
411

C H A P T E R

28
SAS Data Files

Definition of a SAS Data File 412
Differences between Data Files and Data Views 413

Audit Trail 414

Definition of an Audit Trail 414

Benefits of an Audit Trail 414

Audit Trail Description 415
Operation 416

Performance 416

Reading and Determining the Status of the Audit Trail 416

Limitations 417

The Audit Trail and Fast-Append 417

Initiating an Audit Trail 417
Defining User Variables 418

Controlling the Audit Trail 418

Example of Initiating an Audit Trail 418

Example of a Data File Update 420

Example of Using the Audit Trail to Capture Rejected Observations 421
Integrity Constraints 423

Definition of Integrity Constraints 423

General Integrity Constraints 423

Referential Integrity Constraints 423

Preservation of Integrity Constraints 425
Indexes and Integrity Constraints 426

Locking 427

Specifying Integrity Constraints 427

Listing Integrity Constraints 427

Rejected Observations 427

Examples 428
Example 1: Creating Integrity Constraints with the DATASETS Procedure 428

Example 2: Creating Integrity Constraints with the SQL Procedure 428

Example 3: Creating Integrity Constraints with SCL 429

Example 4: Removing Integrity Constraints 432

Example 5: Reactivating an Inactive Integrity Constraint 433
SAS Indexes 433

Definition of SAS Indexes 433

Benefits of an Index 433

Index File 434

Types of Indexes 435
Simple Index 435

Composite Index 435

Unique Values 436

412 Definition of a SAS Data File 4 Chapter 28

Missing Values 436
Deciding Whether to Create an Index 437

Costs of an Index 437

CPU Cost 437

I/O Cost 437

Buffer Requirements 438
Disk Space Requirements 438

Guidelines for Creating Indexes 439

Data File Considerations 439

Index Use Considerations 439

Key Variable Candidates 439

Methods of Creating an Index 440
Using the DATASETS Procedure 440

Using the INDEX= Data Set Option 441

Using the SQL Procedure 441

Using Other SAS Products 441

Using an Index for WHERE Processing 441
Identifying Available Index or Indexes 442

Compound Optimization 443

Estimating the Number of Qualified Observations 444

Comparing Resource Usage 445

Controlling WHERE Processing Index Usage with Data Set Options 445
Displaying Index Usage Information in the SAS Log 446

Using an Index with Views 446

Using an Index for BY Processing 447

Using an Index for Both WHERE and BY Processing 448

Specifying an Index with the KEY= Option for SET and MODIFY Statements 448

Taking Advantage of an Index 449
Maintaining Indexes 449

Displaying Data File Information 449

Copying an Indexed Data File 452

Updating an Indexed Data File 452

Sorting an Indexed Data File 453
Adding Observations to an Indexed Data File 453

Multiple Occurrences 453

Appending to an Indexed Data File 453

Recovering a Damaged Index 453

Compressed Data Files 454

Definition of a SAS Data File

SAS data file
is a type of SAS data set that contains both the data values and the descriptor
information. SAS data files are of the type DATA.

Note: In the SAS System, the term “data set” is used to refer to both SAS data
files, which contain data and data set descriptor information, and to SAS data
views, which consist entirely of descriptor information. 4

native SAS data file
stores the data values and descriptor information in a file formatted by SAS.

SAS Data Files 4 Differences between Data Files and Data Views 413

interface SAS data file
stores the data in a file that was formatted by software other than SAS. Beginning
with Release 6.06, there are engines for reading and writing data from files that
were formatted by software such as ORACLE, DB2, SYBASE, ODBC, BMDP,
SPSS, and OSIRIS. These files are interface SAS data files, and when their data
values are accessed through an engine, SAS recognizes them as SAS data sets.

Note: The availability of engines that can access different types of interface data
files is determined by your site licensing agreement. See your system administrator to
determine which engines are available. For more information about SAS multi-engine
architecture, see Chapter 36, “SAS I/O Engines,” on page 511. 4

Differences between Data Files and Data Views
While SAS data files and SAS data views can, for the most part, be used

interchangeably in a SAS DATA step, here are a few differences to keep in mind:
� The main difference is where the values are stored. A SAS data file is a type of SAS

data set that contains both descriptor information about the data and the data
values themselves. SAS data views contain only descriptor information that points
to data values that are stored elsewhere.

� A data file is a static picture; a data view is a dynamic picture. When you
reference a data file in a later PROC step, you see the data values as they were
when the data file was created or last updated. When you reference a data view in
a PROC step, the view executes and provides you with an image of the data values
as they currently exist, not as they existed when the view was defined.

� SAS data files can be created on tape, or on any other storage medium.
SAS data views cannot be created or stored on tape, or generated from data files

stored on tape. Because of their dynamic nature, SAS data views must derive
their information from data files on random-access storage devices, such as disk
drives. SAS data views cannot derive their information from files stored on
sequentially accessed storage devices, such as tape drives.

� SAS data views are read-only. You cannot write to a data view.
� SAS data files can have integrity constraints. When you update a SAS data file,

you can ensure that the data conforms to certain standards by using integrity
constraints. With data views, this may only be done indirectly, by assigning
integrity constraints to the data files that the data views reference.

� SAS data files can be indexed. Indexing may allow SAS to find data in a SAS data
file more quickly. SAS data views cannot be indexed.

� SAS data files can be encrypted. Encryption provides an extra layer of security to
physical files. SAS data views cannot be encrypted.

� SAS data files can be compressed. Compression makes it possible to store physical
files in less space. SAS data views cannot be compressed.

The following table illustrates native and interface SAS data files and their relationship
to SAS data views.

414 Audit Trail 4 Chapter 28

Figure 28.1 Types of SAS Data Sets

SAS Data Views
(contain descriptor

information that points to
data stored elsewhere)

SAS Data Files
(contain data and

descriptor information)

Native Data Files
(formatted by SAS)

Interface Data Files
(formatted by other

software)

Native Data Views
(formatted by SAS)

Interface Data Views
(formatted by other

software)

PROC SQL Views DATA Step Views

SAS Data Sets

Audit Trail

Definition of an Audit Trail
The audit trail is an optional SAS file that you can create to log modifications to a

SAS data file. Each time an observation is added, deleted, or updated, information is
written to the audit trail about who made the modification, what was modified, and
when.

Benefits of an Audit Trail
Many businesses and organizations require an audit trail for security reasons. The

audit trail maintains a historical record of the data that enables you to trace a piece of
data from the moment it enters the data file to the time it leaves.

An audit trail provides useful information from which to develop usage statistics. For
example, for master data files that are updated by multiple applications and users, the
audit trail can show which applications and users made updates and what updates
were made.

The audit trail is also the only place in the SAS System that stores observations from
failed appends and observations that were rejected by integrity constraints. The
integrity constraints feature is described in “Integrity Constraints” on page 423. You
can write a DATA step to extract the failed or rejected observations from the audit trail,
use information describing why they failed to correct them, and then reapply the
observations to the data file.

SAS Data Files 4 Audit Trail Description 415

Audit Trail Description
The audit trail is a SAS file created by the SAS base engine with the same libref and

member name as the data file, and a data set type of AUDIT. The audit trail replicates
the variables in the data file and additionally stores two types of audit variables:

� _AT*_ variables, which automatically store modification data

� “user” variables, which are special variables you can optionally define when you
initiate the audit trail.

The _AT*_ variables are described in the following table.

Table 28.1 _AT* Variables

AT* Variable Description

ATDATETIME Stores the date and time of a modification

ATUSERID Stores the logon userid associated with a modification

ATOBSNO Stores the observation number affected by the modification,
except when REUSE=YES (because the observation number is
always 0)

ATRETURNCODE Stores the event return code

ATMESSAGE Stores the SAS log message at the time of the modification

ATOPCODE Stores a code describing the type of modification

The _ATOPCODE_ values are listed in the following table.

Table 28.2 _ATOPCODE_ Values

Code Modification

DA Added data record image

DD Deleted data record image

DR Before-update record image

DW After-update record image

EA Observation add failed

ED Observation delete failed

EW Observation update failed

The log settings at audit trail initiation determine which _ATOPCODE_ values are
logged:

� the “DR” operation code is controlled with the LOG statement BEFORE_IMAGE
option

� other operations codes that begin with a “D” are controlled with the DATA_IMAGE
option

� operation codes that begin with an “E” are controlled with the ERROR_IMAGE
option.

416 Operation 4 Chapter 28

For instructions on specifying log settings, refer to “Initiating an Audit Trail” on page
417. The default behavior is to log all images.

The user variables are unique in the SAS System because they are stored in one file
(the audit file) and opened for update in another file, the data file. This enables you to
associate data values with the data file without making them part of the data file. For
example, you could define a user variable that enables users to enter a “reason for the
modification.”

The user variables are processed as follows:

1 You define the variables as part of the audit trail specification.

2 The base engine retrieves the variables from the audit trail and displays them
when the data file is opened for update.

3 The users can enter data values for the user variables as they would for any data
variable.

4 The data values are written to the audit trail as each observation is saved. In
applications like FSEDIT, which save observations as you scroll through them, it
may appear that the data values have disappeared.

5 The user variables are not available when the data file is opened for browsing or
printing.

6 You modify user variables in the data file. That is, to rename a user variable or
modify its attributes, you modify the data file, not the audit file.

For information about defining user variables, see “Defining User Variables” on page
418. If you define user variables, you must store values in them for the variables to be
meaningful.

The audit trail must reside in the same SAS library as its associated data file, and a
data file can have only one audit file.

Operation
The audit trail operates similarly in local and remote environments. The only

difference for applications and users networked with SAS/CONNECT and SAS/SHARE
is that the audit trail logs events when the observation is written to permanent storage;
that is, when the data is written to the remote SAS session or server. Therefore, the
time the transaction is logged may be different than the user’s SAS session.

Performance
Because each update to the data file is also written to the audit file, the audit trail

can negatively impact system performance. You may want to consider suspending the
audit trail for large, regularly scheduled batch updates. Note that the audit variables
are unavailable when the audit trail is suspended.

Reading and Determining the Status of the Audit Trail
The audit trail is read-only. You can read the audit trail with any component of SAS

that reads a data set. To refer to the audit trail, use the data set TYPE= option. For
example, to print the audit trail, you would issue the statement:

proc print data=libref.member-name (type=audit);
title "Data in the Audit File";

run;

SAS Data Files 4 Initiating an Audit Trail 417

If an audit trail exists, PROC CONTENTS reports the audit status and records
image settings when it is invoked on its associated data file. You can also use your
favorite reporting tool — PROC REPORT or PROC TABULATE, for example — on the
audit trail.

Limitations
The audit trail is not recommended for SAS data files that are copied, moved, sorted

in place, replaced, or transferred to another operating system because those operations
do not preserve the audit trail. In a copy operation on the same host, you can preserve
the data file and audit trail by renaming them using the Generation Data Sets feature;
however, logging will stop because neither the auditing process nor the Generation Data
Sets feature saves the source program that caused the replacement. For more
information, see “Generation Data Sets” on page 404.

For data files whose audit file contains user variables, the variable list is different
when browsing and updating the data file. The user variables are selected for update
but not for browsing. You should be aware of this difference when you are developing
your own full-screen applications.

Data values entered for user variables are not stored in the audit trail for delete
operations.

If the audit file becomes damaged, you will not be able to process the data file until
you terminate the audit trail. Then you can initiate a new audit trail or process the
data file without one.

The Audit Trail and Fast-Append
In indexed data sets, the fast-append feature may cause some observations to be

written to the audit trail twice, first with a DA operation code and then with an EA
operation code. The observations with EA represent those rejected by index restrictions.
For more information, see “Appending to an Indexed Data Set” in the PROC
DATASETS APPEND statement documentation in the SAS Procedures Guide.

Initiating an Audit Trail
You initiate the audit trail in PROC DATASETS with the AUDIT statement. The

syntax for initiating the audit trail is:

PROC DATASETS LIB=libref;
AUDIT SAS-file <SAS-password>;

INITIATE;
<LOG <BEFORE_IMAGE=YES|NO><DATA_IMAGE=YES|NO>

<ERROR_IMAGE=YES|NO>>;
USER_VAR specification-1 <...specification-n>;

where:
SAS-file specifies the SAS data file in the procedure input library that you want to

audit.
SAS-password is the SAS password of the data file, if one exists.
The INITIATE statement creates the audit trail.
The LOG statement specifies the data images, or events, to be logged on the audit

trail.
BEFORE_IMAGE=YES|NO controls storage of before-update record images.

418 Defining User Variables 4 Chapter 28

DATA_IMAGE=YES|NO controls storage of after-update record images.
ERROR_IMAGE=YES|NO controls storage of unsuccessful update record

images.
If the LOG statement is omitted, the default setting for all images is YES.

The USER_VAR statement optionally defines user variables to be logged to the audit
trail with each update to an observation. Syntax details are provided in “Defining
User Variables” on page 418.

The audit file will use the SAS password assigned to the associated data file, and
therefore it is recommended that the data file have an ALTER password. An
ALTER-level password restricts read and edit access to SAS files. If a password other
than ALTER is used, or no password is used, the software will generate a warning
message that the files are not protected from accidental update or deletion.

Defining User Variables
You define user variables at audit trail initiation with the USER_VAR statement.

The syntax for the USER_VAR statement is:

USER_VAR= variable-name <$>< length><LABEL= "variable-label">
<...variable-name-n <$><length><LABEL= "variable-label">>;

where:
variable-name is a name for the user variable.
$ indicates the variable is a character value. If $ is not specified, the default is

numeric.
length specifies the length of the variable. If a length is not specified, the default is 8

characters.
LABEL="variable-label" specifies a label for the variable.

You can define attributes such as format and informat in the data file with PROC
DATASETS.

Controlling the Audit Trail
Once the audit trail is established, you can change which record images are logged,

suspend and resume logging, and terminate (delete) the audit file. The syntax for
controlling the audit trail is:

PROC DATASETS LIB= libref;
AUDIT SAS-file <SAS-password>;
LOG | SUSPEND | RESUME | TERMINATE;

Replacing the associated data file will also delete the audit trail.

Example of Initiating an Audit Trail
The following example creates and initiates an audit trail for data file

MYLIB.SALES, which stores fictional invoice and renewal figures for SAS products.
The audit trail will record all events and store one user variable, REASON_CODE, for
users to enter a reason for the update.

Subsequent examples will illustrate the affect of a data file update on the audit trail
and how to use audit variables to capture observations that are rejected by integrity

SAS Data Files 4 Example of Initiating an Audit Trail 419

constraints. The system option LINESIZE is set in advance for the integrity constraints
example. A large LINESIZE value is recommended to display the content of the
ATMESSAGE variable. The output examples have been modified to fit on the page.

options linesize=250;
/*------------------------------------*/
/* Create SALES data set. */
/*------------------------------------*/

data mylib.sales;
length product $9;
input product invoice renewal;

cards;
FSP 1270.00 570
SAS 1650.00 850
STAT 570.00 0
STAT 970.82 600
OR 239.36 0
SAS 7478.71 1100
SAS 800.00 800
;

/*----------------------------------*/
/* Create an audit trail with a */
/* user variable. */
/*----------------------------------*/

proc datasets lib=mylib;
audit sales;

initiate;
user_var reason_code $ 20;

run;

/*-------------------------------------*/
/* Issue proc contents to view the */
/* audit file. */
/* ------------------------------------*/

proc contents data=mylib.sales (type=audit); run;

420 Example of a Data File Update 4 Chapter 28

Output 28.1 PROC CONTENTS of MYLIB.SALES

The CONTENTS Procedure

Data Set Name: MYLIB.SALES Observations: 0
Member Type: AUDIT Variables: 10
Engine: V8 Indexes: 0
Created: 10:51 Thursday, September 30, 1999 Observation Length: 111
Last Modified: 10:51 Thursday, September 30, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: AUDIT Sorted: NO
Label:

... The CONTENTS Procedure
-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format

5 _ATDATETIME_ Num 8 45 DATETIME.
10 _ATMESSAGE_ Char 8 103

6 _ATOBSNO_ Num 8 53
9 _ATOPCODE_ Char 2 101
7 _ATRETURNCODE_ Num 8 61
8 _ATUSERID_ Char 32 69
2 invoice Num 8 0
1 product Char 9 16
4 reason_code Char 20 25
3 renewal Num 8 8

Example of a Data File Update
The following example inserts an observation into MYLIB.SALES.DATA and prints

the update data in the MYLIB.SALES.AUDIT.

/*----------------------------------*/
/* Do an update. */
/*----------------------------------*/

proc sql;
insert into mylib.sales

set product = ’AUDIT’,
invoice = 2000,
renewal = 970,

reason_code = "Add new product";
quit;

/*--*/
/* Print the audit trail. */
/*--*/

proc sql;
select product,

reason_code,
atopcode,
atuserid format=$6.,
atdatetime
from mylib.sales(type=audit);

quit;

SAS Data Files 4 Example of Using the Audit Trail to Capture Rejected Observations 421

Output 28.2 Updated Data in MYLIB.SALES.AUDIT

product reason_code _ATOPCODE_ _ATUSERID_ _ATDATETIME_

AUDIT Add new product DA xxxxxx 30SEP99:10:30:18

Example of Using the Audit Trail to Capture Rejected Observations

The following example adds integrity constraints to MYLIB.SALES.DATA and
records observations that are rejected as a result of the integrity constraints in
MYLIB.SALES.AUDIT.

/*----------------------------------*/
/* Create integrity constraints. */
/*----------------------------------*/

proc datasets lib=mylib;
modify sales;
ic create null_renewal = not null (invoice)

message = "Invoice must have a value.";
ic create invoice_amt = check (where=((invoice > 0) and

(renewal <= invoice)))
message = "Invoice and/or renewal are invalid.";

run;

/*----------------------------------*/
/* Do some updates. */
/*----------------------------------*/

proc sql; /* this update works */
update mylib.sales

set invoice = invoice * .9,
reason_code = "10% price cut"
where renewal > 800;

proc sql; /* this update fails */
insert into mylib.sales

set product = ’AUDIT’,
renewal = 970,

reason_code = "Add new product";

proc sql; /* this update works */
insert into mylib.sales

set product = ’AUDIT’,
invoice = 10000,
renewal = 970,

reason_code = "Add new product";

proc sql; /* this update fails */
insert into mylib.sales

set product = ’AUDIT’,
invoice = 100,
renewal = 970,

reason_code = "Add new product";

422 Example of Using the Audit Trail to Capture Rejected Observations 4 Chapter 28

quit;

/*--*/
/* Print the audit trail. */
/*--*/

proc print data=mylib.sales(type=audit);
format _atuserid_ $6.;
var product reason_code _atopcode_ _atuserid_ _atdatetime_;

title ’Contents of the Audit Trail’;
run;

/*--*/
/* Print the rejected records. */
/*--*/

proc print data=mylib.sales(type=audit);
where _atopcode_ eq "EA";
format _atmessage_ $250.;
var product invoice renewal _atmessage_ ;

title ’Rejected Records’;
run;

Output 28.3 on page 422 shows the contents of MYLIB.SALES.AUDIT after several
updates of MYLIB.SALES.DATA were attempted. Integrity constraints were added to
the file, then updates were attempted. Output 28.4 on page 422 prints information
about the rejected observations on the audit trail.

Output 28.3 Contents of MYLIB.SALES.AUDIT after an Update with Integrity Constraints

Contents of the Audit Trail

Obs product reason_code _ATOPCODE_ _ATUSERID_ _ATDATETIME_
1 AUDIT Add new product DA xxxxxx 30SEP99:10:30:18
2 AUDIT Add new product DA xxxxxx 30SEP99:10:32:00
3 SAS DR xxxxxx 30SEP99:10:46:26
4 SAS 10% price cut DW xxxxxx 30SEP99:10:46:26
5 SAS DR xxxxxx 30SEP99:10:46:26
6 SAS 10% price cut DW xxxxxx 30SEP99:10:46:26
7 AUDIT DR xxxxxx 30SEP99:10:46:26
8 AUDIT 10% price cut DW xxxxxx 30SEP99:10:46:26
9 AUDIT DR xxxxxx 30SEP99:10:46:26

10 AUDIT 10% price cut DW xxxxxx 30SEP99:10:46:26
11 AUDIT Add new product EA xxxxxx 30SEP99:10:46:32
12 AUDIT Add new product EA xxxxxx 30SEP99:10:46:38
13 AUDIT Add new product DA xxxxxx 30SEP99:10:46:44

Output 28.4 Rejected Records on the Audit Trail

Rejected Records

Obs product invoice renewal _ATMESSAGE_

1 AUDIT . 970 ERROR: Invoice must have a value. Add/Update

failed for data set MYLIB.SALES because data

value(s) do not comply with integrity constraint

null_renewal.

2 AUDIT 100 970 ERROR: Invoice and/or renewal are invalid.

Add/update failed for data set MYLIB.SALES

because data value(s) do not comply with

integrity constraint invoice_amt.

SAS Data Files 4 Referential Integrity Constraints 423

Integrity Constraints

Definition of Integrity Constraints
Integrity constraints are a set of data validation rules that you can specify to restrict

the data values accepted into a SAS data file. Using integrity constraints can preserve
the correctness and consistency of stored data. SAS enforces the integrity constraints
each time data is changed or deleted in a variable that has integrity constraints
assigned to it.

There are two categories of integrity constraints:
� General constraints, which allow you to restrict the data values that are accepted

for the variables in a single data file, such as requiring that the data values for a
variable be unique and/or nonmissing, or making the data values in one variable
contingent on the data values in another variable.

� Referential constraints, which allow you to link the data values of the variables in
one data file to specific variables in another data file. An example of a referential
constraint would be linking the values for an employee name variable in a
Personnel data file to a similar variable in a Payroll data file and to an Employee
Bonuses data file. Only the names of employees that exist in the Personnel data
file would be allowed in the Payroll and Employee Bonuses data files.

Note: In SAS, the term “data set” is used to refer to both SAS files, which contain
data and data set descriptor information, and to SAS data views, which consist entirely
of descriptor information. Because they are associated with stored data, integrity
constraints can only be defined in SAS data files. 4

General Integrity Constraints
There are four types of general integrity constraints:

Check limits the data values in a variable to a specific set, range, or list.
This constraint can also be used to make the data values in one
variable contingent on the data values in another variable.

Not Null requires that a variable contain a data value. Missing values for
character and numeric data are not allowed.

Unique requires that the specified variables contain unique data values.

Primary Key requires that the specified variables contain unique data values and
that missing or null data values are not allowed. A data file can
have only one primary key.

Referential Integrity Constraints
A referential integrity constraint is created when a primary key integrity constraint

in one data file is referenced by a foreign key integrity constraint in another data file.
A foreign key integrity constraint links the data values of one or more variables in its

data file to those of the variables specified in a primary key, and controls the action that
can be taken when an attempt is made to update or delete the data values in the
primary key. The following referential actions can be specified:

RESTRICT prevents the data values in the primary key from being updated or
deleted unless there is no matching value in any referencing foreign
key variables. This is the default if no referential action is specified.

424 Referential Integrity Constraints 4 Chapter 28

NULL allows primary variables to be updated or deleted, but changes any
affected foreign key values to a missing value.

For example:

proc sql;
create table one

(
name char(14),
CONSTRAINT prim_key primary key(name)
);

proc sql;
create table two
(

lname char(14),
CONSTRAINT for_key foreign key(lname) references one

on delete restrict on update set null
);

The preceding example creates a referential integrity constraint between variable
Name in table ONE and variable Lname in table TWO. As the primary key, variable
Name will define the acceptable data values for variable Lname. In addition, the
foreign key specifies that data values will not be deleted from variable Name unless no
matching values exist in variable Lname, and updates will cause affected data values in
Lname to be changed to a missing value. The primary key integrity constraint also
cannot be deleted until this and any other foreign key integrity constraint that
references it has been deleted. There are no restrictions on deleting foreign key
constraints.

The following rules must be met for a referential relationship to be established:

� The primary key and foreign key specifications must reference the variables in the
same order.

� The variables must be of the same type (character or numeric) and length.

� If the referential integrity constraint is being added to existing variables, the data
values in the foreign key must match the values in the primary key or be null. For
example, using the example above, if primary key variable Name contained the
data values shown below, then foreign key variable Lname could have any of the
data values shown below except those in column 4.

Table 28.3 Potential Foreign Key Data Values for Variable “lname”

Data Values in Primary Key name 1 2 3 4

Davis, Jan Smith, Mike Davis, Jan . Davis, Jan

Smith, Mike Davis, Jan Smith, Mike . Smith,
Mike

Smith, Mike . Johnson, Ed

. = missing value

Note that the variable names in the primary key and foreign key specification can
match.

A referential integrity constraint can exist between data files in the same or different
SAS libraries with these restrictions:

SAS Data Files 4 Preservation of Integrity Constraints 425

� If the library of a data set containing a foreign key integrity constraint is
temporary, then the library containing the primary key data set must be
temporary as well.

� Referential integrity constraints cannot be assigned to data sets in concatenated
libraries.

Preservation of Integrity Constraints
These procedures preserve integrity constraints when their operation results in a

copy of the original data file:

� in base SAS software, the COPY, CPORT, CIMPORT and SORT procedures

� in SAS/CONNECT software, the UPLOAD and DOWNLOAD procedures

� PROC APPEND, when a DATA= data file does not exist

� PROC SORT and PROCs UPLOAD and DOWNLOAD, when an OUT= data file is
not specified.

You can use the CONSTRAINT option to control when integrity constraints are
preserved for the COPY, CPORT, and CIMPORT procedures, which always result in a
copy, and additionally for the UPLOAD and DOWNLOAD procedures.

Several factors affect which integrity constraints are preserved:

� the nature of the procedure

� whether the procedure is performed on a data file or a library

� for referential integrity constraints, whether the integrity constraint exists
between data files in the same or different libraries (intra-libref versus inter-libref
integrity constraints).

Inter-libref referential integrity constraints are preserved in an inactive state.
That is, the primary key portion of the integrity constraint is enforced as a general
integrity constraint but the foreign key portion is inactive. You must use the
DATASETS procedure statement INTEGRITY CONSTRAINT REACTIVATE to
reactivate the inactive foreign key constraint.

The following table summarizes the circumstances under which integrity constraints
are preserved.

Table 28.4 Circumstances under Which Integrity Constraints are Preserved

Procedure Condition Integrity
Constraints
Preserved in Data
Sets

Integrity
Constraints
Preserved in
Libraries

APPEND DATA= data set does not
exist

General Not applicable

General

Intra-libref is
referential

COPY CONSTRAINT= yes General

Inter-libref is
referential in an
inactive state

426 Indexes and Integrity Constraints 4 Chapter 28

Procedure Condition Integrity
Constraints
Preserved in Data
Sets

Integrity
Constraints
Preserved in
Libraries

General

Intra-libref is
referential

CPORT/ CIMPORT CONSTRAINT= yes General

Inter-libref is
referential in an
inactive state

General

Intra-libref is
referential

SORT OUT= data set is not
specified

Inter-libref is
referential in active
state

Not applicable

General General

Intra-libref is
referential

Intra-libref is
referential

UPLOAD/ DOWNLOAD CONSTRAINT= yes

and OUT= data set is
not specified

Inter-libref is
referential in an
inactive state

Inter-libref is
referential in an
inactive state

Indexes and Integrity Constraints

The unique, primary key, and foreign key integrity constraints store data values in
an index file. If an index file already exists, it is used; otherwise, one is created.
Consider the following points when you create or delete an integrity constraint:

� When a user-defined index exists, the index’s attributes must be compatible with
the integrity constraint in order for the integrity constraint to be created. For
example, when adding a primary key constraint, the existing index must have the
UNIQUE attribute. When adding a foreign key constraint, the index must not
have the UNIQUE attribute.

� The unique integrity constraint has the same effect as the UNIQUE index
attribute; therefore, when one is used, the other is not necessary.

� Although they might appear to be the same, the NOMISS index attribute and not
null integrity constraint have different effects. The integrity constraint prevents
missing values in a SAS data file and cannot be added to an existing data file with
missing values. The index attribute allows missing data values in the data file but
excludes them from the index.

� When any index is created, it is marked as being “owned” by the user and/or by
the integrity constraint. A user cannot remove an index owned by an integrity
constraint and an integrity constraint cannot remove an index owned by a user. If
an index is owned by both, then the index will be removed only after both the
integrity constraint and the user have requested the index’s removal. A note in
the log indicates when an index could not be removed.

SAS Data Files 4 Rejected Observations 427

Locking
Integrity constraints support both member-level and record-level locking. You can

override the default locking level with the CNTLLEV= data set option. Refer to the
SAS Language Reference: Dictionary for more information on CNTLLEV=.

Specifying Integrity Constraints
You create integrity constraints in the SQL procedure, the DATASETS procedure, or

in SCL (SAS Component Language). The constraints can be provided when the data file
is created or added to an existing SAS data file. When integrity constraints are added
to an existing data file, SAS verifies that the data in the variables to which integrity
constraints have been assigned conform to the constraints before the integrity
constraints are added.

When specifying integrity constraints, note that you must specify a separate
statement for each variable that you want to have the not null integrity constraint.
When multiple variables are included in the specification for a primary key, foreign key,
or unique integrity constraint, a composite index is created and the integrity constraint
will enforce the combination of variable values. The relationship between SAS indexes
and integrity constraints is described in “Indexes and Integrity Constraints” on page
426. For more information, see “SAS Indexes” on page 433.

When adding an integrity constraint with SCL, open the data set in utility mode. See
“Example 3: Creating Integrity Constraints with SCL” on page 429 for an example.
Integrity constraints must be deleted in utility open mode. For detailed syntax
information, see SAS Screen Control Language: Reference.

When generation data sets are used, you must create the integrity constraints in
each data set generation that includes protected variables.

Listing Integrity Constraints
The CONTENTS and DATASETS procedures report integrity constraint information

as part of normal processing. For PROC SQL, the commands DESCRIBE TABLE and
DESCRIBE TABLE CONSTRAINTS report integrity constraint specifications as part of
the data file definition or alone, respectively. SCL provides the ICTYPE and ICVALUE
functions for getting information about integrity constraints. Refer to the appropriate
documentation for syntax information.

Rejected Observations
You can customize the error message for an integrity constraint by using the

MESSAGE= option of the PROC DATASETS ICCREATE statement. For more
information, see the full description of the DATASETS procedure in the SAS Procedures
Guide.

Rejected observations can be collected in a special file using the audit trail
functionality.

428 Examples 4 Chapter 28

Examples

Example 1: Creating Integrity Constraints with the DATASETS Procedure
The following sample code creates integrity constraints using the DATASETS

procedure. The data file, TV_SURVEY, checks the percentage of viewing time spent on
networks, PBS, and other channels, with the following integrity constraints:

� the viewership percentage cannot exceed 100 percent
� only adults can participate in the survey
� “sex” can be male or female.

data tv_survey(label=’Validity checking’);
length idnum age 4 sex $1;
input idnum sex age network pbs other;
datalines;

1 M 55 80 . 20
2 F 36 50 40 10
3 M 42 20 5 75
4 F 18 30 0 70
5 F 84 0 100 0
;

proc datasets nolist;
modify tv_survey;

ic create val_sex = check(where=(sex in (’M’,’F’)))
message = "Valid values for variable SEX are
either ’M’ or ’F’.";

ic create val_age = check(where=(age >= 18 and age <= 120))
message = "An invalid AGE has been provided.";

ic create val_new = check(where=(network <= 100));
ic create val_pbs = check(where=(pbs <= 100));
ic create val_ot = check(where=(other <= 100));
ic create val_max = check(where=((network+pbs+other)<= 100));

quit;

Example 2: Creating Integrity Constraints with the SQL Procedure
The following sample program creates integrity constraints using the SQL procedure.

The data file PEOPLE lists employees and contains employment information. The data
file, SALARY, contains salary and bonus information. The integrity constraints are as
follows:

� The names of employees receiving bonuses must be found in the PEOPLE data file.
� The names identified in the primary key must be unique.
� Gender can be male or female.
� Job status can be permanent, temporary, or terminated.

proc sql;
create table people

(

SAS Data Files 4 Examples 429

name char(14),
gender char(1),
hired num,
jobtype char(1) not null,
status char(10),

constraint prim_key primary key(name),
constraint gender check(gender in (’male’ ’female’)),
constraint status check(status in (’permanent’

’temporary’ ’terminated’))
);

create table salary
(

name char(14),
salary num not null,
bonus num,

constraint for_key foreign key(name) references people
on delete restrict on update set null

);
quit;

Example 3: Creating Integrity Constraints with SCL

To add integrity constraints to a data file with SCL, you must create and build an
SCL catalog entry. The following sample program creates and compiles catalog entry
EXAMPLE.IC_CAT.ALLICS.SCL.

INIT:
put "Test SCL integrity constraint functions start.";

return;

MAIN:
put "Opening WORK.ONE in utility mode.";
dsid = open(’work.one’, ’V’);/* Utility mode.*/
if (dsid = 0) then

do;
msg=sysmsg();
put _msg_=;

end;
else do;

if (dsid > 0) then
put "Successfully opened WORK.ONE in"

"UTILITY mode.";
end;

put "Create a check integrity constraint named teen.";
rc = iccreate(dsid, ’teen’, ’check’,
’(age > 12) && (age < 20)’);

if (rc > 0) then
do;

put rc=;
msg=sysmsg();

430 Examples 4 Chapter 28

put _msg_=;
end;
else do;

put "Successfully created a check"
"integrity constraint.";

end;

put "Create a not-null integrity constraint named nn.";
rc = iccreate(dsid, ’nn’, ’not-null’, ’age’);

if (rc > 0) then
do;

put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;

put "Successfully created a not-null"
"integrity constraint.";

end;

put "Create a unique integrity constraint named uq.";
rc = iccreate(dsid, ’uq’, ’unique’, ’age’);

if (rc > 0) then
do;

put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;

put "Successfully created a unique"
"integrity constraint.";

end;

put "Create a primary key integrity constraint named pk.";
rc = iccreate(dsid, ’pk’, ’Primary’, ’name’);

if (rc > 0) then
do;

put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;

put "Successfully created a primary key"
"integrity constraint.";

end;

put "Closing WORK.ONE.";
rc = close(dsid);
if (rc > 0) then

do;
put rc=;

SAS Data Files 4 Examples 431

msg=sysmsg();
put _msg_=;

end;

put "Opening WORK.TWO in utility mode.";
dsid2 = open(’work.two’, ’V’);

/*Utility mode */
if (dsid2 = 0) then

do;
msg=sysmsg();

put _msg_=;
end;
else do;

if (dsid2 > 0) then
put "Successfully opened WORK.TWO in"

"UTILITY mode.";
end;

put "Create a foreign key integrity constraint named fk.";
rc = iccreate(dsid2, ’fk’, ’foreign’, ’name’,
’work.one’,’null’, ’restrict’);

if (rc > 0) then
do;

put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;

put "Successfully created a foreign key"
"integrity constraint.";

end;

put "Closing WORK.TWO.";
rc = close(dsid2);
if (rc > 0) then

do;
put rc=;
msg=sysmsg();
put _msg_=;

end;
return;

TERM:
put "End of test SCL integrity constraint"

"functions.";
return;

After creating the SCL catalog entry, the following code can be submitted to create
two data files, ONE and TWO, and execute SCL entry EXAMPLE.IC_CAT.ALLICS.SCL.

/* Submit to create data files. */

data one two;
input name $ age;

432 Examples 4 Chapter 28

cards;
Morris 13
Elaine 14
Tina 15
run;

/* after compiling, run the SCL program */

proc display catalog= example.ic_cat.allics.scl;
run;

Example 4: Removing Integrity Constraints

The following sample program segments remove integrity constraints. In those that
delete a primary key integrity constraint, note that the foreign key integrity constraint
is deleted first.

This program segment deletes integrity constraints using PROC SQL.

proc sql;
alter table salary

DROP CONSTRAINT for_key;
alter table people

DROP CONSTRAINT gender
DROP CONSTRAINT _nm0001_
DROP CONSTRAINT status
DROP CONSTRAINT prim_key
;

quit;

This program segment removes integrity constraints using PROC DATASETS.

proc datasets nolist;
modify tv_survey;

ic delete val_max;
ic delete val_sex;
ic delete val_age;

run;
quit;

This program segment removes integrity constraints using SCL.

TERM:
put "Opening WORK.TWO in utility mode.";
dsid2 = open(’work.two’ , ’V’); /* Utility mode. */
if (dsid2 = 0) then

do;
msg=sysmsg();
put _msg_=;

end;
else do;

if (dsid2 > 0) then
put "Successfully opened WORK.TWO in Utility mode.";

end;

rc = icdelete(dsid2, ’fk’);
if (rc > 0) then

do;

SAS Data Files 4 Benefits of an Index 433

put rc=;
msg=sysmsg();

end;
else

do;
put "Successfully deleted a foreign key integrity constraint.";
end;

rc = close(dsid2);
return;

Example 5: Reactivating an Inactive Integrity Constraint
The following program segment reactivates a foreign key integrity constraint that

has been inactivated as a result of a COPY, CPORT, CIMPORT, UPLOAD, or
DOWNLOAD procedure.

proc datasets;
modify data-set;

ic reactivate fkname references libref;
run;

quit;

SAS Indexes

Definition of SAS Indexes
An index is an optional file that you can create for a SAS data file to provide direct

access to specific observations. The index stores values in ascending value order for a
specific variable or variables and includes information as to the location of those values
within observations in the data file. In other words, an index allows you to locate an
observation by value.

For example, suppose you want the observation with SSN (social security number)
equal to 465-33-8613:

� Without an index, SAS accesses observations sequentially in the order in which
they are stored in the data file. SAS reads each observation, looking for
SSN=465-33-8613 until the value is found or all observations are read.

� With an index on variable SSN, SAS accesses the observation directly. SAS
satisfies the condition using the index and goes straight to the observation
containing the value without having to read each observation.

You can either create an index when you create a data file, or create an index for an
existing data file. The data file can be either compressed or uncompressed. For each
data file, you can create one or multiple indexes. Once an index exists, SAS treats it as
part of the data file. That is, if you add or delete observations or modify values, the
index is automatically updated.

Benefits of an Index
In general, SAS can use an index to improve performance in the following situations:
� For WHERE processing, an index can provide faster and more efficient access to a

subset of data. Note that to process a WHERE expression, SAS decides whether to
use an index or to read the data file sequentially.

434 Index File 4 Chapter 28

� For BY processing, an index returns observations in the index order, which is in
ascending value order, without using the SORT procedure even when the data file
is not stored in that order.

Note: If the SORT procedure is used, the index is not used. 4

� For the SET and MODIFY statements, the KEY= option allows you to specify an
index in a DATA step to retrieve particular observations in a data file.

In addition, an index can benefit other areas of the SAS System. In SCL (SAS
Component Language), an index improves the performance of table lookup operations.
For the SQL procedure, an index enables the software to process certain classes of
queries more efficiently, for example, join queries. For the SAS/IML software, you can
explicitly specify that an index be used for read, delete, list, or append operations.

Even though an index can reduce the time required to locate a set of observations,
especially for a large data file, there are costs associated with creating, storing, and
maintaining the index. When deciding whether to create an index, you must consider
increased resource usage, along with the performance improvement.

Note: An index is never used for the subsetting IF statement in a DATA step or for
the FIND and SEARCH commands in the FSEDIT procedure. 4

Index File
The index file is a SAS file, which has the same name as its associated data file and a

member type of INDEX. There is only one index file per data file; all indexes for a data
file are stored in a single file.

The index file may show up as a separate file or appear to be part of the data file,
depending on the operating environment. In any case, the index file is stored in the
same SAS data library as its data file.

The index file consists of entries that are organized hierarchically and connected by
pointers, all of which are maintained by SAS. The lowest level in the index file
hierarchy consists of entries that represent each distinct value for an indexed variable,
in ascending value order. Each entry consists of

� a distinct value
� one or more unique record identifiers (referred to as a RID) that identifies each

observation containing the value. (Think of the RID as an internal observation
number.)

That is, in an index file, each value is followed by one or more RIDs, which identifies
the observation(s) in the data file containing the value. (Multiple RIDs result from
multiple occurrences of the same value.) For example, the following represents index
file entries for the variable LASTNAME:

Avery 10
Brown 6,22,43
Craig 5,50
Dunn 1

When an index is used to process a request, such as a WHERE expression, SAS does
a binary search on the index file and positions the index to the first entry that contains
a qualified value. SAS then uses the value’s RID(s) to read the observation(s) that
contain the value. Subsequent entries’ higher (greater) than the requested value are
found by reading the remaining entries and then following the pointers to entries that
contain higher values. The result is that SAS can quickly locate the observations that
are associated with a value or range of values. For example, using an index to process
the WHERE expression,

SAS Data Files 4 Types of Indexes 435

where age > 20 and age < 35;

SAS positions the index to the index entry for the first value greater than 20 and uses
the value’s RID(s) to read the observation(s). SAS then moves sequentially through the
index entries reading observations until it reaches the index entry for the value that is
equal to or greater than 35.

SAS automatically keeps the index file balanced as updates are made, which means
that it ensures a uniform cost to access any index entry, and all space that is occupied
by deleted values is recovered and reused.

Types of Indexes
When you create an index, you designate which variable(s) to index. An indexed

variable is called a key variable. You can create two types of indexes:
� A simple index, which consists of the values of one variable.
� A composite index, which consists of the values of more than one variable, with the

values concatenated to form a single value.

In addition to deciding whether you want a simple index or a composite index, you
can also limit an index (and its data file) to unique values and exclude from the index
missing values.

Simple Index
The most common index is a simple index, which is an index of values for one key

variable. The variable can be numeric or character. When you create a simple index,
SAS assigns to the index the name of the key variable.

The following example shows the DATASETS procedure statements that are used to
create two simple indexes for variables CLASS and MAJOR in data file
COLLEGE.SURVEY:

proc datasets library=college;
modify survey;

index create class;
index create major;

run;

To process a WHERE expression using an index, SAS uses only one index. When the
WHERE expression has multiple conditions using multiple key variables, SAS
determines which condition qualifies the smallest subset. For example, suppose that
COLLEGE.SURVEY contains the following data:

� 42,000 observations contain CLASS=97.
� 6,000 observations contain MAJOR=’Biology’.
� 350 observations contain both CLASS=97 and MAJOR=’Biology’.

With simple indexes on CLASS and MAJOR, SAS would select MAJOR to process the
following WHERE expression:

where class=97 and major=’Biology’;

Composite Index
A composite index is an index of two or more key variables with their values

concatenated to form a single value. The variables can be numeric, character, or a
combination. An example is a composite index for the variables LASTNAME and
FRSTNAME. A value for this index is composed of the value for LASTNAME

436 Types of Indexes 4 Chapter 28

immediately followed by the value for FRSTNAME from the same observation. When
you create a composite index, you must specify a unique index name.

The following example shows the DATASETS procedure statements that are used to
create a composite index for the data file COLLEGE.MAILLIST, specifying two key
variables: ZIPCODE and SCHOOLID.

proc datasets library=college;
modify maillist;

index create zipid=(zipcode schoolid);
run;

Often, only the first variable of a composite index is used. For example, for a
composite index on ZIPCODE and SCHOOLID, the following WHERE expression can
use the composite index for the variable ZIPCODE because it is the first key variable in
the composite index:

where zipcode = 78753;

However, you can take advantage of all key variables in a composite index by the
way you construct the WHERE expression, which is referred to as compound
optimization. Compound optimization is the process of optimizing multiple conditions
on multiple variables, which are joined with a logical operator such as AND, using a
composite index. If you issue the following WHERE expression, the composite index is
used to find all occurrences of ZIPCODE=’78753’ and SCHOOLID=’55’. In this way, all
of the conditions are satisfied with a single search of the index:

where zipcode = 78753 and schoolid = 55;

When you are deciding whether to create a simple index or a composite index,
consider how you will access the data. If you often access data for a single variable, a
simple index will do. But if you frequently access data for multiple variables, a
composite index could be beneficial.

Unique Values
Often it is important to require that values for a variable be unique, like social

security number and employee number. You can declare unique values for a variable by
creating an index for the variable and including the UNIQUE option. A unique index
guarantees that values for one variable or the combination of a composite group of
variables remain unique for every observation in the data file. If an update tries to add
a duplicate value to that variable, the update is rejected.

The following example creates a simple index for the variable IDNUM and requires
that all values for IDNUM be unique:

proc datasets library=college;
modify student;

index create idnum / unique;
run;

Missing Values
If a variable has a large number of missing values, it may be desirable to keep them

from using space in the index. Therefore, when you create an index, you can include the
NOMISS option to specify that missing values are not maintained by the index.

The following example creates a simple index for the variable RELIGION and
specifies that the index does not maintain missing values for the variable:

proc datasets library=college;
modify student;

SAS Data Files 4 Deciding Whether to Create an Index 437

index create religion / nomiss;
run;

In contrast to the UNIQUE option, observations with missing values for the key
variable can be added to the data file, even though the missing values are not added to
the index.

SAS will not use an index that was created with the NOMISS option to process a BY
statement or to process a WHERE expression that qualifies observations containing
missing values. For example, suppose the index AGE was created with the NOMISS
option and observations exist that contain missing values for the variable AGE. SAS
will not use the index for the following:

proc print data=mydata.employee;
where age < 35;

run;

Deciding Whether to Create an Index

Costs of an Index
An index exists to improve performance. However, an index conserves some

resources at the expense of others. Therefore, you must consider costs associated with
creating, using, and maintaining an index. The following topics provide information on
resource usage and give you some guidelines for creating indexes.

When you are deciding whether to create an index, you must consider CPU cost, I/O
cost, buffer requirements, and disk space requirements.

CPU Cost
Additional CPU time is necessary to create an index as well as to maintain the index

when the data file is modified. That is, for an indexed data file, when a value is added,
deleted, or modified, it must also be added, deleted, or modified in the appropriate
index(es).

When SAS uses an index to read an observation from a data file, there is also
increased CPU usage. The increased usage results from SAS using a more complicated
process than is used when SAS retrieves data sequentially. Although CPU usage is
greater, you benefit from SAS reading only those observations that meet the conditions.
Note that this is why using an index is more expensive when there is a larger number
of observations that meet the conditions.

Note: To compare CPU usage with and without an index, for some operating
environments, you can issue the STIMER or FULLSTIMER system options to write
performance statistics to the SAS log. 4

I/O Cost
Using an index to read observations from a data file may increase the number of I/O

(input/output) requests compared to reading the data file sequentially. For example,
processing a BY statement with an index may increase I/O count, but you save in not
having to issue the SORT procedure. For WHERE processing, SAS considers I/O count
when deciding whether to use an index.

To process a request using an index, the following occurs:

1 SAS does a binary search on the index file and positions the index to the first
entry that contains a qualified value.

438 Deciding Whether to Create an Index 4 Chapter 28

2 SAS uses the value’s RID (identifier) to directly access the observation containing
the value. SAS transfers the observation between external storage to a buffer,
which is the memory into which data is read or from which data is written. The
data is transferred in pages, which is the amount of data (the number of
observations) that can be transferred for one I/O request; each data file has a
specified page size.

3 SAS then continues the process until the WHERE expression is satisfied. Each
time SAS accesses an observation, the data file page containing the observation
must be read into memory if it is not already there. Therefore, if the observations
are on multiple data file pages, an I/O operation is performed for each observation.

The result is that the more random the data, the more I/Os are required to use the
index. If the data is ordered more like the index, which is in ascending value order,
fewer I/Os are required to access the data.

The number of buffers determines how many pages of data can simultaneously be in
memory. Frequently, the larger the number of buffers, the fewer number of I/Os will be
required. For example, if the page size is 4096 bytes and one buffer is allocated, then
one I/O transfers 4096 bytes of data (or one page). To reduce I/Os, you can increase the
page size but you will need a larger buffer. To reduce the buffer size, you can decrease
the page size but you will use more I/Os.

For information on data file characteristics like the data file page size and the
number of data file pages, issue the CONTENTS procedure (or use the CONTENTS
statement in the DATASETS procedure). With this information, you can determine the
data file page size and experiment with different sizes. Note that the information that
is available from PROC CONTENTS depends on the operating environment.

The BUFSIZE= data set option (or system option) sets the page size for a data file
when it is created. The BUFNO= data set option (or system option) specifies how many
buffers to allocate for a data file and for the overall system for a given execution of SAS;
that is, BUFNO= is not stored as a data set attribute.

Buffer Requirements
In addition to the resources that are used to create and maintain an index, SAS also

requires additional memory for buffers when an index is actually used. Opening the
data file opens the index file but none of the indexes. The buffers are not required
unless SAS uses the index but they must be allocated in preparation for the index that
is being used. The number of buffers that are allocated depends on the number of levels
in the index tree and in the data file open mode. If the data file is open for input, the
maximum number of buffers is three; for update, the maximum number is four. (Note
that these buffers are available for other uses; they are not dedicated to indexes.)

Disk Space Requirements
Additional disk space is required to store the index file, which may show up as a

separate file or may appear to be part of the data file, depending on the operating
environment.

For information on the index file size, issue the CONTENTS procedure (or the
CONTENTS statement in the DATASETS procedure). Note that the available
information from PROC CONTENTS depends on the operating environment.

SAS Data Files 4 Guidelines for Creating Indexes 439

Guidelines for Creating Indexes

Data File Considerations

� For a small data file, sequential processing is often just as efficient as index
processing. Do not create an index if the data file page count is less than three
pages. It would be faster to access the data sequentially. To see how many pages
are in a data file, use the CONTENTS procedure (or use the CONTENTS
statement in the DATASETS procedure). Note that the information that is
available from PROC CONTENTS depends on the operating environment.

� Consider the cost of an index for a data file that is frequently changed. If you have
a data file that changes often, the overhead associated with updating the index
after each change can outweigh the processing advantages you gain from accessing
the data with in index.

� Create an index when you intend to retrieve a small subset of observations from a
large data file (for example, less than 25% of all observations). When this occurs,
the cost of processing data file pages is lower than the overhead of sequentially
reading the entire data file. The smaller the subset, the larger the performance
gains.

� To reduce the number of I/Os performed when you create an index, first sort the
data by the key variable. Then to improve performance, maintain the data file in
sorted order by the key variable. This technique will reduce the I/Os by grouping
like values together. That is, the more ordered the data file is with respect to the
key variable, the more efficient the use of the index. If the data file has more than
one index, sort the data by the most frequently used key variable.

Index Use Considerations

� Keep the number of indexes per data file to a minimum to reduce disk storage and
to reduce update costs.

� Consider how often your applications will use an index. An index must be used
often in order to make up for the resources that are used in creating and
maintaining it. That is, do not rely solely on resource savings from processing a
WHERE expression. Take into consideration the resources it takes to actually
create the index and to maintain it every time the data file is changed.

� When you create an index to process a WHERE expression, do not try to create
one index that is used to satisfy all queries. If there are several variables that
appear in queries, then those queries may be best satisfied with simple indexes on
the most discriminating of those variables.

Key Variable Candidates
In most cases, multiple variables are used to query a data file. However, it probably

would be a mistake to index all variables in a data file, as certain variables are better
candidates than others:

� The variables to be indexed should be those that are used in queries. That is, your
application should require selecting small subsets from a large file, and the most
common selection variables should be considered as candidate key variables.

� A variable is a good candidate for indexing when the variable can be used to
precisely identify the observations that satisfy a WHERE expression. That is, the

440 Methods of Creating an Index 4 Chapter 28

variable should be discriminating, which means that the index should select the
fewest possible observations. For example, variables such as AGE, FRSTNAME,
and GENDER are not discriminating because it is very possible for a large
representation of the data to have the same age, first name, and gender. However,
a variable such as LASTNAME is a good choice because it is less likely that many
employees share the same last name.

For example, consider a data file with variables LASTNAME and GENDER.
� If many queries against the data file include LASTNAME, then indexing

LASTNAME could prove to be beneficial because the values are usually
discriminating. However, the same reasoning would not apply if you issued a
large number of queries that included GENDER. The GENDER variable is
not discriminating (because perhaps half the population are male and half
are female).

� However, if queries against the data file most often include both LASTNAME
and GENDER as shown in the following WHERE expression, then creating a
composite index on LASTNAME and GENDER could improve performance.

where lastname=’LeVoux’ and gender=’F’;

Note that when you create a composite index, the first key variable should be
the most discriminating.

Methods of Creating an Index
You can create one index for a data file, which can be either a simple index or a

composite index, or you can create multiple indexes, which can be multiple simple
indexes, multiple composite indexes, or a combination of both simple and composite. In
general, the process of creating an index is as follows:

1 You request to create an index for one or multiple variables using a method such
as the INDEX CREATE statement in the DATASETS procedure.

2 SAS reads the data file one observation at a time, extracts values and RID(s) for
each key variable, and places them in the index file.

3 SAS then examines the data file to determine if the data is already sorted by the
key variable(s) in ascending order. SAS looks in the data file for its sort assertion,
which is determined from a previous SORT procedure or from a SORTEDBY= data
set option:

� If the values are in ascending order, SAS does not have to sort the values for
the index file and avoids the resource cost.

� If the values are not in ascending order, SAS sorts the data going into the
index file in ascending value order.

Note: If a data file’s sort assertion is set from a SORTEDBY= data set option,
SAS validates that the data is sorted as specified by the data set option. If the
data is not sorted appropriately, the index will not be created, and a message
displays telling you that the index was not created because values are not sorted
in ascending order. 4

Methods to create an index are briefly described in this section; for details, refer to
the INDEX= data set option in the SAS Language Reference: Dictionary.

Using the DATASETS Procedure
The DATASETS procedure provides statements that allow you to create and delete

indexes. In the following example, the MODIFY statement identifies the data file, the

SAS Data Files 4 Using an Index for WHERE Processing 441

INDEX DELETE statement deletes two indexes, and the two INDEX CREATE
statements specify the variables to index, with the first INDEX CREATE statement
specifying the options UNIQUE and NOMISS:

proc datasets library=mylib;
modify employee;

index delete salary age;
index create empnum / unique nomiss;
index create names=(lastname frstname);

Note: If you delete and create indexes in the same step, place the INDEX DELETE
statement before the INDEX CREATE statement so that space occupied by deleted
indexes can be reused during index creation. 4

Using the INDEX= Data Set Option
To create indexes in a DATA step when you create the data file, use the INDEX=

data set option. The INDEX= data set option also allows you to include the NOMISS
and UNIQUE options. The following example creates a simple index on the variable
STOCK and specifies UNIQUE:

data finances(index=(stock) /unique);

The next example uses the variables SSN, CITY, and STATE to create a simple index
named SSN and a composite index named CITYST:

data employee(index=(ssn cityst=(city state)));

Using the SQL Procedure
The SQL procedure supports index creation and deletion and the UNIQUE option.

Note that the variable list requires that variable names be separated by commas (which
is an SQL convention) instead of blanks (which is a SAS convention).

The DROP INDEX statement deletes indexes. The CREATE INDEX statement
specifies the UNIQUE option, the name of the index, the target data file, and the
variable(s) to be indexed. For example:

drop index salary from employee;
create unique index empnum on employee (empnum);
create index names on employee (lastname, frstname);

Using Other SAS Products
You can also create and delete indexes using other SAS utilities and products, such

as the SAS Explorer, SAS/IML software, SAS Component Language, and
SAS/Warehouse Administrator software.

Using an Index for WHERE Processing
WHERE processing conditionally selects observations for processing when you issue

a WHERE expression. Using an index to process a WHERE expression improves
performance and is referred to as optimizing the WHERE expression.

To process a WHERE expression, by default SAS decides whether to use an index or
read all the observations in the data file sequentially. To make this decision, SAS does
the following:

1 Identifies an available index or indexes.

442 Using an Index for WHERE Processing 4 Chapter 28

2 Estimates the number of observations that would be qualified. If multiple indexes
are available, SAS selects the index that returns the smallest subset of
observations.

3 Compares resource usage to decide whether it is more efficient to satisfy the
WHERE expression by using the index or by reading all the observations
sequentially.

Identifying Available Index or Indexes
The first step for SAS in deciding whether to use an index to process a WHERE

expression is to identify if the variable or variables included in the WHERE expression
are key variables (that is, have an index). Even though a WHERE expression can
consist of multiple conditions specifying different variables, SAS uses only one index to
process the WHERE expression. SAS tries to select the index that satisfies the most
conditions and selects the smallest subset:

� For the most part, SAS selects one condition. The variable specified in the
condition will have either a simple index or be the first key variable in a composite
index.

� However, you can take advantage of multiple key variables in a composite index by
constructing an appropriate WHERE expression, referred to as compound
optimization.

SAS attempts to use an index for the following types of conditions:

Table 28.5 WHERE Conditions That Can Be Optimized

Condition Examples

comparison operators, which include the EQ
operator; directional comparisons like less
than or greater than; and the IN operator

where empnum eq 3374;

where empnum < 2000;

where state in (’NC’,’TX’);

comparison operators with NOT where empnum ^= 3374;

where x not in (5,10);

comparison operators with the colon
modifier

where lastname gt: ’Sm’;

CONTAINS operator where lastname contains ’Sm’;

fully-bounded range conditions specifying
both an upper and lower limit, which
includes the BETWEEN-AND operator

where 1 < x < 10;

where empnum between 500 and 1000;

pattern-matching operators LIKE and NOT
LIKE

where frstname like ’%Rob_%’

IS NULL or IS MISSING operator where name is null;

where idnum is missing;

SAS Data Files 4 Using an Index for WHERE Processing 443

Condition Examples

TRIM function where trim(state)=’Texas’;

SUBSTR function in the form of:

WHERE SUBSTR (variable, position,
length)=’string’;

when the following conditions are met:

position is equal to 1, length is less than or
equal to the length of variable, and length
is equal to the length of string

where substr (name,1,3)=’Mac’ and (city=’Charleston’
or city=’Atlanta’);

The following examples illustrate optimizing a single condition:

� The following WHERE expressions could use a simple index on the variable
MAJOR:

where major in (’Biology’, ’Chemistry’, ’Agriculture’);
where class=90 and major in (’Biology’, ’Agriculture’);

� With a composite index on variables ZIPCODE and SCHOOLID, SAS could use
the composite index to satisfy the following conditions because ZIPCODE is the
first key variable in the composite index:

where zipcode = 78753;

However, the following condition cannot use the composite index because the
variable SCHOOLID is not the first key variable in the composite index:

where schoolid gt 1000;

Note: An index is not supported for arithmetic operators, a variable-to-variable
condition, and the sounds-like operator. 4

Compound Optimization
Compound optimization is the process of optimizing multiple conditions specifying

different variables, which are joined with logical operators such as AND or OR, using a
composite index. Using a single index to optimize the conditions can greatly improve
performance.

For example, suppose you have a composite index for LASTNAME and FRSTNAME.
If you issue the following WHERE expression, SAS uses the concatenated values for the
first two variables, then SAS further evaluates each qualified observation for the
EMPID value:

where lastname eq ’Smith’ and frstname eq ’John’ and empid=3374;

For compound optimization to occur, all of the following must be true.
� At least the first two key variables in the composite index must be used in the

WHERE conditions.
� The conditions are connected using the AND logical operator:

where lastname eq ’Smith’ and frstname eq ’John’;

Any conditions connected using the OR logical operator must specify the same
variable:

where frstname eq ’John’ and (lastname=’Smith’
or lastname = ’Jones’);

444 Using an Index for WHERE Processing 4 Chapter 28

� At least one condition must be the EQ or IN operator; you cannot have, for
example, all fully-bounded range conditions.

Note: The same conditions that are acceptable for optimizing a single condition are
acceptable for compound optimization except for the CONTAINS operator, the
pattern-matching operators LIKE and NOT LIKE, and the IS NULL and IS MISSING
operators. Also, functions are not supported. 4

For the following examples, assume there is a composite index named IJK for
variables I, J, and K:

1 The following conditions are compound optimized because every condition specifies
a variable that is in the composite index, and each condition uses one of the
supported operators. SAS will position the composite index to the first entry that
meets all three conditions and will retrieve only observations that satisfy all three
conditions:

where i = 1 and j not in (3,4) and 10 < k < 12;

2 This WHERE expression cannot be compound optimized because the range
condition for variable I is not fully bounded. In a fully-bounded condition, both an
upper and lower bound must be specified. The condition I < 5 only specifies an
upper bound. In this case, the composite index can still be used to optimize the
single condition I < 5:

where i < 5 and j in (3,4) and k =3;

3 For the following WHERE expression, only the first two conditions are optimized
with index IJK. After retrieving a subset of observations that satisfy the first two
conditions, SAS examines the subset and eliminates any observations that fail to
match the third condition.

where i in (1,4) and j = 5 and k like ’%c’l

4 The following WHERE expression cannot be optimized with index IJK because J
and K are not the first two key variables in the composite index:

where j = 1 and k = 2;

5 This WHERE expression can be optimized for variables I and J. After retrieving
observations that satisfy the second and third conditions, SAS examines the subset
and eliminates those observations that do not satisfy the first condition.

where x < 5 and i = 1 and j = 2;

Estimating the Number of Qualified Observations
Once SAS identifies the index or indexes that can satisfy the WHERE expression, the

software estimates the number of observations that will be qualified by an available
index. When multiple indexes exist, SAS selects the one that appears to produce the
fewest qualified observations.

Starting with Version 7, the software’s ability to estimate the number of observations
that will be qualified is improved because the software stores additional statistics called
cumulative percentiles (or centiles for short). Centiles information represents the
distribution of values in an index so that SAS does not have to assume a uniform
distribution as in prior releases. To print centiles information for an indexed data file,
include the CENTILES option in PROC CONTENTS (or in the CONTENTS statement
in the DATASETS procedure).

Note that, by default, SAS does not update centiles information after every data file
change. When you create an index, you can include the UPDATECENTILES option to
specify when centiles information is updated. That is, you can specify that centiles

SAS Data Files 4 Using an Index for WHERE Processing 445

information be updated every time the data file is closed, when a certain percent of
values for the key variable have been changed, or never. In addition, you can also
request that centiles information is updated immediately, regardless of the value of
UPDATECENTILES, by issuing the INDEX CENTILES statement in PROC
DATASETS.

As a general rule, SAS uses an index if it estimates that the WHERE expression will
select approximately one-third or fewer of the total number of observations in the data
file.

Note: If SAS estimates that the number of qualified observations is less than 3% of
the data file (or if no observations are qualified), SAS automatically uses the index. In
other words, in this case, SAS does not bother comparing resource usage. 4

Comparing Resource Usage
Once SAS estimates the number of qualified observations and selects the index that

qualifies the fewest observations, SAS must then decide if it is faster (cheaper) to
satisfy the WHERE expression by using the index or by reading all of the observations
sequentially. SAS makes this determination as follows:

� If only a few observations are qualified, it is more efficient to use the index than to
do a sequential search of the entire data file.

� If most or all of the observations qualify, then it is more efficient to simply
sequentially search the data file than to use the index.

This decision is much like a reader deciding whether to use an index at the back of a
book. A book’s index is designed to allow a reader to locate a topic along with the specific
page number(s). Using the index, the reader would go to the specific page number(s)
and read only about a specific topic. If the book covers 42 topics and the reader is
interested in only a couple of topics, then the index saves time by preventing the reader
from reading other topics. However, if the reader is interested in 39 topics, searching
the index for each topic would take more time than simply reading the entire book.

To compare resource usage, SAS does the following:
1 First, SAS predicts the number of I/Os it will take to satisfy the WHERE

expression using the index. To do so, SAS positions the index to the first entry
that contains a qualified value. In a buffer management simulation that takes into
account the current number of available buffers, the RIDs (identifiers) on that
index page are processed, indicating how many I/Os it will take to read the
observations in the data file.

If the observations are randomly distributed throughout the data file, the
observations will be located on multiple data file pages. This means an I/O will be
needed for each page. Therefore, the more random the data in the data file, the
more I/Os it takes to use the index. If the data in the data file is ordered more like
the index, which is in ascending value order, fewer I/Os are needed to use the
index.

2 Then SAS calculates the I/O cost of a sequential pass of the entire data file and
compares the two resource costs.

Factors that affect the comparison include the size of the subset relative to the size of
the data file, data file value order, data file page size, the number of allocated buffers,
and the cost to uncompress a compressed data file for a sequential read.

Note: If comparing resource costs results in a tie, SAS chooses the index. 4

Controlling WHERE Processing Index Usage with Data Set Options
In Version 7 or later releases, you can control index usage for WHERE processing

with the IDXWHERE= and IDXNAME= data set options.

446 Using an Index for WHERE Processing 4 Chapter 28

The IDXWHERE= data set option overrides the software’s decision regarding
whether to use an index to satisfy the conditions of a WHERE expression as follows:

� IDXWHERE=YES tells SAS to decide which index is the best for optimizing a
WHERE expression, disregarding the possibility that a sequential search of the
data file might be more resource efficient.

� IDXWHERE=NO tells SAS to ignore all indexes and satisfy the conditions of a
WHERE expression by sequentially searching the data file.

� Using an index to process a BY statement cannot be overridden with
IDXWHERE=.

The following example tells SAS to decide which index is the best for optimizing the
WHERE expression. SAS will disregard the possibility that a sequential search of the
data file might be more resource efficient.

data mydata.empnew;
set mydata.employee (idxwhere=yes);
where empnum < 2000;

For details, see the IDXWHERE data set option in SAS Language Reference:
Dictionary.

The IDXNAME= data set option directs SAS to use a specific index in order to satisfy
the conditions of a WHERE expression.

By specifying IDXNAME=index-name, you are specifying the name of a simple or
composite index for the data file.

The following example uses the IDXNAME= data set option to direct SAS to use a
specific index to optimize the WHERE expression. SAS will disregard the possibility
that a sequential search of the data file might be more resource efficient and does not
attempt to determine if the specified index is the best one. (Note that the EMPNUM
index was not created with the NOMISS option.)

data mydata.empnew;
set mydata.employee (idxname=empnum);
where empnum < 2000;

For details, see the IDXNAME data set option in SAS Language Reference:
Dictionary.

Displaying Index Usage Information in the SAS Log
To display information in the SAS log regarding index usage, change the value of the

MSGLEVEL= system option from its default value of N to I. When you issue options
msglevel=i;, the following occurs:

� If an index is used, a message displays specifying the name of the index.

� If an index is not used but one exists that could optimize at least one condition in
the WHERE expression, messages provide suggestions as to what you can do to
influence SAS to use the index; for example, a message could suggest sorting the
data file into index order or specifying more buffers.

� A message displays the IDXWHERE= or IDXNAME= data set option value if the
setting can affect index processing.

Using an Index with Views
You cannot create an index for a data view; it must be a data file. However, if a data

view is created from an indexed data file, index usage is available. That is, if the view
definition includes a WHERE expression using a key variable, then SAS will attempt to

SAS Data Files 4 Using an Index for BY Processing 447

use the index. Additionally, there are other ways to take advantage of a key variable
when using a view.

In this example, you create an SQL view named STAT from data file CRIME, which
has the key variable STATE. In addition, the view definition includes a WHERE
expression:

proc sql;
create view stat as
select * from crime
where murder > 7;

quit;

If you issue the following PRINT procedure, which refers to the SQL view, along with
a WHERE statement that specifies the key variable STATE, SAS cannot optimize the
WHERE statement with the index. SQL views cannot join a WHERE expression that
was defined in the view to a WHERE expression that was specified in another
procedure, DATA step, or SCL:

proc print data=stat;
where state > 42;

run;

However, if you issue PROC SQL with an SQL WHERE clause that specifies the key
variable STATE, then the SQL view can join the two conditions, which allows SAS to
use the index STATE:

proc sql;
select * from stat where state > 42;
quit;

Using an Index for BY Processing
BY processing allows you to process observations in a specific order according to the

values of one or more variables that are specified in a BY statement. Indexing a data
file enables you to use a BY statement without sorting the data file. By creating an
index based on one or more variables, you can ensure that observations are processed in
ascending numeric or character order. Simply specify in the BY statement the variable
or list of variables that are indexed.

For example, if an index exists for LASTNAME, the following BY statement would
use the index to order the values by last names:

proc print;
by lastname;

When you specify a BY statement, SAS looks for an appropriate index. If one exists,
the software automatically retrieves the observations from the data file in indexed order.

A BY statement will use an index in the following situations:

� The BY statement consists of one variable that is the key variable for a simple
index or the first key variable in a composite index.

� The BY statement consists of two or more variables and the first variable is the
key variable for a simple index or the first key variable in a composite index.

For example, if the variable MAJOR has a simple index, the following BY statements
use the index to order the values by MAJOR:

by major;
by major state;

448 Using an Index for Both WHERE and BY Processing 4 Chapter 28

If a composite index named ZIPID exists consisting of the variables ZIPCODE and
SCHOOLID, the following BY statements use the index:

by zipcode;
by zipcode schoolid;
by zipcode schoolid name;

However, the composite index ZIPID is not used for these BY statements:

by schoolid;
by schoolid zipcode;

In addition, a BY statement will not use an index in these situations:
� The BY statement includes the DESCENDING or NOTSORTED option.
� The index was created with the NOMISS option.
� The data file is physically stored in sorted order based on the variables specified in

the BY statement.

Note: Using an index to process a BY statement may not always be more efficient
than simply sorting the data file, particularly if the data file has a high blocking factor
of observations per page. Therefore, using an index for a BY statement is generally for
convenience, not performance. 4

Using an Index for Both WHERE and BY Processing
If both a WHERE expression and a BY statement are specified, SAS looks for one

index that satisfies requirements for both. If such an index is not found, the BY
statement takes precedence.

With a BY statement, SAS cannot use an index to optimize a WHERE expression if
the optimization would invalidate the BY order. For example, the following statements
could use an index on the variable LASTNAME to optimize the WHERE expression
because the order of the observations returned by the index does not conflict with the
order required by the BY statement:

proc print;
by lastname;
where lastname >= ’Smith’;

run;

However, the following statements cannot use an index on LASTNAME to optimize
the WHERE expression because the BY statement requires that the observations be
returned in EMPID order:

proc print;
by empid;
where lastname = ’Smith’;

run;

Specifying an Index with the KEY= Option for SET and MODIFY
Statements

The SET and MODIFY statements provide the KEY= option, which allows you to
specify an index in a DATA step to retrieve particular observations in a data file.

The following MODIFY statement shows how to use the KEY= option to take
advantage of the fact that the data file INVTY.STOCK has an index on the variable

SAS Data Files 4 Maintaining Indexes 449

PARTNO. Using the KEY= option tells SAS to use the index to directly access the
correct observations to modify.

modify invty.stock key=partno;

Note: A BY statement is not allowed in the same DATA step with the KEY= option,
and WHERE processing is not allowed for a data file with the KEY= option. 4

Taking Advantage of an Index
Applications that typically do not use indexes can be rewritten to take advantage of

an index. For example:
� Consider replacing a subsetting IF statement (which never uses an index) with a

WHERE statement. However, be careful because the statements are processed
differently and may produce different results in DATA steps that use the SET,
MERGE, or UPDATE statements. This is because the WHERE statement selects
observations before they are brought into the Program Data Vector (PDV), whereas
the subsetting IF statement selects observations after they are read into the PDV.

� Consider using the WHERE command in the FSEDIT procedure in place of the
SEARCH and FIND commands.

Maintaining Indexes
SAS provides several procedures that you can issue to maintain indexes, and there

are several operations within SAS that automatically maintain indexes for you.

Displaying Data File Information
The CONTENTS procedure (or the CONTENTS statement in PROC DATASETS)

reports the following types of information.
� number and names of indexes for a data file
� the names of key variables
� the options in effect for each key variable
� data file page size
� number of data file pages
� centiles information (using the CENTILES option)
� amount of disk space used by the index file.

Note: The available information depends on the operating environment. 4

450 Maintaining Indexes 4 Chapter 28

Output 28.5 Output of PROC CONTENTS

The SAS System

The CONTENTS Procedure

Data Set Name: SASUSER.STAFF Observations: 148

Member Type: DATA Variables: 6

Engine: V8 Indexes: 2

Created: 9:59 Tuesday, May 11, 1999 Observation Length: 63

Last Modified: 10:03 Tuesday, May 11, 1999 Deleted Observations: 0

Protection: Compressed: NO

Data Set Type: Sorted: NO

Label:

-----Engine/Host Dependent Information-----

Data Set Page Size: 8192

Number of Data Set Pages: 3

First Data Page: 1

Max Obs per Page: 129

Obs in First Data Page: 104

Index File Page Size: 8192

The SAS System

The CONTENTS Procedure

-----Engine/Host Dependent Information-----

Number of Index File Pages: 3

Number of Data Set Repairs: 0

File Name: /remote/obi01/wan0.2/u/sasXXX/sasuser.devn/staff.sas7bdat

Release Created: 8.00.00B

Host Created: HP-UX

Inode Number: 237883

Access Permission: rw-r--r--

Owner Name: XXXXXX

File Size (bytes): 32768

The SAS System

The CONTENTS Procedure

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

4 city Char 15 34

3 fname Char 15 19

6 hphone Char 12 51

1 idnum Char 4 0

2 lname Char 15 4

5 state Char 2 49

SAS Data Files 4 Maintaining Indexes 451

The SAS System

The CONTENTS Procedure

-----Alphabetic List of Indexes and Attributes-----

Current # of

Unique Update Update Unique

Index Option Centiles Percent Values Variables

--

1 idnum YES 5 0 148

--- 1009

--- 1065

--- 1105

--- 1115

--- 1123

--- 1130

--- 1221

--- 1352

--- 1385

--- 1405

--- 1412

The SAS System

The CONTENTS Procedure

-----Alphabetic List of Indexes and Attributes-----

Current # of

Unique Update Update Unique

Index Option Centiles Percent Values Variables

--

--- 1421

--- 1429

--- 1436

--- 1475

--- 1521

--- 1616

--- 1739

--- 1845

--- 1919

--- 1995

2 names 5 0 148 fname lname

--- ABDULLAH ,ALHERTANI

The SAS System

The CONTENTS Procedure

-----Alphabetic List of Indexes and Attributes-----

Current # of

Unique Update Update Unique

Index Option Centiles Percent Values Variables

--

--- ALICE ,MURPHY

--- ANTHONY ,COOPER

--- CAROL ,PEARCE

--- CLYDE ,HERRERO

--- DIANE ,NORRIS

--- ELIZABETH ,VARNER

--- GRETCHEN ,HOWARD

--- JAKOB ,BREWCZAK

--- JEFF ,LI

--- JOHN ,MARKS

--- JULIA ,RODRIGUEZ

--- LARRY ,UPCHURCH

452 Maintaining Indexes 4 Chapter 28

The SAS System

The CONTENTS Procedure

-----Alphabetic List of Indexes and Attributes-----

Current # of

Unique Update Update Unique

Index Option Centiles Percent Values Variables

--

--- LEVI ,GOLDSTEIN

--- MARY ,PARKER

--- NADINE ,WELLS

--- RANDY ,SANYERS

--- ROGER ,DENNIS

--- SANDRA ,NEWKIRK

--- THOMAS ,BURNETTE

--- WILLIAM ,PHELPS

Copying an Indexed Data File
When you copy an indexed data file with the COPY procedure (or the COPY

statement of the DATASETS procedure), you can specify whether the procedure also
recreates the index file for the new data file with the INDEX=YES|NO option; the
default is YES, which recreates the index. However, recreating the index does increase
the processing time for the PROC COPY step.

If you copy from disk to disk, the index is recreated. If you copy from disk to tape,
the index is not recreated on tape. However, after copying from disk to tape, if you then
copy back from tape to disk, the index can be recreated. Note that if you move a data
file with the MOVE option in PROC COPY, the index file is deleted from IN= library
and recreated in OUT= library.

The CPORT procedure also has INDEX=YES|NO to specify whether to export
indexes with indexed data files. By default, PROC CPORT exports indexes with
indexed data files. The CIMPORT procedure, however, does not handle the index file at
all, and the index(es) must be recreated.

Updating an Indexed Data File
Each time that values in an indexed data file are added, modified, or deleted, SAS

automatically updates the index. The following activities affect an index as indicated:

Table 28.6 Maintenance Tasks and Index Results

Task Result

delete a data set index file is deleted

rename a data set index file is renamed

rename key variable simple index is renamed

delete key variable simple index is deleted

add observation index entries are added

SAS Data Files 4 Maintaining Indexes 453

Task Result

delete observations index entries are deleted and space is recovered for resuse

update observations index entries are deleted and new ones are inserted

Note: Use the SAS System to perform additions, modifications and deletions to your
data sets. Using operating system commands to perform these operations will make
your files unusable. 4

Sorting an Indexed Data File

You can sort an indexed data file only if you direct the output of the SORT procedure
to a new data file so that the original data file remains unchanged. However, the new
data file is not automatically indexed.

Note: If you sort an indexed data file with the FORCE option, the index file is
deleted. 4

Adding Observations to an Indexed Data File

Adding observations to an indexed data file requires additional processing. SAS
automatically keeps the values in the index consistent with the values in the data file.

Multiple Occurrences

An index that is created without the UNIQUE option can result in multiple
occurrences of the same value, which results in multiple RIDs for one value. For large
data files with many multiple occurrences, the list of RIDs for a given value may
require several pages in the index file. Because the RIDs are stored in physical order,
any new observation added to the data file with the given value is stored at the end of
the list of RIDs. Navigating through the index to find the end of the RID list can cause
many I/O operations.

In Version 7 and later releases, SAS remembers the previous position in the index so
that when inserting more occurrences of the same value, the end of the RID list is
found quickly.

Appending to an Indexed Data File

Version 7 and later releases provide performance improvements when appending a
data file to an indexed data file. SAS suspends index updates until all observations are
added, then updates the index with data from the newly added observations. See the
APPEND statement in the DATASETS procedure in SAS Language Reference:
Dictionary.

Recovering a Damaged Index

An index can become damaged for many of the same reasons that a data file or catalog
can become damaged. If a data file becomes damaged, use the REPAIR statement in
PROC DATASETS to repair the data file or recreate any missing indexes. For example,

proc datasets library=mylib;
repair mydata;

run;

454 Compressed Data Files 4 Chapter 28

Compressed Data Files

You can compress data files to save space. When you create a compressed data file,
SAS writes a note to the log indicating the percentage reduction that is obtained by
compressing the data file. The compression percentage is obtained by comparing the
size of the compressed data set with the size of a noncompressed data file of the same
page size and record count. Note that compression may not result in a smaller data file.

To compress SAS data files, use the COMPRESS= data set option or the COMPRESS=
system option. When you specify COMPRESS=YES, SAS uses the default compression
algorithm. You can also specify your own compression algorithm or use another
compression algorithm supplied by SAS by specifying COMPRESS=algorithm-name.
See the COMPRESS= data set option and the COMPRESS= system option in SAS
Language Reference: Dictionary for more information.

The following table shows additional options that you can use with COMPRESS=
when you create a compressed data file.

Table 28.7 Options that You Can Use with COMPRESS=

To do this … Use … Example Restrictions

Control whether a
compressed data set
may be processed with
random access (by
observation number)

POINTOBS= YES
data set option

data test
(compress=yes

pointobs=yes);

POINTOBS=YES
increases CPU
usage when
you create or
update a
compressed
data set.

Specify whether new
observations are
written to free space
in a compressed SAS
data set to save
storage space

REUSE=YES data set
option or system
option

data test
(compress=yes

reuse=no);

If you set
REUSE=YES,
SAS
automatically
sets
POINTOBS=NO.

Note: POINTOBS=yes and REUSE=yes are mutually exclusive, that is, they cannot
be used together. 4

You can access observations in a compressed data file by specifying the observation
number in:

� FSEDIT

� SET statement, POINT= option

� MODIFY statement, POINT= option.

Note: You cannot access observations by number if you set REUSE=YES. 4

See the REUSE= data set option in SAS Language Reference: Dictionary for more
information on access by observation number.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

SAS Language Reference: Concepts
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–441–1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM, ACF/VTAM, AIX, APPN, MVS/ESA, OS/2, OS/390, VM/ESA, and VTAM are
registered trademarks or trademarks of International Business Machines Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

