
229

C H A P T E R

18
WHERE-Expression Processing

Definitions 229
Where to Use a WHERE Expression 230

Syntax of WHERE Expression 231

Specifying an Operand 231

Variable 231

SAS Function 232
Constant 232

Specifying an Operator 233

Arithmetic Operators 233

Comparison Operators 233

IN Operator 234

Fully-Bounded Range Condition 234
BETWEEN-AND Operator 235

CONTAINS Operator 235

IS NULL or IS MISSING Operator 236

LIKE Operator 236

Sounds-like Operator 237
SAME-AND Operator 237

MIN and MAX Operators 238

Concatenation Operator 238

Prefix Operators 238

Combining Expressions Using Logical Operators 239
Syntax 239

Processing Compound Expressions 239

Using Parentheses to Control Order of Evaluation 240

Constructing Efficient WHERE Expressions 240

Deciding Whether to Use a WHERE Expression or a Subsetting IF Statement 241

Definitions

WHERE-expression processing
allows you to conditionally select a subset of observations, so that the SAS System
processes only the observations that meet a set of specified conditions. For
example, if you have a SAS data set containing sales records, you may want to
print just the subset of observations for which the sales are greater than $300,000
but less than $600,000. In addition, WHERE-expression processing may improve
efficiency of a request. For example, if a WHERE expression can be optimized with
an index, SAS does not have to read all observations in the data set to perform the
request.

230 Where to Use a WHERE Expression 4 Chapter 18

WHERE expression
defines a condition that selected observations must satisfy in order to be processed.
You can have a single WHERE expression, referred to as a simple expression, such
as

where sales gt 600000;

Or you can have multiple WHERE expressions, referred to as a compound
expression, such as

where sales gt 600000 and salary lt 100000;

Where to Use a WHERE Expression

In the SAS System, you can use a WHERE expression in the following situations:

� WHERE statement in both DATA and PROC steps. For example, the following
PRINT procedure includes a WHERE statement so that only the observations
where the year is greater than 1990 are printed:

proc print data=employees;
where startdate > ’01jan1990’d;

run;

� WHERE= data set option. The following PRINT procedure includes the WHERE=
data set option:

proc print data=employees (where=(startdate > ’01jan1990’d));
run;

� WHERE clause in the SQL procedure, SCL, and SAS/IML software. For example,
the following SQL procedure includes a WHERE clause to select only the states
where the murder count is greater than seven:

proc sql;
select state from crime
where murder > 7;

� WHERE command in windowing environments like SAS/FSP software. For
example,

where age > 15

� SAS view (DATA step view, SAS/ACCESS view, PROC SQL view), stored with the
definition. For example, the following SQL procedure creates an SQL view named
STAT from the data file CRIME and defines a WHERE expression for the SQL
view definition:

proc sql;
create view stat as
select * from crime
where murder > 7;

In some cases, you can combine the methods that you use to specify a WHERE
expression. That is, you can

� use a WHERE statement in conjunction with a WHERE= data set option

� use a WHERE statement and the WHERE= data set option in windowing
procedures and in conjunction with the WHERE command

� use a WHERE statement on a SAS view that has a stored WHERE expression.

WHERE-Expression Processing 4 Specifying an Operand 231

For example, it might be useful to combine methods when you merge data sets. That
is, you might want different criteria to apply to each data set when you create a subset
of data. However, when you combine methods to create a subset of data, there are some
restrictions. For example, in the DATA step, if a WHERE statement and a WHERE=
data set option apply to the same data set, the data set option takes precedence. For
details, see the documentation for the method you are using to specify a WHERE
expression.

Note: By default, a WHERE expression does not evaluate added and modified
observations. To specify whether a WHERE expression should evaluate updates, you
can specify the WHEREUP= data set option. See the WHEREUP= data set option in
SAS Language Reference: Dictionary. 4

Syntax of WHERE Expression
A WHERE expression is a type of SAS expression that defines a condition for

selecting observations. A WHERE expression can be as simple as a single variable
name or a constant (which is a fixed value). A WHERE expression can be a SAS
function, or it can be a sequence of operands and operators that define a condition for
selecting observations. In general, the syntax of a WHERE expression is as follows:

WHERE operand <operator> <operand>

operand something to be operated on. An operand can be a variable, a SAS
function, or a constant. See “Specifying an Operand” on page 231.

operator a symbol that requests a comparison, logical operation, or arithmetic
calculation. All SAS expression operators are valid for a WHERE
expression, which include arithmetic, comparison, logical, minimum
and maximum, concatenation, parentheses to control order of
evaluation, and prefix operators. In addition, you can use special
WHERE expression operators, which include BETWEEN-AND,
CONTAINS, IS NULL or IS MISSING, LIKE, sounds-like, and
SAME-AND. See “Specifying an Operator” on page 233.

For more information on SAS expressions, see Chapter 12, “Expressions,” on page
131.

Specifying an Operand

Variable
A variable is a column in a SAS data set. Each SAS variable has attributes like

name and type (character or numeric). The variable type determines how you specify
the value for which you are searching. For example:

where score > 50;
where date >= ’01jan1998’d and time >= ’9:00’t;
where state = ’Texas’;

In a WHERE expression, you cannot use automatic variables created by the DATA
step (for example, FIRST.variable, LAST.variable, _N_, or variables created in
assignment statements).

232 Specifying an Operand 4 Chapter 18

As in other SAS expressions, the names of numeric variables can stand alone. SAS
treats numeric values of 0 or missing as false; other values are true. For example, the
following WHERE expression returns all values for EMPNUM and SSN that are not
missing or that have a value of 0:

where empnum and ssn;

The names of character variables can also stand alone. SAS selects observations
where the value of the character variable is not blank. For example, the following
WHERE expression returns all values not equal to blank:

where lastname;

SAS Function
A SAS function returns a value from a computation or system manipulation. Most

functions use arguments that you supply, but a few obtain their arguments from the
operating environment. To use a SAS function in a WHERE expression, type its name
and argument(s) enclosed in parentheses. Some functions you may want to specify
include:

� SUBSTR extracts a substring

� TODAY returns the current date

� PUT returns a given value using a given format.

The following DATA step produces a SAS data set that contains only observations
from data set CUSTOMER in which the value of NAME begins with Mac and the value
of variable CITY is Charleston or Atlanta:

data testmacs;
set customer;
where substr (name,1,3) = ’Mac’ and
(city=’Charleston’ or city=’Atlanta’);

run;

Note: SAS functions used in a WHERE expression that can be optimized by an
index are the SUBSTR function and the TRIM function. 4

For more information on SAS functions, see Chapter 6, “Functions and CALL
Routines,” on page 43

Constant
A constant is a fixed value such as a number or quoted character string, that is, the

value for which you are searching. A constant is a value of a variable obtained from the
SAS data set, or values created within the WHERE expression itself. Constants are
also called literals. For example, a constant could be a flight number or the name of a
city. A constant can also be a time, date, or datetime value.

The value will be either numeric or character. Note the following rules regarding
whether to use quotation marks:

� If the value is numeric, do not use quotation marks. For example,

where price > 200;

� If the value is character, use quotation marks. For example,

where lastname eq ’Martin’;

� You can use either single or double quotation marks, but do not mix them. Quoted
values must be exact matches, including case.

WHERE-Expression Processing 4 Specifying an Operator 233

� It may be necessary to use single quotation marks when double quotation marks
appear in the value, or use double quotation marks when single quotation marks
appear in the value. For example,

where item = ’6" decorative pot’;
where name ? "D’Amico";

� A SAS date constant must be enclosed in quotation marks. When you specify date
values, case is not important. You can use single or double quotation marks. The
following expressions are equivalent:

where birthday = ’24sep1975’d;
where birthday = "24sep1975"d;

Specifying an Operator

Arithmetic Operators
Arithmetic operators allow you to perform a mathematical operation. The arithmetic

operators include the following:

Table 18.1 Arithmetic Operators

Symbol Definition Example

* multiplication where bonus = salary * .10;

/ division where f = g/h;

+ addition where c = a+b;

- subtraction where f = g-h;

** exponentiation where y = a**2;

Comparison Operators
Comparison operators (also called binary operators) compare a variable with a value

or with another variable. Comparison operators propose a relationship and ask SAS to
determine whether that relationship holds. For example, the following WHERE
expression accesses only those observations that have the value 78753 for the numeric
variable ZIPCODE:

where zipcode eq 78753;

The following table lists the comparison operators:

Table 18.2 Comparison Operators

Symbol Mnemonic
Equivalent

Definition Example

= EQ equal to where empnum eq 3374;

^= or ~= or = NE not equal to where status ne fulltime;

> GT greater than where hiredate gt
’01jun1982’d;

234 Specifying an Operator 4 Chapter 18

Symbol Mnemonic
Equivalent

Definition Example

< LT less than where empnum < 2000;

>= GE greater than or equal to where empnum >= 3374;

<= LE less than or equal to where empnum <= 3374;

IN equal to one from a list of
values

where state in (’NC’,’TX’);

When you do character comparisons, you can use the colon (:) modifier to compare
only a specified prefix of a character string. For example, in the following WHERE
expression, the colon modifier, used after the equals sign, tells SAS to look at only the
first character in the values for variable LASTNAME and to select the observations
with names beginning with the letter S:

where lastname=: ’S’;

Note that in the SQL procedure, the colon modifier used in conjunction with an operator
is not supported; you can use the LIKE operator instead.

IN Operator
The IN operator, which is a comparison operator, searches for character and numeric

values that are equal to one from a list of values. The list of values must be in
parentheses, with each character value in quotation marks and separated by either a
comma or blank.

For example, suppose you want all sites that are in North Carolina or Texas. You
could specify:

where state = ’NC’ or state = ’TX’;

However, the easier way would be to use the IN operator, which says you want any
state in the list:

where state in (’NC’,’TX’);

In addition, you can use the NOT logical operator to exclude a list. For example,

where state not in (’CA’, ’TN’, ’MA’);

Fully-Bounded Range Condition
A fully-bounded range condition consists of a variable between two comparison

operators, specifying both an upper and lower limit. For example, the following
expression returns the employee numbers that fall within the range of 500 to 1000
(inclusive):

where 500 <= empnum <= 1000;

Note that the previous range condition expression is equivalent to the following:

where empnum >= 500 and empnum <= 1000;

You can combine the NOT logical operator with a fully-bounded range condition to
select observations that fall outside the range. Note that parentheses are required:

where not (500 <= empnum <= 1000);

WHERE-Expression Processing 4 Specifying an Operator 235

BETWEEN-AND Operator
The BETWEEN-AND operator is also considered a fully-bounded range condition

that selects observations in which the value of a variable falls within an inclusive range
of values.

You can specify the limits of the range as constants or expressions. Any range you
specify is an inclusive range, so that a value equal to one of the limits of the range is
within the range. The general syntax for using BETWEEN-AND is:

WHERE variable BETWEEN value AND value;

For example:

where empnum between 500 and 1000;
where taxes between salary*0.30 and salary*0.50;

You can combine the NOT logical operator with the BETWEEN-AND operator to
select observations that fall outside the range:

where empnum not between 500 and 1000;

Note: The BETWEEN-AND operator and a fully-bounded range condition produce
the same results. That is, the following WHERE expressions are equivalent:

where 500 <= empnum <= 1000;
where empnum between 500 and 1000;

4

CONTAINS Operator
The most common usage of the CONTAINS (?) operator is to select observations by

searching for a specified set of characters within the values of a character variable. The
position of the string within the variable’s values does not matter; however, the
operator is case sensitive when making comparisons.

The following examples select observations having the values Mobay and Brisbayne
for the variable COMPANY, but they do not select observations containing Bayview:

where company contains ’bay’;
where company ? ’bay’;

You can combine the NOT logical operator with the CONTAINS operator to select
observations that are not included in a specified string:

where company not contains ’bay’;

You can also use the CONTAINS operator with two variables, that is, to determine if
one variable is contained in another. When you specify two variables, keep in mind the
possibility of trailing spaces, which can be resolved using the TRIM function. For
example:

proc sql;
select *
from table1 as a, table 2 as b
where a.fullname contains trim(b.lastname) and

a.fullname contains trim(b.firstname);

In addition, the TRIM function is helpful when you search on a macro variable. For
example:

proc print;
where fullname contains trim("&lname");

236 Specifying an Operator 4 Chapter 18

run;

IS NULL or IS MISSING Operator
The IS NULL or IS MISSING operator selects observations in which the value of a

variable is missing. The operator selects observations with both regular or special
missing value characters and can be used for both character and numeric variables. For
example:

where idnum is missing
where name is null;

Using the above examples, the following is equivalent for character data:

where name = ’ ’;

And the following is equivalent for numeric data for which missing values can be
differentiated with special missing value characters:

where idnum <= .Z;

You can combine the NOT logical operator with IS NULL or IS MISSING to select
nonmissing values, as follows:

where salary is not missing;

LIKE Operator
The LIKE operator selects observations by comparing the values of a character

variable to a specified pattern, which is referred to as pattern matching. The LIKE
operator is case sensitive. There are two special characters available for specifying a
pattern:

percent sign (%) specifies that any number of characters can occupy that position.
The following WHERE expression selects all employees with a name
that starts with the letter N. The names can be of any length.

where lastname like ’N%’;

underscore (_) matches just one character in the value for each underscore
character. You can specify more than one consecutive underscore
character in a pattern, and you can specify a percent sign and an
underscore in the same pattern. For example, you can use different
forms of the LIKE operator to select character values from this list
of first names:

Diana

Diane

Dianna

Dianthus

Dyan

The following table shows which of these names is selected by various forms using
the LIKE operators:

WHERE-Expression Processing 4 Specifying an Operator 237

Pattern Name Selected

like ’D_an’ Dyan

like ’D_an_’ Diana, Diane

like ’D_an__’ Dianna

like ’D_an%’ all names from list

You can use a SAS character expression to specify a pattern, but you cannot use a
SAS character expression that uses a SAS function.

You can combine the NOT logical operator with LIKE to select values that do not
have the specified pattern, such as:

where frstname not like ’D_an%’;

Sounds-like Operator
The sounds-like (=*) operator selects observations that contain a spelling variation

of a specified word or words. The operator uses the Soundex algorithm to compare the
variable value and the operand. For more information on the Soundex algorithm, see
the SOUNDEX function in the SAS Language Reference: Dictionary.

Although the sounds-like operator is useful, it does not always select all possible
values. For example, consider that you want to select observations from the following
list of names that sound like Smith:

Schmitt
Smith
Smithson
Smitt
Smythe

The following WHERE expression selects all the names from this list except Schmitt
and Smithson:

where lastname=* ’Smith’;

You can combine the NOT logical operator with the sounds-like operator to select
values that do not contain a spelling variation of a specified word or words, such as:

where lastname not =* ’Smith’;

Note: The sounds-like operator cannot be optimized with an index. 4

SAME-AND Operator
Use the SAME-AND operator to add more conditions to an existing WHERE

expression later in the program without retyping the original conditions. This is useful
with:

� interactive SAS procedures
� full-screen SAS procedures that allow you to type a WHERE expression on the

command line
� any kind of RUN-group processing.

Use the SAME-AND operator when you already have a WHERE expression defined
and you want to insert additional conditions. The SAME-AND operator has the
following form:

238 Specifying an Operator 4 Chapter 18

where-expression-1;
. . . SAS statements. . .
WHERE SAME AND where-expression-2;
. . . SAS statements. . .
WHERE SAME AND where-expression-n;

SAS selects observations that satisfy the conditions after the SAME-AND operator in
addition to any previously defined conditions. SAS treats all of the existing conditions
as though they were conditions separated by AND operators in a single WHERE
expression.

The following example shows how to use the SAME-AND operator within RUN
groups in the GPLOT procedure. The SAS data set YEARS has three variables and
contains quarterly data for the 1990–1997 period:

proc gplot data=years;
plot unit*quar=year;

run;

where year > ’01jan1991’d;
run;

where same and year < ’01jan1996’d;
run;

The following WHERE expression is equivalent to the preceding code:

where year > ’01jan1991’d and year < ’01jan1996’d;

MIN and MAX Operators
Use the MIN and MAX operators to find the minimum or maximum value of two

quantities. Surround the operators with the two quantities whose minimum or
maximum value you want to know.

� The MIN operator returns the lower of the two values.
� The MAX operator returns the higher of two values.

For example, if A is less than B, then the following would return the value of A:

where x = (a min b);

Note: The symbol representation >< is not supported, and <> is interpreted as not
equals. 4

Concatenation Operator
The concatenation operator concatenates character values. You indicate the

concatenation operator as follows:
� || (two OR symbols)
� !! (two explanation marks)
� ¦¦ (two broken vertical bars).

For example,

where name = ’John’||’Smith’;

Prefix Operators
The plus sign (+) and minus sign (-) can be either prefix operators or arithmetic

operators. They are prefix operators when they appear at the beginning of an

WHERE-Expression Processing 4 Processing Compound Expressions 239

expression or immediately preceding a left parentheses. A prefix operator is applied to
the variable, constant, SAS function, or parenthetic expression. For example,

where z = −(x + y);

Note: The NOT operator is also considered a prefix operator. 4

Combining Expressions Using Logical Operators

Syntax
You can combine or modify WHERE expressions by using the logical operators (also

called Boolean operators) AND, OR, and NOT. The basic syntax of a compound WHERE
expression is:

WHERE where-expression-1 logical-operator where-expression-n ;

AND combines two conditions by finding observations that satisfy both
conditions. For example:

where skill eq ’cobol’ and years eq 4;

OR combines two conditions by finding observations that satisfy either
condition or both. For example:

where skill eq ’cobol’ or years eq 4;

NOT modifies a condition by finding the complement of the specified
criteria. You can use the NOT logical operator in combination with
any SAS and WHERE expression operator. And you can combine the
NOT operator with AND and OR. For example:

where skill not eq ’cobol’ or years not eq 4;

The logical operators and their equivalent symbols are shown in the following table:

Table 18.3 Logical (Boolean) Operators

Symbol Mnemonic Equivalent

& AND

! or | or ¦ OR

^ or ~ or NOT

Processing Compound Expressions
When SAS encounters a compound WHERE expression (multiple conditions), the

software follows rules to determine the order in which to evaluate each expression.
When WHERE expressions are combined, SAS processes the conditions in a specific
order:

1 The NOT expression is processed first.
2 Then the expressions joined by AND are processed.

240 Using Parentheses to Control Order of Evaluation 4 Chapter 18

3 Finally, the expressions joined by OR are processed.

For a complete discussion of the rules for evaluating compound expressions, see
“Order of Evaluation in Compound Expressions” on page 144.

Using Parentheses to Control Order of Evaluation
Even though SAS evaluates logical operators in a specific order, you can control the

order of evaluation by nesting expressions in parentheses. That is, an expression
enclosed in parentheses is processed before one not enclosed. The expression within the
innermost set of parentheses is processed first, followed by the next deepest, moving
outward until all parentheses have been processed.

For example, suppose you want a list of all the Canadian sites that have both
SAS/GRAPH and SAS/FSP software, so you issue the following expression:

where product=’GRAPH’ or product=’FSP’ and country=’Canada’;

The result, however, includes all sites that license SAS/GRAPH software along with
the Canadian sites that license SAS/FSP software. To obtain the correct results, you
can use parentheses, which causes SAS to evaluate the comparisons within the
parentheses first, providing a list of sites with either product licenses, then the result is
used for the remaining condition:

where (product=’GRAPH’ or product=’FSP’) and country=’Canada’;

Constructing Efficient WHERE Expressions
Indexing a SAS data set can significantly improve performance of WHERE

processing. An index is an optional file that you can create for SAS data files in order to
provide direct access to specific observations. Processing a WHERE expression without
an index requires SAS to sequentially read every observation to find the ones that
match the selection criteria. Having an index allows the software to determine which
observations satisfy the criteria without having to read all the observations, which is
referred to as optimizing the WHERE expression. However, by default, SAS decides
whether to use the index or read the entire data set sequentially. For details on how
SAS uses an index to process a WHERE expression, see “Using an Index for WHERE
Processing” on page 441.

In addition to creating indexes for the data set, here are some guidelines for writing
efficient WHERE expressions:

WHERE-Expression Processing 4 Deciding Whether to Use a WHERE Expression or a Subsetting IF Statement 241

Table 18.4 Constructing Efficient WHERE Expressions

Guideline Efficient Inefficient

Avoid using the LIKE operator
that begins with % or _.

where country like ’A%INA’; where country like ’%INA’;

Avoid using arithmetic
expressions.

where salary > 48000; where salary > 12*4000;

Use the IN operator instead of
a compound expression.

where state in (’NC’ , ’PA’ ,
’VA’);

where state =’NC’ or state =
’PA’ or state = ’VA’;

Deciding Whether to Use a WHERE Expression or a Subsetting IF
Statement

To conditionally select observations from a SAS data set, you can use either a
WHERE expression or a subsetting IF statement. While they both test a condition to
determine if SAS should process an observation, they differ as follows:

� The subsetting IF statement can be used only in a DATA step. A subsetting IF
statement tests the condition after an observation is read into the Program Data
Vector (PDV). If the condition is true, SAS continues processing the current
observation. Otherwise, the observation is discarded, and processing continues
with the next observation.

� You can use a WHERE expression in both a DATA step and SAS procedures, as
well as in a windowing environment, SCL programs, and as a data set option. A
WHERE expression tests the condition before an observation is read into the PDV.
If the condition is true, the observation is read into the PDV and processed. If the
condition is false, the observation is not read into the PDV, and processing
continues with the next observation, which can yield substantial savings when
observations contain many variables or very long character variables (up to 32K
bytes). Additionally, a WHERE expression can be optimized with an index, and
the WHERE expression allows more operators, such as LIKE and CONTAINS.

Note: Although it is generally more efficient to use a WHERE expression and
avoid the move to the PDV prior to processing, if the data set contains
observations with very few variables, the move to the PDV could be cheap.
However, one variable containing 32K bytes of character data is not cheap, even
though it is only one variable. 4

In most cases, you can use either method. However, the following table provides a
list of tasks that require you to use a specific method:

Table 18.5 Tasks Requiring Either WHERE Expression or Subsetting IF Statement

If you want to … Use a …

Make the selection in a procedure without using a preceding
DATA step

WHERE expression

Take advantage of the efficiency available with an indexed data
set

WHERE expression

242 Deciding Whether to Use a WHERE Expression or a Subsetting IF Statement 4 Chapter 18

If you want to … Use a …

Use one of a group of special operators, such as BETWEEN-AND,
CONTAINS, IS MISSING or IS NULL, LIKE, SAME-AND, and
SOUNDS LIKE

WHERE expression

Base the selection on anything other than a variable value that
already exists in a SAS data set, for example, on a value that is
read from raw data or on a value that is calculated or assigned
during the course of the DATA step

subsetting IF

Make the selection at some point during a DATA step rather
than at the beginning

subsetting IF

Execute the selection conditionally subsetting IF

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

