
27

C H A P T E R

5
Formats

Definition 27
Syntax 27

Using Formats 28

Ways to Specify Formats 28

PUT Statement 29

PUT Function 29
%SYSFUNC 29

FORMAT Statement 29

ATTRIB Statement 30

Permanent versus Temporary Association 30

User-Defined Formats 30

Byte Ordering on Big Endian and Little Endian Platforms 31
Definitions 31

How Bytes are Ordered Differently 31

Writing Data Generated on Big Endian or Little Endian Platforms 31

Integer Binary Notation and Different Programming Languages 32

Working with Packed Decimal and Zoned Decimal Data 33
Definitions 33

Types of Data 33

Packed Decimal Data 33

Zoned Decimal Data 33

Packed Julian Dates 34
Platforms Supporting Packed Decimal and Zoned Decimal Data 34

Languages Supporting Packed Decimal and Zoned Decimal Data 34

Summary of Packed Decimal and Zoned Decimal Formats and Informats 35

Formats by Category 36

Definition
A format is an instruction that SAS uses to write data values. You use formats to

control the written appearance of data values, or, in some cases, to group data values
together for analysis. For example, the WORDS22. format, which converts numeric
values to their equivalent in words, writes the numeric value 692 as six hundred
ninety-two.

Syntax
SAS formats have the following form:

28 Using Formats 4 Chapter 5

<$>format<w>.< d>

where

$
indicates a character format; its absence indicates a numeric format.

format
names the format. The format is a SAS format or a user-defined format that was
previously defined with the VALUE statement in PROC FORMAT. For more
information on user-defined formats, see the FORMAT procedure in the SAS
Procedures Guide.

w
specifies the format width, which for most formats is the number of columns in the
output data.

d
specifies an optional decimal scaling factor in the numeric formats.

Formats always contain a period (.) as a part of the name. If you omit the w and the d
values from the format, SAS uses default values. The d value that you specify with a
format tells SAS to display that many decimal places, regardless of how many decimal
places are in the data. Formats never change or truncate the internally stored data
values.

For example, in DOLLAR10.2, the w value of 10 specifies a maximum of 10 columns
for the value. The d value of 2 specifies that two of these columns are for the decimal
part of the value, which leaves eight columns for all the remaining characters in the
value. This includes the decimal point, the remaining numeric value, a minus sign if
the value is negative, the dollar sign, and commas, if any.

If the format width is too narrow to represent a value, SAS tries to squeeze the value
into the space available. Character formats truncate values on the right. Numeric
formats sometimes revert to the BESTw.d format. SAS prints asterisks if you do not
specify an adequate width. In the following example, the result is x=**.

x=123;
put x=2.;

If you use an incompatible format, such as using a numeric format to write character
values, SAS first attempts to use an analogous format of the other type. If this is not
feasible, an error message that describes the problem appears in the SAS log.

Using Formats

Ways to Specify Formats
You can use formats in the following ways:

� in a PUT statement

� with the PUT, PUTC, or PUTN functions

� with the %SYSFUNC macro function

� in a FORMAT statement in a DATA step or a PROC step

� in an ATTRIB statement in a DATA step or a PROC step.

Formats 4 Ways to Specify Formats 29

PUT Statement
The PUT statement with a format after the variable name uses a format to write

data values in a DATA step. For example, this PUT statement uses the DOLLAR.
format to write the numeric value for AMOUNT as a dollar amount:

amount=1145.32;
put amount dollar10.2;

The DOLLARw.d format in the PUT statement produces this result:

$1,145.32

For more information, see the PUT statement in SAS Language Reference: Dictionary.

PUT Function
The PUT function writes a numeric variable, a character variable, or a constant with

any valid format and returns the resulting character value. For example, the following
statement converts the values of a numeric variable into a two-character hexadecimal
representation:

num=15;
char=put(num,hex2.);

The PUT function creates a character variable named CHAR that has a value of 0F.
The PUT function is useful for converting a numeric value to a character value. For

more information, see the PUT function in SAS Language Reference: Dictionary.

%SYSFUNC
The %SYSFUNC (or %QSYSFUNC) macro function executes SAS functions or

user-defined functions and applies an optional format to the result of the function
outside a DATA step. For example, the following program writes a numeric value in a
macro variable as a dollar amount.

%macro tst(amount);
%put %sysfunc(putn(&amount,dollar10.2));

%mend tst;

%tst (1154.23);

For more information, see SAS Macro Language: Reference.

FORMAT Statement
The FORMAT statement permanently associates a format with a variable. SAS uses

the format to write the values of the variable that you specify. For example, the
following statement in a DATA step associates the COMMAw.d numeric format with
the variables SALES1 through SALES3:

format sales1-sales3 comma10.2;

Because the FORMAT statement permanently associates a format with a variable, any
subsequent DATA step or PROC step uses COMMA10.2 to write the values of SALES1,
SALES2, and SALES3. For more information, see the FORMAT statement in SAS
Language Reference: Dictionary.

Note: Formats that you specify in a PUT statement behave differently from those
that you associate with a variable in a FORMAT statement. The major difference is
that formats that are specified in the PUT statement will preserve leading blanks. If

30 Permanent versus Temporary Association 4 Chapter 5

you assign formats with a FORMAT statement prior to a PUT statement, all leading
blanks are trimmed. The result is the same as if you used the colon (:) format modifier.
For details about using the colon (:) format modifier, see the PUT, List statement in
SAS Language Reference: Dictionary. 4

ATTRIB Statement
The ATTRIB statement can also associate a format, as well as other attributes, with

one or more variables. For example, in the following statement the ATTRIB statement
permanently associates the COMMAw.d format with the variables SALES1 through
SALES3:

attrib sales1-sales3 format=comma10.2;

Because the ATTRIB statement permanently associates a format with a variable, any
subsequent DATA step or PROC step uses COMMA10.2 to write the values of SALES1,
SALES2, and SALES3. For more information, see the ATTRIB statement in SAS
Language Reference: Dictionary.

Permanent versus Temporary Association
When you specify a format in a PUT statement, SAS uses the format to write data

values during the DATA step but does not permanently associate the format with a
variable. To permanently associate a format with a variable, use a FORMAT statement
or an ATTRIB statement in a DATA step. SAS permanently associates a format with
the variable by modifying the descriptor information in the SAS data set.

Using a FORMAT statement or an ATTRIB statement in a PROC step associates a
format with a variable for that PROC step, as well as for any output data sets that the
procedure creates that contain formatted variables. For more information on using
formats in SAS procedures, see the SAS Procedures Guide.

User-Defined Formats
In addition to the formats that are supplied with base SAS software, you can create

your own formats. In base SAS software, PROC FORMAT allows you to create your
own formats for both character and numeric variables. For more information, see the
FORMAT procedure in the SAS Procedures Guide.

When you execute a SAS program that uses user-defined formats, these formats
should be available. The two ways to make these formats available are

� to create permanent, not temporary, formats with PROC FORMAT
� to store the source code that creates the formats (the PROC FORMAT step) with

the SAS program that uses them.

To create permanent SAS formats, see the FORMAT procedure in the SAS Procedures
Guide.

If you execute a program that cannot locate a user-defined format, the result depends
on the setting of the FMTERR system option. If the user-defined format is not found,
then these system options produce these results:

Formats 4 Writing Data Generated on Big Endian or Little Endian Platforms 31

System Options Results

FMTERR SAS produces an error that causes the current DATA or
PROC step to stop.

NOFMTERR SAS continues processing and substitutes a default format,
usually the BESTw. or $w. format.

Although using NOFMTERR enables SAS to process a variable, you lose the
information that the user-defined format supplies.

To avoid problems, make sure that your program has access to all user-defined
formats that are used.

Byte Ordering on Big Endian and Little Endian Platforms

Definitions

Integer values are typically stored in one of three sizes: one-byte, two-byte, or
four-byte. The ordering of the bytes for the integer varies depending on the platform
(operating environment) on which the integers were produced.

The ordering of bytes differs between the “big endian” and “little endian” platforms.
These colloquial terms are used to describe byte ordering for IBM mainframes (big
endian) and for Intel-based platforms (little endian). In the SAS System, the following
platforms are considered big endian: AIX, HP-UX, IBM mainframe, Macintosh, and
Solaris. The following platforms are considered little endian: AXP/VMS, Digital UNIX,
Intel ABI, OS/2, VAX/VMS, and Windows.

How Bytes are Ordered Differently

On big endian platforms, the value 1 is stored in binary and is represented here in
hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00
00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same
as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the “two’s complement” representation is used. The
high-order bit of the most significant byte of the integer will be set on. For example, –2
would be represented in one, two, and four bytes on big endian platforms as FE, FF FE,
and FF FF FF FE respectively. On little endian platforms, the representation would be
FE, FE FF, and FE FF FF FF.

Writing Data Generated on Big Endian or Little Endian Platforms

SAS can read signed and unsigned integers regardless of whether they were
generated on a big endian or a little endian system. Likewise, SAS can write signed
and unsigned integers in both big endian and little endian format. The length of these
integers can be up to eight bytes.

The following table shows which format to use for various combinations of platforms.
In the Sign? column, “no” indicates that the number is unsigned and cannot be
negative. “Yes” indicates that the number can be either negative or positive.

32 Integer Binary Notation and Different Programming Languages 4 Chapter 5

Table 5.1 SAS Formats and Byte Ordering

Data created
for ...

Data written
by ...

Sign? Format

big endian big endian yes IB or S370FIB

big endian big endian no PIB, S370FPIB,
S370FIBU

big endian little endian yes S370FIB

big endian little endian no S370FPIB

little endian big endian yes IBR

little endian big endian no PIBR

little endian little endian yes IB or IBR

little endian little endian no PIB or PIBR

big endian either yes S370FIB

big endian either no S370FPIB

little endian either yes IBR

little endian either no PIBR

Integer Binary Notation and Different Programming Languages
The following table compares integer binary notation according to programming

language.

Table 5.2 Integer Binary Notation and Programming Languages

Language 2 Bytes 4 Bytes

SAS IB2., IBR2., PIB2., PIBR2.,
S370FIB2., S370FIBU2.,
S370FPIB2.

IB4., IBR4., PIB4., PIBR4.,
S370FIB4., S370FIBU4.,
S370FPIB4.

PL/I FIXED BIN(15) FIXED BIN(31)

FORTRAN INTEGER*2 INTEGER*4

COBOL COMP PIC 9(4) COMP PIC 9(8)

IBM assembler H F

C short long

Formats 4 Types of Data 33

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal specifies a method of encoding decimal numbers by using each byte
to represent two decimal digits. Packed decimal representation
stores decimal data with exact precision. The fractional part of the
number is determined by the informat or format because there is no
separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision
can be maintained. However, computations involving decimal data
may become inexact due to the lack of native instructions.

Zoned decimal specifies a method of encoding decimal numbers in which each digit
requires one byte of storage. The last byte contains the number’s
sign as well as the last digit. Zoned decimal data produces a
printable representation.

Nibble specifies 1/2 of a byte.

Types of Data

Packed Decimal Data
A packed decimal representation stores decimal digits in each “nibble” of a byte.

Each byte has two nibbles, and each nibble is indicated by a hexadecimal digit. For
example, the value 15 is stored in two nibbles, using the hexadecimal digits 1 and 5.

The sign indication is dependent on your operating environment. On IBM
mainframes, the sign is indicated by the last nibble. With formats, C indicates a
positive value, and D indicates a negative value. With informats, A, C, E, and F
indicate positive values, and B and D indicate negative values. Any other nibble is
invalid for signed packed decimal data. In all other operating environments, the sign is
indicated in its own byte. If the high-order bit is 1, then the number is negative.
Otherwise, it is positive.

The following applies to packed decimal data representation:
� You can use the S370FPD format on all platforms to obtain the IBM mainframe

configuration.
� You can have unsigned packed data with no sign indicator. The packed decimal

format and informat handles the representation. It is consistent between ASCII
and EBCDIC platforms.

� Note that the S370FPDU format and informat expects to have an F in the last
nibble, while packed decimal expects no sign nibble.

Zoned Decimal Data
The following applies to zoned decimal data representation:
� A zoned decimal representation stores a decimal digit in the low order nibble of

each byte. For all but the byte containing the sign, the high-order nibble is the
numeric zone nibble (F on EBCDIC and 3 on ASCII).

34 Platforms Supporting Packed Decimal and Zoned Decimal Data 4 Chapter 5

� The sign can be merged into a byte with a digit, or it can be separate, depending
on the representation. But the standard zoned decimal format and informat
expects the sign to be merged into the last byte.

� The EBCDIC and ASCII zoned decimal formats produce the same printable
representation of numbers. There are two nibbles per byte, each indicated by a
hexadecimal digit. For example, the value 15 is stored in two bytes. The first byte
contains the hexadecimal value F1 and the second byte contains the hexadecimal
value C5.

Packed Julian Dates
The following applies to packed Julian dates:
� The two formats and informats that handle Julian dates in packed decimal

representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year
computation, while PDJULG uses the Gregorian computation.

� The IBM mainframe computation considers 1900 to be the base year, and the year
values in the data indicate the offset from 1900. For example, 98 means 1998, 100
means 2000, and 102 means 2002. 1998 would mean 3898.

� The Gregorian computation allows for 2-digit or 4-digit years. If you use 2-digit
years, SAS uses the setting of the YEARCUTOFF value to determine the true year.

Platforms Supporting Packed Decimal and Zoned Decimal Data
Some platforms have native instructions to support packed and zoned decimal data,

while others must use software to emulate the computations. For example, the IBM
mainframe has an Add Pack instruction to add packed decimal data, but the
Intel-based platforms have no such instruction and must convert the decimal data into
some other format.

Languages Supporting Packed Decimal and Zoned Decimal Data
Several different languages support packed decimal and zoned decimal data. The

following table shows how COBOL picture clauses correspond to SAS formats and
informats.

IBM VS COBOL II clauses Corresponding S370Fxxx
formats/informats

PIC S9(X) PACKED-DECIMAL S370FPDw.

PIC 9(X) PACKED-DECIMAL S370FPDUw.

PIC S9(W) DISPLAY S370FZDw.

PIC 9(W) DISPLAY S370FZDUw.

PIC S9(W) DISPLAY SIGN LEADING S370FZDLw.

PIC S9(W) DISPLAY SIGN LEADING SEPARATE S370FZDSw.

PIC S9(W) DISPLAY SIGN TRAILING SEPARATE S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits
represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is
ceil((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil (x/2). For example,

Formats 4 Summary of Packed Decimal and Zoned Decimal Formats and Informats 35

PIC S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles
are needed. ceil((5+1)/2) has a length of three bytes, and the value of W is 3.

Note that you can substitute COMP-3 for PACKED-DECIMAL.
In IBM assembly language, the P directive indicates packed decimal, and the Z

directive indicates zoned decimal. The following shows an excerpt from an assembly
language listing, showing the offset, the value, and the DC statement:

offset value (in hex) inst label directive

+000000 00001C 2 PEX1 DC PL3’1’
+000003 00001D 3 PEX2 DC PL3’-1’
+000006 F0F0C1 4 ZEX1 DC ZL3’1’
+000009 F0F0D1 5 ZEX2 DC ZL3’1’

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal
data. You must use the PICTURE specification to represent zoned decimal data. There
is no standardized representation of decimal data for the FORTRAN or the C languages.

Summary of Packed Decimal and Zoned Decimal Formats and
Informats

SAS uses a group of formats and informats to handle packed and zoned decimal data.
The following table lists the type of data representation for these formats and
informats. Note that the formats and informats that begin with S370 refer to IBM
mainframe representation.

Format Type of data
representation

Corresponding
informat

Comments

PD Packed decimal PD Local signed packed decimal

PK Packed decimal PK Unsigned packed decimal; not
specific to your operating
environment

ZD Zoned decimal ZD Local zoned decimal

none Zoned decimal ZDB Translates EBCDIC blank
(hex 40) to EBCDIC zero (hex
F0), then corresponds to the
informat as zoned decimal

none Zoned decimal ZDV Non-IBM zoned decimal
representation

S370FPD Packed decimal S370FPD Last nibble C (positive) or D
(negative)

S370FPDU Packed decimal S370FPDU Last nibble always F
(positive)

S370FZD Zoned decimal S370FZD Last byte contains sign in
upper nibble: C (positive) or
D (negative)

S370FZDU Zoned decimal S370FZDU Unsigned; sign nibble always
F

36 Formats by Category 4 Chapter 5

Format Type of data
representation

Corresponding
informat

Comments

S370FZDL Zoned decimal S370FZDL Sign nibble in first byte in
informat; separate leading
sign byte of hex C0 (positive)
or D0 (negative) in format

S370FZDS Zoned decimal S370FZDS Leading sign of - (hex 60) or +
(hex 4E)

S370FZDT Zoned decimal S370FZDT Trailing sign of - (hex 60) or +
(hex 4E)

PDJULI Packed decimal PDJULI Julian date in packed
representation - IBM
computation

PDJULG Packed decimal PDJULG Julian date in packed
representation - Gregorian
computation

none Packed decimal RMFDUR Input layout is: mmsstttF

none Packed decimal SHRSTAMP Input layout is:
yyyydddFhhmmssth, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal SMFSTAMP Input layout is:
xxxxxxxxyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal PDTIME Input layout is: 0hhmmssF

none Packed decimal RMFSTAMP Input layout is:
0hhmmssFyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

Formats by Category
There are four categories of formats in SAS:

Category Description

CHARACTER instructs SAS to write character data values from character variables.

DATE and TIME instructs SAS to write data values from variables that represent dates,
times, and datetimes.

DBCS instructs SAS to handle various Asian languages

Formats 4 Formats by Category 37

Category Description

NUMERIC instructs SAS to write numeric data values from numeric variables.

USER-DEFINED instructs SAS to write data values by using a format that is created with
PROC FORMAT.

Storing user-defined formats is an important consideration if you associate these
formats with variables in permanent SAS data sets, especially those shared with other
users. For information on creating and storing user-defined formats, see the FORMAT
procedure in the SAS Procedures Guide.

The following table provides brief descriptions of the SAS formats. For more detailed
descriptions, see the “Formats” chapter of SAS Language Reference: Dictionary.

Table 5.3 Categories and Descriptions of Formats

Category Format Description

Character $ASCIIw. Converts native format character data to ASCII
representation

$BINARYw. Converts character data to binary representation

$CHARw. Writes standard character data

$EBCDICw. Converts native format character data to EBCDIC
representation

$HEXw. Converts character data to hexadecimal representation

$MSGCASEw. Writes character data in uppercase when the MSGCASE
system option is in effect

$OCTALw. Converts character data to octal representation

$QUOTEw. Writes data values that are enclosed in double quotation
marks

$REVERJw. Writes character data in reverse order and preserves
blanks

$REVERSw. Writes character data in reverse order and left aligns

$UPCASEw. Converts character data to uppercase

$VARYINGw. Writes character data of varying length

$w. Writes standard character data

DBCS $KANJIw. Adds shift-code data to DBCS data

$KANJIXw. Removes shift code data from DBCS data

Date and Time DATEw. Writes date values in the form ddmmmyy or ddmmmyyyy

DATEAMPMw.d Writes datetime values in the form
ddmmmyy:hh:mm:ss.ss with AM or PM

DATETIMEw.d Writes datetime values in the form
ddmmmyy:hh:mm:ss.ss

DAYw. Writes date values as the day of the month

DDMMYYw. Writes date values in the form ddmmyy or ddmmyyyy

38 Formats by Category 4 Chapter 5

Category Format Description

DDMMYYxw. Writes date values in the form ddmmyy or ddmmyyyy
with a specified separator

DOWNAMEw. Writes date values as the name of the day of the week

EURDFDDw. Writes international date values in the form dd.mm.yy or
dd.mm.yyyy

EURDFDEw. Writes international date values in the form ddmmmyy
or ddmmmyyyy

EURDFDNw. Writes international date values as the day of the week

EURDFDTw.d Writes international datetime values in the form
ddmmmyy:hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

EURDFDWNw. Writes international date values as the name of the day

EURDFMNw. Writes international date values as the name of the
month

EURDFMYw. Writes international date values in the form mmmyy or
mmmyyyy

EURDFWDXw. Writes international date values as the name of the
month, the day, and the year in the form dd month-name
yy (or yyyy)

EURDFWKXw. Writes international date values as the name of the day
and date in the form day-of-week, dd month-name yy (or
yyyy)

HHMMw.d Writes time values as hours and minutes in the form
hh:mm

HOURw.d Writes time values as hours and decimal fractions of
hours

JULDAYw. Writes date values as the Julian day of the year

JULIANw. Writes date values as Julian dates in the form yyddd or
yyyyddd

MINGUOw. Writes date values as Taiwanese dates in the form
yyymmdd

MMDDYYw. Writes date values in the form mmddyy or mmddyyyy

MMDDYYxw. Writes date values in the form mmddyy or mmddyyyy
with a specified separator

MMSSw.d Writes time values as the number of minutes and
seconds since midnight

MMYYxw. Writes date values as the month and the year and
separates them with a character

MONNAMEw. Writes date values as the name of the month

MONTHw. Writes date values as the month of the year

MONYYw Writes date values as the month and the year in the
form mmmyy or mmmyyyy

NENGOw. Writes date values as Japanese dates in the form
e.yymmdd

Formats 4 Formats by Category 39

Category Format Description

PDJULGw. Writes packed Julian date values in the hexadecimal
format yyyydddF for IBM

PDJULIw. Writes packed Julian date values in the hexadecimal
format ccyydddF for IBM

QTRw. Writes date values as the quarter of the year

QTRRw. Writes date values as the quarter of the year in Roman
numerals

TIMEw. Writes time values as hours, minutes, and seconds in the
form hh:mm:ss.ss

TIMEAMPMw.d Writes time values as hours, minutes, and seconds in the
form hh:mm:ss.ss with AM or PM

TODw.d Writes the time portion of datetime values in the form
hh:mm:ss.ss

WEEKDATEw. Writes date values as the day of the week and the date
in the form day-of-week, month-name dd, yy (or yyyy)

WEEKDATXw. Writes date values as day of week and date in the form
day-of-week, dd month-name yy (or yyyy)

WEEKDAYw. Writes date values as the day of the week

WORDDATEw. Writes date values as the name of the month, the day,
and the year in the form month-name dd, yyyy

WORDDATXw. Writes date values as the day, the name of the month,
and the year in the form dd month-name yyyy

YEARw. Writes date values as the year

YYMMxw. Writes date values as the year and month and separates
them with a character

YYMMDDw. Writes date values in the form yymmdd or yyyymmdd

YYMMDDxw. Writes date values in the form yymmdd or yyyymmdd
with a specified separator

YYMONw. Writes date values as the year and the month
abbreviation

YYQxw. Writes date values as the year and the quarter and
separates them with a character

YYQRxw. Writes date values as the year and the quarter in Roman
numerals and separates them with characters

Numeric BESTw. SAS chooses the best notation

BINARYw. Converts numeric values to binary representation

COMMAw.d Writes numeric values with commas and decimal points

COMMAXw.d Writes numeric values with periods and commas

Dw.s Prints variables, possibly with a great range of values,
lining up decimal places for values of similar magnitude

DOLLARw.d Writes numeric values with dollar signs, commas, and
decimal points

40 Formats by Category 4 Chapter 5

Category Format Description

DOLLARXw.d Writes numeric values with dollar signs, periods, and
commas

Ew. Writes numeric values in scientific notation

FLOATw.d Generates a native single-precision, floating-point value
by multiplying a number by 10 raised to the dth power

FRACTw. Converts numeric values to fractions

HEXw. Converts real binary (floating-point) values to
hexadecimal representation

IBw.d Writes native integer binary (fixed-point) values,
including negative values

IBRw.d Writes integer binary (fixed-point) values in Intel and
DEC formats

IEEEw.d Generates an IEEE floating-point value by multiplying a
number by 10 raised to the dth power

NEGPARENw.d Writes negative numeric values in parentheses

NUMXw.d Writes numeric values with a comma in place of the
decimal point

OCTALw. Converts numeric values to octal representation

PDw. Writes data in packed decimal format

PERCENTw.d Writes numeric values as percentages

PIBw.d Writes positive integer binary (fixed-point) values

PIBRw.d Writes positive integer binary (fixed-point) values in
Intel and DEC formats

PKw.d Writes data in unsigned packed decimal format

PVALUEw.d Writes p-values

RBw.d Writes real binary data (floating-point) in real binary
format

ROMANw. Writes numeric values as Roman numerals

SSNw. Writes Social Security numbers

S370FFw.d Writes native standard numeric data in IBM mainframe
format

S370FIBw.d Writes integer binary (fixed-point) values, including
negative values, in IBM mainframe format

S370FIBUw.d Writes unsigned integer binary (fixed-point) values in
IBM mainframe format

S370FPDw. Writes packed decimal data in IBM mainframe format

S370FPDUw. Writes unsigned packed decimal data in IBM mainframe
format

S370FPIBw.d Writes positive integer binary (fixed-point) values in IBM
mainframe format

Formats 4 Formats by Category 41

Category Format Description

S370FRBw.d Writes real binary (floating-point) data in IBM
mainframe format

S370FZDw.d Writes zoned decimal data in IBM mainframe format

S370FZDLw.d Writes zoned decimal leading sign data in IBM
mainframe format

S370FZDSw.d Writes zoned decimal separate leading-sign data in IBM
mainframe format

S370FZDTw.d Writes zoned decimal separate trailing-sign data in IBM
mainframe format

S370FZDUw.d Writes unsigned zoned decimal data in IBM mainframe
format

w.d Writes standard numeric data one digit per byte

WORDFw. Writes numeric values as words with fractions that are
shown numerically

WORDSw. Writes numeric values as words

YENw.d Writes numeric values with yen signs, commas, and
decimal points

Zw.d Writes standard numeric data with leading 0s

ZDw.d Writes numeric data in zoned decimal format

42 Formats by Category 4 Chapter 5

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

