
259

C H A P T E R

21
DATA Step Processing

Definition 259
Overview of DATA Step Processing 260

Flow of Action 260

The Compilation Phase 262

The Execution Phase 262

Processing a DATA Step: A Walkthrough 263
Sample DATA Step 263

Creating the Input Buffer and the Program Data Vector 263

Reading a Record 264

Writing an Observation to the SAS Data Set 265

Reading the Next Record 266

When the DATA Step Finishes Executing 267
DATA Step Execution 268

The Default Sequence of Execution in the DATA Step 268

Changing the Default Sequence of Execution 269

Using Statements to Change the Default Sequence of Execution 269

Using Functions to Change the Default Sequence of Execution 269
Altering the Flow for a Given Observation 269

Step Boundary — How To Know When Statements Take Effect 271

What Causes a DATA Step to Stop Executing 272

Creating a SAS Data Set with a DATA Step 273

Creating a SAS Data File or a SAS Data View 273
Sources of Input Data 273

Reading Raw Data 274

Example 1: Reading External File Data 274

Example 2: Reading Instream Data Lines 274

Example 3: Reading Instream Data Lines with Missing Values 275

Example 4: Using Multiple Input Files in Instream Data 275
Reading Data from SAS Data Sets 276

Generating Data from Programming Statements 276

Writing a Report with a DATA Step 277

Example 1: Creating a Report without Creating a Data Set 277

Example 2: Creating a Customized Report 278
The Output Delivery System (ODS) 282

Definition
Using the DATA step is the primary method for creating a SAS data set with base

SAS software. There are two kinds of SAS data sets: SAS data files and SAS data
views. A SAS data file contains both a data portion and a data descriptor portion. A

260 Overview of DATA Step Processing 4 Chapter 21

SAS data view uses descriptor information and data from other files. A DATA step is a
group of SAS language statements that begin with a DATA statement. The DATA
statement is followed by other programming statements that manipulate existing SAS
data sets or create SAS data sets from raw data files.

You can use the DATA step for
� creating SAS data sets (SAS data files or SAS data views)
� creating SAS data sets from input files that contain raw data (external files)
� creating new SAS data sets from existing ones by subsetting, merging, modifying,

and updating existing SAS data sets
� analyzing, manipulating, or presenting your data
� computing the values for new variables
� report writing, or writing files to disk or tape
� retrieving information
� file management.

Note: A DATA step creates a SAS data set. This data set can be a SAS data file or a
SAS data view. A SAS data file stores data values while a SAS data view stores
instructions for retrieving and processing data. When you can use a SAS data view as a
SAS data file, as is true in most cases, this book uses the broader term SAS data set. 4

Note: In addition to the DATA step, several procedures in base SAS software create
a SAS data set as part of their output. You can also use the FSEDIT and FSVIEW
procedures in SAS/FSP to create and edit SAS data sets. 4

Overview of DATA Step Processing

Flow of Action
When you submit a DATA step for execution, it is first compiled and then executed.

The following figure shows the flow of action for a typical SAS DATA step.

DATA Step Processing 4 Flow of Action 261

Figure 21.1 Flow of Action in the DATA Step

data-reading
statement:
is there a

record to read?

reads

an input record

executes
additional

executable statements

writes
an observation to
the SAS data set

returns
to the beginning of

the DATA step

compiles
SAS statements

(includes syntax checking)

creates
an input buffer
a program data vector
descriptor information

begins
with a DATA statement

(counts iterations)

sets variable values
to missing in the

program data vector

closes data set;
goes on to the next

DATA or PROC step
NO

YES

Compile Phase

Execution Phase

262 The Compilation Phase 4 Chapter 21

The Compilation Phase
When you submit a DATA step for execution, SAS checks the syntax of the SAS

statements and compiles them, that is, automatically translates the statements into
machine code. In this phase, SAS identifies the type and length of each new variable,
and determines whether a type conversion is necessary for each subsequent reference to
a variable. During the compile phase, SAS creates the following three items:

input buffer is a logical area in memory into which SAS reads each record of raw
data when SAS executes an INPUT statement. Note that this buffer
is created only when the DATA step reads raw data. (When the
DATA step reads a SAS data set, SAS reads the data directly into
the program data vector.)

program data
vector (PDV)

is a logical area in memory where SAS builds a data set, one
observation at a time. When a program executes, SAS reads data
values from the input buffer or creates them by executing SAS
language statements. The data values are assigned to the
appropriate variables in the program data vector. From here, SAS
writes the values to a SAS data set as a single observation.

Along with data set variables and computed variables, the PDV
contains two automatic variables, _N_ and _ERROR_. The _N_
variable counts the number of times the DATA step begins to
iterate. The _ERROR_ variable signals the occurrence of an error
caused by the data during execution. The value of _ERROR_ is
either 0 (indicating no errors exist), or 1 (indicating that one or more
errors have occurred). SAS does not write these variables to the
output data set.

descriptor
information

is information that SAS creates and maintains about each SAS data
set, including data set attributes and variable attributes. It
contains, for example, the name of the data set and its member type,
the date and time that the data set was created, and the number,
names and data types (character or numeric) of the variables.

The Execution Phase
By default, a simple DATA step iterates once for each observation that is being

created. The flow of action in the Execution Phase of a simple DATA step is described
as follows:

1 The DATA step begins with a DATA statement. Each time the DATA statement
executes, a new iteration of the DATA step begins, and the _N_ automatic variable
is incremented by 1.

2 SAS sets the newly created program variables to missing in the program data
vector (PDV).

3 SAS reads a data record from a raw data file into the input buffer, or it reads an
observation from a SAS data set directly into the program data vector. You can use
an INPUT, MERGE, SET, MODIFY, or UPDATE statement to read a record.

4 SAS executes any subsequent programming statements for the current record.
5 At the end of the statements, an output, return, and reset occur automatically.

SAS writes an observation to the SAS data set, the system automatically returns
to the top of the DATA step, and the values of variables created by INPUT and

DATA Step Processing 4 Creating the Input Buffer and the Program Data Vector 263

assignment statements are reset to missing in the program data vector. Note that
variables that you read with a SET, MERGE, MODIFY, or UPDATE statement are
not reset to missing here.

6 SAS counts another iteration, reads the next record or observation, and executes
the subsequent programming statements for the current observation.

7 The DATA step terminates when SAS encounters the end-of-file in a SAS data set
or a raw data file.

Note: The figure shows the default processing of the DATA step. You can code
data-reading statements (such as INPUT or SET), or data-writing statements (such as
OUTPUT), in any order in your program. 4

Processing a DATA Step: A Walkthrough

Sample DATA Step
The following statements provide an example of a DATA step that reads raw data,

calculates totals, and creates a data set:

data total_points (drop=TeamName); u

input TeamName $ ParticipantName $ Event1 Event2 Event3; v

TeamTotal + (Event1 + Event2 + Event3); w

datalines;
Knights Sue 6 8 8
Cardinals Jane 9 7 8
Knights John 7 7 7
Knights Lisa 8 9 9
Knights Fran 7 6 6
Knights Walter 9 8 10
;

u The DROP= data set option prevents the variable TeamName from being written
to the output SAS data set called TOTAL_POINTS.

v The INPUT statement describes the data by giving a name to each variable,
identifying its data type (character or numeric), and identifying its relative
location in the data record.

w The Sum statement accumulates the scores for three events in the variable
TeamTotal.

Creating the Input Buffer and the Program Data Vector
When DATA step statements are compiled, SAS determines whether to create an

input buffer. If the input file contains raw data (as in the example above), SAS creates
an input buffer to hold the data before moving the data to the program data vector
(PDV). (If the input file is a SAS data set, however, SAS does not create an input buffer.
SAS writes the input data directly to the PDV.)

The PDV contains all the variables in the input data set, the variables created in
DATA step statements, and the two variables, _N_ and _ERROR_, that are
automatically generated for every DATA step. The _N_ variable represents the number
of times the DATA step has iterated. The _ERROR_ variable acts like a binary switch

264 Reading a Record 4 Chapter 21

whose value is 0 if no errors exist in the DATA step, or 1 if one or more errors exist.
The following figure shows the Input Buffer and the program data vector after DATA
step compilation.

Figure 21.2 Input Buffer and Program Data Vector

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

1 2 3 4 5

0

Variables that are created by the INPUT and the Sum statements (TeamName,
ParticipantName, Event1, Event2, Event3, and TeamTotal) are set to missing initially.
Note that in this representation, numeric variables are initialized with a period and
character variables are initialized with blanks. The automatic variable _N_ is set to 1;
the automatic variable _ERROR_ is set to 0.

The variable TeamName is marked Drop in the PDV because of the DROP= data set
option in the DATA statement. Dropped variables are not written to the SAS data set.
The _N_ and _ERROR_ variables are dropped because automatic variables created by
the DATA step are not written to a SAS data set. See Chapter 10, “SAS Variables,” on
page 99 for details about automatic variables.

Reading a Record
SAS reads the first data line into the input buffer. The input pointer, which SAS uses

to keep its place as it reads data from the input buffer, is positioned at the beginning of
the buffer, ready to read the data record. The following figure shows the position of the
input pointer in the input buffer before SAS reads the data.

Figure 21.3 Position of the Pointer in the Input Buffer Before SAS Reads Data

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

K n i g h t s S u e 6 8 8

The INPUT statement then reads data values from the record in the input buffer and
writes them to the PDV where they become variable values. The following figure shows

DATA Step Processing 4 Writing an Observation to the SAS Data Set 265

both the position of the pointer in the input buffer, and the values in the PDV after SAS
reads the first record.

Figure 21.4 Values from the First Record are Read into the Program Data Vector

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

Knights Sue 6 8 8

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

K n i g h t s S u e 6 8 8

0

After the INPUT statement reads a value for each variable, SAS executes the Sum
statement. SAS computes a value for the variable TeamTotal and writes it to the PDV.
The following figure shows the PDV with all of its values before SAS writes the
observation to the data set.

Figure 21.5 Program Data Vector with Computed Value of the Sum Statement

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

Knights Sue 6 8 8 22

Writing an Observation to the SAS Data Set
When SAS executes the last statement in the DATA step, all values in the PDV,

except those marked to be dropped, are written as a single observation to the data set
TOTAL_POINTS. The following figure shows the first observation in the
TOTAL_POINTS data set.

Figure 21.6 The First Observation in Data Set TOTAL_POINTS

Output SAS Data Set TOTAL_POINTS: 1st observation

ParticipantName Event1 TeamTotalEvent2 Event3

Sue 6 8 8 22

266 Reading the Next Record 4 Chapter 21

SAS then returns to the DATA statement to begin the next iteration. SAS resets the
values in the PDV in the following way:

� The values of variables created by the INPUT statement are set to missing.
� The value created by the Sum statement is automatically retained.
� The value of the automatic variable _N_ is incremented by 1, and the value of

ERROR is reset to 0.

The following figure shows the current values in the PDV.

Figure 21.7 Current Values in the Program Data Vector

222

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

0

Drop Drop

Reading the Next Record
SAS reads the next record into the input buffer. The INPUT statement reads the

data values from the input buffer and writes them to the PDV. The Sum statement adds
the values of Event1, Event2, and Event3 to TeamTotal. The value of 2 for variable _N_
indicates that SAS is beginning the second iteration of the DATA step. The following
figure shows the input buffer, the PDV for the second record, and the SAS data set with
the first two observations.

DATA Step Processing 4 When the DATA Step Finishes Executing 267

Figure 21.8 Input Buffer, Program Data Vector, and First Two Observations

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

2 0

Drop Drop

Cardinals Jane 9 7 8 46

ParticipantName Event1 TeamTotalEvent2 Event3

Sue 6 8 8 22

Jane 9 7 8 46

Output SAS Data Set TOTAL_POINTS: 1st and 2nd observations

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

C a r d i n a J a n 9 7 8l s e

As SAS continues to read records, the value in TeamTotal grows larger as more
participant scores are added to the variable. _N_ is incremented at the beginning of
each iteration of the DATA step. This process continues until SAS reaches the end of
the input file.

When the DATA Step Finishes Executing
The DATA step stops executing after it processes the last input record. You can use

PROC PRINT to print the output in the TOTAL_POINTS data set:

Output 21.1 Output from the Walkthrough DATA Step

Total Team Scores 1

Participant Team
Obs Name Event1 Event2 Event3 Total

1 Sue 6 8 8 22
2 Jane 9 7 8 46
3 John 7 7 7 67
4 Lisa 8 9 9 93
5 Fran 7 6 6 112
6 Walter 9 8 10 139

268 DATA Step Execution 4 Chapter 21

DATA Step Execution

The Default Sequence of Execution in the DATA Step
The following table outlines the default sequence of execution for statements in a

DATA step. The DATA statement begins the step and identifies usually one or more
SAS data sets that the step will create. (You can use the keyword _NULL_ as the data
set name if you do not want to create an output data set.) Optional programming
statements process your data. SAS then performs the default actions at the end of
processing an observation.

Table 21.1 Default Execution for Statements in a DATA Step

Structure of a DATA Step Action Taken

DATA statement begins the step

counts iterations

Data-reading statements: *

INPUT describes the arrangement of values in the input data
record from a raw data source

SET reads an observation from one or more SAS data sets

MERGE joins observations from two or more SAS data sets
into a single observation

MODIFY replaces, deletes, or appends observations in an
existing SAS data set in place

UPDATE updates a master file by applying transactions

Optional SAS programming statements,
for example:

further processes the data for the current observation.

FirstQuarter=Jan+Feb+Mar;

if RetailPrice < 500;

computes the value for FirstQuarter for the current
observation.

subsets by value of variable RetailPrice for the
current observation

Default actions at the end of processing an
observation

At end of DATA step:

Automatic write, automatic return

At top of DATA step:

Automatic reset

writes an observation to a SAS data set

returns to the DATA statement

resets values to missing in program data vector

* The table shows the default processing of the DATA step. You can alter the sequence of
statements in the DATA step. You can code optional programming statements, such as creating
or reinitializing a constant, before you code a data-reading statement.

Note: You can also use functions to read and process data. For information about
how statements and functions process data differently, see “Using Functions to

DATA Step Processing 4 Changing the Default Sequence of Execution 269

Manipulate Files” on page 48. For specific information about SAS functions, see the
SAS Functions listed under the "SAS I/O Files" and "External Files" categories in the
SAS Functions section of SAS Language Reference: Dictionary. 4

Changing the Default Sequence of Execution

Using Statements to Change the Default Sequence of Execution
You can change the default sequence of execution to control how your program

executes. SAS language statements offer you a lot of flexibility to do this in a DATA
step. The following list shows the most common ways to control the flow of execution in
a DATA step program.

Table 21.2 Common Methods that Alter the Sequence of Execution

When … you can …

Reading a record merge, modify, join data sets

read multiple records to create a single observation

randomly select records for processing

read from multiple external files

read selected fields from a record by using statement or data set
options

Processing data use conditional logic

retain variable values

Writing an observation write to a SAS data set or to an external file

control when output is written to a data set

write to multiple files

For more information, see the individual statements in SAS Language Reference:
Dictionary.

Using Functions to Change the Default Sequence of Execution
You can also use functions to read and process data. For information about how

statements and functions process data differently, see “Using Functions to Manipulate
Files” on page 48. SAS Language Reference: Concepts. For specific information about
SAS functions, see the SAS Functions listed under the "SAS I/O Files" and "External
Files" categories in the SAS Functions section of SAS Language Reference: Dictionary.

Altering the Flow for a Given Observation
You can use statements, statement options, and data set options to alter the way SAS

processes specific observations. The following table lists SAS language elements and
their effects on processing.

270 Changing the Default Sequence of Execution 4 Chapter 21

Table 21.3 Language Elements that Alter Programming Flow

SAS Language Element Function

subsetting IF statement stops the current iteration when a condition is false,
does not write the current observation to the data set,
and returns control to the top of the DATA step.

IF-THEN/ELSE statement stops the current iteration when a conditon is true,
writes the current observation to the data set, and
returns control to the top of the DATA step.

DO loops cause parts of the DATA step to be executed multiple
times.

LINK and RETURN statements alter the flow of control, execute statements following
the label specified, and return control of the program
to the next statement following the LINK statement.

HEADER= option in the FILE statement alters the flow of control whenever a PUT statement
causes a new page of output to begin; statements
following the label specified in the HEADER= option
are executed until a RETURN statement is
encountered, at which time control returns to the
point from which the HEADER= option was activated.

GO TO statement alters the flow of execution by branching to the label
that is specified in the GO TO statement. SAS
executes subsequent statements then returns control
to the beginning of the DATA step.

EOF= option in an INFILE statement alters the flow of execution when the end of the input
file is reached; statements following the label that is
specified in the EOF= option are executed at that
time.

N automatic variable in an IF-THEN
construct

causes parts of the DATA step to execute only for
particular iterations.

SELECT statement conditionally executes one of a group of SAS
statements.

OUTPUT statement in an IF-THEN
construct

outputs an observation before the end of the DATA
step, based on a condition; prevents automatic output
at the bottom of the DATA step.

DELETE statement in an IF-THEN
construct

deletes an observation based on a condition and
causes a return to the top of the DATA step.

DATA Step Processing 4 Step Boundary — How To Know When Statements Take Effect 271

SAS Language Element Function

ABORT statement in an IF-THEN
construct

stops execution of the DATA step and instruct SAS to
resume execution with the next DATA or PROC step.
It can also stop executing a SAS program altogether,
depending on the options specified in the ABORT
statement and on the method of operation.

WHERE statement or WHERE= data set
option

causes SAS to read certain observations based on one
or more specified criteria.

Step Boundary — How To Know When Statements Take Effect
Understanding step boundaries is an important concept in SAS programming

because step boundaries determine when SAS statements take effect. SAS executes
program statements only when SAS crosses a default or an explicit step boundary.
Consider the following DATA steps:

data _null_; u

set allscores(drop=score5-score7);
title ’Student Test Scores’; v

data employees; w

set employee_list;
run;

u The DATA statement begins a DATA step and is a step boundary.
v The TITLE statement is in effect for both DATA steps because it appears before

the boundary of the first DATA step. (Because the TITLE statement is a global
statement,

w The DATA statement is the default boundary for the first DATA step.

The TITLE statement in this example is in effect for the first DATA step as well as
for the second because the TITLE statement appears before the boundary of the first
DATA step. This example uses the default step boundary data employees;.

The following example shows an OPTIONS statement inserted after a RUN
statement.

data scores; u

set allscores(drop=score5-score7);
run; v

options firstobs=5 obs=55; w

data test;
set alltests;

run;

The OPTIONS statement specifies that the first observation that is read from the
input data set should be the 5th, and the last observation that is read should be the
55th. Inserting a RUN statement immediately before the OPTIONS statement causes
the first DATA step to reach its boundary (run;)before SAS encounters the OPTIONS
statement. In this case, the step boundary is explicit. The OPTIONS statement
settings, therefore, are put into effect for the second DATA step only.

272 What Causes a DATA Step to Stop Executing 4 Chapter 21

u The DATA statement is a step boundary.
v The RUN statement is the explicit boundary for the first DATA step.
w The OPTIONS statement affects the second DATA step only.

Following the statements in a DATA step with a RUN statement is the simplest way
to make the step begin to execute, but a RUN statement is not always necessary. SAS
recognizes several step boundaries for a SAS step:

� another DATA statement
� a PROC statement
� a RUN statement.

Note: For SAS programs executed in interactive mode, a RUN statement is
required to signal the step boundary for the last step you submit. 4

� the semicolon (with a DATALINES or CARDS statement) or four semicolons (with
a DATALINES4 or CARDS4 statement) after data lines

� an ENDSAS statement
� in noninteractive or batch mode, the end of a program file containing SAS

programming statements
� a QUIT statement (for some procedures).

When you submit a DATA step during interactive processing, it does not begin
running until SAS encounters a step boundary. This fact enables you to submit
statements as you write them while preventing a step from executing until you have
entered all the statements.

What Causes a DATA Step to Stop Executing
DATA steps stop executing under different circumstances, depending on the type and

number of sources of input.

Table 21.4 Causes that Stop DATA Step Execution

A DATA step that reads … from … with these
statements

stops …

no data after only one
iteration

any data when it executes
STOP or ABORT

when the data is
exhausted

raw data instream data lines INPUT statement after the last data
line is read

one external file INPUT and INFILE
statements

when end-of-file is
reached

multiple external
files

INPUT and INFILE
statements

when end-of-file is
first reached on any
of the files

observations sequentially one SAS data set SET and MODIFY
statements

after the last
observation is read

DATA Step Processing 4 Sources of Input Data 273

A DATA step that reads … from … with these
statements

stops …

multiple SAS data
sets

one SET, MERGE,
MODIFY, or
UPDATE statement

when all input data
sets are exhausted

multiple SAS data
sets

multiple SET,
MERGE, MODIFY,
or UPDATE
statements

when end-of-file is
reached by any of
the data-reading
statements

A DATA step that reads observations from a SAS data set with a SET statement that
uses the POINT= option has no way to detect the end of the input SAS data set. (This
method is called direct or random access.) Such a DATA step usually requires a STOP
statement.

A DATA step also stops when it executes a STOP or an ABORT statement. Some
system options and data set options, such as OBS=, can cause a DATA step to stop
earlier than it would otherwise.

Creating a SAS Data Set with a DATA Step

Creating a SAS Data File or a SAS Data View
You can create either a SAS data file, a data set that holds actual data, or a SAS

data view, a data set that references data that is stored elsewhere. By default, you
create a SAS data file. To create a SAS data view instead, use the VIEW= option on the
DATA statement. With a data view you can, for example, process monthly sales figures
without having to edit your DATA step. Whenever you need to create output, the output
from a data view reflects the current input data values.

The following DATA statement creates a data view called MONTHLY_SALES.

data monthly_sales / view=monthly_sales;

The following DATA statement creates a data file called TEST_RESULTS.

data test_results;

Sources of Input Data
You select data-reading statements based on the source of your input data. There are

at least six sources of input data:
� raw data in an external file
� raw data in the jobstream (instream data)
� data in SAS data sets
� data that is created by programming statements
� data that you can remotely access through an FTP protocol, TCP/IP socket, a SAS

catalog entry, or through a URL
� data that is stored in a Database Management System (DBMS) or other vendor’s

data files.

Usually DATA steps read input data records from only one of the first three sources
of input. However, DATA steps can use a combination of some or all of the sources.

274 Reading Raw Data 4 Chapter 21

Reading Raw Data

Example 1: Reading External File Data
The components of a DATA step that produce a SAS data set from raw data stored in

an external file are outlined here.

data weight; u

infile ’your-input-file’; v

input IDnumber $ Week1 Week16; w

WeightLoss=Week1-Week16; x

run; y

proc print data=weight; U

run; V

u Begin the DATA step and create a SAS data set called WEIGHT.

v Specify the external file that contains your data.

w Read a record and assign values to three variables.

x Calculate a value for variable WeightLoss.

y Execute the DATA step.

U Print data set WEIGHT using the PRINT procedure.

V Execute the PRINT procedure.

Example 2: Reading Instream Data Lines
This example reads raw data from instream data lines.

data weight2; u

input IDnumber $ Week1 Week16; v

WeightLoss2=Week1-Week16; w

datalines; x

2477 195 163
2431 220 198
2456 173 155
2412 135 116
; y

proc print data=weight2; U

run; V

u Begin the DATA step and create SAS data set WEIGHT2.

v Read a data line and assign values to three variables.

w Calculate a value for variable WeightLoss2.

x Begin the data lines.

y Signal end of data lines with a semicolon and execute the DATA step.

U Print data set WEIGHT2 using the PRINT procedure.

V Execute the PRINT procedure.

DATA Step Processing 4 Reading Raw Data 275

Example 3: Reading Instream Data Lines with Missing Values
You can also take advantage of options on the INFILE statement when you read

instream data lines. This example shows the use of the MISSOVER statement option,
which assigns missing values to variables for records that contain no data for those
variables.

data weight2;
infile datalines missover; u

input IDnumber $ Week1 Week16;
WeightLoss2=Week1-Week16;
datalines; v

2477 195 163
2431
2456 173 155
2412 135 116
; w

proc print data=weight2; x

run; y

u Use the MISSOVER option to assign missing values to variables that do not
contain values.

v Begin data lines.
w Signal end of data lines and execute the DATA step.
x Print data set WEIGHT2 using the PRINT procedure.
y Execute the PRINT procedure.

Example 4: Using Multiple Input Files in Instream Data
This example shows how to use multiple input files as instream data to your

program. This example reads the records in each file and creates the ALL_ERRORS
SAS data set. The program then sorts the observations by Station, and creates a sorted
data set called SORTED_ERRORS. The print procedure prints the results.

options pageno=1 nodate linesize=60 pagesize=80;

data all_errors;
length filelocation $ 60;
input filelocation; /* reads instream data */
infile daily filevar=filelocation

filename=daily end=done;
do while (not done);

input Station $ Shift $ Employee $ NumberOfFlaws;
output;

end;
put ’Finished reading ’ daily=;
datalines;

. . .myfile_A. . .

. . .myfile_B. . .

. . .myfile_C. . .
;

276 Reading Data from SAS Data Sets 4 Chapter 21

proc sort data=all_errors out=sorted_errors;
by Station;

run;

proc print data = sorted_errors;
title ’Flaws Report sorted by Station’;

run;

Output 21.2 Multiple Input Files in Instream Data

Flaws Report sorted by Station 1

Number
Obs Station Shift Employee OfFlaws

1 Amherst 2 Lynne 0
2 Goshen 2 Seth 4
3 Hadley 2 Jon 3
4 Holyoke 1 Walter 0
5 Holyoke 1 Barb 3
6 Orange 2 Carol 5
7 Otis 1 Kay 0
8 Pelham 2 Mike 4
9 Stanford 1 Sam 1

10 Suffield 2 Lisa 1

Reading Data from SAS Data Sets
This example reads data from one SAS data set, generates a value for a new

variable, and creates a new data set.

data average_loss; u

set weight; v

Percent=round((AverageLoss * 100) / Week1); w

run; x

u Begin the DATA step and create a SAS data set called AVERAGE_LOSS.
v Read an observation from SAS data set WEIGHT.
w Calculate a value for variable Percent.
x Execute the DATA step.

Generating Data from Programming Statements
You can create data for a SAS data set by generating observations with programming

statements rather than by reading data. A DATA step that reads no input goes through
only one iteration.

data investment; u

begin=’01JAN1990’d;
end=’31DEC2009’d;
do year=year(begin) to year(end); v

DATA Step Processing 4 Example 1: Creating a Report without Creating a Data Set 277

Capital+2000 + .07*(Capital+2000);
output; w

end;
put ’The number of DATA step iterations is ’_n_; x

run; y

proc print data=investment; U

format Capital dollar12.2; V

run; W

u Begin the DATA step and create a SAS data set called INVESTMENT.
v Calculate a value based on a $2,000 capital investment and 7% interest each year

from 1990 to 2009. Calculate variable values for one observation per iteration of
the DO loop.

w Write each observation to data set INVESTMENT.
x Write a note to the SAS log proving that the DATA step iterates only once.
y Execute the DATA step.
U To see your output, print the INVESTMENT data set with the PRINT procedure.
V Use the FORMAT statement to write numeric values with dollar signs, commas,

and decimal points.
W Execute the PRINT procedure.

Writing a Report with a DATA Step

Example 1: Creating a Report without Creating a Data Set
You can use a DATA step to generate a report without creating a data set by using

NULL in the DATA statement. This approach saves system resources because SAS
does not create a data set. The report can contain both TITLE statements and
FOOTNOTE statements. If you use a FOOTNOTE statement, be sure to include
FOOTNOTE as an option on the FILE statement in the DATA step.

title1 ’Budget Report’; u

title2 ’Mid-Year Totals by Department’;
footnote ’compiled by Manager,
Documentation Development Department’; v

data _null_; w

set budget; x

file print footnote; y

MidYearTotal=Jan+Feb+Mar+Apr+May+Jun; U

if _n_=1 then V

do;
put @5 ’Department’ @30 ’Mid-Year Total’;

end;
put @7 Department @35 MidYearTotal; W

run; X

u Define titles.

278 Example 2: Creating a Customized Report 4 Chapter 21

v Define the footnote.
w Begin the DATA step. _NULL_ specifies that no data set will be created.
x Read one observation per iteration from data set BUDGET.
y Name the output file for the PUT statements and use the PRINT fileref. By

default, the PRINT fileref specifies that the file will contain carriage control
characters and titles. The FOOTNOTE option specifies that each page of output
will contain a footnote.

U Calculate a value for the variable MidYearTotal on each iteration.
V Write variable name headings for the report on the first iteration only.
W Write the current values of variables Department and MidYearTotal for each

iteration.
X Execute the DATA step.

The example above uses the FILE statement with the PRINT fileref to produce
listing output. If you want to print to a file, specify a fileref or a complete file name.
Use the PRINT option if you want the file to contain carriage control characters and
titles. The following example shows how to use the FILE statement in this way.

file ’external-file’ footnote print;

You can also use the data _null_; statement to write to an external file. For more
information about writing to external files, see the “FILE” statement in SAS Language
Reference: Dictionary, and the SAS documentation for your operating environment.

Example 2: Creating a Customized Report
You can create very detailed, fully customized reports by using a DATA step with

PUT statements. The following example shows a customized report that contains three
distinct sections: a header, a table, and a footer. It contains existing SAS variable
values, constant text, and values that are calculated as the report is written.

DATA Step Processing 4 Example 2: Creating a Customized Report 279

Output 21.3 Sample of a Customized Report

Expense Report 1

Around The World Retailers

EMPLOYEE BUSINESS, TRAVEL, AND TRAINING EXPENSE REPORT

Employee Name: ALEJANDRO MARTINEZ Destination: CARY, NC Departure Date: 11JUL1999

Department: SALES & MARKETING Purpose of Trip/Activity: MARKETING TRAINING Return Date: 16JUL1999

Trip ID#: 93-0002519 Activity from: 11JUL1999

to: 16JUL1999

+-----------------------------------+--------+--------+--------+--------+--------+--------+--------+--------+

| | SUN | MON | TUE | WED | THU | FRI | SAT | | PAID BY PAID BY

| EXPENSE DETAIL | 07/11 | 07/12 | 07/13 | 07/14 | 07/15 | 07/16 | 07/17 | TOTALS | COMPANY EMPLOYEE

|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|

|Lodging, Hotel | 92.96| 92.96| 92.96| 92.96| 92.96| | | 464.80| 464.80

|Telephone | 4.57| 4.73| | | | | | 9.30| 9.30

|Personal Auto 36 miles @.28/mile | 5.04| | | | | 5.04| | 10.08| 10.08

|Car Rental, Taxi, Parking, Tolls | | 35.32| 35.32| 35.32| 35.32| 35.32| | 176.60| 176.60

|Airlines, Bus, Train (Attach Stub) | 485.00| | | | | 485.00| | 970.00| 970.00

|Dues | | | | | | | | |

|Registration Fees | 75.00| | | | | | | 75.00| 75.00

|Other (explain below) | | | | | | 5.00| | 5.00| 5.00

|Tips (excluding meal tips) | 3.00| | | | | 3.00| | 6.00| 6.00

|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|

|Meals | | | | | | | | |

|Breakfast | | | | | | 7.79| | 7.79| 7.79

|Lunch | | | | | | | | |

|Dinner | 36.00| 28.63| 36.00| 36.00| 30.00| | | 166.63| 166.63

|Business Entertainment | | | | | | | | |

|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|

|TOTAL EXPENSES | 641.57| 176.64| 179.28| 179.28| 173.28| 541.15| | 1891.20| 1611.40 279.80

+-----------------------------------+--------+--------+--------+--------+--------+--------+--------+--------+

Travel Advance to Employee .. $0.00

Reimbursement due Employee (or ATWR) .. $279.80

Other: (i.e. miscellaneous expenses and/or names of employees sharing receipt.)

16JUL1999 CAR RENTAL INCLUDE $5.00 FOR GAS

APPROVED FOR PAYMENT BY: Authorizing Manager: ___ Emp. # _______

Employee Signature: ___ Emp. # 1118

Charge to Division: ATW Region: TX Dept: MKT Acct: 6003 Date: 27JUL1999

The code shown below generates the report example (you must create your own input
data). It is beyond the scope of this discussion to fully explain the code that generated
the report example. For a complete explanation of this example, see SAS Guide to
Report Writing: Examples.

280 Example 2: Creating a Customized Report 4 Chapter 21

options ls=132 ps=66 pageno=1 nodate;

data travel;

/* infile ’SAS-data-set’ missover; */
infile ’/u/lirezn/input_for_concepts.dat’ missover;

input acct div $ region $ deptchg $ rptdate : date9.
other1-other10 /
empid empname & $char35. / dept & $char35. /
purpose & $char35. / dest & $char35. / tripid & $char35. /
actdate2 date9. /
misc1 & $char75. / misc2 & $char75. / misc3 & $char75. /
misc4 & $char75. /
misc5 & $char75. / misc6 & $char75. / misc7 & $char75. /
misc8 & $char75. /
dptdate : date9. rtrndate : date9. automile permile /
hotel1-hotel10 /
phone1-phone10 / peraut1-peraut10 / carrnt1-carrnt10 /
airlin1-airlin10 / dues1-dues10 / regfee1-regfee10 /
tips1-tips10 / meals1-meals10 / bkfst1-bkfst10 /
lunch1-lunch10 / dinner1-dinner10 / busent1-busent10 /
total1-total10 / empadv reimburs actdate1 : date9.;

run;

proc format;
value category 1=’Lodging, Hotel’

2=’Telephone’
3=’Personal Auto’
4=’Car Rental, Taxi, Parking, Tolls’
5=’Airlines, Bus, Train (Attach Stub)’
6=’Dues’
7=’Registration Fees’
8=’Other (explain below)’
9=’Tips (excluding meal tips)’

10=’Meals’
11=’Breakfast’
12=’Lunch’
13=’Dinner’
14=’Business Entertainment’
15=’TOTAL EXPENSES’;

value blanks 0=’ ’
other=(|8.2|);

value $cuscore ’ ’=’________’;
value nuscore . =’________’;

run;

data _null_;
file print;
title ’Expense Report’;
format rptdate actdate1 actdate2 dptdate rtrndate date9.;
set travel;

array expenses{15,10} hotel1-hotel10 phone1-phone10
peraut1-peraut10 carrnt1-carrnt10

DATA Step Processing 4 Example 2: Creating a Customized Report 281

airlin1-airlin10 dues1-dues10
regfee1-regfee10 other1-other10
tips1-tips10 meals1-meals10
bkfst1-bkfst10 lunch1-lunch10
dinner1-dinner10 busent1-busent10
total1-total10;

array misc{8} $ misc1-misc8;
array mday{7} mday1-mday7;
dptday=weekday(dptdate);
mday{dptday}=dptdate;
if dptday>1 then

do dayofwk=1 to (dptday-1);
mday{dayofwk}=dptdate-(dptday-dayofwk);

end;
if dptday<7 then

do dayofwk=(dptday+1) to 7;
mday{dayofwk}=dptdate+(dayofwk-dptday);

end;
if rptdate=. then rptdate="&sysdate9"d;

tripnum=substr(tripid,4,2)||’-’||substr(scan(tripid,1),6);

put // @1 ’Around The World Retailers’ //

@1 ’EMPLOYEE BUSINESS, TRAVEL, AND TRAINING EXPENSE REPORT’ ///

@1 ’Employee Name: ’ @16 empname
@44 ’Destination: ’ @57 dest
@106 ’Departure Date:’ @122 dptdate /

@4 ’Department: ’ @16 dept
@44 ’Purpose of Trip/Activity: ’ @70 purpose
@109 ’Return Date:’ @122 rtrndate /

@6 ’Trip ID#: ’ @16 tripnum
@107 ’Activity from:’ @122 actdate1 /

@118 ’to:’ @122 actdate2 //
@1 ’+-----------------------------------+--------+--------+’

’--------+--------+--------+--------+--------+--------+’ /

@1 ’| | SUN | MON |’
’ TUE | WED | THU | FRI | SAT | |’
’ PAID BY PAID BY’ /

@1 ’| EXPENSE DETAIL ’
’ | ’ mday1 mmddyy5. ’ | ’ mday2 mmddyy5.
’ | ’ mday3 mmddyy5. ’ | ’ mday4 mmddyy5.
’ | ’ mday5 mmddyy5. ’ | ’ mday6 mmddyy5.
’ | ’ mday7 mmddyy5.

@100 ’| TOTALS | COMPANY EMPLOYEE’ ;
do i=1 to 15;

if i=1 or i=10 or i=15 then

282 The Output Delivery System (ODS) 4 Chapter 21

put @1 ’|-----------------------------------|--------|--------|’
’--------|--------|--------|--------|--------|--------|’;

if i=3 then
put @1 ’|’ i category. @16 automile 4.0 @21 ’miles @’

@28 permile 3.2 @31 ’/mile’ @37 ’|’ @;
else put @1 ’|’ i category. @37 ’|’ @;

col=38;
do j=1 to 10;

if j<9 then put @col expenses{i,j} blanks8. ’|’ @;
else if j=9 then put @col expenses{i,j} blanks8. @;
else put @col expenses{i,j} blanks8.;

col+9;
if j=8 then col+2;

end;
end;
Put @1 ’+-----------------------------------+--------+--------+’

’--------+--------+--------+--------+--------+--------+’ //

@1 ’Travel Advance to Employee’
’...’

@121 empadv dollar8.2 //

@1 ’Reimbursement due Employee (or ATWR)’
’...’

@121 reimburs dollar8.2 //

@1 ’Other: (i.e. miscellaneous expenses and/or names of ’
’employees sharing receipt.)’ /;

do j=1 to 8;
put @1 misc{j} ;

end;
put / @1 ’APPROVED FOR PAYMENT BY: Authorizing Manager:’

@48 ’___’
@100 ’Emp. # _______’ ///

@27 ’Employee Signature:’
@48 ’___’
@100 ’Emp. # ’ empid ///

@6 ’Charge to Division:’ @26 div $cuscore.
@39 ’Region:’ @48 region $cuscore.
@59 ’Dept:’ @66 deptchg $cuscore.
@79 ’Acct:’ @86 acct nuscore.
@100 ’Date:’ @107 rptdate /
page;

run;

The Output Delivery System (ODS)
The Output Delivery System (ODS) is a method of delivering output in a variety of

formats and making these formats easy to access. ODS provides templates that define
the structure of the output from DATA steps and from PROC steps. The DATA step
allows you to use the ODS option in a FILE statement and in a PUT statement.

DATA Step Processing 4 The Output Delivery System (ODS) 283

ODS combines raw data with one or more templates to produce several types of
output called output objects. Output objects are sent to “destinations” such as the
output destination, the listing destination, the printer destination, or Hypertext
Markup Language (HTML). For a discussion of basic ODS concepts and examples, see
“Creating Output Using the Output Delivery System (ODS)” on page 206. For complete
information about ODS, see The Complete Guide to the SAS Output Delivery System.

284 The Output Delivery System (ODS) 4 Chapter 21

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

