
315

C H A P T E R

24
Reading, Combining, and
Modifying SAS Data Sets

Definitions 317
Overview of Tools 317

Reading SAS Data Sets 318

Reading a Single SAS Data Set 318

Reading from Multiple SAS Data Sets 318

Controlling the Reading and Writing of Variables and Observations 318
Combining SAS Data Sets: The Essentials 319

What You Need to Know before Combining Information Stored In Multiple SAS Data Sets 319

The Four Ways That Data Can Be Related 319

One-to-One 320

One-to-Many and Many-to-One 320

Many-to-Many 321
Access Methods: Sequential versus Direct 322

Overview 322

Sequential Access 322

Direct Access 322

Overview of Methods for Combining SAS Data Sets 323
Concatenating 323

Interleaving 323

One-to-One Reading and One-to-One Merging 324

Match-Merging 325

Updating 325
Overview of Tools for Combining SAS Data Sets 326

Using Statements and Procedures 326

Using Error Checking 328

How to Prepare Your Data Sets 328

Knowing the Structure and Contents of the Data Sets 328

Looking at Sources of Common Problems 328
Ensuring Correct Order 329

Testing Your Program 329

Combining SAS Data Sets: Methods 330

Concatenating 330

Definition 330
Syntax 330

DATA Step Processing During Concatenation 330

Example 1: Concatenation Using the DATA Step 330

Example 2: Concatenation Using SQL 332

Appending Files 332
Efficiency 333

Interleaving 333

Definition 333

316 Data Grouped by Formatted Values 4 Chapter 24

Syntax 333
Sort Requirements 334

DATA Step Processing During Interleaving 334

Example 1: Interleaving in the Simplest Case 334

Example 2: Interleaving with Duplicate Values of the BY variable 335

Example 3: Interleaving with Different BY Values in Each Data Set 336
Comments and Comparisons 337

One-to-One Reading 337

Definition 337

Syntax 337

DATA Step Processing During a One-to-One Reading 338

Example 1: One-to-One Reading: Processing an Equal Number of Observations 338
Comments and Comparisons 339

One-to-One Merging 340

Definition 340

Syntax 340

DATA Step Processing During One-to-One Merging 340
Example 1: One-to-One Merging with an Equal Number of Observations 341

Example 2: One-to-One Merging with an Unequal Number of Observations 342

Example 3: One-to-One Merging with Duplicate Values of Common Variables 342

Example 4: One-to-One Merging with Different Values of Common Variables 343

Comments and Comparisons 344
Match-Merging 344

Definition 344

Syntax 345

DATA Step Processing During Match-Merging 345

Example 1: Combining Observations Based on a Criterion 346

Example 2: Match-Merge with Duplicate Values of the BY Variable 346
Example 3: Match-Merge with Nonmatched Observations 347

Updating with the UPDATE and the MODIFY Statements 348

Definitions 348

Syntax of the UPDATE Statement 349

Syntax of the MODIFY Statement 349
DATA Step Processing with the UPDATE Statement 349

Updating with Nonmatched Observations, Missing Values, and New Variables 350

Sort Requirements for the UPDATE Statement 350

Using an Index with the MODIFY Statement 351

Choosing between UPDATE or MODIFY with BY 351
Primary Uses of the MODIFY Statement 352

Example 1: Using UPDATE for Basic Updating 352

Example 2: Using UPDATE with Duplicate Values of the BY Variable 353

Example 3: Using UPDATE for Processing Nonmatched Observations, Missing Values, and
New Variables 354

Example 4: Updating a MASTER Data Set by Adding an Observation 356
Error Checking When Using Indexes to Randomly Access or Update Data 357

The Importance of Error Checking 357

Error-Checking Tools 357

Example 1: Routing Execution When an Unexpected Condition Occurs 358

Overview 358
Input Data Sets 358

Original Program 359

Resulting Log 359

Resulting Data Set 359

Revised Program 360

Reading, Combining, and Modifying SAS Data Sets 4 Overview of Tools 317

Resulting Log 361
Correctly Updated MASTER Data Set 361

Example 2: Using Error Checking on All Statements That Use KEY= 361

Overview 361

Input Data Sets 361

Original Program with Logic Error 362
Resulting Log 363

Resulting Data Set 363

Revised Program 363

Resulting Log 365

Correctly Created COMBINE Data Set 365

Definitions
In the context of DATA step processing, the terms reading, combining and modifying

have these meanings:

Reading a SAS data set
refers to opening a SAS data set and bringing an observation into the program
data vector for processing.

Combining SAS data sets
refers to reading data from two or more SAS data sets and processing them by

� concatenating
� interleaving
� one-to-one reading
� one-to-one merging
� match-merging
� updating a master data set with a transaction data set.

The methods for combining SAS data sets are defined in “Combining SAS Data
Sets: Methods” on page 330.

Modifying SAS data sets
refers to using the MODIFY statement to update information in a SAS data set in
place. The MODIFY statement can save disk space because it modifies data in
place, without creating a copy of the data set. You can modify a SAS data set with
programming statements or with information that is stored in another data set.

Overview of Tools
The primary tools that are used for reading, combining, and modifying SAS data sets

are four statements: SET, MERGE, MODIFY, and UPDATE. This section describes
these tools and shows examples. For complete information about these statements see
the Statements section of SAS Language Reference: Dictionary.

318 Reading SAS Data Sets 4 Chapter 24

Reading SAS Data Sets

Reading a Single SAS Data Set
To read data from an existing SAS data set, use a SET statement. In this example,

the DATA step creates data set PERM.TOUR155_PEAKCOST by reading data from
data set PERM.TOUR155_BASIC_COST and by calculating values for the three new
variables Total_Cost, Peak_Cost, and Average_Night_Cost.

data perm.tour155_peakcost;
set perm.tour155_basic_cost;
Total_Cost=AirCost+LandCost;
Peak_Cost=(AirCost*1.15);
Average_Night_Cost=LandCost/Nights;

run;

Reading from Multiple SAS Data Sets
You can read from multiple SAS data sets and combine and modify data in different

ways. You can, for example, combine two or more input data sets to create one output
data set, merge data from two or more input data sets that share a common variable,
and update a master file based on transaction records.

For details about reading from multiple SAS data sets, see “Combining SAS Data
Sets: Methods” on page 330.

Controlling the Reading and Writing of Variables and Observations
If you do not instruct it to do otherwise, SAS writes all variables and all observations

from input data sets to output data sets. You can, however, control which variables and
observations you want to read and write by using SAS statements, data set options, and
functions. The statements and data set options that you can use are listed in the
following table.

Table 24.1 Statements and Options That Control Reading and Writing

Task Statements Data set options System options

Control variables DROP DROP=

KEEP KEEP=

RENAME RENAME=

Control observations WHERE WHERE= FIRSTOBS=

subsetting IF FIRSTOBS= OBS=

DELETE OBS=

Reading, Combining, and Modifying SAS Data Sets 4 The Four Ways That Data Can Be Related 319

Task Statements Data set options System options

REMOVE

OUTPUT

Use statements or data set options (such as KEEP= and DROP=) to control the
variables and observations you want to write to the output data set. The WHERE
statement is an exception: it controls which observations are read into the program
data vector based on the value of a variable. You can use data set options (including
WHERE=) on input or output data sets, depending on their function and what you want
to control. You can also use SAS system options to control your data.

Combining SAS Data Sets: The Essentials

What You Need to Know before Combining Information Stored In
Multiple SAS Data Sets

Many applications require input data to be in a specific format before the data can be
processed to produce meaningful results. The data typically comes from multiple
sources and may be in different formats. Therefore, you often, if not always, have to
take intermediate steps to logically relate and process data before you can analyze it or
create reports from it.

Application requirements vary, but there are common factors for all applications that
access, combine, and process data. Once you have determined what you want the
output to look like, you must

� determine how the input data is related
� ensure that the data is properly sorted or indexed, if necessary
� select the appropriate access method to process the input data
� select the appropriate SAS tools to complete the task.

The Four Ways That Data Can Be Related
Relationships among multiple sources of input data exist when each of the sources

contains common data, either at the physical or logical level. For example, employee
data and department data could be related through an employee ID variable that
shares common values. Another data set could contain numeric sequence numbers
whose partial values logically relate it to a separate data set by observation number.

You must be able to identify the existing relationships in your data. This knowledge
is crucial for understanding how to process input data in order to produce desired
results. All related data fall into one of these four categories, characterized by how
observations relate among the data sets:

� one-to-one
� one-to-many
� many-to-one
� many-to-many.

To obtain the results you want, you should understand how each of these methods
combines observations, how each method treats duplicate values of common variables,

320 The Four Ways That Data Can Be Related 4 Chapter 24

and how each method treats missing values or nonmatched values of common variables.
Some of the methods also require that you preprocess your data sets by sorting them or
by creating indexes. See the description of each method in “Combining SAS Data Sets:
Methods” on page 330.

One-to-One
In a one-to-one relationship, typically a single observation in one data set is related

to a single observation from another based on the values of one or more selected
variables. A one-to-one relationship implies that each value of the selected variable
occurs no more than once in each data set. When you work with multiple selected
variables, this relationship implies that each combination of values occurs no more than
once in each data set.

In the following example, observations in data sets SALARY and TAXES are related
by common values for EmployeeNumber.

Figure 24.1 One-to-One Relationship

SALARY

EmployeeNumber Salary

TAXES

TaxBracket

1234 55000 1111 0.18

3333 72000 1234 0.28

4876 32000 3333 0.32

5489 17000 4222 0.18

4876 0.24

EmployeeNumber

One-to-Many and Many-to-One
A one-to-many or many-to-one relationship between input data sets implies that one

data set has at most one observation with a specific value of the selected variable, but
the other input data set may have more than one occurrence of each value. When you
work with multiple selected variables, this relationship implies that each combination
of values occurs no more than once in one data set, but may occur more than once in
the other data set. The order in which the input data sets are processed determines
whether the relationship is one-to-many or many-to-one.

In the following example, observations in data sets ONE and TWO are related by
common values for variable A. Values of A are unique in data set ONE but not in data
set TWO.

Reading, Combining, and Modifying SAS Data Sets 4 The Four Ways That Data Can Be Related 321

Figure 24.2 One-to-Many Relationship

ONE TWO

1

3

5

3

6

4

1

1

2

3

0

99

1 4 88

1

2

5

1

77

66

2 2 55

3 4 44

A E FA B C

In the following example, observations in data sets ONE, TWO, and THREE are
related by common values for variable ID. Values of ID are unique in data sets ONE
and THREE but not in TWO. For values 2 and 3 of ID, a one-to-many relationship
exists between observations in data sets ONE and TWO, and a many-to-one
relationship exists between observations in data sets TWO and THREE.

Figure 24.3 One-to-Many and Many-to-One Relationships

TWO

1

2

2

3

3

3

4

5

28000

30000

40000

15000

20000

25000

35000

40000

ID Sales

1

2

3

4

5

15000

7000

15000

5000

8000

ID Quota

THREEONE

1

2

3

4

5

Joe Smith

Sally Smith

Cindy Long

Sue Brown

Mike Jones

ID Name

Many-to-Many
The many-to-many category implies that multiple observations from each input data

set may be related based on values of one or more common variables.
In the following example, observations in data sets BREAKDOWN and

MAINTENANCE are related by common values for variable Vehicle. Values of Vehicle
are not unique in either data set. A many-to-many relationship exists between
observations in these data sets for values AAA and CCC of Vehicle.

322 Access Methods: Sequential versus Direct 4 Chapter 24

Figure 24.4 Many-to-Many Relationship

BREAKDOWN

AAA

AAA

AAA

AAA

BBB

CCC

CCC

02MAR99

20MAY99

19JUN99

29NOV99

04JUL99

31MAY99

24DEC99

Vehicle BreakDownDate

MAINTENANCE

AAA

AAA

AAA

CCC

CCC

CCC

DDD

DDD

DDD

03JAN99

05APR99

10AUG99

28JAN99

16MAY99

07OCT99

24FEB99

22JUN99

19SEP99

Vehicle MaintenanceDate

Access Methods: Sequential versus Direct

Overview
Once you have established data relationships, the next step is to determine the best

mode of data access to relate the data. You can access observations sequentially in the
order in which they appear in the physical file. Or you can access them directly, that is,
you can go straight to an observation in a SAS data set without having to process each
observation that precedes it.

Sequential Access
The simplest and perhaps most common way to process data with a DATA step is to

read observations in a data set sequentially. You can read observations sequentially
using the SET, MERGE, UPDATE, or MODIFY statements. You can also use the SAS
File I/O functions, such as OPEN, FETCH, and FETCHOBS.

Direct Access
Direct access allows a program to access specific observations based on one of two

methods:
� by an observation number
� by the value of one or more variables through a simple or composite index.

To access observations directly by their observation number, use the POINT= option
with the SET or MODIFY statement. The POINT= option names a variable whose
current value determines which observation a SET or MODIFY statement reads.

To access observations directly based on the values of one or more specified variables,
you must first create an index for the variables and then read the data set using the
KEY= statement option with the SET or MODIFY statement. An index is a separate
structure that contains the data values of the key variable or variables, paired with a
location identifier for the observations containing the value.

Note: You can also use the SAS File I/O functions such as CUROBS, NOTE, POINT
and FETCHOBS to access observations by observation number. 4

Reading, Combining, and Modifying SAS Data Sets 4 Overview of Methods for Combining SAS Data Sets 323

Overview of Methods for Combining SAS Data Sets
You can use these methods to combine SAS data sets:
� concatenating
� interleaving
� one-to-one reading
� one-to-one merging
� match merging
� updating.

Concatenating
The following figure shows the results of concatenating two SAS data sets.

Concatenating the data sets appends the observations from one data set to another data
set. The DATA step reads DATA1 sequentially until all observations have been
processed, and then reads DATA2. Data set COMBINED contains the results of the
concatenation. Note that the data sets are processed in the order in which they are
listed in the SET statement.

Figure 24.5 Concatenating Two Data Sets

COMBINED

1991

1992

1993

1994

1995

1991

1992

1993

1994

1995

Year

DATA2

1991

1992

1993

1994

1995

Year

DATA1

Year

1991

1992

1993

1994

1995

data combined;
 set data1 data2;
run;

+ =

Interleaving
The following figure shows the results of interleaving two SAS data sets.

Interleaving intersperses observations from two or more data sets, based on one or
more common variables. Data set COMBINED shows the result.

324 Overview of Methods for Combining SAS Data Sets 4 Chapter 24

Figure 24.6 Interleaving Two Data Sets

COMBINED

Year
DATA2

1992

1993

1994

1995

1996

Year

DATA1

Year

1991

1992

1993

1994

1995

data combined;
 set data1 data2;
 by Year;
run;

+ =

1991

1992

1992

1993

1993

1994

1994

1995

1995

1996

One-to-One Reading and One-to-One Merging
The following figure shows the results of one-to-one reading and one-to-one merging.

One-to-one reading combines observations from two or more SAS data sets by creating
observations that contain all of the variables from each contributing data set.
Observations are combined based on their relative position in each data set, that is, the
first observation in one data set with the first in the other, and so on. The DATA step
stops after it has read the last observation from the smallest data set. One-to-one
merging is similar to a one-to-one reading, with two exceptions: you use the MERGE
statement instead of multiple SET statements, and the DATA step reads all
observations from all data sets. Data set COMBINED shows the result.

Figure 24.7 One-to-One Reading and One-to-One Merging

COMBINEDDATA2DATA1

VarXVarYVarX

X1

X2

X3

X4

X5

data combined;
 set data1;
 set data2;
run;

data combined;
 merge data1 data2;
run;

+ =

Y1

Y2

Y3

Y4

Y5

VarY

X1

X2

X3

X4

X5

Y1

Y2

Y3

Y4

Y5

Reading, Combining, and Modifying SAS Data Sets 4 Overview of Methods for Combining SAS Data Sets 325

Match-Merging
The following figure shows the results of match-merging. Match-merging combines

observations from two or more SAS data sets into a single observation in a new data set
based on the values of one or more common variables. Data set COMBINED shows the
results.

Figure 24.8 Match-Merging Two Data Sets

data combined;
 merge data1 data2;
 by Year;
run;

+ =

COMBINED

1991

1991

1992

1993

1994

1995

Year

X1

X1

X2

X3

X4

X5

Y1

Y2

Y3

Y4

Y5

VarYVarX

DATA2

1991

1991

1993

1994

1995

VarYYear

Y1

Y2

Y3

Y4

Y5

DATA1

VarX

X1

X2

X3

X4

X5

Year

1991

1992

1993

1994

1995

Updating
The following figure shows the results of updating a master data set. Updating uses

information from observations in a transaction data set to delete, add, or alter
information in observations in a master data set. You can update a master data set by
using the UPDATE statement or the MODIFY statement. If you use the UPDATE
statement, your input data sets must be sorted by the values of the variables listed in
the BY statement. (In this example, MASTER and TRANSACTION are both sorted by
Year.) If you use the MODIFY statement, your input data does not need to be sorted.

UPDATE replaces an existing file with a new file, allowing you to add, delete, or
rename columns. MODIFY performs an update in place by rewriting only those records
that have changed, or by appending new records to the end of the file.

Note that by default, UPDATE and MODIFY do not replace nonmissing values in a
master data set with missing values from a transaction data set.

326 Overview of Tools for Combining SAS Data Sets 4 Chapter 24

Figure 24.9 Updating a Master Data Set

data master;
 update master transaction;
 by Year;
run;

+ =

MASTER

X1

X1

X1

X1

X1

X1

X2

X2

X2

X1

X2

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y2

Y2

Y1

Y2

Year VarYVarX

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

MASTER

VarXYear VarY

X1

X1

X1

X1

X1

X1

X1

X1

X1

X1

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

TRANSACTION

1991

1992

1993

1993

1995

Y2

Y2

Y2

X2

X2

X2

X2

VarXYear VarY

Overview of Tools for Combining SAS Data Sets

Using Statements and Procedures
Once you understand the basics of establishing relationships among data, the ways

to access data, and the ways that you can combine SAS data sets, you can choose from a
variety of SAS tools for accessing, combining, and processing your data. The following
table lists and briefly describes the DATA step statements and the procedures that you
can use for combining SAS data sets.

Reading, Combining, and Modifying SAS Data Sets 4 Overview of Tools for Combining SAS Data Sets 327

Table 24.2 Statements or Procedures for Combining SAS Data Sets

Access Method

Statement or
Procedure Action Performed Sequential Direct

Can Use with
BY statement Comments

BY controls the operation of a
SET, MERGE, UPDATE, or
MODIFY statement in the
DATA step and sets up
special grouping variables.

NA NA NA BY-group processing
is a means of
processing
observations that
have the same values
of one or more
variables.

MERGE reads observations from
two or more SAS data sets
and joins them into a single
observation.

X X When using MERGE
with BY, the data
must be sorted or
indexed on the BY
variable.

MODIFY processes observations in a
SAS data set in place.
(Contrast with UPDATE.)

X X X Sorted or indexed
data are not required
for use with BY, but
are recommended for
performance.

SET reads an observation from
one or more SAS data sets.

X X X Use KEY= or POINT=
statement options for
directly accessing
data.

UPDATE applies transactions to
observations in a master
SAS data set. UPDATE
does not update
observations in place; it
produces an updated copy
of the current data set.

X X Both the master and
transaction data sets
must be sorted by or
indexed on the BY
variable.

PROC
APPEND

adds the observations from
one SAS data set to the end
of another SAS data set.

X

PROC SQL1 reads an observation from
one or more SAS data sets;
reads observations from up
to 32 SAS data sets and
joins them into single
observations; manipulates
observations in a SAS data
set in place; easily produces
a Cartesian product.

X X X All three access
methods are available
in PROC SQL, but the
access method is
chosen by the internal
optimizer.

1 PROC SQL is the SAS implementation of Structured Query Language. In addition to expected SQL capabilities, PROC SQL
includes additional capabilities specific to SAS, such as the use of formats and SAS macro language.

328 How to Prepare Your Data Sets 4 Chapter 24

Using Error Checking
You can use the _IORC_ automatic variable and the SYSRC autocall macro to perform

error checking in a DATA step. Use these tools with the MODIFY statement or with the
SET statement and the KEY= option. For more information about these tools, see
“Error Checking When Using Indexes to Randomly Access or Update Data” on page 357.

How to Prepare Your Data Sets
Before combining SAS data sets, follow these guidelines to produce the results you

want:
� Know the structure and the contents of the data sets.
� Look at sources of common problems.
� Ensure that observations are in the correct order, or that they can be retreived in

the correct order (for example, by using an index).
� Test your program.

Knowing the Structure and Contents of the Data Sets
To help determine how your data are related, look at the structure of the data sets.

To see the data set structure, execute the DATASETS procedure, the CONTENTS
procedure, or access the SAS Explorer window in your windowing environment to
display the descriptor information. Descriptor information includes the number of
observations in each data set, the name and attributes of each variable, and which
variables are included in indexes. To print a sample of the observations, use the PRINT
procedure or the REPORT procedure.

You can also use functions such as VTYPE, VLENGTH, and VLENGTHX to show
specific descriptor information. For a short description of these functions, see the
Variable Information functions in Chapter 6, “Functions and CALL Routines,” on page
43. For complete information about these functions, see “Functions and CALL
Routines” in SAS Language Reference: Dictionary.

Looking at Sources of Common Problems
If your program does not execute correctly, review your input data for the following

errors:
� variables that have the same name but that represent different data

SAS includes only one variable of a given name in the new data set. If you are
merging two data sets that have variables with the same names but different data,
the values from the last data set that was read are written over the values from
other data sets.

To correct the error, you can rename variables before you combine the data sets
by using the RENAME= data set option in the SET, UPDATE, or MERGE
statement, or you can use the DATASETS procedure.

� common variables with the same data but different attributes
The way SAS handles these differences depends on which attributes are

different:
� type attribute

If the type attribute is different, SAS stops processing the DATA step
and issues an error message stating that the variables are incompatible.

To correct this error, you must use a DATA step to re-create the
variables. The SAS statements you use depend on the nature of the variable.

Reading, Combining, and Modifying SAS Data Sets 4 How to Prepare Your Data Sets 329

� length attribute
If the length attribute is different, SAS takes the length from the first

data set that contains the variable. In the following example, all data sets
that are listed in the MERGE statement contain the variable Mileage. In
QUARTER1, the length of the variable Mileage is four bytes; in QUARTER2,
it is eight bytes and in QUARTER3 and QUARTER4, it is six bytes. In the
output data set YEARLY, the length of the variable Mileage is four bytes,
which is the length derived from QUARTER1.

data yearly;
merge quarter1 quarter2 quarter3 quarter4;
by Account;

run;

To override the default and set the length yourself, specify the
appropriate length in a LENGTH statement that precedes the SET, MERGE,
MODIFY, or UPDATE statement.

� label, format, and informat attributes

If any of these attributes are different, SAS takes the attribute from the
first data set that contains the variable with that attribute. However, any
label, format, or informat that you explicitly specify overrides a default. If all
data sets contain explicitly specified attributes, the one specified in the first
data set overrides the others. To ensure that the new output data set has the
attributes you prefer, use an ATTRIB statement.

You can also use the SAS File I/O functions such as VLABEL,
VLABELX, and other Variable Information functions to access this
information. For a short description of these functions, see the Variable
Information functions in “Functions and CALL Routines by Category” on
page 51. For complete information about these functions, see “Functions and
CALL Routines” in SAS Language Reference: Dictionary.

Ensuring Correct Order
If you use BY-group processing with the UPDATE, SET, and MERGE statements to

combine data sets, ensure that the observations in the data sets are sorted in the order
of the variables that are listed in the BY statement, or that the data sets have an
appropriate index. If you use BY-group processing in a MODIFY statement, your data
does not need to be sorted, but sorting the data improves efficiency. The BY variable or
variables must be common to both data sets, and they must have the same attributes.
For more information, see Chapter 23, “BY-Group Processing in the DATA Step,” on
page 303.

Testing Your Program
As a final step in preparing your data sets, you should test your program. Create

small temporary SAS data sets that contain a sample of observations that test all of
your program’s logic. If your logic is faulty and you get unexpected output, you can use
the DATA step debugger to debug your program. For complete information about the
DATA Step Debugger, see SAS Language Reference: Dictionary.

330 Combining SAS Data Sets: Methods 4 Chapter 24

Combining SAS Data Sets: Methods

Concatenating

Definition
Concatenating data sets is the combining of two or more data sets, one after the

other, into a single data set. The number of observations in the new data set is the sum
of the number of observations in the original data sets. The order of observations is
sequential. All observations from the first data set are followed by all observations from
the second data set, and so on.

In the simplest case, all input data sets contain the same variables. If the input data
sets contain different variables, observations from one data set have missing values for
variables defined only in other data sets. In either case, the variables in the new data
set are the same as the variables in the old data sets.

Syntax
Use this form of the SET statement to concatenate data sets:

SET data-set(s);

where

data-set
specifies any valid SAS data set name.

For a complete description of the SET statement, see SAS Language Reference:
Dictionary.

DATA Step Processing During Concatenation
Compilation phase

SAS reads the descriptor information of each data set that is named in the SET
statement and then creates a program data vector that contains all the variables
from all data sets as well as variables created by the DATA step.

Execution — Step 1
SAS reads the first observation from the first data set into the program data vector.
It processes the first observation and executes other statements in the DATA step.
It then writes the contents of the program data vector to the new data set. The
SET statement does not reset the values in the program data vector to missing,
except for variables whose value is calculated or assigned during the DATA step.

Execution — Step 2
SAS continues to read one observation at a time from the first data set until it
finds an end-of-file indicator. The values of the variables in the program data
vector are then set to missing, and SAS begins reading observations from the
second data set and so forth until it reads all observations from all data sets.

Example 1: Concatenation Using the DATA Step
In this example, each data set contains the variables Common and Number, and the

observations are arranged in the order of the values of Common. Generally, you

Reading, Combining, and Modifying SAS Data Sets 4 Concatenating 331

concatenate SAS data sets that have the same variables. In this case, each data set also
contains a unique variable to show the effects of combining data sets more clearly. The
following shows the ANIMAL and the PLANT input data sets in the library that is
referenced by the libref EXAMPLE:

ANIMAL PLANT

OBS Common Animal Number OBS Common Plant Number

1 a Ant 5 1 g Grape 69
2 b Bird 2 h Hazelnut 55
3 c Cat 17 3 i Indigo
4 d Dog 9 4 j Jicama 14
5 e Eagle 5 k Kale 5
6 f Frog 76 6 l Lentil 77

The following program uses a SET statement to concatenate the data sets and then
prints the results:

libname example ’SAS-data-library’;

data example.concatenation;
set example.animal example.plant;

run;

proc print data=example.concatenation;
var Common Animal Plant Number;
title ’Data Set CONCATENATION’;

run;

Output 24.1 Concatenated Data Sets (DATA Step)

Data Set CONCATENATION 1

Obs Common Animal Plant Number

1 a Ant 5
2 b Bird .
3 c Cat 17
4 d Dog 9
5 e Eagle .
6 f Frog 76
7 g Grape 69
8 h Hazelnut 55
9 i Indigo .

10 j Jicama 14
11 k Kale 5
12 l Lentil 77

The resulting data set CONCATENATION has 12 observations, which is the sum of
the observations from the combined data sets. The program data vector contains all
variables from all data sets. The values of variables found in one data set but not in
another are set to missing.

332 Concatenating 4 Chapter 24

Example 2: Concatenation Using SQL
You can also use the SQL language to concatenate tables. In this example, SQL

reads each row in both tables and creates a new table named COMBINED. The
following shows the YEAR1 and YEAR2 input tables:

YEAR1 YEAR2

Date1 Date2

1996
1997 1997
1998 1998
1999 1999

2000
2001

The following SQL code creates and prints the table COMBINED.

proc sql;
title ’SQL Table COMBINED’;
create table combined as

select * from year1
outer union corr
select * from year2;
select * from combined;

quit;

Output 24.2 Concatenated Tables (SQL)

SQL Table COMBINED 1

Year

1996
1997
1998
1999
1997
1998
1999
2000
2001

Appending Files
Instead of concatenating data sets or tables, you can append them and produce the

same results as concatenation. SAS concatenates data sets (DATA step) and tables
(SQL) by reading each row of data to create a new file. To avoid reading all the records,
you can append the second file to the first file by using the APPEND procedure:

proc append base=year1 data=year2;
run;

Reading, Combining, and Modifying SAS Data Sets 4 Interleaving 333

The YEAR1 file will contain all rows from both tables.

Note: You cannot use PROC APPEND to add observations to a SAS data set in a
sequential library. 4

Efficiency
If no additional processing is necessary, using PROC APPEND or the APPEND

statement in PROC DATASETS is more efficient than using a DATA step to concatenate
data sets.

Interleaving

Definition
Interleaving uses a SET statement and a BY statement to combine multiple data sets

into one new data set. The number of observations in the new data set is the sum of the
number of observations from the original data sets. However, the observations in the
new data set are arranged by the values of the BY variable or variables and, within
each BY group, by the order of the data sets in which they occur. You can interleave
data sets either by using a BY variable or by using an index.

Syntax
Use this form of the SET statement to interleave data sets when you use a BY

variable:

SET data-set(s);

BY variable(s);

where

data-set
specifies a one-level name, a two-level name, or one of the special SAS data set
names.

variable
specifies each variable by which the data set is sorted. These variables are
referred to as BY variables for the current DATA or PROC step.

Use this form of the SET statement to interleave data sets when you use an index:

SET data-set-1 . . . data-set-n KEY= index;

where

data-set
specifies a one-level name, a two-level name, or one of the special SAS data set
names.

index
provides nonsequential access to observations in a SAS data set, which are based
on the value of an index variable or key.

For a complete description of the SET statement, including SET with the KEY=
option, see SAS Language Reference: Dictionary.

334 Interleaving 4 Chapter 24

Sort Requirements
Before you can interleave data sets, the observations must be sorted or grouped by

the same variable or variables that you use in the BY statement, or you must have an
appropriate index for the data sets.

DATA Step Processing During Interleaving

Compilation phase
� SAS reads the descriptor information of each data set that is named in the

SET statement and then creates a program data vector that contains all the
variables from all data sets as well as variables created by the DATA step.

� SAS creates the FIRST.variable and LAST.variable for each variable listed in
the BY statement.

Execution — Step 1
SAS compares the first observation from each data set that is named in the SET
statement to determine which BY group should appear first in the new data set. It
reads all observations from the first BY group from the selected data set. If this
BY group appears in more than one data set, it reads from the data sets in the
order in which they appear in the SET statement. The values of the variables in
the program data vector are set to missing each time SAS starts to read a new
data set and when the BY group changes.

Execution — Step 2
SAS compares the next observations from each data set to determine the next BY
group and then starts reading observations from the selected data set in the SET
statement that contains observations for this BY group. SAS continues until it has
read all observations from all data sets.

Example 1: Interleaving in the Simplest Case
In this example, each data set contains the BY variable Common, and the

observations are arranged in order of the values of the BY variable. The following
shows the ANIMAL and the PLANT input data sets in the library that is referenced by
the libref EXAMPLE:

ANIMAL PLANT

OBS Common Animal OBS Common Plant
1 a Ant 1 a Apple
2 b Bird 2 b Banana
3 c Cat 3 c Coconut
4 d Dog 4 d Dewberry
5 e Eagle 5 e Eggplant
6 f Frog 6 f Fig

The following program uses SET and BY statements to interleave the data sets, and
prints the results:

data example.interleaving;
set example.animal example.plant;
by Common;

run;

Reading, Combining, and Modifying SAS Data Sets 4 Interleaving 335

proc print data=example.interleaving;
title ’Data Set INTERLEAVING’;

run;

Output 24.3 Interleaved Data Sets

Data Set INTERLEAVING 1

Obs common animal plant

1 a Ant
2 a Apple
3 b Bird
4 b Banana
5 c Cat
6 c Coconut
7 d Dog
8 d Dewberry
9 e Eagle

10 e Eggplant
11 f Frog
12 f Fig

The resulting data set INTERLEAVING has 12 observations, which is the sum of the
observations from the combined data sets. The new data set contains all variables from
both data sets. The value of variables found in one data set but not in the other are set
to missing, and the observations are arranged by the values of the BY variable.

Example 2: Interleaving with Duplicate Values of the BY variable

If the data sets contain duplicate values of the BY variables, the observations are
written to the new data set in the order in which they occur in the original data sets.
This example contains duplicate values of the BY variable Common. The following
shows the ANIMAL1 and PLANT1 input data sets:

ANIMAL1 PLANT1

OBS Common Animal1 OBS Common Plant1

1 a Ant 1 a Apple
2 a Ape 2 b Banana
3 b Bird 3 c Coconut
4 c Cat 4 c Celery
5 d Dog 5 d Dewberry
6 e Eagle 6 e Eggplant

The following program uses SET and BY statements to interleave the data sets, and
prints the results:

data example.interleaving2;
set example.animal1 example.plant1;
by Common;

run;

336 Interleaving 4 Chapter 24

proc print data=example.interleaving2;
title ’Data Set INTERLEAVING2: Duplicate BY Values’;

run;

Output 24.4 Interleaved Data Sets with Duplicate Values of the BY Variable

Data Set INTERLEAVING2: Duplicate BY Values 1

Obs Common Animal1 Plant1

1 a Ant
2 a Ape
3 a Apple
4 b Bird
5 b Banana
6 c Cat
7 c Coconut
8 c Celery
9 d Dog

10 d Dewberry
11 e Eagle
12 e Eggplant

The number of observations in the new data set is the sum of the observations in all
the data sets. The observations are written to the new data set in the order in which
they occur in the original data sets.

Example 3: Interleaving with Different BY Values in Each Data Set

The data sets ANIMAL2 and PLANT2 both contain BY values that are present in
one data set but not in the other. The following shows the ANIMAL2 and the PLANT2
input data sets:

ANIMAL2 PLANT2

OBS Common Animal2 OBS Common Plant2

1 a Ant 1 a Apple
2 c Cat 2 b Banana
3 d Dog 3 c Coconut
4 e Eagle 4 e Eggplant

5 f Fig

This program uses SET and BY statements to interleave these data sets, and prints
the results:

data example.interleaving3;
set example.animal2 example.plant2;
by Common;

run;

proc print data=example.interleaving3;
title ’Data Set INTERLEAVING3: Different BY Values’;

Reading, Combining, and Modifying SAS Data Sets 4 One-to-One Reading 337

run;

Output 24.5 Interleaving Data Sets with Different BY Values

Data Set INTERLEAVING3: Different BY Values 1

Obs Common Animal2 Plant2

1 a Ant
2 a Apple
3 b Banana
4 c Cat
5 c Coconut
6 d Dog
7 e Eagle
8 e Eggplant
9 f Fig

The resulting data set has nine observations arranged by the values of the BY
variable.

Comments and Comparisons
� In other languages, the term merge is often used to mean interleave. SAS reserves

the term merge for the operation in which observations from two or more data sets
are combined into one observation. The observations in interleaved data sets are
not combined; they are copied from the original data sets in the order of the values
of the BY variable.

� If one table has multiple rows with the same BY value, the DATA step preserves
the order of those rows in the result.

� To use the DATA step, the input tables must be appropriately sorted or indexed.
SQL does not require the input tables to be in order.

One-to-One Reading

Definition
One-to-one reading combines observations from two or more data sets into one

observation by using two or more SET statements to read observations independently
from each data set. This process is also called one-to-one matching. The new data set
contains all the variables from all the input data sets. The number of observations in
the new data set is the number of observations in the smallest original data set. If the
data sets contain common variables, the values that are read in from the last data set
replace the values that were read in from earlier data sets.

Syntax
Use this form of the SET statement for one-to-one reading:

SET data-set-1;

SET data-set-2;

338 One-to-One Reading 4 Chapter 24

where

data-set-1
specifies a one-level name, a two-level name, or one of the special SAS data set
names. data-set-1 is the first file that the DATA step reads.

data-set-2
specifies a one-level name, a two-level name, or one of the special SAS data set
names. data-set-2 is the second file that the DATA step reads.

CAUTION:
Use care when you combine data sets with multiple SET statements. Using multiple SET
statements to combine observations can produce undesirable results. Test your
program on representative samples of the data sets before using this method to
combine them. 4

For a complete description of the SET statement, see SAS Language Reference:
Dictionary.

DATA Step Processing During a One-to-One Reading
Compilation phase

SAS reads the descriptor information of each data set named in the SET
statement and then creates a program data vector that contains all the variables
from all data sets as well as variables created by the DATA step.

Execution — Step 1
When SAS executes the first SET statement, SAS reads the first observation from
the first data set into the program data vector. The second SET statement reads
the first observation from the second data set into the program data vector. If both
data sets contain the same variables, the values from the second data set replace
the values from the first data set, even if the value is missing. After reading the
first observation from the last data set and executing any other statements in the
DATA step, SAS writes the contents of the program data vector to the new data
set. The SET statement does not reset the values in the program data vector to
missing, except for those variables that were created or assigned values during the
DATA step.

Execution — Step 2
SAS continues reading from one data set and then the other until it detects an
end-of-file indicator in one of the data sets. SAS stops processing with the last
observation of the shortest data set and does not read the remaining observations
from the longer data set.

Example 1: One-to-One Reading: Processing an Equal Number of
Observations

The SAS data sets ANIMAL and PLANT both contain the variable Common, and are
arranged by the values of that variable. The following shows the ANIMAL and the
PLANT input data sets:

ANIMAL PLANT

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 b Bird 2 b Banana

Reading, Combining, and Modifying SAS Data Sets 4 One-to-One Reading 339

3 c Cat 3 c Coconut
4 d Dog 4 d Dewberry
5 e Eagle 5 e Eggplant
6 f Frog 6 g Fig

The following program uses two SET statements to combine observations from
ANIMAL and PLANT, and prints the results:

data twosets;
set animal;
set plant;

run;

proc print data=twosets;
title ’Data Set TWOSETS - Equal Number of Observations’;

run;

Output 24.6 Data Set Created from Two Data Sets That Have Equal Observations

Data Set TWOSETS - Equal Number of Observations 1

Obs Common Animal Plant

1 a Ant Apple
2 b Bird Banana
3 c Cat Coconut
4 d Dog Dewberry
5 e Eagle Eggplant
6 g Frog Fig

Each observation in the new data set contains all the variables from all the data sets.
Note, however, that the Common variable value in observation 6 contains a “g.” The
value of Common in observation 6 of the ANIMAL data set was overwritten by the
value in PLANT, which was the data set that SAS read last.

Comments and Comparisons
� The results that are obtained by reading observations using two or more SET

statements are similar to those that are obtained by using the MERGE statement
with no BY statement. However, with one-to-one reading, SAS stops processing
before all observations are read from all data sets if the number of observations in
the data sets is not equal.

� Using multiple SET statements with other DATA step statements makes the
following applications possible:

� merging one observation with many
� conditionally merging observations
� reading from the same data set twice.

340 One-to-One Merging 4 Chapter 24

One-to-One Merging

Definition
One-to-one merging combines observations from two or more SAS data sets into a

single observation in a new data set. To perform a one-to-one merge, use the MERGE
statement without a BY statement. SAS combines the first observation from all data
sets in the MERGE statement into the first observation in the new data set, the second
observation from all data sets into the second observation in the new data set, and so
on. In a one-to-one merge, the number of observations in the new data set equals the
number of observations in the largest data set that was named in the MERGE
statement.

If you use the MERGENOBY= SAS system option, you can control whether SAS
issues a message when MERGE processing occurs without an associated BY statement.

Syntax
Use this form of the MERGE statement to merge SAS data sets:

MERGE data-set(s);

where

data-set
names at least two existing SAS data sets.

CAUTION:
Avoid using duplicate values or different values of common variables. One-to-one
merging with data sets that contain duplicate values of common variables can
produce undesirable results. If a variable exists in more than one data set, the value
from the last data set that is read is the one that is written to the new data set. The
variables are combined exactly as they are read from each data set. Using a
one-to-one merge to combine data sets with different values of common variables can
also produce undesirable results. If a variable exists in more than one data set, the
value from the last data set read is the one that is written to the new data set even if
the value is missing. Once SAS has processed all observations in a data set, all
subsequent observations in the new data set have missing values for the variables
that are unique to that data set. 4

For a complete description of the MERGE statement, see SAS Language Reference:
Dictionary.

DATA Step Processing During One-to-One Merging

Compilation phase
SAS reads the descriptor information of each data set that is named in the
MERGE statement and then creates a program data vector that contains all the
variables from all data sets as well as variables created by the DATA step.

Execution — Step 1
SAS reads the first observation from each data set into the program data vector,
reading the data sets in the order in which they appear in the MERGE statement.
If two data sets contain the same variables, the values from the second data set

Reading, Combining, and Modifying SAS Data Sets 4 One-to-One Merging 341

replace the values from the first data set. After reading the first observation from
the last data set and executing any other statements in the DATA step, SAS writes
the contents of the program data vector to the new data set. Only those variables
that are created or assigned values during the DATA step are set to missing.

Execution — Step 2
SAS continues until it has read all observations from all data sets.

Example 1: One-to-One Merging with an Equal Number of Observations
The SAS data sets ANIMAL and PLANT both contain the variable Common, and the

observations are arranged by the values of Common. The following shows the ANIMAL
and the PLANT input data sets:

ANIMAL PLANT

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 b Bird 2 b Banana
3 c Cat 3 c Coconut
4 d Dog 4 d Dewberry
5 e Eagle 5 e Eggplant
6 f Frog 6 g Fig

The following program merges these data sets and prints the results:

data combined;
merge animal plant;

run;

proc print data=combined;
title ’Data Set COMBINED’;

run;

Output 24.7 Merged Data Sets That Have an Equal Number of Observations

Data Set COMBINED 1

Obs Common Animal Plant

1 a Ant Apple
2 b Bird Banana
3 c Cat Coconut
4 d Dog Dewberry
5 e Eagle Eggplant
6 g Frog Fig

Each observation in the new data set contains all variables from all data sets. If two
data sets contain the same variables, the values from the second data set replace the
values from the first data set, as shown in observation 6.

342 One-to-One Merging 4 Chapter 24

Example 2: One-to-One Merging with an Unequal Number of Observations
The SAS data sets ANIMAL1 and PLANT1 both contain the variable Common, and

the observations are arranged by the values of Common. The PLANT1 data set has
fewer observations than the ANIMAL1 data set. The following shows the ANIMAL1
and the PLANT1 input data sets:

ANIMAL1 PLANT1

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 b Bird 2 b Banana
3 c Cat 3 c Coconut
4 d Dog
5 e Eagle
6 f Frog

The following program merges these unequal data sets and prints the results:

data combined1;
merge animal1 plant1;

run;

proc print data=combined1;
title ’Data Set COMBINED1’;

run;

Output 24.8 Merged Data Sets That Have an Unequal Number of Observations

Data Set COMBINED1 1

Obs Common Animal Plant

1 a Ant Apple
2 b Bird Banana
3 c Cat Coconut
4 d Dog
5 e Eagle
6 f Frog

Note that observations 4 through 6 contain missing values for the variable Plant.

Example 3: One-to-One Merging with Duplicate Values of Common Variables
The following example shows the undesirable results that you can obtain by using

one-to-one merging with data sets that contain duplicate values of common variables.
The value from the last data set that is read is the one that is written to the new data
set. The variables are combined exactly as they are read from each data set. In the
following example, the data sets ANIMAL1 and PLANT1 contain the variable Common,
and each data set contains observations with duplicate values of Common. The
following shows the ANIMAL1 and the PLANT1 input data sets:

Reading, Combining, and Modifying SAS Data Sets 4 One-to-One Merging 343

ANIMAL1 PLANT1

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 a Ape 2 b Banana
3 b Bird 3 c Coconut
4 c Cat 4 c Celery
5 d Dog 5 d Dewberry
6 e Eagle 6 e Eggplant

The following program produces the data set MERGE1 data set and prints the
results:

/* This program illustrates undesirable results. */
data merge1;

merge animal1 plant1;
run;

proc print data=merge1;
title ’Data Set MERGE1’;

run;

Output 24.9 Undesirable Results with Duplicate Values of Common Variables

Data Set MERGE1 1

Obs Common Animal1 Plant1

1 a Ant Apple
2 b Ape Banana
3 c Bird Coconut
4 c Cat Celery
5 d Dog Dewberry
6 e Eagle Eggplant

The number of observations in the new data set is six. Note that observations 2 and 3
contain undesirable values. SAS reads the second observation from data set ANIMAL1.
It then reads the second observation from data set PLANT1 and replaces the values for
the variables Common and Plant1. The third observation is created in the same way.

Example 4: One-to-One Merging with Different Values of Common Variables

The following example shows the undesirable results obtained from using the
one-to-one merge to combine data sets with different values of common variables. If a
variable exists in more than one data set, the value from the last data set that is read
is the one that is written to the new data set even if the value is missing. Once SAS
processes all observations in a data set, all subsequent observations in the new data set
have missing values for the variables that are unique to that data set. In this example,

344 Match-Merging 4 Chapter 24

the data sets ANIMAL2 and PLANT2 have different values of the Common variable.
The following shows the ANIMAL2 and the PLANT2 input data sets:

ANIMAL2 PLANT2

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 c Cat 2 b Banana
3 d Dog 3 c Coconut
4 e Eagle 4 e Eggplant

5 f Fig

The following program produces the data set MERGE2 and prints the results:

/* This program illustrates undesirable results. */
data merge2;

merge animal2 plant2;
run;

proc print data=merge2;
title ’Data Set MERGE2’;

run;

Output 24.10 Undesirable Results with Different Values of Common Variables

Data Set MERGE2 1

Obs Common Animal2 Plant2

1 a Ant Apple
2 b Cat Banana
3 c Dog Coconut
4 e Eagle Eggplant
5 f Fig

Comments and Comparisons
The results from a one-to-one merge are similar to the results obtained from using

two or more SET statements to combine observations. However, with the one-to-one
merge, SAS continues processing all observations in all data sets that were named in
the MERGE statement.

Match-Merging

Definition
Match-merging combines observations from two or more SAS data sets into a single

observation in a new data set according to the values of a common variable. The

Reading, Combining, and Modifying SAS Data Sets 4 Match-Merging 345

number of observations in the new data set is the sum of the largest number of
observations in each BY group in all data sets. To perform a match-merge, use the
MERGE statement with a BY statement. Before you can perform a match-merge, all
data sets must be sorted by the variables that you specify in the BY statement or they
must have an index.

Syntax
Use this form of the MERGE statement to match-merge data sets:

MERGE data-set(s);

BY variable(s);

where

data-set
names at least two existing SAS data sets from which observations are read.

variable
names each variable by which the data set is sorted or indexed. These variables
are referred to as BY variables.

For a complete description of the MERGE and the BY statements, see SAS Language
Reference: Dictionary.

DATA Step Processing During Match-Merging

Compilation phase
SAS reads the descriptor information of each data set that is named in the
MERGE statement and then creates a program data vector that contains all the
variables from all data sets as well as variables created by the DATA step. SAS
creates the FIRST.variable and LAST.variable for each variable that is listed in
the BY statement.

Execution – Step 1
SAS looks at the first BY group in each data set that is named in the MERGE
statement to determine which BY group should appear first in the new data set.
The DATA step reads into the program data vector the first observation in that BY
group from each data set, reading the data sets in the order in which they appear
in the MERGE statement. If a data set does not have observations in that BY
group, the program data vector contains missing values for the variables unique to
that data set.

Execution – Step 2
After processing the first observation from the last data set and executing other
statements, SAS writes the contents of the program data vector to the new data
set. SAS retains the values of all variables in the program data vector except
those variables that were created by the DATA step; SAS sets those values to
missing. SAS continues to merge observations until it writes all observations from
the first BY group to the new data set. When SAS has read all observations in a
BY group from all data sets, it sets all variables in the program data vector to
missing. SAS looks at the next BY group in each data set to determine which BY
group should appear next in the new data set.

Execution – Step 3
SAS repeats these steps until it reads all observations from all BY groups in all
data sets.

346 Match-Merging 4 Chapter 24

Example 1: Combining Observations Based on a Criterion
The SAS data sets ANIMAL and PLANT each contain the BY variable Common, and

the observations are arranged in order of the values of the BY variable. The following
shows the ANIMAL and the PLANT input data sets:

ANIMAL PLANT

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 b Bird 2 b Banana
3 c Cat 3 c Coconut
4 d Dog 4 d Dewberry
5 e Eagle 5 e Eggplant
6 f Frog 6 f Fig

The following program merges the data sets according to the values of the BY
variable Common, and prints the results:

data combined;
merge animal plant;
by Common;

run;

proc print data=combined;
title ’Data Set COMBINED’;

run;

Output 24.11 Data Sets Combined by Match-Merging

Data Set COMBINED 1

Obs Common Animal Plant

1 a Ant Apple
2 b Bird Banana
3 c Cat Coconut
4 d Dog Dewberry
5 e Eagle Eggplant
6 f Frog Fig

Each observation in the new data set contains all the variables from all the data sets.

Example 2: Match-Merge with Duplicate Values of the BY Variable
When SAS reads the last observation from a BY group in one data set, SAS retains its

values in the program data vector for all variables that are unique to that data set until
all observations for that BY group have been read from all data sets. In the following
example, the data sets ANIMAL1 and PLANT1 contain duplicate values of the BY
variable Common. The following shows the ANIMAL1 and the PLANT1 input data sets:

ANIMAL1 PLANT1

Reading, Combining, and Modifying SAS Data Sets 4 Match-Merging 347

OBS Common Animal1 OBS Common Plant1

1 a Ant 1 a Apple
2 a Ape 2 b Banana
3 b Bird 3 c Coconut
4 c Cat 4 c Celery
5 d Dog 5 d Dewberry
6 e Eagle 6 e Eggplant

The following program produces the merged data set MATCH1, and prints the results:

data match1;
merge animal1 plant1;
by Common;

run;

proc print data=match1;
title ’Data Set MATCH1’;

run;

Output 24.12 Match-Merged Data Set with Duplicate BY Values

Data Set MATCH1 1

Obs Common Animal1 Plant1

1 a Ant Apple
2 a Ape Apple
3 b Bird Banana
4 c Cat Coconut
5 c Cat Celery
6 d Dog Dewberry
7 e Eagle Eggplant

In observation 2 of the output, the value of the variable Plant1 is retained until all
observations in the BY group are written to the new data set. Match-merging also
produced duplicate values in ANIMAL1 for observations 4 and 5.

Example 3: Match-Merge with Nonmatched Observations
When SAS performs a match-merge with nonmatched observations in the input data

sets, SAS retains the values of all variables in the program data vector even if the value
is missing. The data sets ANIMAL2 and PLANT2 do not contain all values of the BY
variable Common. The following shows the ANIMAL2 and the PLANT2 input data sets:

ANIMAL2 PLANT2

OBS Common Animal2 OBS Common Plant2

1 a Ant 1 a Apple
2 c Cat 2 b Banana
3 d Dog 3 c Coconut

348 Updating with the UPDATE and the MODIFY Statements 4 Chapter 24

4 e Eagle 4 e Eggplant
5 f Fig

The following program produces the merged data set MATCH2, and prints the results:

data match2;
merge animal2 plant2;
by Common;

run;

proc print data=match2;
title ’Data Set MATCH2’;

run;

Output 24.13 Match-Merged Data Set with Nonmatched Observations

Data Set MATCH2 1

Obs Common Animal2 Plant2

1 a Ant Apple
2 b Banana
3 c Cat Coconut
4 d Dog
5 e Eagle Eggplant
6 f Fig

As the output shows, all values of the variable Common are represented in the new
data set, including missing values for the variables that are in one data set but not in
the other.

Updating with the UPDATE and the MODIFY Statements

Definitions
Updating a data set refers to the process of applying changes to a master data set.

To update data sets, you work with two input data sets. The data set containing the
original information is the master data set, and the data set containing the new
information is the transaction data set.

You can update data sets by using the UPDATE statement or the MODIFY statement:

UPDATE uses observations from the transaction data set to change the values
of corresponding observations from the master data set. You must
use a BY statement with the UPDATE statement because all
observations in the transaction data set are keyed to observations in
the master data set according to the values of the BY variable.

MODIFY can replace, delete, and append observations in an existing data set.
Using the MODIFY statement can save disk space because it
modifies data in place, without creating a copy of the data set.

The number of observations in the new data set is the sum of the number of
observations in the master data set and the number of unmatched observations in the
transaction data set.

Reading, Combining, and Modifying SAS Data Sets 4 Updating with the UPDATE and the MODIFY Statements 349

For complete information about the UPDATE and the MODIFY statements, see
“Statements” in SAS Language Reference: Dictionary.

Syntax of the UPDATE Statement
Use this form of the UPDATE statement to update a master data set:

UPDATE master-data-set transaction-data-set;

BY variable-list;

where

master-data-set
names the SAS data set that is used as the master file.

transaction-data-set
names the SAS data set that contains the changes to be applied to the master data
set.

variable-list
specifies the variables by which observations are matched.

If the transaction data set contains duplicate values of the BY variable, SAS applies
both transactions to the observation. The last values that are copied into the program
data vector are written to the new data set. If your data is in this form, use the
MODIFY statement instead of the UPDATE statement to process your data.

CAUTION:
Values of the BY variable must be unique for each observation in the master data set. If
the master data set contains two observations with the same value of the BY
variable, the first observation is updated and the second observation is ignored. SAS
writes a warning message to the log when the DATA step executes. 4

For complete information about the UPDATE statement, see SAS Language
Reference: Dictionary.

Syntax of the MODIFY Statement
This form of the MODIFY statement is used in the examples that follow:

MODIFY master-data–set;

BY variable-list;

where

master-data–set
specifies the SAS data set that you want to modify.

variable-list
names each variable by which the data set is ordered.

Note: The MODIFY statement does not support changing the descriptor portion of a
SAS data set, such as adding a variable. 4

For complete information about the MODIFY statement, see SAS Language
Reference: Dictionary.

DATA Step Processing with the UPDATE Statement

350 Updating with the UPDATE and the MODIFY Statements 4 Chapter 24

Compilation phase

� SAS reads the descriptor information of each data set that is named in the
UPDATE statement and creates a program data vector that contains all the
variables from all data sets as well as variables created by the DATA step.

� SAS creates the FIRST.variable and LAST.variable for each variable that is
listed in the BY statement.

Execution – Step 1
SAS looks at the first observation in each data set that is named in the UPDATE
statement to determine which BY group should appear first. If the transaction BY
value precedes the master BY value, SAS reads from the transaction data set only
and sets the variables from the master data set to missing. If the master BY value
precedes the transaction BY value, SAS reads from the master data set only and
sets the unique variables from the transaction data set to missing. If the BY
values in the master and transaction data sets are equal, it applies the first
transaction by copying the nonmissing values into the program data vector.

Execution – Step 2
After completing the first transaction, SAS looks at the next observation in the
transaction data set. If SAS finds one with the same BY value, it applies that
transaction too. The first observation then contains the new values from both
transactions. If no other transactions exist for that observation, SAS writes the
observation to the new data set and sets the values in the program data vector to
missing. SAS repeats these steps until it has read all observations from all BY
groups in both data sets.

Updating with Nonmatched Observations, Missing Values, and New
Variables

In the UPDATE statement, if an observation in the master data set does not have a
corresponding observation in the transaction data set, SAS writes the observation to the
new data set without modifying it. Any observation from the transaction data set that
does not correspond to an observation in the master data set is written to the program
data vector and becomes the basis for an observation in the new data set. The data in
the program data vector can be modified by other transactions before it is written to the
new data set. If a master data set observation does not need updating, the
corresponding observation can be omitted from the transaction data set.

SAS does not replace existing values in the master data set with missing values if
those values are coded as periods (for numeric variables) or blanks (for character
variables) in the transaction data set. To replace existing values with missing values,
you must either create a transaction data set in which missing values are coded with
the special missing value characters, or use the UPDATEMODE=NOMISSINGCHECK
statement option.

With UPDATE, the transaction data set can contain new variables to be added to all
observations in the master data set.

To view a sample program, see “Example 3: Using UPDATE for Processing
Nonmatched Observations, Missing Values, and New Variables” on page 354.

Sort Requirements for the UPDATE Statement
If you do not use an index, both the master data set and the transaction data set

must be sorted by the same variable or variables that you specify in the BY statement
that accompanies the UPDATE statement. The values of the BY variable should be
unique for each observation in the master data set. If you use more than one BY
variable, the combination of values of all BY variables should be unique for each

Reading, Combining, and Modifying SAS Data Sets 4 Updating with the UPDATE and the MODIFY Statements 351

observation in the master data set. The BY variable or variables should be ones that
you never need to update.

Note: The MODIFY statement does not require sorted files. However, sorting the
data improves efficiency. 4

Using an Index with the MODIFY Statement
The MODIFY statement maintains the index. You do not have to rebuild the index

like you do for the UPDATE statement.

Choosing between UPDATE or MODIFY with BY
Using the UPDATE statement is comparable to using MODIFY with BY to apply

transactions to a data set. While MODIFY is a more powerful tool with several other
applications, UPDATE is still the tool of choice in some cases. The following table helps
you choose whether to use UPDATE or MODIFY with BY.

Table 24.3 MODIFY with BY versus UPDATE

Issue MODIFY with BY UPDATE

Disk space saves disk space because it updates data in
place

requires more disk space because it
produces an updated copy of the data
set

Sort and index sorted input data sets are not required,
although for good performance, it is strongly
recommended that both data sets be sorted
and that the master data set be indexed

requires only that both data sets be
sorted

When to use use only when you expect to process a SMALL
portion of the data set

use if you expect to need to process
most of the data set

Where to specify the
modified data set

specify the updated data set in both the DATA
and the MODIFY statements

specify the updated data set in the
DATA and the UPDATE statements

Duplicate BY-values allows duplicate BY-values in both the master
and the transaction data sets

allows duplicate BY-values in the
transaction data set only (If
duplicates exist in the master data
set, SAS issues a warning.)

Scope of changes cannot change the data set descriptor
information, so changes such as adding or
deleting variables, variable labels, and so on,
are not valid

can make changes that require a
change in the descriptor portion of a
data set, such as adding new
variables, and so on

352 Updating with the UPDATE and the MODIFY Statements 4 Chapter 24

Issue MODIFY with BY UPDATE

Error checking has error-checking capabilities using the
IORC automatic variable and the SYSRC
autocall macro

needs no error checking because
transactions without a corresponding
master record are not applied but are
added to the data set

Data set integrity data may only be partially updated due to an
abnormal task termination

no data loss occurs because UPDATE
works on a copy of the data

For more information about tools for combining SAS data sets, see Table 24.2 on
page 327.

Primary Uses of the MODIFY Statement
The MODIFY statement has three primary uses:

� modifying observations in a single SAS data set.

� modifying observations in a single SAS data set directly, either by observation
number or by values in an index.

� modifying observations in a master data set, based on values in a transaction data
set. MODIFY with BY is similar to using the UPDATE statement.

Several of the examples that follow demonstrate these uses.

Example 1: Using UPDATE for Basic Updating
In this example, the data set MASTER contains original values of the variables

Animal and Plant. The data set NEWPLANT is a transaction data set with new values
of the variable Plant. The following shows the MASTER and the NEWPLANT input
data sets:

MASTER NEWPLANT

OBS Common Animal Plant OBS Common Plant

1 a Ant Apple 1 a Apricot
2 b Bird Banana 2 b Barley
3 c Cat Coconut 3 c Cactus
4 d Dog Dewberry 4 d Date
5 e Eagle Eggplant 5 e Escarole
6 f Frog Fig 6 f Fennel

The following program updates MASTER with the transactions in the data set
NEWPLANT, writes the results to UPDATE_FILE, and prints the results:

data update_file;
update master newplant;
by common;

run;

Reading, Combining, and Modifying SAS Data Sets 4 Updating with the UPDATE and the MODIFY Statements 353

proc print data=update_file;
title ’Data Set Update_File’;

run;

Output 24.14 Master Data Set Updated by Transaction Data Set

Data Set Update_File 1

Obs Common Animal Plant

1 a Ant Apricot
2 b Bird Barley
3 c Cat Cactus
4 d Dog Date
5 e Eagle Escarole
6 f Frog Fennel

Each observation in the new data set contains a new value for the variable Plant.

Example 2: Using UPDATE with Duplicate Values of the BY Variable
If the master data set contains two observations with the same value of the BY

variable, the first observation is updated and the second observation is ignored. SAS
writes a warning message to the log. If the transaction data set contains duplicate
values of the BY variable, SAS applies both transactions to the observation. The last
values copied into the program data vector are written to the new data set. The
following shows the MASTER1 and the DUPPLANT input data sets.

MASTER1 DUPPLANT

OBS Common Animal1 Plant1 OBS Common Plant1

1 a Ant Apple 1 a Apricot
2 b Bird Banana 2 b Barley
3 b Bird Banana 3 c Cactus
4 c Cat Coconut 4 d Date
5 d Dog Dewberry 5 d Dill
6 e Eagle Eggplant 6 e Escarole
7 f Frog Fig 7 f Fennel

The following program applies the transactions in DUPPLANT to MASTER1 and
prints the results:

data update1;
update master1 dupplant;
by Common;

run;

proc print data=update1;
title ’Data Set Update1’;

run;

354 Updating with the UPDATE and the MODIFY Statements 4 Chapter 24

Output 24.15 Updating Data Sets with Duplicate BY Values

Data Set Update1 1

Obs Common Animal1 Plant1

1 a Ant Apricot
2 b Bird Barley
3 b Bird Banana
4 c Cat Cactus
5 d Dog Dill
6 e Eagle Escarole
7 f Frog Fennel

When this DATA step executes, SAS generates a warning message stating that there
is more than one observation for a BY group. However, the DATA step continues to
process, and the data set UPDATE1 is created.

The resulting data set has seven observations. Observations 2 and 3 have duplicate
values of the BY variable Common. However, the value of the variable PLANT1 was
not updated in the second occurrence of the duplicate BY value.

Example 3: Using UPDATE for Processing Nonmatched Observations,
Missing Values, and New Variables

In this example, the data set MASTER2 is a master data set. It contains a missing
value for the variable Plant2 in the first observation, and not all of the values of the BY
variable Common are included. The transaction data set NONPLANT contains a new
variable Mineral, a new value of the BY variable Common, and missing values for
several observations. The following shows the MASTER2 and the NONPLANT input
data sets:

MASTER2 NONPLANT

OBS Common Animal2 Plant2 OBS Common Plant2 Mineral

1 a Ant 1 a Apricot Amethyst
2 c Cat Coconut 2 b Barley Beryl
3 d Dog Dewberry 3 c Cactus
4 e Eagle Eggplant 4 e
5 f Frog Fig 5 f Fennel

6 g Grape Garnet

The following program updates the data set MASTER2 and prints the results:

data update2_file;
update master2 nonplant;
by Common;

run;

proc print data=update2_file;
title ’Data Set Update2_File’;

run;

Reading, Combining, and Modifying SAS Data Sets 4 Updating with the UPDATE and the MODIFY Statements 355

Output 24.16 Results of Updating with New Variables, Nonmatched Observations, and Missing Values

Data Set Update2_File 1

Obs Common Animal2 Plant2 Mineral

1 a Ant Apricot Amethyst
2 b Barley Beryl
3 c Cat Cactus
4 d Dog Dewberry
5 e Eagle Eggplant
6 f Frog Fennel
7 g Grape Garnet

As shown, all observations now include values for the variable Mineral. The value of
Mineral is set to missing for some observations. Observations 2 and 6 in the
transaction data set did not have corresponding observations in MASTER2, and they
have become new observations. Observation 3 from the master data set was written to
the new data set without change, and the value for Plant2 in observation 4 was not
changed to missing. Three observations in the new data set have updated values for the
variable Plant2.

The following program uses the UPDATEMODE statement option on the UPDATE
statement, and prints the results:

data update2_file;
update master2 nonplant updatemode=nomissingcheck;
by Common;

run;

proc print data=update2_file;
title ’Data Set Update2_File - UPDATEMODE Option’;

run;

Output 24.17 Results of Updating with the UPDATEMODE Option

Data Set Update2_File - UPDATEMODE Option 1

Obs Common Animal2 Plant2 Mineral

1 a Ant Apricot Amethyst
2 b Barley Beryl
3 c Cat Cactus
4 d Dog Dewberry
5 e Eagle
6 f Frog Fennel
7 g Grape Garnet

The value of Plant2 in observation 5 is set to missing because the
UPDATEMODE=NOMISSINGCHECK option is in effect.

For detailed examples for updating data sets, see Combining and Modifying SAS
Data Sets: Examples.

356 Updating with the UPDATE and the MODIFY Statements 4 Chapter 24

Example 4: Updating a MASTER Data Set by Adding an Observation

If the transaction data set contains an observation that does not match an
observation in the master data set, you must alter the program. The Year value in
observation 5 of TRANSACTION has no match in MASTER. The following shows the
MASTER and the TRANSACTION input data sets:

MASTER TRANSACTION

OBS Year VarX VarY OBS Year VarX VarY

1 1985 x1 y1 1 1991 x2
2 1986 x1 y1 2 1992 x2 y2
3 1987 x1 y1 3 1993 x2
4 1988 x1 y1 4 1993 y2
5 1989 x1 y1 5 1995 x2 y2
6 1990 x1 y1
7 1991 x1 y1
8 1992 x1 y1
9 1993 x1 y1

10 1994 x1 y1

You must use an explicit OUTPUT statement to write a new observation to a master
data set. (The default action for a DATA step using a MODIFY statement is REPLACE,
not OUTPUT.) Once you specify an explicit OUTPUT statement, you must also specify a
REPLACE statement. The following DATA step updates data set MASTER, based on
values in TRANSACTION, and adds a new observation. This program also uses the
IORC automatic variable for error checking. (For more information about error
checking, see “Error Checking When Using Indexes to Randomly Access or Update
Data” on page 357.

data master;
modify master transaction;
by Year;
if _iorc_=%sysrc(_sok) then replace;
else if _iorc_=%sysrc(_dsenmr) then

do;
output;
error=0;

end;
else

do;
put "Unexpected error at Observation: " _n_;
error=0;
stop;

end;
run;

proc print data=master;
title ’Updated Master Data Set -- MODIFY’;
title2 ’One Observation Added’;

run;

Reading, Combining, and Modifying SAS Data Sets 4 Error-Checking Tools 357

Output 24.18 Modified MASTER Data Set

Updated Master Data Set -- MODIFY 1
One Observation Added

Obs Year VarX VarY

1 1985 x1 y1
2 1986 x1 y1
3 1987 x1 y1
4 1988 x1 y1
5 1989 x1 y1
6 1990 x1 y1
7 1991 x2 y1
8 1992 x2 y2
9 1993 x2 y2

10 1994 x1 y1
11 1995 x2 y2

SAS added a new observation, observation 11, to the MASTER data set and updated
observations 7, 8, and 9.

Error Checking When Using Indexes to Randomly Access or Update Data

The Importance of Error Checking
When reading observations with the SET statement and KEY= option or with the

MODIFY statement, error checking is imperative for several reasons. The most
important reason is that these tools use nonsequential access methods, and so there is
no guarantee that an observation will be located that satisfies the request. Error
checking enables you to direct execution to specific code paths, depending on the
outcome of the I/O operation. Your program will continue execution for expected
conditions and terminate execution when unexpected results occur.

Error-Checking Tools
Two tools have been created to make error checking easier when you use the MODIFY

statement or the SET statement with the KEY= option to process SAS data sets:

� _IORC_ automatic variable

� SYSRC autocall macro.

IORC is created automatically when you use the MODIFY statement or the SET
statement with KEY=. The value of _IORC_ is a numeric return code that indicates the
status of the I/O operation from the most recently executed MODIFY or SET statement
with KEY=. Checking the value of this variable enables you to detect abnormal I/O
conditions and to direct execution down specific code paths instead of having the
application terminate abnormally. For example, if the KEY= variable value does match
between two observations, you might want to combine them and output an observation.
If they don’t match, however, you may want only to write a note to the log.

Because the values of the _IORC_ automatic variable are internal and subject to
change, the SYSRC macro was created to enable you to test for specific I/O conditions
while protecting your code from future changes in _IORC_ values. When you use

358 Example 1: Routing Execution When an Unexpected Condition Occurs 4 Chapter 24

SYSRC, you can check the value of _IORC_ by specifying one of the mnemonics listed in
the following table.

Table 24.4 Most Common Mnemonic Values of _IORC_ for DATA Step Processing

Mnemonic value Meaning of return code This return code occurs when ...

_DSENMR The TRANSACTION data set
observation does not exist in the
MASTER data set.

MODIFY with BY is used and no
match occurs.

_DSEMTR Multiple TRANSACTION data set
observations with the same BY
variable value do not exist in the
MASTER data set.

MODIFY with BY is used and
consecutive observations with the
same BY values do not find a match
in the first data set. In this
situation, the first observation that
fails to find a match returns
_DSENMR. The subsequent
observations return _DSEMTR.

_DSENOM No matching observation was
found in the MASTER data set.

SET or MODIFY with KEY= finds
no match.

_SENOCHN The output operation was
unsuccessful.

the KEY= option in a MODIFY
statement contains duplicate
values.

_SOK The I/O operation was successful. a match is found.

Example 1: Routing Execution When an Unexpected Condition Occurs

Overview
This example shows how to prevent an unexpected condition from terminating the

DATA step. The goal is to update a master data set with new information from a
transaction data set. This application assumes that there are no duplicate values for
the common variable in either data set.

Note: This program works as expected only if the master and transaction data sets
contain no consecutive observations with the same value for the common variable. For
an explanation of the behavior of MODIFY with KEY= when duplicates exist, see the
MODIFY statement in SAS Language Reference: Dictionary. 4

Input Data Sets
The TRANSACTION data set contains three observations: two updates to

information in MASTER and a new observation about PartNumber value 6 that needs
to be added. MASTER is indexed on PartNumber. There are no duplicate values of
PartNumber in MASTER or TRANSACTION. The following shows the MASTER and
the TRANSACTION input data sets:

MASTER TRANSACTION

Reading, Combining, and Modifying SAS Data Sets 4 Example 1: Routing Execution When an Unexpected Condition Occurs 359

OBS PartNumber Quantity OBS PartNumber AddQuantity

1 1 10 1 4 14
2 2 20 2 6 16
3 3 30 3 2 12
4 4 40
5 5 50

Original Program
The objective is to update the MASTER data set with information from the

TRANSACTION data set. The program reads TRANSACTION sequentially. MASTER
is read directly, not sequentially, using the MODIFY statement and the KEY= option.
Only observations with matching values for PartNumber, which is the KEY= variable,
are read from MASTER.

data master; u

set transaction; v

modify master key=PartNumber; w

Quantity = Quantity + AddQuantity; x

run;

u Open the MASTER data set for update.

v Read an observation from the TRANSACTION data set.

w Match observations from the MASTER data set based on the values of
PartNumber.

x Update the information on Quantity by adding the new values from the
TRANSACTION data set.

Resulting Log
This program has correctly updated one observation but it stopped when it could not

find a match for PartNumber value 6. The following lines are written to the SAS log:

ERROR: No matching observation was found in MASTER data set.
PartNumber=6 AddQuantity=16 Quantity=70 _ERROR_=1
IORC=1230015 _N_=2
NOTE: The SAS System stopped processing this step because

of errors.
NOTE: The data set WORK.MASTER has been updated. There were

1 observations rewritten, 0 observations added and 0
observations deleted.

Resulting Data Set
The MASTER file was incorrectly updated. The updated master has five observations.

One observation was updated correctly, a new one was not added, and a second update
was not made. The following shows the incorrectly updated MASTER data set:

MASTER

OBS PartNumber Quantity

360 Example 1: Routing Execution When an Unexpected Condition Occurs 4 Chapter 24

1 1 10
2 2 20
3 3 30
4 4 54
5 5 50

Revised Program
The objective is to apply two updates and one addition to MASTER, preventing the

DATA step from stopping when it does not find a match in MASTER for the
PartNumber value 6 in TRANSACTION. By adding error checking, this DATA step is
allowed to complete normally and produce a correctly revised version of MASTER. This
program uses the _IORC_ automatic variable and the SYSRC autocall macro in a
SELECT group to check the value of the _IORC_ variable and execute the appropriate
code based on whether or not a match is found.

data master; u

set transaction; v

modify master key=PartNumber; w

select(_iorc_); x

when(%sysrc(_sok)) do;
Quantity = Quantity + AddQuantity;
replace;

end;
when(%sysrc(_dsenom)) do;

Quantity = AddQuantity;
error = 0;
output;

end;
otherwise do;

put ’ERROR: Unexpected value for _IORC_= ’ _iorc_;
put ’Program terminating. Data step iteration # ’ _n_;
put _all_;
stop;

end;
end;

run;

u Open the MASTER data set for update.

v Read an observation from the TRANSACTION data set.

w Match observations from the MASTER data set based on the value of PartNumber.

x Take the correct course of action based on whether a matching value for
PartNumber is found in MASTER. Update Quantity by adding the new values
from TRANSACTION. The SELECT group directs execution to the correct code.
When a match occurs (_SOK), update Quantity and replace the original
observation in MASTER. When there is no match (_DSENOM), set Quantity equal
to the AddQuantity amount from TRANSACTION, and append a new observation.
ERROR is reset to 0 to prevent an error condition that would write the contents
of the program data vector to the SAS log. When an unexpected condition occurs,

Reading, Combining, and Modifying SAS Data Sets 4 Example 2: Using Error Checking on All Statements That Use KEY= 361

write messages and the contents of the program data vector to the log, and stop
the DATA step.

Resulting Log
The DATA step executed without error and observations were appropriately updated

and added. The following lines are written to the SAS log:

NOTE: The data set WORK.MASTER has been updated. There were
2 observations rewritten, 1 observations added and 0
observations deleted.

Correctly Updated MASTER Data Set
MASTER contains updated quantities for PartNumber values 2 and 4 and a new

observation for PartNumber value 6. The following shows the correctly updated
MASTER data set:

MASTER

OBS PartNumber Quantity
1 1 10
2 2 32
3 3 30
4 4 54
5 5 50
6 6 16

Example 2: Using Error Checking on All Statements That Use KEY=

Overview
This example shows how important it is to use error checking on all statements that

use the KEY= option when reading data.

Input Data Sets
The MASTER and DESCRIPTION data sets are both indexed on PartNumber. The

ORDER data set contains values for all parts in a single order. Only ORDER contains
the PartNumber value 8. The following shows the MASTER, ORDER, and
DESCRIPTION input data sets:

MASTER ORDER

OBS PartNumber Quantity OBS PartNumber

1 100 10 1 200
2 200 20 2 400
3 300 30 3 100
4 400 40 4 300
5 500 50 5 800

6 500
7 600

362 Example 2: Using Error Checking on All Statements That Use KEY= 4 Chapter 24

DESCRIPTION

OBS PartNumber PartDescription

1 400 Nuts
2 300 Bolts
3 200 Screws
4 600 Washers

Original Program with Logic Error
The objective is to create a data set that contains the description and number in

stock for each part in a single order, except for the parts that are not found in either of
the two input data sets, MASTER and DESCRIPTION. A transaction data set contains
the part numbers of all parts in a single order. One data set is read to retrieve the
description of the part and another is read to retrieve the quantity that is in stock.

The program reads the ORDER data set sequentially and then uses SET with the
KEY= option to read the MASTER and DESCRIPTION data sets directly, based on the
key value of PartNumber. When a match occurs, an observation is written that contains
all the necessary information for each value of PartNumber in ORDER. This first
attempt at a solution uses error checking for only one of the two SET statements that
use KEY= to read a data set.

data combine; u

length PartDescription $ 15;
set order; v

set description key=PartNumber; v

set master key=PartNumber; v

select(_iorc_); w

when(%sysrc(_sok)) do;
output;

end;
when(%sysrc(_dsenom)) do;

PartDescription = ’No description’;
error = 0;
output;

end;
otherwise do;

put ’ERROR: Unexpected value for _IORC_= ’ _iorc_;
put ’Program terminating.’;
put _all_;
stop;

end;
end;

run;

u Create the COMBINE data set.

v Read an observation from the ORDER data set. Read an observation from the
DESCRIPTION and the MASTER data sets based on a matching value for
PartNumber, the key variable. Note that no error checking occurs after an
observation is read from DESCRIPTION.

w Take the correct course of action, based on whether a matching value for
PartNumber is found in MASTER or DESCRIPTION. (This logic is based on the
erroneous assumption that this SELECT group performs error checking for both of
the preceding SET statements that contain the KEY= option. It actually performs

Reading, Combining, and Modifying SAS Data Sets 4 Example 2: Using Error Checking on All Statements That Use KEY= 363

error checking for only the most recent one.) The SELECT group directs execution
to the correct code. When a match occurs (_SOK), the value of PartNumber in the
observation that is being read from MASTER matches the current PartNumber
value from ORDER. So, output an observation. When there is no match
(_DSENOM), no observations in MASTER contain the current value of
PartNumber, so set the value of PartDescription appropriately and output an
observation. _ERROR_ is reset to 0 to prevent an error condition that would write
the contents of the program data vector to the SAS log. When an unexpected
condition occurs, write messages and the contents of the program data vector to
the log, and stop the DATA step.

Resulting Log
This program creates an output data set but executes with one error. The following

lines are written to the SAS log:

PartNumber=1 PartDescription=Nuts Quantity=10 _ERROR_=1
IORC=0 _N_=3
PartNumber=5 PartDescription=No description Quantity=50
ERROR=1 _IORC_=0 _N_=6
NOTE: The data set WORK.COMBINE has 7 observations and 3 variables.

Resulting Data Set
The following shows the incorrectly created COMBINE data set. Observation 5

should not be in this data set. PartNumber value 8 does not exist in either MASTER or
DESCRIPTION, so no Quantity should be listed for it. Also, observations 3 and 7
contain descriptions from observations 2 and 6, respectively.

COMBINE

OBS PartNumber PartDescription Quantity
1 2 Screws 20
2 4 Nuts 40
3 1 Nuts 10
4 3 Bolts 30
5 8 No description 30
6 5 No description 50
7 6 No description 50

Revised Program
To create an accurate output data set, this example performs error checking on both

SET statements that use the KEY= option:

data combine(drop=Foundes); u

length PartDescription $ 15;
set order; v

Foundes = 0; w

set description key=PartNumber; x

select(_iorc_); y

when(%sysrc(_sok)) do;
Foundes = 1;

364 Example 2: Using Error Checking on All Statements That Use KEY= 4 Chapter 24

end;
when(%sysrc(_dsenom)) do;

PartDescription = ’No description’;
error = 0;

end;
otherwise do;

put ’ERROR: Unexpected value for _IORC_= ’ _iorc_;
put ’Program terminating. Data set accessed is DESCRIPTION’;
put _all_;
error = 0;
stop;

end;
end;

set master key=PartNumber; U

select(_iorc_); V

when(%sysrc(_sok)) do;
output;

end;
when(%sysrc(_dsenom)) do;

if not Foundes then do;
error = 0;
put ’WARNING: PartNumber ’ PartNumber ’is not in’

’ DESCRIPTION or MASTER.’;
end;
else do;

Quantity = 0;
error = 0;
output;

end;
end;
otherwise do;

put ’ERROR: Unexpected value for _IORC_= ’ _iorc_;
put ’Program terminating. Data set accessed is MASTER’;
put _all_;
error = 0;
stop;

end;
end; /* ends the SELECT group */

u Create the COMBINE data set.

v Read an observation from the ORDER data set.

w Create the variable Foundes so that its value can be used later to indicate when a
PartNumber value has a match in the DESCRIPTION data set.

x Read an observation from the DESCRIPTION data set, using PartNumber as the
key variable.

y Take the correct course of action based on whether a matching value for
PartNumber is found in DESCRIPTION. The SELECT group directs execution to
the correct code based on the value of _IORC_. When a match occurs (_SOK), the
value of PartNumber in the observation that is being read from DESCRIPTION
matches the current value from ORDER. Foundes is set to 1 to indicate that
DESCRIPTION contributed to the current observation. When there is no match
(_DSENOM), no observations in DESCRIPTION contain the current value of
PartNumber, so the description is set appropriately. _ERROR_ is reset to 0 to

Reading, Combining, and Modifying SAS Data Sets 4 Example 2: Using Error Checking on All Statements That Use KEY= 365

prevent an error condition that would write the contents of the program data vector
to the SAS log. Any other _IORC_ value indicates that an unexpected condition
has been met, so messages are written to the log and the DATA step is stopped.

U Read an observation from the MASTER data set, using PartNumber as a key
variable.

V Take the correct course of action based on whether a matching value for
PartNumber is found in MASTER. When a match is found (_SOK) between the
current PartNumber value from ORDER and from MASTER, write an observation.
When a match isn’t found (_DSENOM) in MASTER, test the value of Foundes. If
Foundes is not true, then a value wasn’t found in DESCRIPTION either, so write a
message to the log but do not write an observation. If Foundes is true, however,
the value is in DESCRIPTION but not MASTER. So write an observation but set
Quantity to 0. Again, if an unexpected condition occurs, write a message and stop
the DATA step.

Resulting Log
The DATA step executed without error. Six observations were correctly created and

the following message was written to the log:

WARNING: PartNumber 8 is not in DESCRIPTION or MASTER.
NOTE: The data set WORK.COMBINE has 6 observations

and 3 variables.

Correctly Created COMBINE Data Set
The following shows the correctly updated COMBINE data set. Note that COMBINE

does not contain an observation with the PartNumber value 8. This value does not
occur in either MASTER or DESCRIPTION.

COMBINE

OBS PartNumber PartDescription Quantity

1 2 Screws 20
2 4 Nuts 40
3 1 No description 10
4 3 Bolts 30
5 5 No description 50
6 6 Washers 0

366 Example 2: Using Error Checking on All Statements That Use KEY= 4 Chapter 24

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

