
131

C H A P T E R

12
Expressions

Definitions 131
SAS Constants in Expressions 132

Definition 132

Character Constants 132

Using Quotation Marks 132

Comparing Character Constants and Character Variables 133
Hexadecimal Notation 133

Numeric Constants 134

Standard Notation 134

Scientific Notation 134

Hexadecimal Notation 134

Date, Time, and Datetime Constants 134
Bit Testing Constants 135

SAS Variables in Expressions 136

Definition 136

Automatic Numeric-Character Conversion 136

SAS Functions in Expressions 137
SAS Operators in Expressions 137

Definitions 137

Arithmetic Operators 138

Comparison Operators 138

Numeric Comparisons 139
Character Comparisons 140

Logical (Boolean) Operators and Expressions 140

The AND Operator 141

The OR Operator 141

The NOT Operator 142

Boolean Numeric Expressions 142
The MIN and MAX Operators 143

The Concatenation Operator 143

Order of Evaluation in Compound Expressions 144

WHERE Expressions 146

Definitions

expression
is generally a sequence of operands and operators that form a set of instructions
that are performed to produce a resulting value. You use expressions in SAS
program statements to create variables, assign values, calculate new values,

132 SAS Constants in Expressions 4 Chapter 12

transform variables, and perform conditional processing. SAS expressions can
resolve to numeric values, character values, or Boolean values.

operands
are constants or variables that can be numeric or character.

operators
are symbols that represent a comparison, arithmetic calculation, or logical
operation; a SAS function; or grouping parentheses.

simple expression
is an expression with no more than one operator. A simple expression can consist
of a single

� constant
� variable
� function.

compound expression
is an expression that includes several operators. When SAS encounters a
compound expression, it follows rules to determine the order in which to evaluate
each part of the expression.

The following are examples of SAS expressions:
� 3

� x

� x+1

� age<100

� trim(last)||’, ’||first

SAS Constants in Expressions

Definition
A SAS constant is a number or a character string that indicates a fixed value.

Constants can be used as expressions in many SAS statements, including variable
assignment and IF-THEN statements. They can also be used as values for certain
options. Constants are also called literals.

The following are types of SAS constants:
� character
� numeric
� date, time, and datetime
� bit testing.

Character Constants
A character constant consists of 1 to 32,767 characters and must be enclosed in

quotation marks. Character constants can also be represented in hexadecimal form.

Using Quotation Marks
In the following SAS statement, Tom is a character constant:

Expressions 4 Hexadecimal Notation 133

if name=’Tom’ then do;

If a character constant includes a single quotation mark, surround it with double
quotation marks. For example, to specify the character value Tom’s as a constant, enter

name="Tom’s"

You can also write a single quotation mark as two consecutive single quotation marks
and SAS treats it as one. You can then surround the character constant with single
quotation marks:

name=’Tom’’s’

The same principle holds true for double quotation marks:

name="Tom""s"

CAUTION:
Matching quotation marks correctly is important. Missing or extraneous quotation marks
cause SAS to misread both the erroneous statement and the statements that follow
it. For example, in name=’O’Brien’;, O is the character value of NAME, Brien is
extraneous, and ’; begins another quoted string. 4

Comparing Character Constants and Character Variables
It is important to remember that character constants are enclosed in quotation

marks, but names of character variables are not. This distinction applies wherever you
can use a character constant, such as in titles, footnotes, labels, and other descriptive
strings; in option values; and in operating environment-specific strings, such as file
specifications and commands.

The following statements use character constants:

� x=’abc’;

� if name=’Smith’ then do;

The following statements use character variables:

� x=abc;

� if name=Smith then do;

In the second set of examples, SAS searches for variables named ABC and SMITH,
instead of constants.

Note: SAS distinguishes between uppercase and lowercase when comparing quoted
values. For example, the character values ’Smith’ and ’SMITH’ are not equivalent. 4

Hexadecimal Notation
SAS character constants can be expressed in hexadecimal notation. A character hex

constant is a string of an even number of hex characters enclosed in single or double
quotation marks, followed immediately by an X, as in this example:

’534153’x

A comma can be used to make the string more readable, but it is not part of and does
not alter the hex value. If the string contains a comma, the comma must separate an
even number of hex characters within the string, as in this example:

if value=’3132,3334’x then do;

134 Numeric Constants 4 Chapter 12

Numeric Constants
A numeric constant is a number that appears in a SAS statement. Numeric

constants can be presented in many forms, including
� standard notation
� scientific (E) notation
� hexadecimal notation.

Standard Notation
Most numeric constants are written just as numeric data values are. The numeric

constant in the following expression is 100:

part/all*100

Numeric constants expressed in standard notation can be integers, can be specified with
or without a plus or minus sign, and can include decimal places, as in these examples:

� 1
� 1.23
� 01
� -5

Scientific Notation
In scientific notation, the number before the E is multiplied by the power of ten that

is indicated by the number after the E. For example, 2E4 is the same as 2x104 or
20,000. For numeric constants larger than (1032)−1, you must use scientific notation.
Additional examples follow:

� 1.2e23
� 0.5e-10

Hexadecimal Notation
A numeric constant that is expressed as a hexadecimal value starts with a numeric

digit (usually 0), can be followed by more hexadecimal digits, and ends with the letter
X. The constant can contain up to 16 valid hexadecimal digits (0 to 9, A to F). The
following are numeric hex constants:

� 0c1x
� 9x

You can use numeric hex constants in a DATA step, as follows:

data test;
input abend pib2.;
if abend=0c1x or abend=0b0ax then do;

… more SAS statements …
run;

Date, Time, and Datetime Constants
You can create a date constant, time constant, or datetime constant by specifying the

date or time in single or double quotation marks, followed by a D (date), T (time), or DT

Expressions 4 Bit Testing Constants 135

(datetime) to indicate the type of value. Use the following patterns to create date and
time constants:

’ddmmm<yy>yy’D or "ddmmm<yy>yy"D represents a SAS date value:
� date=’1jan2006’d;

� date=’01jan04’d;

’hh:mm<:ss.s>’T or "hh:mm<:ss.s>"T represents a SAS time value:
� time=’9:25’t;

� time=’9:25:19pm’t;

’ddmmm<yy>yy:hh:mm<:ss.s>’DT or "ddmmm<yy>yy:hh:mm<:ss.s>"DT represents a
SAS datetime value:

� if begin=’01may04:9:30:00’dt then end=’31dec90:5:00:00’dt;

� dtime=’18jan2002:9:27:05am’dt;

For more information on SAS dates, refer to Chapter 13, “Dates, Times, and
Intervals,” on page 147.

Bit Testing Constants
Bit masks are used in bit testing to compare internal bits in a value’s representation.

You can perform bit testing on both character and numeric variables. The general form
of the operation is:

expression comparison-operator bit-mask

The following are the components of the bit-testing operation:

expression
can be any valid SAS expression. Both character and numeric variables can be bit
tested. When SAS tests a character value, it aligns the left-most bit of the mask
with the left-most bit of the string; the test proceeds through the corresponding
bits, moving to the right. When SAS tests a numeric value, the value is truncated
from a floating-point number to a 32-bit integer. The right-most bit of the mask is
aligned with the right-most bit of the number, and the test proceeds through the
corresponding bits, moving to the left.

comparison-operator
compares an expression with the bit mask. Refer to “Comparison Operators” on
page 138 for a discussion of these operators.

bit-mask
is a string of 0s, 1s, and periods in quotation marks that is immediately followed
by a B. Zeros test whether the bit is off; ones test whether the bit is on; and
periods ignore the bit. Commas and blanks can be inserted in the bit mask for
readability without affecting its meaning.

CAUTION:
Truncation can occur when SAS uses a bit mask. If the expression is longer than the bit
mask, SAS truncates the expression before it compares it with the bit mask. A false
comparison may result. An expression’s length (in bits) must be less than or equal to
the length of the bit mask. If the bit mask is longer than a character expression, SAS
prints a warning in the log, stating that the bit mask is truncated on the left, and
continues processing. 4

The following example tests a character variable:

136 SAS Variables in Expressions 4 Chapter 12

if a=’..1.0000’b then do;

If the third bit of A (counting from the left) is on, and the fifth through eighth bits are
off, the comparison is true and the expression result is 1. Otherwise, the comparison is
false and the expression result is 0. The following is a more detailed example:

data test;
input @88 bits $char1.;
if bits=’10000000’b

then category=’a’;
else if bits=’01000000’b

then category=’b’;
else if bits=’00100000’b

then category=’c’;
run;

Note: Bit masks cannot be used as bit literals in assignment statements. For
example, the following statement is not valid:

x=’0101’b; /* incorrect */

4

The $BINARYw. and BINARYw. formats and the $BINARYw., BINARYw.d, and
BITSw.d informats can be useful for bit testing. You can use them to convert character
and numeric values to their binary values, and vice versa, and to extract specified bits
from input data. See SAS Language Reference: Dictionary for complete descriptions of
these formats and informats.

SAS Variables in Expressions

Definition
variable

is a set of data values that describe a given characteristic. A variable can be used
in an expression.

Automatic Numeric-Character Conversion
If you specify a variable in an expression, but the variable value does not match the

type called for, SAS attempts to convert the value to the expected type. SAS
automatically converts character variables to numeric variables and numeric variables
to character variables, according to the following rules:

� If you use a character variable with an operator that requires numeric operands,
such as the plus sign, SAS converts the character variable to numeric.

� If you use a comparison operator, such as the equal sign, to compare a character
variable and a numeric variable, the character variable is converted to numeric.

� If you use a numeric variable with an operator that requires a character value,
such as the concatenation operator, the numeric value is converted to character
using the BEST12. format. Because SAS stores the results of the conversion
beginning with the right-most byte, you must store the converted values in a

Expressions 4 Definitions 137

variable of sufficient length to accommodate the BEST12. format. You can use the
LEFT function to left-justify a result.

� If you use a numeric variable on the left side of an assignment statement and a
character variable on the right, the character variable is converted to numeric. In
the opposite situation, where the character variable is on the left and the numeric
is on the right, SAS converts the numeric variable to character using the BESTn.
format, where n is the length of the variable on the left.

When SAS performs an automatic conversion, it prints a note in the SAS log
informing you that the conversion took place. If converting a character variable to
numeric produces invalid numeric values, SAS assigns a missing value to the result,
prints an error message in the log, and sets the value of the automatic variable
ERROR to 1.

Note: You can also use the PUT and INPUT functions to convert data values. These
functions can be more efficient than automatic conversion. See “The Concatenation
Operator” on page 143 for an example of the PUT function. See SAS Language
Reference: Dictionary for more details on these functions. 4

For more information on SAS variables, see Chapter 10, “SAS Variables,” on page 99
or the SAS Language Reference: Dictionary.

SAS Functions in Expressions
A SAS function is a keyword that you use to perform a specific computation or

system manipulation. Functions return a value, might require one or more arguments,
and can be used in expressions. For further information on SAS functions, see SAS
Language Reference: Dictionary.

SAS Operators in Expressions

Definitions
A SAS operator is a symbol that represents a comparison, arithmetic calculation, or

logical operation; a SAS function; or grouping parentheses. SAS uses two major kinds
of operators:

� prefix operators
� infix operators.

A prefix operator is an operator that is applied to the variable, constant, function, or
parenthetic expression that immediately follows it. The plus sign (+) and minus sign (−)
can be used as prefix operators. The word NOT and its equivalent symbols are also
prefix operators. The following are examples of prefix operators used with variables,
constants, functions, and parenthetic expressions:

� +y

� -25

� -cos(angle1)

� +(x*y)

An infix operator applies to the operands on each side of it, for example, 6<8. Infix
operators include the following:

138 Arithmetic Operators 4 Chapter 12

� arithmetic

� comparison

� logical, or Boolean

� minimum

� maximum

� concatenation.

When used to perform arithmetic operations, the plus and minus signs are infix
operators.

SAS also provides several other operators that are used only with certain SAS
statements. The WHERE statement uses a special group of SAS operators, valid only
when used with WHERE expressions. For a discussion of these operators, see Chapter
18, “WHERE-Expression Processing,” on page 229.

Arithmetic Operators
Arithmetic operators indicate that an arithmetic calculation is performed, as shown

in the following table:

Table 12.1 Arithmetic Operators

Symbol Definition Example Result

** exponentiation a**3 raise A to the third
power

* multiplication1 2*y multiply 2 by the
value of Y

/ division var/5 divide the value of
VAR by 5

+ addition num+3 add 3 to the value of
NUM

- subtraction sale-discount subtract the value of
DISCOUNT from the
value of SALE

1 The asterisk (*) is always necessary to indicate multiplication; 2Y and 2(Y) are not valid expressions.

If a missing value is an operand for an arithmetic operator, the result is a missing
value. See Chapter 11, “Missing Values,” on page 123 for a discussion of how to prevent
the propagation of missing values.

See “Order of Evaluation in Compound Expressions” on page 144 for the order in
which SAS evaluates these operators.

Comparison Operators
Comparison operators set up a comparison, operation, or calculation with two

variables, constants, or expressions. If the comparision is true, the result is 1. If the
comparision is false, the result is 0.

Comparison operators can be expressed as symbols or with their mnemonic
equivalents, which are shown in the following table:

Expressions 4 Numeric Comparisons 139

Table 12.2 Comparison Operators

Symbol Mnemonic
Equivalent

Definition Example

= EQ equal to a=3

^= NE not equal to1 a ne 3

= NE not equal to

~= NE not equal to

> GT greater than num>5

< LT less than num<8

>= GE greater than or equal
to2

sales>=300

<= LE less than or equal to3 sales<=100

IN equal to one of a list num in (3, 4, 5)

1 The symbol you use for NE depends on your terminal.
2 The symbol => is also accepted for compatibility with previous releases of SAS.
3 The symbol =< is also accepted for compatibility with previous releases of SAS.

See “Order of Evaluation in Compound Expressions” on page 144 for the order in
which SAS evaluates these operators.

Note: You can add a colon (:) modifier to any of the operators to compare only a
specified prefix of a character string. See “Character Comparisons” on page 140 for
details. 4

Numeric Comparisons
SAS makes numeric comparisons that are based on values. In the expression A<=B,

if A has the value 4 and B has the value 3, then A<=B has the value 0, or false. If A is
5 and B is 9, then the expression has the value 1, or true. If A and B each have the
value 47, then the expression is true and has the value 1.

Comparison operators appear frequently in IF-THEN statements, as in this example:

if x<y then c=5;
else c=12;

You can also use comparisons in expressions in assignment statements. For example,
the preceding statements can be recoded as follows:

c=5*(x<y)+12*(x>=y);

Since SAS evaluates quantities inside parentheses before performing any operations,
the expressions (x<y) and (x>=y) are evaluated first and the result (1 or 0) is
substituted for the expressions in parentheses. Therefore, if X=6 and Y=8, the
expression evaluates as follows:

c=5*(1)+12*(0)

The result of this statement is C=5.
You might get an incorrect result when you compare numeric values of different

lengths because values less than 8 bytes have less precision than those longer than 8
bytes. Rounding also affects the outcome of numeric comparisons. See Chapter 10,
“SAS Variables,” on page 99 for a complete discussion of numeric precision.

140 Character Comparisons 4 Chapter 12

A missing numeric value is smaller than any other numeric value, and missing
numeric values have their own sort order (see Chapter 11, “Missing Values,” on page
123 for more information).

Character Comparisons
You can perform comparisons on character operands, but the comparison always

yields a numeric result (1 or 0). Character operands are compared character by
character from left to right. Character order depends on the collating sequence, usually
ASCII or EBCDIC, used by your computer.

For example, in the EBCDIC and ASCII collating sequences, G is greater than A;
therefore, this expression is true:

Gray>Adams

Two character values of unequal length are compared as if blanks were attached to
the end of the shorter value before the comparison is made. A blank, or missing
character value, is smaller than any other printable character value. For example,
because . is less than h, this expression is true:

C. Jones<Charles Jones

Since trailing blanks are ignored in a comparison, ’fox ’ is equivalent to ’fox’.
However, because blanks at the beginning and in the middle of a character value are
significant to SAS, ’ fox’ is not equivalent to ’fox’.

You can compare only a specified prefix of a character string by using a colon (:) after
the comparison operator. In the following example, the colon modifier after the equal
sign tells SAS to look at only the first character of values of the variable LASTNAME
and to select the observations with names beginning with the letter S:

if lastname=:’S’;

Because printable characters are greater than blanks, both of the following
statements select observations with values of LASTNAME that are greater than or
equal to the letter S:

� if lastname>=’S’;

� if lastname>=:’S’;

You can use the IN operator with character strings to determine whether a variable’s
value is among a list of character values. The following statements produce the same
results:

� if state in (’NY’,’NJ’,’PA’) then region+1;

� if state=’NY’ or state=’NJ’ or state=’PA’ then region+1;

The operations that are discussed in this section show you how to compare entire
character strings and the beginnings of character strings. Several SAS character
functions enable you to search for and extract values from within character strings. See
SAS Language Reference: Dictionary for complete descriptions of all SAS functions.

Logical (Boolean) Operators and Expressions
Logical operators, also called Boolean operators, are usually used in expressions to

link sequences of comparisons. The logical operators are shown in the following table:

Expressions 4 The OR Operator 141

Table 12.3 Logical Operators

Symbol Mnemonic Equivalent Example

& AND (a>b & c>d)

| OR1 (a>b or c>d)

! OR

¦ OR

NOT2 not(a>b)

Nˆ OT

~ NOT

1 The symbol you use for OR depends on your operating environment.
2 The symbol you use for NOT depends on your operating environment.

See “Order of Evaluation in Compound Expressions” on page 144 for the order in
which SAS evaluates these operators.

In addition, a numeric expression without any logical operators can serve as a
Boolean expression. For an example of Boolean numeric expressions, see “Boolean
Numeric Expressions” on page 142.

The AND Operator
If both of the quantities linked by AND are 1 (true), then the result of the AND

operation is 1; otherwise, the result is 0. For example, in the following comparison:

a<b & c>0

the result is true (has a value of 1) only when both A<B and C>0 are 1 (true): that is,
when A is less than B and C is positive.

Two comparisons with a common variable linked by AND can be condensed with an
implied AND. For example, the following two subsetting IF statements produce the
same result:

� if 16<=age and age<=65;

� if 16<=age<=65;

The OR Operator
If either of the quantities linked by an OR is 1 (true), then the result of the OR

operation is 1 (true); otherwise, the OR operation produces a 0. For example, consider
the following comparison:

a<b|c>0

The result is true (with a value of 1) when A<B is 1 (true) regardless of the value of C.
It is also true when the value of C>0 is 1 (true), regardless of the values of A and B.
Therefore, it is true when either or both of those relationships hold.

Be careful when using the OR operator with a series of comparisons (in an IF,
SELECT, or WHERE statement, for instance). Remember that only one comparison in a
series of OR comparisons must be true to make a condition true, and any nonzero,

142 The NOT Operator 4 Chapter 12

nonmissing constant is always evaluated as true (see “Boolean Numeric Expressions”
on page 142). Therefore, the following subsetting IF statement is always true:

if x=1 or 2;

SAS first evaluates X=1, and the result can be either true or false; however, since the 2
is evaluated as nonzero and nonmissing (true), the entire expression is true. In this
statement, however, the condition is not necessarily true because either comparison can
evaluate as true or false:

if x=1 or x=2;

The NOT Operator
The prefix operator NOT is also a logical operator. The result of putting NOT in front

of a quantity whose value is 0 (false) is 1 (true). That is, the result of negating a false
statement is 1 (true). For example, if X=Y is 0 (false) then NOT(X=Y) is 1 (true). The
result of NOT in front of a quantity whose value is missing is also 1 (true). The result
of NOT in front of a quantity with a nonzero, nonmissing value is 0 (false). That is, the
result of negating a true statement is 0 (false).

For example, the following two expressions are equivalent:

� not(name=’SMITH’)

� name ne ’SMITH’

Furthermore, NOT(A&B) is equivalent to NOT A|NOT B, and NOT(A|B) is the
same as NOT A & NOT B. For example, the following two expressions are equivalent:

� not(a=b & c>d)

� a ne b | c le d

Boolean Numeric Expressions
In computing terms, a value of true is a 1 and a value of false is a 0. In SAS, any

numeric value other than 0 or missing is true, and a value of 0 or missing is false.
Therefore, a numeric variable or expression can stand alone in a condition. If its value
is a number other than 0 or missing, the condition is true; if its value is 0 or missing,
the condition is false.

0 | . = False
1 = True

For example, suppose that you want to fill in variable REMARKS depending on
whether the value of COST is present for a given observation. You can write the
IF-THEN statement as follows:

if cost then remarks=’Ready to budget’;

This statement is equivalent to:

if cost ne . and cost ne 0
then remarks=’Ready to budget’;

A numeric expression can be simply a numeric constant, as follows:

if 5 then do;

The numeric value returned by a function is also a valid numeric expression:

if index(address,’Avenue’) then do;

Expressions 4 The Concatenation Operator 143

The MIN and MAX Operators
The MIN and MAX operators are used to find the minimum or maximum value of

two quantities. Surround the operators with the two quantities whose minimum or
maximum value you want to know. The MIN (><) operator returns the lower of the two
values. The MAX (<>) operator returns the higher of the two values. For example, if
A<B, then A><B returns the value of A.

If missing values are part of the comparison, SAS uses the sorting order for missing
values described in “Order of Missing Values” on page 125. For example, the maximum
value returned by .A<>.Z is the value .Z.

The Concatenation Operator
The concatenation operator (||) concatenates character values. The results of a

concatenation operation are usually stored in a variable with an assignment statement,
as in level=’grade ’||’A’. The length of the resulting variable is the sum of the
lengths of each variable or constant in the concatenation operation, unless you use a
LENGTH or ATTRIB statement to specify a different length for the new variable.

The concatenation operator does not trim leading or trailing blanks. If variables are
padded with trailing blanks, check the lengths of the variables and use the TRIM
function to trim trailing blanks from values before concatenating them. See SAS
Language Reference: Dictionary for descriptions and examples of additional character
functions.

For example, in this DATA step, the value that results from the concatenation
contains blanks because the length of the COLOR variable is eight:

data namegame;
length color name $8 game $12;
color=’black’;
name=’jack’;
game=color||name;
put game=;

run;

The value of GAME is ’black jack’. To correct this problem, use the TRIM
function in the concatenation operation as follows:

game=trim(color)||name;

This statement produces a value of ’blackjack’ for the variable GAME. The following
additional examples demonstrate uses of the concatenation operator:

� If A has the value ’fortune’, B has the value ’five’, and C has the value
’hundred’, then the following statement produces the value
’fortunefivehundred’ for the variable D:

d=a||b||c;

� This example concatenates the value of a variable with a character constant.

newname=’Mr. or Ms. ’ ||oldname;

If the value of OLDNAME is ’Jones’, then NEWNAME will have the value ’Mr.
or Ms. Jones’.

� Because the concatenation operation does not trim blanks, the following
expression produces the value ’JOHN SMITH’:

name=’JOHN ’||’SMITH’;

144 Order of Evaluation in Compound Expressions 4 Chapter 12

� This example uses the PUT function to convert a numeric value to a character
value. The TRIM function is used to trim blanks.

month=’sep’;
year=99;
date=trim(month) || left(put(year,8.));

The value of DATE is the character value ’sep99’.

Order of Evaluation in Compound Expressions
Table 12.4 on page 144 shows the order of evaluation in compound expressions. The

table contains the following columns:

Priority
lists the priority of evaluation. In compound expressions, SAS evaluates the part
of the expression containing operators in Group I first, then each group in order.

Order of Evaluation
lists the rules governing which part of the expression SAS evaluates first.
Parentheses are often used in compound expressions to group operands;
expressions within parentheses are evaluated before those outside of them. The
rules also list how a compound expression that contains more than one operator
from the same group is evaluated.

Symbols
lists the symbols that you use to request the comparisons, operations, and
calculations.

Mnemonic Equivalent
lists alternate forms of the symbol. In some cases, such as when your keyboard
does not support special symbols, you should use the alternate form.

Definition
defines the symbol.

Example
provides an example of how to use the symbol or mnemonic equivalent in a SAS
expression.

Table 12.4 Order of Evaluation in Compound Expressions

Priority Order of
Evaluation

Symbols Mnemonic
Equivalent

Definition Example

Group I right to
left

** exponentiation1 y=a**2;

+ positive prefix2 y=+(a*b);

- negative prefix3 z=-(a+b);

˜ˆ NOT logical not4 if not z
then put x;

>< MIN minimum5 x=(a><b);

<> MAX maximum x=(a<>b);

Expressions 4 Order of Evaluation in Compound Expressions 145

Priority Order of
Evaluation

Symbols Mnemonic
Equivalent

Definition Example

Group II left to
right

* multiplication c=a*b;

/ division f=g/h;

Group III left to
right

+ addition c=a+b;

- subtraction f=g-h;

Group IV left to
right

|| ¦¦ !! concatenate
character
values6

name=
’J’||’SMITH’;

Group V7 left to
right8

< LT less than if x<y then
c=5;

<= LE less than or
equal to

if x le
y then a=0;

= EQ equal to if y eq (x+a)
then output;

= NE not equal to if x ne z
then output;

>= GE greater than or
equal to

if y>=a
then output;

> GT greater than if z>a
then output;

IN equal to one of a
list

if state in
(’NY’,’NJ’,’PA’)

then region=’NE’;

Group VI left to
right

& AND logical and if a=b & c=d

then x=1;

Group VII left to
right

| ¦ ! OR logical or9 if y=2 or x=3
then a=d;

1 Because Group I operators are evaluated from right to left, the expression x=2**3**4 is evaluated as x=(2**(3**4)).
2 The plus (+) sign can be either a prefix or arithmetic operator. A plus sign is a prefix operator only when it appears at the

beginning of an expression or when it is immediately preceded by a left parenthesis or another operator.
3 The minus (−) sign can be either a prefix or arithmetic operator. A minus sign is a prefix operator only when it appears at

the beginning of an expression or when it is immediately preceded by a left parenthesis or another operator.
4 Depending on the characters available on your keyboard, the symbol can be the not sign (), tilde (~), or caret (^). The SAS

system option CHARCODE allows various other substitutions for unavailable special characters.
5 For example, the SAS System evaluates -3><-3 as -(3><-3), which is equal to -(-3), which equals +3. This is because

Group I operators are evaluated from right to left.
6 Depending on the characters available on your keyboard, the symbol you use as the concatenation operator can be a double

vertical bar (||), broken vertical bar (¦¦), or exclamation mark (!!).
7 Group V operators are comparison operators. The result of a comparison operation is 1 if the comparison is true and 0 if it is

false. Missing values are the lowest in any comparison operation.The symbols =< (less than or equal to) are also allowed for
compatibility with previous versions of the SAS System.When making character comparisons, you can use a colon (:) after
any of the comparison operators to compare only the first character(s) of the value. SAS truncates the longer value to the
length of the shorter value during the comparison. For example, if name=:’P’ compares the value of the first character of
NAME to the letter P.

8 An exception to this rule occurs when two comparison operators surround a quantity. For example, the expression x<y<z is
evaluated as (x<y) and (y<z).

9 Depending on the characters available on your keyboard, the symbol you use for the logical or can be a single vertical bar (|),
broken vertical bar (¦), or exclamation mark (!). You can also use the mnemonic equivalent OR.

146 WHERE Expressions 4 Chapter 12

WHERE Expressions

A WHERE expression is a type of SAS expression that is used within a WHERE
statement or WHERE= data set option to specify a condition for selecting observations
for processing in a DATA or PROC step. For syntax and further information on
WHERE expressions, see Chapter 18, “WHERE-Expression Processing,” on page 229
and SAS Language Reference: Dictionary.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

