
243

C H A P T E R

19
Optimizing System Performance

Definitions 243
Collecting and Interpreting Performance Statistics 244

Using the FULLSTIMER and STIMER System Options 244

Interpreting FULLSTIMER and STIMER Statistics 244

Techniques for Optimizing I/O 245

Overview of Techniques for Optimizing I/O 245
Using WHERE-Expression Processing 245

Using DROP and KEEP Statements 246

Using LENGTH Statements 246

Using the OBS= and FIRSTOBS= Data Set Options 246

Creating SAS Data Sets 246

Using Indexes 247
Accessing Data Through Views 247

Using Engines Efficiently 247

Setting the BUFNO=, BUFSIZE=, CATCACHE=, and COMPRESS= System Options 248

Techniques for Optimizing Memory Usage 249

Techniques for Optimizing CPU Performance 249
Reducing CPU Time by Using More Memory or Reducing I/O 249

Storing a Compiled Program for Computation-Intensive DATA Steps 249

Reducing Search Time for SAS Executable Files 250

Specifying Variable Lengths 250

Calculating Data Set Size 250

Definitions
performance statistics

are measurements of the total input and output operations (I/O), memory, and
CPU time used to process individual DATA or PROC steps. You can obtain these
statistics by using SAS system options that can help you measure your job’s initial
performance and to determine how to improve performance.

system performance
is measured by the overall amount of I/O, memory, and CPU time that your
system uses to process SAS programs. By using the techniques discussed in the
following sections, you can reduce or reallocate your usage of these three critical
resources to improve system performance. While you may not be able to take
advantage of every technique for every situation, you can choose the ones that are
best suited for a particular situtation.



244 Collecting and Interpreting Performance Statistics 4 Chapter 19

Collecting and Interpreting Performance Statistics

Using the FULLSTIMER and STIMER System Options
The FULLSTIMER and STIMER system options control the printing of performance

statistics in the SAS log. These options produce different results, depending on your
operating environment. See the SAS documentation for your operating environment for
details about the output that SAS generates for these options.

The following output shows an example of the FULLSTIMER output in the SAS log,
as produced in a UNIX operating environment.

Output 19.1 Sample Results of Using the FULLSTIMER Option in a UNIX Operating
Environment

NOTE: DATA statement used:
real time 0.19 seconds
user cpu time 0.06 seconds
system cpu time 0.01 seconds
Memory 460k
Semaphores exclusive 194 shared 9 contended 0
SAS Task context switches 1 splits 0

The STIMER option reports a subset of the FULLSTIMER statistics. The following
output shows an example of the STIMER output in the SAS log in a UNIX operating
environment.

Output 19.2 Sample Results of Using the STIMER Option in a UNIX Operating
Environment

NOTE: DATA statement used:
real time 1.16 seconds
cpu time 0.09 seconds

Operating Environment Information: See the documentation for your operating
environment for information about how STIMER differs from FULLSTIMER in your
operating environment. The information that these options display varies depending on
your operating environment, so statistics that you see might differ from the ones
shown. 4

Interpreting FULLSTIMER and STIMER Statistics
Several types of resource usage statistics are reported by the STIMER and

FULLSTIMER options, including real time (elapsed time) and CPU time. Real time
represents the clock time it took to execute a job or step; it is heavily dependent on the
capacity of the system and the current load. As more users share a particular resource,
less of that resource is available to you. CPU time represents the actual processing time
required by the CPU to execute the job, exclusive of capacity and load factors. If you
must wait longer for a resource, your CPU time will not increase, but your real time
will increase. It is not advisable to use real time as the only criterion for the efficiency



Optimizing System Performance 4 Using WHERE-Expression Processing 245

of your program because you cannot always control the capacity and load demands on
your system. A more accurate assessment of system performance is CPU time, which
decreases more predictably as you modify your program to become more efficient.

The statistics reported by FULLSTIMER relate to the three critical computer
resources: I/O, memory, and CPU time. Under many circumstances, reducing the use of
any of these three resources usually results in better throughput of a particular job and
a reduction of real time used. However, there are exceptions, as described in the
following sections.

Techniques for Optimizing I/O

Overview of Techniques for Optimizing I/O
I/O is one of the most important factors for optimizing performance. Most SAS jobs

consist of repeated cycles of reading a particular set of data to perform various data
analysis and data manipulation tasks. To improve the performance of a SAS job, you
must reduce the number of times SAS accesses disk or tape devices.

To do this, you can modify your SAS programs to process only the necessary variables
and observations by:

� using WHERE processing
� using DROP and KEEP statements
� using LENGTH statements
� using the OBS= and FIRSTOBS= data set options.

You can also modify your programs to reduce the number of times it processes the
data internally by:

� creating SAS data sets

� using indexes
� accessing data through views
� using engines efficiently.

You can reduce the number of data accesses by processing more data each time a
device is accessed by setting the BUFNO=, BUFSIZE=, CATCACHE=, and
COMPRESS= system options.

Sometimes you might be able to use more than one method, making your SAS job
even more efficient.

Using WHERE-Expression Processing
You might be able to use a WHERE statement in a procedure to perform the same

task as a DATA step with a subsetting IF statement. The WHERE statement can
eliminate extra DATA step processing when performing certain analyses because
unneeded observations are not processed.

For example, the following DATA step creates a data set SEATBELT, which contains
only those observations from the AUTO.SURVEY data set for which the value of
SEATBELT is YES. The new data set is then printed.

libname auto ’/users/autodata’;
data seatbelt;

set auto.survey;



246 Using DROP and KEEP Statements 4 Chapter 19

if seatbelt=’yes’;
run;

proc print data=seatbelt;
run;

However, you can get the same output from the PROC PRINT step without creating
a data set if you use a WHERE statement in the PROC PRINT step, as in the following
example:

proc print data=auto.survey;
where seatbelt=’yes’;

run;

The WHERE statement can save resources by eliminating the number of times you
process the data. In this example, you might be able to use less time and memory by
eliminating the DATA step. Also, you use less I/O because there is no intermediate data
set. Note that you cannot use a WHERE statement in a DATA step that reads raw data.

The extent of savings that you can achieve depends on many factors, including the
size of the data set. It is recommended that you test your programs to determine which
is the most efficient solution. See “Deciding Whether to Use a WHERE Expression or a
Subsetting IF Statement” on page 241 for more information.

Using DROP and KEEP Statements
Another way to improve efficiency is to use DROP and KEEP statements to reduce

the size of your observations. When you create a temporary data set and include only
the variables that you need, you can reduce the number of I/O operations that are
required to process the data. See SAS Language Reference: Dictionary for more
information on the DROP and KEEP statements.

Using LENGTH Statements
You can also use LENGTH statements to reduce the size of your observations. When

you include only the necessary storage space for each variable, you can reduce the
number of I/O operations that are required to process the data. Before you change the
length of a numeric variable, however, see “Specifying Variable Lengths” on page 250.
See SAS Language Reference: Dictionary for more information on the LENGTH
statement.

Using the OBS= and FIRSTOBS= Data Set Options
You can also use the OBS= and FIRSTOBS= options to reduce the number of

observations processed. When you create a temporary data set and include only the
necessary observations, you can reduce the number of I/O operations that are required
to process the data. See SAS Language Reference: Dictionary for more information on
the OBS= and FIRSTOBS= data set options.

Creating SAS Data Sets
If you process the same raw data repeatedly, it is usually more efficient to create a

SAS data set. SAS can process SAS data sets more efficiently than it can process raw
data files.



Optimizing System Performance 4 Using Engines Efficiently 247

Another consideration involves whether you are using data sets created with
previous releases of SAS. If you frequently process data sets created with previous
releases, it is sometimes more efficient to convert that data set to a new one by creating
it in the most recent version of SAS. See Chapter 34, “Compatibility of Version 8 with
Earlier Releases,” on page 493 for more information.

Using Indexes
An index is an auxiliary data structure that is used in conjunction with

WHERE-expression processing, BY-group processing, or a MODIFY or SET statement
with the KEY= option to locate and select specific observations by the value of the
indexed variable. By creating and using an index, you can access an observation faster.
Without the index, SAS must start at the top of the data set and read the observations
sequentially to the end of the data set, applying the WHERE clause or BY statement to
each observation. In contrast, an index returns observations in sorted order.

Note: Indexing might or might not, however, improve the performance of an
application. If you are continually rewriting a data set, indexing its variables would be
wasteful because an index must be recreated each time the data set is rewritten. 4

See Chapter 28, “SAS Data Files,” on page 411 for more information about indexes.

Accessing Data Through Views
You can use the SQL procedure or a DATA step to create views of your data. A view

is a stored set of instructions that subsets your data with fewer statements. Also, you
can use a view to group data from several data sets without creating a new one, saving
both processing time and disk space. See Chapter 29, “SAS Data Views,” on page 455
and the SAS Procedures Guide for more details.

Using Engines Efficiently
If you do not specify an engine on a LIBNAME statement, SAS must perform extra

processing steps to determine which engine to associate with the data library. SAS
must look at all of the files in the directory until it has enough information to
determine which engine to use. For example, the following statement is efficient
because it explicitly tells SAS to use a specific engine with the libref FRUITS:

/* Engine specified. */

libname fruits v8 ’/users/myid/mydir’;

The following statement does not explicitly specify the V8 engine; notice the NOTE
about mixed engine types that is generated:

/* Engine not specified. */

libname fruits ’/users/myid/mydir’;

NOTE: Directory for library FRUITS contains
files of mixed engine types.

NOTE: Libref FRUITS was successfully assigned
as follows:
Engine: V8
Physical Name: /users/myid/mydir



248 Setting the BUFNO=, BUFSIZE=, CATCACHE=, and COMPRESS= System Options 4 Chapter 19

Operating Environment Information: In the OS/390 operating environment, you do not
need to specify an engine for certain types of libraries. 4

See Chapter 36, “SAS I/O Engines,” on page 511 for more information about SAS
engines.

Setting the BUFNO=, BUFSIZE=, CATCACHE=, and COMPRESS= System
Options

The following SAS system options can help you reduce the number of disk accesses
that are needed for SAS files, though they might increase memory usage.

BUFNO=
SAS uses the BUFNO= option to adjust the number of open page buffers when it
processes a SAS data set. Increasing this option’s value can improve your
application’s performance by allowing SAS to read more data with fewer passes;
however, your memory usage increases. Experiment with different values for this
option to determine the optimal value for your needs.

Note: You can also use the CBUFNO= system option to control the number of
extra page buffers to allocate for each open SAS catalog. 4

See “System Options” in SAS Language Reference: Dictionary and the SAS
documentation for your operating environment for more details on this option.

BUFSIZE=
When the V8 engine creates a data set, it uses the BUFSIZE= buffer size option to
determine the page size of the data set. In each subsequent I/O operation, SAS
moves the number of pages that is set by the BUFNO= option. Whether you use
your operating environment’s default value or specify a value, the engine always
writes complete pages regardless of how full or empty those pages are.

If you know that the total amount of data is going to be small, you can enforce a
small page size with the BUFSIZE= option, so that the total data set size remains
small and you minimize the amount of wasted space on a page. In contrast, if you
know that you are going to have many observations in a data set, you should
optimize BUFSIZE= so that as little overhead as possible is needed. Note that
each page requires some additional overhead.

Large data sets that are accessed sequentially benefit from larger page sizes
because sequential access reduces the number of system calls that are required to
read the data set. Note that because observations cannot span pages, typically
there is unused space on a page.

“Calculating Data Set Size” on page 250 discusses how to estimate data set size.
See “System Options” in SAS Language Reference: Dictionary and the SAS

documentation for your operating environment for more details on this option.

CATCACHE=
SAS uses this option to determine the number of SAS catalogs to keep open at one
time. Increasing its value can use more memory, although this may be warranted
if your application uses catalogs that will be needed relatively soon by other
applications. (The catalogs closed by the first application are cached and can be
accessed more efficiently by subsequent applications.)

See “System Options” in SAS Language Reference: Dictionary and the SAS
documentation for your operating environment for more details on this option.

COMPRESS=
One further technique that can reduce I/O processing is to store your data as
compressed data sets by using the COMPRESS= data set option. However, storing



Optimizing System Performance 4 Storing a Compiled Program for Computation-Intensive DATA Steps 249

your data this way means that more CPU time is needed to decompress the
observations as they are made available to SAS. But if your concern is I/O, and not
CPU usage, compressing your data may improve the I/O performance of your
application.

See SAS Language Reference: Dictionary for more details on this option.

Techniques for Optimizing Memory Usage
If memory is a critical resource, several techniques can reduce your dependence on

increased memory. However, most of them also increase I/O processing or CPU usage.
However, by increasing memory available to SAS by increasing the value of the

MEMSIZE= system option (or by using the MEMLEAVE= option, in some operating
environments), you can decrease processing time because the amount of time that is
spent on paging, or reading pages of data into memory, is reduced. The SORTSIZE=
and SUMSIZE= system options enable you to limit the amount of memory that is
available to sorting and summarization procedures.

You can also make tradeoffs between memory and other resources, as discussed in
“Reducing CPU Time by Using More Memory or Reducing I/O” on page 249. To make
the most of the I/O subsystem, you must use more and larger buffers. However, these
buffers share space with the other memory demands of your SAS session.

Operating Environment Information: The MEMSIZE= system option is not available
in some operating environments. If MEMSIZE= is available in your operating
environment, it might not increase memory. See the documentation for your operating
environment for more information. 4

Techniques for Optimizing CPU Performance

Reducing CPU Time by Using More Memory or Reducing I/O
Executing a single stream of code takes approximately the same amount of CPU time

each time that code is executed. Optimizing CPU performance in these instances is
usually a tradeoff. For example, you might be able to reduce CPU time by using more
memory, because more information can be read and stored in one operation, but less
memory is available to other processes.

Also, because the CPU performs all the processing that is needed to perform an I/O
operation, an option or technique that reduces the number of I/O operations can also
have a positive effect on CPU usage.

Storing a Compiled Program for Computation-Intensive DATA Steps
Another technique that can improve CPU performance is to store a DATA step that is

executed repeatedly as a compiled program rather than as SAS statements. This is
especially true for large DATA step jobs that are not I/O-intensive. For more
information on storing compiled DATA steps, see Chapter 30, “Creating and Executing
Stored Compiled DATA Step Programs,” on page 465.



250 Reducing Search Time for SAS Executable Files 4 Chapter 19

Reducing Search Time for SAS Executable Files
The PATH= system option specifies the list of directories (or libraries, in some

operating environments) that contain SAS executable files. Your default configuration
file specifies a certain order for these directories. You can rearrange the directory
specifications in the PATH= option so that the most commonly accessed directories are
listed first. Place the least commonly accessed directories last.

Operating Environment Information: The PATH= system option is not available in
some operating environments. See the documentation for your operating environment
for more information. 4

Specifying Variable Lengths
When SAS processes the program data vector, it typically moves the data in one

large operation rather than by individual variables. When data is properly aligned (in
8-byte boundaries), data movement can occur in as little as 2 clock cycles (a single load
followed by a single store). SAS moves unaligned data by more complex means, at worst,
a single byte at a time. This would be at least eight times slower for an 8-byte variable.

Many high performance RISC (Reduced Instruction Set Computer) processors pay a
very large performance penalty for movement of unaligned data. When possible, leave
numeric data at full width (eight bytes). Note that SAS must widen short numeric data
for any arithmetic operation. On the other hand, short numeric data can save both
memory and I/O. You must determine which method is most advantageous for your
operating environment and situtation.

Note: Alignment can be especially important when you process a data set by
selecting only specific variables or when you use WHERE-expression processing. 4

Calculating Data Set Size
If you have already applied optimization techniques but still experience lengthy

processing times or excessive memory usage, the size of your data sets might be very
large, in which case, further improvement might not be possible.

You can estimate the size of a data set by creating a dummy data set that contains the
same variables as your data set. Run the CONTENTS procedure, which shows the size
of each observation. Multiply the size by the number of observations in your data set to
obtain the total number of bytes that must be processed. You can compare processing
statistics with smaller data sets to determine if the performance of the large data sets
is in proportion to their size. If not, further optimization might still be possible.

Note: When you use this technique to calculate the size of a data set, you obtain
only an estimate. Internal requirements, such as the storage of variable names, might
cause the actual data set size to be slightly different. 4



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


