
629

C H A P T E R

5
Informats

Definition 631
Syntax 631

Using Informats 632

Ways to Specify Informats 632

INPUT Statement 632

INPUT Function 632
INFORMAT Statement 633

ATTRIB Statement 633

Permanent versus Temporary Association 633

User-Defined Informats 634

Byte Ordering on Big Endian and Little Endian Platforms 634

Definitions 634
How the Bytes are Ordered 635

Reading Data Generated on Big Endian or Little Endian Platforms 635

Integer Binary Notation in Different Programming Languages 635

Working with Packed Decimal and Zoned Decimal Data 636

Definitions 636
Types of Data 636

Packed Decimal Data 636

Zoned Decimal Data 637

Packed Julian Dates 637

Platforms Supporting Packed Decimal and Zoned Decimal Data 637
Languages Supporting Packed Decimal and Zoned Decimal Data 637

Summary of Packed Decimal and Zoned Decimal Formats and Informats 638

Informat Aliases 640

Informats by Category 640

Dictionary 644

$ASCIIw. 644
$BINARYw. 645

$CBw. 646

$CHARw. 647

$CHARZBw. 648

$EBCDICw. 649
$HEXw. 650

$KANJIw. 651

$KANJIXw. 651

$OCTALw. 652

$PHEXw. 653
$QUOTEw. 654

$REVERJw. 654

$REVERSw. 655

630 References 4 Chapter 5

$UPCASEw. 656
$VARYINGw. 657

$w. 659

BINARYw.d 660

BITSw.d 661

BZw.d 662
CBw.d 663

COMMAw.d 664

COMMAXw.d 665

DATEw. 666

DATETIMEw. 667

DDMMYYw. 669
Ew.d 670

EURDFDEw. 671

EURDFDTw. 673

EURDFMYw. 675

FLOATw.d 677
HEXw. 678

IBw.d 679

IBRw.d 680

IEEEw.d 682

JDATEYMDw. 683
JNENGOw. 684

JULIANw. 685

MINGUOw. 686

MMDDYYw. 687

MONYYw. 689

MSECw. 690
NENGOw. 691

NUMXw.d 693

OCTALw.d 694

PDw.d 695

PDJULGw. 696
PDJULIw. 697

PDTIMEw. 699

PERCENTw.d 700

PIBw.d 701

PIBRw.d 702
PKw.d 704

PUNCH.d 705

RBw.d 706

RMFDURw. 707

RMFSTAMPw. 709

ROWw.d 710
SHRSTAMPw. 711

SMFSTAMPw. 713

S370FFw.d 714

S370FIBw.d 715

S370FIBUw.d 716
S370FPDw.d 718

S370FPDUw.d 719

S370FPIBw.d 720

S370FRBw.d 721

S370FZDw.d 722

Informats 4 Syntax 631

S370FZDLw.d 723
S370FZDSw.d 724

S370FZDTw.d 725

S370FZDUw.d 726

TIMEw. 727

TODSTAMPw. 729
TUw. 730

VAXRBw.d 731

w.d 731

YENw.d 732

YYMMDDw. 733

YYMMNw. 735
YYQw. 736

ZDw.d 738

ZDBw.d 739

ZDVw.d 740

Definition

An informat is an instruction that SAS uses to read data values into a variable. For
example, the following value contains a dollar sign and commas:

$1,000,000

To remove the dollar sign ($) and commas (,) before storing the numeric value 1000000
in a variable, read this value with the COMMA11. informat.

Unless you explicitly define a variable first, SAS uses the informat to determine
whether the variable is numeric or character. SAS also uses the informat to determine
the length of character variables.

Syntax
SAS informats have the following form:

<$>informat<w>.< d>

where

$
indicates a character informat; its absence indicates a numeric informat.

informat
names the informat. The informat is a SAS informat or a user-defined informat
that was previously defined with the INVALUE statement in PROC FORMAT. For
more information on user-defined informats, see the FORMAT procedure in the
SAS Procedures Guide.

w
specifies the informat width, which for most informats is the number of columns in
the input data.

d
specifies an optional decimal scaling factor in the numeric informats. SAS divides
the input data by 10 to the power of d.

632 Using Informats 4 Chapter 5

Note: Even though SAS can read up to 31 decimal places when you specify some
numeric informats, floating-point numbers with more than 12 decimal places might lose
precision due to the limitations of the eight-byte floating point representation used by
most computers. 4

Informats always contain a period (.) as a part of the name. If you omit the w and the d
values from the informat, SAS uses default values. If the data contain decimal points,
SAS ignores the d value and reads the number of decimal places that are actually in
the input data.

If the informat width is too narrow to read all the columns in the input data, you
may get unexpected results. The problem frequently occurs with the date and time
informats. You must adjust the width of the informat to include blanks or special
characters between the day, month, year, or time. For more information about date and
time values, see the discussion on SAS date and time values in SAS Language
Reference: Concepts.

When a problem occurs with an informat, SAS writes a note to the SAS log and
assigns a missing value to the variable. Problems occur if you use an incompatible
informat, such as a numeric informat to read character data, or if you specify the width
of a date and time informat that causes SAS to read a special character in the last
column.

Using Informats

Ways to Specify Informats
You can specify informats in the following ways:

� in an INPUT statement

� with the INPUT, INPUTC, and INPUTN functions

� in an INFORMAT statement in a DATA step or a PROC step

� in an ATTRIB statement in a DATA step or a PROC step.

INPUT Statement
The INPUT statement with an informat after a variable name is the simplest way to

read values into a variable. For example, the following INPUT statement uses two
informats:

input @15 style $3. @21 price 5.2;

The $w. character informat reads values into the variable STYLE. The w.d numeric
informat reads values into the variable PRICE.

For a complete discussion of the INPUT statement, see “INPUT” on page 876.

INPUT Function
The INPUT function reads a SAS character expression using a specified informat.

The informat determines whether the resulting value is numeric or character. Thus, the
INPUT function is useful for converting data. For example,

TempCharacter=’98.6’;
TemperatureNumber=input(TempCharacter,4.);

Informats 4 Permanent versus Temporary Association 633

Here, the INPUT function in combination with the w.d informat reads the character
value of TempCharacter as a numeric value and assigns the numeric value 98.6 to
TemperatureNumber.

Use the PUT function with a SAS format to convert numeric values to character
values. See “PUT” on page 503 for an example of a numeric-to-character conversion.
For a complete discussion of the INPUT function, see “INPUT” on page 402.

INFORMAT Statement
The INFORMAT statement associates an informat with a variable. SAS uses the

informat in any subsequent INPUT statement to read values into the variable. For
example, in the following statements the INFORMAT statement associates the DATEw.
informat with the variables Birthdate and Interview:

informat Birthdate Interview date9.;
input @63 Birthdate Interview;

An informat that is associated with an INFORMAT statement behaves like an
informat that you specify with a colon (:) format modifier in an INPUT statement. (For
details about using the colon (:) modifier, see the “INPUT, List” on page 897.)
Therefore, SAS uses a modified list input to read the variable so that

� the w value in an informat does not determine column positions or input field
widths in an external file

� the blanks that are embedded in input data are treated as delimiters unless you
change the DELIMITER= option in an INFILE statement

� for character informats, the w value in an informat specifies the length of
character variables

� for numeric informats, the w value is ignored
� for numeric informats, the d value in an informat behaves in the usual way for

numeric informats.

If you have coded the INPUT statement to use another style of input, such as formatted
input or column input, that style of input is not used when you use the INFORMAT
statement.

See “INPUT, List” on page 897 for more information on how to use modified list input
to read data.

ATTRIB Statement
The ATTRIB statement can also associate an informat, as well as other attributes,

with one or more variables. For example, in the following statements, the ATTRIB
statement associates the DATEw. informat with the variables Birthdate and Interview:

attrib Birthdate Interview informat=date9.;
input @63 Birthdate Interview;

An informat that is associated by using the INFORMAT= option in the ATTRIB
statement behaves like an informat that you specify with a colon (:) format modifier in
an INPUT statement. (For details about using the colon (:) modifier, see the “INPUT,
List” on page 897.) Therefore, SAS uses a modified list input to read the variable in the
same way as it does for the INFORMAT statement.

See “ATTRIB” on page 762 for more information.

Permanent versus Temporary Association
When you specify an informat in an INPUT statement, SAS uses the informat to read

input data values during that DATA step. SAS, however, does not permanently associate

634 User-Defined Informats 4 Chapter 5

the informat with the variable. To permanently associate a format with a variable, use
an INFORMAT statement or an ATTRIB statement. SAS permanently associates an
informat with the variable by modifying the descriptor information in the SAS data set.

User-Defined Informats
In addition to the informats that are supplied with base SAS software, you can create

your own informats. In base SAS software, PROC FORMAT allows you to create your
own informats and formats for both character and numeric variables. For more
information on user-defined informats, see the FORMAT procedure in the SAS
Procedures Guide.

When you execute a SAS program that uses user-defined informats, these informats
should be available. The two ways to make these informats available are

� to create permanent, not temporary, informats with PROC FORMAT
� to store the source code that creates the informats (the PROC FORMAT step) with

the SAS program that uses them.

If you execute a program that cannot locate a user-defined informat, the result
depends on the setting of the FMTERR= system option. If the user-defined informat is
not found, then these system options produce these results:

System Options Results

FMTERR SAS produces an error that causes the current DATA or
PROC step to stop.

NOFMTERR SAS continues processing by substituting a default informat.

Although using NOFMTERR enables SAS to process a variable, you lose the
information that the user-defined informat supplies. This option can cause a DATA step
to misread data, and it can produce incorrect results.

To avoid problems, make sure that users of your program have access to all the
user-defined informats that are used.

Byte Ordering on Big Endian and Little Endian Platforms

Definitions
Integer values are typically stored in one of three sizes: one–byte, two–byte, or

four–byte. The ordering of the bytes for the integer varies depending on the platform
(operating environment) on which the integers were produced.

The ordering of bytes differs between the “big endian” and the “little endian”
platforms. These colloquial terms are used to describe byte ordering for IBM
mainframes (big endian) and for Intel-based platforms (little endian). In the SAS
System, the following platforms are considered big endian: IBM mainframe, HP-UX,
AIX, Solaris, and Macintosh. The following platforms are considered little endian: VAX/
VMS, AXP/VMS, Digital UNIX, Intel ABI, OS/2, and Windows.

Informats 4 Integer Binary Notation in Different Programming Languages 635

How the Bytes are Ordered
On big endian platforms, the value 1 is stored in binary and is represented here in

hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00
00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same
as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the “two’s complement” representation is used. The
high-order bit of the most significant byte of the integer will be set on. For example, –2
would be represented in one, two, and four bytes on big endian platforms as FE, FF FE,
and FF FF FF FE respectively. On little endian platforms, the representation would be
FE, FE FF, and FE FF FF FF.

Reading Data Generated on Big Endian or Little Endian Platforms
SAS can read signed and unsigned integers regardless of whether they were

generated on a big endian or a little endian system. Likewise, SAS can write signed
and unsigned integers in both big endian and little endian format. The length of these
integers can be up to eight bytes.

The following table shows which informat to use for various combinations of
platforms. In the Sign? column, “no” indicates that the number is unsigned and cannot
be negative. “Yes” indicates that the number can be either negative or positive.

Table 5.1 SAS Informats and Byte Ordering

Data created for... Data read
on...

Sign? Informat

big endian big endian yes IB or S370FIB

big endian big endian no PIB, S370FPIB,
S370FIBU

big endian little endian yes IBR

big endian little endian no PIBR

little endian big endian yes IBR

little endian big endian no PIBR

little endian little endian yes IB or IBR

little endian little endian no PIB or PIBR

big endian either yes S370FIB

big endian either no S370FPIB

little endian either yes IBR

little endian either no PIBR

Integer Binary Notation in Different Programming Languages
The following table compares integer binary notation according to programming

language.

636 Working with Packed Decimal and Zoned Decimal Data 4 Chapter 5

Table 5.2 Integer Binary Notation and Programming Languages

Language 2 Bytes 4 Bytes

SAS IB2., IBR2., PIB2.,PIBR2.,
S370FIB2., S370FIBU2.,
S370FPIB2.

IB4., IBR4., PIB4., PIBR4.,
S370FIB4., S370FIBU4.,
S370FPIB4.

PL/I FIXED BIN(15) FIXED BIN(31)

FORTRAN INTEGER*2 INTEGER*4

COBOL COMP PIC 9(4) COMP PIC 9(8)

IBM assembler H F

C short long

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal specifies a method of encoding decimal numbers by using each byte
to represent two decimal digits. Packed decimal representation
stores decimal data with exact precision. The fractional part of the
number is determined by the informat or format because there is no
separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision
can be maintained. However, computations involving decimal data
may become inexact due to the lack of native instructions.

Zoned decimal specifies a method of encoding decimal numbers in which each digit
requires one byte of storage. The last byte contains the number’s
sign as well as the last digit. Zoned decimal data produces a
printable representation.

Nibble specifies 1/2 of a byte.

Types of Data

Packed Decimal Data
A packed decimal representation stores decimal digits in each “nibble” of a byte.

Each byte has two nibbles, and each nibble is indicated by a hexadecimal digit. For
example, the value 15 is stored in two nibbles, using the hexadecimal digits 1 and 5.

The sign indication is dependent on your operating environment. On IBM
mainframes, the sign is indicated by the last nibble. With formats, C indicates a
positive value, and D indicates a negative value. With informats, A, C, E, and F
indicate positive values, and B and D indicate negative values. Any other nibble is
invalid for signed packed decimal data. In all other operating environments, the sign is
indicated in its own byte. If the high-order bit is 1, then the number is negative.
Otherwise, it is positive.

Informats 4 Languages Supporting Packed Decimal and Zoned Decimal Data 637

The following applies to packed decimal data representation:

� You can use the S370FPD format on all platforms to obtain the IBM mainframe
configuration.

� You can have unsigned packed data with no sign indicator. The packed decimal
format and informat handles the representation. It is consistent between ASCII
and EBCDIC platforms.

� Note that the S370FPDU format and informat expects to have an F in the last
nibble, while packed decimal expects no sign nibble.

Zoned Decimal Data
The following applies to zoned decimal data representation:

� A zoned decimal representation stores a decimal digit in the low order nibble of
each byte. For all but the byte containing the sign, the high-order nibble is the
numeric zone nibble (F on EBCDIC and 3 on ASCII).

� The sign can be merged into a byte with a digit, or it can be separate, depending
on the representation. But the standard zoned decimal format and informat
expects the sign to be merged into the last byte.

� The EBCDIC and ASCII zoned decimal formats produce the same printable
representation of numbers. There are two nibbles per byte, each indicated by a
hexadecimal digit. For example, the value 15 is stored in two bytes. The first byte
contains the hexadecimal value F1 and the second byte contains the hexadecimal
value C5.

Packed Julian Dates
The following applies to packed Julian dates:

� The two formats and informats that handle Julian dates in packed decimal
representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year
computation, while PDJULG uses the Gregorian computation.

� The IBM mainframe computation considers 1900 to be the base year, and the year
values in the data indicate the offset from 1900. For example, 98 means 1998, 100
means 2000, and 102 means 2002. 1998 would mean 3898.

� The Gregorian computation allows for 2–digit or 4–digit years. If you use 2–digit
years, SAS uses the setting of the YEARCUTOFF value to determine the true year.

Platforms Supporting Packed Decimal and Zoned Decimal Data
Some platforms have native instructions to support packed and zoned decimal data,

while others must use software to emulate the computations. For example, the IBM
mainframe has an Add Pack instruction to add packed decimal data, but the
Intel-based platforms have no such instruction and must convert the decimal data into
some other format.

Languages Supporting Packed Decimal and Zoned Decimal Data
Several different languages support packed decimal and zoned decimal data. The

following table shows how COBOL picture clauses correspond to SAS formats and
informats.

638 Summary of Packed Decimal and Zoned Decimal Formats and Informats 4 Chapter 5

IBM VS COBOL II clauses Corresponding S370Fxxx
formats/informats

PIC S9(X) PACKED-DECIMAL S370FPDw.

PIC 9(X) PACKED-DECIMAL S370FPDUw.

PIC S9(W) DISPLAY S370ZDw.

PIC 9(W) DISPLAY S370ZDUw.

PIC S9(W) DISPLAY SIGN LEADING S370FZDLw.

PIC S9(W) DISPLAY SIGN LEADING SEPARATE S370FZDSw.

PIC S9(W) DISPLAY SIGN TRAILING SEPARATE S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits
represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is
ceil((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil(x/2). For example, PIC
S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles are
needed. ceil((5+1)/2) has a length of three bytes, and the value of W is 3.

Note that you can substitute COMP-3 for PACKED-DECIMAL.
In IBM assembly language, the P directive indicates packed decimal, and the Z

directive indicates zoned decimal. The following shows an excerpt from an assembly
language listing, showing the offset, the value, and the DC statement:

offset value (in hex) inst label directive

+000000 00001C 2 PEX1 DC PL3’1’
+000003 00001D 3 PEX2 DC PL3’-1’
+000006 F0F0C1 4 ZEX1 DC ZL3’1’
+000009 F0F0D1 5 ZEX2 DC ZL3’1’

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal
data. You must use the PICTURE specification to represent zoned decimal data. There
is no standardized representation of decimal data for the FORTRAN or the C languages.

Summary of Packed Decimal and Zoned Decimal Formats and
Informats

SAS uses a group of formats and informats to handle packed and zoned decimal data.
The following table lists the type of data representation for these formats and
informats. Note that the formats and informats that begin with S370 refer to IBM
mainframe representation.

Format Type of data
representation

Corresponding
informat

Comments

PD Packed decimal PD Local signed packed decimal

PK Packed decimal PK Unsigned packed decimal; not
specific to your operating
environment

ZD Zoned decimal ZD Local zoned decimal

Informats 4 Summary of Packed Decimal and Zoned Decimal Formats and Informats 639

Format Type of data
representation

Corresponding
informat

Comments

none Zoned decimal ZDB Translates EBCDIC blank
(hex 40) to EBCDIC zero (hex
F0), then corresponds to the
informat as zoned decimal

none Zoned decimal ZDV Non-IBM zoned decimal
representation

S370FPD Packed decimal S370FPD Last nibble C (positive) or D
(negative)

S370FPDU Packed decimal S370FPDU Last nibble always F
(positive)

S370FZD Zoned decimal S370FZD Last byte contains sign in
upper nibble: C (positive) or
D (negative)

S370FZDU Zoned decimal S370FZDU Unsigned; sign nibble always
F

S370FZDL Zoned decimal S370FZDL Sign nibble in first byte in
informat; separate leading
sign byte of hex C0 (positive)
or D0 (negative) in format

S370FZDS Zoned decimal S370FZDS Leading sign of - (hex 60) or +
(hex 4E)

S370FZDT Zoned decimal S370FZDT Trailing sign of - (hex 60) or +
(hex 4E)

PDJULI Packed decimal PDJULI Julian date in packed
representation - IBM
computation

PDJULG Packed decimal PDJULG Julian date in packed
representation - Gregorian
computation

none Packed decimal RMFDUR Input layout is: mmsstttF

none Packed decimal SHRSTAMP Input layout is:
yyyydddFhhmmssth, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal SMFSTAMP Input layout is:
xxxxxxxxyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

640 Informat Aliases 4 Chapter 5

Format Type of data
representation

Corresponding
informat

Comments

none Packed decimal PDTIME Input layout is: 0hhmmssF

none Packed decimal RMFSTAMP Input layout is:
0hhmmssFyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

Informat Aliases

Several SAS informats operate identically but have different names. A list of these
informat aliases follows. The dictionary of SAS informats uses the primary informat,
not aliases, to provide a complete description of its operation.

Table 5.3 SAS Informats with Aliases

Primary Informat Name Informat Alias(es)

COMMAw.d DOLLARw.d

COMMAXw.d DOLLARXw.d

w.d BESTw.d, Dw.d, Fw.d, Ew.d

$w. $Fw.

Informats by Category

There are five categories of informats in SAS:

Category Description

CHARACTER instructs SAS to read character data values into character variables.

COLUMN-BINARY instructs SAS to read data stored in column-binary or multipunched form
into character and numeric variables.

DATE and TIME instructs SAS to read data values into variables that represent dates,
times, and datetimes.

NUMERIC instructs SAS to read numeric data values into numeric variables.

USER-DEFINED instructs SAS to read data values by using an informat that is created
with an INVALUE statement in PROC FORMAT.

For information on reading column-binary data, see SAS Language Reference:
Concepts. For information on creating user-defined informats, see the FORMAT
procedure in the SAS Procedures Guide.

The following table provides brief descriptions of the SAS informats. For more
detailed descriptions, see the dictionary of SAS informats.

Informats 4 Informats by Category 641

Table 5.4 Categories and Descriptions of Informats

Category Informat Description

Character “$ASCIIw.” on page 644 Converts ASCII character data to native format

“$BINARYw.” on page 645 Converts binary data to character data

“$CHARw.” on page 647 Reads character data with blanks

“$CHARZBw.” on page 648 Converts binary 0s to blanks

“$EBCDICw.” on page 649 Converts EBCDIC character data to native format

“$HEXw.” on page 650 Converts hexadecimal data to character data

“$OCTALw.” on page 652 Converts octal data to character data

“$PHEXw.” on page 653 Converts packed hexadecimal data to character data

“$QUOTEw.” on page 654 Removes matching quotation marks from character data

“$REVERJw.” on page 654 Reads character data from right to left and preserves
blanks

“$REVERSw.” on page 655 Reads character data from right to left and left aligns

“$UPCASEw.” on page 656 Converts character data to uppercase

“$VARYINGw.” on page
657

Reads character data of varying length

“$w.” on page 659 Reads standard character data

Column Binary “$CBw.” on page 646 Reads standard character data from column-binary files

“CBw.d” on page 663 Reads standard numeric values from column-binary files

“PUNCH.d” on page 705 Reads whether a row of column-binary data is punched

“ROWw.d” on page 710 Reads a column-binary field down a card column

DBCS “$KANJIw.” on page 651 Removes shift code data from DBCS data

“$KANJIXw.” on page 651 Adds shift code data to DBCS data

Date and Time “DATEw.” on page 666 Reads date values in the form ddmmmyy or ddmmmyyyy

“DATETIMEw. ”on page
667

Reads datetime values in the form ddmmmyy
hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

“DDMMYYw.” on page 669 Reads date values in the form ddmmyy or ddmmyyyy

“EURDFDEw. ”on page
671

Reads international date values

“EURDFDTw.” on page
673

Reads international datetime values in the form
ddmmmyy hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

“EURDFMYw. ”on page
675

Reads month and year date values in the form mmmyy
or mmmyyyy

“JDATEYMDw.” on page
683

Reads Japanese kanji date values in the format
yymmmdd or yyyymmmdd

“JNENGOw.” on page 684 Reads Japanese Kanji date values in the form yymmdd

“JULIANw.” on page 685 Reads Julian dates in the form yyddd or yyyyddd

“MINGUOw.” on page 686 Reads dates in Taiwanese form

642 Informats by Category 4 Chapter 5

“MMDDYYw.” on page 687 Reads date values in the form mmddyy or mmddyyyy

“MONYYw.” on page 689 Reads month and year date values in the form mmmyy
or mmmyyyy

“MSECw.” on page 690 Reads TIME MIC values

“NENGOw. ”on page 691 Reads Japanese date values in the form eyymmdd

“PDJULGw.” on page 696 Reads packed Julian date values in the hexadecimal
form yyyydddF for IBM

“PDJULIw.” on page 697 Reads packed Julian dates in the hexadecimal format
ccyyddd F for IBM

“PDTIMEw.” on page 699 Reads packed decimal time of SMF and RMF records

“RMFDURw. ”on page 707 Reads duration intervals of RMF records

“RMFSTAMPw.” on page
709

Reads time and date fields of RMF records

“SHRSTAMPw. ”on page
711

Reads date and time values of SHR records

“SMFSTAMPw. ”on page
713

Reads time and date values of SMF records

“TIMEw.” on page 727 Reads hours, minutes, and seconds in the form
hh:mm:ss.ss

“TODSTAMPw.” on page
729

Reads an eight-byte time-of-day stamp

“TUw.” on page 730 Reads timer units

“YYMMDDw.” on page 733 Reads date values in the form yymmdd or yyyymmdd

“YYMMNw.” on page 735 Reads date values in the form yyyymm or yymm

“YYQw.” on page 736 Reads quarters of the year

Numeric “BINARYw.d ”on page 660 Converts positive binary values to integers

“BITSw.d ”on page 661 Extracts bits

“BZw.d” on page 662 Converts blanks to 0s

“COMMAw.d ”on page 664 Removes embedded characters

“COMMAXw.d ”on page
665

Removes embedded characters

“Ew.d” on page 670 Reads numeric values that are stored in scientific
notation and double-precision scientific notation

“FLOATw.d ”on page 677 Reads a native single-precision, floating-point value and
divides it by 10 raised to the dth power

“HEXw.” on page 678 Converts hexadecimal positive binary values to either
integer (fixed-point) or real (floating-point) binary values

“IBw.d” on page 679 Reads native integer binary (fixed-point) values,
including negative values

“IBRw.d” on page 680 Reads integer binary (fixed-point) values in Intel and
DEC formats

“IEEEw.d” on page 682 Reads an IEEE floating-point value and divides it by 10
raised to the d th power

Informats 4 Informats by Category 643

“NUMXw.d” on page 693 Reads numeric values with a comma in place of the
decimal point

“OCTALw.d ”on page 694 Converts positive octal values to integers

“PDw.d” on page 695 Reads data that are stored in IBM packed decimal format

“PERCENTw.d” on page
700

Reads percentages as numeric values

“PIBw.d” on page 701 Reads positive integer binary (fixed-point) values

“PIBRw.d” on page 702 Reads positive integer binary (fixed-point) values in Intel
and DEC formats

“PKw.d” on page 704 Reads unsigned packed decimal data

“RBw.d” on page 706 Reads numeric data that are stored in real binary
(floating-point) notation

“S370FFw.d” on page 714 Reads EBCDIC numeric data

“S370FIBw.d” on page 715 Reads integer binary (fixed-point) values, including
negative values, in IBM mainframe format

“S370FIBUw.d” on page
716

Reads unsigned integer binary (fixed-point) values in
IBM mainframe format

“S370FPDw.d ”on page 718 Reads packed data in IBM mainframe format

“S370FPDUw.d” on page
719

Reads unsigned packed decimal data in IBM mainframe
format

“S370FPIBw.d” on page
720

Reads positive integer binary (fixed-point) values in IBM
mainframe format

“S370FRBw.d” on page 721 Reads real binary (floating-point) data in IBM
mainframe format

“S370FZDw.d ”on page 722 Reads zoned decimal data in IBM mainframe format

“S370FZDLw.d” on page
723

Reads zoned decimal leading-sign data in IBM
mainframe format

“S370FZDSw.d” on page
724

Reads zoned decimal separate leading-sign data in IBM
mainframe format

“S370FZDTw.d” on page
725

Reads zoned decimal separate trailing-sign data in IBM
mainframe format

“S370FZDUw.d” on page
726

Reads unsigned zoned decimal data in IBM mainframe
format

“VAXRBw.d ”on page 731 Reads real binary (floating-point) data in VMS format

“w.d” on page 731 Reads standard numeric data

“YENw.d” on page 732 Removes embedded yen signs, commas, and decimal
points

“ZDw.d ”on page 738 Reads zoned decimal data

“ZDBw.d” on page 739 Reads zoned decimal data in which zeros have been left
blank

“ZDVw.d” on page 740 Reads and validates zoned decimal data

644 Dictionary 4 Chapter 5

Dictionary

$ASCIIw.

Converts ASCII character data to native format

Category: Character

Syntax
$ASCIIw.

Syntax Description

w
specifies the width of the input field.

Default: 1 if the length of the variable is undefined; otherwise, the length of the
variable

Range: 1–32767

Details
If ASCII is the native format, no conversion occurs.

Comparisons
� On an IBM mainframe system, $ASCIIw. converts ASCII data to EBCDIC.

� On all other systems, $ASCIIw. behaves like the $CHARw. informat except that
the default length is different.

Examples

input @1 name $ascii3.;

Data Lines Results*

----+----1 EBCDIC ASCII

abc 818283 616263

ABC C1C2C3 414243

(); 4D5D5E 28293B

* The results are hexadecimal representations of codes for characters. Each two hexadecimal
digits correspond to one byte of binary data, and each byte corresponds to one character value.

Informats 4 $BINARYw. 645

$BINARYw.

Converts binary data to character data

Category: Character

Syntax
$BINARYw.

Syntax Description

w
specifies the width of the input field. Because eight bits of binary information
represent one character, every eight characters of input that $BINARYw. reads
becomes one character value stored in a variable.

If w< 8, $BINARYw. reads the data as w characters followed by 0s. Thus,
$BINARY4. reads the characters 0101 as 01010000, which converts to an EBCDIC &
or an ASCII P. If w> 8 but is not a multiple of 8, $BINARYw. reads up to the largest
multiple of 8 that is less than w before converting the data.
Default: 8
Range: 1–32767

Details
The $BINARYw. informat does not interpret actual binary data, but it converts a string
of characters that contains only 0s or 1s as though it is actual binary information.
Therefore, use only the character digits 1 and 0 in the input, with no embedded blanks.
$BINARYw. ignores leading and trailing blanks.

To read representations of binary codes for unprintable characters, enter an ASCII or
EBCDIC equivalent for a particular character as a string of 0s and 1s. The $BINARYw.
informat converts the string to its equivalent character value.

Comparisons
� The BINARYw. informat reads eight characters of input that contain only 0s or 1s

as a binary representation of one byte of numeric data.
� The $HEXw. informat reads hexadecimal digits that represent the ASCII or

EBCDIC equivalent of character data.

Examples

input @1 name $binary16.;

646 $CBw. 4 Chapter 5

Data Lines Results

----+----1----+----2 ASCII EBCDIC

0100110001001101 LM <(

$CBw.

Reads standard character data from column-binary files

Category: Column Binary

Syntax
$CBw.

Syntax Description

w
specifies the width of the input field.
Default: none
Range: 1–32767

Details
The $CBw. informat reads standard character data from column-binary files, with each
card column represented in 2 bytes, and it translates the data into standard character
codes. If the combinations are invalid punch codes, SAS returns blanks and sets the
automatic variable _ERROR_ to 1.

Examples

input @1 name $cb2.;

Data Lines* Results

----+----1 EBCDIC ASCII

200A + N

* The data line is a hexadecimal representation of the column binary. The punch card column for
the example data has row 12, row 6, and row 8 punched. The binary representation is 0010
0000 0000 1010.

Informats 4 $CHARw. 647

See Also

Informats:
“CBw.d” on page 663
“PUNCH.d” on page 705
“ROWw.d” on page 710

See the discussion on reading column-binary data in SAS Language Reference:
Concepts.

$CHARw.

Reads character data with blanks

Category: Character

Syntax
$CHARw.

Syntax Description

w
specifies the width of the input field.
Default: 8 if the length of the variable is undefined; otherwise, the length of the

variable
Range: 1–32767

Details
The $CHARw. informat does not trim leading and trailing blanks or convert a single
period in the input data field to a blank before storing values. If you use $CHARw. in
an INFORMAT or ATTRIB statement within a DATA step to read list input, then by
default SAS interprets any blank embedded within data as a field delimiter, including
leading blanks.

Comparisons
� The $CHARw. informat is almost identical to the $w. informat. However

$CHARw. does not trim leading blanks or convert a single period in the input data
field to a blank, while the $w. informat does.

� Use the table below to compare the SAS informat $CHAR8. with notation in other
programming languages:

Language Character Notation

SAS $CHAR8.

IBM 370 assembler CL8

C char [8]

648 $CHARZBw. 4 Chapter 5

Language Character Notation

COBOL PIC x(8)

FORTRAN A8

PL/I CHAR(8)

Examples

input @1 name $char5.;

Data Lines Results*

----+----1

XYZ XYZ##

XYZ #XYZ#

. ##.##

X YZ #X#YZ

* The character # represents a blank space.

$CHARZBw.
Converts binary 0s to blanks

Category: Character

Syntax
$CHARZBw.

Syntax Description

w
specifies the width of the input field.
Default: 1 if the length of the variable is undefined; otherwise, the length of the

variable
Range: 1–32767

Details
The $CHARZBw. informat does not trim leading and trailing blanks in character data
before it stores values.

Comparisons
The $CHARZBw. informat is identical to the $CHARw. informat except that
$CHARZBw. converts any byte that contains a binary 0 to a blank character.

Informats 4 $EBCDICw. 649

Examples

input @1 name $charzb5.;

Data Lines* Results

EBCDIC ASCII

E7E8E90000 58595A0000 XYZ##

00E7E8E900 0058595A00 #XYZ#

00E700E8E9 005800595A #X#YZ

* The data lines are hexadecimal representations of codes for characters. Each two hexadecimal
digits correspond to one byte of binary data, and each byte corresponds to one character.

** The character # represents a blank space.

$EBCDICw.

Converts EBCDIC character data to native format

Category: Character

Syntax
$EBCDICw.

Syntax Description

w
specifies the width of the input field.
Default: 1 if the length of the variable is undefined; otherwise, the length of the

variable
Range: 1–32767

Details
If EBCDIC is the native format, no conversion occurs.

Comparisons
� On an IBM mainframe system, $EBCDICw. behaves like the $CHARw. informat.
� On all other systems, $EBCDICw. converts EBCDIC data to ASCII.

Examples

650 $HEXw. 4 Chapter 5

input @1 name $ebcdic3.

Data Lines Results*

----+----1 ASCII EBCDIC

qrs 717273 9899A2

QRS 515253 D8D9E2

+;> 2B3B3E 4E5E6E

* The results are hexadecimal representations of codes for characters. Each two hexadecimal
digits correspond to one byte of binary data, and each byte corresponds to one character value.

$HEXw.

Converts hexadecimal data to character data

Category: Character

Syntax
$HEXw.

Syntax Description

w
specifies the number of digits of hexadecimal data.

If w=1, $HEXw. pads a trailing hexadecimal 0. If w is an odd number that is
greater than 1, then $HEXw. reads w–1 hexadecimal characters.

Default: 2

Range: 1–32767

Details
The $HEXw. informat converts every two digits of hexadecimal data into one byte of
character data. Use $HEXw. to encode hexadecimal values into a character variable
when your input method is limited to printable characters.

Comparisons
The HEXw. informat reads two digits of hexadecimal data at a time and converts them
into one byte of numeric data.

Examples

input @1 name $hex4.;

Informats 4 $KANJIXw. 651

Data Lines Results

----+----1 ASCII EBCDIC

6C6C 11 %%

$KANJIw.

Removes shift code data from DBCS data

Category: DBCS

Syntax
$KANJIw.

Syntax Description

w
specifies the width of the input field.
Restriction: The width must be an even number. If it is an odd number, it is

truncated.
Range: The minimum width for the informat is 2.

Details
The data must start with SO and end with SI, unless single-byte blank data are
returned. This informat always returns a blank for the DBCSTYPE data that does not
use a shift-code mechanism. The input data length must be 2 + (SO/SI length)*2.

$KANJIXw.

Adds shift code data to DBCS data

Category: DBCS

Syntax
$KANJIXw.

Syntax Description

652 $OCTALw. 4 Chapter 5

w
specifies the width of the input field.
Restriction: The width must be an even number. If it is an odd number, it is

truncated.
Range: The minimum width for the informat is 2 + (length of shift code

used on the current DBCSTYPE= setting)*2.

$OCTALw.

Converts octal data to character data

Category: Character

Syntax
$OCTALw.

Syntax Description

w
specifies the width of the input field in bits. Because one digit of octal data
represents three bits of binary information, increment the value of w by three for
every column of octal data that $OCTALw. will read.
Default: 3
Range: 1–32767

Details
Eight bits of binary data represent the code for one digit of character data. Therefore,
you need at least three digits of octal data to represent one digit of character data,
which includes an extra bit. $OCTALw. treats every three digits of octal data as one
digit of character data, ignoring the extra bit.

Use $OCTALw. to read octal representations of binary codes for unprintable
characters. Enter an ASCII or EBCDIC equivalent for a particular character in octal
notation. Then use $OCTALw. to convert it to its equivalent character value.

Use only the digits 0 through 7 in the input, with no embedded blanks. $OCTALw.
ignores leading and trailing blanks.

Comparisons
The OCTALw. informat reads octal data and converts them into the numeric
equivalents.

Examples

input @1 name $octal9.;

Informats 4 $PHEXw. 653

Data Lines Results

----+----1 EBCDIC ASCII

114 < L

$PHEXw.
Converts packed hexadecimal data to character data

Category: Character

Syntax
$PHEXw.

Syntax Description

w
specifies the number of bytes in the input.

When you use $PHEXw. to read packed hexadecimal data, the length of the
variable is the number of bytes that are required to store the resulting character
value, not w. In general, a character variable whose length is implicitly defined with
$PHEXw. has a length of 2w–1.
Default: 2
Range: 1–32767

Details
Packed hexadecimal data are like packed decimal data, except that all hexadecimal
digits are valid. In packed hexadecimal data, the value of the low-order nibble has no
meaning. In packed decimal data, the value of the low-order nibble indicates the sign of
the numeric value that the data represent. The $PHEXw. informat returns a character
value and treats the value of the sign nibble as if it were X’F’, regardless of its actual
value.

Comparisons
The PDw.d. informat reads packed decimal data and converts them to numeric data.

Examples

input @1 devaddr $phex2.;

Data Lines* Results

0001111000001111 1E0

* The data line represents two bytes of actual binary data, with each half byte corresponding to a
single hexadecimal digit. The equivalent hexadecimal representation for the data line is 1E0F.

654 $QUOTEw. 4 Chapter 5

$QUOTEw.

Removes matching quotation marks from character data

Category: Character

Syntax
$QUOTEw.

Syntax Description

w
specifies the width of the input field.

Default: 8 if the length of the variable is undefined; otherwise, the length of the
variable

Range: 1–32767

Examples

input @1 name $quote7.;

Data Lines Results

----+----1

’SAS’ SAS

"SAS" SAS

"SAS’s" SAS’s

$REVERJw.

Reads character data from right to left and preserves blanks

Category: Character

Syntax
$REVERJw.

Informats 4 $REVERSw. 655

Syntax Description

w
specifies the width of the input field.
Default: 1 if the length of the variable is undefined; otherwise, the length of the

variable
Range: 1–32767

Details
The $REVERJw. informat preserves all leading and trailing blanks when it reads text
right to left.

Comparisons
The $REVERJw. informat is similar to the $REVERSw. informat except that
$REVERSw. left aligns the result by removing all leading blanks.

Examples

input @1 name $reverj7.;

Data Lines Results*

----+----1

ABCD ###DCBA

ABCD DCBA###

* The character # represents a blank space.

$REVERSw.

Reads character data from right to left and left aligns

Category: Character

Syntax
$REVERSw.

Syntax Description

w
specifies the width of the input field.

656 $UPCASEw. 4 Chapter 5

Default: 1 if the length of the variable is undefined; otherwise, the length of the
variable

Range: 1–32767

Comparisons
The $REVERSw. informat is similar to the $REVERJw. informat except that
$REVERJw. preserves all leading and trailing blanks.

Examples

input @1 name $revers7.;

Data Lines Results*

----+----1

ABCD DCBA###

ABCD DCBA###

* The character # represents a blank space.

$UPCASEw.

Converts character data to uppercase

Category: Character

Syntax
$UPCASEw.

Syntax Description

w
specifies the width of the input field.

Default: 8 if the length of the variable is undefined; otherwise, the length of the
variable

Range: 1–32767

Details
Special characters, such as hyphens, are not altered.

Informats 4 $VARYINGw. 657

Examples

input @1 name $upcase3.;

Data Lines Results

----+----1

sas SAS

$VARYINGw.

Reads character data of varying length

Valid: in a DATA step

Category: Character

Syntax
$VARYINGw. length-variable

Syntax Description

w
specifies the maximum width of a character field for all the records in an input file.

Default: 8 if the length of the variable is undefined; otherwise, the length of the
variable

Range: 1–32767

length-variable
specifies a numeric variable that contains the width of the character field in the
current record. SAS obtains the value of length-variable by reading it directly from a
field that is described in an INPUT statement or by calculating its value in the DATA
step.

Requirement: You must specify length-variable immediately after $VARYINGw. in
an INPUT statement.

Restriction: Length-variable cannot be an array reference.

Tip: If length-variable is less than 1 or is missing, SAS reads no data from the
corresponding record. This enables you to read both zero-length records and fields.
If length-variable is greater than 0 but less than w, SAS reads the number of
columns that are specified by length-variable. Then SAS pads the value with
trailing blanks up to the maximum width that is assigned to the variable. If
length-variable is greater than or equal to w, SAS reads w columns.

658 $VARYINGw. 4 Chapter 5

Details
Use $VARYINGw. when the length of a character value differs from record to record.
After reading a data value with $VARYINGw., the pointer’s position is set to the first
column after the value.

Examples

Example 1: Obtaining a Current Record Length Directly

input fwidth 1. name $varying9. fwidth;

Data Lines* Results

----+----1

5shark shark

3sunfish sun

8bluefish bluefish

* Notice the result of reading the second data line.

Example 2: Obtaining a Record Length Indirectly Use the LENGTH= option in the
INFILE statement to obtain a record length indirectly. The input data lines and results
follow the explanation of the SAS statements.

data one;
infile file-specification length=reclen;
input @;
fwidth=reclen-9;
input name $ 1-9

@10 class $varying20. fwidth;
run;

The LENGTH= option in the INFILE statement assigns the internally stored record
length to RECLEN when the first INPUT statement executes. The trailing @ holds the
record for another INPUT statement. Next, the assignment statement calculates the
value of the varying-length field by subtracting the fixed-length portion of the record
from the total record length. The variable FWIDTH contains the length of the last field
and becomes the length-variable argument to the $VARYING20. informat.

Data Lines Results

----+----1----+----2

PATEL CHEMISTRY PATEL CHEMISTRY

Informats 4 $w. 659

Data Lines Results

JOHNSON GEOLOGY JOHNSON GEOLOGY

WILCOX ART WILCOX ART

$w.

Reads standard character data

Category: Character

Syntax
$w.

Syntax Description

w
specifies the width of the input field. You must specify w because SAS does not
supply a default value.
Range: 1–32767

Details
The $w. informat trims leading blanks and left aligns the values before storing the text.
In addition, if a field contains only blanks and a single period, $w. converts the period
to a blank because it interprets the period as a missing value. The $w. informat treats
two or more periods in a field as character data.

Comparisons
The $w. informat is almost identical to the $CHARw. informat. However, $CHARw.
does not trim leading blanks nor does it convert a single period in an input field to a
blank, while $w. does both.

Examples

input @1 name $5.;

Data Lines Results*

----+----1

XYZ XYZ##

XYZ XYZ##

660 BINARYw.d 4 Chapter 5

Data Lines Results*

.

X YZ X#YZ#

* The character # represents a blank space.

BINARYw.d

Converts positive binary values to integers

Category: Numeric

Syntax
BINARYw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–64

d
optionally specifies the power of 10 by which to divide the value. SAS uses the d
value even if the data contain decimal points.
Range: 0–31

Details
Use only the character digits 1 and 0 in the input, with no embedded blanks.
BINARYw.d ignores leading and trailing blanks.

BINARYw.d cannot read negative values. It treats all input values as positive
(unsigned).

Examples

input @1 value binary8.1;

Informats 4 BITSw.d 661

Data Lines Results

----+----1----+

00001111 1.5

BITSw.d

Extracts bits

Category: Numeric

Syntax
BITSw.d

Syntax Description

w
specifies the number of bits to read.
Default: 1
Range: 1–64

d
specifies the zero-based offset.
Range: 0–63

Details
The BITSw.d informat extracts particular bits from an input stream and assigns the
numeric equivalent of the extracted bit string to a variable. Together, the w and d
values specify the location of the string you want to read.

This informat is useful for extracting data from system records that have many
pieces of information packed into single bytes.

Examples

input @1 value bits4.1;

Data Lines Results*

----+----1----+

B 8

* The EBCDIC binary code for a capital B is 11000010, and the ASCII binary code is 01000010.

The input pointer moves to column 2 (d=1). Then the INPUT statement reads four bits
(w=4) which is the bit string 1000 and stores the numeric value 8, which is equivalent
to this binary combination.

662 BZw.d 4 Chapter 5

BZw.d

Converts blanks to 0s

Category: Numeric

Syntax

BZw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. If the data contain
decimal points, the d value is ignored.

Range: 0–31

Details

The BZw.d informat reads numeric values, converts any trailing or embedded blanks to
0s, and ignores leading blanks.

The BZw.d informat can read numeric values that are located anywhere in the field.
Blanks can precede or follow the numeric value, and a minus sign must precede
negative values. The BZw.d informat ignores blanks between a minus sign and a
numeric value in an input field.

The BZw.d informat interprets a single period in a field as a 0. The informat
interprets multiple periods or other nonnumeric characters in a field as a missing value.

To use BZw.d in a DATA step with list input, change the delimiter for list input with
the DLM= option in the INFILE statement. By default, SAS interprets blanks between
values in the data line as delimiters rather than 0s.

Comparisons

The BZw.d informat converts trailing or embedded blanks to 0s. If you do not want to
convert trailing blanks to 0s (for example, when reading values in E-notation), use
either the w.d informat or the Ew.d informat instead.

Examples

input @1 x bz4.;

Informats 4 CBw.d 663

Data Lines Results

----+----1

34 3400

-2 -200

-2 1 -201

CBw.d

Reads standard numeric values from column-binary files

Category: Column Binary

Syntax
CBw.d

Syntax Description

w
specifies the width of the input field.
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. SAS uses the d
value even if the data contain decimal points.

Details
The CBw.d informat reads standard numeric values from column-binary files and
translates the data into standard binary format.

SAS first stores each column of column-binary data you read with CBw.d in two
bytes and ignores the two high-order bits of each byte. If the punch codes are valid,
SAS stores the equivalent numeric value into the variable that you specify. If the
combinations are not valid, SAS assigns the variable a missing value and sets the
automatic variable _ERROR_ to 1.

Examples

input @1 x cb8.;

664 COMMAw.d 4 Chapter 5

Data Lines* Results

----+----1

0009 9

* The data line is a hexadecimal representation of the column binary. The punch card column for
the example data has row 9 punched. The binary representation is 0000 0000 0000 1001.

See Also

Informats:
“$CBw.” on page 646
“PUNCH.d” on page 705
“ROWw.d” on page 710

COMMAw.d
Removes embedded characters

Category: Numeric

Syntax
COMMAw.d

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. If the data contain
decimal points, the d value is ignored.
Range: 0–31

Details
The COMMAw.d informat reads numeric values and removes embedded commas,
blanks, dollar signs, percent signs, dashes, and right parentheses from the input data.
The COMMAw.d informat converts a left parenthesis at the beginning of a field to a
minus sign.

Comparisons
The COMMAw.d informat operates like the COMMAXw.d informat, but it reverses the
roles of the decimal point and the comma. This convention is common in European
countries.

Informats 4 COMMAXw.d 665

Examples

input @1 x comma10.;

Data Lines Results

----+----1----+

$1,000,000 1000000

(500) -500

COMMAXw.d

Removes embedded characters

Category: Numeric

Syntax
COMMAXw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. If the data contain
a comma, which represents a decimal point, the d value is ignored.

Range: 0–31

Details
The COMMAXw.d informat reads numeric values and removes embedded periods,
blanks, dollar signs, percent signs, dashes, and right parentheses from the input data.
The COMMAXw.d informat converts a left parenthesis at the beginning of a field to a
minus sign.

Comparisons
The COMMAXw.d informat operates like the COMMAw.d informat, but it reverses the
roles of the decimal point and the comma. This convention is common in European
countries.

666 DATEw. 4 Chapter 5

Examples

input @1 x commax10.;

Data Lines Results

----+----1----+

$1.000.000 1000000

(500) -500

DATEw.

Reads date values in the form ddmmmyy or ddmmmyyyy

Category: Date and Time

Syntax
DATEw.

Syntax Description

w
specifies the width of the input field.
Default: 7
Range: 7–32
Tip: Use a width of 9 to read a 4–digit year.

Details
The date values must be in the form ddmmmyy or ddmmmyyyy, where

dd
is an integer from 01 through 31 that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

You can separate the year, month, and day values by blanks or by special characters.
Make sure the width of the input field allows space for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

Informats 4 DATETIMEw. 667

input calendar_date date11.;

Data Lines Results

----+----1----+

16mar99 14309

16 mar 99 14309

16-mar-1999 14309

See Also

Format:
“DATEw.” on page 89

Function:
“DATE” on page 312

System Option:
“YEARCUTOFF=” on page 1177

DATETIMEw.

Reads datetime values in the form ddmmmyy hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

Category: Date and Time

Syntax
DATETIMEw.

Syntax Description

w
specifies the width of the input field.
Default: 18
Range: 13–40

Details
The datetime values must be in the following form: ddmmmyy or ddmmmyyyy, followed
by a blank or special character, followed by hh:mm:ss.ss (the time). In the date,

dd
is an integer from 01 through 31 that represents the day of the month.

mmm
is the first three letters of the month name.

668 DATETIMEw. 4 Chapter 5

yy or yyyy
is a two- or four-digit integer that represents the year.

In the time,

hh
is the number of hours ranging from 00 through 23.

mm
is the number of minutes ranging from 00 through 59.

ss.ss
is the number of seconds ranging from 00 through 59 with the fraction of a second
following the decimal point.

DATETIMEw. requires values for both the date and the time; however, the ss.ss
portion is optional.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Note: SAS can read time values with AM and PM in them. 4

Examples

input date_and_time datetime20.;

Data Lines Results

----+----1----+----2

16mar97:11:23:07.4 1237202587.4

Informats 4 DDMMYYw. 669

Data Lines Results

16mar1997/11:23:07.4 1237202587.4

16mar1997/11:23 PM 1237245780.0

See Also

Formats:
“DATEw.” on page 89
“DATETIMEw.d” on page 91
“TIMEw.d” on page 172

Function:
“DATETIME” on page 315

Informats:
“DATEw.” on page 666
“TIMEw.” on page 727

System Option:
“YEARCUTOFF=” on page 1177

See the discussion on using SAS date and time values in SAS Language Reference:
Concepts

DDMMYYw.

Reads date values in the form ddmmyy or ddmmyyyy

Category: Date and Time

Syntax
DDMMYYw.

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 6–32

Details
The date values must be in the form ddmmyy or ddmmyyyy, where

dd
is an integer from 01 through 31 that represents the day of the month.

mm
is an integer from 01 through 12 that represents the month.

670 Ew.d 4 Chapter 5

yy or yyyy
is a two- or four-digit integer that represents the year.

You can place blanks and other special characters between day, month, and year values.
However, if you use delimiters, place them between all the values. Blanks can also be
placed before and after the date. Make sure the width of the input field allows space for
blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

input calendar_date ddmmyy10.;

Data Lines Results

----+----1----+

160399 14319

16/03/99 14319

16 03 1999 14319

See Also

Formats:

“DATEw.” on page 89

“DDMMYYw.” on page 94

“MMDDYYw.” on page 131

“YYMMDDw.” on page 188

Function:

“MDY” on page 443

Informats:

“DATEw.” on page 666

“MMDDYYw.” on page 687

“YYMMDDw.” on page 733

System Option:

“YEARCUTOFF=” on page 1177

Ew.d

Reads numeric values that are stored in scientific notation and double-precision scientific notation

Category: Numeric

Informats 4 EURDFDEw. 671

Syntax
Ew.d

Syntax Description

w
specifies the width of the field that contains the numeric value.
Default: 12
Range: 1–32

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value. If the data contain decimal points, the d value is ignored.
Range: 0–31

Comparisons
The Ew.d informat is not used extensively because the SAS informat for standard
numeric data, the w.d informat, can read numbers in scientific notation. Use Ew.d to
permit only scientific notation in your input data.

Examples

input @1 x e7.;

Data Lines Results

----+----1----+

1.257E3 1257

12d3 12000

EURDFDEw.

Reads international date values

Category: Date and Time

Syntax
EURDFDEw.

672 EURDFDEw. 4 Chapter 5

w
specifies the width of the input field.
Default: 7 (except Finnish)
Range: 7–32 (except Finnish)
Note: If you use the Finnish (FIN) language prefix, the w range is 10–32 and the

default w is 10. 4

Details
The date values must be in the form ddmmmyy or ddmmmyyyy, where

dd
is an integer from 01 through 31 that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

You can place blanks and other special characters between day, month, and year values.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes on page 1086. When you specify the language prefix in
the informat, SAS ignores the DFLANG= system option.

Examples

This INPUT statement uses the value of the DFLANG= system option to read the
international date values in Spanish.

options dflang=spanish;
input day eurdfde10.;

This INPUT statement uses the Spanish language prefix in the informat to read the
international date values in Spanish. The value of the DFLANG= option, therefore, is
ignored.

input day espdfde10.;

Informats 4 EURDFDTw. 673

Data Lines Results

----+----1----+

01abr1999 14335

01-abr-99 14335

See Also

Format:
“EURDFDEw.” on page 103

Function:
“DATE” on page 312

Informats:
“DATEw.” on page 666
“EURDFDTw.” on page 673
“EURDFMYw. ”on page 675

System Options:
“DFLANG=” on page 1085
“YEARCUTOFF=” on page 1177

EURDFDTw.

Reads international datetime values in the form ddmmmyy hh:mm:ss.ss or
ddmmmyyyy hh:mm:ss.ss

Category: Date and Time

Syntax
EURDFDTw.

Syntax Description

w
specifies the width of the input field.
Default: 18
Range: 13–40

Details
The datetime values must be in the form ddmmmyy or ddmmmyyyy, followed by a
blank or special character, and hh:mm:ss.ss. In the date,

dd
is an integer from 01 through 31 that represents the day of the month.

674 EURDFDTw. 4 Chapter 5

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

In the time,

hh
is the number of hours ranging from 00 through 23,

mm
is the number of minutes ranging from 00 through 59,

ss.ss
is the number of seconds ranging from 00 through 59 with the fraction of a second
following the decimal point.

EURDFDTw. requires values for both the date and the time; however, the ss.ss
portion is optional.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes on page 1086. When you specify the language prefix in
the informat, SAS ignores the DFLANG= system option.

Examples

This INPUT statement uses the value of the DFLANG= system option to read the
international datetime values in German.

options dflang=german;
input date eurdfdt20.;

This INPUT statement uses the German language prefix to read the international
datetime values in German. The value of the DFLANG= option, therefore, is ignored.

input date deudfdt20.;

Data Lines Results

----+----1----+----2

23dez99:10:03:17.2 1261562597.2

23dez1999:10:03:17.2 1261562597.2

Informats 4 EURDFMYw. 675

See Also

Formats:
“DATEw.” on page 89
“DATETIMEw.d” on page 91
“TIMEw.d” on page 172

Function:
“DATETIME” on page 315

Informats:
“DATETIMEw. ”on page 667
“EURDFDEw. ”on page 671
“EURDFMYw. ”on page 675

System Options:
“DFLANG=” on page 1085
“YEARCUTOFF=” on page 1177

EURDFMYw.

Reads month and year date values in the form mmmyy or mmmyyyy

Category: Date and Time

Syntax
EURDFMYw.

Syntax Description

w
specifies the width of the input field.
Default: 5 (except Finnish)
Range: 5–32 (except Finnish)
Note: If you use the Finnish (FIN) language prefix, the w range is 7–32 and the

default value for w is 7. 4

Details
The date values must be in the form mmmyy or mmmyyyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

You can place blanks and other special characters between day, month, and year values.
A value that is read with EURDFMYw. results in a SAS date value that corresponds to
the first day of the specified month.

676 EURDFMYw. 4 Chapter 5

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you may be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG=” on page 1085
for the list of language prefixes on page 1086. When you specify the language prefix in
the informat, SAS ignores the DFLANG= option.

Examples

This INPUT statement uses the value of DFLANG= system option to read the
international date values in French.

options dflang=french;
input month eurdfmy7.;

The second INPUT statement uses the French language prefix, and DFLANG is not
specified.

input month fradfmy7.;

Data Lines Results

----+----1

avr1999 14335

avr 99 14335

Informats 4 FLOATw.d 677

See Also

Formats:
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131
“MONYYw.” on page 138
“YYMMDDw.” on page 188

Functions:
“MONTH” on page 451
“YEAR” on page 618

Informats:
“EURDFDEw. ”on page 671
“EURDFDTw.” on page 673
“MONYYw.” on page 689

System Options:
“DFLANG=” on page 1085
“YEARCUTOFF=” on page 1177

FLOATw.d

Reads a native single-precision, floating-point value and divides it by 10 raised to the dth power

Category: Numeric

Syntax
FLOATw.d

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 4.

d
optionally specifies the power of 10 by which to divide the value.

Details
The FLOATw.d informat is useful in operating environments where a float value is not
the same as a truncated double.

On the IBM mainframe systems, a four-byte floating-point number is the same as a
truncated eight-byte floating-point number. However, in operating environments that
use the IEEE floating-point standard, such as the IBM PC-based operating
environments and most UNIX platforms, a four-byte floating-point number is not the
same as a truncated double. Therefore, the RB4. informat does not produce the same

678 HEXw. 4 Chapter 5

results as FLOAT4. Floating-point representations other than IEEE may have this
same characteristic. Values read with FLOAT4. typically come from some other
external program that is running in your operating environment.

Comparisons
The following table compares the names of float notation in several programming
languages:

Language Float Notation

SAS FLOAT4.

FORTRAN REAL*4

C float

IBM 370 ASM E

PL/I FLOAT BIN(21)

Examples

input x float4.;

Data Lines* Results

----+----1----+----2

3F800000 1

* The data line is a hexadecimal representation of a binary number that is stored in IEEE form.

HEXw.

Converts hexadecimal positive binary values to either integer (fixed-point) or real (floating-point)
binary values

Category: Numeric

Syntax
HEXw.

Syntax Description

w
specifies the field width of the input value and also specifies whether the final value
is fixed-point or floating-point.
Default: 8
Range: 1–16

Informats 4 IBw.d 679

Tip: If w<16, HEXw. converts the input value to positive integer binary values,
treating all input values as positive (unsigned). If w is 16, HEXw. converts the
input value to real binary (floating-point) values, including negative values.

Details
Note: Different operating environments store floating-point values in different ways.

However, HEX16. reads hexadecimal representations of floating-point values with
consistent results if the values are expressed in the same way that your operating
environment stores them. 4

The HEXw. informat ignores leading or trailing blanks.

Examples

input @1 x hex3. @5 y hex16.;

Data Lines* Results

----+----1----+----2

88F 4152000000000000 2191 5.125

* The data line shows IBM mainframe hexadecimal data.

IBw.d
Reads native integer binary (fixed-point) values, including negative values

Category: Numeric

Syntax
IBw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 1–8

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
The IBw.d informat reads integer binary (fixed-point) values, including negative values
represented in two’s complement notation. IBw.d reads integer binary values with

680 IBRw.d 4 Chapter 5

consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 634.
4

Comparisons
The IBw.d and PIBw.d informats are used to read native format integers. (Native
format allows you to read and write values created in the same operating environment.)
The IBRw.d and PIBRw.d informats are used to read little endian integers in any
operating environment.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 635.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 636.

Examples

You can use the INPUT statement and specify the IB informat. However, these
examples use the informat with the INPUT function, where binary input values are
described using a hex literal.

x=input(’0080’x,ib2.);
y=input(’8000’x,ib2.);

SAS Statements

Results on Big
Endian Platforms

Results on Little
Endian Platforms

put x=; 128 -32768

put y=; -32768 128

See Also

Informat:
“IBRw.d” on page 680

IBRw.d

Reads integer binary (fixed-point) values in Intel and DEC formats

Category: Numeric

Syntax
IBRw.d

Informats 4 IBRw.d 681

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 1–8

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
The IBRw.d informat reads integer binary (fixed-point) values, including negative
values that are represented in two’s complement notation. IBRw.d reads integer binary
values that are generated by and for Intel and DEC platforms. Use IBRw.d to read
integer binary data from Intel or DEC environments in other operating environments.
The IBRw.d informat in SAS code allows for a portable implementation for reading the
data in any operating environment.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 634.
4

Comparisons
The IBw.d and PIBw.d informats are used to read native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d informats are used to read little endian
integers in any operating environment.

On Intel and DEC operating environments, the IBw.d and IBRw.d informats are
equivalent.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 635.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 636.

Examples

You can use the INPUT statement and specify the IBR informat. However, in these
examples we use the informat with the INPUT function, where binary input values are
described using a hex literal.

x=input(’0100’x,ibr2.);
y=input(’0001’x,ibr2.);

SAS Statements

Results on Big
Endian Platforms

Results on Little
Endian Platforms

put x=;
put y=;

1
256

1
256

682 IEEEw.d 4 Chapter 5

See Also

Informat:

“IBw.d” on page 679

IEEEw.d

Reads an IEEE floating-point value and divides it by 10 raised to the d th power

Category: Numeric

Syntax
IEEEw.d

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 2–8

Tip: If w is 8, an IEEE double-precision, floating-point number is read. If w is 5, 6,
or 7, an IEEE double-precision, floating-point number is read, which assumes
truncation of the appropriate number of bytes. If w is 4, an IEEE single-precision,
floating-point number is read. If w is 3, an IEEE single-precision, floating-point
number is read, which assumes truncation of one byte.

d
specifies the power of 10 by which to divide the value.

Details
The IEEEw.d informat is useful in operating environments where IEEE is the
floating-point representation that is used. In addition, you can use the IEEEw.d
informat to read files that are created by programs on operating environments that use
the IEEE floating point representation.

Typically, programs generate IEEE values in single precision (4 bytes) or double
precision (8 bytes). Truncation is performed by programs solely to save space on output
files. Machine instructions require that the floating-point number be of one of the two
lengths. The IEEEw.d informat allows other lengths, which enables you to read data
from files that contain space-saving truncated data.

Examples

input test1 ieee4.;
input test2 ieee5.;

Informats 4 JDATEYMDw. 683

Data Lines* Results

----+----1----+

3F800000 1

3FF0000000 1

* The data lines are hexadecimal representations of binary numbers that are stored in IEEE
format.

The first INPUT statement reads the first data line, and the second INPUT statement
reads the next data line.

JDATEYMDw.

Reads Japanese kanji date values in the format yymmmdd or yyyymmmdd

Category: Date and Time

Syntax

JDATEYMDw.

Syntax Description

w
specifies the width of the input field.

Default: 12

Range: 12–32

Details

The date values must be in the form yymmmdd or yyyymmmdd.
You can separate the year, month, and day values by blanks or by special characters.

Note that in the example, the date values in the datalines are separated by special
characters.

When using this informat, make sure that the width of the input field allows space
for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

The following examples show how to use the JDATEYMD informat to convert Kanji
values to SAS date values.

684 JNENGOw. 4 Chapter 5

See Also

“JNENGOw.” on page 684

JNENGOw.

Reads Japanese Kanji date values in the form yymmdd

Category: Date and Time
Alignment: left

Syntax
JNENGOw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 16–32

Details
The JNENGOw. informat reads Japanese Kanji values in the form yymmdd.

You can separate the year, month, and day values by blanks or by special characters.
Note that in the example, the date values in the datalines are separated by special
characters.

When using this informat, make sure that the width of the input field allows space
for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples
The following examples show how to use the JNENGO informat to convert Kanji values
to SAS date values.

Informats 4 JULIANw. 685

See Also

Informat:
“JDATEYMDw.” on page 683

JULIANw.

Reads Julian dates in the form yyddd or yyyyddd

Category: Date and Time

Syntax
JULIANw.

Syntax Description

w
specifies the width of the input field.
Default: 5
Range: 5–32

Details
The date values must be in the form yyddd or yyyyddd, where

yy or yyyy
is a two- or four-digit integer that represents the year.

dd or ddd
is an integer from 01 through 365 that represents the day of the year.

686 MINGUOw. 4 Chapter 5

Julian dates consist of strings of contiguous numbers, which means that zeros must pad
any space between the year and the day values.

Julian dates that contain year values before 1582 are invalid for the conversion to
Gregorian dates.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

input julian_date julian7.;

Data Lines Results*

----+----1

99075 14319

1999075 14319

* The input values correspond to the seventy-fifth day of 1999, which is March 16.

See Also

Format:
“JULIANw.” on page 129

Functions:
“DATEJUL” on page 313
“JULDATE” on page 416

System Option:

“YEARCUTOFF=” on page 1177

MINGUOw.

Reads dates in Taiwanese form

Category: Date and Time

Syntax
MINGUOw.

Syntax Description

w
specifies the width of the input field.

Informats 4 MMDDYYw. 687

Default: 6
Range: 6–10

Details
The general form of a Taiwanese date is yyyymmdd, where

yyyy
is an integer that represents the year.

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

The Taiwanese calendar uses 1912 as the base year (01/01/01 is January , 1912).
Dates prior to 1912 are not valid. Year values do not roll around after 100 years;
instead, they continue to increase.

You can separate the year, month, and day values with any delimiters, such as
blanks, slashes, or dashes, that are permitted by the YYMMDDw. informat. If
delimiters are used, place them between all the values. If you omit delimiters, be sure
to use a leading zero for days or months less than 10.

Examples

input date minguo10.;
put date date9.;

Data Lines Results

----+----1----+

49/01/01 01JAN1960

891215 15DEC2000

103-01-01 01JAN2014

MMDDYYw.

Reads date values in the form mmddyy or mmddyyyy

Category: Date and Time

Syntax
MMDDYYw.

Syntax Description

688 MMDDYYw. 4 Chapter 5

w
specifies the width of the input field.
Default: 6
Range: 6–32

Details
The date values must be in the form mmddyy or mmddyyyy, where

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

yy or yyyy
is a two- or four-digit integer that represents the year.

You can separate the month, day, and year fields by blanks or by special characters.
However, if you use delimiters, place them between all fields in the value. Blanks can
also be placed before and after the date.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

input calendar_date mmddyy8.;

Informats 4 MONYYw. 689

Data Lines Results

----+----1----+

031699 14319

03/16/99 14319

03 16 99 14319

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131
“YYMMDDw.” on page 188

Functions:
“DAY” on page 315
“MDY” on page 443
“MONTH” on page 451
“YEAR” on page 618

Informats:
“DATEw.” on page 666
“DDMMYYw.” on page 669
“YYMMDDw.” on page 733

System Option:
“YEARCUTOFF=” on page 1177

MONYYw.

Reads month and year date values in the form mmmyy or mmmyyyy

Category: Date and Time

Syntax
MONYYw.

Syntax Description

w
specifies the width of the input field.
Default: 5
Range: 5–32

690 MSECw. 4 Chapter 5

Details
The date values must be in the form mmmyy or mmmyyyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two- or four-digit integer that represents the year.

A value read with the MONYYw. informat results in a SAS date value that corresponds
to the first day of the specified month.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOF= system option. 4

Examples

input month_and_year monyy7.;

Data Lines Results

----+----1----+

mar 99 14304

mar1999 14304

See Also

Formats:
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131
“MONYYw.” on page 138
“YYMMDDw.” on page 188

Functions:
“MONTH” on page 451
“YEAR” on page 618

Informats:
“DDMMYYw.” on page 669
“MMDDYYw.” on page 687
“YYMMDDw.” on page 733

System Option:
“YEARCUTOFF=” on page 1177

MSECw.

Reads TIME MIC values

Informats 4 NENGOw. 691

Category: Date and Time

Syntax
MSECw.

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 8 because the OS TIME macro or the STCK System/370

instruction on IBM mainframes each return an eight-byte value.

Details
The MSECw. informat reads time values that are produced by IBM mainframe
operating environments and converts the time values to SAS time values.

Use the MSECw. informat to find the difference between two IBM mainframe TIME
values, with precision to the nearest microsecond.

Comparisons
The MSECw. and TODSTAMPw. informats both read IBM time-of-day clock values,
but the MSECw. informat assigns a time value to a variable, and the TODSTAMPw.
informat assigns a datetime value.

Examples

input btime msec8.;

Data Lines* Results

0000EA044E65A000 62818.412122

* The data line is a hexadecimal representation of a binary 8-byte time-of-day clock value. Each
byte occupies one column of the input field. The result is a SAS time value corresponding to
5:26:58.41 PM.

See Also

Informat:
“TODSTAMPw.” on page 729

NENGOw.

Reads Japanese date values in the form eyymmdd

Category: Date and Time

692 NENGOw. 4 Chapter 5

Syntax
NENGOw.

Syntax Description

w
specifies the width of the input field.
Default: 10
Range: 7–32

Details
The general form of a Japanese date is eyymmdd, where

e
is the first letter of the name of the emperor (Meiji, Taisho, Showa, or Heisei).

yy
is an integer that represents the year.

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

The e value can be separated from the integers by a period. If you omit e, SAS uses the
current emperor. You can separate the year, month, and day values by blanks or any
nonnumeric character. However; if delimiters are used, place them between all the
values. If you omit delimiters, be sure to use a leading zero for days or months that are
less than 10.

Examples

input nengo_date nengo8.;
put nengo_date date9.;

Data Lines Results

----+----1----+

h11108 08OCT1999

Informats 4 NUMXw.d 693

Data Lines Results

h.11108 08OCT1999

11/10/08 08OCT1999

See Also

Format:
“NENGOw.” on page 140.

NUMXw.d

Reads numeric values with a comma in place of the decimal point

Category: Numeric

Syntax
NUMXw.d

Syntax Description

w
specifies the width of the input field.
Default: 12
Range: 1–32

d
optionally specifies the number of digits to the right of the decimal. If the data
contain decimal points, the d value is ignored.
Range: 0–31

Details
The NUMXw.d informat reads numeric values and interprets a comma as a decimal
point.

Comparisons
The NUMXw.d informat is similar to the w.d informat except that it reads numeric
values that contain a comma in place of the decimal point.

Examples

input @1 x numx10.;

694 OCTALw.d 4 Chapter 5

Data Lines Results

----+----1----+

896,48 896.48

3064,1 3064.1

6489 6489

See Also

Formats:
“NUMXw.d” on page 141
“ w.d” on page 176

OCTALw.d

Converts positive octal values to integers

Category: Numeric

Syntax
OCTALw.d

Syntax Description

w
specifies the width of the input field.
Default: 3
Range: 1–24

d
optionally specifies the power of 10 by which to divide the value.
Range: 1–31
Restriction: must be greater than or equal to the w value.

Details
Use only the digits 0 through 7 in the input, with no embedded blanks. The OCTALw.d
informat ignores leading and trailing blanks.

OCTALw.d cannot read negative values. It treats all input values as positive
(unsigned).

Examples

input @1 value octal3.1;

Informats 4 PDw.d 695

Data Lines Results

----+----1

177 12.7

PDw.d

Reads data that are stored in IBM packed decimal format

Category: Numeric

Syntax
PDw.d

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–16

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
The PDw.d informat is useful because many programs write data in packed decimal
format for storage efficiency, fitting two digits into each byte and using only a half byte
for a sign.

Note: Different operating environments store packed decimal values in different
ways. However, PDw.d reads packed decimal values with consistent results if the values
are created on the same type of operating environment that you use to run SAS. 4

Comparisons
The following table compares packed decimal notation in several programming
languages:

696 PDJULGw. 4 Chapter 5

Language Notation

SAS PD4.

COBOL COMP-3 PIC S9(7)

IBM 370 Assembler PL4

PL/I FIXED DEC

Examples

Example 1: Reading Packed Decimal Data

input @1 x pd4.;

Data Lines* Results

----+----1

0000128C 128

* The data line is a hexadecimal representation of a binary number stored in packed decimal
form. Each byte occupies one column of the input field.

Example 2: Creating a SAS Date with Packed Decimal Data

input mnth pd4.;
date=input(put(mnth,6.),mmddyy6.);

Data Lines* Results

----+----1

0122599C 14603

* The data line is a hexadecimal representation of a binary number that is stored in packed
decimal form on an IBM mainframe operating environment. Each byte occupies one column of
the input field. The result is a SAS date value that corresponds to December 25, 1999.

PDJULGw.
Reads packed Julian date values in the hexadecimal form yyyydddF for IBM

Category: Date and Time

Syntax
PDJULGw.

Syntax Description

w
specifies the width of the input field.

Informats 4 PDJULIw. 697

Default: 4
Range: 4

Details
The PDJULGw. informat reads IBM packed Julian date values in the form of
yyyydddF, converting them to SAS date values, where

yyyy
is the two-byte representation of the four-digit Gregorian year.

ddd
is the one-and-a-half byte representation of the three-digit integer that
corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F
is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

input date pdjulg4.;

Data Line in Hexadecimal Results*

----+----1

1999003F 14247

* SAS date value 14247 represents January 3, 1999.

See Also

Formats:
“JULDAYw.” on page 128
“JULIANw.” on page 129
“PDJULGw.” on page 145
“PDJULIw.” on page 146

Functions:
“DATEJUL” on page 313
“JULDATE” on page 416

Informats:
“JULIANw.” on page 685
“PDJULIw.” on page 697

System Option:
“YEARCUTOFF=” on page 1177

PDJULIw.
Reads packed Julian dates in the hexadecimal format ccyydddF for IBM

698 PDJULIw. 4 Chapter 5

Category: Date and Time

Syntax
PDJULIw.

Syntax Description

w
specifies the width of the input field.

Default: 4

Range: 4

Details
The PDJULIw. informat reads IBM packed Julian date values in the form ccyydddF,
converting them to SAS date values, where

cc
is the one-byte representation of a two-digit integer that represents the century.

yy
is the one-byte representation of a two-digit integer that represents the year. The
PDJULIw informat makes an adjustment to the one-byte century representation
by adding 1900 to the two-byte ccyy value in order to produce the correct
four–digit Gregorian year. This adjustment causes ccyy values of 0098 to become
1998, 0101 to become 2001, and 0218 to become 2118.

ddd
is the one-and-a-half bytes representation of the three-digit integer that
corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F
is the half byte that contains all binary 1s, which assigns the value as positive.

Examples

input date pdjuli4.;

Data Lines in Hexadecimal Results*

----+----1

0099001F 14245

0110015F 18277

* SAS date value 14245 is January 1, 1999. SAS date value 18277 is January 15, 2010.

Informats 4 PDTIMEw. 699

See Also

Formats:

“JULDAYw.” on page 128

“JULIANw.” on page 129

“PDJULGw.” on page 145

“PDJULIw.” on page 146

Functions:

“DATEJUL” on page 313

“JULDATE” on page 416

Informats:

“JULIANw.” on page 685

“PDJULGw.” on page 696

System Option:

“YEARCUTOFF=” on page 1177

PDTIMEw.

Reads packed decimal time of SMF and RMF records

Category: Date and Time

Syntax
PDTIMEw.

Syntax Description

w
specifies the width of the input field.

Requirement: w must be 4 because packed decimal time values in RMF and SMF
records contain four bytes of information.

Details
The PDTIMEw. informat reads packed decimal time values that are contained in SMF
and RMF records that are produced by IBM mainframe systems and converts the
values to SAS time values.

The general form of a packed decimal time value in hexadecimal notation is
0hhmmssF, where

0
is a half byte that contains all 0s.

hh
is one byte that represents two digits that correspond to hours.

700 PERCENTw.d 4 Chapter 5

mm
is one byte that represents two digits that correspond to minutes.

ss
is one byte that represents two digits that correspond to seconds.

F
is a half byte that contains all 1s.

If a field contains all 0s, PDTIMEw. treats it as a missing value.
PDTIMEw. enables you to read packed decimal time values from files that are

created on an IBM mainframe on any operating environment.

Examples

input begin pdtime4.;

Data Lines* Results

0142225F 51745

* The data line is a hexadecimal representation of a binary time value that is stored in packed
decimal form. Each byte occupies one column of the input field. The result is a SAS time value
this corresponds to 2:22.25 PM.

PERCENTw.d

Reads percentages as numeric values

Category: Numeric

Syntax
PERCENTw.d

Syntax Description

w
specifies the width of the input field.

Default: 6

Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. If the data contain
decimal points, the d value is ignored.

Range: 0–2

Informats 4 PIBw.d 701

Details
The PERCENTw.d informat converts the numeric portion of the input data to a number
using the same method as the COMMAw.d informat. If a percent sign (%) follows the
number in the input field, PERCENTw.d divides the number by 100.

Examples

input @1 x percent3. @4 y percent5.;

Data Lines Results

----+----1----+

1% (20%) 0.01 -0.2

PIBw.d

Reads positive integer binary (fixed-point) values

Category: Numeric

Syntax
PIBw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–8

d
optionally specifies the power of 10 by which to divide the value.

Range: 0–10

Details
All values are treated as positive. PIBw.d reads positive integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Note: Different operating environments store positive integer binary values in
different ways. This concept is called byte ordering. For a detailed discussion about
byte ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page
634. 4

702 PIBRw.d 4 Chapter 5

Comparisons
� Positive integer binary values are the same as integer binary values except that

the sign bit is part of the value, which is always a positive integer. The PIBw.d
informat treats all values as positive and includes the sign bit as part of the value.

� The PIBw.d informat with a width of 1 results in a value that corresponds to the
binary equivalent of the contents of a byte. This is useful if your data contain
values between hexadecimal 80 and hexadecimal FF, where the high-order bit can
be misinterpreted as a negative sign.

� The IBw.d and PIBw.d informats are used to read native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d informats are used to read little endian
integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 635.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 636.

Examples

You can use the INPUT statement and specify the PIB informat. However, in these
examples we use the informat with the INPUT function, where binary input values are
described by using a hex literal.

x=input(’0100’x,pib2.);
y=input(’0001’x,pib2.);

SAS Statements

Results on Big
Endian Platforms

Results on
Little Endian Platforms

put x=;
put y=;

256
1

1
256

See Also

Informat:

“PIBRw.d” on page 702

PIBRw.d

Reads positive integer binary (fixed-point) values in Intel and DEC formats

Category: Numeric

Syntax
PIBRw.d

Informats 4 PIBRw.d 703

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–8

d
optionally specifies the power of 10 by which to divide the value.

Range: 0–10

Details
All values are treated as positive. PIBRw.d reads positive integer binary values that
have been generated by and for Intel and DEC operating environments. Use PIBRw.d
to read positive integer binary data from Intel or DEC environments on other operating
environments. The PIBRw.d informat in SAS code allows for a portable implementation
for reading the data in any operating environment.

Note: Different operating environments store positive integer binary values in
different ways. This concept is called byte ordering. For a detailed discussion about
byte ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page
634. 4

Comparisons
� Positive integer binary values are the same as integer binary values except that

the sign bit is part of the value, which is always a positive integer. The PIBRw.d
informat treats all values as positive and includes the sign bit as part of the value.

� The PIBRw.d informat with a width of 1 results in a value that corresponds to the
binary equivalent of the contents of a byte. This is useful if your data contain
values between hexadecimal 80 and hexadecimal FF, where the high-order bit can
be misinterpreted as a negative sign.

� On Intel and DEC platforms, the PIBw.d and PIBRw.d informats are equivalent.

� The IBw.d and PIBw.d informats are used to read native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d informats are used to read little endian
integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 635.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 636.

Examples

You can use the INPUT statement and specify the PIBR informat. However, these
examples use the informat with the INPUT function, where binary input values are
described using a hex literal.

x=input(’0100’x,pibr2.);
y=input(’0001’x,pibr2.);

704 PKw.d 4 Chapter 5

SAS Statements

Results on Big
Endian Platforms

Results on Little
Endian Platforms

put x=;
put y=;

1
256

1
256

See Also

Informat:

“PIBw.d” on page 701

PKw.d

Reads unsigned packed decimal data

Category: Numeric

Syntax
PKw.d

Syntax Description

w
specifies the number of bytes of unsigned packed decimal data, each of which
contains two digits.

Default: 1

Range: 1–16

d
optionally specifies the power of 10 by which to divide the value.

Range: 0–10

Details
Each byte of unsigned packed decimal data contains two digits.

Comparisons
The PKw.d informat is the same as the PDw.d informat, except that PKw.d treats the
sign half of the field’s last byte as part of the value, not as the sign of the value.

Examples

input @1 x pk3.;

Informats 4 PUNCH.d 705

Data Lines* Results

----+----1

001234 1234

* The data line is a hexadecimal representation of a binary number stored in unsigned packed
decimal form. Each byte occupies one column of the input field.

PUNCH.d

Reads whether a row of column-binary data is punched

Category: Column Binary

Syntax
PUNCH.d

Syntax Description

d
specifies which row in a card column to read.
Range: 1–12

Details
This informat assigns the value 1 to the variable if row d of the current card column is
punched, or 0 if row d of the current card column is not punched. After PUNCH.d reads
a field, the pointer does not advance to the next column.

Examples

Data Lines* SAS Statements Results

12-7-8 input x punch.12 1

input x punch.11 0

input x punch0.7 1

* The data line is punched card code. The punch card column for the example data has row 12,
row 7, and row 8 punched.

706 RBw.d 4 Chapter 5

See Also

Informats:
“$CBw.” on page 646
“CBw.d” on page 663
“ROWw.d” on page 710

RBw.d

Reads numeric data that are stored in real binary (floating-point) notation

Category: Numeric

Syntax
RBw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 2–8

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
Note: Different operating environments store real binary values in different ways.

However, the RBw.d informat reads real binary values with consistent results if the
values are created on the same type of operating environment that you use to run
SAS. 4

Comparisons
The following table compares the names of real binary notation in several programming
languages:

Real Binary Notation

Language 4 Bytes 8 Bytes

SAS RB4. RB8.

FORTRAN REAL*4 REAL*8

C float double

Informats 4 RMFDURw. 707

Real Binary Notation

Language 4 Bytes 8 Bytes

IBM 370 assembler F D

PL/I FLOAT BIN(21) FLOAT BIN(53)

CAUTION:
Using the RBw.d informat to read real binary information on equipment that conforms to
the IEEE standard for floating-point numbers results in a truncated eight-byte number
(double-precision), rather than in a true four-byte floating-point number (single-precision).
4

Examples

input @1 x rb8.;

Data Lines* Results

----+----1

4280000000000000 128

* The data line is a hexadecimal representation of a real binary (floating-point) number on an
IBM mainframe operating environment. Each byte occupies one column of the input field.

See Also

Informat:

“IEEEw.d” on page 682

RMFDURw.

Reads duration intervals of RMF records

Category: Date and Time

Syntax
RMFDURw.

Syntax Description

w
specifies the width of the input field.

Requirement: w must be 4 because packed decimal duration values in RMF records
contain four bytes of information.

708 RMFDURw. 4 Chapter 5

Details
The RMFDURw. informat reads the duration of RMF measurement intervals of RMF
records that are produced as packed decimal data by IBM mainframe systems and
converts them to SAS time values.

The general form of the duration interval data in an RMF record in hexadecimal
notation is mmsstttF, where

mm
is the one-byte representation of two digits that correspond to minutes.

ss
is the one-byte representation of two digits that correspond to seconds.

ttt
is the one-and-a-half-bytes representation of three digits that correspond to
thousandths of a second.

F
is a half byte that contains all binary 1s, which assigns the value as positive.

If the field does not contain packed decimal data, RMFDURw. results in a missing value.

Comparisons
� Both the RMFDURw. informat and the RMFSTAMPw. informat read packed

decimal information from RMF records that are produced by IBM mainframe
systems.

� The RMFDURw. informat reads duration data and results in a time value.
� The RMFSTAMPw. informat reads time-of-day data and results in a datetime

value.

Examples

input dura rmfdur4.;

Data Lines * Results

----+----1----+

3552226F 2152.266

* The data line is a hexadecimal representation of a binary duration value that is stored in packed
decimal form as it would appear in an RMF record. Each byte occupies one column of the input
field. The result is a SAS time value corresponding to 00:35:52.226.

Informats 4 RMFSTAMPw. 709

See Also

Informats:
“RMFSTAMPw.” on page 709
“SMFSTAMPw. ”on page 713

RMFSTAMPw.

Reads time and date fields of RMF records

Category: Date and Time

Syntax
RMFSTAMPw.

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 8 because packed decimal time and date values in RMF

records contain eight bytes of information: four bytes of time data that are
followed by four bytes of date data.

Details
The RMFSTAMPw. informat reads packed decimal time and date values of RMF
records that are produced by IBM mainframe systems, and converts the time and date
values to SAS datetime values.

The general form of the time and date information in an RMF record in hexadecimal
notation is 0hhmmssFccyydddF, where

0
is the half byte that contains all binary 0s.

hh
is the one-byte representation of two digits that correspond to the hour of the day.

mm
is the one-byte representation of two digits that correspond to minutes.

ss
is 1 byte that represents two digits that correspond to seconds.

cc
is the one-byte representation of two digits that correspond to the century.

yy
is the one-byte representation of two digits that correspond to the year.

ddd
is the one-and-a-half bytes that contain three digits that correspond to the day of
the year.

710 ROWw.d 4 Chapter 5

F
is the half byte that contains all binary 1s.

The century indicators 00 correspond to 1900, 01 to 2000, and 02 to 2100.

RMFSTAMPw. enables you to read, on any operating environment, packed decimal
time and date values from files that are created on an IBM mainframe.

Comparisons
Both the RMFSTAMPw. informat and the PDTIMEw. informat read packed decimal
values from RMF records. The RMFSTAMPw. informat reads both time and date
values and results in a SAS datetime value. The PDTIMEw. informat reads only time
values and results in a SAS time value.

Examples

input begin rmfstamp8.;

Data Lines* Results

----+----1----+----2

0142225F0102286F 1350138145

* The data line is a hexadecimal representation of a binary time and date value that is stored
in packed decimal form as it would appear in an RMF record. Each byte occupies one column
of the input field. The result is a SAS datetime value that corresponds to October 13, 2002,
2:22.25 PM.

ROWw.d

Reads a column-binary field down a card column

Category: Column Binary

Syntax
ROWw.d

Syntax Description

w
specifies the row where the field begins.
Range: 0–12

Informats 4 SHRSTAMPw. 711

d
specifies the length in rows of the field.
Default: 1
Range: 1–25

Details
The ROWw.d informat assigns the relative position of the punch in the field to a
numeric variable.

If the field that you specify has more than one punch, ROWw.d assigns the variable a
missing value and sets the automatic variable _ERROR_ to 1. If the field has no
punches, ROWw.d assigns the variable a missing value.

ROWw.d can read fields across columns, continuing with row 12 of the new column
and going down through the rest of the rows. After ROWw.d reads a field, the pointer
moves to the next row.

Examples

input x row5.3
input x row7.1
input x row5.2
input x row3.5

Data Lines* Results

----+----1

00

04 3

1

.

5

* The data line is a hexadecimal representation of the column binary. The punch card column for
the example data has row 7 punched. The binary representation is 0000 0000 0000 0100.

See Also

Informats:
“$CBw.” on page 646
“CBw.d” on page 663
“PUNCH.d” on page 705

SHRSTAMPw.

Reads date and time values of SHR records

712 SHRSTAMPw. 4 Chapter 5

Category: Date and Time

Syntax
SHRSTAMPw.

Syntax Description

w
specifies the width of the input field.

Requirement: w must be 8 because packed decimal date and time values in SHR
records contain eight bytes of information: four bytes of date data that are
followed by four bytes of time data.

Details
The SHRSTAMPw. informat reads packed decimal date and time values of SHR records
that are produced by IBM mainframe environments and converts the date and time
values to SAS datetime values.

The general form of the date and time information in an SHR record in hexadecimal
notation is yyyydddFhhmmssth, where

yyyy
is the two-bytes representation of four digits that correspond to the year.

ddd
is the one-and-a-half bytes that contain three digits that correspond to the day of
the year.

F
is the half byte that contains all binary 1s.

hh
is the one-byte representation of two digits that correspond to the hour of the day.

mm
is the one-byte representation of two digits that correspond to minutes.

ss
is the one-byte representation of two digits that correspond to seconds.

th
is the one-byte representation of two digits that correspond to a hundredth of a
second.

The SHRSTAMPw. informat enables you to read, on any operation environment,
packed decimal date and time values from files that are created on an IBM mainframe.

Examples

input begin shrstamp8.;

Informats 4 SMFSTAMPw. 713

Data Lines* Results

----+----1----+----2

0097239F12403576 1188304835.8

* The data line is a hexadecimal representation of a packed decimal date and time value that is
stored as it would appear in an SHR record. Each byte occupies one column of the input field.
The result is a SAS datetime value that corresponds to Aug. 27, 1997 12:40:36 PM.

SMFSTAMPw.

Reads time and date values of SMF records

Category: Date and Time

Syntax
SMFSTAMPw.

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 8 because time and date values in SMF records contain

eight bytes of information: four bytes of time data that are followed by four bytes
of date data.

Tip: The time portion of an SMF record is a four-byte integer binary number that
represents time as the number of hundredths of a second past midnight.

Details
The SMFSTAMPw. informat reads integer binary time values and packed decimal date
values of SMF records that are produced by IBM mainframe systems and converts the
time and date values to SAS datetime values.

The date portion of an SMF record in hexadecimal notation is ccyydddF, where

cc
is the one-byte representation of two digits that correspond to the century.

yy
is the one-byte representation of two digits that correspond to the year.

ddd
is the one-and-a-half bytes that contain three digits that correspond to the day of
the year.

F
is the half byte that contains all binary 1s.

The SMFSTAMPw. informat enables you to read, on any operating environment,
integer binary time values and packed decimal date values from files that are created
on an IBM mainframe.

714 S370FFw.d 4 Chapter 5

Examples

input begin smfstamp8.;

Data Lines* Results

----+----1----+----2

0058DC0C0098200F 1216483835

* The data line is a hexadecimal representation of a binary time and date value that is stored as
it would appear in an SMF record. Each byte occupies one column of the input field. The result
is a SAS datetime value that corresponds to July 19, 1998 4:10:35 PM.

S370FFw.d

Reads EBCDIC numeric data

Category: Numeric

Syntax
S370FFw.d

Syntax Description

w
specifies the width of the input field.
Default: 12
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–31

Details
The S370FFw.d informat reads numeric data that are represented in EBCDIC and
converts the data to native format. If EBCDIC is the native format, S370FFw.d
performs no conversion.

S370FFw.d reads EBCDIC numeric values that are represented with one byte per
digit. Use S370FFw.d on other operating environments to read numeric data from IBM
mainframe files.

S370FFw.d reads numeric values located anywhere in the input field. EBCDIC
blanks can precede or follow a numeric value with no effect. If a value is negative, an
EBCDIC minus sign should immediately precede the value. S370FFw.d reads values
with EBCDIC decimal points and values in scientific notation, and it interprets a single
EBCDIC period as a missing value.

Informats 4 S370FIBw.d 715

Comparisons
The S370FFw.d informat performs the same role for numeric data that the
$EBCDICw.d informat does for character data. That is, on an IBM mainframe system,
S370FFw.d has the same effect as the standard w.d informat. On all other systems,
using S370FFw.d is equivalent to using $EBCDICw.d as well as using the standard w.d
informat.

Examples

input @1 x s370ff3.;

Data Lines* Results

----+----1

F1F2F3 123

F2F4F0 240

* The data lines are hexadecimal representations of codes for characters. Each two hexadecimal
digits correspond to one byte of binary data, and each byte corresponds to one character value.

S370FIBw.d

Reads integer binary (fixed-point) values, including negative values, in IBM mainframe format

Category: Numeric

Syntax
S370FIBw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 1–8

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
The S370FIBw.d informat reads integer binary (fixed-point) values that are stored in
IBM mainframe format, including negative values that are represented in two’s

716 S370FIBUw.d 4 Chapter 5

complement notation. S370FIBw.d reads integer binary values with consistent results
if the values are created in the same type of operating environment that you use to run
SAS.

Use S370FIBw.d for integer binary data that are created in IBM mainframe format
for reading in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 634.
4

Comparisons
� If you use SAS on an IBM mainframe, S370FIBw.d and IBw.d are identical.

� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian
integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 635.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 636.

Examples

You can use the INPUT statement and specify the S370FIB informat. However, this
example uses the informat with the INPUT function, where the binary input value is
described by using a hex literal.

x=input(’0080’x,s370fib2.);

SAS Statement Results

put x=; 128

See Also

Informats:

“S370FIBUw.d” on page 716

“S370FPIBw.d” on page 720

S370FIBUw.d

Reads unsigned integer binary (fixed-point) values in IBM mainframe format

Category: Numeric

Informats 4 S370FIBUw.d 717

Syntax
S370FIBUw.d

Syntax Description

w
specifies the width of the input field.

Default: 4

Range: 1–8

d
optionally specifies the power of 10 by which to divide the value. SAS uses the d
value even if the data contain decimal points.

Range: 0–10

Details
The S370FIBUw.d informat reads unsigned integer binary (fixed-point) values that are
stored in IBM mainframe format, including negative values that are represented in
two’s complement notation. Unsigned integer binary values are the same as integer
binary values, except that all values are treated as positive. S370FIBUw.d reads
integer binary values with consistent results if the values are created in the same type
of operating environment that you use to run SAS.

Use S370FIBUw.d for unsigned integer binary data that are created in IBM
mainframe format for reading in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 634.
4

Comparisons
� The S370FIBUw.d informat is equivalent to the COBOL notation PIC 9(n)

BINARY, where n is the number of digits.

� The S370FIBUw.d and S370FPIBw.d informats are identical.

� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian
integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 635.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 636.

Examples

You can use the INPUT statement and specify the S370FIBU informat. However,
these examples use the informat with the INPUT function, where binary input values
are described by using a hex literal.

718 S370FPDw.d 4 Chapter 5

x=input(’7F’x,s370fibu1.);
y=input(’F6’x,s370fibu1.);

SAS Statements Results

put x=;
put y=;

127
246

See Also

Informats:

“S370FIBw.d” on page 715

“S370FPIBw.d” on page 720

S370FPDw.d

Reads packed data in IBM mainframe format

Category: Numeric

Syntax
S370FPDw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–16

d
optionally specifies the power of 10 by which to divide the value.

Range: 0–10

Details
Packed decimal data contain two digits per byte, but only one digit in the input field
represents the sign. The last half of the last byte indicates the sign: a C or an F for
positive numbers and a D for negative numbers.

Use S370FPDw.d to read packed decimal data from IBM mainframe files on other
operating environments.

Informats 4 S370FPDUw.d 719

Comparisons
� If you use SAS on an IBM mainframe, the S370FPDw.d and the PDw.d informats

are identical.
� The following table compares the equivalent packed decimal notation by

programming language:

Language Packed Decimal Notation

SAS S370FIB4.

PL/I FIXED DEC(7,0)

COBOL COMP-3 PIC 9(7)

assembler PL4

S370FPDUw.d

Reads unsigned packed decimal data in IBM mainframe format

Category: Numeric

Syntax
S370FPDUw.d

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–16

d
optionally specifies the power of 10 by which to divide the value
Range: 0–10

Details
Packed decimal data contain two digits per byte. The last half of the last byte, which
indicates the sign for signed packed data, is always F for unsigned packed data.

Use S370FPDUw.d on other operating environments to read unsigned packed
decimal data from IBM mainframe files.

Comparisons
� The S370FPDUw.d informat is similar to the S370FPDw.d informat except that

the S370FPDUw.d informat rejects all sign digits except F.
� The S370FPDUw.d informat is equivalent to the COBOL notation PIC 9(n)

PACKED-DECIMAL, where the n value is the number of digits.

720 S370FPIBw.d 4 Chapter 5

Examples

input @1 x s370fpdu3.;

Data Lines* Results

----+----1

12345F 12345

* The data line is a hexadecimal representation of a binary number that is stored in packed
decimal form. Each two hexadecimal digits correspond to one byte of binary data, and each
byte corresponds to one column of the input field.

S370FPIBw.d

Reads positive integer binary (fixed-point) values in IBM mainframe format

Category: Numeric

Syntax
S370FPIBw.d

Syntax Description

w
specifies the width of the input field.

Default: 4

Range: 1–8

d
optionally specifies the power of 10 by which to divide the value.

Range: 0–10

Details
Positive integer binary values are the same as integer binary values, except that all
values are treated as positive. S370FPIBw.d reads integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Use S370FPIBw.d for positive integer binary data that are created in IBM
mainframe format for reading in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering on Big Endian and Little Endian Platforms” on page 634.
4

Informats 4 S370FRBw.d 721

Comparisons
� If you use SAS on an IBM mainframe, S370FPIBw.d and PIBw.d are identical.
� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian

integers in any operating environment.
To view a table that shows the type of informat to use with big endian and little

endian integers, see Table 5.1 on page 635.
To view a table that compares integer binary notation in several programming

languages, see Table 5.2 on page 636.

Examples

You can use the INPUT statement and specify the S370FPIB informat. However, this
example uses the informat with the INPUT function, where the binary input value is
described using a hex literal.

x=input(’0100’x,s370fpib2.);

SAS Statement Results

put x=; 256

See Also

Informats:
“S370FIBw.d” on page 715
“S370FIBUw.d” on page 716

S370FRBw.d

Reads real binary (floating-point) data in IBM mainframe format

Category: Numeric

Syntax
S370FRBw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 2–8

d
optionally specifies the power of 10 by which to divide the value.

722 S370FZDw.d 4 Chapter 5

Range: 0–10

Details
Real binary values are represented in two parts: a mantissa that gives the value, and
an exponent that gives the value’s magnitude.

Use S370FRBw.d to read real binary data from IBM mainframe files on other
operating environments.

Comparisons
� If you use SAS on an IBM mainframe, S370FRBw.d and RBw.d are identical.
� The following table shows the equivalent real binary notation for several

programming languages:

Real Binary Notation

Language 4 Bytes 8 Bytes

SAS S370FRB4. S370FRB8.

PL/I FLOAT BIN(21) FLOAT BIN(53)

FORTRAN REAL*4 REAL*8

COBOL COMP-1 COMP-2

assembler E D

C float double

See Also

Informat:

“RBw.d” on page 706

S370FZDw.d

Reads zoned decimal data in IBM mainframe format

Category: Numeric

Syntax
S370FZDw.d

Syntax Description

w
specifies the width of the input field.
Default: 8

Informats 4 S370FZDLw.d 723

Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. If the data contain
decimal points, the d value is ignored.
Range: 0–10

Details
Zoned decimal data are similar to standard decimal data in that every digit requires
one byte. However, the value’s sign is stored in the last byte, along with the last digit.

Use S370FZDw.d on other operating environments to read zoned decimal data from
IBM mainframe files.

Comparisons
� If you use SAS on an IBM mainframe, S370FZDw.d and ZDw.d are identical.
� The following table shows the equivalent zoned decimal notation for several

programming languages:

Language Zoned Decimal Notation

SAS S370FZD3.

PL/I PICTURE’99T’

COBOL PIC S9(3) DISPLAY

assembler ZL3

Examples

input @1 x s370fzd3.;

Data Lines* Results

----+----1

F1F2C3 123

F1F2D3 -123

* The data line contains a hexadecimal representation of a binary number stored in zoned decimal
format on an IBM mainframe operating environment. Each two hexadecimal digits correspond
to one byte of binary data, and each byte corresponds to one column of the input field.

See Also

Informat:
“ZDw.d ”on page 738

S370FZDLw.d

Reads zoned decimal leading-sign data in IBM mainframe format

724 S370FZDSw.d 4 Chapter 5

Category: Numeric

Syntax
S370FZDLw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
Use S370FZDLw.d on other operating environments to read zoned decimal data from
IBM mainframe files.

Comparisons
� Zoned decimal leading-sign data is similar to standard zoned decimal data except

that the sign of the value is stored in the first byte of zoned decimal leading-sign
data, along with the first digit.

� The S370FZDLw.d informat is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN LEADING, where the n value is the number of digits.

Examples

input @1 x s370fzdl3.;

Data Lines* Results

----+----1

C1F2F3 123

D1F2F3 -123

* The data lines contain a hexadecimal representation of a binary number stored in zoned decimal
format on an IBM mainframe operating environment. Each two hexadecimal digits correspond
to one byte of binary data, and each byte corresponds to one column of the input field.

S370FZDSw.d
Reads zoned decimal separate leading-sign data in IBM mainframe format

Informats 4 S370FZDTw.d 725

Category: Numeric

Syntax
S370FZDSw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 2–32

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
Use S370FZDSw.d on other operating environments to read zoned decimal data from
IBM mainframe files.

Comparisons
� Zoned decimal separate leading-sign data is similar to standard zoned decimal

data except that the sign of the value is stored in the first byte of zoned decimal
leading sign data, and the first digit of the value is stored in the second byte.

� The S370FZDSw.d informat is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN LEADING SEPARATE, where the n value is the number of digits.

Examples

input @1 x s370fzds4.;

Data Lines* Results

----+----1

4EF1F2F3 123

60F1F2F3 -123

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe operating environment. Each two hexadecimal digits
correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

S370FZDTw.d
Reads zoned decimal separate trailing-sign data in IBM mainframe format

726 S370FZDUw.d 4 Chapter 5

Category: Numeric

Syntax
S370FZDTw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 2–32

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
Use S370FZDTw.d on other operating environments to read zoned decimal data from
IBM mainframe files.

Comparisons
� Zoned decimal separate trailing-sign data are similar to zoned decimal separate

leading-sign data except that the sign of the value is stored in the last byte of
zoned decimal separate trailing-sign data.

� The S370FZDTw.d informat is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN TRAILING SEPARATE, where the n value is the number of digits.

Examples

input @1 x s370fzdt4.;

Data Lines* Results

----+----1

F1F2F34E 123

F1F2F360 -123

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe operating environment. Each two hexadecimal digits
correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

S370FZDUw.d
Reads unsigned zoned decimal data in IBM mainframe format

Informats 4 TIMEw. 727

Category: Numeric

Syntax
S370FZDUw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–10

Details
Use S370FZDUw.d on other operating environments to read unsigned zoned decimal
data from IBM mainframe files.

Comparisons
� The S370FZDUw.d informat is similar to the S370FZDw.d informat except that

the S370FZDUw.d informat rejects all sign digits except F.
� The S370FZDUw.d informat is equivalent to the COBOL notation PIC 9(n)

DISPLAY, where the n value is the number of digits.

Examples

input @1 x s370fzdu3.;

Data Lines* Results

----+----1

F1F2F3 123

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe operating environment. Each two hexadecimal digits
correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

TIMEw.

Reads hours, minutes, and seconds in the form hh:mm:ss.ss

Category: Date and Time

728 TIMEw. 4 Chapter 5

Syntax
TIMEw.

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 5–32

Details
Time values must be in the form hh:mm:ss.ss, where

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

ss.ss
is the number of seconds ranging from 00 through 59 with the fraction of a second
following the decimal point.

Separate hh, mm, and ss.ss with a special character. If you do not enter a value for
seconds, SAS assumes a value of 0.

The stored value is the total number of seconds in the time value.

Examples

input begin time10.;

Data Lines Results

----+----1----+

11:23:07.4 40987.4

The TIME informat can read time values with AM or PM in the value.

input begin time8.;

Data Lines Results

----+----1----+

1:13 PM 47580.0

Informats 4 TODSTAMPw. 729

See Also

Formats:

“HHMMw.d” on page 121

“HOURw.d” on page 123

“MMSSw.d” on page 134

“TIMEw.d” on page 172

Functions:

“HOUR” on page 395

“MINUTE” on page 445

“SECOND” on page 542

“TIME” on page 563

TODSTAMPw.

Reads an eight-byte time-of-day stamp

Category: Date and Time

Syntax
TODSTAMPw.

Syntax Description

w
specifies the width of the input field.

Requirement: w must be 8 because the OS TIME macro or the STCK System/370
instruction on IBM mainframes each return an eight-byte value.

Details
The TODSTAMPw. informat reads time-of-day clock values that are produced by IBM
mainframe operating systems and converts the clock values to SAS datetime values.

If the time-of-day value is all 0s, TODSTAMPw. results in a missing value.
Use TODSTAMPw. on other operating environments to read time-of-day values that

are produced by an IBM mainframe.

Examples

input btime todstamp8.;

730 TUw. 4 Chapter 5

Data Lines* Results

----+----1----+----2

B361183D5FB80000 1262303998

* The data line is a hexadecimal representation of a binary, 8-byte time-of-day clock value. Each
byte occupies one column of the input field. The result is a SAS datetime value that corresponds
to December 31, 1999, 11:59:58 PM.

TUw.

Reads timer units

Category: Date and Time

Syntax
TUw.

Syntax Description

w
specifies the width of the input field.

Requirement: w must be 4 because the OS TIME macro returns a four-byte value.

Details
The TUw. informat reads timer unit values that are produced by an IBM mainframe
operating environment and OS/VS software and converts the timer unit values to SAS
time values.

There are exactly 38,400 software timer units per second. The low-order bit in a
timer unit value represents approximately 26.041667 microseconds.

Use the TUw. informat to read timer unit values that are produced by an IBM
mainframe on other operating environments.

Examples

input btime tu4.;

Data Lines* Results

----+----1----+

8FC7A9BC 62818.411563

* The data line is a hexadecimal representation of a binary, four-byte timer unit value. Each
byte occupies one column of the input field. The result is a SAS time value that corresponds to
5:26:58.41 p.m.

Informats 4 w.d 731

VAXRBw.d

Reads real binary (floating-point) data in VMS format

Category: Numeric

Syntax
VAXRBw.d

Syntax Description

w
specifies the width of the input field.

Default: 4

Range: 2–8

d
optionally specifies the power of 10 by which to divide the value.

Range: 0–10

Details
Use the VAXRBw.d informat to read floating-point data from VMS files on other
operating environments.

Comparisons
If you use SAS that is running under VMS, the VAXRBw.d and the RBw.d informats
are identical.

See Also

Informat:

“RBw.d” on page 706

w.d

Reads standard numeric data

Category: Numeric

Syntax
w.d

732 YENw.d 4 Chapter 5

Syntax Description

w
specifies the width of the input field.
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. If the data contain
decimal points, the d value is ignored.
Range: 0–31

Details
The w.d informat reads numeric values that are located anywhere in the field. Blanks
can precede or follow a numeric value with no effect. A minus sign with no separating
blank should immediately precede a negative value. The w.d informat reads values
with decimal points and values in scientific E-notation, and it interprets a single period
as a missing value.

Comparisons
� The w.d informat is identical to the BZw.d informat, except that the w.d informat

ignores trailing blanks in the numeric values. To read trailing blanks as 0s, use
the BZw.d informat.

� The w.d informat can read values in scientific E-notation exactly as the Ew.d
informat does.

Examples

input @1 x 6. @10 y 6.2;
put x @7 y;

Data Lines Results

----+----1----+----+

23 2300 23 23

23 2300 23 23

23 -2300 23 -23

23.0 23. 23 23

2.3E1 2.3 23 2.3

-23 0 -23 0

YENw.d

Removes embedded yen signs, commas, and decimal points

Informats 4 YYMMDDw. 733

Category: Numeric

Syntax
YENw.d

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.
Requirement: d must be 0 or 2
Tip: If the d is 2, then YENw.d reads a decimal point and two decimal digits. If d is

0, YENw.d reads the value without a decimal point.

Details
The hexadecimal representation of the code for the yen sign character is 5B on EBCDIC
systems and 5C on ASCII systems. The monetary character that these codes represent
may be different in other countries.

Examples

input value yen10.2;

Data Lines Results

----+----1----+

¥1254.71 1254.71

YYMMDDw.

Reads date values in the form yymmdd or yyyymmdd

Category: Date and Time

Syntax
YYMMDDw.

Syntax Description

734 YYMMDDw. 4 Chapter 5

w
specifies the width of the input field.
Default: 6
Range: 6–32

Details
The date values must be in the form yymmdd or yyyymmdd, where

yy oryyyy
is a two- or four-digit integer that represents the year.

mmm
is the first three letters of the month name.

dd
is an integer from 01 through 31 that represents the day of the month.

You can separate the year, month, and day values by blanks or by special characters.
However, if delimiters are used, place them between all the values. You can also place
blanks before and after the date. Make sure the width of the input field allows space for
blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

input calendar_date yymmdd10.;

Data Lines Results

----+----1----+

020316 15415

02/03/16 15415

Informats 4 YYMMNw. 735

Data Lines Results

02 03 16 15415

2002-03-16 15415

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“MMDDYYw.” on page 131
“YYMMDDw.” on page 188

Functions:
“DAY” on page 315
“MDY” on page 443
“MONTH” on page 451
“YEAR” on page 618

Informats:
“DATEw.” on page 666
“DDMMYYw.” on page 669
“MMDDYYw.” on page 687

System Option:
“YEARCUTOFF=” on page 1177

YYMMNw.

Reads date values in the form yyyymm or yymm

Category: Date and Time

Syntax
YYMMNw.

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 4–6

Details
The date values must be in the form yyyymm or yymm, where

736 YYQw. 4 Chapter 5

yy or yyyy
is a two- or four-digit integer that represents the year.

mm
is a two-digit integer that represents the month.

The N in the informat name must be used and indicates that you cannot separate the
year and month values by blanks or by special characters. SAS automatically adds a
day value of 01 to the value to make a valid SAS date variable.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

input date1 yymmn6.;

Data Lines Results

----+----1----+

200208 01AUG2002

See Also

Formats:
“DATEw.” on page 89
“DDMMYYw.” on page 94
“YYMMDDw.” on page 188
“YYMMxw.” on page 187
“YYMONw.” on page 192

Functions:
“DAY” on page 315
“MONTH” on page 451
“MDY” on page 443
“YEAR” on page 618

Informats:
“DATEw.” on page 666
“DDMMYYw.” on page 669
“MMDDYYw.” on page 687
“YYMMDDw.” on page 733

System Option:
“YEARCUTOFF=” on page 1177

YYQw.

Reads quarters of the year

Informats 4 YYQw. 737

Category: Date and Time

Syntax
YYQw.

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 4–32

Details
The quarter must be in the form yyQq or yyyyQq, where

yy or yyyy
is an integer that represents the two- or four-digit year.

q
is an integer (1, 2, 3, or 4) that represents the quarter of the year. You can also
represent the quarter as 01, 02, 03, or 04.

The letter Q must separate the year value and the quarter value. The year value, the
letter Q, and the quarter value cannot be separated by blanks. A value that is read
with YYQw. produces a SAS date value that corresponds to the first day of the specified
quarter.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. 4

Examples

input quarter yyq9.;

Data Lines Results

----+----1----+

02Q2 15431

738 ZDw.d 4 Chapter 5

Data Lines Results

02Q02 15431

2002Q02 15431

See Also

Functions:

“QTR” on page 509

“YEAR” on page 618

“YYQ” on page 621

System Option:

“YEARCUTOFF=” on page 1177

ZDw.d

Reads zoned decimal data

Category: Numeric

Syntax
ZDw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.

Range: 1–31

Details
The ZDw.d informat reads zoned decimal data in which every digit requires one byte
and in which the last byte contains the value’s sign along with the last digit.

Note: Different operating environments store zoned decimal values in different
ways. However, ZDw.d reads zoned decimal values with consistent results if the values
are created in the same type of operating environment that you use to run SAS. 4

You can enter positive values in zoned decimal format from a terminal. Some keying
devices enable you to enter negative values by overstriking the last digit with a minus
sign.

Informats 4 ZDBw.d 739

Comparisons
� Like the w.d informat, the ZDw.d informat reads data in which every digit

requires one byte. Use ZDVw.d or ZDw.d to read zoned decimal data in which the
last byte contains the last digit and the sign.

� The ZDw.d informat functions like the ZDVw.d informat with one exception:
ZDVw.d validates the input string and disallows invalid data.

� The following table compares the zoned decimal informat with notation in several
programming languages:

Language Zoned Decimal Notation

SAS ZD3.

PL/I PICTURE’99T’

COBOL DISPLAY PIC S 999

IBM 370 assembler ZL3

Examples

input @1 x zd4.;

Data Lines* Results

----+----1

F0F1F2C8 128

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe computer system. Each byte occupies one column of the
input field.

See Also

Informats:
“w.d” on page 731
“ZDVw.d” on page 740

ZDBw.d

Reads zoned decimal data in which zeros have been left blank

Category: Numeric

Syntax
ZDBw.d

Syntax Description

740 ZDVw.d 4 Chapter 5

w
specifies the width of the input field.
Default: 1
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.
Range: 0–31

Details
The ZDBw.d informat reads zoned decimal data that are produced in IBM 1410, 1401,
and 1620 form, where 0s are left blank rather than being punched.

Examples

input @1 x zdb3.;

Data Lines* Results

----+----1

F140C2 102

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal form, including the codes for spaces, on an IBM mainframe operating environment.
Each byte occupies one column of the input field.

ZDVw.d

Reads and validates zoned decimal data

Category: Numeric

Syntax
ZDVw.d

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.
Range: 1–31

Informats 4 ZDVw.d 741

Details
The ZDVw.d informat reads data in which every digit requires one byte and in which
the last byte contains the value’s sign along with the last digit. It also validates the
input string and disallows invalid data.

ZDVw.d is dependent on the operating environment. For example, on IBM
mainframes, ZDVw.d requires an F for all high-order nibbles except the last. (In
contrast, the ZDw.d informat ignores the high-order nibbles for all bytes except those
that are associated with the sign.) The last high-order nibble accepts values ranging
from A-F, where A, C, E, and F are positive values and B and D are negative values.
The low-order nibble on IBM mainframes must be a numeric digit that ranges from 0-9,
as with ZD.

Note: Different operating environments store zoned decimal values in different
ways. However, the ZDVw.d informat reads zoned decimal values with consistent
results if the values are created in the same type of operating environment that you use
to run SAS. 4

Comparisons
The ZDVw.d informat functions like the ZDw.d informat with one exception: ZDVw.d
validates the input string and disallows invalid data.

Examples

input @1 test zdv4.;

Data Lines* Results

----+----1

F0F1F2C8 128

* The data line contains a hexadecimal representation of a binary number stored in zoned decimal
form. The example was run on an IBM mainframe. The results may vary depending on your
operating environment.

See Also

Informats:
“w.d” on page 731
“ZDw.d ”on page 738

742 ZDVw.d 4 Chapter 5

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Language Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Language Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–369–5
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

