367

CHAPTER

25

Array Processing

Definitions 367
A Conceptual View of Arrays 368
One-Dimensional Array 368
Two-Dimensional Array 368
Syntax for Defining and Referencing an Array 369
Processing Simple Arrays 370
Grouping Variables in a Simple Array 370
Using a DO Loop to Repeat an Action 370
Using a DO Loop to Process Selected Elements in an Array 371
Selecting the Current Variable 371
Defining the Number of Elements in an Array 372
Rules for Referencing Arrays 373
Variations on Basic Array Processing 373
Determining the Number of Elements in an Array Efficiently 373
DO WHILE and DO UNTIL Expressions 374
Using Variable Lists to Define an Array Quickly 374
Multidimensional Arrays 375
Grouping Variables in a Multidimensional Array 375
Using Nested DO Loops 375
Specifying Array Bounds 377
Identifying Upper and Lower Bounds 377
Determining Array Bounds: LBOUND and HBOUND Functions 377
When to Use the HBOUND Function instead of the DIM Function 378
Specifying Bounds in a Two-Dimensional Array 378
Examples 379
Example 1: Using Character Variables in an Array 379
Example 2: Assigning Initial Values to the Elements of an Array 380
Example 3: Creating an Array for Temporary Use in the Current DATA Step 381
Example 4: Performing an Action on All Numeric Variables 382

Definitions

array
is a temporary grouping of SAS variables that are arranged in a particular order
and identified by an array-name. The array exists only for the duration of the
current DATA step. The array-name distinguishes it from any other arrays in the
same DATA step; it is not a variable.

368 A Conceptual View of Arrays A Chapter 25

Note: Arrays in SAS are different from those in many other programming
languages. In SAS, an array is not a data structure but is just a convenient way of
temporarily identifying a group of variables. 2

array processing
is a method that enables you to perform the same tasks for a series of related
variables.

array reference
is a method to reference the elements of an array.

one-dimensional array
is a simple grouping of variables that, when processed, results in output that can
be represented in simple row format.

multidimensional array
is a more complex grouping of variables that, when processed, results in output
that could have two or more dimensions, such as columns and rows.

Basic array processing involves the following steps:

O grouping variables into arrays

o selecting a current variable for an action

O repeating an action.

A Conceptual View of Arrays

One-Dimensional Array

The following figure is a conceptual representation of two one-dimensional arrays,
MISC and MDAY.

Figure 25.1 One-Dimensional Array

Arrays : Variables

1 2 3 4 5 6 7 8
MISC ! | miscl misc2 misc3 misc4 misc5 misc6 misc7 misc8
1 2 3 4 5 6 7

MDAY : | mdayl mday2 mday3 mday4 mday5 mday6 mday7

MISC contains eight elements, the variables MISC1 through MISC8. To reference
the data in these variables, use the form MISC{n}, where n is the element number in
the array. For example, MISC{6} is the sixth element in the array.

MDAY contains seven elements, the variables MDAY1 through MDAY7. MDAY{3} is
the third element in the array.

Two-Dimensional Array

The following figure is a conceptual representation of the two-dimensional array
EXPENSES.

Figure 25.2 Example of a Two-Dimensional Array

First

Dimension

Expense

Categories
Hotel 1
Phone 2
Pers. Auto 3
Rental Car 4
Airfare 5
Dues 6
Registration 7

Fees

Other 8
Tips (non-meal) 9
Meals 10

The EXPENSES array contains ten groups of eight variables each. The ten groups
(expense categories) comprise the first dimension of the array, and the eight variables
(days of the week) comprise the second dimension. To reference the data in the array
variables, use the form EXPENSES{m,n}, where m is the element number in the first
dimension of the array, and n is the element number in the second dimension of the

Array Processing A Syntax for Defining and Referencing an Array

Second
Dimension
Days of the Week Total

1 2 3 4 5 6 7 8
hotell hotel2 hotel3 hotel4 hotel5 hotel6 hotel7 hotel8
phonel phone2 phone3 phone4 phone5 phone6 phone7 phone8
perautl peraut2 peraut3 peraut4d perauts perauté peraut7 peraut8
carrntl carrnt2 carrnt3 carrnt4 carrnt5 carrnt6 carrnt7 carrnt8
airlinl airlin2 airlin3 airlin airlins airliné airlin7 airlin8
duesl dues2 dues3 dues4 dues5 dues6 dues?7 dues8
regfeel regfee2 regfee3 regfee4 regfee5 regfee6 regfee7 regfee8
otherl other2 other3 otherd other5 other6 other7 other8
tips1 tips2 tips3 tips4 tips5 tips6 tips7 tips8
mealsl meals2 meals3 meals4 meals5 meals6 meals7 meals8

369

array. EXPENSES({6,4} references the value of dues for the fourth day (the variable is

DUESA4).

Syntax for Defining and Referencing an Array

To define a simple or a multidimensional array, use the ARRAY statement. The
ARRAY statement has the following form:

ARRAY array-name {number-of-elements} <list-of-variables>;

where

array-name
is a SAS name that identifies the group of variables.

number-of-elements
is the number of variables in the group. You must enclose this value in

parentheses, braces, or brackets.

list-of-variables
is a list of the names of the variables in the group. All variables that are defined
in a given array must be of the same type-either all character or all numeric.

370

Processing Simple Arrays A Chapter 25

For complete information about the ARRAY statement, see SAS Language Reference:
Dictionary.

To reference an array that was previously defined in the same DATA step, use an
Array Reference statement. An array reference has the following form:

array-name {subscript}
where

array-name
is the name of an array that was previously defined with an ARRAY statement in
the same DATA step.

subscript
specifies the subscript, which can be a numeric constant, the name of a variable
whose value is the number, a SAS numeric expression, or an asterisk (*).

Note: Subscripts in SAS are 1-based by default, and not 0-based as they are in
some other programming languages. 2

For complete information about the Array Reference statement, see “Statements” in
SAS Language Reference: Dictionary.

Processing Simple Arrays

Grouping Variables in a Simple Array

The following ARRAY statement creates an array named BOOKS that contains the
three variables Reference, Usage, and Introduction:

array books{3} Reference Usage Introduction;

When you define an array, SAS assigns each array element an array reference with
the form array-name{subscript}, where subscript is the position of the variable in the
list. The following table lists the array reference assignments for the previous ARRAY

statement:

Variable Array reference
Reference books{1}

Usage books{2}
Introduction books{3}

Later in the DATA step, when you want to process the variables in the array, you can
refer to a variable by either its name or its array reference. For example, the names
Reference and books{1} are equivalent.

Using a DO Loop to Repeat an Action

To perform the same action several times, use an iterative DO loop. A simple
iterative DO loop that processes an array has the following form:

DO index-variable=1 TO number-of-elements-in-array;
... more SAS statements ...

Array Processing A Selecting the Current Variable 3N

END;

The loop is processed repeatedly (iterates) according to the instructions in the
iterative DO statement. The iterative DO statement contains an index-variable whose
name you specify and whose value changes at each iteration of the loop.

To execute the loop as many times as there are variables in the array, specify that
the values of index-variable are 1 TO number-of-elements-in-array. SAS increases the
value of index-variable by 1 before each new iteration of the loop. When the value
exceeds the number-of-elements-in-array, SAS stops processing the loop. By default,
SAS automatically includes index-variable in the output data set. Use a DROP
statement or the DROP= data set option to prevent the index variable from being
written to your output data set.

An iterative DO loop that executes three times and has an index variable named
count has the following form:

do count=1 to 3;
.. more SAS statements ..
end;

The first time the loop processes, the value of count is 1; the second time, 2; and the
third time, 3. At the beginning of the fourth iteration, the value of count is 4, which
exceeds the specified range and causes SAS to stop processing the loop.

Using a DO Loop to Process Selected Elements in an Array

To process particular elements of an array, specify those elements as the range of the
iterative DO statement. For example, the following statement creates an array DAYS
that contains seven elements:

array days{7} D1-D7;

The following DO statements process selected elements of the array DAYS:

do i=2 to 4; processes elements 2 through 4
do i=1 to 7 by 2; processes elements 1, 3, 5, and 7
do i=3,5; processes elements 3 and 5

Selecting the Current Variable

You must tell SAS which variable in the array to use in each iteration of the loop.
Recall that you identify variables in an array by their array references and that you use
a variable name, a number, or an expression as the subscript of the reference.
Therefore, you can write programming statements so that the index variable of the DO
loop is the subscript of the array reference (for example, array-name{index-variable}).
When the value of the index variable changes, the subscript of the array reference (and
therefore the variable that is referenced) also changes.

The following example uses the index variable count as the subscript of array
references inside a DO loop:

array books{3} Reference Usage Introduction;
do count=1 to 3;

if books{count}=. then books{count}=0;
end;

372

Defining the Number of Elements in an Array A Chapter 25

When the value of count is 1, SAS reads the array reference as books{1} and processes
the IF-THEN statement on books{1}, which is the variable Reference. When count is 2,
SAS processes the statement on books{2}, which is the variable Usage. When count is 3,
SAS processes the statement on books{3}, which is the variable Introduction.

The statements in the example tell SAS to

o perform the actions in the loop three times

o replace the array subscript count with the current value of count for each iteration
of the IF-THEN statement

o locate the variable with that array reference and process the IF-THEN statement
on it

o replace missing values with zero if the condition is true.

The following DATA step defines the array BOOK and processes it with a DO loop.

options nodate pageno=1 linesize=80 pagesize=60;

data changed(drop=count);
input Reference Usage Introduction;
array book{3} Reference Usage Introduction;
do count=1 to 3;
if book{count}=. then book{count}=0;
end;
datalines;
45 63 113
. 75 150
62 . 98

proc print data=changed;
title 'Number of Books Sold’;

run;

The following output shows the CHANGED data set.

Output 25.1 Using an Array Statement to Process Missing Data Values

Number of Books Sold 1
Obs Reference Usage Introduction
1 45 63 113
2 0 75 150
3 62 0 98

Defining the Number of Elements in an Array

When you define the number of elements in an array, you can either use an asterisk
enclosed by braces ({*}), brackets ([*]), or parentheses ((*)) to count the number of
elements or to specify the number of elements. You must list each array element if you
use the asterisk to designate the number of elements. In the following example, the
array C1TEMP references five variables with temperature measures.

array cltemp{*} cltl clt2 clt3 clt4 clt5;

Array Processing A Determining the Number of Elements in an Array Efficiently 373

If you specify the number of elements explicitly, you can omit the names of the
variables or array elements in the ARRAY statement. SAS then creates variable names
by concatenating the array name with the numbers 1, 2, 3, and so on. If a variable
name in the series already exists, SAS uses that variable instead of creating a new one.
In the following example, the array clt references five variables: c1tl, c1t2, c1t3, clt4,
and c1t5.

array clt{5};

Rules for Referencing Arrays

Before you make any references to an array, an ARRAY statement must appear in
the same DATA step that you used to create the array. Once you have created the
array, you can

O use an array reference anywhere that you can write a SAS expression

O use an array reference as the arguments of some SAS functions

O use a subscript enclosed in braces, brackets, or parentheses to reference an array

i

use the special array subscript asterisk (*) to refer to all variables in an array in
an INPUT or PUT statement or in the argument of a function.

Note: You cannot use the asterisk with _TEMPORARY _ arrays. A

An array definition is in effect only for the duration of the DATA step. If you want to
use the same array in several DATA steps, you must redefine the array in each step.
You can, however, redefine the array with the same variables in a later DATA step by
using a macro variable. A macro variable is useful for storing the variable names you
need, as shown in this example:

%let 1list=NC SC GA VA;

data one;
array state(*) &list;
.. more SAS statements ..

run;

data two;
array state(*) &list;
.. more SAS statements ..

run;

Variations on Basic Array Processing

Determining the Number of Elements in an Array Efficiently

The DIM function in the iterative DO statement returns the number of elements in a
one-dimensional array or the number of elements in a specified dimension of a
multidimensional array, when the lower bound of the dimension is 1. Use the DIM
function to avoid changing the upper bound of an iterative DO group each time you
change the number of elements in the array.

The form of the DIM function is as follows:

DIMn(array-name)

374

DO WHILE and DO UNTIL Expressions A Chapter 25

where n is the specified dimension that has a default value of 1.
You can also use the DIM function when you specify the number of elements in the
array with an asterisk. Here are some examples of the DIM function:

O do i=1 to dim(days);
O do i=1 to dim4(days) by 2;

DO WHILE and DO UNTIL Expressions

Arrays are often processed in iterative DO loops that use the array reference in a DO
WHILE or DO UNTIL expression. In this example, the iterative DO loop processes the
elements of the array named TREND.

data test;
array trend{5} x1-x5;
input x1-x5 y;
do i=1 to 5 while(trend{i}<y);
. more SAS statements ..
end;
datalines;
data lines ..

Using Variable Lists to Define an Array Quickly

SAS reserves the following three names for use as variable list names:
CHARACTER

NUMERIC

ALL

You can use these variable list names to reference variables that have been previously
defined in the same DATA step. The _CHARACTER _ variable lists character values
only. The NUMERIC_ variable lists numeric values only. The _ALL_ variable lists
either all character or all numeric values, depending on how you previously defined the
variables.

For example, the following INPUT statement reads in variables X1 through X3 as
character values using the $8. informat, and variables X4 through X5 as numeric
variables. The following ARRAY statement uses the variable list CHARACTER_ to
include only the character variables in the array. The asterisk indicates that SAS will
determine the subscript by counting the variables in the array.

input (X1-X3) ($8.) X4-X5;
array item {*} _character_;

You can use the _NUMERIC_ variable in your program if, for example, you need to
convert currency. In this application, you do not need to know the variable names. You
need only to convert all values to the new currency.

For more information about variable lists, see the ARRAY statement in SAS
Language Reference: Dictionary.

Array Processing A Using Nested DO Loops 375

Multidimensional Arrays

Grouping Variables in a Multidimensional Array

To create a multidimensional array, place the number of elements in each dimension
after the array name in the form {n, ... } where n is required for each dimension of a
multidimensional array.

From right to left, the rightmost dimension represents columns; the next dimension
represents rows. Each position farther left represents a higher dimension. The
following ARRAY statement defines a two-dimensional array with two rows and five
columns. The array contains ten variables: five temperature measures (t1 through t5)
from two cities (c1 and c2):

array temprg{2,5} cltl-clt5 c2tl-c2t5;

SAS places variables into a multidimensional array by filling all rows in order,
beginning at the upper-left corner of the array (known as row-major order). You can
think of the variables as having the following arrangement:

cltl clt2 clt3 clt4 clth
c2tl c2t2 c2t3 c2t4 c2t5

To refer to the elements of the array later with an array reference, you can use the
array name and subscripts. The following table lists some of the array references for
the previous example:

Variable Array reference
citl temprg{1,1}
clt2 temprg{1,2}
c2t2 temprg{2,2}
c2t5 temprg{2,5}

Using Nested DO Loops

Multidimensional arrays are usually processed inside nested DO loops. As an
example, the following is one form that processes a two-dimensional array:
DO index-variable-1=1 TO number-of-rows;

DO index-variable-2=1 TO number-of-columns;
. more SAS statements ...

END;
END;

An array reference can use two or more index variables as the subscript to refer to
two or more dimensions of an array. Use the following form:

array-name {index-variable-1, ...,index-variable-n}

The following example creates an array that contains ten variables- five temperature
measures (t1 through t5) from two cities (c1 and c2). The DATA step contains two DO
loops.

376 Using Nested DO Loops A Chapter 25

o The outer DO loop (DO I=1 TO 2) processes the inner DO loop twice.

o The inner DO loop (DO J=1 TO 5) applies the ROUND function to all the variables
in one row.

For each iteration of the DO loops, SAS substitutes the value of the array element
corresponding to the current values of | and J.

options nodate pageno=1 linesize=80 pagesize=60;

data temps;
array temprg{2,5} cltl-clt5 c2tl-c2t5;
input cltl-clt5 /
c2tl-c2t5;
do i=1 to 2;
do j=1 to 5;
temprg{i, j}=round(temprg{i,j});
end;
end;
datalines;
89.5 65.4 75.3 77.7 89.3
73.7 87.3 89.9 98.2 35.6
75.8 82.1 98.2 93.5 67.7
101.3 86.5 59.2 35.6 75.7

r

proc print data=temps;
title ’'Temperature Measures for Two Cities’;

run;

The following data set TEMPS contains the values of the variables rounded to the
nearest whole number.

Output 25.2 Using a Multidimensional Array

Temperature Measures for Two Cities 1
Obs cltl «clt2 clt3 clt4 clt5 c2tl c2t2 c2t3 c2t4d c2t5 i j

1 90 65 75 78 89 74 87 90 98 36 3 6
2 76 82 98 94 68 101 87 59 36 76 3 6

The previous example can also use the DIM function to produce the same result:

do i=1 to diml(temprg);
do j=1 to dim2(temprg);
temprg{i, j}=round(temprg{i,j});
end;
end;

The value of DIM1(TEMPRG) is 2; the value of DIM2(TEMPRG) is 5.

Array Processing A Determining Array Bounds: LBOUND and HBOUND Functions 377

Specifying Array Bounds

Identifying Upper and Lower Bounds

Typically in an ARRAY statement, the subscript in each dimension of the array
ranges from 1 to n, where n is the number of elements in that dimension. Thus, 1 is the
lower bound and n is the upper bound of that dimension of the array. For example, in
the following array, the lower bound is 1 and the upper bound is 4:

array new{4} Jackson Poulenc Andrew Parson;

In the following ARRAY statement, the bounds of the first dimension are 1 and 2 and
those of the second dimension are 1 and 5:

array test{2,5} testl-testlO;

Bounded array dimensions have the following form:
{<lower-1:>upper-1<,...<lower-n:>upper-n>}

Therefore, you can also write the previous ARRAY statements as follows:

array new{l:4} Jackson Poulenc Andrew Parson;
array test{1:2,1:5} testl-testlO0;

For most arrays, 1 is a convenient lower bound, so you do not need to specify the
lower bound. However, specifying both the lower and the upper bounds is useful when
the array dimensions have beginning points other than 1.

In the following example, ten variables are named Year76 through Year85. The
following ARRAY statements place the variables into two arrays named FIRST and
SECOND:

array first{10} Year76-Year85;
array second{76:85} Year76-Year85;

In the first ARRAY statement, the element first{4} is variable Year79, first{7} is Year82,
and so on. In the second ARRAY statement, element second{79} is Year79 and
second{82} is Year82.

To process the array names SECOND in a DO group, be sure that the range of the
DO loop matches the range of the array as follows:

do i=76 to 85;
if second{i}=9 then second{i}=.;
end;

Determining Array Bounds: LBOUND and HBOUND Functions

You can use the LBOUND and HBOUND functions to determine array bounds. The
LBOUND function returns the lower bound of a one-dimensional array or the lower
bound of a specified dimension of a multidimensional array. The HBOUND function
returns the upper bound of a one-dimensional array or the upper bound of a specified
dimension of a multidimensional array.

The form of the LBOUND and HBOUND functions is as follows:

LBOUNDRN(array-name)
HBOUNDnN(array-name)

where

378

When to Use the HBOUND Function instead of the DIM Function A Chapter 25

n
is the specified dimension and has a default value of 1.

You can use the LBOUND and HBOUND functions to specify the starting and ending
values of the iterative DO loop to process the elements of the array nhamed SECOND:

do i=lbound{second} to hbound{second};
if second{i}=9 then second{i}=.;
end;

In this example, the index variable in the iterative DO statement ranges from 76 to 85.

When to Use the HBOUND Function instead of the DIM Function

The following ARRAY statement defines an array containing a total of five elements,
a lower bound of 72, and an upper bound of 76. It represents the calendar years 1972
through 1976:

array years{72:76} first second third fourth fifth;

To process the array named YEARS in an iterative DO loop, be sure that the range of
the DO loop matches the range of the array as follows:

do i=lbound(years) to hbound(years);
if years{i}=99 then years{i}=.;
end;

The value of LBOUND(YEARS) is 72; the value of HBOUND(YEARS) is 76.

For this example, the DIM function would return a value of 5, the total count of
elements in the array YEARS. Therefore, if you used the DIM function instead of the
HBOUND function for the upper bound of the array, the statements inside the DO loop
would not have executed.

Specifying Bounds in a Two-Dimensional Array

The following list contains 40 variables named X60 through X99. They represent the
years 1960 through 1999.

X60 X61 X62 X63 X64 X65 X66 X67 X68 X69
X70 X71 X72 X73 X74 X75 X76 X717 X78 X79
X80 X81 X82 X83 X84 X85 X86 X87 X88 X89
X90 X91 X92 X93 X94 X95 X96 X97 X98 X99

The following ARRAY statement arranges the variables in an array by decades. The
rows range from 6 through 9, and the columns range from 0 through 9.

array X{6:9,0:9} X60-X99;
In array X, variable X63 is element X{6,3} and variable X89 is element X{8,9}. To
process array X with iterative DO loops, use one of these methods:
Method 1:
do i=6 to 9;
do j=0 to 9;
if X{i,3}=0 then X{i,j}=.;
end;

end;

Method 2:

Array Processing A Example 1: Using Character Variables in an Array 379

do i=lboundl(X) to hboundl(X);
do j=lbound2(X) to hbound2(X);
if X{i,j}=0 then X{i,j}=.;
end;
end;

Both examples change all values of 0 in variables X60 through X99 to missing. The
first example sets the range of the DO groups explicitly, and the second example uses the
LBOUND and HBOUND functions to return the bounds of each dimension of the array.

Examples

Example 1: Using Character Variables in an Array

You can specify character variables and their lengths in ARRAY statements. The
following example groups variables into two arrays, NAMES and CAPITALS. The dollar
sign ($) tells SAS to create the elements as character variables. If the variables have
already been declared as character variables, a dollar sign in the array is not necessary.
The INPUT statement reads all the variables in array NAMES.

The statement inside the DO loop uses the UPCASE function to change the values of
the variables in array NAMES to uppercase and then store the uppercase values in the
variables in the CAPITALS array.

options nodate pageno=1 linesize=80 pagesize=60;

data text;
array names{*} $ nl-nl0;
array capitals{*} $ cl-cl0;
input names{*};
do i=1 to 10;
capitals{i}=upcase(names{i});
end;
datalines;
smithers michaels gonzalez hurth frank bleigh

rounder joseph peters sam

r

proc print data=text;
title ’'Names Changed from Lowercase to Uppercase’;

run;

The following output shows the TEXT data set.

380 Example 2: Assigning Initial Values to the Elements of an Array A Chapter 25

Output 25.3 Using Character Variables in an Array

Names Changed from Lowercase to Uppercase 1
Obs nl n2 n3 n4 n5 neé n7 n8 n9 nlo
1 smithers michaels gonzalez hurth frank bleigh rounder Jjoseph peters sam
Obs cl c2 c3 c4 c5 c6 c7 c8 c9 clo i

1 SMITHERS MICHAELS GONZALEZ HURTH FRANK BLEIGH ROUNDER JOSEPH PETERS SAM 11

Example 2: Assigning Initial Values to the Elements of an Array

This example creates variables in the array TEST and assigns them the initial
values 90, 80, and 70. It reads values into another array named SCORE and compares
each element of SCORE to the corresponding element of TEST. If the value of the
element in SCORE is greater than or equal to the value of the element in TEST, the
variable NewScore is assigned the value in the element SCORE, and the OUTPUT
statement writes the observation to the SAS data set.

The INPUT statement reads a value for the variable named ID and then reads
values for all the variables in the SCORE array.

options nodate pageno=1 linesize=80 pagesize=60;

data scorel(drop=i);
array test{3} tl-t3 (90 80 70);
array score{3} sl-s3;
input id score{*};
do i=1 to 3;
if score{i}>=test{i} then
do;
NewScore=score{i};
output;
end;
end;
datalines;
1234 99 60 82
5678 80 85 75

r

proc print noobs data=scorel;
title ’‘Data Set SCORELl’;

run;

The following output shows the SCOREL1 data set.

Array Processing A Example 3: Creating an Array for Temporary Use in the Current DATA Step 381

Output 25.4 Assigning Initial Values to the Elements of an Array

Data Set SCOREl 1
New
tl t2 t3 sl s2 s3 id Score
90 80 70 99 60 82 1234 99
90 80 70 99 60 82 1234 82
90 80 70 80 85 75 5678 85
90 80 70 80 85 75 5678 75

Example 3: Creating an Array for Temporary Use in the Current DATA
Step

When elements of an array are constants that are needed only for the duration of the
DATA step, you can omit variables from an array group and instead use temporary
array elements. You refer to temporary data elements by the array name and
dimension. Although they behave like variables, temporary array elements do not have
names, and they do not appear in the output data set. Temporary array elements are
automatically retained, instead of being reset to missing at the beginning of the next
iteration of the DATA step.

To create a temporary array, use the _TEMPORARY_ argument. The following
example creates a temporary array named TEST:

options nodate pageno=1 linesize=80 pagesize=60;

data score2(drop=i);
array test{3} _temporary_ (90 80 70);
array score{3} sl-s3;
input id score{*};
do i=1 to 3;
if score{i}>=test{i} then
do;
NewScore=score{i};
output;
end;
end;
datalines;
1234 99 60 82
5678 80 85 75

r

proc print noobs data=score2;
title ‘Data Set SCORE2’;

run;

The following output shows the SCORE?2 data set.

382 Example 4: Performing an Action on All Numeric Variables A Chapter 25

Output 25.5 Using _TEMPORARY_ Arrays

Data Set SCORE2

New
sl s2 s3 id Score
99 60 82 1234 99
99 60 82 1234 82
80 85 75 5678 85
80 85 75 5678 75

Example 4: Performing an Action on All Numeric Variables
This example multiplies all the numeric variables in array TEST by 3.

options nodate pageno=1 linesize=80 pagesize=60;

data sales;
infile datalines;
input Valuel Value2 Value3 Value4;
datalines;

11 56 58 61

22 51 57 61

22 49 53 58

~e

data convert(drop=i);
set sales;
array test{*} _numeric_;
do i=1 to dim(test);
test{i} = (test{i}*3);
end;

run;

proc print data=convert;
title ’'Data Set CONVERT’;

run;

The following output shows the CONVERT data set.

Output 25.6 Output From Using a _NUMERIC_ Variable List

Data Set CONVERT

Obs Valuel Value2 Value3 Valued
1 33 168 174 183
2 66 153 171 183

3 66 147 159 174

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts

Copyright © 1999 SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-441-1

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any

means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, November 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM, ACF/VTAM, AIX, APPN, MVS/ESA, 0S/2, 0S/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ©®
indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

