
285

C H A P T E R

22
Reading Raw Data

Definition 285
Ways to Read Raw Data 286

Kinds of Data 286

Definitions 286

Numeric Data 287

Character Data 288
Sources of Raw Data 289

Instream Data 289

Instream Data Containing Semicolons 290

External Files 290

Reading Raw Data with the INPUT Statement 290

Choosing an Input Style 290
List Input 290

Modified List Input 291

Column Input 292

Formatted Input 293

Named Input 293
Additional Data-Reading Features 294

How SAS Handles Invalid Data 295

Reading Missing Values in Raw Data 296

Representing Missing Values in Input Data 296

Special Missing Values in Numeric Input Data 296
Reading Binary Data 297

Definitions 297

Using Binary Informats 298

Reading Column-Binary Data 299

Definition 299

How to Read Column-Binary Data 299
Description of Column-Binary Data Storage 300

Definition
raw data

is unprocessed data that has not been read into a SAS data set. You can use a
DATA step to read raw data into a SAS data set from two sources:

� instream data
� an external file.

286 Ways to Read Raw Data 4 Chapter 22

CAUTION:
Raw data does not include Database Management System (DBMS) files. You must license
SAS/ACCESS software to access data stored in DBMS files. See Chapter 33,
“Accessing Data in a DBMS,” on page 487 for more information about SAS/ACCESS
features. 4

Ways to Read Raw Data
You can read raw data by using:
� SAS statements
� SAS functions
� External File Interface (EFI)
� Import Wizard.

When you read raw data with a DATA step, you can use a combination of the INPUT,
DATALINES, and INFILE statements. SAS automatically reads your data when you
use these statements. For more information on these statements, see “Reading Raw
Data with the INPUT Statement” on page 290.

You can also use SAS functions to manipulate external files and to read records of
raw data. These functions provide more flexibility in handling raw data. For a
description of available functions, see the SAS functions listed under the “External File”
and “SAS File I/O” categories in the functions category table in SAS Language
Reference: Dictionary. For further information about how statements and functions
manipulate files differently, see Chapter 6, “Functions and CALL Routines,” on page 43.

If your operating environment supports a graphical user interface, you can use the
EFI or the Import Wizard to read raw data. The EFI is a point-and-click graphical
interface that you can use to read and write data that is not in SAS software’s internal
format. By using EFI, you can read data from an external file and write it to a SAS
data set, and you can read data from a SAS data set and write it to an external file. See
the SAS online Help for more information about EFI.

The Import Wizard guides you through the steps to read data from an external data
source and write it to a SAS data set. As a wizard, it is a series of windows that
present simple choices to guide you through a process. See the SAS online Help for
more information on the wizard.

Operating Environment Information: Using external files with your SAS jobs requires
that you specify file names with syntax that is appropriate to your operating
environment. See the SAS documentation for your operating environment for more
information. 4

Kinds of Data

Definitions
data values

are character or numeric values.

numeric value
contains only numbers, and sometimes a decimal point and/or minus sign. When
they are read into a SAS data set, numeric values are stored in the floating-point

Reading Raw Data 4 Numeric Data 287

format native to the operating environment. Nonstandard numeric values can
contain other characters as numbers; you can use formatted input to enable SAS
to read them.

character value
is a sequence of characters.

standard data
are character or numeric values that can be read with list, column, formatted, or
named input. Examples of standard data include:

� ARKANSAS

� 1166.42

nonstandard data
is data that can be read only with the aid of informats. Examples of nonstandard
data include numeric values that contain commas, dollar signs, or blanks; date
and time values; and hexadecimal and binary values.

Numeric Data
Numeric data can be represented in several ways. SAS can read standard numeric

values without any special instructions. To read nonstandard values, SAS requires
special instructions in the form of informats. Table 22.1 on page 287 shows standard,
nonstandard, and invalid numeric data values and the special tools, if any, that are
required to read them. For complete descriptions of all SAS informats, see SAS
Language Reference: Dictionary.

Table 22.1 Reading Different Types of Numeric Data

Example of Numeric Data Description Solution Required to
Read

Standard Numeric Data

23 input right aligned None needed

23 input not aligned None needed

23 input left aligned None needed

00023 input with leading zeroes None needed

23.0 input with decimal point None needed

2.3E1 in E-notation, 2.30 (ss1) None needed

230E-1 in E-notation, 230x10 (ss-1) None needed

-23 minus sign for negative
numbers

None needed

Nonstandard Numeric Data

2 3 embedded blank COMMA. or BZ. informat

- 23 embedded blank COMMA. or BZ. informat

2,341 comma COMMA. informat

(23) parentheses COMMA. informat

C4A2 hexadecimal value HEX. informat

288 Character Data 4 Chapter 22

Example of Numeric Data Description Solution Required to
Read

1MAR90 date value DATE. informat

Invalid Numeric Data

23 - minus sign follows number Put minus sign before
number or solve
programmatically.1

.. double instead of single periods Code missing values as a
single period or use the ??
modifier in the INPUT
statement to code any
invalid input value as a
missing value.

J23 not a number Read as a character value,
or edit the raw data to
change it to a valid number.

1 It might be possible to use the S370FZDTw.d informat, but positive values require the trailing plus sign
(+).

Remember the following when reading numeric data:

� Parentheses or a minus sign preceding the number (without an intervening blank)
indicates a negative value.

� Leading zeros and the placement of a value in the input field do not affect the
value assigned to the variable. Leading zeros and leading and trailing blanks are
not stored with the value. Unlike some languages, SAS does not read trailing
blanks as zeros by default. To cause trailing blanks to be read as zeros, use the
BZ. informat described in SAS Language Reference: Dictionary.

� Numeric data can have leading and trailing blanks but cannot have embedded
blanks (unless they are read with a COMMA. or BZ. informat).

� To read decimal values from input lines that do not contain explicit decimal points,
indicate where the decimal point belongs by using a decimal parameter with
column input or an informat with formatted input. See the full description of the
INPUT statement in SAS Language Reference: Dictionary for more information.
An explicit decimal point in the input data overrides any decimal specification in
the INPUT statement.

Character Data
A value that is read with an INPUT statement is assumed to be a character value if

one of the following is true:

� A dollar sign ($) follows the variable name in the INPUT statement.

� A character informat is used.

� The variable has been previously defined as character: for example, in a LENGTH
statement, in the RETAIN statement, by an assignment statement, or in an
expression.

Input data that you want to store in a character variable can include any character.
Use the guidelines in the following table when your raw data includes leading blanks
and semicolons.

Reading Raw Data 4 Instream Data 289

Table 22.2 Reading Instream Data and External Files Containing Leading Blanks
and Semicolons

If your data contains … then use … because …

leading or trailing blanks that you
want to preserve

formatted input and the
$CHARw. informat

list input trims leading and
trailing blanks from a
character value before the
value is assigned to a
variable.

semicolons in instream data DATALINES4 or CARDS4
statements and four semicolons
(;;;;) to mark the end of the data

with the normal
DATALINES and CARDS
statements, a semicolon in
the data prematurely
signals the end of the data.

delimiters, blank characters, or
quoted strings

DSD option, with
DELIMITER= option on the
INFILE statement

it enables SAS to read a
character value that
contains a delimiter within
a quoted string; it can also
treat two consecutive
delimiters as a missing
value and remove quotation
marks from character
values.

Remember the following when reading character data:

� In a DATA step, when you place a dollar sign ($) after a variable name in the
INPUT statement, character data that is read from data lines remains in its
original case. If you want SAS to read data from data lines as uppercase, use the
CAPS system option.

� If the value is shorter than the length of the variable, SAS adds blanks to the end
of the value to give the value the specified length. This process is known as
padding the value with blanks.

Sources of Raw Data

Instream Data
The following example uses the INPUT statement to read in instream data:

data weight;
input PatientID $ Week1 Week8 Week16;
loss=Week1-Week16;
datalines;

2477 195 177 163
2431 220 213 198
2456 173 166 155
2412 135 125 116
;

290 Instream Data Containing Semicolons 4 Chapter 22

Note: A semicolon appearing alone on the line immediately following the last data
line is the convention that is used in this example. However, a PROC statement, DATA
statement, or global statement ending in a semicolon on the line immediately following
the last data line also submits the previous DATA step. 4

Instream Data Containing Semicolons
The following example reads in instream data containing semicolons:

data weight;
input PatientID $ Week1 Week8 Week16;
loss=Week1-Week16;
datalines4;

24;77 195 177 163
24;31 220 213 198
24;56 173 166 155
24;12 135 125 116
;;;;

External Files
The following example shows how to read in raw data from an external file using the

INFILE and INPUT statements:

data weight;
infile file-specification or path-name;
input PatientID $ Week1 Week8 Week16;
loss=Week1-Week16;

run;

Note: See the SAS documentation for your operating environment for information
on how to specify a file with the INFILE statement. 4

Reading Raw Data with the INPUT Statement

Choosing an Input Style
The INPUT statement reads raw data from instream data lines or external files into

a SAS data set. You can use the following different input styles, depending on the
layout of data values in the records:

� list input
� column input
� formatted input
� named input.

You can also combine styles of input in a single INPUT statement. For details about the
styles of input, see the INPUT statement in SAS Language Reference: Dictionary.

List Input
List input uses a scanning method for locating data values. Data values are not

required to be aligned in columns but must be separated by at least one blank (or other

Reading Raw Data 4 Modified List Input 291

defined delimiter). List input requires only that you specify the variable names and a
dollar sign ($), if defining a character variable. You do not have to specify the location of
the data fields.

An example of list input follows:

data scores;
length name $ 12;
input name $ score1 score2;
datalines;

Riley 1132 1187
Henderson 1015 1102
;

List input has several restrictions on the type of data that it can read:
� Input values must be separated by at least one blank (the default delimiter) or by

the delimiter specified with the DELIMITER= option in the INFILE statement. If
you want SAS to read consecutive delimiters as though there is a missing value
between them, specify the DSD option in the INFILE statment.

� Blanks cannot represent missing values. A real value, such as a period, must be
used instead.

� To read and store a character input value longer than 8 bytes, define a variable’s
length by using a LENGTH, INFORMAT, or ATTRIB statement prior to the
INPUT statement, or by using modified list input, which consists of an informat
and the colon modifier on the INPUT statement. See “Modified List Input” on page
291 for more information.

� Character values cannot contain embedded blanks when the file is delimited by
blanks.

� Fields must be read in order.
� Data must be in standard numeric or character format.

Note: Nonstandard numeric values, such as packed decimal data, must use the
formatted style of input. See “Formatted Input” on page 293 for more information 4

Modified List Input
A more flexible version of list input, called modified list input, includes format

modifiers. The following format modifiers enable you to use list input to read
nonstandard data by using SAS informats:

� The & (ampersand) format modifier enables you to read character values that
contain embedded blanks with list input and to specify a character informat. SAS
reads until it encounters multiple blanks.

� The : (colon) format modifier enables you to use list input but also to specify an
informat after a variable name, whether character or numeric. SAS reads until it
encounters a blank column.

� The ~ (tilde) format modifier enables you to read and retain single quotation
marks, double quotation marks, and delimiters within character values.

The following is an example of the : and ~ format modifiers:

data scores;
infile datalines dsd;
input Name : $9. Score1-Score3 Team ~ $25. Div $;

292 Column Input 4 Chapter 22

datalines;
Smith,12,22,46,"Green Hornets, Atlanta",AAA
Mitchel,23,19,25,"High Volts, Portland",AAA
Jones,09,17,54,"Vulcans, Las Vegas",AA
;

proc print data=scores noobs;
run;

Output 22.1 Output from Example with Format Modifiers

Name Score1 Score2 Score3 Team Div

Smith 12 22 46 "Green Hornets, Atlanta" AAA
Mitchel 23 19 25 "High Volts, Portland" AAA
Jones 9 17 54 "Vulcans, Las Vegas" AA

Column Input
Column input enables you to read standard data values that are aligned in columns

in the data records. Specify the variable name, followed by a dollar sign ($) if it is a
character variable, and specify the columns in which the data values are located in each
record:

data scores;
infile datalines truncover;
input name $ 1-12 score2 17-20 score1 27-30;
datalines;

Riley 1132 987
Henderson 1015 1102
;

Note: Use the TRUNCOVER option on the INFILE statement to ensure that SAS
handles data values of varying lengths appropriately. 4

To use column input, data values must be:

� in the same field on all the input lines

� in standard numeric or character form.

Note: You cannot use an informat with column input. 4

Features of column input include the following:

� Character values can contain embedded blanks.

� Character values can be from 1 to 32,767 characters long.

� Placeholders, such as a single period (.), are not required for missing data.

� Input values can be read in any order, regardless of their position in the record.

Reading Raw Data 4 Named Input 293

� Values or parts of values can be reread.

� Both leading and trailing blanks within the field are ignored.

� Values do not need to be separated by blanks or other delimiters.

Formatted Input
Formatted input combines the flexibility of using informats with many of the

features of column input. By using formatted input, you can read nonstandard data for
which SAS requires additional instructions. Formatted input is typically used with
pointer controls that enable you to control the position of the input pointer in the input
buffer when you read data.

The INPUT statement in the following DATA step uses formatted input and pointer
controls. Note that $12. and COMMA5. are informats and +4 and +6 are column
pointer controls.

data scores;
input name $12. +4 score1 comma5. +6 score2 comma5.;
datalines;

Riley 1,132 1,187
Henderson 1,015 1,102
;

Note: You also can use informats to read data that is not aligned in columns. See
“Modified List Input” on page 291 for more information. 4

Important points about formatted input are:

� Characters values can contain embedded blanks.

� Character values can be from 1 to 32,767 characters long.

� Placeholders, such as a single period (.), are not required for missing data.

� With the use of pointer controls to position the pointer, input values can be read in
any order, regardless of their positions in the record.

� Values or parts of values can be reread.

� Formatted input enables you to read data stored in nonstandard form, such as
packed decimal or numbers with commas.

Named Input
You can use named input to read records in which data values are preceded by the

name of the variable and an equal sign (=). The following INPUT statement reads the
data lines containing equal signs.

data games;
input name=$ score1= score2=;
datalines;

name=riley score1=1132 score2=1187
;

proc print data=games;
run;

294 Additional Data-Reading Features 4 Chapter 22

Note: When an equal sign follows a variable in an INPUT statement, SAS expects
that data remaining on the input line contains only named input values. You cannot
switch to another form of input in the same INPUT statement after using named input.

Also, note that any variable that exists in the input data but is not defined in the
INPUT statement generates a note in the SAS log indicating a missing field. 4

Additional Data-Reading Features
In addition to different styles of input, there are many tools to meet the needs of

different data-reading situations. You can use options in the INFILE statement in
combination with the INPUT statement to give you additional control over the reading
of data records. Table 22.3 on page 294 lists common data-reading tasks and the
appropriate features available in the INPUT and INFILE statements.

Table 22.3 Additional Data-Reading Features

If you want to read data that has … while … then use …

multiple records creating a single observation #n or / line pointer control
in the INPUT statement
with a DO loop.

a single record creating multiple
observations

trailing @@ in the INPUT
statement.

trailing @ with multiple
INPUT and OUTPUT
statements.

variable-length data fields and
records

reading delimited data list input with or without a
format modifier in the
INPUT statement and the
TRUNCOVER,
DELIMITER= and/or DSD
options in the INFILE
statement.

reading non-delimited data $VARYINGw. informat in
the INPUT statement and
the LENGTH= and
TRUNCOVER options in
the INFILE statement.

a file with varying record layouts IF-THEN statements with
multiple INPUT
statements, using trailing
@ or @@ as necessary.

hierarchical files IF-THEN statements with
multiple INPUT
statements, using trailing
@ as necessary.

more than one input file or to control
the program flow at EOF

EOF= or END= option in
an INFILE statement.

multiple INFILE and
INPUT statements.

Reading Raw Data 4 How SAS Handles Invalid Data 295

If you want to read data that has … while … then use …

FILEVAR=option in an
INFILE statement.

FILENAME statement
with concatentation,
wildcard, or piping.

only part of each record LINESIZE=option in an
INFILE statement.

some but not all records in the file FIRSTOBS=and OBS=
options in an INFILE
statement; FIRSTOBS=
and OBS= system options;
#n line pointer control.

instream datalines controlling the reading with
special options

INFILE statement with
DATALINES and
appropriate options.

starting at a particular column @ column pointer controls.

leading blanks maintaining them $CHARw. informat in an
INPUT statement.

a delimiter other than blanks (with
list input or modified list input with
the colon modifier)

DELIMITER= option and/
or DSD option in an
INFILE statement.

the standard tab character DELIMITER= option in an
INFILE statement; or the
EXPANDTABS option in an
INFILE statement.

missing values (with list input or
modified list input with the colon
modifier)

creating observations
without compromising data
integity; protecting data
integrity by overriding the
default behavior

TRUNCOVER option in an
INFILE statement; DSD
and/or DELIMITER=
options might also be
needed.

For further information on data-reading features, see the INPUT and INFILE
statements in SAS Language Reference: Dictionary.

How SAS Handles Invalid Data

An input value is invalid if it:

� requires an informat that is not specified

� does not conform to the informat specified

� does not match the input style used; for example, if it is read as standard numeric
data (no dollar sign or informat) but does not conform to the rules for standard
SAS numbers

� is out of range (too large or too small).

296 Reading Missing Values in Raw Data 4 Chapter 22

Operating Environment Information: The range for numeric values is operating
environment-specific. See the SAS documentation for your operating environment for
more information. 4

If SAS reads a data value that is incompatible with the type specified for that
variable, SAS tries to convert the value to the specified type, as described in “How SAS
Handles Invalid Data” on page 295. If conversion is not possible, an error occurs, and
SAS performs the following actions:

� sets the value of the variable being read to missing or to the value specified with
the INVALIDDATA= system option

� prints an invalid data note in the SAS log
� sets the automatic variable _ERROR_ to 1 for the current observation.
� prints the input line and column number containing the invalid value in the SAS

log. If a line contains unprintable characters, it is printed in hexadecimal form. A
scale is printed above the input line to help determine column numbers

Reading Missing Values in Raw Data

Representing Missing Values in Input Data
Many collections of data contain some missing values. SAS can recognize these

values as missing when it reads them. You use the following characters to represent
missing values when reading raw data:

numeric missing values
are represented by a single decimal point (.). All input styles except list input also
allow a blank to represent a missing numeric value.

character missing values
are represented by a blank, with one exception: list input requires that you use a
period (.) to represent a missing value.

special numeric missing values
are represented by two characters: a decimal point (.) followed by either a letter or
an underscore (_).

For more information about missing values, see Chapter 11, “Missing Values,” on page
123.

Special Missing Values in Numeric Input Data
SAS enables you to differentiate among classes of missing values in numeric data.

For numeric variables, you can designate up to 27 special missing values by using the
letters A through Z, in either upper- or lowercase, and the underscore character (_).

The following example shows how to code missing values by using a MISSING
statement in a DATA step:

data test_results;
missing a b c;
input name $8. Answer1 Answer2 Answer3;
datalines;

Smith 2 5 9

Reading Raw Data 4 Definitions 297

Jones 4 b 8
Carter a 4 7
Reed 3 5 c
;

proc print;
run;

Note that you must use a period when you specify a special missing numeric value in
an expression or assignment statement, as in the following:

x=.d;

However, you do not need to specify each special missing numeric data value with a
period in your input data. For example, the following DATA step, which uses periods in
the input data for special missing values, produces the same result as the input data
without periods:

data test_results;
missing a b c;
input name $8. Answer1 Answer2 Answer3;
datalines;

Smith 2 5 9
Jones 4 .b 8
Carter .a 4 7
Reed 3 5 .c
;

proc print;
run;

Output for both examples is shown in Output 22.2 on page 297.

Output 22.2 Output of Data with Special Missing Numeric Values

The SAS System

Obs name Answer1 Answer2 Answer3

1 Smith 2 5 9
2 Jones 4 B 8
3 Carter A 4 7
4 Reed 3 5 C

Note: SAS displays and prints special missing values that use letters in uppercase. 4

Reading Binary Data

Definitions
binary data

is numeric data that is stored in binary form. Binary numbers have a base of two
and are represented with the digits 0 and 1.

298 Using Binary Informats 4 Chapter 22

packed decimal data
are binary decimal numbers that are encoded by using each byte to represent two
decimal digits. Packed decimal representation stores decimal data with exact
precision; the fractional part of the number must be determined by using an
informat or format because there is no separate mantissa and exponent.

zoned decimal data
are binary decimal numbers that are encoded so that each digit requires one byte
of storage. The last byte contains the number’s sign as well as the last digit.
Zoned decimal data produces a printable representation.

Using Binary Informats
SAS can read binary data with the special instructions supplied by SAS informats.

You can use formatted input and specify the informat in the INPUT statement. The
informat you choose is determined by the following factors:

� the type of number being read: binary, packed decimal, zoned decimal, or a
variation of one of these

� the type of system on which the data was created
� the type of system that you use to read the data.

Different computer platforms store numeric binary data in different forms. The
ordering of bytes differs by platforms and is referred to as either “big endian” or “little
endian.” For a list of platforms considered big endian and little endian, see “Byte
Ordering on Big Endian and Little Endian Platforms” on page 31.

SAS provides a number of informats for reading binary data and corresponding
formats for writing binary data. Some of these informats read data in native mode, that
is, by using the byte-ordering system that is standard for the system on which SAS is
running. Other informats force the data to be read by the IBM 370 standard, regardless
of the native mode of the system on which SAS is running. The informats that read in
native or IBM 370 mode are listed in the following table.

Table 22.4 Informats for Native or IBM 370 Mode

Description Native Mode Informats IBM 370 Mode Informats

ASCII Character $w. $ASCIIw.

ASCII Numeric w.d $ASCIIw.

EBCDIC Character $w. $EBCDICw.

EBCDIC Numeric (Standard) w.d S370FFw.d

Integer Binary IBw.d S370FIBw.d

Positive Integer Binary PIBw.d S370FPIBw.d

Real Binary RBw.d S370FRBw.d

Unsigned Integer Binary PIBw.d S370FIBUw.d,
S370FPIBw.d

Packed Decimal PDw.d S370FPDw.d

Unsigned Packed Decimal PKw.d S370FPDUw.d or PKw.d

Zoned Decimal ZDw.d S370FZDw.d

Zoned Decimal Leading Sign S370FZDLw.d S370FZDLw.d

Reading Raw Data 4 How to Read Column-Binary Data 299

Description Native Mode Informats IBM 370 Mode Informats

Zoned Decimal Separate Leading
Sign

S370FZDSw.d S370FZDSw.d

Zoned Decimal Separate Trailing
Sign

S370FZDTw.d S370FZDTw.d

Unsigned Zoned Decimal ZDw.d S370FZDUw.d

If you write a SAS program that reads binary data and that will be run on only one
type of system, you can use the native mode informats and formats. However, if you
want to write SAS programs that can be run on multiple systems that use different
byte-storage systems, use the IBM 370 informats. The IBM 370 informats enable you to
write SAS programs that can read data in this format and that can be run in any SAS
environment, regardless of the standard for storing numeric data.* The IBM 370
informats can also be used to read data originally written with the corresponding native
mode formats on an IBM mainframe.

For complete descriptions of all SAS formats and informats, including how numeric
binary data is written, see SAS Language Reference: Dictionary.

Reading Column-Binary Data

Definition
column-binary data storage

is an older form of data storage that is no longer widely used and is not needed by
most SAS users. Column-binary data storage compresses data so that more than
80 items of data can be stored on a single punched card. The advantage is that
this method enables you to store more data in the same amount of space. There
are disadvantages, however; special card readers are required and difficulties are
frequently encountered when this type of data is read. Because multi-punched
decks and card-image data sets remain in existence, SAS provides informats for
reading column-binary data. See “Description of Column-Binary Data Storage” on
page 300 for a more detailed explanation of column-binary data storage.

How to Read Column-Binary Data
To read column-binary data with SAS, you need to know:
� how to select the appropriate SAS column-binary informat
� how to set the RECFM= and LRECL= options in the INFILE statement
� how to use pointer controls.

The following table lists and describes SAS column-binary informats.

* For example, using the IBM 370 informats, you could download data that contain binary integers from a mainframe to a PC
and then use the S370FIB informats to read the data.

300 Description of Column-Binary Data Storage 4 Chapter 22

Table 22.5 SAS Informats for Reading Column-binary Data

Informat Name Description

$CBw. reads standard character data from column-binary files

CBw. reads standard numeric data from column-binary files

PUNCH.d reads whether a row is punched

ROWw.d reads a column-binary field down a card column

To read column-binary data, you must set two options in the INFILE statement:
� Set RECFM= to F for fixed.
� Set the LRECL= to 160, because each card column of column-binary data is

expanded to two bytes before the fields are read.

For example, to read column-binary data from a file, use an INFILE statement in the
following form before the INPUT statement that reads the data:

infile file-specification or path-name
recfm=f lrecl=160;

Note: The expansion of each column of column-binary data into two bytes does not
affect the position of the column pointer. You use the absolute column pointer control @,
as usual, because the informats automatically compute the true location on the doubled
record. If a value is in column 23, use the pointer control @23 to move the pointer
there. 4

Description of Column-Binary Data Storage
The arrangement and numbering of rows in a column on punched cards originated

with the Hollerith system of encoding characters and numbers. It is based on using a
pair of values to represent either a character or a numeric digit. In the Hollerith system,
each column on a card has a maximum of two punches, one punch in the zone portion,
and one in the digit portion. These punches correspond to a pair of values, and each
pair of values corresponds to a specific alphabetic character or sign and numeric digit.

In the zone portion of the punched card, which is the first three rows, the zone
component of the pair can have the values 12, 11, 0 (or 10), or not punched. In the digit
portion of the card, which is the fourth through the twelfth rows, the digit component of
the pair can have the values 1 through 9, or not punched.

The following figure shows the multi-punch combinations corresponding to letters of
the alphabet.

Reading Raw Data 4 Description of Column-Binary Data Storage 301

Figure 22.1 Columns and Rows in a Punched Card

row punch

zone
portion

digit
portion

alphabetic
character

X X X X X X X X

1

2

3

4

5

6

7

8

9

12

11

10

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

X X X X X X X X X

X X X X X X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SAS stores each column of column-binary data in two bytes. Since each column has
only 12 positions and since 2 bytes contain 16 positions, the 4 extra positions within the
bytes are located at the beginning of each byte. The following figure shows the
correspondence between the rows of a punched card and the positions within 2 bytes
that SAS uses to store them. SAS stores a punched position as a binary 1 bit and an
unpunched position as a binary 0 bit.

302 Description of Column-Binary Data Storage 4 Chapter 22

Figure 22.2 Column-Binary Representation on a Punched Card

row

byte
positions

1

2

3

4

5

6

7

8

9

12

11

10 (or 0)

not used

1 2 3 4 5 6 7 8

not used

1 2 3 4 5 6 7 8

byte 1 byte 2

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

