
65

C H A P T E R

7
Informats

Definition 65
Syntax 66

Using Informats 66

Ways to Specify Informats 66

INPUT Statement 67

INPUT Function 67
INFORMAT Statement 67

ATTRIB Statement 68

Permanent versus Temporary Association 68

User-Defined Informats 68

Byte Ordering on Big Endian and Little Endian Platforms 69

Definitions 69
How the Bytes are Ordered 69

Reading Data Generated on Big Endian or Little Endian Platforms 69

Integer Binary Notation in Different Programming Languages 70

Working with Packed Decimal and Zoned Decimal Data 71

Definitions 71
Types of Data 71

Packed Decimal Data 71

Zoned Decimal Data 71

Packed Julian Dates 72

Platforms Supporting Packed Decimal and Zoned Decimal Data 72
Languages Supporting Packed Decimal and Zoned Decimal Data 72

Summary of Packed Decimal and Zoned Decimal Formats and Informats 73

Informat Aliases 74

Informats by Category 75

Definition
An informat is an instruction that SAS uses to read data values into a variable. For

example, the following value contains a dollar sign and commas:

$1,000,000

To remove the dollar sign ($) and commas (,) before storing the numeric value 1000000
in a variable, read this value with the COMMA11. informat.

Unless you explicitly define a variable first, SAS uses the informat to determine
whether the variable is numeric or character. SAS also uses the informat to determine
the length of character variables.

66 Syntax 4 Chapter 7

Syntax
SAS informats have the following form:

<$>informat<w>.<d>

where

$
indicates a character informat; its absence indicates a numeric informat.

informat
names the informat. The informat is a SAS informat or a user-defined informat
that was previously defined with the INVALUE statement in PROC FORMAT. For
more information on user-defined informats, see the FORMAT procedure in the
SAS Procedures Guide.

w
specifies the informat width, which for most informats is the number of columns in
the input data.

d
specifies an optional decimal scaling factor in the numeric informats. SAS divides
the input data by 10 to the power of d.

Note: Even though SAS can read up to 31 decimal places when you specify some
numeric informats, floating-point numbers with more than 12 decimal places might lose
precision due to the limitations of the eight-byte floating point representation used by
most computers. 4

Informats always contain a period (.) as a part of the name. If you omit the w and
the d values from the informat, SAS uses default values. If the data contains decimal
points, SAS ignores the d value and reads the number of decimal places that are
actually in the input data.

If the informat width is too narrow to read all the columns in the input data, you
may get unexpected results. The problem frequently occurs with the date and time
informats. You must adjust the width of the informat to include blanks or special
characters between the day, month, year, or time. For more information about date and
time values, see the discussion on SAS date and time values in Chapter 13, “Dates,
Times, and Intervals,” on page 147 .

When a problem occurs with an informat, SAS writes a note to the SAS log and
assigns a missing value to the variable. Problems occur if you use an incompatible
informat, such as a numeric informat to read character data, or if you specify the width
of a date and time informat that causes SAS to read a special character in the last
column.

Using Informats

Ways to Specify Informats
You can specify informats in the following ways:
� in an INPUT statement
� with the INPUT, INPUTC, and INPUTN functions
� in an INFORMAT statement in a DATA or a PROC step

Informats 4 Ways to Specify Informats 67

� in an ATTRIB statement in a DATA or a PROC step.

INPUT Statement
The INPUT statement with an informat after a variable name is the simplest way to

read values into a variable. For example, the following INPUT statement uses two
informats:

input @15 style $3. @21 price 5.2;

The $w. character informat reads values into the variable STYLE. The w.d numeric
informat reads values into the variable PRICE.

For a complete discussion of the INPUT statement, see SAS Language Reference:
Dictionary.

INPUT Function
The INPUT function reads a SAS character expression using a specified informat.

The informat determines whether the resulting value is numeric or character. Thus, the
INPUT function is useful for converting data. For example,

TempCharacter=’98.6’;
TemperatureNumber=input(TempCharacter,4.);

Here, the INPUT function in combination with the w.d informat reads the character
value of TempCharacter as a numeric value and assigns the numeric value 98.6 to
TemperatureNumber.

Use the PUT function with a SAS format to convert numeric values to character
values. For an example of a numeric-to-character conversion, see the PUT function in
SAS Language Reference: Dictionary. For a complete discussion of the INPUT function,
see the INPUT function in SAS Language Reference: Dictionary.

INFORMAT Statement
The INFORMAT statement associates an informat with a variable. SAS uses the

informat in any subsequent INPUT statement to read values into the variable. For
example, in the following statements the INFORMAT statement associates the DATEw.
informat with the variables Birthdate and Interview:

informat Birthdate Interview date9.;
input @63 Birthdate Interview;

An informat that is associated with an INFORMAT statement behaves like an
informat that you specify with a colon (:) format modifier in an INPUT statement. (For
details about using the colon (:) modifier, see the INPUT, List statement in SAS
Language Reference: Dictionary.) Therefore, SAS uses a modified list input to read the
variable so that

� the w value in an informat does not determine column positions or input field
widths in an external file

� the blanks that are embedded in input data are treated as delimiters unless you
change the DELIMITER= option in an INFILE statement

� for character informats, the w value in an informat specifies the length of
character variables

� for numeric informats, the w value is ignored
� for numeric informats, the d value in an informat behaves in the usual way for

numeric informats

68 Permanent versus Temporary Association 4 Chapter 7

If you have coded the INPUT statement to use another style of input, such as
formatted input or column input, that style of input is not used when you use the
INFORMAT statement.

For more information on how to use modified list input to read data, see the INPUT,
List statement in SAS Language Reference: Dictionary.

ATTRIB Statement
The ATTRIB statement can also associate an informat, as well as other attributes,

with one or more variables. For example, in the following statements, the ATTRIB
statement associates the DATEw. informat with the variables Birthdate and Interview:

attrib Birthdate Interview informat=date9.;
input @63 Birthdate Interview;

An informat that is associated by using the INFORMAT= option in the ATTRIB
statement behaves like an informat that you specify with a colon (:) format modifier in
an INPUT statement. (For details about using the colon (:) modifier, see the INPUT,
List statement in SAS Language Reference: Dictionary.) Therefore, SAS uses a modified
list input to read the variable in the same way as it does for the INFORMAT statement.

For more information, see the ATTRIB statement in SAS Language Reference:
Dictionary.

Permanent versus Temporary Association
When you specify an informat in an INPUT statement, SAS uses the informat to read

input data values during that DATA step. SAS, however, does not permanently associate
the informat with the variable. To permanently associate a format with a variable, use
an INFORMAT statement or an ATTRIB statement. SAS permanently associates an
informat with the variable by modifying the descriptor information in the SAS data set.

User-Defined Informats
In addition to the informats that are supplied with base SAS software, you can create

your own informats. In base SAS software, PROC FORMAT allows you to create your
own informats and formats for both character and numeric variables. For more
information on user-defined informats, see the FORMAT procedure in the SAS
Procedures Guide.

When you execute a SAS program that uses user-defined informats, these informats
should be available. The two ways to make these informats available are

� to create permanent, not temporary, informats with PROC FORMAT
� to store the source code that creates the informats (the PROC FORMAT step) with

the SAS program that uses them.

If you execute a program that cannot locate a user-defined informat, the result
depends on the setting of the FMTERR= system option. If the user-defined informat is
not found, then these system options produce these results:

Informats 4 Reading Data Generated on Big Endian or Little Endian Platforms 69

System Options Results

FMTERR SAS produces an error that causes the current DATA or
PROC step to stop.

NOFMTERR SAS continues processing by substituting a default informat.

Although using NOFMTERR enables SAS to process a variable, you lose the
information that the user-defined informat supplies. This option can cause a DATA step
to misread data, and it can produce incorrect results.

To avoid problems, make sure that users of your program have access to all the
user-defined informats that are used.

Byte Ordering on Big Endian and Little Endian Platforms

Definitions

Integer values are typically stored in one of three sizes: one-byte, two-byte, or
four-byte. The ordering of the bytes for the integer varies depending on the platform
(operating environment) on which the integers were produced.

The ordering of bytes differs between the “big endian” and the “little endian”
platforms. These colloquial terms are used to describe byte ordering for IBM
mainframes (big endian) and for Intel-based platforms (little endian). In the SAS
System, the following platforms are considered big endian: IBM mainframe, HP-UX,
AIX, Solaris, and Macintosh. The following platforms are considered little endian: VAX/
VMS, AXP/VMS, Digital UNIX, Intel ABI, OS/2, and Windows.

How the Bytes are Ordered

On big endian platforms, the value 1 is stored in binary and is represented here in
hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00
00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same
as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the “two’s complement” representation is used. The
high-order bit of the most significant byte of the integer will be set on. For example, –2
would be represented in one, two, and four bytes on big endian platforms as FE, FF FE,
and FF FF FF FE respectively. On little endian platforms, the representation would be
FE, FE FF, and FE FF FF FF.

Reading Data Generated on Big Endian or Little Endian Platforms

SAS can read signed and unsigned integers regardless of whether they were
generated on a big endian or a little endian system. Likewise, SAS can write signed
and unsigned integers in both big endian and little endian format. The length of these
integers can be up to eight bytes.

The following table shows which informat to use for various combinations of
platforms. In the Sign? column, “no” indicates that the number is unsigned and cannot
be negative. “Yes” indicates that the number can be either negative or positive.

70 Integer Binary Notation in Different Programming Languages 4 Chapter 7

Table 7.1 SAS Informats and Byte Ordering

Data created for … Data read
on …

Sign? Informat

big endian big endian yes IB or S370FIB

big endian big endian no PIB, S370FPIB,
S370FIBU

big endian little endian yes IBR

big endian little endian no PIBR

little endian big endian yes IBR

little endian big endian no PIBR

little endian little endian yes IB or IBR

little endian little endian no PIB or PIBR

big endian either yes S370FIB

big endian either no S370FPIB

little endian either yes IBR

little endian either no PIBR

Integer Binary Notation in Different Programming Languages
The following table compares integer binary notation according to programming

language.

Table 7.2 Integer Binary Notation and Programming Languages

Language 2 Bytes 4 Bytes

SAS IB2., IBR2., PIB2.,PIBR2.,
S370FIB2., S370FIBU2.,
S370FPIB2.

IB4., IBR4., PIB4., PIBR4.,
S370FIB4., S370FIBU4.,
S370FPIB4.

PL/I FIXED BIN(15) FIXED BIN(31)

FORTRAN INTEGER*2 INTEGER*4

COBOL COMP PIC 9(4) COMP PIC 9(8)

IBM assembler H F

C short long

Informats 4 Types of Data 71

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal specifies a method of encoding decimal numbers by using each byte
to represent two decimal digits. Packed decimal representation
stores decimal data with exact precision. The fractional part of the
number is determined by the informat or format because there is no
separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision
can be maintained. However, computations involving decimal data
may become inexact due to the lack of native instructions.

Zoned decimal specifies a method of encoding decimal numbers in which each digit
requires one byte of storage. The last byte contains the number’s
sign as well as the last digit. Zoned decimal data produces a
printable representation.

Nibble specifies 1/2 of a byte.

Types of Data

Packed Decimal Data
A packed decimal representation stores decimal digits in each “nibble” of a byte.

Each byte has two nibbles, and each nibble is indicated by a hexadecimal digit. For
example, the value 15 is stored in two nibbles, using the hexadecimal digits 1 and 5.

The sign indication is dependent on your operating environment. On IBM
mainframes, the sign is indicated by the last nibble. With formats, C indicates a
positive value, and D indicates a negative value. With informats, A, C, E, and F
indicate positive values, and B and D indicate negative values. Any other nibble is
invalid for signed packed decimal data. In all other operating environments, the sign is
indicated in its own byte. If the high-order bit is 1, then the number is negative.
Otherwise, it is positive.

The following applies to packed decimal data representation:
� You can use the S370FPD format on all platforms to obtain the IBM mainframe

configuration.
� You can have unsigned packed data with no sign indicator. The packed decimal

format and informat handles the representation. It is consistent between ASCII
and EBCDIC platforms.

� Note that the S370FPDU format and informat expects to have an F in the last
nibble, while packed decimal expects no sign nibble.

Zoned Decimal Data
The following applies to zoned decimal data representation:
� A zoned decimal representation stores a decimal digit in the low order nibble of

each byte. For all but the byte containing the sign, the high-order nibble is the
numeric zone nibble (F on EBCDIC and 3 on ASCII).

72 Platforms Supporting Packed Decimal and Zoned Decimal Data 4 Chapter 7

� The sign can be merged into a byte with a digit, or it can be separate, depending
on the representation. But the standard zoned decimal format and informat
expects the sign to be merged into the last byte.

� The EBCDIC and ASCII zoned decimal formats produce the same printable
representation of numbers. There are two nibbles per byte, each indicated by a
hexadecimal digit. For example, the value 15 is stored in two bytes. The first byte
contains the hexadecimal value F1 and the second byte contains the hexadecimal
value C5.

Packed Julian Dates
The following applies to packed Julian dates:
� The two formats and informats that handle Julian dates in packed decimal

representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year
computation, while PDJULG uses the Gregorian computation.

� The IBM mainframe computation considers 1900 to be the base year, and the year
values in the data indicate the offset from 1900. For example, 98 means 1998, 100
means 2000, and 102 means 2002. 1998 would mean 3898.

� The Gregorian computation allows for 2–digit or 4–digit years. If you use 2–digit
years, SAS uses the setting of the YEARCUTOFF value to determine the true year.

Platforms Supporting Packed Decimal and Zoned Decimal Data
Some platforms have native instructions to support packed and zoned decimal data,

while others must use software to emulate the computations. For example, the IBM
mainframe has an Add Pack instruction to add packed decimal data, but the
Intel-based platforms have no such instruction and must convert the decimal data into
some other format.

Languages Supporting Packed Decimal and Zoned Decimal Data
Several different languages support packed decimal and zoned decimal data. The

following table shows how COBOL picture clauses correspond to SAS formats and
informats.

IBM VS COBOL II clauses Corresponding S370Fxxx
formats/informats

PIC S9(X) PACKED-DECIMAL S370FPDw.

PIC 9(X) PACKED-DECIMAL S370FPDUw.

PIC S9(W) DISPLAY S370FZDw.

PIC 9(W) DISPLAY S370FZDUw.

PIC S9(W) DISPLAY SIGN LEADING S370FZDLw.

PIC S9(W) DISPLAY SIGN LEADING SEPARATE S370FZDSw.

PIC S9(W) DISPLAY SIGN TRAILING SEPARATE S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits
represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is
ceil((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil(x/2). For example, PIC

Informats 4 Summary of Packed Decimal and Zoned Decimal Formats and Informats 73

S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles are
needed. ceil((5+1)/2)has a length of three bytes, and the value of W is 3.

Note that you can substitute COMP-3 for PACKED-DECIMAL.
In IBM assembly language, the P directive indicates packed decimal, and the Z

directive indicates zoned decimal. The following shows an excerpt from an assembly
language listing, showing the offset, the value, and the DC statement:

offset value (in hex) inst label directive

+000000 00001C 2 PEX1 DC PL3’1’
+000003 00001D 3 PEX2 DC PL3’-1’
+000006 F0F0C1 4 ZEX1 DC ZL3’1’
+000009 F0F0D1 5 ZEX2 DC ZL3’1’

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal
data. You must use the PICTURE specification to represent zoned decimal data. There
is no standardized representation of decimal data for the FORTRAN or the C languages.

Summary of Packed Decimal and Zoned Decimal Formats and
Informats

SAS uses a group of formats and informats to handle packed and zoned decimal data.
The following table lists the type of data representation for these formats and
informats. Note that the formats and informats that begin with S370 refer to IBM
mainframe representation.

Format Type of data
representation

Corresponding
informat

Comments

PD Packed decimal PD Local signed packed decimal

PK Packed decimal PK Unsigned packed decimal; not
specific to your operating
environment

ZD Zoned decimal ZD Local zoned decimal

none Zoned decimal ZDB Translates EBCDIC blank
(hex 40) to EBCDIC zero (hex
F0), then corresponds to the
informat as zoned decimal

none Zoned decimal ZDV Non-IBM zoned decimal
representation

S370FPD Packed decimal S370FPD Last nibble C (positive) or D
(negative)

S370FPDU Packed decimal S370FPDU Last nibble always F
(positive)

S370FZD Zoned decimal S370FZD Last byte contains sign in
upper nibble: C (positive) or
D (negative)

S370FZDU Zoned decimal S370FZDU Unsigned; sign nibble always
F

74 Informat Aliases 4 Chapter 7

Format Type of data
representation

Corresponding
informat

Comments

S370FZDL Zoned decimal S370FZDL Sign nibble in first byte in
informat; separate leading
sign byte of hex C0 (positive)
or D0 (negative) in format

S370FZDS Zoned decimal S370FZDS Leading sign of - (hex 60) or +
(hex 4E)

S370FZDT Zoned decimal S370FZDT Trailing sign of - (hex 60) or +
(hex 4E)

PDJULI Packed decimal PDJULI Julian date in packed
representation - IBM
computation

PDJULG Packed decimal PDJULG Julian date in packed
representation - Gregorian
computation

none Packed decimal RMFDUR Input layout is: mmsstttF

none Packed decimal SHRSTAMP Input layout is:
yyyydddFhhmmssth, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal SMFSTAMP Input layout is:
xxxxxxxxyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal PDTIME Input layout is: 0hhmmssF

none Packed decimal RMFSTAMP Input layout is:
0hhmmssFyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

Informat Aliases

Several SAS informats operate identically but have different names. A list of these
informat aliases follows. The dictionary of SAS informats uses the primary informat,
not aliases, to provide a complete description of its operation.

Table 7.3 SAS Informats with Aliases

Primary Informat Name Informat Alias(es)

COMMAw.d DOLLARw.d

COMMAXw.d DOLLARXw.d

Informats 4 Informats by Category 75

w.d BESTw.d, Dw.d, Fw.d, Ew.d

$w. $Fw.

Informats by Category

There are five categories of informats in SAS:

Category Description

CHARACTER instructs SAS to read character data values into character variables.

COLUMN-BINARY instructs SAS to read data stored in column-binary or multipunched
form into character and numeric values.

DATE and TIME instructs SAS to read data values into variables that represent dates,
times, and datetimes.

NUMERIC instructs SAS to read numeric data values into numeric variables.

USER-DEFINED instructs SAS to read data values by using an informat that is created
with an INVALUE statement in PROC FORMAT.

For information on reading column-binary data, see “Reading Column-Binary Data” on
page 299. For information on creating user-defined informats, see the FORMAT
procedure in the SAS Procedures Guide.

The following table provides brief descriptions of the SAS informats. For more
detailed descriptions, see the “Informats” chapter of SAS Language Reference:
Dictionary.

Table 7.4 Categories and Descriptions of Informats

Category Informat Description

Character $ASCIIw. Converts ASCII character data to native format

$BINARYw. Converts binary data to character data

$CHARw. Reads character data with blanks

$CHARZBw. Converts binary 0s to blanks

$EBCDICw. Converts EBCDIC character data to native format

$HEXw. Converts hexadecimal data to character data

$OCTALw. Converts octal data to character data

$PHEXw. Converts packed hexadecimal data to character data

$QUOTEw Removes matching quotation marks from character data

$REVERJw. Reads character data from right to left and preserves
blanks

$REVERSw. Reads character data from right to left and left aligns

$UPCASEw. Converts character data to uppercase

$VARYINGw. Reads character data of varying length

76 Informats by Category 4 Chapter 7

Category Informat Description

$w. Reads standard character data

Column Binary $CBw. Reads standard character data from column-binary files

CBw.d Reads standard numeric values from column-binary files

PUNCH.d Reads whether a row of column-binary data is punched

ROWw.d Reads a column-binary field down a card column

DBCS $KANJIw. Removes shift code data from DBCS data

$KANJIXw. Adds shift code data to DBCS data

Date and Time DATEw. Reads date values in the form ddmmmyy or ddmmmyyyy

DATETIMEw. Reads datetime values in the form ddmmmyy
hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

DDMMYYw. Reads date values in the form ddmmyy or ddmmyyyy

EURDFDEw. Reads international date values

EURDFDTw. Reads international datetime values in the form
ddmmmyy hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

EURDFMYw. Reads month and year date values in the form mmmyy
or mmmyyyy

JDATEYMDw. Reads Japanese kanji date values in the format
yymmmdd or yyyymmmdd

JNENGOw. Reads Japanese Kanji date values in the form yymmdd

JULIANw. Reads Julian dates in the form yyddd or yyyyddd

MINGUOw. Reads dates in Taiwanese form

MMDDYYw. Reads date values in the form mmddyy or mmddyyyy

MONYYw. Reads month and year date values in the form mmmyy
or mmmyyyy

MSECw. Reads TIME MIC values

NENGOw. Reads Japanese date values in the form eyymmdd

PDJULGw. Reads packed Julian date values in the hexadecimal
form yyyydddF for IBM

PDJULIw. Reads packed Julian dates in the hexadecimal format
ccyyddd F for IBM

PDTIMEw. Reads packed decimal time of SMF and RMF records

RMFDURw. Reads duration intervals of RMF records

RMFSTAMPw. Reads time and date fields of RMF records

SHRSTAMPw. Reads date and time values of SHR records

SMFSTAMPw. Reads time and date values of SMF records

TIMEw. Reads hours, minutes, and seconds in the form
hh:mm:ss.ss

TODSTAMPw. Reads an eight-byte time-of-day stamp

TUw. Reads timer units

Informats 4 Informats by Category 77

Category Informat Description

YYMMDDw. Reads date values in the form yymmdd or yyyymmdd

YYMMNw. Reads date values in the form yyyymm or yymm

YYQw. Reads quarters of the year

Numeric BINARYw.d Converts positive binary values to integers

BITSw.d Extracts bits

BZw.d Converts blanks to 0s

COMMAw.d Removes embedded characters

COMMAXw.d Removes embedded characters

Ew.d Reads numeric values that are stored in scientific
notation and double-precision scientific notation

FLOATw.d Reads a native single-precision, floating-point value and
divides it by 10 raised to the dth power

HEXw. Converts hexadecimal positive binary values to either
integer (fixed-point) or real (floating-point) binary values

IBw.d Reads native integer binary (fixed-point) values,
including negative values

IBRw.d Reads integer binary (fixed-point) values in Intel and
DEC formats

IEEEw.d Reads an IEEE floating-point value and divides it by 10
raised to the d th power

NUMXw.d Reads numeric values with a comma in place of the
decimal point

OCTALw.d Converts positive octal values to integers

PDw.d Reads data that are stored in IBM packed decimal format

PERCENTw.d Reads percentages as numeric values

PIBw.d Reads positive integer binary (fixed-point) values

PIBRw.d Reads positive integer binary (fixed-point) values in Intel
and DEC formats

PKw.d Reads unsigned packed decimal data

RBw.d Reads numeric data that are stored in real binary
(floating-point) notation

S370FFw.d Reads EBCDIC numeric data

S370FIBw.d Reads integer binary (fixed-point) values, including
negative values, in IBM mainframe format

S370FIBUw.d Reads unsigned integer binary (fixed-point) values in
IBM mainframe format

S370FPDw.d Reads packed data in IBM mainframe format

S370FPDUw.d Reads unsigned packed decimal data in IBM mainframe
format

S370FPIBw.d Reads positive integer binary (fixed-point) values in IBM
mainframe format

78 Informats by Category 4 Chapter 7

Category Informat Description

S370FRBw.d Reads real binary (floating-point) data in IBM
mainframe format

S370FZDw.d Reads zoned decimal data in IBM mainframe format

S370FZDLw.d Reads zoned decimal leading-sign data in IBM
mainframe format

S370FZDSw.d Reads zoned decimal separate leading-sign data in IBM
mainframe format

S370FZDTw.d Reads zoned decimal separate trailing-sign data in IBM
mainframe format

S370FZDUw.d Reads unsigned zoned decimal data in IBM mainframe
format

VAXRBw.d Reads real binary (floating-point) data in VMS format

w.d Reads standard numeric data

YENw.d Removes embedded yen signs, commas, and decimal
points

ZDw.d Reads zoned decimal data

ZDBw.d Reads zoned decimal data in which zeros have been left
blank

ZDVw.d Reads and validates zoned decimal data

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

