted contents of
each character variable in the SAS data set MYDATA.

data vars;
length name $ 8 content $ 20;
drop dsid i num fmt rc;
dsid=open("mydata","i");
num=attrn(dsid,"nvars");
do while (fetch(dsid)=0);

do i=1 to num;
name=varname(dsid,i);
fmt=varfmt(dsid,i);
if (vartype(dsid,i)=’C’) then do;

content=getvarc(dsid,i);
if (fmt ne ’’) then

content=left(putc(content,fmt));
output;
end;

Functions and CALL Routines 4 VERIFY 589

end;
end;
rc=close(dsid);

run;

See Also

Function:
“VARNUM” on page 584

VERIFY

Returns the position of the first character that is unique to an expression

Category: Character

Syntax
VERIFY(source,excerpt-1<,…excerpt-n>)

Arguments

source
specifies any SAS character expression.

excerpt
specifies any SAS character expression. If you specify more than one excerpt,
separate them with a comma.

Details
The VERIFY function returns the position of the first character in source that is not
present in any excerpt. If VERIFY finds every character in source in at least one
excerpt, it returns a 0.

Examples

590 VFORMAT 4 Chapter 4

SAS Statements Results

data scores;
input Grade : $1. @@;
check=’abcdf’;
if verify(grade,check)>0 then

put @1 ’INVALID ’ grade=;
datalines;

a b c b c d f a a q a b d d b
;

INVALID Grade=q

VFORMAT

Returns the format that is associated with the specified variable

Category: Variable Information

Syntax
VFORMAT (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Details
VFORMAT returns the complete format name, which includes the width and the period
(for example, $CHAR20.).

Comparisons
� VFORMAT returns the format that is associated with the specified variable.

VFORMATX, however, evaluates the argument to determine the variable name.
The function then returns the format that is associated with that variable name.

� VFORMAT does not accept an expression as an argument. VFORMATX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

Functions and CALL Routines 4 VFORMATD 591

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
y=vformat(x(1));
put y=; y=BEST6.

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 213

VFORMATD

Returns the format decimal value that is associated with the specified variable

Category: Variable Information

Syntax
VFORMATD (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Comparisons
� VFORMATD returns the format decimal value that is associated with the specified

variable. VFORMATDX, however, evaluates the argument to determine the
variable name. The function then returns the format decimal value that is
associated with that variable name.

� VFORMATD does not accept an expression as an argument. VFORMATDX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

592 VFORMATDX 4 Chapter 4

SAS Statements Results

array x(3) x1-x3;
format x1 comma8.2;
y=vformatd(x(1));
put y=; y=2

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 213

VFORMATDX

Returns the format decimal value that is associated with the value of the specified argument

Category: Variable Information

Syntax
VFORMATDX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.

Restriction: The value of the specified expression cannot denote an array reference.

Comparisons
� VFORMATD returns the format decimal value that is associated with the specified

variable. VFORMATDX, however, evaluates the argument to determine the
variable name. The function then returns the format decimal value that is
associated with that variable name.

� VFORMATD does not accept an expression as an argument. VFORMATDX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

Functions and CALL Routines 4 VFORMATN 593

SAS Statements Results

array x(3) x1-x3;
format x1 comma8.2;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vformatdx(vx(1));
z=vformatdx(’x’||’1’);
put y=;
put z=;

y=2
z=2

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 213

VFORMATN

Returns the format name that is associated with the specified variable

Category: Variable Information

Syntax
VFORMATN (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Details
VFORMATN returns only the format name, which does not include the width or the
period (for example, $CHAR).

Comparisons
� VFORMATN returns the format name that is associated with the specified

variable. VFORMATNX, however, evaluates the argument to determine the
variable name. The function then returns the format name that is associated with
that variable name.

� VFORMATN does not accept an expression as an argument. VFORMATNX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

594 VFORMATNX 4 Chapter 4

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
y=vformatn(x(1));
put y=; y=BEST

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 213

VFORMATNX

Returns the format name that is associated with the value of the specified argument

Category: Variable Information

Syntax
VFORMATNX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
VFORMATNX returns only the format name, which does not include the length or the
period (for example, $CHAR).

Comparisons
� VFORMATN returns the format name that is associated with the specified

variable. VFORMATNX, however, evaluates the argument to determine the
variable name. The function then returns the format name that is associated with
that variable name.

Functions and CALL Routines 4 VFORMATW 595

� VFORMATN does not accept an expression as an argument. VFORMATNX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vformatnx(vx(1));
put y=; y=BEST

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 213

VFORMATW

Returns the format width that is associated with the specified variable

Category: Variable Information

Syntax
VFORMATW (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Comparisons
� VFORMATW returns the format width that is associated with the specified

variable. VFORMATWX, however, evaluates the argument to determine the
variable name. The function then returns the format width that is associated with
that variable name.

596 VFORMATWX 4 Chapter 4

� VFORMATW does not accept an expression as an argument. VFORMATWX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
y=vformatw(x(1));
put y=; y=6

See Also

Functions:

"Variable Information" functions in “Functions and CALL Routines by Category”
on page 213

VFORMATWX

Returns the format width that is associated with the value of the specified argument

Category: Variable Information

Syntax
VFORMATWX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.

Restriction: The value of the specified expression cannot denote an array reference.

Comparisons
� VFORMATW returns the format width that is associated with the specified

variable. VFORMATWX, however, evaluates the argument to determine the
variable name. The function then returns the format width that is associated with
that variable name.

Functions and CALL Routines 4 VFORMATX 597

� VFORMATW does not accept an expression as an argument. VFORMATWX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vformatwx(vx(1));
put y=; y=6

See Also

Functions:

"Variable Information" functions in “Functions and CALL Routines by Category”
on page 213

VFORMATX

Returns the format that is associated with the value of the specified argument

Category: Variable Information

Syntax
VFORMATX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.

Restriction: The value of the specified expression cannot denote an array reference.

Details
VFORMATX returns the complete format name which includes the width and the
period (for example, $CHAR20.).

598 VINARRAY 4 Chapter 4

Comparisons
� VFORMAT returns the format that is associated with the specified variable.

VFORMATX, however, evaluates the argument to determine the variable name.
The function then returns the format that is associated with that variable name.

� VFORMAT does not accept an expression as an argument. VFORMATX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
format x2 20.10;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vformatx(vx(1));
z=vformatx(vx(2));
put y=;
put z=;

y=BEST6.
z=F20.10

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VINARRAY

Returns a value that indicates whether the specified variable is a member of an array

Category: Variable Information

Syntax
VINARRAY (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Functions and CALL Routines 4 VINARRAYX 599

Details
VINARRAY returns 1 if the given variable is a member of an array; it returns 0 if the
given variable is not a member of an array.

Comparisons
� VINARRAY returns a value that indicates whether the specified variable is a

member of an array. VINARRAYX, however, evaluates the argument to determine
the variable name. The function then returns a value that indicates whether the
variable name is a member of an array.

� VINARRAY does not accept an expression as an argument. VINARRAYX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the "Variable
Information" functions in “Functions and CALL Routines by Category” on page
213 .

Examples

SAS Statements Results

array x(3) x1-x3;
y=vinarray(x);
Z=vinarray(x1);
put y=;
put Z=;

y=0
z=1

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VINARRAYX

Returns a value that indicates whether the value of the specified argument is a member of an array

Category: Variable Information

Syntax
VINARRAYX (expression)

Arguments

600 VINFORMAT 4 Chapter 4

expression
specifies any SAS character expression that evaluates to a variable name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
VINARRAYX returns 1 if the value of the given argument is a member of an array; it
returns 0 if the value of the given argument is not a member of an array.

Comparisons
� VINARRAY returns a value that indicates whether the specified variable is a

member of an array. VINARRAYX, however, evaluates the argument to determine
the variable name. The function then returns a value that indicates whether the
variable name is a member of an array.

� VINARRAY does not accept an expression as an argument. VINARRAYX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the "Variable
Information" functions in “Functions and CALL Routines by Category” on page
213 .

Examples

SAS Statements Results

array x(3) x1-x3;
array vx(4) $6 vx1 vx2 vx3 vx4

(’x’ ’x1’ ’x2’ ’x3’);
y=vinarrayx(vx(1));
z=vinarrayx(vx(2));
put y=;
put z=;

y=0
z=1

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VINFORMAT
Returns the informat that is associated with the specified variable

Category: Variable Information

Syntax
VINFORMAT (var)

Functions and CALL Routines 4 VINFORMATD 601

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
VINFORMAT returns the complete informat name, which includes the width and the
period (for example, $CHAR20.).

Comparisons
� VINFORMAT returns the informat that is associated with the specified variable.

VINFORMATX, however, evaluates the argument to determine the variable name.
The function then returns the informat that is associated with that variable name.

� VINFORMAT does not accept an expression as an argument. VINFORMATX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

informat x $char6.;
input x;
y=vinformat(x);
put y=; y=$CHAR6.

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VINFORMATD

Returns the informat decimal value that is associated with the specified variable

Category: Variable Information

Syntax
VINFORMATD (var)

602 VINFORMATDX 4 Chapter 4

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Comparisons
� VINFORMATD returns the informat decimal value that is associated with the

specified variable. VINFORMATDX, however, evaluates the argument to
determine the variable name. The function then returns the informat decimal
value that is associated with that variable name.

� VINFORMATD does not accept an expression as an argument. VINFORMATDX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

informat x comma8.2;
input x;
y=vinformatd(x);
put y=; y=2

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VINFORMATDX

Returns the informat decimal value that is associated with the value of the specified argument

Category: Variable Information

Syntax
VINFORMATDX (expression)

Arguments

Functions and CALL Routines 4 VINFORMATN 603

expression
specifies any SAS character expression that evaluates to a variable name.

Restriction: The value of the specified variable cannot denote an array reference.

Comparisons
� VINFORMATD returns the informat decimal value that is associated with the

specified variable. VINFORMATDX, however, evaluates the argument to
determine the variable name. The function then returns the informat decimal
value that is associated with that variable name.

� VINFORMATD does not accept an expression as an argument. VINFORMATDX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

informat x1 x2 x3 comma9.3;
input x1 x2 x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vinformatdx(vx(1));
put y=; y=3

See Also

Functions:

"Variable Information" functions in “Functions and CALL Routines by Category”
on page 213

VINFORMATN

Returns the informat name that is associated with the specified variable

Category: Variable Information

Syntax
VINFORMATN (var)

Arguments

604 VINFORMATNX 4 Chapter 4

var
specifies a variable, expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Details
VINFORMATN returns only the informat name, which does not include the width or
the period (for example, $CHAR).

Comparisons
� VINFORMATN returns the informat name that is associated with the specified

variable. VINFORMATNX, however, evaluates the argument to determine the
variable name. The function then returns the informat name that is associated
with that variable name.

� VINFORMATN does not accept an expression as an argument. VINFORMATNX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

informat x $char6.;
input x;
y=vinformatn(x);
put y=; y=$CHAR

See Also

Functions:

"Variable Information" functions in “Functions and CALL Routines by Category”
on page 213

VINFORMATNX

Returns the informat name that is associated with the value of the specified argument

Category: Variable Information

Syntax
VINFORMATNX (expression)

Functions and CALL Routines 4 VINFORMATW 605

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.

Restriction: The value of the specified expression cannot denote an array reference.

Details
VINFORMATNX returns only the informat name, which does not include the width or
the period (for example, $CHAR).

Comparisons
� VINFORMATN returns the informat name that is associated with the specified

variable. VINFORMATNX, however, evaluates the argument to determine the
variable name. The function then returns the informat name that is associated
with that variable name.

� VINFORMATN does not accept an expression as an argument. VINFORMATNX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

informat x1 x2 x3 $char6.;
input x1 x2 x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vinformatnx(vx(1));
put y=; y=$CHAR

See Also

Functions:

"Variable Information" functions in “Functions and CALL Routines by Category”
on page 213

VINFORMATW

Returns the informat width that is associated with the specified variable

Category: Variable Information

606 VINFORMATWX 4 Chapter 4

Syntax
VINFORMATW (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Comparisons
� VINFORMATW returns the informat width that is associated with the specified

variable. VINFORMATWX, however, evaluates the argument to determine the
variable name. The function then returns the informat width that is associated
with that variable name.

� VINFORMATW does not accept an expression as an argument. VINFORMATWX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

informat x $char6.;
input x;
y=vinformatw(x);
put y=; y=6

See Also

Functions:

"Variable Information" functions in “Functions and CALL Routines by Category”
on page 213

VINFORMATWX

Returns the informat width that is associated with the value of the specified argument

Category: Variable Information

Functions and CALL Routines 4 VINFORMATX 607

Syntax
VINFORMATWX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.
Restriction: The value of the specified expression cannot denote an array reference.

Comparisons
� VINFORMATW returns the informat width that is associated with the specified

variable. VINFORMATWX, however, evaluates the argument to determine the
variable name. The function then returns the informat width that is associated
with that variable name.

� VINFORMATW does not accept an expression as an argument. VINFORMATWX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

informat x1 x2 x3 $char6.;
input x1 x2 x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vinformatwx(vx(1));
put y=; y=6

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VINFORMATX

Returns the informat that is associated with the value of the specified argument

Category: Variable Information

608 VLABEL 4 Chapter 4

Syntax
VINFORMATX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
VINFORMATX returns the complete informat name, which includes the width and the
period (for example, $CHAR20.).

Comparisons
� VINFORMAT returns the informat that is associated with the specified variable.

VINFORMATX, however, evaluates the argument to determine the variable name.
The function then returns the informat that is associated with that variable name.

� VINFORMAT does not accept an expression as an argument. VINFORMATX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

SAS Statements Results

informat x1 x2 x3 $char6.;
input x1 x2 x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vinformatx(vx(1));
put y=; y=$CHAR6.

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VLABEL
Returns the label that is associated with the specified variable

Functions and CALL Routines 4 VLABELX 609

Category: Variable Information

Syntax
VLABEL (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
If there is no label, VLABEL returns the variable name.

Comparisons
� VLABEL returns the label of the specified variable or the name of the specified

variable, if no label exists. VLABELX, however, evaluates the argument to
determine the variable name. The function then returns the label that is
associated with that variable name, or the variable name if no label exists.

� VLABEL does not accept an expression as an argument. VLABELX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� VLABEL has the same functionality as CALL LABEL.
� Related functions return the value of other variable attributes, such as the

variable name, informat, and format, among others. For a list, see the "Variable
Information" functions in “Functions and CALL Routines by Category” on page
213 .

Examples

SAS Statements Results

array x(3) x1-x3;
label x1=’Test1’;
y=vlabel(x(1));
put y=; y=Test1

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VLABELX
Returns the variable label for the value of a specified argument

610 VLABELX 4 Chapter 4

Category: Variable Information

Syntax
VLABELX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
If there is no label, VLABELX returns the variable name.

Comparisons
� VLABEL returns the label of the specified variable, or the name of the specified

variable if no label exists. VLABELX, however, evaluates the argument to
determine the variable name. The function then returns the label that is
associated with that variable name, or the variable name if no label exists.

� VLABEL does not accept an expression as an argument. VLABELX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the "Variable
Information" functions in “Functions and CALL Routines by Category” on page
213 .

Examples

Functions and CALL Routines 4 VLENGTH 611

SAS Statements Results

array x(3) x1-x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
label x1=’Test1’;
y=vlabelx(vx(1));
put y=; y=Test1

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VLENGTH
Returns the compile-time (allocated) size of the specified variable

Category: Variable Information

Syntax
VLENGTH (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Comparisons
� LENGTH examines the variable at run-time, trimming trailing blanks to

determine the length. VLENGTH returns a compile-time constant value, which
reflects the maximum length.

� VLENGTH returns the length of the specified variable. VLENGTHX, however,
evaluates the argument to determine the variable name. The function then
returns the compile-time size that is associated with that variable name.

� VLENGTH does not accept an expression as an argument. VLENGTHX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the "Variable
Information" functions in “Functions and CALL Routines by Category” on page
213 .

Examples

612 VLENGTHX 4 Chapter 4

SAS Statements Results

length x $8;
x=’abc’;
y=vlength(x);
z=length(x);
put y=;
put z=;

y=8
z=3

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VLENGTHX

Returns the compile-time (allocated) size for the value of the specified argument

Category: Variable Information

Syntax
VLENGTHX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.
Restriction: The value of the specified expression cannot denote an array reference.

Comparisons
� LENGTH examines the variable at run-time, trimming trailing blanks to

determine the length. VLENGTHX, however, evaluates the argument to determine
the variable name. The function then returns the compile-time size that is
associated with that variable name.

� VLENGTH returns the length of the specified variable. VLENGTHX returns the
length for the value of the specified expression.

� VLENGTH does not accept an expression as an argument. VLENGTHX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, informat, format, among others. For a list, see the "Variable Information"
functions in “Functions and CALL Routines by Category” on page 213 .

Examples

Functions and CALL Routines 4 VNAME 613

SAS Statements Results

length x1 $8;
x1=’abc’;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vlengthx(vx(1));
z=length(x1);
put y=;
put z=;

y=8
z=3

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VNAME
Returns the name of the specified variable

Category: Variable Information

Syntax
VNAME (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Comparisons
� VNAME returns the name of the specified variable. VNAMEX, however, evaluates

the argument to determine a variable name. If the name is a known variable
name, the function returns that name. Otherwise, the function returns a blank.

� VNAME does not accept an expression as an argument. VNAMEX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� VNAME has the same functionality as CALL VNAME.
� Related functions return the value of other variable attributes, such as the

variable label, informat, and format, among others. For a list, see the "Variable
Information" functions in “Functions and CALL Routines by Category” on page
213 .

Examples

614 VNAMEX 4 Chapter 4

SAS Statements Results

array x(3) x1-x3;
y=vname(x(1));
put y=; y=x1

See Also

Functions:

"Variable Information" functions in “Functions and CALL Routines by Category”
on page 213

VNAMEX

Validates the value of the specified argument as a variable name

Category: Variable Information

Syntax

VNAMEX (expression)

Arguments

expression
specifies any SAS character expression.

Restriction: The value of the specified expression cannot denote an array reference.

Comparisons

� VNAME returns the name of the specified variable. VNAMEX, however, evaluates
the argument to determine a variable name. If the name is a known variable
name, the function returns that name. Otherwise, the function returns a blank.

� VNAME does not accept an expression as an argument. VNAMEX accepts
expressions, but the value of the specified variable cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable label, informat, and format, among others. For a list, see the "Variable
Information" functions in “Functions and CALL Routines by Category” on page 213.

Examples

Functions and CALL Routines 4 VTYPE 615

SAS Statements Results

array x(3) x1-x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vnamex(vx(1));
z=vnamex(’x’||’1’);
put y=;
put z=;

y=x1
z=x1

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VTYPE

Returns the type (character or numeric) of the specified variable

Category: Variable Information

Syntax
VTYPE (var)

Arguments

var
specifies a variable, expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
VTYPE returns N for numeric variables and C for character variables.

Comparisons
� VTYPE returns the type of the specified variable. VTYPEX, hovever, evaluates the

argument to determine the variable name. The function then returns the type
(character or numeric) that is associated with that variable name.

� VTYPE does not accept an expression as an argument. VTYPEX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the "Variable

616 VTYPEX 4 Chapter 4

Information" functions in “Functions and CALL Routines by Category” on page
213 .

Examples

SAS Statements Results

array x(3) x1-x3;
y=vtype(x(1));
put y=; y=N

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

VTYPEX

Returns the type (character or numeric) for the value of the specified argument

Category: Variable Information

Syntax
VTYPEX (expression)

Arguments

expression
specifies any SAS character expression that evaluates to a variable name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
VTYPEX returns N for numeric variables and C for character variables.

Comparisons
� VTYPE returns the type of the specified variable. VTYPEX, hovever, evaluates the

argument to determine the variable name. The function then returns the type
(character or numeric) that is associated with that variable name.

� VTYPE does not accept an expression as an argument. VTYPEX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

Functions and CALL Routines 4 WEEKDAY 617

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the "Variable
Information" functions in “Functions and CALL Routines by Category” on page
213 .

Examples

SAS Statements Results

array x(3) x1-x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vtypex(vx(1));
put y=; y=N

See Also

Functions:
"Variable Information" functions in “Functions and CALL Routines by Category”

on page 213

WEEKDAY

Returns the day of the week from a SAS date value

Category: Date and Time

Syntax
WEEKDAY(date)

Arguments

date
specifies a SAS expression that represents a SAS date value.

Details
The WEEKDAY function produces an integer that represents the day of the week,
where 1=Sunday, 2=Monday, . . . , 7=Saturday.

Examples

618 YEAR 4 Chapter 4

SAS Statements Results

x=weekday(’16mar97’d);
put x; 1

YEAR

Returns the year from a SAS date value

Category: Date and Time

Syntax
YEAR(date)

Arguments

date
specifies a SAS expression that represents a SAS date value.

Details
The YEAR function produces a four-digit numeric value that represents the year.

Examples

SAS Statements Results

date=’25dec97’d;
y=year(date);
put y; 1997

See Also

Functions:
“DAY” on page 315
“MONTH” on page 451

YIELDP

Returns the yield-to-maturity for a periodic cashflow stream, such as a bond

Category: Financial

Functions and CALL Routines 4 YIELDP 619

Syntax
YIELDP(A,c,n,K,k0,p)

Arguments

A
the par value.

Range: A > 0

c
the nominal per-period coupon rate, expressed as a fraction.

Range: 0 < c < 1

n
the number of coupons per period.

Range: n > 0 and is an integer

K
the number of remaining coupons.

Range: K > 0 and is an integer

k0

the time from present to the first coupon date, expressed in terms of the number of
periods.

Range: 0 < k0 < 1/n

p
the present value of the periodic cashflow stream.

Range: p > 0

Details
The YIELDP function is based on the relationship

P =

KX

k=1

c (k)
1

�
1 + y

n

�tk

where

tk = k � (1 � nk0)

c (k) = c

n
A for k=1, ..., K-1

c (K) =
�
1 + c

n

�
A

The YIELDP function solves for y.

Examples

620 YRDIF 4 Chapter 4

p=yieldp(1000,1/100,4,14,.33/2,800);

The value returned is 0.077503.

YRDIF
Returns the difference in years between two dates

Category: Date and Time

Syntax
YRDIF(sdate,edate,basis)

Arguments

sdate
specifies a SAS date value that identifies the starting date.

edate
specifies a SAS date value that identifies the ending date.

basis
identifies a character constant or variable that describes how SAS calculates the date
difference. The following character strings are valid:

’30/360’
specifies a 30-day month and a 360-day year in calculating the number of years.
Each month is considered to have 30 days, and each year 360 days, regardless of
the actual number of days in each month or year.
Alias: ’360’
Tip: If either date falls at the end of a month, it is treated as if it were the last

day of a 30-day month.

’ACT/ACT’
uses the actual number of days between dates in calculating the number of years.
SAS calculates this value as the number of days that fall in 365-day years divided
by 365 plus the number of days that fall in 366-day years divided by 366.
Alias: ’Actual’

’ACT/360’
uses the actual number of days between dates in calculating the number of years.
SAS calculates this value as the number of days divided by 360, regardless of the
actual number of days in each year.

’ACT/365’
uses the actual number of days between dates in calculating the number of years.
SAS calculates this value as the number of days divided by 365, regardless of the
actual number of days in each year.

Examples

In the following example, YRDIF returns the difference in years between two dates
based on each of the options for basis.

Functions and CALL Routines 4 YYQ 621

data _null_;
sdate=’16oct1998’d;
edate=’16feb2003’d;
y30360=yrdif(sdate, edate, ’30/360’);
yactact=yrdif(sdate, edate, ’ACT/ACT’);
yact360=yrdif(sdate, edate, ’ACT/360’);
yact365=yrdif(sdate, edate, ’ACT/365’);
put y30360= yactact= yact360= yact365=;

run;

SAS Statements Results

put y30360=;
put yactact=;
put yact360=;
put yact365=

4.333333333
4.3369863014
4.4
4.3397260274

See Also

Functions:

“DATDIF” on page 311

YYQ

Returns a SAS date value from the year and quarter

Category: Date and Time

Syntax
YYQ(year,quarter)

Arguments

year
specifies a two- or four-digit integer that represents the year. The YEARCUTOFF=
system option defines the year value for two-digit dates.

quarter
specifies the quarter of the year (1, 2, 3, or 4).

Details
The YYQ function returns a SAS date value that corresponds to the first day of the
specified quarter. If either year or quarter is missing, or if the quarter value is not
valid, the result is missing.

622 ZIPFIPS 4 Chapter 4

Examples

SAS Statements Result

dv=yyq(2001,3);
put dv /
dv date7. /
dv date9.;

15157
01JUL01
01JUL2001

See Also

Functions:

“QTR” on page 509

“YEAR” on page 618

System Option:

“YEARCUTOFF=” on page 1177

ZIPFIPS

Converts ZIP codes to FIPS state codes

Category: State and ZIP Code

Syntax
ZIPFIPS(zip-code)

Arguments

zip-code
specifies any SAS character expression containing a five-digit ZIP code.

Requirement: The character expressions you use must have a length of five, or the
ZIPFIPS function generates an error.

Details
The ZIPFIPS function returns the two-digit numeric U.S. Federal Information
Processing Standards (FIPS) code corresponding to its five-character ZIP code argument.

Examples

Functions and CALL Routines 4 ZIPNAME 623

SAS Statements Results

fips=zipfips(’27511’);
put fips; 37

a=’27511’;
fips=zipfips(a);
put fips; 37

See Also

Functions:

“ZIPNAME” on page 623

“ZIPNAMEL” on page 624

“ZIPSTATE” on page 625

ZIPNAME

Converts ZIP codes to uppercase state names

Category: State and ZIP Code

Syntax
ZIPNAME(zip-code)

Arguments

zip-code
specifies any SAS character expression that contains a five-digit ZIP code.

Requirement: The character expressions you use must have a length of five, or the
function generates an error.

Details
ZIPNAME returns the name of the state or U.S. territory that corresponds to its
five-character ZIP code argument. ZIPNAME returns character values up to 20
characters long, all in uppercase.

Comparisons
The ZIPNAME, ZIPNAMEL, and ZIPSTATE functions take the same argument but
return different values. ZIPNAME returns the uppercase name of the state or U.S.
territory that corresponds to its five-character ZIP code argument. ZIPNAMEL returns
the mixed case name of the state or U.S. territory that corresponds to its five-character
ZIP code argument. ZIPSTATE returns the uppercase two-character state postal code

624 ZIPNAMEL 4 Chapter 4

(or world-wide GSA geographic code for U.S. territories) that corresponds to its
five-character ZIP code argument.

Examples

The examples below show the differences when using ZIPNAME, ZIPNAMEL, and
ZIPSTATE.

SAS Statements Results

state=zipname(’27511’);
put state; NORTH CAROLINA

state=zipnamel(’27511’);
put state; North Carolina

st=zipstate(’27511’);
put st; NC

See Also

Functions:

“ZIPFIPS” on page 622

“ZIPNAMEL” on page 624

“ZIPSTATE” on page 625

ZIPNAMEL

Converts ZIP codes to mixed case state names

Category: State and ZIP Code

Syntax
ZIPNAMEL(zip-code)

Arguments

zip-code
specifies any SAS character expression that contains a five-digit ZIP code.

Requirement: The character expressions you use must have a length of five, or the
function generates an error.

Details
ZIPNAMEL returns the name of the state or U.S. territory that corresponds to its
five-character ZIP code argument. ZIPNAMEL returns mixed case character values up
to 20 characters long.

Functions and CALL Routines 4 ZIPSTATE 625

Comparisons
The ZIPNAME, ZIPNAMEL, and ZIPSTATE functions take the same argument but
return different values. ZIPNAME returns the uppercase name of the state or U.S.
territory that corresponds to its five-character ZIP code argument. ZIPNAMEL returns
the mixed case name of the state or U.S. territory that corresponds to its five-character
ZIP code argument. ZIPSTATE returns the uppercase two-character state postal code
(or world-wide GSA geographic code for U.S. territories) that corresponds to its
five-character ZIP code argument.

Examples

SAS Statements Results

state=zipname(’27511’);
put state; NORTH CAROLINA

state=zipnamel(’27511’);
put state; North Carolina

st=zipstate(’27511’);
put st; NC

See Also

Functions:

“ZIPFIPS” on page 622

“ZIPNAME” on page 623

“ZIPSTATE” on page 625

ZIPSTATE

Converts ZIP codes to state postal codes

Category: State and ZIP Code

Syntax
ZIPSTATE(zip-code)

Arguments

zip-code
specifies any SAS character expression that contains a five-digit ZIP code.

Requirement: The specified character expression must have a length of 5.

626 References 4 Chapter 4

Details
ZIPSTATE returns the two-character state postal code (or world-wide GSA geographic
code for U.S. territories) that corresponds to its five-character ZIP code argument.
ZIPSTATE returns character values in uppercase.

Comparisons
The ZIPNAME, ZIPNAMEL, and ZIPSTATE functions take the same argument but
return different values. ZIPNAME returns the uppercase name of the state or U.S.
territory that corresponds to its five-character ZIP code argument. ZIPNAMEL returns
the mixed case name of the state or U.S. territory that corresponds to its five-character
ZIP code argument. ZIPSTATE returns the uppercase two-character state postal code
(or world-wide GSA geographic code for U.S. territories) that corresponds to its
five-character ZIP code argument.

Examples

The examples show the differences when using ZIPNAME, ZIPNAMEL, and
ZIPSTATE.

SAS Statements Results

state=zipname(’27511’);
put state; NORTH CAROLINA

state=zipnamel(’27511’);
put state; North Carolina

st=zipstate(’27511’);
put st; NC

See Also

Functions:
“ZIPFIPS” on page 622
“ZIPNAME” on page 623
“ZIPNAMEL” on page 624

References
Abramowitz, M. and Stegun, I. (1964), Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables — National Bureau of Standards
Applied Mathematics Series #55, Washington, DC: U.S. Government Printing
Office.

Amos, D.E., Daniel, S.L., and Weston, K. (1977), “CDC 6600 Subroutines IBESS and
JBESS for Bessel Functions I(v,x) and J(v,x), x ≥ 0, v ≥ 0,” ACM Transactions on
Mathematical Software, 3, 76–95.

Aho, A.V., Hopcroft, J.E., and Ullman, J.D., (1974), The Design and Analysis of
Computer Algorithms, Reading, MA: Addison-Wesley Publishing Co.

Cheng, R.C.H. (1977), “The Generation of Gamma Variables,” Applied Statistics, 26,
71–75.

Functions and CALL Routines 4 References 627

Duncan, D.B. (1955), “Multiple Range and Multiple F Tests,” Biometrics, 11, 1–42.
Dunnett, C.W. (1955), “A Multiple Comparisons Procedure for Comparing Several

Treatments with a Control,” Journal of the American Statistical Association, 50,
1096–1121.

Fishman, G.S. (1976), “Sampling from the Poisson Distribution on a Computer,”
Computing, 17, 145–156.

Fishman, G.S. (1978), Principles of Discrete Event Simulation, New York: John Wiley
& Sons, Inc.

Fishman, G.S. and Moore, L.R. (1982), “A Statistical Evaluation of Multiplicative
Congruential Generators with Modulus (231 – 1),” Journal of the American
Statistical Association, 77, 1 29–136.

Knuth, D.E. (1973), The Art of Computer Programming, Volume 3. Sorting and
Searching, Reading, MA: Addison-Wesley.

Hochberg, Y. and Tamhane, A.C. (1987), Multiple Comparison Procedures, New York:
John Wiley & Sons, Inc.

Williams, D.A. (1971), “A Test for Differences Between Treatment Means when
Several Dose Levels are Compared with a Zero Dose Control,” Biometrics, 27,
103–117.

Williams, D.A. (1972), “The Comparison of Several Dose Levels with a Zero Dose
Control,” Biometrics, 28, 519–531.

628 References 4 Chapter 4

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Language Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Language Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–369–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

